
Ph.D. Thesis
École Nationale des Ponts et Chaussées

Università degli studi di Roma Tor Vergata

Approximation and regularity results for
the Heston model and related processes

Doctoral schools: MSTIC and Mathematics Tor Vergata

Subject: Mathematics

Thesis prepared at CERMICS, and at the Mathematics department
of Università degli Studi di Roma Tor Vergata

Edoardo LOMBARDO

Cristina, CAROLI COSTANTINI Reviewer
Professor, Università degli Studi G. d’Annunzio Chieti–Pescara

Noufel, FRIKHA Reviewer
Professor, Université Paris 1 Panthéon Sorbonne

Paolo, PIGATO Examiner
Associate Professor, Università degli studi di Roma Tor Vergata

Michele, SALVI Examiner
Associate Professor, Università degli studi di Roma Tor Vergata

Aurélien, ALFONSI Advisor
Professor, École Nationale des Ponts et Chaussées

Lucia, CARAMELLINO Advisor
Professor, Università degli studi di Roma Tor Vergata



ii

Summary

This thesis investigates approximations and regularity results pertaining to Heston’s stochastic
volatility model. It comprises three papers organized across chapters 2, 3, and 4.

The first one tackles the challenge of developing high-order weak approximations for the Cox-
Ingersoll-Ross (CIR) process, which is crucial in financial modelling. The standard Euler-Maruyama
scheme fails due to the square root in the diffusion term, potentially leading to negative values.
Additionally, theoretical frameworks that produce high-order approximations, like the Multistep
Richardson Romberg approach (Pagès 2007), do not directly apply due to the CIR process’s spe-
cific structure. This work employs the random grid technique by Alfonsi and Bally (2021), which
leverages an elementary scheme on random time grids to boost convergence order. We use Alfonsi’s
(2010) second-order CIR scheme as the elementary building block. Rigorous proofs establish that
weak approximations of any order can be achieved for smooth test functions with polynomial growth
derivatives, given the condition σ2 ≤ 4a that is less restrictive than the well-known “Feller Condi-
tion” (σ2 ≤ 2a). Numerical experiments validate these findings, showcasing convergence for both
CIR and Heston models, with significant computational time improvements compared to lower-order
schemes. The limitation lies in the theoretical results being proven only under the less restrictive
condition cited above. Numerical tests hint at effectiveness beyond this, but rigorous proof remains
an open question.

The second work serves as a continuation of our first project. In this iteration, we apply our
technique, which is based on random grids, to the log-Heston process. This process represents the
logarithm of an asset price within the Heston model and the associated volatility process. The log
transformation helps ensure that the moments of both variables remain bounded, thereby simplifying
the mathematical analysis. We start by proposing two second order schemes, built using splitting
techniques. The first one uses an exact simulation for the volatility process; the other one uses
the Ninomiya-Victoir splitting scheme for the log-Heston process (this one is valid only under the
above-cited condition on parameters σ2 ≤ 4a). Rigorous proofs demonstrate convergence to any
desired order. Numerical experiments validate the theoretical results, showcasing the effectiveness of
the high-order schemes for pricing European and arithmetic Asian options. The impact of different
coupling choices on estimator variance is also investigated. Additionally, promising results are
presented for the multifactor/rough Heston model, suggesting the potential of the random grid
technique in this extended context.

The last work delves into the partial differential equation (PDE) associated with the log-Heston
model, exploring classical and viscosity solutions. Key contributions include extending classical
solution results by incorporating linear and source terms in the PDE. In this work, we also prove
the existence and uniqueness of viscosity solutions without relying on Feller’s condition, a common
assumption in the literature. Uniqueness is established even for initial data with specific discontinu-
ities, which is relevant for financial applications like digital option pricing. Furthermore, the chapter
demonstrates the convergence of a hybrid numerical scheme (finite differences/tree scheme) to ap-
proximate the viscosity solution under relaxed regularity assumptions (continuity) on the initial
data. These results offer a more comprehensive understanding of the log-Heston PDE, particularly
in scenarios where Feller’s condition doesn’t hold or the initial data is discontinuous. In the end,
we prove a convergence result for a hybrid scheme provided that the initial data is just continuous.

In Appendix B, we collect other results for the CIR process that did not find space in these
three articles: new regularity results, “High order approximation in high volatility regime”, a new
proof of the CIR moment formula and “polynomial schemes”.
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Chapter 1

Introduction

Stochastic processes, such as solutions of stochastic differential equations (SDEs), play a crucial
role in modelling various random phenomena in fields such as finance, physics, biology, and engi-
neering. Most of the time, exact simulation schemes for stochastic processes are often unachievable
or have high computational costs, necessitating the use of approximation methods, possibly fast.
We are interested in weak approximations of SDEs. Unlike strong approximation, which focuses
on approximating sample paths closely, weak approximation aims to approximate the distribution
of the process at specific time points. Here, we present a basic review of the literature on weak
approximation of SDEs and acceleration techniques to boost the order of the approximation, given
one.

1.1 Weak approximation of solutions of SDEs

We begin by providing a rigorous definition of Stochastic Differential Equation. Let T > 0 and
d, dW ∈ N∗. A Stochastic Differential Equation (hereafter SDE) is an equation of the form:

dXx
t = b(Xx

t ) dt+ σ(Xx
t ) dWt, Xx

0 = x ∈ Rd, (1.1)

where:

• (Xx
t , t ∈ [0, T ]) is the stochastic process in Rd that we want to simulate,

• b : Rd → Rd is the drift coefficient, which represents the deterministic “trend” and is a function
of the current state Xx

t ,

• σ : Rd →M(d, dW ,R), whereM(d, dW ,R) are the real matrix with d lines and dW columns,
is the diffusion coefficient which represents the intensity of the random fluctuations and is also
a function of the current state Xx

t ,

• (Wt, t ≥ 0) is a dW -dimensional standard Wiener process (or Brownian motion), representing
the source of randomness.

We say that (1.1) has strong solutions if for every filtered probability space (Ω,F , (Ft)t,P) and
Wiener process (Wt)t over it, there exists a process (Xx

t )t that verifies with probability 1 the
following equality

Xx
t = x+

∫ t

0
b(Xx

s ) ds+

∫ t

0
σ(Xx

s ) dWs, (1.2)

where the second integral is an Itô integral.
The global existence and uniqueness of strong solutions (Xx

t )t to the SDE (1.1) are guaranteed
under certain conditions, often referred to as the locally Lipschitz and linear growth conditions:

• For every compact set K ⊂ Rd exists a constant CK > 0 such that for all x, y ∈ K,

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ CK |x− y|.
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• There exists a constant C > 0 such that for all x ∈ Rd,

|b(x)|+ |σ(x)| ≤ C(1 + |x|).

We are interested in giving a notion of weak convergence for solutions of SDEs. If we consider a
standard setting, given an Rd-valued random variable Z defined on a probability space (Ω,F ,P)
and a sequence (Zn)n∈N defined over spaces (Ωn,Fn,Pn) we say that Zn converges weakly to Z if

lim
n→∞

En[f(Zn)]→ E[f(Z)], for all f ∈ Cb(Rd), (1.3)

where En and E denote the expected values under the probabilities Pn and P, and Cb(Rd) is the
space of real, continuous and bounded functions over Rd. So, fixed x ∈ Rd one could be interested
to approximate the solution Xx

T of (1.1) in the sense of (1.3), by constructing a sequence of random
variables (X̂n,x

T )n∈N over spaces (Ωn,Fn,Pn). In the meantime, one could be interested in using a
different vector space of “test” functions F (to be specified) for which it is possible to give a rate of
convergence or to use a more general definition that involves semigroups. Given F and the linear
semigroup operator P defined over it by PT f = E[f(X ·T )], we say that a sequence of linear operators
P̂n defined over F is an approximation of PT if

lim
n→∞

|P̂nf(x)− PT f(x)| = 0, for every f ∈ F and x ∈ Rd, (1.4)

or given a norm ∥ · ∥ over F , if

lim
n→∞

∥P̂nf − PT f∥ = 0, for every f ∈ F . (1.5)

Weak approximation methods typically involve discretizing the continuous-time stochastic process
into a sequence of random variables that are easier to handle computationally. The goal is to
construct an approximation whose distribution closely matches that of the original process. Common
techniques include Euler-Maruyama, Milstein, and higher-order schemes, which vary in complexity
and accuracy. We now describe how to construct some approximations discretizing the SDE.

1.1.1 Weak approximations schemes

The most simple way of obtaining weak approximations is via weak approximation schemes. The
general idea of an approximation scheme is to create good approximations in law of Xx

t for small t
such that composing these approximation schemes, the final law obtained is not so distant from the
target one Xx

T . The most famous and used approximation scheme is the Euler-Maruyama scheme.

The Euler-Maruyama scheme

Let T > 0, n ∈ N∗ = N \ {0} and consider the uniform grid Πn = {tnk = kT/n | k = 0, . . . , n} of
step T/n. The idea, like for the Euler scheme in the deterministic framework (ODEs), is to freeze
the solution of the SDE between the regularly spaced discretization instants tnk . The discrete-time
Euler-Maruyama scheme X̂n,x starting from x is defined by

X̂n,x
0 = x, X̂n,x

tnk+1
= X̂n,x

tnk
+
T

n
b(X̂n,x

tnk
) + σ(X̂n,x

tnk
)

√
T

n
(Wtnk+1

−Wtnk
), k = 0, . . . , n− 1. (1.6)

In [42], the following rate of convergence Theorem has been proved.

Theorem 1.1.1. Let b, σ be four times continuously differentiable on Rd with bounded partial deriva-
tives. Assume f : Rd → R is four times differentiable such that f and its derivatives have polynomial
growth. Then there exists C > 0 such that for every x ∈ Rd, and n ∈ N∗ large enough

E[f(X̂n,x
T )]− E[f(Xx

T )] ≤
C

n
.

What is shown in the previous Theorem guarantees under regularity of b, σ and f that the
approximation E[f(X̂n,x

T )] is a weak approximation of order one.
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Weak error analysis and splitting operator techniques

The Euler scheme, presented above, represents the simplest and most famous weak approximation
scheme, and has order one. In practice, weak approximations converging with an order greater
than one can be useful. One interesting way to get higher-order approximations is to build schemes
with a higher order of convergence. Alfonsi in [2] introduced a general framework to get, rigorously,
approximation schemes of order 2. We consider the autonomous case (1.1) in which the solution
(Xx

t )t∈[0,T ] of the SDE is confined in a subset D ⊂ Rd, i.e.

P(Xx
t ∈ D, ∀t ∈ [0, T ]) = 1. (1.7)

Given a multi index α = (α1, . . . , αd) and ∂α = ∂α1
1 · · · ∂

αd
d the differential operator that differenti-

ates αi times in the i-th coordinates, we define the functional space

C∞pol(D) = {f ∈ C∞(D,R),∀α ∈ Nd, ∃Cα > 0, eα ∈ N∗,∀x ∈ D, |∂αf(x)| ≤ Cα(1 + |x|eα)}

where | · | is the standard Euclidean norm. This is the space of smooth functions whose derivatives
have a polynomial growth.

Definition 1.1.2. Let f ∈ C∞pol(D). We say that (Cα, eα)α∈Nd is a good sequence for f if for any
α ∈ Nd and x ∈ D one has |∂αf(x)| ≤ Cα(1 + |x|eα).

Alfonsi [2] makes further assumption over the coefficient of the SDE (1.1): b : D → Rd and
σ : D→M(d, dW ,R) are such that

∀1 ≤ i ≤ d, 1 ≤ j ≤ dW , x ∈ D 7→ bi(x), x ∈ D 7→ (σ(x)σ⊤(x))i,j ∈ C∞pol(D), (1.8)

for instance, this assumption is fulfilled in the case of affine diffusion. The infinitesimal generator
L associated to the SDE is given by

f ∈ C2(D), Lf(x) =
d∑
i=1

bi(x)∂if(x) +
1

2

d∑
i,j=1

(σ(x)σ⊤(x))i,j∂i∂jf(x). (1.9)

Definition 1.1.3. We say that L, defined (1.9), satisfies the required assumptions over D if its SDE
have coefficients b and σ that satisfies (1.8), sub-linearity and has strong solutions that satisfy (1.7).

To study the weak error, we need to focus on the asymptotic behaviour of

E[f(X̂x
t )]− E[f(Xx

t )] for t→ 0+, f ∈ C∞pol(D).

Definition 1.1.4. A function C∞pol(D)× (0,∞)×D ∋ (f, t, x) 7→ Rf(t, x) ∈ R is called a remainder
of order ν ∈ N if for any function f ∈ C∞pol(D) with a good sequence (Cα, eα)α∈Nd , there exist
C,E, η > 0 depending only on the good sequence such that

∀t ∈ (0, η),∀x ∈ D, |Rf(t, x)| ≤ Ctν(1 + |x|E).

We say that X̂x
t is a potential weak ν-th-order scheme for the operator L if (f, t, x) 7→ E[f(X̂x

t )]−
E[f(Xx

t )] is a remainder of order ν + 1.

It is important to remark that every exact simulation scheme is a potential weak ν-th-order
scheme for all ν ∈ N. It is relatively straightforward to show the following result using Itô’s
formula.

Proposition 1.1.5. Let f ∈ C∞pol(D) and L that satisfies the required assumptions. Then for all
ν ∈ N and t ≥ 0

E[f(Xx
t )] =

ν∑
l=0

tl

l!
Llf(x) +

∫ t

0

(t− s)ν

ν!
E[Lν+1f(Xx

s )]ds (1.10)

and (f, t, x) 7→
∫ t
0

(t−s)ν
ν! E[Lν+1f(Xx

s )]ds is a remainder of order ν + 1.
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This last result implies one key equivalence that will be crucial in the weak error analysis in
Chapter 2 and 3.

Remark 1.1.6. X̂x
t is a potential weak ν-th order scheme for L if, and only if

(f, t, x) 7→ E[f(X̂x
t )]−

ν∑
l=0

tl

l!
Llf(x) is a remainder of order ν + 1.

Alfonsi [2] proved the following result that is of key importance to build high order weak schemes.

Proposition 1.1.7. Let L1 and L2 be two operators that satisfy the required assumptions on D,
and X̂1 and X̂2 be respectively potential weak second order discretization schemes on D for L1 and
L2. Then, for λ1, λ2 > 0 and f ∈ C∞pol(D) one has

E
[
f(X̂

2,X̂1,x
λ1t

λ2t
)

]
=

∑
l1+l2≤2

λl11 λ
l2
2

l1!l2!
tl1+l2Ll11 L

l2
2 f(x) +Rf(t, x) (1.11)

where Rf(t, x) is a remainder of order 3.

We define the ordered composition of k + 1 functions {f0, f1 . . . , fk} as follows

k

i=0

fi = fk ◦ fk−1 ◦ · · · ◦ f0.

It is possible to prove the following result using the expansion (1.11).

Corollary 1.1.8. Suppose the same hypotheses as in Proposition 1.1.7 and let B be an independent
Bernoulli random variable of parameter 1/2. Then, the two following schemes are potential second-
order schemes for L1 + L2

X̂B,x
t = BX̂

2,X̂1,x
t

t + (1−B)X̂
1,X̂2,x

t
t , X̂x

t = X̂
1,X̂

2,X̂
1,x
t/2

t

t/2 .

More generally, let k ∈ N∗, {L0,L1, . . . ,Lk} be operators that satisfy the required assumptions on
D, and {X̂0, X̂1, . . . , X̂k} be respectively potential weak second order discretization schemes on D
for them. Then

X̂B,x
t = B

(
0

i=k

X̂i
t(·)

)
(x) + (1−B)

(
k

i=0

X̂i
t(·)

)
(x), (1.12)

X̂x
t =

(
1

i=k

X̂i
t/2(·)

)
◦ X̂0

t (·) ◦

(
k

i=1

X̂i
t/2(·)

)
(x), (1.13)

are second order schemes for the operator L =
∑k

i=0 Li. We call the first one the randomized leapfrog
splitting scheme and the second one the Strang splitting scheme.

The Ninomiya-Victoir scheme

The theoretical tools introduced above allow us to demonstrate the convergence (and rate of speed)
of the scheme proposed by Ninomiya and Victoir in [38]. The strength of this scheme is that it
reduces the problem to the numerical approximation of Ordinary Differential Equations (ODEs).
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We consider an operator L that satisfies the required assumptions on D, so it is defined by the
formula (1.9) for smooth coefficients b and σσ⊤. We define the following operators

V0f(x) =
d∑
i=1

bi(x)∂if(x)−
1

2

dW∑
k=1

d∑
i,j=1

∂jσi,k(x)σj,k(x)∂if(x)

Vkf(x) =
d∑
i=1

σi,k(x)∂if(x), for k = 1, . . . , dW .

Then, one has the following identity

L =

dW∑
k=0

Lk,

where

Lk =
1

2
V 2
k =

d∑
i,j=1

σj,k(x)(∂jσi,k(x)∂if(x) + σi,k(x)∂j∂if(x)) for k = 1, . . . , dW ,

L0 = V0,

are well-defined and satisfy the required assumptions on D. For all k ∈ {0, . . . , dW }, we call vk the
vector field that verifies

Vkf(x) = vk(x).∇f(x).

We then consider the following ODEs:

∂tX0(t, x) = v0(X0(t, x)), t ≥ 0, X0(0, x) = x ∈ D,
∂tXk(t, x) = vk(Xk(t, x)), t ∈ R, Xk(0, x) = x ∈ D.

One has the following result.

Theorem 1.1.9. Let X̂k
t (x) = Xk(

√
tN, x), N ∼ N (0, 1) for all k ∈ {1, . . . , dW } and X̂0

t (x) =
X0(t, x). Under the above framework, X̂B,x

t in (1.12) and X̂x
t in (1.13) are potential second-order

scheme for the operator L =
∑dW

k=0 Lk.

Here, we give a remarkable example of the CIR model, for which the standard Euler scheme is
not defined.

Example 1.1.10. Consider the process

Y y
t = (a− bY y

t )dt+ σ
√
Y y
t dWt, Y y

0 = y ≥ 0, (1.14)

whose infinitesimal generator is given by

L =
1

2
σ2y∂2y + (a− by)∂y, f ∈ C2, y ≥ 0.

Following the Ninomiya-Victoir splitting, one has L = V0 +
1
2V

2
1 with

V0f(y) =
(
a− σ2

2
− by

)
f ′(y) and V1f(y) = σ

√
yf ′(y), (1.15)

so, the two following ODEs have to be solved

∂tY0(t, y) = (a− bY0(t, y)), t ≥ 0, Y0(0, y) = y ≥ 0,

∂tỸ1(t, y) = σ

√
Ỹ1(t, y), t ∈ R, Yk(0, y) = y ≥ 0.
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The solutions are

Y0(t, y) = e−bty + ψb(t)(a− σ2/4), ψb(t) =
1− e−bt

b
,

Ỹ1(t, y) = ((
√
y + tσ/2)+)

2,

but one can prove that substituting Ỹ1 with

Y1(t, y) = (
√
y + tσ/2)2, (1.16)

gives the same development of the functional f 7→ E[f(Ỹ1(
√
tN, ·))] in terms of the operator 1

2V
2
1 .

So one get using formulas (1.12) and (1.13)

Ŷ B,y
t =B

(
e−bt

(√
y +

σ
√
t

2
N1

)2
+ ψb(t)

(
a− σ2

4

))
+ (1−B)

(√
e−bty + ψb(t)(a−

σ2

4
) +

σ
√
t

2
N2

)2

, (1.17)

Ŷ y
t = e−bt/2

(√
e−bt/2y + ψb(t/2)

(
a− σ2

4

)
+
σ
√
t

2
N

)2

+ ψb(t/2)
(
a− σ2

4

)
, (1.18)

where we have exchanged the role of Y0 and Y1 in the Strang splitting to reduce the number of
standard Gaussian random variables from 2 to 1. We remark that these schemes are defined only if
σ2 ≤ 4a.

1.1.2 Boosting techniques

In the previous subsection, we saw how it is possible to construct weak approximations using
schemes. Here, we show how it is possible to construct higher-order approximations using multiple
times the same schemes calculated on different grids, either deterministic or random. We describe
two similar but different approaches: Richardson-Romberg extrapolation and random grids tech-
niques.

Richardson-Romberg extrapolation

Richardson-Romberg extrapolation, originally developed to improve the accuracy of numerical inte-
gration, can be adapted to enhance the convergence of approximation schemes. The application to
weak order schemes has been introduced in the seminal paper [42]. The technique consists of mixing
schemes that evolve on different time-step grids. Let T > 0, α, n ∈ N∗, and X̂n,x be a weak α-th
order scheme that runs on the grid Πn = {tnk = kT/n | k = 0, . . . , n} of step T/n. This approach
relies on the existence of a development for the error E[f(X̂n,x

T )]− E[f(Xx
T )]. If one can prove the

following development

E[f(X̂n,x
T )]− E[f(Xx

T )] =
c1
nα

+O

(
1

nα+1

)
(1.19)

then there exist weights w1(α) = 1− 2α/(2α − 1) and w2(α) = 2α/(2α − 1), i ∈ 1, 2 and one has

E[w1(α)f(X̂
n,x
T ) + w2(α)f(X̂

2n,x
T )]− E[f(Xx

T )] = O

(
1

nα+1

)
,

so E[w1(α)f(X̂
n,x
T ) + w2(α)f(X̂

2n,x
T )] is a weak approximation of order at least α + 1. Under

regularity of the drift and diffusion coefficients of the SDE, Talay and Tubaro proved in [42] the
following expansion results for the Euler scheme (1.6).
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Theorem 1.1.11. Let b, σ ∈ C∞b (Rd) and f ∈ C∞pol(Rd). Let n ∈ N∗ and X̂n,x be the Euler-
Maruyama scheme starting from x ∈ Rd, then for every integer greater than ν ∈ N∗ one has the
following development

E[f(X̂n,x
T )]− E[f(Xx

T )] =

ν∑
i=1

ci
ni

+O

(
1

nν+1

)
. (1.20)

Under the hypotheses of the Theorem 1.1.11, it is also possible to build weak approximations of
order ν for every ν ∈ N∗ by systematically combining approximations computed with different step
sizes of the Euler Scheme. In [40], Pagès has proven that if an expansion such (1.20) exists, then

E

[
ν∑
i=1

(−1)ν−iiν

i!(ν − i)!
f(X̂in,x

T )

]
= E[f(Xx

T )] +
(−1)νcν
ν!

n−ν +O

(
1

nν+1

)
. (1.21)

(1.21) proves that the linear operator f 7→ E
[∑ν

i=1
(−1)ν−iiν

i!(ν−i)! f(X̂
in,·
T )

]
is a weak approximation of

order ν of PT = E[f(X ·T )]. Furthermore, Pagès has shown that if the Brownian increments for the
Euler schemes are consistent, i.e. they are constructed using the same trajectories of the Wiener
process, then one has

lim
n→∞

Var

(
ν∑
i=1

(−1)ν−iiν

i!(ν − i)!
f(X̂in,x

T )

)
= Var(f(Xx

T )).

Random grids techniques

Recently, Alfonsi and Bally [5] introduced a new technique to approximate general semigroups of
linear operators (Pt, t ≥ 0) that works under a large framework. This technique permits building
high order approximations by an intricate combination of elementary schemes running on random
grids. In general, they consider a vector space F with a semigroup of linear operators (Pt, t ≥ 0)
Pt : F → F , and they equip the space with a family of seminorms (∥ · ∥k)k∈N such that ∥f∥k ≤
∥f∥k+1, for all f ∈ F . Fixed a time horizon T > 0, for all n ∈ N∗ and l ∈ N they fix the time steps
hl =

T
nl . They consider a family of linear operators Ql : F → F , l ∈ N, and denote, for j ∈ N∗

Q
[j]
l = Q

[j−1]
l Ql as the operator obtained by composition (Q[0] = Id). They suppose two conditions

are met

there exists α > 0 and β ∈ N such that for any l, k ∈ N, there exists C > 0, such that
∥(Phl −Ql)f∥k ≤ C∥f∥k+βh

1+α
l for all f ∈ F , (H1)

for all l, k ∈ N, there exists C > 0 such that
max0≤j≤nl ∥Q[j]

l f∥k + supt≤T ∥Ptf∥k ≤ C∥f∥k for all f ∈ F .
(H2)

The first quantifies how Ql approximates Phl , while the second one is a uniform bound with respect
to all the seminorms. Alfonsi and Bally show how one can construct, by mixing the operators Ql,
a linear operator P̂ν,n for which there exists C > 0 and k ∈ N such that

∥PT f − P̂ν,nf∥0 ≤ C∥f∥kn−να for all f ∈ F . (1.22)

The general construction of P̂ν,n is described by trees [5, Section 3] and depends only on the value
of the constant α and the desired boost ν. Being quite complex and intricate, we do not reproduce
here the construction in all its generality, but we describe only the procedure for ν = 1, 2. In the
case ν = 1, one basically uses the same proof of Talay and Tubaro introduced in [42] for the weak
error of the Euler scheme. Using the semigroup property, one has

PT f −Q[n]
1 f = Pnh1f −Q

[n]
1 f =

n−1∑
k=0

P(n−(k+1))h1(Ph1 −Q1)Q
[k]
1 f, (1.23)
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and using twice (H2) and once (H1)

∥PT f −Q[n]
1 f∥0 ≤

n−1∑
k=0

C∥[Ph1 −Q1]Q
[k]
1 f∥0 ≤

n−1∑
k=0

C∥Q[k]
1 f∥βh

1+α
1

≤ C∥f∥βn(T/n)1+α = C∥f∥βn−α,

that proves P̂1,n = Q
[n]
1 is an approximation of order α of PT . To get the boost of order ν = 2, one

use the same expansion used on PT = Pnh1 to P(n−(k+1))h1 . One gets P(n−(k+1))h1 − Q
[n−(k+1)]
1 =∑n−(k+2)

k′=0 P(n−(k+k′+2))h1 [Ph1 −Q1]Q
[k′]
1 and then expand in (1.23):

PT f −Q[n]
1 f =

n−1∑
k=0

Q
[n−(k+1)]
1 [Ph1 −Q1]Q

[k]
1 f +R(n)f, (1.24)

with R(n) =
n−1∑
k=0

n−(k+2)∑
k′=0

P(n−(k+k′+2))h1 [Ph1 −Q1]Q
[k′]
1 [Ph1 −Q1]Q

[k]
1 .

This is not enough to produce our approximations because, in the extra terms on the right-hand
side of (1.24), there is Ph1 . This is solved by using again (1.23), but this time over Pnh2−Q

[n]
2 using

the smaller time step h2. One has

PT f −Q[n]
1 f =

n−1∑
k=0

Q
[n−(k+1)]
1 [Q

[n]
2 −Q1]Q

[k]
1 f + R̃(n)f, (1.25)

with R̃(n) =
n−1∑
k=0

n−1∑
j=0

Q
[n−(k+1)]
1 P(n−(j+1))h2 [Ph2 −Q2]Q

[j]
2 Q

[k]
1

+
n−1∑
k=0

n−(k+2)∑
k′=0

P(n−(k+k′+2))h1 [Ph1 −Q1]Q
[k′]
1 [Ph1 −Q1]Q

[k]
1 .

