
PhD admissions exam
40th cycle – 8th July 2024

This exam consists of 14 exercises divided into seven different topics, each in
a separate section of this document. The exercises are independent and can be
solved in any order.

• Applicants are required to submit written solutions of at most four
exercises.

• Each exercise is worth up to 9 points. However, the score within each
topic/section can total up to 15 points maximum. The maximum total
score for the exam is capped at 30 points.

• Solutions should be written in English, except for candidates applying
for positions as Italian public servants, who may write their solutions in
Italian.

• During the exam, it is forbidden to consult notes, communicate with
others, or use any external resources.

Candidates are encouraged to select a manageable number of exercises that
can be completed within the allotted time while maintaining high-quality
solutions. This exam serves as an opportunity for candidates to showcase their
mathematical prowess. Solutions should be well-communicated, technically
rigorous, and fully reasoned, highlighting the candidates’ abilities among other
desirable qualities.
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1 Algebra

Exercise 1.1. Consider the vector space R3, endowed with the canonical basis
E = {e1, e2, e3} and let (x, y, z) be coordinates with respect to the basis E .
Let Φ ∈ EndR(R3) be the endomorphism defined by the following conditions:

Φ(e1) = 2e2 + 2e3, Φ(e1 + 2e2) = 0, Φ(e1 + 3e2 + e3) = 0.

(i) Compute the characteristic polynomial PΦ(t) ∈ R[t] of Φ and, for any
eigenvalue λ ∈ R of Φ, determine a basis and linear equations (in the
given coordinates (x, y, z)) of the corresponding eigenspace Vλ(Φ) ⊆ R3.

(ii) Deduce that Φ is not diagonalizable but that Φ admits a Jordan normal
form. Explicitely determine such a Jordan normal form as well as the
minimal polynomial mΦ(t) ∈ R[t] of the endomorphism Φ.

(iii) Write down an explicit Jordan basis J for Φ, expressing each vector
of such a Jordan basis J as a linear combination of the vectors in the
canonical basis E .

Exercise 1.2. Consider the symmetric group (S5, ◦) which acts as a permuta-
tion group on the set X := {1, 2, 3, 4, 5}. Let Y := {1, 3, 5} ⊊ X.

(i) Prove that the subset

H :=
{
σ ∈ (S5, ◦) | σ(y) = y, ∀ y ∈ Y

}
⊂ S5

is a subgroup of (S5, ◦) and determine further cardinality of H.

(ii) Prove that the subset

K :=
{
σ ∈ (S5, ◦) | σ(y) ∈ Y, ∀ y ∈ Y

}
⊂ S5

is a subgroup of (S5, ◦) and determine further cardinality of K.

(iii) Prove that the subset

T :=
{
σ ∈ (S5, ◦) | σ(x) = x, ∀ x ∈ X \ Y

}
⊂ S5

is a normal subgroup of (K, ◦) and determine, up to isomorphism, the
group structure of the quotient group K/T , enstablishing also if one can
have a surjective group homomorphism from K/T onto H.
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2 Analysis

Exercise 2.1. Let (X, d) be a complete metric space.

(i) Let A a nonempty compact subset of X. Prove that if f : A → A is such
that

d(f(x), f(y)) < d(x, y), for every x, y ∈ A, x ̸= y,

then f has a unique fixed point in A.

(ii) Is the result still true if A is unbounded? And if A is not closed?

Let g : X → X be a contraction mapping 1 and let h : X → X be a function
commuting with g (that is, such that g ◦ h = h ◦ g).
(iii) Prove that h has a fixed point.

(iv) Is the fixed point of h necessarily unique?

Exercise 2.2. Let Ω ⊂ C be an open set. Let Br(z) ⊂ Ω be the closed disk
centered in z ∈ C of radius r > 0. Prove that, for every f holomorphic in Ω,
there holds2:

(i) f(z) =
1

πr2

∫
Br(z)

f(w) dw;

(ii) |f(z)| ≤ 1

π1/2r

(∫
Br(z)

|f(w)|2 dw
)1/2

.

Let A2(Ω) be the vector space of functions holomorphic and square integrable
in Ω. Define the scalar product

⟨f, g⟩ :=
∫
Ω

f(z)g(z) dz,

on A2(Ω). Prove that:

(iii) with the above defined scalar product, A2(Ω) is a complex Hilbert space;

(iv) if Ω = {z ∈ C | |z| < 1} the functions

en(z) =

√
n+ 1

π
zn, n = 0, 1, 2, . . .

form an orthonormal basis in A2(Ω).

1In Exercise 2.1: g : X → X is a contraction mapping if there exists k ∈ [0, 1) such
that d(g(x), g(y)) ≤ kd(x, y) for every x, y ∈ X

2In Exercise 2.2 integrals are intended with respect to the two dimensional Lebesgue
measure.
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3 Didactics and history of mathematics

Exercise 3.1. Historical and pedagogical aspects of geometric constructions
with ruler and compass, possibly with reference to dynamic geometry software.

Exercise 3.2. The role of digital technologies in mathematics education.
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4 Geometry

Exercise 4.1. Consider the complex projective plane P2(C), with homogenous
coordinates [x0, x1, x2]. Recall that a projective conic C ⊂ P2(C) is defined
to be the vanishing locus of a non-zero, complex quadratic form F (x0, x1, x2).
Therefore, if we let C to be the set of all projective conics, then for any C ∈ C
there exists a non-zero complex quadratic form F (x0, x1, x2), equivalently a
non-zero square symmetric matrix A ∈ Sym(3× 3; C) ⊂ M(3× 3; C) s.t.

C : F (x0, x1, x2) = (x0, x1, x2) A

 x0

x1

x2

 = 0.

The set of points p = [p0, p1, p2] ∈ P2(C) such that F (p0, p1, p2) = 0 is called
the support of the projective conic C.

(i) Prove that C identifies with a complex projective space P and determine
the projective dimension of P.

(ii) Let S ⊊ C denote the subset of C parametrizing singular (equivalently
degenerate) projective conics. Prove that S identifies with a cubic hyper-
surface in P, namely with the vanishing locus of a single homogeneous
cubic polynomial in the natural homogeneous coordinates of P.

(iii) Let D ⊊ S denote the subset parametrizing doubly degenerate projective
conics, namely projective conics C whose support is a line in P2(C). Prove
that D is a surface in S which bijectively corresponds to (P2(C))∗, the
dual projective plane of P2(C).

Exercise 4.2. Let E2(R) be the Euclidean plane, namely the 2-dimensional
Euclidean space, endowed with origin O and Cartesian coordinates (x, y). Let
C ⊂ E2(R) be the plane cubic curve, whose Cartesian equation is given by

x3 − y2 − 3x+ 2 = 0.

(i) Determine all the singular points of C ⊂ E2(R) and deduce a polynomial
parametric representation of C

R φ−→ C
t → φ(t) = (x(t), y(t)),

namely where x(t), y(t) ∈ R[t].
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(ii) Determine whether the parametrization φ(t) as in (i) is a regular para-
metrization for C and whether φ(t) is an injective parametrization for
C.

(iii) Classify all singular points of C (namely if they are either ordinary double
points or cusps or triple points, etcetera) and deduce that C is irreducible,
i.e. that C does not split as a union of a line and a (possibly reducible)
conic.
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5 Mathematical physics

Exercise 5.1. The mass point P moves on a vertical circumference whose
parametric expression is (y, z) =

(
sinx , cosx

)
, being x ∈ (−π , π] an angle.