As already done for ν = 1, using (H2) and (H1) over the terms in R̃(n), one can prove Q[n]
1 +∑n−1

k=0 Q
[n−(k+1)]
1 [Q

[n]
2 −Q1]Q

[k]
1 to be a 2α approximation of PT . Unfortunately, simulating all the

terms in (1.25) would require a computational time in O(n2). Thus, the method would not be more
efficient than using directly Q[n2]

2 . To address this issue, Alfonsi and Bally introduce random grids
and use a random variable κ that is uniformly distributed on {0, . . . , n− 1}. One has

P̂2,n = Q
[n]
1 + nE[Q[n−(κ+1)]

1 [Q
[n]
2 −Q1]Q

[κ]
1 ]. (1.26)

In [5], Alfonsi and Bally prove that the assumptions (H1) and (H2) are valid for several types of
semigroups and approximation schemes that act over Cb(Rd), being equipped with the family of
norms

∥f∥k =
∑

0≤|α|≤k

sup
x∈Rd

|∂αf(x)|.

Under regularity assumptions on the drift and diffusion coefficients, the following result was obtained
for SDEs and the Euler Scheme.

Proposition 1.1.12. Consider (Xx
t , t ≥ 0) the solution of (1.1) where b, σj ∈ C∞b (Rd) and the

Euler Scheme (1.6). Define PT f(x) = E[f(Xx
T )] and Ql = E[f(Xnl,x

T )]. Then one has

for any l, k ∈ N, there exists C > 0, such that
∥(Phl −Ql)f∥k ≤ C∥f∥k+4h

2
l for all f ∈ C∞b (Rd), (HE

1 )

for all l, k ∈ N, there exists C > 0 such that
max0≤j≤nl ∥Q[j]

l f∥k + supt≤T ∥Ptf∥k ≤ C∥f∥k for all f ∈ C∞b (Rd).
(HE

2 )
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Under the same hypotheses, Alfonsi and Bally also proved that the estimator linked with P̂ν,n
has a finite variance.

1.2 Thesis contribution

This section summarizes the main results obtained during the thesis. These results are divided into
three chapters related to three articles with Heston’s model as a common link. This model describes
the evolution of an asset and its volatility Heston process that are the solutions respectively of Yt
in (1.28) and the couple (St, Yt) in (1.27)-(1.28)

dSs,yt = rSs,yt dt+ Ss,yt

√
Y y
t (ρdWt +

√
1− ρ2dBt), Ss,y0 = s > 0, (1.27)

dY y
t = (a− bY y

t )dt+ σ
√
Y y
t dWt, Y y

0 = y ≥ 0. (1.28)

In the first work (Chapter 2), we deal with the construction of high order approximations of the
volatility process (1.28). In the second one (Chapter 3), we extend the results obtained to the
couple (S, Y ). Instead, in the last work (Chapter 4), we study the PDE that describes the price of
a European-type derivative under this model. Other minor results are listed in Appendix B.

1.2.1 Resume of Chapter 2

The goal is to build high order approximations of the CIR (Cox-Ingersoll-Ross) process (1.28) and to
prove rigorously a rate of convergence result. The theory developed for the Euler scheme in [42] and
[12] and used in [40] to create the multistep Richardson-Romberg approach, and the one developed
in [5] do not cover this model. In fact, even if the drift coefficient is smooth (but not bounded), the
diffusion coefficient is not even locally Lipschitz. Furthermore, because of this square root diffusion
term, the standard Euler scheme is not well-defined: the increments are Gaussian distributed, so
the positivity of the scheme is not achieved. In [3], Alfonsi proposed a second order scheme for the
CIR that uses the Ninomiya-Victoir scheme coupled with a moment matching auxiliary scheme in
a boundary of 0. Unfortunately, the techniques we develop cannot produce a proof for a general
scheme that works even when σ2 > 4a. Roughly speaking, this is because the analysis of the
remainder in (1.26) requires to be more elaborate: we do not only need to control its norm as in
Subsection 1.1.1, but we also have to handle its space regularity. Nevertheless, the following rate
convergence Theorem has been proved.

Theorem 1.2.1. Let Ŷ y
t be the scheme defined by (1.18) for σ2 ≤ 4a and Qlf(y) = E[f(Ŷ y

hl
)], for

l ≥ 1. Then, for all f ∈ C18pol(R+), we have P̂2,nf(y)− PT f(y) = O(1/n4) as n→∞.
Besides, for f ∈ C∞pol(R+), we have P̂ν,nf(y)− PT f(y) = O(1/n2ν).

Before giving details on how this Theorem has been proved (all details can be found in Chapter
2), we mention that we later proved the same result under a slightly less demanding hypothesis on
the regularity of f . The result (Theorem B.1.4) is in Appendix B.1.

Theorem 1.2.1 is just an application of the random grids technique, so the key point is to prove
a version of (H1) and (H2). In this work, we made the pedagogical choice of proving the main
assumptions for the simpler space of polynomial functions. After that, we passed to the strictly
larger class

Ck,Lpol(R+) =

{
f : R+ → R of class Cm : max

j∈{0,...,m}
sup
x≥0

|f (j)(y)|
1 + yL

<∞

}
,

which we endowed with the following family of norms: for all m ≤ k and L′ ≥ L

∥f∥m,L′ = max
j∈{0,...,m}

sup
x≥0

|f (j)(y)|
1 + yL′ . (1.29)
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Across the proofs of (H1) and (H2) we consider an extension of the scheme in (1.18), in which
the standard Gaussian random variable N is replaced by a random variable Z that satisfies the
following criteria:

• Z is symmetric,

• Z have all finite moments,

• E[Zk] = E[Nk] for j ∈ {2, 4}.

We refer to these criteria as Assumption (HY ), and the scheme is

Ŷ y
t = φ(t, y,

√
tZ) = e−bt/2

(√
e−bt/2y + ψb(t/2)

(
a− σ2

4

)
+
σ
√
t

2
Z

)2

+ ψb(t/2)
(
a− σ2

4

)
. (1.30)

In the following, we point out when and why we must assume Z = N , N ∼ N (0, 1) to have the
proof-machinery works.

On the adapted version of (H2)

In Section 4 of Chapter 2, we prove this version of the assumption (H2).

Proposition 1.2.2. Let σ2 ≤ 4a and Ŷ y
t = φ(y, t,

√
tN) be the scheme (1.18) with N ∼ N (0, 1).

Let T > 0 and m,L ∈ N such that L ≥ m. We define for n ≥ 1 and l ∈ N, Qlf(x) = E[f(Ŷ y
hl
)]with

hl =
T
nl . Then, there exists a constant C ∈ R∗+ such that for any f ∈ Cm,Lpol (R+), l ∈ N and t ∈ [0, T ],

∥E[f(Y ·t )]∥m,L + max
0≤k≤nl

∥∥∥Q[k]
l f
∥∥∥
m,L
≤ C∥f∥m,L. (1.31)

We split the proof into two parts. We start by the upper bound for the CIR semigroup.

Proposition 1.2.3. Let f ∈ Cm,Lpol (R+), L ≥ m, T > 0 and t ∈ (0, T ]. Let Y y be the CIR process
starting from y ≥ 0. Then, E[f(Y ·t )] ∈ C

m,L
pol (R+) and we have the following estimate for some

constant Ccir(m,L, T ) ∈ R+:

∥E[f(Y ·t )]∥m,L ≤ Ccir(m,L, T )∥f∥m,L. (1.32)

The proof we gave in Chapter 2 relies heavily on the knowledge of the explicit form of the density
of the CIR distribution. To fully prove Proposition 1.2.2, we demonstrated the equivalent upper
bound for the scheme.

Proposition 1.2.4. Let T > 0, σ2 ≤ 4a, m,M ∈ N, Z be a symmetric random variable with density
η ∈ CM (R) such that for all i ∈ {0, . . . ,M}, |η(i)(y)| = o(|z|−(2L+i)) for |z| → ∞, and η∗m ≥ 0 for
all 1 ≤ m ≤ M (see Lemma 1.2.5 below for the definition of η∗m). Let Qlf(x) = E[f(Ŷ y

hl
)] with

Ŷ y
t = φ(t, y,

√
tZ), n ≥ 1, l ∈ N and hl = T/nl. Then, for any L ∈ N, there exists C ∈ R+ such

that:
max

0≤j≤nl
∥Q[j]

l f∥m,L ≤ C∥f∥m,L, f ∈ C
m,L
pol (R+), l ∈ N.

The key tool to prove Proposition 1.2.4 is the following regularity result.

Lemma 1.2.5. Let M,L ∈ N. Let Y1 be defined in (1.16) and Z be a symmetric random variable
with density η ∈ CM (R) such that for all i ∈ {0, . . . ,M}, |η(i)(z)| = o(|z|−(2L+i)) for |z| → ∞. Then,
for all function f ∈ CM,L

pol (R+), m ∈ {1, . . . ,M} and t ∈ [0, T ] one has the following representation

∂my E[f(Y1(
√
tZ, y))] =

∫ ∞
−∞

∫ 1

0
(u− u2)m−1f (m)(w(u, y, z))η∗m(z)dudz (1.33)
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where w(u, y, z) = y+(2u− 1)σ
√
tz
√
y+σ2tz2/4, η∗m(z) = (−1)m−1

(∑m
j=1 cj,mz

jη(j)(z)
)
, and the

coefficients cj,m are defined by induction, starting from c1,1 = −1, through the following formula

cj,m =

(
2j

m− 1
− 4

)
cj,m−11j<m +

2

m− 1
cj−1,m−11j>1, j ∈ {1, . . . ,m}, m ∈ {2, . . . ,M}.

In particular, cm,m = − 2m−1

(m−1)! < 0. Furthermore, if the density η is such that η∗m(z) ≥ 0 for all
z ∈ R, and all m ∈ {1, . . . ,M}, then there exists C ∈ R+ such that

∥E[f(Y1(
√
tZ, ·))]∥m,L ≤ (1 + Ct)∥f∥m,L, t ∈ [0, T ]. (1.34)

We stress here two things that are crucial in (1.34): the same norm is used on both sides and
the sharp time dependence of the multiplicative constant (1 + Ct). These properties are used in
the proof of Proposition 1.2.4 to get (H2). We remark that the hypotheses are quite restrictive
and do not allow using discrete random variables to continue our weak error analysis. Instead, we
need a random variable Z with a density that is regular enough and that satisfies the differential
inequalities η∗m(z) ≥ 0 up for all M ∈ N∗, where M depends on the order of the boost one wants to
achieve with the random grids techniques. In Chapter 2, we show that N ∼ N (0, 1) satisfies all the
required density hypotheses for all M ∈ N and, furthermore, that is the unique law that does that
fixed the second and fourth moments. We proved the following characterization of the law N (0, 1).

Theorem 1.2.6. Let Z be a symmetric random variable with a C∞ probability density function η
such that E[Z2] = 1, E[Z4] = 3 and η∗m ≥ 0 for all m ≥ 1. Then, Z ∼ N (0, 1).

On the adapted version of (H1)

In Section 4 of Chapter 2, we prove this version of the assumption (H1).

Proposition 1.2.7. Let Z that satisfies (HY ) and Ŷ y
t be the scheme (1.30). Let m,L ∈ N such

that L+3 ≤ m and f ∈ C2(m+3),L
pol (R+). Then, there exists a constant C > 0 such that for t ∈ [0, T ],

∥E[f(Ŷ ·t )]− E[f(Y ·t )]∥m,L+3 ≤ Ct3∥f∥2(m+3),L.

To prove this result, we compare E[f(Ŷ ·t )] and E[f(Y ·t )] with the expansion of order two f +

tLf + t2

2 Lf , as in the weak error analysis explained in [2] and resumed here. We start by proving
our framework’s equivalent of Proposition 1.1.5. We need something more than show (f, t, y) 7→
E[f(Y y

t )]− f(y) + tLf(y) + t2

2 Lf(y) is a remainder of order three as in Definition 1.1.4, we need to
prove also a norm estimate as specified in the next result, proved in Chapter 2.

Proposition 1.2.8. Let m, ν, L ∈ N such that L + ν + 1 ≥ m, T > 0 and f ∈ Cm+2(ν+1),L
pol (R+).

Let Y y be the CIR process and L its infinitesimal generator. Then, for t ∈ [0, T ], we have

E[f(Y y
t )] =

ν∑
i=0

ti

i!
Lif(y) + tν+1

∫ 1

0

(1− s)ν

ν!
E[Lν+1f(Y y

ts)]ds

where the function y 7→
∫ 1
0

(1−s)ν
ν! E[Lν+1f(Y y

s )]ds belongs to Cm,Lpol (R+), and we have the following
estimate for all t ∈ [0, T ],∥∥∥∥∫ 1

0

(1− s)ν

ν!
E[Lν+1f(Y ·ts)]ds

∥∥∥∥
m,L+ν+1

≤ C∥f∥m+2(ν+1),L, (1.35)

for some constant C ∈ R+ depending on (a, b, σ, ν,m,L, T ).
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The norm estimate, given (1.32), is just a trivial application of Itô’s formula and the boundedness
of the moments of Y y.

As one can imagine, the trickiest part is to give the norm estimate for E[f(Ŷ ·t )]−f+tLf+ t2

2 L
2f .

We proved the following result.

Proposition 1.2.9. Let Z that satisfies (HY ), σ2 ≤ 4a and Ŷ y
t be the scheme (1.30). Let m ∈

N, L ∈ N∗ and f ∈ C2(m+3),L
pol (R+). Then, we have for t ∈ [0, T ],

E[f(Ŷ y
t )] = f(y) + tLf(y) + t2

2
L2f(y) + R̄f(t, y),

with ∥R̄f(t, ·)∥m,L+3 ≤ Ct3∥f∥2(m+3),L.

The result is proved by composition of linear operators P 0
t : f 7→ f(Y0(t, ·)) and P 1

t : f 7→
E[f(Y1(

√
tZ, ·))] using the expansions proved in Lemma 2.4.7 in Chapter 2. The first thing that

jumps out is that to bound from above the (M,L + 3)-norm of the remainder R̄f(t, ·) requires
2m + 6 derivatives, which is more than the m + 6 derivatives needed for the CIR semigroup in
Proposition 1.2.8, when ν = 2. The reason lies in the choice of the random variable Z. In Propo-
sition 1.2.9, we consider variables Z that only satisfies assumption (HY ), so even discrete random
variable (e.g. Z such that P(Z = −

√
3) = 1

6 = P (Z =
√
3), and P (Z = 0) = 2

3) can be considered.
So, to prove that R̄f(t, ·) is regular enough, we cannot use regularization techniques that use the
existence of a regular density for the law of Z. In Chapter 2, then, we prove the results Lemma 2.4.5
and Corollary 2.4.6 that exploit only the symmetry of Z to prove the regularity of the remainder.
We want to remark that in a later stage, we proved a regularity result, Lemma B.1.1 that is an
extension of Lemma 2.4.13, that permits using Z = N or (fixed an order of desired boost ν ∈ N∗)
possibly more general absolutely continuous random variables, to reduce the regularity demanded
by f (Proposition B.1.3).

Numerical experiments

In Section 5 of Chapter 2, we propose several numerical tests to validate our theoretical results and
to push a little further the analysis (σ2 > 4a) from an empirical point of view. First, we explain how
to implement the approximations P̂2,n and P̂3,n. We verify in the CIR model using the Ninomiya
Victoir scheme (so σ ≤ 4a) for f smooth that one gets approximations of order 4 and 6 as expected
from the theory. When σ2 > 4a, we run similar tests for the Heston model with the second order
scheme (exp(XNV,x,y, Ŷ y

t )) proposed [3]

X̂NV,x,y
t = x+ (r − ρ

σ
a)t+

ρ

σ
(Ŷ y
t − y) + (

ρ

σ
b− 1

2
)
y + Ŷ y

t

2
t+

√
y +B(1− ρ2)(Ŷ ,y

t − y)tN, (1.36)

where B ∼ B(1/2) is Bernoulli random variable independent of N ∼ N (0, 1). We price put options
and get results similar to those obtained with the CIR. We ran simulations even in the case σ2 > 4a
using for the CIR the general scheme proposed by Alfonsi in [3]. Empirically, we observe that
this kind of scheme that uses an auxiliary scheme in a neighbourhood of 0 is not well suited to
be coupled with the random grids: the variance explodes in n. Finally, we propose a second order
scheme (exp(XEx,x,y

t , Y y
t ))

X̂Ex,x,y
t = x+ (r − ρ

σ
a)t+

ρ

σ
(Y y
t − y) + (

ρ

σ
b− 1

2
)
y + Y y

t

2
t+

√
y +B(1− ρ2)(Y ,y

t − y)tN, (1.37)

in which we simulate exactly the volatility Y y. We show for this new scheme that the boost of order
2 works well and that the variance of the correction does not explode.
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1.2.2 Resume of Chapter 3

The material in Chapter 3 is an extension and refinement of what we proved in Chapter 2. This
time we build high order weak approximations for the logHeston process (Xx,y

t , Y y
t ), solution of

dXx,y
t = (r − 1

2
Y y
t )dt+

√
Y y
t (ρdWt +

√
1− ρ2dBt), Xx,y

0 = x ∈ R, (1.38)

dY y
t = (a− bY y

t )dt+ σ
√
Y y
t dWt, Y y

0 = y ≥ 0.

for which we rigorously prove a rate of convergence result. We passed from equation (1.27) to (1.38),
applying the transformation Xx,y

t = log(Ss,yt), to have a couple of SDEs with bounded moments,
since, now, their coefficients have at most linear growth. As already done in the previous work, we
want to approximate the semigroup PT : f(x, y) 7→ E[f(Xx,y

t , Y y
t )]. Once again, our primary tools

are splitting techniques and the random grids approach.

The second order schemes and the main Theorem

In Section 5 of Chapter 2, we did several numerical tests over the Heston process (exp(Xx,y
t ), Y y

t )
using schemes (1.36) and (1.37) in which we used the respectively Ninomiya-Victoir scheme and
exact simulation for the CIR process. Here, two different schemes that do not use the Bernoulli
random variables have been proposed. We split the infinitesimal generator

L =
y

2
(∂2x + 2ρσ∂x∂y + σ2∂y) + (r − y

2
)∂x + (a− by)∂y,

of the log-Heston SDE as L = LB + LW , where ρ =
√
1− ρ2 and

LB =
(
(r − ρa

σ
) + (

ρb

σ
− 1

2
)y
)
∂x +

y

2
ρ2∂2x,

LW =
y

2
(ρ2∂2x + 2ρσ∂x∂y + σ2∂2y) + (a− by)(ρ

σ
∂x + ∂y),

that are infinitesimal generators of{
dXt =

(
(r − ρa

σ ) + (ρbσ −
1
2)Yt

)
dt+ ρ

√
YtdBt,

dYt = 0,
and

{
dXt = (ρaσ −

ρb
σ Yt)dt+ ρ

√
YtdWt,

dYt = (a− bYt)dt+ σ
√
YtdWt,

respectively. We emphasize that we have made (and will make again later) an abuse of notation by
using the variables (X,Y ) in both systems; in fact, our goal here is only to associate the infinitesimal
generators with the respective SDEs (not the solutions). One should remark that the splitting is
chosen to have in the second system dXt =

ρ
σdYt. So if one has an exact scheme for the CIR Y y

t ,
has also an exact scheme for LW given by

φW (t, x, y, Y y
t ) = (x+

ρ

σ
(Y y
t − y), Y

y
t ).

Instead, an exact scheme for LB is given by

φB(t, x, y,N) = (x+ (r − ρa/σ)t− (1/2− ρb/σ)yt+ ρ
√
tyN, y), with N ∼ N (0, 1),

so, for all f ∈ C0pol(R×R+), the semigroups associated to the two systems have the representation

PBt f(x, y) = E[f(φB(t, x, y,N))], PWt f(x, y) = E[f(φW (t, x, y, Y y
t ))].

Composing schemes φW and φB as in (1.13) gives us the potential weak second order scheme
(X̂x,y

t , Y y
t ), where the first component is given by

X̂x,y
t = x+ (r − ρ

σ
a)t+

ρ

σ
(Y y
t − y) + (

ρ

σ
b− 1

2
)
y + Y y

t

2
t+

√
(1− ρ2) t

2

(
√
yN1 +

√
Y y
t N2

)
. (1.39)
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The linear operator P̂Ext associated to this scheme is, for all C0pol(R× R+)

P̂Ext : f(x, y) 7→ E[f(X̂x,y
t , Y y

t )]. (1.40)

This scheme is defined for all σ > 0, but in practice simulating exactly the CIR process takes time,
so we propose a second order scheme for the semigroup PW using the Ninomiya-Victoir splitting.
One has LW = L0 + L1 where

L0 = (a− σ2

4
− by)(ρ

σ
∂x + ∂y), L1 =

y

2
(ρ2∂2x + 2ρσ∂x∂y + σ2∂2y) +

ρσ

4
∂x +

σ2

4
∂y,

are the infinitesimal generators respectively associated to{
dXt = ( ρσ (a− σ

2/4)− ρb
σ Yt)dt

dYt = (a− σ2/4− bYt)dt
and

{
dXt = ρσ

4 dt+ ρ
√
YtdWt

dYt = σ2

4 dt+ σ
√
YtdWt.

Let ψb(t) = 1−e−bt

b (convention ψb(t) = t for b = 0) and define

φ0(t, x, y) =
(
x− ρb

σ
ψb(t)y +

ρ

σ
ψb(t)(a−

σ2

4
), e−bty + ψb(t)(a−

σ2

4
)
)
,

φ1(t, x, y) =
(
x+

ρ

σ

(
(
√
y +

σt

2
)2 − y

)
, (
√
y +

σt

2
)2
)
.

We have for f ∈ C0pol(R× R+),

P 0
t f(x, y) = f(φ0(t, x, y)) and P 1

t f(x, y) = E[f(φ1(
√
tG, x, y))], with G ∼ N (0, 1).

The Ninomiya-Victoir scheme for LW is then P 0
t/2P

1
t P

0
t/2 and is well-defined only for σ2 ≤ 4a. We

define the linear operator
P̂NVt = PBt/2P

0
t/2P

1
t P

0
t/2P

B
t/2, (1.41)

that is associated to the scheme (X̂x,y
t , Ŷ y

t ) where the first component is

X̂x,y
t = x+ (r − ρ

σ
a)t+

ρ

σ
(Ŷ y
t − y) + (

ρ

σ
b− 1

2
)
y + Ŷ y

t

2
t+

√
(1− ρ2) t

2

(
√
yN1 +

√
Ŷ y
t N2

)
, (1.42)

and the second one is the Ninomiya-Victoir scheme for the CIR (1.18). We call Ck(R × R+) the
space of continuous functions f : R × R+ → R such that the partial derivatives ∂αx ∂

β
y f(x, y) exist

and are continuous with respect to (x, y) for all (α, β) ∈ N2 such that α + 2β ≤ k. We define for
every L ∈ N

Ck,Lpol(R× R+) = {f ∈ Ck(R× R+) | ∃C > 0 such that ∀(α, β) ∈ N2, α+ 2β ≤ k,

|∂αx ∂βy f(x, y)| ≤ CfL(x, y)}, (1.43)

where fL(x, y) = (1 + x2L + y2L), for all x ∈ R, y ∈ R+. Furthermore, we set

Ckpol(R× R+) = ∪L∈NCk,Lpol(R× R+).

The main result we proved is the following

Theorem 1.2.10. Let P̂t be either P̂Ext defined by (1.40) or P̂NVt by (1.41). Let T > 0, n ∈ N∗

and hl = T/nl. Let P̂1,n = P̂
[n]
h1

, P̂2,n be defined by (1.26) and P̂ν,n the further approximations
developed in [5]. Let ν ≥ 1. For any f ∈ C12νpol(R× R+) x ∈ R and y ≥ 0, we have

P̂ν,nf(x, y)− PT f(x, y) = O(1/n2ν).
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On the adapted version of (H1) and (H2)

As in Chapter 2, to prove the required assumptions (H1) and (H2), we need to fix a family of norms.
We endow Ck,Lpol(R× R+) with the following norm:

∥f∥k,L =
∑

α+2β≤k
sup

(x,y)∈R×R+

|∂αx ∂
β
y f(x, y)|

fL(x, y)
. (1.44)

In Chapter 3, we do not repeat the analysis that allows the use of discrete random variables to
get assumption (H1); our second order schemes are obtained by composing exact schemes. This
simplifies the analysis to get the regularity of our approximations and permits us to prove it all by
studying the Cauchy problem of a slightly general log Heston SDE. The next proposition has been
proved by Briani et al. in [17], the only additional result is the norm estimate (1.47).

Proposition 1.2.11. Let k, L ∈ N and suppose that f ∈ Ck,Lpol(R × R+). Let λ ≥ 0, c, d ∈ R. Let
(Xt,x,y, Y t,y) be the solution to the SDE, for s ≥ t,{

Xt,x,y
s = x+

∫ s
t (c+ dY y

r )dr +
∫ s
t λ
√
Y y
r (ρdWr +

√
1− ρ2dBr)

Y t,y
s = y +

∫ s
t (a− bY

y
r )dr + σ

∫ s
t

√
Y y
r dWr,

(1.45)

and set
u(t, x, y) = E[f(Xt,x,y

T , Y t,y
T )] = PT−tf(x, y).

Then, u(t, ·, ·) ∈ Ck,Lpol(R× R+) and the following stochastic representation holds for α+ 2β ≤ k,

∂αx ∂
β
y u(t, x, y) = E

[
e−βb(T−t)∂αx ∂

β
y f
(
Xβ,t,x,y

T , Y β,t,y
T

)
+ β

∫ T

t

e−βb(s−t)
(λ2
2
∂α+2
x ∂β−1

y u+ d∂α+1
x ∂β−1

y u
)(
s,Xβ,t,x,y

s , Y β,t,y
s

)
ds

]
, (1.46)

where ∂αx ∂β−1
y u := 0 when β = 0 and (Xβ,t,x,y, Y β,t,y), β ≥ 0, denotes the solution starting from (x, y) at

time t to the SDE (1.45) with parameters

ρβ = ρ, aβ = a+ β
σ2

2
, bβ = b, cβ = r + βρσλ, dβ = d, σβ = σ.

Moreover, one has the following norm estimation for the semigroup

∀k, L ∈ N, T > 0, ∃C,∀f ∈ Ck,Lpol(R× R+), t ∈ [0, T ], ∥Ptf∥k,L ≤ ∥f∥k,LeCt. (1.47)

The (H2) assumption can be obtained through the norm estimate (1.47), just considering these
sets of parameters

• ã = a− σ2

4 , b̃ = b, c̃ = ρ
σ

(
a− σ2

4

)
, d̃ = −b ρσ , λ̃ = 0, σ̃ = 0 for P 0,

• ã = σ2

4 , b̃ = 0, c̃ = ρσ
4 , d̃ = 0, λ̃ = ρ, σ̃ = σ, ρ̃ = 1 for P 1,

• ã = 0, b̃ = 0, c̃ = r − ρa
σ , d̃ = ρb

σ −
1
2 , λ̃ = ρ̄, σ̃ = 0, ρ̃ = 0 for PB,

• ã = a, b̃ = b, c̃ = ρa
σ , d̃ = −ρb

σ , λ̃ = ρ, σ̃ = σ, ρ̃ = 1 for PW .

To get the (H1), given the regularity results just shown, we prove a variant of Proposition 1.1.7
that roughly tells the composition of schemes works as a composition of operators.
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Lemma 1.2.12. (Scheme composition) Let ν ∈ N and T > 0. Let Vi, i ∈ {1, . . . , I}, be infinitesimal
generators such that there exists ki, Li ∈ N such that

∀k ∈ N, ∃C ∈ R+, ∀f ∈ Ck+ki,Lpol (R× R+), Vif ∈ Ck,L+Li

pol (R× R+) and ∥Vif∥k,L+Li
≤ C∥f∥k+ki,L.