P experiences the attraction due to gravity, whose acceleration field is constant
and always with the same direction, that is oriented as the half-line which starts
from the origin O and includes the semi-axis of the ordinates with negative z,
with reference to the cartesian frame Oyz. The motion of P is ruled by the
differential equation

ẍ = −dU

dx
− λẋ , (5.1)

where U is the total potential energy experienced by P and λ ≥ 0 is a (constant)
friction parameter; the l.h.s. of the equation above is such that the mass of P
is equal to 1.
The total potential energy is such that U = Ugr+Uel . Here, the gravitational

energy Ugr is due to the force exerted on P by the gravity when the norm g
of its acceleration is equal to 1; moreover, the elastic energy Uel is due to a
vertical spring that links the point P to the y–axis and it exerts a force on P
whose norm is equal to k|z|, where k > 0 is the elastic constant and (y, z) are
the cartesian coordinates of P .

(i) Rewrite the equation of motion (5.1) in the form of a second order ODE,
i.e., as ẍ = f(x, ẋ, t) for a suitable and explicit expression of function f .

(ii) Determine all the possible stationary solutions as a function of the para-
meter k.

(iii) Consider the case with k = 2 and initial conditions such that x(0) = 2π/3,
ẋ(0) = 0. Let us recall that the rate of dissipation of the total energy
E = 1

2
ẋ2 + U(x) is such that Ė = −λẋ2.

Prove that
lim
t→∞

x(t) =
π

3
∀ λ > λ∗ ,

where λ∗ ∈ R+ is a number that the candidate can choose according to
his/her convenience.
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Exercise 5.2. Consider the following expression of a magnetic field (somehow
inspired to the so called Parker model):

B = c1
sinϑ

r2
er − c2

sin2 ϑ

r
eφ ,

where c1 ≥ 0 and c2 ≥ 0 are constant real numbers, while {er , eϑ , eφ} are the
unit vectors defining the orthogonal basis which refers to the usual sperical co-
ordinates

{
(r , ϑ , φ) ∈ R+∪{0}×[−π, π]×[0, 2π)

}
, such that the coordinates of

a cartesian frameOxyz reads as (x , y , z) =
(
r cosϑ cosφ , r cosϑ sinφ , r sinϑ

)
.

(i) Consider a point P having mass and electric charge equal to m and q,
respectively. Focus on the circular periodic orbits which are parallel to
the horizontal plane Oxy, with center on the z–axis and of period equal
to T .
In the case with c1 = 0, determine the radius and the constant vertical
coordinate z of these circular orbits, described by the motion of P when
it is subject to the Lorentz force FL = qv ∧B and the gravitational force
exerted by a body of mass M located in the origin O of the frame.

(ii) It is well known that the vector potential A is defined so that ∇×A = B,
where the curl operator (also known as rotor) is such that in spherical
coordinates the previous equation can be expressed as follows:

Br =
1

r sinϑ

(
∂

∂ϑ

(
Aφ sinϑ

)
− ∂Aϑ

∂φ

)
Bϑ =

1

r

(
1

sinϑ

∂Ar

∂φ
− ∂

∂r

(
rAφ

))
Bφ =

1

r

(
∂

∂r

(
rAϑ

)
− ∂Ar

∂ϑ

) ,

with obvious meaning of the symbols, i.e., Ar = A ·er , Aϑ = A ·eϑ , Aφ =
A · eφ , Br = B · er , Bϑ = B · eϑ , Bφ = B · eφ .
(ii-1) Under the assumpion that the potential vector is axisymmetric, i.e.,

∂ Ar

∂φ
= ∂ Aϑ

∂φ
= ∂ Aφ

∂φ
= 0, determine Aφ .

(ii-2) Under the further assumpion that Ar = 0, determine Aϑ .
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6 Numerical analysis

Exercise 6.1. Let {xi}i≥0 be the sequence obtained by applying the Newton
method (also referred to as method of tangents) to approximate the zeros of
the function

f(x) = |x|α, 0 < α ∈ R,

for a given x0 ̸= 0.

(i) Determine, if any, α and x0 such that limi→∞ xi = 0;

(ii) determine, if any, α and x0 such that limi→∞ |xi| = +∞;

(iii) determine, if any, α and x0 such that limi→∞ |xi| = α;

(iv) determine, if any, α ̸= 1 and x0 such that limi→∞
|xi+1|
x2
i

= c where c is a

strictly positive constant.