Let k⋆ = max1≤i≤I ki and L⋆ = max1≤i≤I Li. We assume that for any i, P̂ it : C0,Lpol(R × R+) →
C0,Lpol(R× R+) is such that

∀k, L ∈ N, 0 ≤ q̄ ≤ ν + 1, ∃C, ∀f ∈ Ck+q̄ki,Lpol (R× R+),∀t ∈ [0, T ],

∥P̂ it f −
q̄−1∑
q=0

tq

q!
V q
i f∥k,L+q̄Li

≤ Ctq̄∥f∥k+q̄ki,L.

Then, we have for λ1, . . . , λI ∈ [0, 1],

∀k, L ∈ N, 0 ≤ q̄ ≤ ν + 1, ∃C,∀f ∈ Ck+q̄k
⋆,L

pol (R× R+),∀t ∈ [0, T ]∥∥∥∥∥∥P̂ IλI t . . . P̂ 1
λ1tf −

∑
q1+···+qI≤q̄−1

λq11 . . . λqII t
q1+···+qI

q1! . . . qI !
V qI
I . . . V q1

1 f

∥∥∥∥∥∥
k,L+q̄L⋆

≤ Ctq̄∥f∥k+q̄k⋆,L.

Numerical experiments

In Section 3 of Chapter 3, we remark the first component of second order schemes (1.39) and (1.42)
are normally distributed given respectively Y y

t and Ŷ y
t , so we can save one Gaussian random variable

and simulate instead

X̂EX,x,y
t = x+ (r − ρ

σ
a)t+

ρ

σ
(Y y
t − y) + (

ρ

σ
b− 1

2
)
y + Y y

t

2
t+

√
(1− ρ2)y + Y y

t

2
tN, (1.48)

X̂NV,x,y
t = x+ (r − ρ

σ
a)t+

ρ

σ
(Ŷ y
t − y) + (

ρ

σ
b− 1

2
)
y + Ŷ y

t

2
t+

√
(1− ρ2)y + Ŷ y

t

2
tN, (1.49)

that produce respectively the same laws of (1.39) and (1.42). We run several tests (Put and Asian
options), both in low volatility regime (σ2 ≤ 4a) and in high volatility regime (σ2 > 4a), that prove
the effectiveness of the standard second order scheme P̂1,n and of the boosted approximation P̂2,n:
the empirical evidence confirm what proved in the theory giving approximation of order 2 and 4
respectively. We run numerical experiments to study the variance of the estimators depending on n,
testing two different couplings. Besides the choice of coupling, we also consider the schemes for the
first component studied in Chapter 2 (1.36) and (1.37) that use the Bernoulli random variable. We
show the new schemes (1.39) and (1.42) are better suited to being used with random grids (besides,
they require simulating less random variables) independently to the coupling chosen. Furthermore,
the coupling studied in Cheng [44] produce less variance.

In the end, we apply the random grids techniques to a modification of second order weak scheme
proposed by Alfonsi [8] for the multifactor Heston model (known to be an excellent proxy of rough
Heston Model see, for example, [1, 6, 13]). Unlike the Heston case, the approximation P̂2,n is only
defined when the parameters belong to a low volatility regime set. Nevertheless, we achieved good
results showing the boost of random grids works.

1.2.3 Resume of Chapter 4

Examining the PDE linked to the infinitesimal generator of an SDE offers a valuable method for
demonstrating the regularity (smoothness) of the corresponding semigroup P , and Proposition
1.2.11 serves as a notable illustration of this principle.
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Briani et al. [17] obtained the formula (1.46) for the derivatives of the semigroup associated
with the logHeston process studying this slightly general PDE{

∂tu(t, x, y) + Lu(t, x, y) + ϱu(t, x, y) = h(t, x, y), t ∈ [0, T ), x ∈ R, y ∈ R+,

u(T, x, y) = f(x, y), x ∈ R, y ∈ R+,
(1.50)

where L is the following differential operator

L =
y

2
(λ2∂2x + 2ρλσ∂x∂y + σ2∂2y) + (c+ dy)∂x + (a− by)∂y, (1.51)

and b, c, d ∈ R, a, λ, σ > 0 ρ ∈ (−1, 1), ϱ ∈ R. In this chapter, we want to delve deeper into the
analysis of this PDE. In particular, we want to find minimal regularity hypotheses under which the
function (produced via Feynman-Kac)

u(t, x, y) = E
[
eϱ(T−t)f(Xt,x,y

T , Y t,y
T )−

∫ T

t
eϱ(s−t)h(s,Xt,x,y

s , Y t,y
s )ds

]
, (1.52)

is the unique classical or viscosity solution of (1.50).

Classical solutions results

The first result concerns the resolution of (1.50). In [17, Proposition 5.3] Briani, Caramellino
and Terenzi proved that if h = 0, ϱ = 0 and, for all m + 2n ≤ 4, f has partial derivatives
∂mx ∂

n
y f ∈ C(R× R+) that have polynomial growth, then, for all m+ 2n+ 4l ≤ 4, the function u in

(1.52) has partial derivatives ∂lt∂mx ∂ny u ∈ C([0, T ]×R×R+) that have polynomial growth in x and
y uniformly in t. In particular u ∈ C1,2([0, T ]× (R× R+)) and solves the reference PDE (1.50). In
Section 4.1, we give two refinements regarding classical solutions.

The first result concerns a verification result in which we prove that u (as in (1.52)) is a solution
of the reference PDE (1.50) for more general h and less regular f . We prove, in fact, the following
result.

Proposition 1.2.13. Let u be defined as in (1.52). Let f and h be such that, for all m+ 2n ≤ 2,
f has partial derivatives ∂mx ∂ny f ∈ C(R× R+) with polynomial growth and h has partial derivatives
∂mx ∂

n
y h ∈ C([0, T ) × R × R+). Furthermore, suppose h and ∂yh be such that |h|Kα,2, |∂yh|Kα,2 < ∞

for all K compact set contained in [0, T ) × R × R+. Then u has partial derivatives ∂tu, ∂mx ∂ny u ∈
C([0, T )×R×R+) with m+2n ≤ 2 with polynomial growth in x and y uniformly in time, and solves{

∂tu(t, x, y) + Lu(t, x, y) + ϱu(t, x, y) = h(t, x, y), t ∈ [0, T ), (x, y) ∈ R× R+,

u(T, x, y) = f(x, y), (x, y) ∈ R× R+.
(1.53)

|h|Kα,2, |∂yh|Kα,2 in Proposition (1.2.13) denote weighted Hölder seminorms that roughly measure
the hölderianity of h and ∂yh with a precise power of the weight. For a precise definition, we refer
to (4.19) and (4.20). Furthermore, we observe that Proposition 1.2.13 eases the requirements on
the function f , demanding the condition m+ 2n ≤ 2 be satisfied rather than the stricter condition
m+ 2n ≤ 4.

The second contribution states sufficient conditions to ensure the uniqueness of classic solutions.

Proposition 1.2.14. There is at most one classical solution u ∈ C1,2([0, T )×(R×R∗+))∩C1,1,1([0, T )×
R×R+) ∩ C([0, T ]×R×R+) to PDE (1.50) such that the solution has polynomial growth in (x, y)
uniformly in t. So, in particular, under the hypothesis of Proposition 1.2.13, u defined as in (1.52)
is the unique solution.

The importance of this proposition is particularly relevant when the Feller condition is not
satisfied (cf. page 74). Requiring u to belong to C([0, T ]×R×R+) means giving conditions on the
whole boundary, and for uniformly elliptic operators, it is quite natural. Here, the degeneracy and
the fact that the associated diffusion can reach the boundary (where the log-Heston operator L is
degenerate) impose an additional condition on the first-order derivatives to obtain uniqueness.
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Viscosity solutions results

To get the regularity of u necessary to satisfy in a classical sense the PDE (1.50), we asked f to
be smooth enough. In order to drop this regularity hypothesis, in Section 4.2 of Chapter 4, we
study the problem from the more general point of view of viscosity solutions. Being (1.50) a linear
PDE, we used a standard smoothing argument (truncation and mollification) to prove the following
viscosity verification theorem in which we consider the final data to be just continuous.

Proposition 1.2.15. Let f ∈ C(R× R+) and h ∈ C((0, T ]× R× R+) be such that for all compact
set KT ⊂ [0, T ]× R× R+ there exists p > 1 such that

sup
(t,x,y)∈KT

∥∥f(Xt,x,y
T , Y t,y

T )
∥∥
Lp(Ω)

, sup
(t,x,y)∈KT

∫ T

t
∥h(s,Xt,x,y

s , Y t,y
s )∥Lp(Ω)ds <∞. (1.54)

Then,

u(t, x, y) = E
[
eϱ(T−t)f(Xt,x,y

T , Y t,y
T )−

∫ T

t
eϱ(s−t)h(s,Xt,x,y

s , Y t,y
s )ds

]
belongs to C([0, T ]× R× R+) and is a viscosity solution to the PDE (1.50).

Another key tool is a comparison principle (stated in Proposition 4.2.15). Roughly speaking, it
says that a sub-solution w and super-solution v that starts ordered (w ≤ v) stay ordered for any
time. This is a key tool to prove the uniqueness of the viscosity solution. We call Df the closure of
the set of discontinuities of a function f and state the main result.

Theorem 1.2.16. Let f : R × R+ → R be a function with polynomial growth, such that Df has
zero Lebesgue measure. Let h ∈ C([0, T )×R×R+) be with polynomial growth in (x, y) uniformly in
t. Then u in (1.52) belongs to C

(
([0, T ]× R× R+) \ ({T} ×Df )

)
, has polynomial growth in (x, y)

uniformly in t and, in this class of functions, is the unique viscosity solution to the problem (1.50).

Let us sketch the main ideas of the proof. Taken a general solution v of the PDE (1.50) (with
f and h as in the hypotheses), we sandwiched it between two sequences, (u+n )n∈N of continuous
super-solutions and (u−n )n∈N of continuous super-solutions that satisfy two hypotheses:

u−n (T, ·, ·) ≤ v∗(T, ·, ·) ≤ v∗(T, ·, ·) ≤ u+n (T, ·, ·), (1.55)
for any compact set KT ⊂ [0, T )× R× R+, one has lim

n→∞
∥u±n − u∥∞,KT

. (1.56)

The first property guarantees u−n ≤ v∗ ≤ v∗ ≤ u+n thanks to the comparison principle (Proposition
4.2.15), then the second one guarantees v∗ = u = v∗ in [0, T )× R× R+.

Prior research has established existence and uniqueness results for the Heston PDE and even
more general jump-diffusion processes (as demonstrated in Costantini et al. [23]). However, the
assumptions used in these studies, when applied to the Heston model, necessitate the adoption of
the Feller condition. The significance of this last result lies in its validity even when the Feller
condition σ2 ≤ 2a is not satisfied. As far as we know, this is an original contribution to the existing
literature on the Heston model.

The techniques we developed to deal with viscosity solution for the logHeston PDE (1.50) had
been fruitfully used to study the convergence of numerical schemes. In the closure of Chapter 4,
we apply this approach to prove the convergence of the hybrid scheme from [17]. In [17], a rate of
function has been proved under strong regularity assumptions on the test functions. In Section 4.3,
we relax this request, and we prove (see Theorem 4.3.4) the convergence for functions that have just
suitable continuity properties. This result is confirmed empirically by the numerical experiment
carried out in [19], which computes the price of a European put option in the Heston model. Other
numerical experiments that use the hybrid algorithm for the Bates and for the Heston-Hull-White
models have been carried out in [18] and [20] respectively.
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Chapter 2

High order approximations for the CIR
process using random grids

The material for this chapter has been released in [7].

We present new high order approximations schemes for the Cox-Ingersoll-Ross (CIR) process
that are obtained by using a recent technique developed by Alfonsi and Bally (2021) for the
approximation of semigroups. The idea consists in using a suitable combination of discretiza-
tion schemes calculated on different random grids to increase the order of convergence. This
technique coupled with the second order scheme proposed by Alfonsi (2010) for the CIR leads
to weak approximations of order 2k, for all k ∈ N∗. Despite the singularity of the square-root
volatility coefficient, we show rigorously this order of convergence under some restrictions on
the volatility parameters. We illustrate numerically the convergence of these approximations
for the CIR process and for the Heston stochastic volatility model and show the computational
time gain they give.

Introduction

The present paper develops approximations, of any order, of the semigroup Ptf(x) := E[f(Xx
t )]

associated to the following Stochastic Differential Equation (SDE) known as the Cox-Ingersoll-Ross
(CIR) process

Xx
t = x+

∫ t

0
(a− kXx

s )ds+

∫ t

0
σ
√
Xx
s dWs, t ≥ 0, (2.1)

where W is a Brownian motion, x, a ≥ 0, k ∈ R and σ > 0. Let us recall that the process (2.1)
is nonnegative and the semigroup (Pt)t≥0 is well-defined on the space of functions f : R→ R with
polynomial growth. The diffusion (2.1) is widely used in financial mathematics, in particular because
of its simple parametrization and the affine property that enables to use numerical methods based
on Fourier techniques. We mention here the Cox-Ingersoll-Ross model [24] for the short interest
rate and the Heston stochastic volatility model [34], that have been followed by many other ones.
Developing efficient numerical methods for the process (2.1) is thus of practical importance.

To deal with the approximation of SDE’s semigroups, a common approach is to consider stochas-
tic approximations and the most standard one is the Euler-Maruyama scheme. The error between
the approximated semigroup and the exact one is called the weak error, as opposed to the strong
error that quantifies the error "omega by omega" on the probability space. The seminal work of
Talay and Tubaro [42] shows, under regularity assumptions on the SDE coefficients, that the weak
error given by the Euler-Maruyama scheme is of order one, i.e. is proportional to the time step.
They also obtain an error expansion that enables to use Richardson-Romberg extrapolations as
developed by Pagès [40]. Higher order schemes for SDEs and related extrapolations have been
proposed by Kusuoka [35], Ninomiya and Victoir [38], Ninomiya and Ninomiya [37] and Oshima et
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al. [39] to mention a few. Recently, Alfonsi and Bally [5] have given a method to construct weak
approximation of general semigroups of any order by using random time grids.

These general results on weak approximation of SDEs do not apply to the CIR (2.1) process.
This is due to the diffusion coefficient, namely the singularity of the square-root at the origin.
Besides this, classical schemes such as the Euler-Maruyama scheme are not well-defined for (2.1),
and one has to work with dedicated schemes. Under some restrictions on the parameters, the weak
convergence of order one for some discretization schemes of the CIR process has been obtained
by Alfonsi [4], Bossy and Diop [14], and more recently by Briani et al. [17] who also study the
weak convergence of a semigroup approximation for the Heston model. We also mention the earlier
work by Altmayer and Neuenkirch [10] that precisely studies the weak error for the Heston model.
Adapting ideas from Ninomiya and Victoir [38] who developed a second order scheme for general
SDEs, Alfonsi [3] has introduced second order and third order schemes for the CIR and proved their
weak order of convergence, without any restriction on the parameters.

The goal of the present paper is to boost the second order scheme developed in [3] and get
approximations of any order. To do so, we rely on the method developed recently by Alfonsi and
Bally [5] to construct approximation of semigroups of any order. Roughly speaking, this method
allows to get, from an elementary weak approximation scheme of order α > 0, approximation
schemes of any order by computing the elementary scheme on appropriate random grids. The
method is illustrated in [5] on the case of the Euler-Maruyama scheme for SDEs, under regularity
assumptions on the coefficients that do not hold for the CIR process (2.1). This method is presented
briefly in Section 2.1. It relies on an appropriate choice of a function space endowed with a family
of seminorms. Section 2.2 then presents the second order scheme that is used as an elementary
scheme to get higher order approximation. It states in Theorem 2.2.2 the main result of this paper:
we prove, when σ2 ≤ 4a, that we get weak approximations of any orders for smooth test functions f
with derivatives having at most a polynomial growth. Section 2.3 illustrates the boosting method
when considering the space of polynomials function with their usual norm. In this simple case, proofs
are quite elementary so that the method can be followed easily. Section 2.4 is more involved: it first
defines the appropriate family of seminorms on the space of smooth functions with derivative of
polynomial growth and then proves Theorem 2.2.2. Last, we illustrate in Section 2.5 the convergence
of the high order approximations for different parameter sets. It validates our theoretical results and
shows important computational gains given by the new approximations. We also test the method
on the Heston model and obtain similar convincing results.

2.1 High order schemes with random grids: the method in a nut-
shell

In this paragraph, we recall briefly the method developed by Alfonsi and Bally in [5] to construct
approximations of any order from a family of approximation schemes. We consider F a vector space
endowed with a family of seminorms (∥∥k)k∈N such that ∥f∥k ≤ ∥f∥k+1. We consider a time horizon
T > 0 and set, for n ∈ N∗ and l ∈ N,

hl =
T

nl
. (2.2)

To achieve this goal, we consider a family of linear operators (Ql)l∈N on F . For l ∈ N, we note Q[0]
l =

I the identity operator and, for j ∈ N∗, Q[j]
l = Q

[j−1]
l Ql the operator obtained by composition. We

suppose that the two following conditions are satisfied. The first quantifies howQl approximates Phl :

there exists α > 0 such that for any l, k ∈ N, there exists C > 0, such that
∥(Phl −Ql)f∥k ≤ C∥f∥ψQ(k)h

1+α
l for all f ∈ F, (H1)
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where ψQ : N → N is a function1. The second one is a uniform bound with respect to all the
seminorms:

for all l, k ∈ N, there exists C > 0 such that
max0≤j≤nl ∥Q[j]

l f∥k + supt≤T ∥Ptf∥k ≤ C∥f∥k for all f ∈ F.
(H2)

Then, for any ν ∈ N∗, Alfonsi and Bally [5] show how one can construct, by mixing the operators
Ql, a linear operator P̂ν,nT for which there exists C > 0 and k ∈ N such that

∥PT f − P̂ν,nf∥0 ≤ C∥f∥kn−να for all f ∈ F. (2.3)

Let us explain how it works for ν = 1 and ν = 2. For ν = 1, we mainly repeat the proof of Talay
and Tubaro [42] for the weak error of the Euler scheme. From the semigroup property, we have

PT f −Q[n]
1 f = Pnh1f −Q

[n]
1 f =

n−1∑
k=0

P(n−(k+1))h1 [Ph1 −Q1]Q
[k]
1 f. (2.4)

We get by using (H2), then (H1) and then again (H2)

∥PT f −Q[n]
1 f∥0 ≤

n−1∑
k=0

C∥[Ph1 −Q1]Q
[k]
1 f∥0 ≤

n−1∑
k=0

C∥Q[k]
1 f∥ψQ(0)h

1+α
1

≤ C∥f∥ψQ(0)n(T/n)
1+α = C∥f∥ψQ(0)T

1+αn−α. (2.5)

Here, and through the paper, C denotes a positive constant that may change from one line to
another. So, P̂1,n = Q

[n]
1 satisfies (2.3) with ν = 1, k = ψQ(0). The approximation scheme simply

consists in using n times the scheme Q1, which can be seen as a scheme on the regular time grid
with time step h1.

We now present the approximation scheme (2.3) for ν = 2. To do so, we use again (2.4) to get
P(n−(k+1))h1 −Q

[n−(k+1)]
1 =

∑n−(k+2)
k′=0 P(n−(k+k′+2))h1 [Ph1 −Q1]Q

[k′]
1 and then expand further (2.4):

PT f −Q[n]
1 f =

n−1∑
k=0

Q
[n−(k+1)]
1 [Ph1 −Q1]Q

[k]
1 f +Rh12 (n)f, (2.6)

with Rh12 (n) =

n−1∑
k=0

n−(k+2)∑
k′=0

P(n−(k+k′+2))h1 [Ph1 −Q1]Q
[k′]
1 [Ph1 −Q1]Q

[k]
1

Using (H1) three times and (H2) twice, we obtain

∥Rh12 (n)f∥0 ≤ C∥f∥ψQ(ψQ(0))
n(n− 1)

2
h
2(1+α)
1 ≤ C∥f∥ψQ(ψQ(0))

T 2(1+α)

2
n−2α.

Thus, Q[n]
1 +

∑n−1
k=0 Q

[n−(k+1)]
1 [Ph1 −Q1]Q

[k]
1 f is an approximation of order 2α, but it still involves

the semigroup through Ph1 . To get an approximation that is obtained only with the operators Ql,
we use again (2.4) with time step h2 and final time h1 = nh2:

Ph1f −Q
[n]
2 f =

n−1∑
k=0

P(n−(k+1))h2 [Ph2 −Q2]Q
[k]
2 f.

We have ∥Ph1f −Q
[n]
2 f∥0 ≤ C∥f∥ψQ(0)nh

1+α
2 by using again (H1) and (H2). We get from (2.6)

PT f −Q[n]
1 f =

n−1∑
k=0

Q
[n−(k+1)]
1 [Q

[n]
2 −Q1]Q

[k]
1 f +

n−1∑
k=0

Q
[n−(k+1)]
1 [Ph1 −Q

[n]
2 ]Q

[k]
1 f +Rh12 (n)f, (2.7)

1Note that in [5], it is taken ψQ(k) = k + β for some β ∈ N, but is can be easily generalized to any function ψQ.
In this paper, we will work with a doubly indexed norm and take ψQ(m,L) = (2(m+ 3), L− 1).
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with ∥
∑n−1

k=0 Q
[n−(k+1)]
1 [Ph1 −Q

[n]
2 ]Q

[k]
1 f∥0 ≤ C∥f∥ψQ(0)n

2h1+α2 = C∥f∥ψQ(0)T
1+αn−2α. Therefore,

the approximation

P̂2,nf := Q
[n]
1 f +

n−1∑
k=0

Q
[n−(k+1)]
1 [Q

[n]
2 −Q1]Q

[k]
1 f (2.8)

satisfies (2.3) with ν = 2 and is obtained only with the approximating operators Ql. The first
term Q

[n]
1 corresponds to apply the scheme Q1 on the regular time grid with time step h1, while

each term Q
[n−(k+1)]
1 [Q

[n]
2 −Q1]Q

[k]
1 is the difference between this scheme and the one where Q[n]

2 is
used instead of Q1 for the (k + 1)-th time step. This amounts to refine this time step and split it
into n time steps of size h2, and to use the scheme Q2 on this time grid.

In practice, it is inefficient to calculate one by one the terms in P̂2,nf . In fact, each term requires
a number of calculations that is proportional to n, and the overall computation cost would be of
the same order as n2. Since the convergence is in O(n−2α) it would not be better asymptotically
than using P̂ 1,n2

f . To avoid this, we use randomization. We sample a uniform random variable κ
on {0, . . . , n− 1} and calculate nE[Q[n−(κ+1)]

1 [Q
[n]
2 −Q1]Q

[κ]
1 f ] =

∑n−1
k=0 Q

[n−(k+1)]
1 [Q

[n]
2 −Q1]Q

[k]
1 f .

This amounts to consider the regular time grid with time step h1, to select randomly one time step
and to refine it, and then to compute the difference between the approximations on the (random)
refined time-grid and on the regular time-grid. To be more precise, let us consider the case of an
approximation scheme defined by φ(x, h, V ) where φ is a measurable function, x is the starting point,
h the time step and V a random variable. The associated operators are Qlf(x) = E[f(φ(x, hl, V ))],
l ∈ N. For a time-grid Π = {0 = t0 < · · · < tn = T}, we define XΠ

0 (x) = x and XΠ
ti (x) =

φ(XΠ
ti−1

(x), ti − ti−1, Vi) for 1 ≤ i ≤ n, where (Vi)i≥1 is an i.i.d. sequence. Thus, we get on the

uniform time grid Π0 = {kT/n, 0 ≤ k ≤ n} E[f(XΠ0

T (x))] = Q
[n]
1 f(x). By taking the random

grid Π1 = Π0 ∪ {κT/n + k′T/n2, 1 ≤ k′ ≤ n − 1}, where κ is an independent uniform random
variable on {0, . . . , n − 1}, we also get E[f(XΠ1

T (x))] = E[Q[n−(κ+1)]
1 [Q

[n]
2 −Q1]Q

[κ]
1 f(x)], and then

E[n(f(XΠ1

T (x)) − f(XΠ0

T (x)))] =
∑n−1

k=0 Q
[n−(k+1)]
1 [Q

[n]
2 − Q1]Q

[k]
1 f(x). When using a Monte-Carlo

estimator of this identity, one has thus to draw as many κ’s as trajectories.
We have presented here how to construct P̂ν,n for ν = 1 and ν = 2, and it is possible by repeating

the same arguments to construct by induction approximations of any order. Unfortunately, the
induction is quite involved. It is fully described in [5, Theorem 3.10]. We do not reproduce it in
this paper because it would require much more notation, and we will mainly use the scheme (2.8).
Here, we give in addition the explicit form of P̂3,n, n ≥ 2:

P̂3,nf :=P̂2,n +
n−1∑

0≤k1<k2<n
Q

[n−(k2+1)]
1 [Q

[n]
2 −Q1]Q

[k2−k1−1]
1 [Q

[n]
2 −Q1]Q

[k1]
1 f (2.9)

+

n−1∑
k=0

Q
[n−(k+1)]
1

[
n−1∑
k′=0

Q
[n−(k′+1)]
2 [Q

[n]
3 −Q2]Q

[k′]
2

]
Q

[k]
1 f.

By similar arguments, it satisfies (2.3) with ν = 3.

2.2 Second order schemes for the CIR process and main result

In this section, we focus on the approximation of the semigroup of the CIR process Ptf(x) =
E[f(Xx

t )], where

Xx
t = x+

∫ t

0
(a− kXx

s )ds+ σ

∫ t

0

√
Xx
s dWs, t ≥ 0.

Equation (2.5) shows that, necessarily, approximating operators Ql that satisfy both (H1) and (H2)
lead to a weak error of order α. Therefore, we are naturally interested in approximation schemes of
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the CIR for which we know the rate of convergence α for the weak error. [4, Proposition 4.2] gives
a rate α = 1 for a family of approximation schemes that are basically obtained as a correction of
the Euler scheme. Ninomiya and Victoir [38] have developed a generic method to construct second
order schemes (α = 2) for Stochastic Differential Equations with smooth coefficients. Applied to
the Cox-Ingersoll-Ross process, their method leads to the following approximation scheme

X̂x
t = φ(x, t,

√
tN), (2.10)

where N ∼ N (0, 1) and φ : R+ × R+ × R→ R+ is defined by

φ(x, t, w) = e−kt/2
(√

(a− σ2/4)ψk(t/2) + e−kt/2x+ σw/2

)2

+ (a− σ2/4)ψk(t/2) (2.11)

= X0(t/2, X1(w,X0(t/2, x))), with

X0(t, x) = e−ktx+ ψk(t)(a− σ2/4), ψk(t) =
1− e−kt

k
, (2.12)

X1(t, x) = (
√
x+ tσ/2)2, (2.13)

with the convention that ψ0(t) = t. This scheme corresponds to approximate Ptf(x) by P̂tf(x) =
E[f(X̂x

t )] for x, t ≥ 0, and then to set Ql = P̂hl . Its construction comes from the splitting of the
infinitesimal generator of the CIR process

Lf(x) = (a− kx)f ′(x) + 1

2
σ2xf ′′(x), f ∈ C2, x ≥ 0, (2.14)

as L = V0 +
1
2V

2
1 with

V0f(x) =

(
a− σ2

4
− kx

)
f ′(x) and V1f(x) = σ

√
xf ′(x). (2.15)

The function t 7→ X0(t, x) is the solution of the ODE X ′0(t, x) = a − σ2

4 − kX0(t, x) such that
X0(0, x) = x, while X1(Wt, x) solves the SDE associated to the infinitesimal generator V 2

1 /2.
The scheme (2.10) is well-defined for σ2 ≤ 4a. Instead, for σ2 > 4a, it is not well-defined for

any x ≥ 0 since the argument in the square-root is negative when x is close to zero. To correct this,
Alfonsi [3] has proposed the following scheme

X̂x
t = (1x≥KY

2 (t)φ(x, t,
√
tY ) + 1x<KY

2 (t)X̂
x,d
t ), (2.16)

where Y is a random variable with compact support on [−AY , AY ] for some AY > 0 such that
E[Y k] = E[Nk] for k ≤ 5, and X̂x,d

t is a nonnegative random variable such that E[(X̂x,d
t )i] = E[(Xx

t )
i]

for i ∈ {1, 2} and KY
2 (t) is a nonnegative threshold defined by

KY
2 (t) = 1σ2>4a

[
e

kt
2

(
(σ2/4− a)ψk(t/2) +

(√
e

kt
2 (σ2/4− a)ψk(t/2) +

σ

2
AY
√
t

)2
)]

. (2.17)

Note that when σ2 ≤ 4a, we have KY
2 (t) = 0 and thus X̂x

t = φ(x, t,
√
tY ). In [3], it is taken

Y such that P(Y =
√
3) = P(Y = −

√
3) = 1/6 and P(Y = 0) = 2/3, and a discrete random

variable X̂x,d
t such that P(X̂x,d

t = 1
2π(t,x)) = π(t, x), P(X̂x,d

t = 1
2(1−π(t,x))) = 1 − π(t, x) where

π(t, x) =
1−
√

1−E[(Xx
t )]

2/E[(Xx
t )

2]

2 ∈ (0, 1/2).
We now restate [3, Theorem 2.8] that analyzes the weak error. We introduce Ckpol(R+), the set

of Ck functions f : R → R+ such that all its derivatives have polynomial growth. More precisely,
this means that for all k′ ∈ {0, . . . , k}, there exists Ck′ , Ek′ ∈ R+ such that

|f (k′)(x)| ≤ Ck′(1 + xE
′
k), x ≥ 0.