Exercise 6.2. Let us consider the matrix A with entries

ai,j :=


2, i = j,

−1, |i− j| = 1

0, otherwise,

, i, j = 1, . . . , n;

(i) prove that A−1 exists;

(ii) show that the eigenvalues of A are real and belong to the open interval
(0, 4);

(iii) provide an upper bound for ∥A∥2, where ∥A∥2 := supx ̸=0
∥Ax∥2
∥x∥2 ;

(iv) determine, if any, the values of ω ∈ R such that the iterative method

x(i+1) = (I − ωA)x(i) + q, q ∈ Rn

is convergent for any choice of the initial vector x(0).
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7 Probability

Exercise 7.1. For λ > 0, let Xλ be an exponential Gamma(1, λ) distributed
r.v. (that is, the pdf of Xλ is fλ(x) = λe−λx1lx>0). In the following, ⌊·⌋ denotes
the integer part function.

(i) Find the law of ⌊Xλ⌋ and Xλ−⌊Xλ⌋ and prove that ⌊Xλ⌋ and Xλ−⌊Xλ⌋
are independent.

(ii) Set λ = n ∈ N \ {0}. Study the convergence (in law, in probability, in Lp

and a.s.) of Xn and of Yn = Xn − ⌊Xn⌋ as n → ∞.

(iii) Set now λ = 1
n
, n ∈ N\{0}. Does Un = X1/n and/or Wn = X1/n−⌊X1/n⌋

converge in law as n → ∞?

Exercise 7.2. 3 Let X = (X1, . . . , X2d) be a random vector in R2d such
that X ∼ N(0, C). We define the random vectors X̄ = (X̄1, . . . , X̄d) and
X̂ = (X̂1, . . . , X̂d) in Rd as follows:

X̄ = (X1, . . . , Xd) and X̂ = (Xd+1, . . . , X2d).

(i) Prove that X̄ and X̂ are still Gaussian distributed in Rd and find the asso-
ciated covariance matrices. Prove moreover that X̄ and X̂ are independent
if and only if

C =

(
C̄ O

O Ĉ

)
(7.1)

where C̄, Ĉ, O ∈ Mat(d× d) and O denotes the null matrix.

3In Exercise 7.1:

• The notation Mat(n× n) stands for the set of all the n× n matrices over R.

• For a vector b ∈ Rn and a symmetric positive semi-definite matrix Γ ∈ Mat(n×n),
we recall that if X = (X1, . . . , Xn) ∼ N(b,Γ) then b = E(X), Γ is the covariance
matrix (Γij = Cov(Xi, Xj), i, j = 1, . . . , n) and the characteristic function of X is
given by

φX(θ) = exp
(
i⟨θ, b⟩ − 1

2
⟨Γθ, θ⟩

)
, θ ∈ Rn,

where i denotes the imaginary unit and ⟨·, ·⟩ is the standard Euclidean inner
product.

• A function f : R → R is said to be symmetric and positive semi-definite if for every
n ∈ N \ {0} and for every x1, . . . , xn ∈ R then the n× n matrix (f(xi − xj))

n
i,j=1

is symmetric and positive semi-definite.
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(ii) Assume that C is of the form (7.1) and let Y = (Y1, . . . , Yd) be the random
vector in Rd defined by

Yi = X̄iX̂i, i = 1, . . . d.

Prove that Cov(Yi, Yj) = C̄ijĈij, i, j = 1, . . . , d.

(iii) For A,B ∈ Mat(d × d), let A ⊙ B be defined as the following matrix
product:

(A⊙B)ij = AijBij, i, j = 1, . . . , d.

Using (ii), prove that if A and B are both symmetric and positive semi-
definite then A⊙B is symmetric and positive semi-definite as well. As a
consequence, prove that if f, g : R → R are symmetric and positive semi-
definite then the product fg is still symmetric and positive semi-definite.
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