We also set C∞pol(R+) = ∩k∈NCkpol(R+).
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Theorem 2.2.1. Let X̂x
t be the scheme defined by (2.10) for σ2 ≤ 4a or by (2.16) for any σ > 0.

Then, for all f ∈ C∞pol(R+), we have Q[n]
1 f(x)− PT f(x) = O(1/n2) where Q1f(x) = E[f(X̂x

h1
)].

The goal of this paper is to extend this result and prove the estimates (H1) and (H2) for a
suitable space of functions and a suitable family of seminorms. We are able to prove such results
only in the case σ2 ≤ 4a: the indicator function in (2.16) creates a singularity that is difficult to
handle in the analysis. In Section 2.3, we first prove (H1) and (H2) for polynomial test functions.
Then, we deal in Section 2.4 with the much technical case of smooth test functions with derivatives
of polynomial growth. We state here our main result, the proof of which is given in Section 2.4.

Theorem 2.2.2. Let X̂x
t be the scheme defined by (2.10) for σ2 ≤ 4a and Qlf(x) = E[f(X̂x

hl
)], for

l ≥ 1. Then, for all f ∈ C18pol(R+), we have P̂2,nf(x)− PT f(x) = O(1/n4) as n→∞.
Besides, for f ∈ C∞pol(R+), we have P̂ν,nf(x)− PT f(x) = O(1/n2ν).

Let us stress here that Theorem 2.2.2 gives an asymptotic result as n → ∞. It thus might
happen that for small values of n, P̂2,n is less accurate than P̂1,n = Q

[n]
1 for some f ∈ C∞pol(R+) and

x ≥ 0. In practice, we have always noticed in our numerical experiments that P̂2,n is more accurate
than P̂1,n. However, the estimated rates of convergence obtained from relatively small values of n
may be different from the theoretical asymptotic ones, see Figures 2.1,2.2 and 2.3 where are given
the estimated rates for P̂1,n, P̂2,n and P̂3,n.

2.3 The case of polynomial test functions

In this section, we want to illustrate the method and consider test functions that are polynomial
test functions. We define for L ∈ N

PL(R) = {f : R+ → R, f(x) =
L∑
j=0

ajx
j for some a0, . . . , aL ∈ R},

the vector space of polynomial functions over R+ with degree less or equal to L. We also define
P(R) = ∪L∈NPL(R) the space of polynomial functions. We endow P(R) with the following norm:

∥f∥ =
L∑
j=0

|aj |, for f(x) =
L∑
j=0

ajx
j . (2.18)

We consider the case σ2 ≤ 4a and consider the scheme (2.16) for the CIR process with a time
step t > 0, X̂x

t = φ(x, t,
√
tY ). The approximation scheme Ql is then defined by Qlf = E[f(X̂x

hl
)].

The goal of this section is to prove (H1) and (H2) for the norm (2.18). We make the following
assumption on Y .
Assumption (HY ): Y : Ω → R is a symmetric random variable such that E[|Y |k] < ∞ for all
k ∈ N, and E[Y k] = E[Nk] for k ∈ {2, 4} with N ∼ N (0, 1).

We now state two lemmas that will enable us to prove that (H2) is satisfied by the scheme (2.16).
Lemma 2.3.1 shows that polynomials functions are preserved by the approximation scheme, and
gives short time estimate for the polynomial norm. Lemma 2.3.2 gives similar results for the CIR
diffusion. The proofs of these lemmas are quite elementary and are postponed to Appendix A.1.

Lemma 2.3.1. Let T ≥ 0, t ∈ [0, T ], f ∈ PL(R) and assume (HY ) and σ2 ≤ 4a. Then, we have
f(X0(t, ·)),E[f(X1(

√
tY, ·))] ∈ PL(R) where X0 and X1 are defined by (2.12) and (2.13), and

1. ∥f(X0(t, ·))∥ ≤ (1 ∨ e−kLt)(1 + CLX0
t)∥f∥,

2. ∥E[f(X1(
√
tY, ·))]∥ ≤ (1 + E[Y 2L]CLX1

t)∥f∥,
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for some constants CX0 , CX1 depending only on (a, σ, T ).

Lemma 2.3.2. Let (Xx
t , t ≥ 0) be the CIR process starting from x ∈ R+. For m ∈ N, we define

ũm(t, x) := E[(Xx
t )
m]. There exists C∞ functions ũj,m : R+ → R that depend on (k, a, σ) such that:

ũm(t, x) =
m∑
j=0

ũj,m(t)x
j . (2.19)

If f ∈ PL(R), then we have E[f(X ·t)] ∈ PL(R) and for t ∈ [0, T ],

∥E[f(X ·t)]∥ ≤ Ccir(L, T )∥f∥, (2.20)

with Ccir(L, T ) = maxt∈[0,T ],m∈{0,...,L}
∑m

j=0 |ũj,m(t)|.

We are now in position to prove the main result of this section, which is a weaker (but easier
to prove) version of our main Theorem 2.2.2, since it only applies to polynomial test functions. Let
us point however that it applies to a larger family of schemes, namely to the schemes φ(x, t,

√
tY )

with Y satisfying (HY ), while Theorem 2.2.2 requires to take Y ∼ N (0, 1).

Proposition 2.3.3. Let σ2 ≤ 4a and assume that Y satisfies (HY ). For any L ∈ N, the proper-
ties (H1) and (H2) are satisfied by the scheme (2.16) X̂x

t = φ(x, t,
√
tY ) for F = PL(R) and the

norm (2.18). Then, we have for any f ∈ PL(R),

∥E[f(Xx
T )]− P̂ν,nf∥ ≤ CL∥f∥n−2ν ,

for some constant CL.

Proof. We first prove (H2). The property supt∈[0,T ] ∥Ptf∥ is given by Lemma 2.3.2. Since X̂x
t =

X0(t/2, X1(
√
tY,X0(t/2, x))), we get by Lemma 2.3.1

∥E[f(X̂ ·t)]∥ ≤ [(1 ∨ e−kLt/2)(1 + CLX0
t/2)]2(1 + E[Y 2L]CLX1

t)∥f∥.

We now use that 1 + x ≤ ex to get

∥E[f(X̂ ·t)]∥ ≤ e
((−k)+L+CL

X0
+E[Y 2L]CL

X1
)t∥f∥. (2.21)

Since Qlf(x) = E[f(X̂x
T/nl)], this yields to max0≤j≤nl ∥Q[j]

l f∥ ≤ e
((−k)+L+CL

X0
+E[Y 2L]CL

X1
)T ∥f∥.

We now prove (H1). Let m ∈ {0, . . . , L} and 0 < x0 < · · · < xL be fixed real numbers (one may
take for example xℓ = ℓ+ 1). Lemmas 2.3.1 and 2.3.2 give that vm(t, x) = E[(X̂x

t )
m]−E[(Xx

t )
m] =∑m

j=0 vj,m(t)x
j . By [3, Proposition 2.4], we know that there exists C ′m, E′m such that for all t ∈ (0, 1),

|vm(t, x)| ≤ C ′mt
3(1 + |x|E′

m). Therefore, there exists C̃m ∈ R+ such that for all ℓ ∈ {0, . . . , L},
|vm(t, xℓ)| ≤ C̃mt

3. By using the invertibility of the Vandermonde matrix, we get the existence of
Cm ∈ R+ such that

|vj,m(t)| ≤ Cmt3, j ∈ {0, . . . ,m}.

Therefore, we get for f ∈ PL(R)

∥E[f(X̂ ·t)]− E[f(X ·t)]∥ ≤
L∑

m=0

|am|
m∑
j=0

Cmt
3 ≤ L max

m∈{0,...,L}
Cm∥f∥t3,

that gives (H1). We conclude by applying [5, Theorem 3.10].
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2.4 Proof of Theorem 2.2.2

In Section 2.3, we have obtained the convergence for test functions that are polynomial functions.
For these test functions, the choice of the norm is straightforward and the proofs are not very
technical and quite easy. However, one would like to obtain the convergence result for a much larger
class of test functions. This is the goal of this section.

We consider test functions that are smooth with polynomial growth, whose derivatives have a
polynomial growth. Namely, we introduce for m,L ∈ N,

Cm,Lpol (R+) =

{
f : R+ → R of class Cm : max

j∈{0,...,m}
sup
x≥0

|f (j)(x)|
1 + xL

<∞

}
, (2.22)

which we endow with the norm

∥f∥m,L = max
j∈{0,...,m}

sup
x≥0

|f (j)(x)|
1 + xL

. (2.23)

To prove Theorem 2.2.2, we need to prove the estimates (H1) and (H2) for this family of norms.
This is the goal of the two next subsections. More precisely, we will show respectively the estimates

∥(Phl −Ql)f∥m,L+3 ≤ Ch3l ∥f∥2(m+3),L, m ≤ L+ 3, f ∈ C2(m+3),L
pol (R+)

in Proposition 2.4.3 and

sup
t≥T
∥Ptf∥m,L + max

0≤j≤nl
∥Q[j]

l f∥m,L ≤ ∥f∥m,LCh
3
l , m ≤ L, f ∈ C

m,L
pol (R+)

in Proposition 2.4.9 for Ql as in Theorem 2.2.2. Note that L has to be large enough: this is not an
issue for our purpose since Cm,Lpol (R+) ⊂ Cm,L+1

pol (R+), and we can work with L as large as needed.
We refer to the proof of Theorem 2.2.2 in Subsection 2.4.3 for further details.

Before, we summarize in the next lemma some properties of the norms defined in Equation (2.23)
that we will use later on. Its proof is postponed to Appendix A.2

Lemma 2.4.1. Let m,L ∈ N. We have the following basic properties:

1. ∥f∥m′,L = maxj∈{0,...,m′} ∥f (j)∥0,L for f ∈ Cm,Lpol (R+) and m′ ∈ {0, . . . ,m}.

2. Cm+1,L
pol (R+) ⊂ Cm,Lpol (R+) and ∥f∥m,L ≤ ∥f∥m+1,L for f ∈ Cm+1,L

pol (R+).

3. ∥f (i)∥m,L ≤ ∥f∥m+i,L for i ∈ N and f ∈ Cm+i,L
pol (R+).

4. Cm,Lpol (R+) ⊂ Cm,L+1
pol (R+) and ∥f∥m,L+1 ≤ 2∥f∥m,L for f ∈ Cm,Lpol (R+).

5. Let M1 be the operator defined by f 7→ M1f , M1f(x) = xf(x). Then, M1f ∈ Cm,L+1
pol (R+)

for f ∈ Cm,Lpol (R+) and ∥M1f∥m,L+1 ≤ (2m+ 3)∥f∥m,L.

6. Let Lf(x) = (a − kx)f ′(x) + 1
2σ

2xf ′′(x) be the infinitesimal generator of the CIR process.
Then, we have for f ∈ Cm+2,L

pol (R+),

∥Lf∥m,L+1 ≤
(
2a+ (2m+ 3)(|k|+ σ2/2)

)
∥f∥m+2,L.

We also have ∥(V 2
1 /2)f∥m,L+1 ≤ σ2(m+2)∥f∥m+2,L and ∥V0f∥m,L+1 ≤ [2|a− σ2/4|+ (2m+

3)|k|]∥f∥m+1,L, where V0 and V1 are defined by (2.15).

We also state the following elementary lemma that will be useful to prove both (H1) and (H2).
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Lemma 2.4.2. Let T > 0, σ2 ≤ 4a and X0 be defined by (2.12). Then, there exists a constant
K ≥ 0 such that for any function f ∈ Cm,Lpol (R+), we have

∥f(X0(t, ·))∥m,L ≤ eKt∥f∥m,L, t ∈ [0, T ].

Proof. We first prove the following inequality

1 +X0(t, x)
L ≤ (1 ∨ e−Lkt)(1 + C̃X0t)(1 + xL),

for some constant C̃X0 . To do so, we develop the term X0(t, x)
L and get

1 +X0(t, x)
L = 1 +

L∑
j=0

(
L

j

)
e−(L−j)ktx(L−j)(ψk(t)(a− σ2/4))j

= 1 + e−LktxL + ψk(t)
L∑
j=1

(
L

j

)
e−(L−j)ktx(L−j)ψk(t)

j−1(a− σ2/4)j .

We remark that for k ≥ 0, 0 ≤ ψk(t) ≤ t ≤ 1 ∨ T for all t ∈ [0, T ]. For k < 0, we have
ψk(t) = e−ktψ−k(t) and thus ψk(t) ≤ e(−k)

+tt for all t ∈ [0, T ] and k ∈ R. Using xj ≤ 1 + xL for all
j ∈ {1, . . . , L}, we can rewrite the previous identity as

1 +X0(t, x)
L ≤ (1 ∨ e−Lkt)(1 + xL)

+ te(−k)
+t(1 ∨ e−Lkt)(1 + xL)

L∑
j=0

(
L

j

)
(e(−k)

+T (1 ∨ T )(a− σ2/4))j

≤ (1 ∨ e−Lkt)(1 + C̃X0t)(1 + xL),

where C̃X0 = e(−k)
+T (1 + e(−k)

+T (1 ∨ T )(a− σ2/4))L.
We are now in position to prove the claim. For i ≤ m, we have:

|∂ixf(X0(t, x))| = |e−iktf (i)(X0(t, x))| ≤ e−ikt∥f∥m,L(1 +X0(t, x)
L)

≤ ∥f∥m,L(1 ∨ e−mkt)(1 ∨ e−Lkt)(1 + C̃X0t)(1 + xL)

≤ ∥f∥m,Le[C̃X0
+(L+m)(−k)+]t(1 + xL).

This gives ∥f(X0(t, ·))∥m,L ≤ ∥f∥m,Le[C̃X0
+(L+m)(−k)+]t.

2.4.1 Proof of (H1)

In this subsection, we prove the following result which is a direct consequence of Propositions 2.4.4
(with ν = 2) and 2.4.8 that are stated below.

Proposition 2.4.3. Let Y satisfy (HY ), σ2 ≤ 4a and X̂x
t = φ(x, t,

√
tY ) be the scheme (2.16). Let

m,L ∈ N such that L+ 3 ≥ m and f ∈ C2(m+3),L
pol (R+). Then, there exists a constant C ∈ R∗+ such

that for t ∈ [0, T ],
∥E[f(X̂ ·t)]− E[f(X ·t)]∥m,L+3 ≤ Ct3∥f∥2(m+3),L.

To prove this result, we compare each term with the expansion f(x) + tLf(x) + t2

2 L
2f(x) of

order two. The next proposition analyzes the difference between such expansion and the semigroup
of the CIR process.
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Proposition 2.4.4. Let m, ν, L ∈ N such that L + ν + 1 ≥ m, T > 0 and f ∈ Cm+2(ν+1),L
pol (R+).

Let Xx be the CIR process and L its infinitesimal generator. Then, for t ∈ [0, T ], we have

E[f(Xx
t )] =

ν∑
i=0

ti

i!
Lif(x) + tν+1

∫ 1

0

(1− s)ν

ν!
E[Lν+1f(Xx

ts)]ds (2.24)

where the function x 7→
∫ 1
0

(1−s)ν
ν! E[Lν+1f(Xx

s )]ds belongs to Cm,Lpol (R+) and we have the following
estimate for all t ∈ [0, T ],∥∥∥∥∫ 1

0

(1− s)ν

ν!
E[Lν+1f(X ·ts)]ds

∥∥∥∥
m,L+ν+1

≤ C∥f∥m+2(ν+1),L, (2.25)

for some constant C ∈ R+ depending on (a, k, σ, ν,m,L, T ).

Proof. Let f ∈ Cm+2(ν+1),L
pol (R+). Since the coefficients of the CIR SDE have sublinear growth, we

have bounds on the moments of Xx
s : for any q ∈ N∗, there exists Cq > 0 such that E[|Xx

s |q] ≤
Cq(1 + xq) for s ∈ [0, T ]. Using iterations of Itô’s formula and a change of variable (in time), we
then easily get (2.24) for t ∈ [0, T ]. To get the estimate (2.25), we first use Lemma 2.4.1 and obtain

∥Lν+1f∥m,L+ν+1 ≤ Kcir(m, ν)
ν+1∥f∥m+2(ν+1),L,

with Kcir(m, ν) = 2a+ (2m+ 4ν + 3)(|k|+ σ2/2). By the triangle inequality, we have∥∥∥∥∫ 1

0

(1− s)ν

ν!
E[Lν+1f(X ·ts)]ds

∥∥∥∥
m,L+ν+1

≤
∫ 1

0

(1− s)ν

ν!

∥∥E[Lν+1f(X ·ts)]
∥∥
m,L+ν+1

ds.

Since t ≤ T , we have
∥∥E[Lν+1f(X ·ts)]

∥∥
m,L+ν+1

≤ Ccir(m,L+ ν + 1, T )
∥∥Lν+1f

∥∥
m,L+ν+1

by Propo-
sition 2.4.10 using that L+ ν + 1 ≥ m. This gives by Lemma 2.4.1∥∥∥∥∫ 1

0

(1− s)ν

ν!
E[Lν+1f(X ·ts)]ds

∥∥∥∥
m,L+ν+1

≤ Ccir(m,L+ ν + 1, T )

(ν + 1)!
Kcir(m, ν)

ν+1∥f∥m+2(ν+1),L.

We now focus on the approximation scheme. The main difficulty comes from the differentiation
of the square-root that may lead to derivatives that blow up at the origin. Here, we exploit the fact
that Y is a symmetric random variable to cancel these blowing terms. More precisely, we will then
need to differentiate in x the following quantity

g(X1(s
√
t, x)) + g(X1(−s

√
t, x)) = g(x+ σs

√
t
√
x+

σ2

4
ts2) + g(x− σs

√
t
√
x+

σ2

4
ts2),

and the next lemma enables us to have a sharp estimate of the derivatives.

Lemma 2.4.5. Let g : R+ → R be a C2n function, β ∈ R+ and γ ≥ β2/4. Then, the function
ψg(x) := g(x+ β

√
x+ γ) + g(x− β

√
x+ γ), x ≥ 0 is Cn with derivatives

ψ(n)
g (x) = ψg(n)(x) +

n∑
j=1

(
n

j

)
β2j
∫ 1

0
g(n+j)(x+ β(2u− 1)

√
x+ γ)

(u− u2)j−1

(j − 1)!
du (2.26)

The proof of this lemma and of the next corollary are postponed to Appendix A.2.

Corollary 2.4.6. Let m,L ∈ N, β ≥ 0 and g ∈ C2m,Lpol (R+). Then, ψg(x) = g((
√
x + β/2)2) +

g((
√
x− β/2)2) belongs to Cm,Lpol (R+), and for all n ∈ {0, . . . ,m} we have the following estimates

∥ψg∥n,L ≤ Cβ,m,L∥g∥2n,L, (2.27)

with Cβ,m,L =
(
(1 + β/2)2L + (1− β/2)2L + 2(1 + β2/2)L(1 + β2/2)m).
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Lemma 2.4.7. Let m, ν, L ∈ N, T > 0, t ∈ [0, T ] and N ∼ N (0, 1). Let Y be a symmetric
random variable such that E[Y k] = E[Nk] for k ≤ 2ν and E[Y 2k] <∞ for all k ∈ N. We have, for
f ∈ Cm+ν+1,L

pol (R+),

f(X0(t, x)) =

ν∑
i=0

ti

i!
V i
0f(x) + tν+1

∫ 1

0

(1− u)ν

ν!
V ν+1
0 f(X0(ut, x))du, (2.28)

with ∥
∫ 1
0

(1−u)ν
ν! V ν+1

0 f(X0(ut, ·))du∥m,L+ν+1 ≤ C0∥f∥m+ν+1,L; and for f ∈ C2(m+ν+1),L
pol (R+),

E[f(X1(
√
tY, x))] =

ν∑
i=0

ti

i!

(
1

2
V 2
1

)i
f(x) (2.29)

+ tν+1E
[
Y 2ν+2

∫ 1

0

(1− u)2ν+1

(2ν + 1)!
V 2ν+2
1 f(X1(u

√
tY, x))du

]
,

with
∥∥∥E [Y 2ν+2

∫ 1
0

(1−u)2ν+1

(2ν+1)! V
2ν+2
1 f(X1(u

√
tY, ·))du

]∥∥∥
m,L+ν+1

≤ C1∥f∥2(m+ν+1),L, for some con-

stants C0, C1 ∈ R+ depending on (a, k, σ), T , m, M and ν.

Proof. Equation (2.28) holds by using Taylor formula since d
dtf(X0(t, x)) = V0f(X0(t, x)). We

have by Property (6) of Lemma 2.4.1 ∥V0f∥m,L+1 ≤ |a − σ2

4 |∥f
′∥m,L+1 + |k|(2m + 3)∥f ′∥m,L ≤

(2|a− σ2

4 |+ |k|(2m+ 3))∥f∥m+1,L and thus ∥V ν+1
0 f∥m,L+ν+1 ≤ C∥f∥m+ν+1,L for some constant C

depending on a, σ, k, ν,m. Using the triangular inequality and Lemma 2.4.2, we get the result.
We now prove the second part of the claim. We first show Equation (2.29). Since d

dtf(X1(t, x)) =
V1f(X1(t, x)), we get by Taylor formula

f(X1(t, x)) =
2ν+1∑
i=0

ti

i!
V i
1f(x) +

∫ t

0

(t− s)2ν+1

(2ν + 1)!
V 2ν+2
1 f(X1(s, x))du

=
2ν+1∑
i=0

ti

i!
V i
1f(x) + t2ν+2

∫ 1

0

(1− u)2ν+1

(2ν + 1)!
V 2ν+2
1 f(X1(ut, x))du, t ∈ R.

We apply this formula at
√
tY and take the expectation. Since E[Y 2i+1] = 0 by symmetry and

E[Y 2i] = E[N2i] = (2i)!
i!2i

for i ≤ ν, we get (2.29). We now analyze the norm of the remainder. We
have ∥12V

2
1 f∥m,L+1 ≤ σ2(m + 2)∥f∥m+2,L by using Lemma 2.4.1 (6). Then, we observe that by

symmetry of Y ,

E
[
Y 2ν+2

∫ 1

0

(1− u)2ν+1

(2ν + 1)!
V 2ν+2
1 f(X1(u

√
tY, x))du

]
=

1

2
E
[
Y 2ν+2

∫ 1

0

(1− u)2ν+1

(2ν + 1)!
[V 2ν+2

1 f(X1(u
√
tY, x)) + V 2ν+2

1 f(X1(−u
√
tY, x))]du

]
By Corollary 2.4.6, we have

∥V 2ν+2
1 f(X1(u

√
tY, ·)) + V 2ν+2

1 f(X1(−u
√
tY, ·))∥m,L+ν+1 ≤ Cσu√tY,m,L∥V

2ν+2
1 f∥2m,L+ν+1

≤ C ′Cσu√tY,m,L∥f∥2(m+ν+1),L,

with C ′ = (4σ2(m + ν + 1))ν+1. The conclusion follows by using the triangle inequality, the
polynomial growth of the constant Cσu√tY,m,L given by Corollary 2.4.6 and the finite moments
E[Y 2k] for k sufficiently large.

We are now in position to prove the estimate for the approximation scheme (2.16). Since
this scheme is obtained as the composition of the schemes X0 and X1, the proof consists is using
iteratively the estimates of Lemma 2.4.7.
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Proposition 2.4.8. Let Y be a symmetric random variable such that E[Y k] = E[Nk] for k ≤ 4 and
E[Y 2k] < ∞ for all k ∈ N. Let σ2 ≤ 4a and X̂x

t be the scheme (2.16). Let m ∈ N, L ∈ N∗ and
f ∈ C2(m+3),L

pol (R+). Then, we have for t ∈ [0, T ],

E[f(X̂x
t )] = f(x) + tLf(x) + t2

2
L2f(x) + R̄f(t, x),

with ∥R̄f(t, ·)∥m,L+3 ≤ Ct3∥f∥2(m+3),L.

Proof. We use X̂x
t = X0(t/2, X1(

√
tY,X0(t/2, x))) and apply first (2.28):

E[f(X0(t/2, X1(
√
tY,X0(t/2, x))))] = E

[
(f +

t

2
V0f +

t2

8
V 2
0 f)(X1(

√
tY,X0(t/2, x)))

]
+RIf(t, x),

with RIf(t, x) =
(
t

2

)3 ∫ 1

0

(1− u)2

2
E[V 3

0 f(X0(ut/2, X1(
√
tY,X0(t/2, x))))]ds.

We get by using Lemma 2.4.2, Corollary 2.4.6 (using the symmetry and the finite moments of Y ),
again Lemma 2.4.2 and then Lemma 2.4.1 (6):

∥E[V 3
0 f(X0(ut/2, X1(

√
tY,X0(t/2, ·))))]∥m,L+3 ≤ C∥E[V 3

0 f(X0(ut/2, X1(
√
tY, ·)))]∥m,L+3

≤ C∥V 3
0 f(X0(ut/2, ·))∥2m,L+3 ≤ C∥V 3

0 f∥2m,L+3 ≤ C∥f∥2m+3,L

This gives ∥RIf(t, x)∥m,L+3 ≤ Ct3∥f∥2m+3,L, for t ∈ [0, T ].
We now expand again and get from (2.29)

E
[
(f +

t

2
V0f +

t2

8
V 2
0 f)(X1(

√
tY,X0(t/2, x)))

]
= f(X0(t/2, x)) +

t

2
V 2
1 f(X0(t/2, x)) +

t2

2
(V 2

1 /2)
2f(X0(t/2, x)) +

t

2
V0f(X0(t/2, x))

+
t2

2
(V 2

1 /2)V0f(X0(t/2, x)) +
t2

8
V 2
0 f(X0(t/2, x)) +RIIf(t, x),

with

RIIf(t, x) = t3E

[
Y 6

∫ u

0

(1− u)5

5!
V 6
1 f(X1(u

√
tY,X0(T/2, x)))du

+
Y 4

2

∫ u

0

(1− u)3

3!
V 4
1 V0f(X1(u

√
tY,X0(T/2, x)))du

+
Y 2

8

∫ u

0
(1− u)V 2

1 V
2
0 f(X1(u

√
tY,X0(T/2, x)))du

]
.

We use Lemmas 2.4.7, 2.4.2 and 2.4.1 to get, for t ∈ [0, T ],

∥RIIf(t, ·)∥m,L+3 ≤ Ct3(∥f∥2(m+3),L + ∥V0f∥2(m+2),L+1 + ∥V 2
0 f∥2(m+1),L+2) ≤ Ct3∥f∥2(m+3),L.

Last, we use again (2.28) to get

f(X0(t/2, x)) +
t

2
[V 2

1 + V0]f(X0(t/2, x)) +
t2

2
[(V 2

1 /2)
2 + (V 2

1 /2)V0 + V 2
0 /4]f(X0(t/2, x))

= f(x) +
t

2
V0f(x) +

t2

8
V 2
0 f(x) +

t

2
[V 2

1 + V0]f(x) +
t2

4
[V0V

2
1 + V 2

0 ]f(x)

+
t2

2
[(V 2

1 /2)
2 + (V 2

1 /2)V0 + V 2
0 /4]f(x) +RIIIf(t, x),
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where again by Lemma 2.4.7 and 2.4.1, we have

∥RIIIf(t, ·)∥m,L+3 ≤ Ct3(∥f∥m+3,L + ∥[V 2
1 + V0]f∥m+2,L+1

+ ∥[(V 2
1 /2)

2 + (V 2
1 /2)V0 + V 2

0 /4]f∥m+1,L+2)

≤ Ct3∥f∥m+5,L.

Finally, we get ∥R̄f(t, ·)∥m,L+3 ≤ Ct3∥f∥2(m+3),L with R̄f := RIf +RIIf +RIIIf and

E[f(X0(t/2, X1(
√
tY,X0(t/2, x))))] = f(x) + t[V0 + V 2

1 /2]f(x)

+
t2

2
[V 2

0 + V0V
2
1 /2 + (V 2

1 /2)V0 + (V 2
1 /2)

2]f(x) + R̄f(t, x)

= f(x) + tLf(x) + t2

2
L2f(x) + R̄f(t, x).

2.4.2 Proof of (H2)

In this section, we mainly prove the following result.

Proposition 2.4.9. Let σ2 ≤ 4a and X̂x
t = φ(x, t,

√
tN) be the scheme (2.10) with N ∼ N (0, 1).

Let T > 0 and m,L ∈ N such that L ≥ m. We define for n ≥ 1 and l ∈ N, Qlf(x) = E[f(X̂x
hl
)]with

hl =
T
nl . Then, there exists a constant C ∈ R∗+ such that for any f ∈ Cm,Lpol (R+), l ∈ N and t ∈ [0, T ],

∥E[f(X ·t)]∥m,L + max
0≤k≤nl

∥∥∥Q[k]
l f
∥∥∥
m,L
≤ C∥f∥m,L. (2.30)

We split the proof in two parts. The first one deals with the semigroup of the CIR process,
for which the assumption σ2 ≤ 4a is not needed. This is stated in Proposition 2.4.10, whose proof
exploits the particular form of the density of Xx

t . The second part that deals with the approximation
scheme is quite technical. We prove in fact in Proposition 2.4.12 a slightly more general result for
the scheme X̂x

t = φ(x, t,
√
tY ), when Y is a symmetric random variable with a smooth density.

However, the conditions needed on the density are quite restrictive. These conditions are satisfied
by the standard normal variable by Lemma 2.4.14. If we want besides to have (2.30) for any m and
in addition to match the moments E[Y 2] = E[N2] and E[Y 4] = E[N4] – which is required to have a
second-order scheme –, then Theorem 2.4.16 shows that we necessarily have Y ∼ N (0, 1). This is
why we directly state here, for sake of simplicity, Proposition 2.4.9 with Y = N ∼ N (0, 1).

Upper bound for the semigroup

We first prove the estimate (H2) for the semigroup of the CIR process. To do so, we take back
the arguments of [4, Proposition 4.1] that gives polynomial estimates for (t, x) 7→ Ptf(x). First
we remove the polynomial Taylor expansion of the function f at 0, which enables then to do
an integration by parts and to get the remarkable formula in Eq. (2.34) below for the iterated
derivatives of Ptf that gives then the desired estimate. The polynomial part is analyzed separately
in Lemma 2.4.11 below with standard arguments.

Proposition 2.4.10. Let f ∈ Cm,Lpol (R+), L ≥ m, T > 0 and t ∈ (0, T ]. Let Xx be the CIR process
starting from x ≥ 0. Then, E[f(X ·t)] ∈ C

m,L
pol (R+) and we have the following estimate for some

constant Ccir(m,L, T ) ∈ R+:

∥E[f(X ·t)]∥m,L ≤ Ccir(m,L, T )∥f∥m,L. (2.31)
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Proof. Let f ∈ Cm,Lpol (R+) and Tm(f)(x) =
∑m

j=0
f (j)(0)
j! xj its Taylor polynomial expansion at 0 of

order m. We define f̂m = f − Tm(f) ∈ Cm,Lpol (R+), so we have f = f̂m + Tm(f). By Lemma 2.4.11
below, one gets ∥E[Tm(f)(X ·t)]∥m,L ≤ Ccir(m,T )∥Tm(f)∥m,L and then

∥E[Tm(f)(X ·t)]∥m,L ≤ eCcir(m,T )∥f∥m,L, (2.32)

since for all i ∈ {0, . . . ,m} and x ≥ 0∣∣∣∣(Tm(f))(i)(x)1 + xL

∣∣∣∣ = ∣∣∣∣m−i∑
j=0

f (i+j)(0)

j!

xj

1 + xL

∣∣∣∣ ≤ m−i∑
j=0

1

j!
∥f∥m,L ≤ e∥f∥m,L.

We now focus on E[f̂m(X ·t)]. We recall the density of Xx
t (see e.g. [2, Proposition 1.2.11])2

p(t, x, z) =

∞∑
i=0

e−dtx/2(dtx/2)
i

i!

ct/2

Γ(i+ v)

(ctz
2

)i−1+v
e−ctz/2 (2.33)

where ct = 4k
σ2(1−e−kt)

, v = 2a/σ2 and dt = cte
−kt. Let us remark that

ct ≥ cmin :=


4k
σ2 , k > 0
4

σ2T
, k = 0

4|k|
σ2(e|k|T−1) , k < 0.

We have

E[f̂m(Xx
t )] =

∞∑
i=0

e−dtx/2(dtx/2)
i

i!
Ii(f̂m, ct), t > 0,

where
Ii(f̂m, ct) =

∫ ∞
0

f̂m(z)
ct/2

Γ(i+ v)

(ctz
2

)i−1+v
e−ctz/2dz.

Differentiating successively, we get that for j ≤ m, t ∈ (0, T ] and x ∈ R+

∂xj E[f̂(Xx
t )] =

∞∑
i=0

e−dtx/2(dtx/2)
i

i!
∆j
t (Ii(f̂m, ct)),

where ∆t : RN → RN is an operator defined on sequences (Ii)i≥0 ∈ RN by ∆t(Ii) =
dt
2 (Ii+1 − Ii) =

e−kt

2 ct(Ii+1 − Ii). An integration by parts gives for i ≥ 1

Ii(f̂
(j)
m , ct) =

∫ ∞
0

f̂ (j−1)m (z)
(ct/2)

2

Γ(i+ v)

(ctz
2

)i−1+v
e−ctz/2dz

−
∫ ∞
0

f̂ (j−1)m (z)
(ct/2)

2(i− 1 + v)

Γ(i+ v)

(ctz
2

)i−2+v
e−ctz/2dz

=
ct
2
(Ii(f̂

(j−1)
m , ct)− Ii−1(f̂ (j−1)m , ct)) = ekt∆t(Ii−1(f̂

(j−1)
m , ct)),

since f̂ (j)m (0) = 0 for all 1 ≤ j ≤ m and f̂
(j)
m has a polynomial growth. By iterating, we get for all

t ∈ (0, T ] and x ∈ R+,

∂xj E[f̂m(Xx
t )] =

∞∑
i=0

e−dtx/2(dtx/2)
i

i!
Ii+j(f̂

(j)
m , ct)e

−kjt. (2.34)

2In the case a = 0, Xx
t is distributed according to the probability measure e−dtx/2δ0(dx) +∑∞

i=1
e−dtx/2(dtx/2)

i

i!
ct/2
Γ(i)

(
ctz
2

)i−1
e−ctz/2. The proof works the same since f̂m(0) = 0, so that E[f̂m(Xx

t )] only involves
the absolutely continuous part of the distribution.
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Note that, since for j ≤ m, |f̂ (j)m (z)| ≤ ∥f̂m∥m,L(1 + zL) and using the well known formula for the
L-th raw moment of gamma distribution we have for all i ∈ N

|Ii(f̂ (j)m , ct)| ≤ ∥f̂m∥m,L

(
1 +

(
2

ct

)LΓ(i+ L+ v)

Γ(i+ v)

)
. (2.35)

Thus, the derivation of the series (2.34) is valid, and we get that

|∂xj E[f̂m(Xx
t )]| ≤ ∥f̂m∥m,Le−kjt

(
1 +

( 2
ct

)L ∞∑
i=0

e−dtx/2(dtx/2)
i

i!

Γ(i+ j + L+ v)

Γ(i+ j + v)

)
.

The quotient Γ(i+j+L+v)
Γ(i+j+v) is a polynomial function of degree L with respect to i, and we denote

βj0, . . . , β
j
L its coefficients in the basis {1, i, i(i− 1), . . . , i(i− 1) · · · (i− L+ 1)}. Thus, we get that

|∂xj E[f̂m(Xx
t )]| ≤ ∥f̂m∥m,Le(−k)

+jT

(
1 +

(
2

ct

)L L∑
i=0

|βji |
(
dt
2

)i
xi

)

≤ ∥f̂m∥m,Le(−k)
+mT

(
1 +

L∑
i=0

|βji |
(
2

ct

)L−i
e−kit(1 + xL)

)

≤ ∥f̂m∥m,Le(−k)
+(m+L)T

(
1 +

L∑
i=0

|βji |
(

2

cmin

)L−i)
(1 + xL).

By the triangular inequality and (2.32), we get ∥f̂m∥m,L ≤ (1+e)∥f∥m,L, so one has for all t ∈ (0, T ],
j ≤ m

|∂xj E[f̂m(Xx
t )]| ≤ (1 + e)e(−k)

+(m+L)T

(
1 +

L∑
i=0

|βji |
(

2

cmin

)L−i)
∥f∥m,L(1 + xL), (2.36)

and thus for all t ∈ (0, T ]:
∥E[f̂m(X ·t)]∥m,L ≤ Ĉ∥f∥m,L, (2.37)

where Ĉ := (1 + e)e(−k)
+(m+L)T max0≤j≤m

(
1 +

∑L
i=0 |β

j
i |
(

2
cmin

)L−i)
. Finally, we get the desired

estimate by the triangular inequality, (2.32) and Lemma 2.4.11:

∥E[f(X ·t)]∥m,L ≤ ∥E[f̂m(X
·
t)]∥m,L + ∥E[Tm(f)(X ·t)]∥m,L ≤ (Ĉ + Ccir(m,T ))∥f∥m,L.

Lemma 2.4.11. Let P ∈ Pm(R) be a polynomial function of degree m ∈ N∗ and L ∈ N∗ such that
L ≥ m. Then, for t ∈ [0, T ] we have the following estimate

∥E[P (X ·t)]∥m,L ≤ Ccir(m,T )∥P∥m,L, (2.38)

where Ccir(m,T ) = maxt∈[0,T ]
∑m

j=0

∑j
i=0 |ũi,j(t)| with ũi,j(t) defined as in Lemma 2.3.2 by E[(Xx

t )
j ] =∑j

i=0 ũi,j(t)x
i.

Proof. We consider a polynomial function P (y) =
∑m

i=0 biy
i of degree m and L ≥ m. For all

l ∈ {0, . . . ,m} one has from Lemma 2.3.2

|∂lxE[P (Xx
t )]|

1 + xL
=

∣∣∣∣ m∑
j=0

bj
∂lxũj(t, x)

1 + xL

∣∣∣∣ ≤ ∣∣∣∣ m∑
j=0

bj

j∑
i=l

ũi,j(t)
i!

(i− l)!
xi−l

1 + xL

∣∣∣∣
≤

m∑
j=0

|bj |j!
j∑
i=l

|ũi,j(t)| ≤ max
t∈[0,T ]

m∑
j=0

j∑
i=l

|ũi,j(t)| max
j∈{0,...,L}

|bj |j!,

passing to supremum over x ≥ 0, l ∈ {0, . . . ,m} we get (2.38) observing that |bj |j! = |P (j)(0)| ≤
∥P∥m,L.
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Upper bound for the approximation scheme

We now prove the estimate (H2) for the approximation of the CIR process. The main result of this
paragraph is the following.

Proposition 2.4.12. Let T > 0, σ2 ≤ 4a, m,M ∈ N, Y be a symmetric random variable with
density η ∈ CM (R) such that for all i ∈ {0, . . . ,M}, |η(i)(y)| = o(|y|−(2L+i)) for |y| → ∞, and η∗m ≥
0 for all 1 ≤ m ≤ M (see Lemma 2.4.13 below for the definition of η∗m). Let Qlf(x) = E[f(X̂x

hl
)]

with X̂x
t = φ(t, x,

√
tY ), n ≥ 1, l ∈ N and hl = T/nl. Then, for any L ∈ N, there exists C ∈ R+

such that:
max

0≤j≤nl
∥Q[j]

l f∥m,L ≤ C∥f∥m,L, f ∈ C
m,L
pol (R+), l ∈ N.

Note that by Lemma 2.4.14 below, the assumptions of Proposition 2.4.12 are satisfied by Y ∼
N (0, 1). Therefore, (H2) holds for the scheme of Ninomiya and Victoir (2.10).

Proof. We have X̂x
t = φ(t, x,

√
tY ) = X0(t/2, X1(

√
tY,X0(t/2, x))). Let f ∈ Cm,Lpol (R+). We apply

Lemma 2.4.2 and Lemma 2.4.13 below to get:

∥E[f(X0(t/2, X1(
√
tY,X0(t/2, ·))))]∥m,L ≤ eKt/2∥E[f(X1(

√
tY,X0(t/2, ·)))]∥m,L

≤ eKt/2+Ct∥f(X0(t/2, ·))∥m,L ≤ e(C+K)t∥f∥m,L

This gives max0≤j≤nl ∥Q[j]
l f∥m,L ≤ e

(C+K)T ∥f∥m,L.

Lemma 2.4.13. Let M,L ∈ N. Let Y be a symmetric random variable with density η ∈ CM (R)
such that for all i ∈ {0, . . . ,M}, |η(i)(y)| = o(|y|−(2L+i)) for |y| → ∞. Then, for all function
f ∈ CM,L

pol (R+), m ∈ {1, . . . ,M} and t ∈ [0, T ] one has the following representation

∂mx E[f(X1(
√
tY, x))] =

∫ ∞
−∞

∫ 1

0
(u− u2)m−1f (m)(w(u, x, y))η∗m(y)dudy (2.39)

where w(u, x, y) = x+(2u−1)σ
√
ty
√
x+σ2ty2/4, η∗m(y) = (−1)m−1

(∑m
j=1 cj,my

jη(j)(y)
)
, and the

coefficients cj,m are defined by induction, starting from c1,1 = −1, through the following formula

cj,m =

(
2j

m− 1
− 4

)
cj,m−11j<m +

2

m− 1
cj−1,m−11j>1, j ∈ {1, . . . ,m}, m ∈ {2, . . . ,M}. (2.40)

In particular, cm,m = − 2m−1

(m−1)! < 0. Furthermore, if the density η is such that η∗m(y) ≥ 0 for all
y ∈ R, and all m ∈ {1, . . . ,M}, then there exists C ∈ R+ such that

∥E[f(X1(
√
tY, ·))]∥m,L ≤ (1 + Ct)∥f∥m,L, t ∈ [0, T ]. (2.41)

Let us stress here two things that are crucial in (2.41): the same norm is used in both sides,
and the sharp time dependence of the multiplicative constant (1 + Ct). These properties are used
in the proof of Proposition 2.4.12 to get (H2).

Proof. We first consider m = 1 and f ∈ CM,L
pol (R+). From the symmetry of Y , we have the equality

E[f(X1(
√
tY, x))] = E[f(X1(

√
tY, x))+f(X1(−

√
tY, x))]/2 and using the notation ψ±f (x, y) = f(x+

σ
√
ty
√
x+ σ2ty2/4)± f(x− σ

√
ty
√
x+ σ2ty2/4) we can write,

∂xE[f(X1(
√
tY, x))] =

1

2

∫ ∞
−∞

∂xψ
+
f (x, y)η(y)dy.
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One derivation and a little of algebra show that

∂xψ
+
f (x, y) = (1 +

σ
√
ty

2
√
x
)f ′(x+ σ

√
ty
√
x+ σ2ty2/4) + (1− σ

√
ty

2
√
x
)f ′(x− σ

√
ty
√
x+ σ2ty2/4)

=
1

σ
√
t
√
x

(
(σ2ty/2 + σ

√
t
√
x)f ′(x+ σ

√
ty
√
x+ σ2ty2/4)

− (σ2ty/2− σ
√
t
√
x)f ′(x− σ

√
ty
√
x+ σ2ty2/4)

)
=

1

σ
√
t
√
x

(
∂y[f(x+ σ

√
ty
√
x+ σ2ty2/4)]− ∂y[f(x− σ

√
ty
√
x+ σ2ty2/4)]

)
=
∂yψ

−
f (x, y)

σ
√
t
√
x

.

Integrating by parts in the variable y, observing that the boundary term vanishes since |η(y)| =|y|→∞
o(|y|−2L) and f(z) =z→∞ O(zL), one has

∂xE[f(X1(
√
tY, x))] = −1

2

∫ ∞
−∞

ψ−f (x, y)η
′(y)

σ
√
t
√
x

dy

= −
∫ ∞
−∞

∫ 1

0
f ′(x+ (2u− 1)σ

√
ty
√
x+ σ2ty2/4)η′(y)y dudy

=

∫ ∞
−∞

∫ 1

0
f ′(x+ (2u− 1)σ

√
ty
√
x+ σ2ty2/4)(−η′(y)y) dudy

since ∂uf(x+(2u−1)σ
√
ty
√
x+σ2ty2/4) = 2σ

√
ty
√
xf ′(x+(2u−1)σ

√
ty
√
x+σ2ty2/4). In order to

simplify the notation, we define w(u, x, y) := x+(2u−1)σ
√
ty
√
x+σ2ty2/4, and we write explicitly

the partial derivatives of w 
∂uw(u, x, y) = 2σ

√
ty
√
x,

∂xw(u, x, y) = 1 + (2u−1)σ
√
ty

2
√
x

,

∂yw(u, x, y) = (2u− 1)σ
√
t
√
x+ σ2ty

2 ,

(2.42)

and we define for s : [0, 1]× R→ R

I(l)m,n(s) =

∫ ∞
−∞

∫ 1

0
s(u, y)(u2 − u)m−1f (l)(w(u, x, y))

( n∑
j=1

cj,ny
jη(j)(y)

)
dudy, (2.43)

so we can rewrite (2.39) as ∂mx E[f(X1(
√
tY, x))] = I

(m)
m,m(1) where the 1 in the argument has to be

intended as the constant map identically equal to 1. So far, we have shown that formula (2.39) is
true for m = 1, we take now m ≥ 2, and we prove it by induction over m assuming that the result
holds for m− 1. We differentiate Eq. (2.39) for m− 1 and use the second equality of (2.42) to get

∂mx E[f(X1(
√
tY, x))] = I

(m)
m−1,m−1(1) + I

(m)
m−1,m−1

(
(2u− 1)σ

√
ty

2
√
x

)
. (2.44)

Then, from the third equality of (2.42), one has (2u−1)σ
√
ty

2
√
x

= (2u−1)
σ
√
t
√
x
∂yw − (2u− 1)2 and so

∂mx E[f(X1(
√
tY, x))] = I

(m)
m−1,m−1(1− (2u− 1)2) + I

(m)
m−1,m−1

(
(2u− 1)

σ
√
t
√
x
∂yw(u, x, y)

)
= −4I(m)

m−1,m−1(u
2 − u) + I

(m)
m−1,m−1

(
(2u− 1)

σ
√
t
√
x
∂yw(u, x, y)

)
= −4I(m)

m,m−1(1) + I
(m)
m−1,m−1

(
(2u− 1)

σ
√
t
√
x
∂yw(u, x, y)

)
.
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We work on the term I
(m)
m−1,m−1(

(2u−1)
σ
√
t
√
x
∂yw(u, x, y)). We use first an integration by parts in the

variable y and subsequently one in the variable u. The boundary terms vanishes by using the
hypothesis on η since |f (m)(w(u, x, y))| ≤ ∥f∥m,L(1+w(u, x, y)L) =

|y|→∞
O(y2L) and to the fact that

the function u2 − u vanishes in 0 and 1. One gets∫ 1

0

∫ ∞

−∞

(2u− 1)(u2 − u)m−2

σ
√
t
√
x

f (m)(w(u, x, y))∂yw(u, x, y)

(m−1∑
j=1

cj,m−1y
jη(j)(y)

)
dydu

= −
∫ ∞

−∞

∫ 1

0

(2u− 1)(u2 − u)m−2

σ
√
t
√
x

f (m−1)(w(u, x, y))

(m−1∑
j=1

cj,m−1(jy
j−1η(j)(y) + yjη(j+1)(y))

)
dudy

=

∫ ∞

−∞

∫ 1

0

(u2 − u)m−1f (m)(w(u, x, y))

(m−1∑
j=1

2

m− 1
cj,m−1(jy

jη(j)(y) + yj+1η(j+1)(y)

)
dudy

=

∫ ∞

−∞

∫ 1

0

(u2 − u)m−1f (m)(w(u, x, y))
2

m− 1

(m−1∑
j=1

jcj,m−1y
jη(j)(y) +

m∑
j=2

cj−1,m−1y
jη(j)(y)

))
dudy.

(2.45)

Rewriting the last equality for ∂mx E[f(X1(
√
tY, x))], one has

∂mx E[f(X1(
√
tY, x))] =

∫ ∞

−∞

∫ 1

0

(u2 − u)m−1f (m)(w(u, x, y))

(
− 4

m−1∑
j=1

cj,m−1y
jη(j)(y)

)
dudy+

+

∫ ∞

−∞

∫ 1

0

(u2 − u)m−1f (m)(w(u, x, y))
2

m− 1

(m−1∑
j=1

jcj,m−1y
jη(j)(y) +

m∑
j=2

cj−1,m−1y
jη(j)(y)

)
dudy

=

∫ ∞

−∞

∫ 1

0

(u2 − u)m−1f (m)(w(u, x, y))

(( 2

m− 1
− 4
)
c1,m−1yη

(1)(y)+

m−1∑
j=2

(( 2j

m− 1
− 4
)
cj,m−1 +

2

m− 1
cj−1,m−1

)
yjη(j)(y) +

2

m− 1
cm−1,m−1y

mη(m)(y)

)
dudy,

(2.46)

which proves the representation (2.39). Since c1,1 = −1 and cm,m = − 2
m−1cm−1,m−1 for m ≥ 2, we

get cm,m = − 2m−1

(m−1)! for m ≥ 1.
We are now able to prove the estimate using this representation. Defining η∗m(y) = (−1)m−1∑m
j=0 cj,my

jη(j)(y), that is nonnegative for all y by hypothesis, one has

|∂mx E[f(X1(
√
tY, x))]| ≤

∫ 1

0
(u− u2)m−1

∫ ∞
−∞
|f (m)(w(u, x, y))|η∗m(y)dydu

≤ ∥f∥m,L
∫ 1

0
(u− u2)m−1

∫ ∞
−∞

(1 + w(u, x, y)L)η∗m(y)dydu

= ∥f∥m,L
∫ 1

0
(u− u2)m−1

∫ ∞
−∞

η∗m(y)dydu︸ ︷︷ ︸
A

+ ∥f∥m,L
∫ 1

0
(u− u2)m−1

∫ ∞
−∞

w(u, x, y)Lη∗m(y)dydu︸ ︷︷ ︸
B

.

The double integral A can be seen by means of representation (2.39) with f(x) = xm

m! (f (m) ≡ 1) as

A = ∂mx E
[
X1(
√
tY, x)m

m!

]
=

1

m!
∂mx

m∑
j=0

(
2m

2j

)
xm−j

(
σ
√
t

2

)j
E[Y 2j ] = 1,
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by using the symmetry of the density η. In the same way, B can be seen by means of the represen-
tation as

B = ∂mx E
[

L!

(L+m)!
X1(
√
tY, x)L+m

]
= ∂mx

L+m∑
j=0

(
2(L+m)

2j

)
L!xL+m−j

(L+m)!

(
σ
√
t

2

)2j

E[Y 2j ]

=

L∑
j=0

(
2(L+m)

2j

)
L!(L+m− j)!
(L− j)!(L+m)!

xL−j
(
σ
√
t

2

)2j

E[Y 2j ]

= xL + t
L∑
j=1

(
2(L+m)

2j

)
L!(L+m− j)!
(L− j)!(L+m)!

xL−j
(σ
2

)2j
tj−1E[Y 2j ]

≤ xL + t(1 + xL)(1 + E[Y 2L])
L∑
j=1

(
2(L+m)

2j

)(σcT
2

)2j
≤ xL + Ct(1 + xL)

where cT = max(1, T ) and C = 1
2

(
(1 + σcT

2 )2(L+k) + (1− σcT
2 )2(L+k)

)
(1 + E[Y 2L]). Putting parts

A and B back together one has

∂mx E[f(X1(
√
tY, x))] ≤ ∥f∥m,L(1 + xL + Ct(1 + xL)) = (1 + xL)(1 + Ct)∥f∥m,L, (2.47)

and this proves the desired norm inequality.

Lemma 2.4.14. Let η(y) = 1√
2π
e−y

2/2 be the density of a standard normal variable. Then, we have
for m ≥ 1:

η∗m(y) := (−1)m−1
m∑
j=1

cj,my
jη(j)(y) = −cm,my2mη(y), (2.48)

so, in particular η∗m(y) ≥ 0 for all y ∈ R.

Proof. For m = 1, (2.48) is clearly true since η′(y) = −yη(y). We now take m ≥ 2, M ≥ m and we
suppose (2.48) true for m− 1: for all f ∈ CM,L

pol (R+) and x ∈ R+, we have∫ ∞
−∞

∫ 1

0
(u− u2)m−2f (m−1)(w(u, x, y))

(
η∗m−1(y) + cm−1,m−1y

2m−2η(y)
)
dudy = 0.

Doing one differentiation step with respect to x like in the proof of Lemma 2.4.13 and using that
η′(y) = −yη(y), we obtain∫ ∞

−∞

∫ 1

0
(u− u2)m−1f (m)(w(u, x, y))

(
η∗m(y) + cm,my

2mη(y)
)
dudy = 0.

By choosing fL(x) := L!
(L+m)!x

L+m for L ∈ N, we get for all L ∈ N, x ∈ R+,∫ ∞
−∞

∫ 1

0
(u− u2)m−1w(u, x, y)L

(
η∗m(y) + cm,my

2mη(y)
)
dudy = 0.

We now take x = 0 so that w(u, 0, y) = σ2t
4 y

2 and then∫ ∞
−∞

y2L
(
η∗m(y) + cm,my

2mη(y)
)
dy = 0, L ∈ N.
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We remark also that η∗m(y) =
(∑m

j=1(−1)m+j−1cj,my
jHj(y)

)
η(y), where Hj is the jth Hermite poly-

nomial function (defined by η(j)(y) = (−1)jHj(y)η(y)). Thus, η∗m(y) + cm,my
2mη(y) = P2m(y)η(y)

where P2m is an even polynomial function of degree 2m. We therefore obtain
∫∞
−∞ y

lP2m(y)η(y)dy =
0 for all l ∈ N, which gives P2m = 0 and thus the claim.

Remark 2.4.15. Lemma 2.4.14 gives a remarkable formula of the monomial of order 2m m ∈ N∗
in terms of the first m Hermite polynomials multiplied respectively by the first m monomials

y2m =
m∑
j=1

(−1)m+j cj,m
cm,m

yjHj(y). (2.49)

The next result gives a kind of reciprocal result to Lemma 2.4.14. It explains why we consider
a normal random variable for Y in Theorem 2.2.2, since we use Proposition 2.4.12 for any M ∈ N.

Theorem 2.4.16. Let Y be a symmetric random variable with a C∞ probability density function η
such that E[Y 2] = 1, E[Y 4] = 3 and η∗m ≥ 0 for all m ≥ 1. Then, Y ∼ N (0, 1).

Proof. By Corollary A.3.2, there exists a positive Borel measure µ such that η(x) =
∫∞
0 e−tx

2
µ(dt).

Since
∫
R η = 1, we get

∫∞
0

√
π/tµ(dt) = 1 and then η(x) =

∫∞
0

e−tx2√
π/t
µ̃(dt) with µ̃(dt) =

√
π/tµ(dt)

being a probability measure on R+. We have E[Y 2] =
∫∞
0

∫
R x

2 e−tx2√
π/t
dxµ̃(dt) =

∫∞
0

1
2t µ̃(dt) and

E[Y 4] =
∫∞
0 3

(
1
2t

)2
µ̃(dt). Therefore, we have∫ ∞

0

1

2t
µ̃(dt) =

∫ ∞
0

(
1

2t

)2

µ̃(dt) = 1.

The equality condition in the Cauchy-Schwarz inequality implies that µ̃(dt) = δ1/2(dt), i.e. Y is a
standard normal variable.

2.4.3 Proof of Theorem 2.2.2

We prove the result for P̂2,n. By assumption, f ∈ C18,Lpol (R+), for L ≥ 18 sufficiently large.
From (2.7), we have

PT f − P̂2,nf =
n−1∑
k=0

Q
[n−(k+1)]
1 [Ph1 −Q

[n]
2 ]Q

[k]
1 f

+
n−1∑
k=0

n−(k+2)∑
k′=0

P(n−(k+k′+2))h1 [Ph1 −Q1]Q
[k′]
1 [Ph1 −Q1]Q

[k]
1 ,

with hl = T/nl. Using Proposition 2.4.9 three times and Proposition 2.4.3 twice, we get for
k ∈ {0, . . . , n− 1}, k′ ∈ {0, . . . , n− (k + 2)}:

∥P(n−(k+k′+2))h1 [Ph1 −Q1]Q
[k′]
1 [Ph1 −Q1]Q

[k]
1 f∥0,L+6 ≤ C∥[Ph1 −Q1]Q

[k′]
1 [Ph1 −Q1]Q

[k]
1 f∥0,L+6

≤ Ch31∥Q
[k′]
1 [Ph1 −Q1]Q

[k]
1 f∥6,L+3

≤ Ch31∥[Ph1 −Q1]Q
[k]
1 f∥6,L+3

≤ Ch61∥Q
[k]
1 f∥18,L ≤ Ch

6
1∥f∥18,L.
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For the other term, we write Ph1 − Q
[n]
2 =

∑n−1
k′=0 P(n−(k′+1))h2 [Ph2 − Q2]Q

[k′]
2 and get for k, k′ ∈

{0, . . . , n− 1} by using Proposition 2.4.9, Proposition 2.4.3 and Lemma 2.4.1:

∥Q[n−(k+1)]
1 P(n−(k′+1))h2 [Ph2 −Q2]Q

[k′]
2 Q

[k]
1 f∥0,L+6 ≤ C∥[Ph2 −Q2]Q

[k′]
2 Q

[k]
1 f∥0,L+6

≤ Ch32∥Q
[k′]
2 Q

[k]
1 f∥6,L+3

≤ Ch32∥f∥6,L+3 ≤ Ch32∥f∥18,L.

This gives
∥PT f − P̂2,nf∥0,L+6 ≤ C∥f∥18,Ln2(h61 + h32) ≤ C∥f∥18,Ln−4,

and in particular PT f(x)− P̂2,nf(x) = O(n−4) for any x ≥ 0.
We now consider f ∈ C∞ with derivatives of polynomial growth. Therefore, for any m ∈ N, it

exists L ≥ m sufficiently large, such that f ∈ Cm,Lpol (R+). We can then apply [5, Theorem 3.10] to
get that for some functions m, ℓ : N∗ → N∗, we have ∥PT f − P̂ν,nf∥0,L+ℓ(ν) ≤ C∥f∥m(ν),Ln

−2ν for
L ≥m(ν), which gives the claim.

2.5 Simulations results

In order to present some numerical test, we first explain how to implement the approximations P̂2,n

and P̂3,n defined respectively by (2.8) and (2.9) (let us recall here that P̂1,n is the approximation
obtained on the regular time grid Π0 = {kT/n, 0 ≤ k ≤ n}). We consider a general case of a scheme
that can be written as a function of the starting point, the time step, the Brownian increment and
an independent random variable, i.e.

Qlf(x) = E[φ(x, hl,Whl , V )].

The second order scheme for the CIR (2.10) falls into this framework as well as the second order
scheme for the Heston model (2.54) that we introduce below. As illustrated in [5] the approxima-
tion P̂2,n is the simplest case for the implementation. It consists in the simulation of two starting
schemes on the uniform time grid Π0 and on the random grid : Π1 = Π0 ∪ {κT/n + k′T/n2, 1 ≤
k′ ≤ n− 1}, where κ is an independent uniform random variable on {0, . . . , n− 1}. We denote by
X̂n,0 the scheme on Π0

X̂n,0
0 = x,

X̂n,0
(k+1)h1

= φ(X̂n,0
kh1
, h1,W(k+1)h1 −Wkh1 , Vk), 0 ≤ k ≤ n− 1, (2.50)

and by X̂n,1 the scheme on Π1:

X̂n,1
kh1

= X̂n,0
kh1
, 0 ≤ k ≤ κ,

X̂n,1
κh1+(k′+1)h2

= φ(X̂n,1
κh1+k′h2

, h2,Wκh1+(k′+1)h2 −Wκh1+k′h2 , Vn+k′), 0 ≤ k′ ≤ n− 1,

X̂n,1
(k+1)h1

= φ(X̂n,1
kh1
, h1,W(k+1)h1 −Wkh1 , Vk), κ+ 1 ≤ k ≤ n− 1.

Here, (Vk)k≥0 is an i.i.d. sequence with the same law as V . Finally, we can give the following
probabilistic representation

P̂2,nf = Q
[n]
1 f + nE[Q[n−(κ+1)]

1 [Q
[n]
2 −Q1]Q

[κ]
1 f ]

= E[f(X̂n,0
T )] + nE[f(X̂n,1

T )− f(X̂n,0
T )]. (2.51)

Let us stress here that it is crucial for the Monte-Carlo method to use the same underlying Brownian
motion for X̂n,0 and X̂n,1. Thus, the variance of n

(
f(X̂n,1

T )− f(X̂n,0
T )

)
is quite moderate. It is
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shown in [5, Appendix A] that this variance is bounded when using the Euler scheme for an SDE
with smooth coefficients. The theoretical analysis of the variance in our framework is beyond the
scope of the paper. We only check numerically how it evolves with respect to n on our experiments,
see Table 2.3 below.

The approximation P̂3,n is more involved. Let κ′ be an independent uniform random variable
on {0, . . . , n− 1}. We define the scheme X̂n,2:

X̂n,2
kh1

= X̂n,1
kh1
, X̂n,2

κh1+k′h2
= X̂n,1

κh1+k′h2
, 0 ≤ k ≤ κ, 0 ≤ k′ ≤ κ′,

X̂n,2
κh1+κ′h2+(k′′+1)h3

= φ(X̂n,2
κh1+κ′h2+k′′h3

, h3,Wκh1+κ′h2+(k′′+1)h3 −Wκh1+κ′h2+k′′h3 , V2n+k′′),

0 ≤ k′′ ≤ n− 1,

X̂n,2
κh1+(k′+1)h2

= φ(X̂n,2
κh1+k′h2

, h2,Wκh1+(k′+1)h2 −Wκh1+k′h2 , Vn+k′), κ+ 1 ≤ k′ ≤ n− 1.

X̂n,2
(k+1)h1

= φ(X̂n,2
kh1
, h1,W(k+1)h1 −Wkh1 , Vk), κ+ 1 ≤ k ≤ n− 1.

This is the scheme obtained on the time grid Π1 ∪ {κT/n+ κ′T/n2 + k′′T/n3, 1 ≤ k′′ ≤ n− 1}. We
have

n−1∑
k=0

Q
[n−(k+1)]
1

[
n−1∑
k′=0

Q
[n−(k′+1)]
2 [Q

[n]
3 −Q2]Q

[k′]
2

]
Q

[k]
1 f = n2E[f(X̂n,2

T )− f(X̂n,1
T )].

We now explain how to calculate the second term in (2.9). Let (κ1, κ2) be an independent random
variable uniformly distributed on the set {(k1, k2) : 0 ≤ k1 < k2 < n}. We define:

X̂n,3
kh1

= X̂n,0
kh1
, 0 ≤ k ≤ κ1,

X̂n,3
κ1h1+(k′+1)h2

= φ(X̂n,3
κ1h1+k′h2

, h2,Wκh1+(k′+1)h2 −Wκh1+k′h2 , V3n+k′), 0 ≤ k′ ≤ n− 1,

X̂n,3
(k+1)h1

= φ(X̂n,3
kh1
, h1,W(k+1)h1 −Wkh1 , Vk), κ1 + 1 ≤ k ≤ n− 1,

X̂n,4
kh1

= X̂n,0
kh1
, 0 ≤ k ≤ κ2,

X̂n,4
κ2h1+(k′+1)h2

= φ(X̂n,4
κ2h1+k′h2

, h2,Wκ2h1+(k′+1)h2 −Wκ2h1+k′h2 , V4n+k′), 0 ≤ k′ ≤ n− 1,

X̂n,4
(k+1)h1

= φ(X̂n,4
kh1
, h1,W(k+1)h1 −Wkh1 , Vk), κ2 + 1 ≤ k ≤ n− 1,

and

X̂n,5
kh1

= X̂n,3
kh1
, 0 ≤ k ≤ κ2,

X̂n,5
κ2h1+(k′+1)h2

= φ(X̂n,5
κ2h1+k′h2

, h2,Wκ2h1+(k′+1)h2 −Wκ2h1+k′h2 , V4n+k′), 0 ≤ k′ ≤ n− 1,

X̂n,5
(k+1)h1

= φ(X̂n,5
kh1
, h1,W(k+1)h1 −Wkh1 , Vk), κ2 + 1 ≤ k ≤ n− 1,

These schemes correspond respectively to the time grids Π0 ∪ {κ1T/n + k′T/n2, 1 ≤ k′ ≤ n − 1},
Π0 ∪ {κ2T/n + k′T/n2, 1 ≤ k′ ≤ n − 1} and Π0 ∪ {κ1T/n + k′T/n2, 1 ≤ k′ ≤ n − 1} ∪ {κ2T/n +
k′T/n2, 1 ≤ k′ ≤ n− 1}. We then get

P̂3,nf =E[f(X̂n,0
T )] + nE[f(X̂n,1

T )− f(X̂n,0
T )] + n2E[f(X̂n,2

T )− f(X̂n,1
T )] (2.52)

+
n(n− 1)

2
E[f(X̂n,5

T )− f(X̂n,4
T )− f(X̂n,3

T ) + f(X̂n,0
T )].

2.5.1 Simulations result for the CIR process

In this subsection, we want to illustrate the convergence of the approximations P̂2,n and P̂3,n, which
together with the use of the second order scheme (2.10) guarantee respectively approximations of
order four and six by Theorem 2.2.2. In order to calculate these approximations, we use Monte-Carlo
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estimators of (2.51) and (2.52), using independent samples for each expectation. The number of
samples (up to 1011) is such that we can neglect the statistical error. In Figures 2.1, 2.2 and 2.3 we
plot the convergence in function of the time step for different parameters choices, taking advantage
of the closed formula for the Laplace transform of the CIR process, see e.g. [2, Proposition 1.2.4].
The three numerical experiments test different levels of the ratio σ2/4a in decreasing order. We
observe that the slopes estimated on the log-log plots are close to 2, 4 and 6 respectively, so that
they are in accordance with Theorem 2.2.2. Note however that Theorem 2.2.2 gives an asymptotic
result for n → ∞, while we are restricted here to rather small values of n since we are using a
large number of samples to kill the statistical error. In all the cases shown, the approximations of
higher order outperform the one built with the simple second order scheme (2.10). Talking about
accuracies, the fourth order approximation for n = 3 shows an absolute relative error of about 0.17%
in the tests in Figures 2.1, and 2.2 and 0.02% in the one in Figure 2.3; the sixth order approximation
already for n = 3 exhibits a relative error of 0.002% in each case studied.

(a) Values plot (b) Log-log plot

Figure 2.1: Parameters: x = 0.0, a = 0.2, k = 0.5, σ = 0.65, f(z) = exp(−10z) and
T = 1 (σ

2

2a ≈ 1.06). Graphic (a) shows the values of P̂1,nf , P̂2,nf , P̂3,nf as a function
of the time step 1/n and the exact value. Graphic (b) draws log(|P̂ i,nf − PT f |) in
function of log(1/n): the regressed slopes are 1.86, 3.93 and 5.87 for the second, fourth

and sixth order respectively.

2.5.2 Simulations result for the Heston model

In this subsection, we want to test the second order scheme for the Heston model proposed by
Alfonsi in [3] along with the approximations of order 4 and 6 obtained with combination of random
grids. First, we recall the couple of stochastic differential equations describing this model{

dS
(x,s)
t = rS

(x,s)
t dt+

√
XtS

(x,s)
t (ρdWt +

√
1− ρ2dZt), S(x,s)

0 = s,

dXx
t = (a− kXx

t )dt+ σ
√
Xx
t dWt, X

x
0 = x,

(2.53)

where W and Z are two independent Brownian motions. We define the two following random
variables

S1
(
(x, s), h, Zh

)
=
(
x, s exp

(√
x(1− ρ2)Zh

))
S2
(
(x, s), h,Wh

)
=

(
φ(x, h,Wh),

s exp

(
(r − ρ

σ
a)h+ (

ρ

σ
k − 1

2
)
x+ φ(x, h,Wh)

2
h+

ρ

σ
(φ(x, h,Wh)− x)

))
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(a) Values plot (b) Log-log plot

Figure 2.2: Parameters: x = 0.3, a = 0.4, k = 1, σ = 0.4, f(z) = exp(−8z) and
T = 1 (σ

2

2a = 0.2). Graphic (a) shows the values of P̂1,nf , P̂2,nf , P̂3,nf as a function
of the time step 1/n and the exact value. Graphic (b) draws log(|P̂ i,nf − PT f |)
in function of log(1/n): the regressed slopes are 1.90, 3.93 and 5.77 for the second,

fourth and sixth order respectively.

where φ is defined by (2.11) anf corresponds to the second order scheme for the CIR process. We
define as in [3] the second order scheme for (2.53) as follows

Φ
(
(x, s), h, (Wh, Zh), B

)
=

{
S2
(
S1
(
(x, s), h, Zh

)
, h,Wh

)
, if B = 1,

S1
(
S2
(
(x, s), h,Wh

)
, h, Zh

)
, if B = 0,

(2.54)

where B is an independent Bernoulli random variable of parameter 1/2.
To test the order of the approximations P̂2,n and P̂3,n boosting the second order scheme (2.54),

we have calculated European put prices taking advantage of the existence of a semi closed formula
for this option, see [34]. In Figure 3.1 we draw the convergence in function of the time step. Again,
we noticed that the slopes obtained on the log-log plot are in line with the expected order of
convergence. More importantly, we see that the correction terms of the approximations P̂2,n and
P̂3,n really improves the precision. They respectively give relative errors of a 0.035% and 0.0023%,
already for n = 3.

2.5.3 Optimized implementation of P̂2,n

The approximations P̂2,n and P̂3,n defined respectively by (2.51) and (2.52) involve respectively
two and four expectations. The larger is ν the more expectations are involved in P̂ν,n. Thus, for
simplicity, independent samples were used by Alfonsi and Bally [5] to compute each term. However,
it may be interesting to reuse some samples in order to spare computation time. This is what we
investigate in this subsection.

Namely, Equation (2.51) leads naturally to the two following estimators of P 2,nf :

ΘI(M1,M2, n) =
1

M1

M1∑
j=1

f
(
(X̂n,0

T )(j)
)
+

1

M2

M1+M2∑
i=M1+1

n
(
f
(
(X̂n,1

T )(i)
)
− f

(
(X̂n,0

T )(i)
))
, (2.55)

ΘD(M1,M2, n) =
1

M1

M1∑
j=1

f
(
(X̂n,0

T )(j)
)
+

1

M2

M2∑
i=1

n
(
f
(
(X̂n,1

T )(i)
)
− f

(
(X̂n,0

T )(i)
))
. (2.56)

The first one takes independent samples, and we call this estimator ΘI. This approach is the one
used in [5]. In the second case, we reuse the first M1∧M2 simulations of f

(
(X̂n,0

T )(i)
)

in both sums.
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(a) Values plot (b) Log-log plot

Figure 2.3: Parameters: x = 10, a = 10, k = 1, σ = 0.23, f(z) = exp(−z) and T = 1

(σ
2

2a ≈ 0.0026). Graphic (a) shows the values of P̂1,nf , P̂2,nf , P̂3,nf as a function
of the time step 1/n and the exact value. Graphic (b) draws log(|P̂ i,nf − PT f |)
in function of log(1/n): the regressed slopes are 1.96, 4.00 and 6.02 for the second,

fourth and sixth order respectively.

(a) Values plot (b) Log-log plot

Figure 2.4: Test function: f(x, s) = (K − s)+. Parameters: S0 = 100, r = 0,
x = 0.25, a = 0.25, k = 1, σ = 0.65, ρ = −0.3, T = 1, K = 100 (σ

2

2a = 0.845).
Graphic (a) shows the values of P̂1,nf , P̂2,nf , P̂3,nf as a function of the time step
1/n and the exact value. Graphic (b) draws log(|P̂ i,nf−PT f |) in function of log(1/n):
the regressed slopes are 1.34, 4.00 and 6.02 for the second, fourth and sixth order

respectively.

We call this estimator ΘD to indicate the dependence between samples. In terms of variance, we
have

Var (ΘI(M1,M2, n)) =
Var
(
f(X̂n,0

T )
)

M1
+

Var
(
n(f(X̂n,1

T )− f(X̂n,0
T ))

)
M2

, (2.57)

Var (ΘD(M1,M2, n)) =
Var
(
f(X̂n,0

T )
)

M1
+ 2

Cov
(
f(X̂n,0

T ), n(f(X̂n,1
T )− f(X̂n,0

T ))
)

M1 ∨M2

+
Var
(
n(f(X̂n,1

T )− f(X̂n,0
T ))

)
M2

.

(2.58)

Let us define t1 as the time to generate one sample f(X̂n,0
T ) and t2 as the one needed for one

sample of the correction n(f(X̂n,1
T ) − f(X̂n,0

T )). The computation time needed to compute ΘI
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is given by gi(M1,M2) = M1t1 + M2t2, while the one needed to compute ΘD is gd(M1,M2) =
1M1≥M2 [(M1−M2)t1+M2t2]+1M1<M2M2t2. We note ζ = t2

t1
. From the definition of schemes X̂n,0

and X̂n,1 in (2.50), we observe that 2 ≤ ζ ≤ 3 and that ζ ≈ 2.5 in average since these schemes are
equal up to κh1. The advantage of Θd is not necessarily in reducing the variance, but in decreasing
the number of simulations needed, making it more efficient from a computational time point of view.

We want to find the optimal numbers of simulations M1 and M2 for our estimators in order
to minimize the execution time for a given variance ε2. Let us define σ22(n) = Var

(
f(X̂n,0

T )
)
,

σ24(n) = Var
(
n(f(X̂n,1

T ) − f(X̂n,0
T ))

)
, Γ(n) = Cov

(
f(X̂n,0

T ), n(f(X̂n,1
T ) − f(X̂n,0

T ))
)
. For ΘI, the

minimization of gi given that σ22(n)/M1 + σ42(n)/M2 = ε2 leads to M1 =
√
ζ σ2(n)σ4(n)

M2 and then to:

M1,I =

⌈
1

ε2

(
σ22(n) +

√
ζσ2(n)σ4(n)

)⌉
, M2,I =

⌈
1

ε2

(
σ24(n) +

σ2(n)σ4(n)√
ζ

)⌉
. (2.59)

To minimize the execution time gd, one has first to decide whether we take M1 ≥M2 or M1 < M2.
From (2.58), this amounts to compare σ2

2(n)+2Γ(n)
m+m̃ζ with σ2

4(n)+2Γ(n)
m+m̃ where m =M1 ∧M2 and m̃ ≥ 0

(m̃ simulations of the correction term takes the same time as ζm̃ simulations of f(X̂n,0
T )). Taking

the derivative at m̃ = 0, we get that M1 ≥M2 if ζ σ
2
2(n)+2Γ(n)

σ2
4(n)+2Γ(n)

≥ 1, and M1 < M2 otherwise. When
M1 ≥M2, the minimization of gd given Var (Θd(M1,M2, n)) = ε2 leads to

M1,D =
⌈

1
ε2

(
σ22(n) + 2Γ(n) +

√(
σ22(n) + 2Γ(n)

)
σ24(n)(ζ − 1)

)⌉
,

M2,D =

⌈
1
ε2

(
σ24(n) +

√(
σ2
2(n)+2Γ(n)

)
σ2
4(n)

ζ−1

)⌉
.

(2.60)

We have similar formulas when M1 < M2. In all our numerical experiments below, we are in the
case where ζ σ

2
2(n)+2Γ(n)

σ2
4(n)+2Γ(n)

≥ 1 and thus taking M1 ≥M2 is optimal.
Now, we show the performance of the two estimators (2.55) and (2.56). To do this, we calculate

the empirical variances σ22(n), σ24(n) and the empirical covariance Γ(n) on a small sampling, fix a
desired precision ε = 1.96

√
Var(Θ(M1,M2, n)) for both the estimators, so that all the terms have

roughly the same statistical error with a 95% confidence interval half-width equal to ε. We show
two tables in which we set the precision ε to 10−3. In Table 2.1, we have σ22(n) ≫ σ24(n), while in
Table 2.2, σ22(n) is still larger than σ24(n), but of the same order of magnitude.

n = 2 n = 3 n = 4 n = 5

ΘI 63.04 96.15 131.84 165.80
ΘD 51.61 87.24 122.76 152.32

Table 2.1: Computation time (in seconds) needed by the Estimators Θi and Θd for
a precision ε = 10−3. Test function: f(x, s) = (K − s)+. Parameters: S0 = 100,

r = 0, x = 0.4, a = 0.4, k = 1, σ = 0.2, ρ = −0.3, T = 1, K = 100 (σ
2

2a = 0.05)
.

We observe that we do not have a great gain in using Θi when σ22(n) ≫ σ24(n) (Table 2.1),
while we save up to 30% of execution time, using Θd instead of Θi, when σ22(n) is of the same order
of magnitude σ24(n) (Table 2.2). Heuristically, this can be understood as follows: when σ22(n) is
of the same magnitude as σ24(n), so are M1,ß and M2,ß, which gives an important gain in reusing
the simulation of the correction term. In any case, Θd turns out to be faster for each choice of
parameters, and therefore we recommend it at the expense of Θi.
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n = 2 n = 3 n = 4 n = 5

ΘI 59.50 102.13 148.45 193.41
ΘD 37.59 70.43 100.14 136.16

Table 2.2: Computation time (in seconds) needed by the Estimators Θi and Θd for
a precision ε = 10−3. Test function: f(x, s) = (K − s)+. Parameters: S0 = 100,
r = 0, x = 0.1, a = 0.1, k = 1, σ = 0.63, ρ = −0.3, T = 1, K = 100 (σ

2

2a ≈ 1.98)
.

2.5.4 Comparison between the second and the fourth order approximation

Subsections 2.5.1 and 2.5.2 have confirmed numerically the theoretical results obtained in this paper.
However, they do not compare directly the computation time required by the different methods.
We now present numerical tests that allow us to prove the real advantage of using the fourth order
approximation P̂2,n instead of the simple second order scheme. Namely, we compare the squared
L2 distance of the estimator Θd from the true value with the same distance between the estimator
of P̂ 1,n2 with the true value. We plot these quantities in function of the computation time needed.
Note that P̂ 2,n and P̂ 1,n2 converges at a rate of O(n−4) so that their bias have the same order of
magnitude.

(a) (σ2

2a
= 0.0125) (b) (σ2

2a
≈ 1.98)

Figure 2.5: L2-square error in function of the execution time in seconds. Test
function: f(x, s) = (K − s)+. Parameters in graphic (a) : S0 = 100, r = 0, x = 0.4,

a = 0.4, k = 1, σ = 0.1, ρ = −0.3, T = 1, K = 100.
Parameters in graphic (b) : S0 = 100, r = 0, x = 0.1, a = 0.1, k = 1, σ = 0.63,

ρ = −0.3, T = 1, K = 100.

Figure 2.5 shows the results for the calculation of the price of a European put option in the
Heston model with two different sets of parameters. In this numerical experience we set a precision
ε equal to 10−3. The empirical evidences show that the fourth order estimator Θd is the best
choice, especially when the ratio σ2

2a ≪ 1 (Figure 2.5 (a)) where the performance of the fourth
order estimator is unparalleled. For example, P̂ 2,3 is twice more accurate and more than twice
faster than P̂ 1,9. Even in Figure 2.5 (b), where the ratio σ2

2a is larger and close to 2, the fourth
order estimator Θd is more precise than the second order estimator and is faster from n = 3 onward.
These experiments illustrate the outperformance of the boosted estimator P̂ 2,n with respect to P̂ 1,n.

2.5.5 Numerical experiments for σ2 > 4a

In the previous subsections, we have presented analyzes to confirm numerically the theoretical rates
of convergence of our approximations, and to assess their computational time. This is why we have
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only considered parameters such that σ2 ≤ 4a, since this condition is required in Theorem 2.2.2.
However, it is possible to test numerically the relevance of the boosting technique using random
grids when σ2 > 4a. This is the purpose of this subsection. We first present the different schemes
and then analyze numerically the variance of the correcting term. Then, we present the numerical
bias of the approximation P̂ 2,n for the CIR and Heston models.

The approximation schemes

In order to perform the numerical tests for σ2 > 4a, we consider two different second order schemes
for the CIR process. The first one is the second order scheme (2.16) presented in [3]. More precisely,
we define

φA(x, t,
√
tN) = φuA(x, t,

√
tN)1x≥KA

2 (t) + φdA(x, t,
√
tN)1x<KA

2 (t), (2.61)

with

φuA(x, t,
√
tN) = φ(x, t,−

√
3t)1N<N−1(1/6) + φ(x, t, 0)1N−1(1/6)≤N<Φ−1

N (5/6)

+ φ(x, t,
√
3t)1N≥N−1(5/6),

φdA(x, t,
√
tN) =

E[Xx
t ]

2(1− π(t, x))
1N<N−1(1−π(t,x)) +

E[Xx
t ]

2π(t, x)
1N≥N−1(1−π(t,x)),

where N is the cumulative distribution function of the standard normal distribution, π(t, x) =

1−
√

1− E[Xx
t ]2

E[(Xx
t )2]

2 and KA
2 (t) is the function given by (2.17) with AY =

√
3. Here, we have written

the scheme φA as a function of the starting point x, the time step t and the Brownian increment√
tN . When computing nE[

(
f(X̂n,1

T )− f(X̂n,0
T )

)
] by Monte-Carlo, we use the same Brownian path

to sample X̂n,0
T and X̂n,1

T , as explained at the beginning of Section 2.5. Thus, there is a strong
dependence between these schemes.

We present also another scheme that corresponds to other choices of Y and X̂x,d in (2.16). We
use a distribution that is pretty similar to a Gaussian distribution over the threshold, and a scaled
beta distribution below. Thus, we define

φB(x, t,
√
tN) = φuB(x, t,

√
tN)1x≥KB

2 (t) + φdB(x, t,
√
tN)1x<KB

2 (t), (2.62)

with

φuB(x, t,
√
tN) = φ(x, t,−z2)1N≤−c2 + φ(x, t,−z1)1−c2<N≤−c1 + φ(x, t,N)1−c1≤N<c1

+ φ(x, t, z1)1c1<N≤c2 + φ(x, t, z2)1N>c2 ,

φdB(x, t,
√
tN) =

E[Xx
t ]

2π(t, x)
(N (N))

1
2π(t,x)

−1
,

where z1 = 2.7523451704710586, z2 = 3.5, c1 = 2.58, c2 = 3.106520327375868, and KB
2 (t) is the

function given by (2.17) with AY = 3.5. Here, we have fixed the values of c1 and z2, and we have
numerically calculated c2 and z1 to have E[Y 2] = E[N2] and E[Y 4] = E[N4] with

Y = −z21N≤−c2 − z11−c2<N≤−c1 +N1−c1<N≤c1 + z11c1<N≤c2 + z21c2<N .

The random variable φdB(x, t,
√
tN) has the same two first moments as Xx

t , and we can prove
following the same arguments as [3, Theorem 2.8] that φB(x, t,

√
tN) is a second order scheme for

the weak error.
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Numerical study of the variance of the correcting term n
(
f(X̂n,1

T )− f(X̂n,0
T )

)
We now analyze the variance of the corrections terms of the correcting term n

(
f(X̂n,1

T )− f(X̂n,0
T )

)
in function of the number n of discretization steps, when we use the different schemes (2.61)
and (2.62). We start with an example with σ2 < 4a for which φ is still defined and φA (resp.
φB) does not use the auxiliary scheme φdA (resp. φdB) since KA

2 (t) = KB
2 (t) = 0 in this case. We

observe in Table 2.3 that the scheme φA leads to a value of Var(n(f(X̂n,1
T )− f(X̂n,0

T ))) that is more
than 20 times as large as that the one obtained using φ. Besides, the variance given by the scheme
φA increases quite linearly with n, while the one obtained with φ seems to be bounded and to
decrease with n. One heuristic explanation for this is that φA is discrete scheme, which increases
the strong error between the scheme on the fine grid Π1 and the scheme on the coarse grid Π0.
Considering the scheme φB that mixes Gaussian and discrete distributions leads to a much smaller
variance that is rather close to the one of the scheme φ. However, as n gets large, we see that the
variance does not decrease in contrast to the scheme φ.

n = 2 n = 4 n = 8 n = 16 n = 32

φ
σ24(n) 23.86e-4 17.43e-4 9.35e-4 4.85e-4 2.49e-4

95% prec. 3.2e-6 3.7e-6 2.8e-6 2.1e-6 1.5e-6

φA
σ24(n) 4.807e-2 10.870e-2 22.493e-2 45.437e-2 91.219e-2

95% prec. 2.4-5 5.2e-5 11.1e-5 22.9e-5 46.3e-5

φB
σ24(n) 24.17e-4 18.37e-4 11.78e-4 10.27e-4 13.85e-4

95% prec. 3.2e-6 3.7e-6 2.9e-6 3.0e-6 4.5e-6

Table 2.3: σ2
4(n) = Var

(
n(f(X̂n,1

T ) − f(X̂n,0
T ))

)
for the different schemes, with 108

samples and 95% confidence interval precision. Test function: f(x) = exp(−10x).
Parameters: x = 0.2, a = 0.2, k = 0.5, σ = 0.5, T = 1 (σ

2

2a = 0.625).

We now consider a case with σ2 > 4a so that the schemes φA and φB switch around their
threshold. The scheme φ is no longer defined. In Table 2.4, we observe a huge increase of the
variance in time steps with respect to Table 2.3. We now observe that the variances grow almost
linearly with respect to n. Again, this can be explained heuristically by the switching that increases
the strong error between the schemes on the fine grid Π1 and the coarse grid Π0. The rather high
values of the variance obtained with the scheme φA makes the boosting technique using random
grids less interesting in practice from a computational point of view. In contrast, the scheme φB
produces much lower variances and the Monte-Carlo estimator of P̂2,nf is more competitive.

n = 2 n = 4 n = 8 n = 16 n = 32

φA
σ24(n) 0.0927 0.8742 2.7966 7.9095 21.6793

95% prec. 5.3e-5 3.3e-4 1.6e-3 6.1e-3 2.1e-2

φB
σ24(n) 0.0757 0.2184 0.5145 1.1892 2.6600

95% prec. 6.4e-5 1.8e-4 5.5e-4 1.9e-3 6.2e-3

Table 2.4: σ2
4(n) = Var

(
n(f(X̂n,1

T )−f(X̂n,0
T ))

)
with 108 samples and 95% confidence

interval precision. Test function: f(x) = exp(−10x). Parameters: x = 0.2, a = 0.2,
k = 0.5, σ = 1.5, T = 1 (σ

2

2a = 5.625).

Numerical Convergence for the CIR

We have plotted in Figure 2.6 the convergence of the estimators of the Monte-Carlo estimators
P̂1,nf and P̂2,nf for the schemes φA and φB. We note that in all our experiments, P̂2,nf gives a
better approximation than P̂1,nf , though there is no theoretical guarantee of that. However, the
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(a) Values plot, scheme φA (b) Log-log plot, scheme φA

(c) Values plot, scheme φB (d) Log-log plot, scheme φB

Figure 2.6: Test function: f(x) = exp(−10x). Parameters: x = 0.2, a = 0.2,
k = 0.5, σ = 1.5, T = 1 (σ

2

2a = 5.625). Statistical precision ε = 5e-5. Left graphics
show the values of P̂1,nf , P̂2,nf as a function of the time step 1/n and the exact
value. Right graphics draw log(|P̂ i,nf −PT f |) in function of log(1/n): for the scheme
φA (resp. φB) the regressed slopes are 1.47 (resp. 0.54) and 1.14 (resp. 1.38) for the

second and fourth order respectively.

improvement is not as good as for σ2 ≤ 4a. We know that P̂1,nf leads to an asymptotic weak error
of order 2: the estimated rate of convergence obtained by regression are below since we consider
rather small values of n and are not in the asymptotic regime. We have instead no theoretical
guarantee that P̂2,nf gives an asymptotic weak error of order 4. The estimated rates are quite far
from this value, indicating that a fourth order of convergence may not hold. To sum up, even if
P̂2,nf is still more accurate than P̂1,nf for σ2 > 4a, it does not lead to obvious computational gains.

Simulations in the Heston model

We present now some numerical tests for Heston model and consider three different schemes that
are well-defined for any σ ≥ 0:

• ΦA is the scheme (2.54) where φA(x, h,Wh) is used instead of φ(x, h,Wh),

• ΦB is the scheme (2.54) where φB(x, h,Wh) is used instead of φ(x, h,Wh),

• ΦE is the scheme (2.54) where the exact scheme Xx
h (see, e.g. [2, Proposition 3.1.1]) is used

instead of φ(x, h,Wh).

We start by comparing the variance of the correcting terms with the different schemes. In Table 2.5,
we consider a case with σ2 < 4a and also include the variance for the scheme Φ given by (2.54).
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We remark that the variances of the correction term for the standard scheme Φ and for the scheme
ΦE appear to be bounded. In contrast, the variance for the schemes ΦA and ΦB tends to increase
with n: the variance is very high for ΦA while the one produced by ΦB remains close to the one
of Φ and ΦE . Table 2.6 deals with a case with σ2 > 4a for which variances are much higher. We
observe an approximately linear growth of the variance of the correction term for the schemes ΦA
and ΦB. The variance produced by the scheme ΦE also increases, but in much moderate way.

n = 2 n = 4 n = 8 n = 16 n = 32

Φ
σ24(n) 33.252 41.962 46.159 48.273 49.385

95% prec. 0.024 0.029 0.033 0.035 0.037

ΦA
σ24(n) 450.95 973.82 1976.53 3984.64 8014.19

95% prec. 0.20 0.40 0.83 1.70 3.47

ΦB
σ24(n) 33.702 43.116 48.606 53.373 59.760

95% prec. 0.025 0.031 0.037 0.044 0.059

ΦE
σ24(n) 51.99 53.93 52.46 51.47 50.99

95% prec. 0.032 0.034 0.036 0.037 0.037

Table 2.5: σ2
4(n) = Var

(
n(f(X̂n,1

T , Ŝn,1
T ) − f(X̂n,0

T , Ŝn,0
T ))

)
with 108 samples and

95% confidence interval precision. Test function: f(x, s) = (K − s)+. Parameters:
S0 = 100, r = 0, x = 0.2, a = 0.2, k = 1.0, σ = 0.5, ρ = −0.7, T = 1, K = 105

(σ
2

2a = 0.625).

n = 2 n = 4 n = 8 n = 16 n = 32

ΦA
σ24(n) 799.93 2568.43 6384.48 14588.23 29798.4266

95% prec. 0.58 1.93 5.88 16.63 42.38

ΦB
σ24(n) 306.87 581.70 958.06 1729.18 3185.83

95% prec. 0.18 0.38 0.90 2.65 8.25

ΦE
σ24(n) 233.89 287.50 314.03 331.31 344.20

95% prec. 0.14 0.20 0.24 0.27 0.29

Table 2.6: σ2
4(n) = Var

(
n(f(X̂n,1

T , Ŝn,1
T ) − f(X̂n,0

T , Ŝn,0
T ))

)
with 108 samples and

95% confidence interval precision. Test function: f(x, s) = (K − s)+. Parameters:
S0 = 100, r = 0, x = 0.2, a = 0.2, k = 1.0, σ = 1.5, ρ = −0.7, T = 1, K = 105

(σ
2

2a = 5.625).

We now turn to the convergence of the Monte-Carlo estimators. We have plotted in Figure 2.7,
for the same set of parameters as in Table 2.6, the behavior of P̂1,nf and P̂2,nf for the schemes ΦB
and ΦE . We have discarded the scheme ΦA that produces a too large variance for the correcting
term. As for the CIR diffusion, we note that P̂2,nf gives a better approximation than P̂1,nf , but
the bias does not seem to be of order 4. For the scheme ΦB, the improvement is moderate, and
do not really compensate the computational effort of calculating the correcting term. Instead, for
the scheme ΦE , the improvement is rather significant, making the approximation P̂2,nf interesting
from a computational point of view with respect to P̂1,nf . Also, the estimated rate of convergence
is much higher and not so far from 4. A dedicated theoretical study of P̂2,nf with the scheme ΦE
is left for further research.
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(a) Values plot, scheme ΦB (b) Log-log plot, scheme ΦB

(c) Values plot, scheme ΦE (d) Log-log plot, scheme ΦE

Figure 2.7: Test function: f(x, s) = (K − s)+. Parameters: S0 = 100, r = 0,
x = 0.2, a = 0.2, k = 1, σ = 1.5, ρ = −0.7, T = 1, K = 105 (σ

2

2a = 5.625). Statistical
precision ε = 5e-4. Left graphics show the values of P̂1,nf , P̂2,nf as a function of the
time step 1/n and the exact value. Right graphics draw log(|P̂ i,nf−PT f |) in function
of log(1/n): for the scheme ΦB (resp. ΦE) the regressed slopes are 0.90 (resp. 1.28)

and 2.04 (resp. 2.40) for the second and fourth order respectively.
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Chapter 3

High order approximations of the
log-Heston process semigroup

This chapter is based on the paper [9], which is currently submitted for the publication.

We present weak approximations schemes of any order for the Heston model that are obtained
by using the method developed by Alfonsi and Bally (2021). This method consists in combining
approximation schemes calculated on different random grids to increase the order of convergence.
We apply this method with either the Ninomiya-Victoir scheme (2008) or a second-order scheme
that samples exactly the volatility component, and we show rigorously that we can achieve
then any order of convergence. We give numerical illustrations on financial examples that
validate the theoretical order of convergence, and present also promising numerical results for
the multifactor/rough Heston model.

Introduction

The Heston model [34] is one of the most popular model in mathematical finance. It describes
the dynamics of an asset and its instantaneous volatility by the following stochastic differential
equations: {

dSs,yt = rSs,yt dt+
√
Y y
t S

s,y
t (ρdWt +

√
1− ρ2dBt), Ss,y0 = s > 0,

dY y
t = (a− bY y

t )dt+ σ
√
Y y
t dWt, Y

y
0 = y ≥ 0,

(3.1)

where W and B are two independent Brownian motions, a ≥ 0, b ∈ R, σ > 0 and ρ ∈ [−1, 1]. For
the financial application, it is typically assumed in addition that b > 0 so that the volatility mean
reverts towards a/b, but this is not needed in the present paper.

The goal of the paper is to propose high order weak approximations for this model and to
prove their convergence. Let us recall first that exact simulation methods have been proposed for
the Heston model by Broadie and Kaya [21] and then by Glasserman and Kim [33]. However,
these methods usually require more computation time than simulation schemes. Besides, when
considering variants or extensions of the Heston model, it is not clear how to simulate them exactly
while approximation schemes can more simply be reused or adapted. There exists in the literature
many approximation schemes of the Heston model, we mention here the works of Andersen [11],
Lord et al. [36], Ninomiya and Victoir [38] and Alfonsi [3]. Few of them study from a theoretical
point of view the weak convergence of these schemes. While [3] focuses on the volatility component,
Altmayer and Neuenkirch [10] proposes up to our knowledge the first analysis of the weak error
for the whole Heston model. They essentially obtain for a given Euler/Milstein scheme a weak
convergence rate of 1 under the restriction σ2 < a on the parameter.

Like [10], we will work with the log-Heston model that solves the following SDE{
dXx,y

t = (r − 1
2Y

y
t )dt+

√
Y y
t (ρdWt +

√
1− ρ2dBt), Xx,y

0 = x = log(s) ∈ R,
dY y

t = (a− bY y
t )dt+ σ

√
Y y
t dWt, Y

y
0 = y.

(3.2)
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This log transformation of the asset price is standard to carry mathematical analyses: it allows
to get an SDE with bounded moments since its coefficients have at most a linear growth. Our
goal is to propose approximations of any order of the semigroup PT f(x, y) = E[f(Xx,y

T , Y y
T )], where

f : R × R+ → R is a sufficiently smooth function such that |f(x, y)| ≤ C(1 + |x|L + yL) for some
L ∈ N. More precisely, we want to apply the recent method proposed by Alfonsi and Bally [5]
that allows to boost the convergence of an approximation scheme by using random time grids. We
consider here either the Ninomiya-Victoir scheme for σ2 ≤ 4a or a scheme that simulate exactly Y
for any σ > 0. In a previous work [7], we have applied the method of [5] to the only Cox-Ingersoll-
Ross component Y and we want to extend our result to the full log-Heston model. One difficulty
with respect to the general framework developed in [5] is to deal with the singularity of the diffusion
coefficient. In particular, we need some analytical results on the Cauchy problem associated to the
log-Heston model that have been obtained recently by Briani et al. [17]. Our main theoretical result
(Theorem 3.1.1) states that we obtain, for any ν ≥ 1, semigroup approximations of order 2ν by
using the mentioned scheme with the boosting method of [5].

The paper is structured as follows. Section 3.1 presents the precise framework and in particular
the functional spaces that we consider carrying our analysis. It introduces the approximation
schemes and briefly presents the boosting method using random grids proposed in [5]. The main
result of the paper is then stated precisely. Section 3.2 is dedicated to the proof of the main theorem.
Last, Section 3.3 explains how to implement our approximations and illustrates their convergence on
numerical experiments motivated by the financial application. As an opening for future research, we
show that our approximations can be used for the multifactor Heston model1 under some parameter
restrictions and give very promising convergence results.

3.1 Main results

We start by introducing some functional spaces that are used through the paper. For k ∈ N, we
denote by Ck(R × R+) the space of continuous functions f : R × R+ → R such that the partial
derivatives ∂αx ∂

β
y f(x, y) exist and are continuous with respect to (x, y) for all (α, β) ∈ N2 such that

α+ 2β ≤ k. We then define for L ∈ N,

fL(x, y) = (1 + x2L + y2L), x ∈ R, y ∈ R+, (3.3)

and introduce

Ck,Lpol(R× R+) = {f ∈ Ck(R× R+) | ∃C > 0 such that ∀(α, β) ∈ N2, α+ 2β ≤ k,

|∂αx ∂βy f(x, y)| ≤ CfL(x, y)}, (3.4)

the space of continuously differentiable functions up to order k with derivatives with polynomial
growth of order 2L. Note that we assume twice less differentiability on the y component. Further-
more, we set

Ckpol(R× R+) = ∪L∈NCk,Lpol(R× R+) and C∞pol(R× R+) = ∩k∈NCkpol(R× R+).

Last, we endow Ck,Lpol(R× R+) with the following norm:

∥f∥k,L =
∑

α+2β≤k
sup

(x,y)∈R×R+

|∂αx ∂
β
y f(x, y)|

fL(x, y)
. (3.5)

1We recall that the multifactor Heston model proposed by Abi Jaber and El Euch [1] is an extension of the Heston
model that is a good proxy of the rough Heston model introduced by El Euch and Rosenbaum [29].
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3.1.1 Second order schemes for the log-Heston process

Having in mind [2, Theorem 2.3.8], there are three properties to check to get a second-order scheme
for the weak error:

(a) polynomial estimates for the derivatives of the solution of the Cauchy problem,

(b) uniformly bounded moments of the approximation scheme,

(c) a potential second order scheme, which roughly means that we have a family of random
variables (X̂x,y

t , Ŷ y
t )t≥0 such that |E[f(X̂x,y

t , Ŷ y
t )] − f(x, y) − tLf(x, y) − t2

2 L
2f(x, y)| =t→0

O(t3).

Let us precise this in our context. We consider a time horizon T > 0 and a time step h = T/n,
with n ∈ N∗. We note (X̂x,y

h , Ŷ y
h ) an approximation scheme for the SDE (3.2) starting from (x, y)

with time-step h, and
P̂hf(x, y) = E[f(X̂x,y

h , Ŷ y
h )]

the associated semigroup approximation. The weak error analysis proposed by Talay and Tubaro [42]
consists in writing

P̂
[n]
h − PT = P̂

[n]
h − P

[n]
h =

n−1∑
i=0

P̂
[n−(i+1)]
h (P̂h − Ph)P

[i]
h =

n−1∑
i=0

P̂
[n−(i+1)]
h (P̂h − Ph)Pih, (3.6)

where P̂ [0]
h = Id and P̂

[i]
h = P̂

[i−1]
h P̂h for i ≥ 1, and P

[i]
h = Pih by the semigroup property. Let us

assume that the three properties hold

(a) ∀k, L ∈ N, ∃C ∈ R+, ∀i ∈ {0, . . . , n}, ∥Pihf∥k,L ≤ C∥f∥k,L,

(b) ∀L ∈ N,∃CL ∈ R+, max0≤i≤n P̂
[i]
h fL(x, y) ≤ CLfL(x, y),

(c) ∥P̂hf − Phf∥0,L+3 ≤ Ch3∥f∥12,L.

Then, for f ∈ C12,Lpol (R× R+), we have for each i ∈ {0, . . . , N − 1},

∥(P̂h − Ph)Pihf∥0,L+3 ≤ Ch3∥Pihf∥12,L ≤ C2h3∥f∥12,L,

by using the first and third properties. Then, we use that

|(P̂h − Ph)Pihf(x, y)| ≤ C2∥f∥12,Lh3fL+3(x, y),

together with the second property to get that |P̂ [n−(i+1)](P̂h − Ph)Pihf(x, y)| ≤ CLC
2h3fL(x, y).

This bound is uniform with respect to i, and we get

|P̂ [n]
h f(x, y)− PT f(x, y)| ≤ CLC2T fL+3(x, y)×

(
T

n

)2

, (3.7)

since h = T/n.
Before concluding this paragraph, we comment briefly how to get the three properties (a–c).

For the log-Heston SDE, the Cauchy problem has been studied by Briani et al. [17], and their
analysis allows us to obtain (a). Their result is reported in Proposition 3.2.2. Property (b) can
generally be checked by simple but sometimes tedious calculation. Property (c) is the crucial one
and can be obtained by using splitting technique, see [2, Paragraph 2.3.2]. We check this property
in Corollary 3.2.7 for the schemes presented in this paper.
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3.1.2 From the second order scheme to higher orders by using random grids

We continue the analysis and present, in our framework, the method developed by Alfonsi and
Bally [5] to get approximations of any orders by using random grids. For l ∈ N∗, let us define the
time step hl = T

nl . We set Ql = P̂hl the operator obtained by using the approximation scheme with
the time step hl. The principle is to iterate the identity (3.6). Namely, we get from (3.6)

P̂
[i]
h1
− Pih1 =

i−1∑
i1=0

P̂
[i−(i1+1)]
h1

(P̂h1 − Ph1)P
[i1]
h1

and

P̂
[n]
h2
− Ph1 = P̂

[n]
h2
− P [n]

h2
=

n−1∑
j=0

P̂
[n−(j+1)]
h2

(P̂h2 − Ph2)P
[j]
h2
.

Plugging these two identities successively in (3.6), we obtain

P̂
[n]
h1
− PT =

n−1∑
i=0

P̂
[n−(i+1)]
h1

(P̂h1 − P̂
[n]
h2

)P̂
[i]
h1

+R, (3.8)

with the remainder given by

R =
n−1∑
i=0

P̂
[n−(i+1)]
h1

n−1∑
j=0

P̂
[n−(j+1)]
h2

(P̂h2 − Ph2)P
[j]
h2

 P̂
[i]
h1

−
n−1∑
i=0

P̂
[n−(i+1)]
h1

(P̂h1 − Ph1)
i−1∑
i1=0

P̂
[i−(i1+1)]
h1

(P̂h1 − Ph1)P
[i1]
h1
.

Let us assume that we have the two following properties2

∀l, k, L ∈ N, ∃C > 0, ∀f ∈ Ck+12,L
pol (R× R+), ∥(Phl −Ql)f∥k,L+3 ≤ C∥f∥k+12,Lh

3
l , (H1)

∀l, k, L ∈ N,∃C > 0,∀f ∈ Ck,Lpol(R× R+), max
0≤j≤nl

∥Q[j]
l f∥k,L + sup

t≤T
∥Ptf∥k,L ≤ C∥f∥k,L. (H2)

Then, we can upper bound the remainder for f ∈ Ck+24,L
pol (R× R+) by

∥Rf∥k,L+6 ≤ C3n2∥f∥k+12,L+3h
3
2 + C5n(n− 1)

2
∥f∥k+24,L(h

3
1)

2 ≤ C̃∥f∥k+24,L

(
T

n

)4

,

where we have used twice (H2) and once (H1) for the first sum, and three times (H2) and twice (H1)
for the second one. Therefore, we get from (3.8) that

P̂2,n := P̂
[n]
h1

+

n−1∑
i=0

P̂
[n−(i+1)]
h1

(P̂
[n]
h2
− P̂h1)P̂

[i]
h1

(3.9)

is an approximation of order 4. Namely, we get

∀f ∈ C24pol(R× R+), ∃C > 0, L ∈ N, ∥P̂2,nf − PT f∥0,L+6 ≤ C∥f∥24,L
(
T

n

)4

. (3.10)

Let us note that P̂ [n−(i+1)]
h1

P̂
[n]
h2
P̂

[i]
h1

corresponds to the scheme on a time grid that is uniform, but
uniformly refined on the (i + 1)-th time step. This time grid has thus 2n time steps, and if one

2We directly specify the method to our framework, and refer to [5] or [7, Section 2] for a general presentation.
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should calculate all the terms in the sum of (3.9), this would require a computational time in O(n2).
Thus, the method would not be more efficient that using the second-order scheme with a time step
n2. This is why we use random grids and use a random variable κ that is uniformly distributed on
{0, . . . , n− 1}. We have

P̂2,n = P̂
[n]
h1

+ nE[P̂ [n−(κ+1)]
h1

(P̂
[n]
h2
− P̂h1)P̂

[κ]
h1

]. (3.11)

Thus, for the correcting term, we consider a random time grid that is the obtained from the uniform
time grid with time step T/n by refining uniformly the (κ + 1)-th time step with a time step
h2 = T/n2.

We have presented here how P̂2,n improves the convergence of P̂1,n = P̂
[n]
h1

. Then, for ν ≥ 2, it
is possible to define by induction approximations P̂ν,n, such that

∀f ∈ C12νpol(R× R+), ∃C > 0, L ∈ N, ∥P̂ν,nf − PT f∥0,L+3ν ≤ C∥f∥12ν,L
(
T

n

)2ν

. (3.12)

Unfortunately, the induction cannot be easily described and involves a tree structure. We refer
to [5] for the details and to [7, Eq. (2.8)] for an explicit expression of P̂3,n.

3.1.3 A second-order scheme for the log-Heston model

Before presenting the scheme, it is interesting to point similarities and difference between the weak
error analysis of Subsection 3.1.1 and the present one to get higher order approximations. Prop-
erty (H1) is a generalization of (c), while (H2) is stronger than properties (a) and (b)3. We now
point an important difference between the two error analysis. In Equation (3.6), the difference
between the semigroup and its approximation appears only once and there is no need to have regu-
larity properties for the function (P̂h−Ph)Pihf : only a polynomial bound is needed. In contrast, for
the approximation P̂2,n we need some regularity to iterate and upper bound the remainder. This
difference has an important incidence in the case of the log-Heston process. It is proposed in [3] a
second-order scheme for the log-Heston process for any σ ≥ 0. When σ2 ≥ 4a, this scheme relies for
the Cox-Ingersoll-Ross (CIR) part on bounded random variables that match the first moments of
the standard normal distribution. Unfortunately, these moment-matching variables prevent us to
get (H2): in a recent work on high order approximations for the CIR process, we have shown in [7,
Theorem 5.16] that it was not possible to use these moment-matching variables together with our
analysis in order to get (H2). We do not repeat here the analysis that would be quite similar for
the log-Heston model, and consider either the Ninomiya-Victoir scheme for σ2 ≤ 4a or the exact
CIR simulation for any σ > 0. We now present this in detail.

We present in this subsection the approximations scheme that we will study in this paper. It is
constructed by using the splitting technique. Let ρ =

√
1− ρ2. Then, the infinitesimal generator

associated to the log-Heston SDE (3.2) is given by

L =
y

2
(∂2x + 2ρσ∂x∂y + σ2∂y) + (r − y

2
)∂x + (a− by)∂y. (3.13)

We split this operator as the sum L = LB + LW where

LB =
(
(r − ρa

σ
) + (

ρb

σ
− 1

2
)y
)
∂x +

y

2
ρ2∂2x (3.14)

is the infinitesimal generator of the SDE{
dXt =

(
(r − ρa

σ ) + (ρbσ −
1
2)Yt

)
dt+ ρ

√
YtdBt,

dYt = 0,
(3.15)

3Note that fL ∈ C∞,L
pol (R× R+). We have, for i ≤ n, ∥P [i]

T/nfL∥0,L = ∥Q[i]
1 fL∥0,L ≤ C∥fL∥0,L by (H2), which gives

(b).
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and
LW =

y

2
(ρ2∂2x + 2ρσ∂x∂y + σ2∂2y) + (a− by)(ρ

σ
∂x + ∂y) (3.16)

is the infinitesimal generator of{
dXt = (ρaσ −

ρb
σ Yt)dt+ ρ

√
YtdWt,

dYt = (a− bYt)dt+ σ
√
YtdWt.

(3.17)

This splitting is slightly different from the one considered in [3, Subsection 4.2]: one should remark
that it is chosen in order to have in (3.17) dXt =

ρ
σdYt. This is not particularly useful to get a second

order scheme. However, it avoids introducing a third coordinate corresponding to the integrated
CIR process, which is more parsimonious for the mathematical analysis.

We now present two different second order schemes for the log-Heston process, for which we will
be able to prove the effectiveness of the higher order approximations. The first one simply consists
in sampling exactly each SDE and then using the scheme composition introduced by Strang, see
e.g. [2, Corollary 2.3.14]. More precisely, let PB (respectively PW ) denote the semigroup associated
to the SDE (3.15) (resp. (3.17)). We define

P̂Ext = PBt/2P
W
t PBt/2. (3.18)

Let us note that the exact scheme for (3.15) is explicit and given by

φB(t, x, y,N) = (x+ (r − ρa/σ)t− (1/2− ρb/σ)yt+ ρ
√
tyN, y), with N ∼ N (0, 1). (3.19)

We indeed have PBt f(x, y) = E[f(φB(t, x, y,N))] for all f ∈ C0pol(R×R+). For the SDE (3.17), we
have PWt f(x, y) = E[f(x + ρ

σ (Y
y
t − y), Y

y
t )], where Y y is the solution of (3.2). Thus, it amounts

to simulate exactly the Y y
t , and we refer to [2, Section 3.1] for a presentation of different exact

simulation methods.
However, in practice, the exact simulation of the Cox-Ingersoll-Ross process is longer than a

simple Gaussian random variable, and it can be interesting to use an approximation scheme. We
use here the one introduced by Ninomiya and Victoir [38]. Following Theorem 1.18 in [3], we rewrite
LW = L0 + L1 where

L0 = (a− σ2

4
− by)(ρ

σ
∂x + ∂y), L1 =

y

2
(ρ2∂2x + 2ρσ∂x∂y + σ2∂2y) +

ρσ

4
∂x +

σ2

4
∂y, (3.20)

are the infinitesimal generator respectively associated to{
dXt = ( ρσ (a− σ

2/4)− ρb
σ Yt)dt

dYt = (a− σ2/4− bYt)dt
and

{
dXt = ρσ

4 dt+ ρ
√
YtdWt

dYt = σ2

4 dt+ σ
√
YtdWt.

Let ψb(t) = 1−e−bt

b (convention ψb(t) = t for b = 0) and define

φ0(t, x, y) =
(
x− ρb

σ
ψb(t)y +

ρ

σ
ψb(t)(a−

σ2

4
), e−bty + ψb(t)(a−

σ2

4
)
)
, (3.21)

φ1(t, x, y) =
(
x+

ρ

σ

(
(
√
y +

σt

2
)2 − y

)
, (
√
y +

σt

2
)2
)
. (3.22)

We have for t ≥ 0 and f ∈ C0pol(R× R+),

P 0
t f(x, y) = f(φ0(t, x, y)) and P 1

t f(x, y) = E[f(φ1(
√
tG, x, y))], with G ∼ N (0, 1). (3.23)

Indeed, φ0 is the exact solution of the ODE associated to L0, starting from (x, y) at time 0, and
we can show by Itô calculus that φ1(Wt, x, y) is an exact solution of the SDE associated to L1,
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starting from (x, y) at time 0, and with the Brownian motion dW̃t = sgn
(√
y + σ

2Wt

)
dWt. The

Ninomiya-Victoir scheme [38] for LW is then P 0
t/2P

1
t P

0
t/2, and we define

P̂NVt = PBt/2P
0
t/2P

1
t P

0
t/2P

B
t/2, when σ2 ≤ 4a. (3.24)

This scheme is well-defined only for σ2 ≤ 4a, otherwise φ0 may send the y component to negative
values, and the composition is not well-defined. This problem was pointed in [3] that introduces a
second order scheme for any σ ≥ 0. For this scheme, the normal variable G in (3.23) is replaced
by a bounded random variable that matches the five first moments of G and besides, an ad hoc
discrete scheme is used in the neighborhood of 0. However, as indicated in the introduction of this
subsection, this prevents us with our analysis to get (H2) and thus approximations of higher order.
This is why we only consider the Ninomiya-Victoir scheme here.

We now state the main theorem of the paper.

Theorem 3.1.1. Let P̂t be either P̂Ext defined by (3.18) or P̂NVt by (3.24). Let T > 0, n ∈ N∗ and
hl = T/nl. Let P̂1,n = P̂

[n]
h1

, P̂2,n be defined by (3.9) and P̂ν,n the further approximations developed
in [5]. Let ν ≥ 1. For any f ∈ C12νpol(R× R+) x ∈ R and y ≥ 0, we have

P̂ν,nf(x, y)− PT f(x, y) = O(1/n2ν).

Proof. Property (H1) is proved in Corollary 3.2.7 and (H2) in Lemma 3.2.4. For f ∈ C12νpol(R×R+),
there exists L such that f ∈ C12ν,Lpol (R× R+). Let ν = 1. We get from (3.6),

∥P̂1,nf − PT f∥0,L = ∥
n−1∑
i=0

P̂
[n−(i+1)]
h1

(P̂h1 − Ph1)Pih1f∥0,L ≤ C3T∥f∥12,L+3

(
T

n

)2

,

since ∥P̂ [n−(i+1)]
h1

(P̂h1−Ph1)Pih1f∥0,L ≤ C∥(P̂h1−Ph1)Pih1f∥0,L ≤ C2∥Pih1f∥12,L+3h
3
1 ≤ C3∥f∥12,L+3h

3
1

by using (H2), then (H1) and again (H2). This shows the claim for ν = 1. For ν = 2 (resp. ν ≥ 3),
the claim is a consequence of (3.10) (resp. (3.12)).

3.2 Proof of the main result

3.2.1 Preliminary results on the norm

The next lemma gathers basic properties of the family of norms ∥ · ∥k,L defined in Equation (3.5).

Lemma 3.2.1. Let k, L ∈ N. We have the following basic properties:

1. Ck+1,L
pol (R× R+) ⊂ Ck,Lpol(R× R+). For f ∈ Ck+1,L

pol (R× R+), we have ∥f∥k,L ≤ ∥f∥k+1,L.

2. Let k, α′, β′ ∈ N. For f ∈ Ck+α
′+2β′,L

pol (R× R+) one has ∥∂α′
x ∂

β′
y f∥k,L ≤ ∥f∥k+α′+2β′,L.

3. Ck,Lpol(R× R+) ⊂ Ck,L+1
pol (R× R+) and ∥f∥k,L+1 ≤ 3∥f∥k,L for f ∈ Ck,Lpol(R× R+).

4. Let M1 be the operator defined by M1f(x, y) = yf(x, y). For f ∈ Ck,Lpol(R × R+), we have
M1f ∈ Ck,L+1

pol (R× R+) and ∥M1f∥k,L+1 ≤ 3
2(k + 1)∥f∥k,L.

5. Let L, LB, LW , L0 and L1 the infinitesimal generators defined in Equations (3.13), (3.14),
(3.16) and (3.20). Then, for all k ∈ N, there exists a constant C(k) such that

∀L ∈ N, f ∈ Ck+4,L
pol (R× R+), ∥Lf∥k,L+1 + ∥LW f∥k,L+1 + ∥L1f∥k,L+1 ≤ C(k)∥f∥k+4,L,

∀L ∈ N, f ∈ Ck+2,L
pol (R× R+), ∥LBf∥k,L+1 + ∥L0f∥k,L+1 ≤ C(k)∥f∥k+2,L.
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Proof. Property (1)-(2) are straightforward. We prove only (3), (4) and (5).
(3) Let a > 0 than a2L ≤ 1+a2L+2. So, we get fL(x, y) = 1+x2L+y2L ≤ 3(1+x2(L+1)+y2(L+1)) =
3fL+1(x, y) and then 1

fL+1(x,y)
≤ 3 1

fL(x,y)
. This gives immediately the claim.

(4) Let f ∈ Ck,Lpol(R×R+). Applying Leibniz rule, one obtains ∂αx ∂
β
yM1f = β∂αx ∂

β−1
y f +M1∂

α
x ∂

β
y f

for α, β ∈ N. Now, we write

|∂αx ∂
β
y [yf(x, y)]|

fL+1(x, y)
≤ β|∂αx ∂

β−1
y f(x, y)|

fL+1(x, y)
+
y|∂αx ∂

β
y f(x, y)|

fL+1(x, y)

≤ 3β|∂αx ∂
β−1
y f(x, y)|

fL(x, y)
+

3|∂αx ∂
β
y f(x, y)|

2fL(x, y)
,

where we used the comparison above between fL and fL+1 for the first term and, for the second term,
yfL(x, y) = y+y2L+1+yx2L+ ≤ 1+y2L+2+ 1+y2

2 x2L ≤ 3
2 fL+1(x, y) by using y+y2L+1 ≤ 1+y2L+2

and then Young’s inequality. Then, we obtain

∥M1f∥k,L+1 ≤
∑

α+2β≤k

(
3β sup

(x,y)∈R×R+

3β|∂αx ∂
β−1
y f(x, y)|

fL(x, y)
+

3

2
sup

(x,y)∈R×R+

3β|∂αx ∂
β
y f(x, y)|

fL(x, y)

)
≤ 3 (⌊k/2⌋+ 1/2) ∥f∥k,L.

(5) We prove only the estimate for L, the others are obtained using the same arguments. We have
∥Lf∥k,L+1 ≤ 1

2∥M1(∂
2
x + 2ρσ∂x∂y + σ2∂2y − ∂x − 2b∂y)f∥k,L+1 + ∥(r∂x + a∂y)f∥k,L+1, by using

linearity of derivatives and the triangular inequality. We conclude using property (4) and (2) for
the first term, (2) and (3) for the second and finally property number (1) to upper bound ∥Lf∥k,L+1

by C(k)∥f∥k+4,L+1, where C(k) is a constant depending on k and on the parameters (r, ρ, a, b and
σ).

3.2.2 The Cauchy problem of the Log-Heston SDE

In this subsection, we aim to prove the estimates on the derivatives of the Cauchy problem. The
representation formula presented below is a result of Briani, Caramellino and Terenzi [17].

Proposition 3.2.2. Let k, L ∈ N and suppose that f ∈ Ck,Lpol(R × R+). Let λ ≥ 0, c, d ∈ R. Let
(Xt,x,y, Y t,y) be the solution to the SDE, for s ≥ t,{

Xt,x,y
s = x+

∫ s
t (c+ dY y

r )dr +
∫ s
t λ
√
Y y
r (ρdWr +

√
1− ρ2dBr)

Y t,y
s = y +

∫ s
t (a− bY

y
r )dr + σ

∫ s
t

√
Y y
r dWr,

(3.25)

and set
u(t, x, y) = E[f(Xt,x,y

T , Y t,y
T )] = PT−tf(x, y).

Then, u(t, ·, ·) ∈ Ck,Lpol(R× R+) and the following stochastic representation holds for α+ 2β ≤ k,

∂αx ∂
β
y u(t, x, y) = E

[
e−βb(T−t)∂αx ∂

β
y f
(
Xβ,t,x,y

T , Y β,t,y
T

)
+ β

∫ T

t

e−βb(s−t)
(λ2
2
∂α+2
x ∂β−1

y u+ d∂α+1
x ∂β−1

y u
)(
s,Xβ,t,x,y

s , Y β,t,y
s

)
ds

]
, (3.26)

where ∂αx ∂β−1
y u := 0 when β = 0 and (Xβ,t,x,y, Y β,t,y), β ≥ 0, denotes the solution starting from (x, y) at

time t to the SDE (3.25) with parameters

ρβ = ρ, aβ = a+ β
σ2

2
, bβ = b, cβ = r + βρσλ, dβ = d, σβ = σ. (3.27)

Moreover, one has the following norm estimation for the semigroup

∀k, L ∈ N, T > 0, ∃C,∀f ∈ Ck,Lpol(R× R+), t ∈ [0, T ], ∥Ptf∥k,L ≤ ∥f∥k,LeCt. (3.28)
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Proof. Proposition 3.2.2 basically restates [17, Proposition 5.3] in our framework (note that our
space Ck,Lpol(R×R+) already includes twice more derivatives in x than in y and that we have added
the scaling factor λ for convenience). The only additional result is the norm estimate, which we
prove now.

Let f ∈ Ck,Lpol(R × R+). We will prove that for all (α, β) such that α + 2β ≤ k, there exists a
constant C ∈ R+ such that

sup
x∈Ry∈R+

|∂αx ∂
β
y u(t, x, y)|
fL(x, y)

≤ sup
x∈Ry∈R+

|∂αx ∂
β
y f(x, y)|

fL(x, y)
eC(T−t) + C∥f∥k,L(T − t). (3.29)

Let us note that this implies supx∈Ry∈R+

|∂αx ∂
β
y u(t,x,y)|
fL(x,y)

≤ C̃∥f∥k,L, with C̃ = eCT + CT .

For β = 0, the estimate is straightforward : from (3.26) and f ∈ Ck,Lpol(R× R+), one has

|∂αxu(t, x, y)| ≤

(
sup

x′∈Ry′∈R+

|∂αx f(x′, y′)|
fL(x′, y′)

)
E
[
fL(X

t,x,y
T , Y t,y

T )
]
,

and we get easily (3.29) by using the estimate on moments (3.30) that we prove below.
Suppose now that the estimate (3.29) is true up to β− 1, and let us prove it for β. Using (3.26)

and the induction hypothesis for the integral term, we get

|∂αx ∂βy u(t, x, y)| ≤e−βb(T−t)
(

sup
x′∈Ry′∈R+

|∂αx ∂
β
y f(x′, y′)|

fL(x′, y′)

)
E
[
fL(X

β,t,x,y
T , Y β,t,y

T )
]

+ β
λ2 + |d|

2
eβ|b|T C̃∥f∥k,L

∫ T

t
E[fL(Xβ,t,x,y

s , Y β,t,y
s )]ds.

This gives (3.29) by using again the estimate on the moments (3.30). This shows (3.29) by induction,
and we finally sum (3.29) over α+ 2β ≤ k to get

∥PT−tf∥k,L ≤ ∥f∥k,LeC(T−t) + C(k + 1)2∥f∥k,L(T − t) ≤ ∥f∥k,LeC(1+(k+1)2)(T−t),

proving the claim.

Lemma 3.2.3. Let (Xx,y, Y y) be the solution of (3.25) starting from (x, y) at time 0. Let T > 0.
For any L ∈ N, there is a constant C ∈ R+ depending on T , L and the SDE parameters, such that

E[fL(Xx,y
t , Y y

t )] ≤ eCtfL(x, y), t ∈ [0, T ]. (3.30)

Proof. We use the affine (and thus polynomial) property of the extended log-Heston process (3.25),
see [27, Example 3.1]. By [27, Theorem 2.7], we get that the log-Heston semigroup acts as a
matrix exponential on the polynomial functions of degree lower than 2L. This gives E[(Xx,y

t )2L +
(Y y
t )

2L] = x2L + y2L +
∑

i+j≤2L φi,j(t)x
iyj , with φi,j ∈ C1([0, T ],R) such that φi,j(0) = 0. Using

that |x|iyj ≤ |x|i+j + yi+j ≤ 2fL(x, y) for i + j ≤ 2L and using that φ′i,j is bounded on [0, T ], we
get

E[fL(Xx,y
t , Y y

t )] ≤ fL(x, y) + CtfL(x, y) ≤ fL(x, y)e
Ct,

with C = 2
∑

i,j≤2Lmax[0,T ] |φ′i,j |.

3.2.3 Proof of (H1) and (H2)

We start by proving the property (H2) in the next lemma.
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Lemma 3.2.4. Let t ∈ [0, T ], k, L ∈ N and f ∈ Ck,Lpol(R × R+). Let φ0 be the function defined in
Equation (3.21). Then, there exists C such that, for I ∈ {0, 1, B,W}, ∥P It f∥k,L ≤ eCt∥f∥k,L, for
t ∈ [0, T ]. The semigroup approximations P̂Ext and P̂NVt enjoy the same property and satisfy (H2).

Proof. We apply four times Proposition 3.2.2 with

• ã = a− σ2

4 , b̃ = b, c̃ = ρ
σ

(
a− σ2

4

)
, d̃ = −b ρσ , λ̃ = 0, σ̃ = 0 for P 0,

• ã = σ2

4 , b̃ = 0, c̃ = ρσ
4 , d̃ = 0, λ̃ = ρ, σ̃ = σ, ρ̃ = 1 for P 1,

• ã = 0, b̃ = 0, c̃ = r − ρa
σ , d̃ = ρb

σ −
1
2 , λ̃ = ρ̄, σ̃ = 0, ρ̃ = 0 for PB,

• ã = a, b̃ = b, c̃ = ρa
σ , d̃ = −ρb

σ , λ̃ = ρ, σ̃ = σ, ρ̃ = 1 for PW ,

where the tilde parameters are the ones used in Equation (3.25). This gives the first claim. Then,
we deduce easily that ∥P̂Ext f∥k,L ≤ eCt/2∥PWt PBt/2f∥k,L ≤ e2Ct∥f∥k,L by using twice the estimate
for PB and once for PW . Similarly, we obtain ∥P̂NVt f∥k,L ≤ e3Ct∥f∥k,L, by using the estimates for
PB, P 0 and P 1.

Now, the property (H2) follows easily: consider l ≥ 1 and Ql = P̂NVT

nl

, we have for f ∈ Ck,Lpol(R×

R+), ∥Qlf∥k,L ≤ e3C
T

nl and thus for any j ≤ nl, ∥Q[j]
l f∥k,L ≤ e

3C jT

nl ≤ e3CT , which gives (H2). The
same result holds for P̂Ex.

We now turn to the proof of the property (H1). We first state a general result on the composition
of approximation schemes that fits our framework with the norm family ∥ · ∥k,L. It can be seen as a
variant of [2, Proposition 2.3.12] and says, heuristically, that the composition of schemes works as
a composition of operators.

Lemma 3.2.5. (Scheme composition). Let ν ∈ N and T > 0. Let Vi, i ∈ {1, . . . , I}, be infinitesimal
generators such that there exists ki, Li ∈ N such that

∀k ∈ N, ∃C ∈ R+, ∀f ∈ Ck+ki,Lpol (R× R+), Vif ∈ Ck,L+Li

pol (R× R+) and ∥Vif∥k,L+Li
≤ C∥f∥k+ki,L.

(3.31)
Let k⋆ = max1≤i≤I ki and L⋆ = max1≤i≤I Li. We assume that for any i, P̂ it : C0,Lpol(R × R+) →
C0,Lpol(R× R+) is such that

∀k, L ∈ N, 0 ≤ q̄ ≤ ν + 1, ∃C, ∀f ∈ Ck+q̄ki,Lpol (R× R+),∀t ∈ [0, T ],

∥P̂ it f −
q̄−1∑
q=0

tq

q!
V q
i f∥k,L+q̄Li

≤ Ctq̄∥f∥k+q̄ki,L. (3.32)

Then, we have for λ1, . . . , λI ∈ [0, 1],

∀k, L ∈ N, 0 ≤ q̄ ≤ ν + 1, ∃C,∀f ∈ Ck+q̄k
⋆,L

pol (R× R+),∀t ∈ [0, T ]∥∥∥∥∥∥P̂ IλI t . . . P̂ 1
λ1tf −

∑
q1+···+qI≤q̄−1

λq11 . . . λqII t
q1+···+qI

q1! . . . qI !
V qI
I . . . V q1

1 f

∥∥∥∥∥∥
k,L+q̄L⋆

≤ Ctq̄∥f∥k+q̄k⋆,L. (3.33)

Proof. For readability, we make the proof with I = 2 operators. Let q̄ ≤ ν+1 and f ∈ Ck+q̄k
⋆,L

pol (R×

R+). We define R1f = P̂ 1
λ1t
f−
∑q̄−1

q1=0
λ
q1
1 tq1

q1!
V q1
1 f . For t ∈ [0, T ], we have λ1t ∈ [0, T ] since λ1 ∈ [0, 1]

and by assumption (3.32), we have R1f ∈ Ck+q̄k
⋆−q̄k1,L+q̄L1

pol (R× R+) and

∥R1f∥k+q̄k⋆−q̄k1,L+q̄L1 ≤ Ctq̄∥f∥k+q̄k⋆,L.
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We now write

P̂ 2
λ2tP̂

1
λ1tf =

q̄−1∑
q1=0

λq11 t
q1

q1!
P̂ 2
λ2tV

q1
1 f + P̂ 2

λ2tR
1f.

Since V q1
1 f ∈ Ck+q̄k

⋆−q1k1,L+q1L1

pol (R× R+), we apply (3.32) to get

P̂ 2
λ2tV

q1
1 f =

q̄−q1−1∑
q2=0

λq22 t
q2

q2!
V q2
2 V q1

1 f +R2
q1f,

with ∥R2
q1f∥k+q̄k⋆−q1k1−(q̄−q1)k2,L+q1L1+(q̄−q1)L2

≤ Ctq̄−q1∥f∥k+q̄k⋆,L by (3.31) and (3.32). We also
have ∥P̂ 2

λ2t
R1f∥k+q̄k⋆−q̄k1,L+q̄L1 ≤ Ctq̄∥f∥k+q̄k⋆,L by (3.32). Since

k + q̄k⋆ − q1k1 − (q̄ − q1)k2 ≥ k, L+ q1L1 + (q̄ − q1)L2 ≤ L+ q̄L⋆,

for all 0 ≤ q1 ≤ q̄ − 1, and using Lemma 3.2.1 (1 and 3), we get∥∥∥∥∥∥P̂ 2
λ2tP̂

1
λ1tf −

∑
q1+q2≤q̄−1

λq11 λ
q2
2

tq1tq2

q1!q2!
V q2
2 V q1

1 f

∥∥∥∥∥∥
k,L+q̄L⋆

≤ Ctq̄∥f∥k+q̄k⋆,L.

Lemma 3.2.6. Let L0 = L1 = LB = LW = LH = 1, k0 = kB = 2, k1 = kW = kH = 4. Let denote
LH = L and PHt = Pt the log-Heston semigroup. Let i ∈ {0, 1, B,W,H}. We have

∀k, L ∈ N,∃C ∈ R+,∀f ∈ Ck+ki,Lpol (R× R+), ∥Lif∥k,L+Li
≤ C∥f∥k+ki,L.

Besides, for any q̄ ∈ N, we have

∀k, L ∈ N, ∃C, ∀f ∈ Ck+q̄ki,Lpol (R× R+), ∥P it f −
q̄−1∑
q=0

tq

q!
Lqi f∥k,L+q̄Li

≤ Ctq̄∥f∥k+q̄ki,L.

Proof. The first part of the statement is proved in Lemma 3.2.1. For q̄ = 0, the estimate is simply
the one given by Lemma 3.2.4 (or Proposition 3.2.2 for PHt ).

We now consider q̄ ≥ 1. As already pointed in the proof of Lemma 3.2.4, each operator is
the infinitesimal generator of (3.25) with a suitable choice of parameter. Then, by applying Itô’s
formula and taking the expectation, we get P it f(x, y) = f(x, y) +

∫ t
0 P

i
sLif(x, y)ds. By iterating,

we obtain for f ∈ Ck+q̄ki,Lpol (R× R+),

P it f(x, y) =

q̄−1∑
j=0

tj

j!
Ljif(x, y) +

∫ t

0

(t− s)q̄−1

(q̄ − 1)!
P isL

q̄
i f(x, y)ds. (3.34)

We have ∥Lq̄i f∥k,L+q̄Li
≤ C q̄∥f∥k+q̄ki,L by Lemma 3.2.1-(5) and thus ∥P isL

q̄
i f∥k,L+q̄Li

≤ Cq+1∥f∥k+q̄ki,L
for s ∈ [0, T ], by using the result for q̄ = 0. Therefore, we get by the triangle inequality∥∥∥∥∥∥P it f −

q̄−1∑
j=0

tj

j!
Ljif

∥∥∥∥∥∥
k,L+q̄Li

≤
∫ t

0

(t− s)q̄−1

(q̄ − 1)!
C q̄+1∥f∥k+q̄ki,Lds =

tq̄

q̄!
C q̄+1∥f∥k+q̄ki,L.

Corollary 3.2.7. Let T > 0. Let P̂t denote either P̂Ext or P̂NVt . We have, for q̄ ≤ 3,

∀k, L ∈ N, ∃C, ∀f ∈ Ck+4q̄,L
pol (R× R+), ∀t ∈ [0, T ], ∥P̂tf −

q̄−1∑
q=0

tq

q!
Lqf∥k,L+q̄ ≤ Ctq̄∥f∥k+4q̄,L,

and (H1) holds.
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Proof. We prove the result for P̂Ext , the argument is similar for P̂NVt . We use Lemma 3.2.6 for PWt
and PBt and apply then Lemma 3.2.5. For q̄ = 0, 1, 2, we get easily the claim. For q̄ = 3, we get
since P̂Ext = PBt/2P

W
t/2P

B
t/2,∥∥∥∥∥∥P̂Ext f −
∑

q1+q2+q3≤2

(1/2)q1+q3tq1+q2+q3

q1!q2q3!
Lq3BL

q2
WL

q1
B f

∥∥∥∥∥∥
k,L+3

≤ Ct3∥f∥k+12,L.

The term of order two is

1

8
L2Bf +

1

4
L2Bf +

1

8
L2Bf +

1

2
LBLW +

1

2
LWLB +

1

2
L2W f =

1

2
(LB + LW )2f,

and thus
∑

q1+q2+q3≤2
(1/2)q1+q3 tq1+q2+q3

q1!q2q3!
Lq3BL

q2
WL

q1
B f =

∑2
q=0

tq

q! (LB + LW )qf =
∑2

q=0
tq

q!L
qf .

Now, we use Lemma 3.2.6 to get
∥∥∥Ptf −∑2

q=0
tq

q!L
qf
∥∥∥
k,L+3

≤ Ct3∥f∥k+12,L. The triangular

inequality then gives ∥∥∥Ptf − P̂Ext ∥∥∥
k,L+3

≤ Ct3∥f∥k+12,L,

which is precisely (H1).

3.3 Numerical results

3.3.1 Implementation

We explain in this subsection the implementation of the schemes associated to P̂Ext and P̂NVt , and
then of the Monte-Carlo estimator of P̂ν,n, ν ∈ {1, 2}. We will note either P̂Ex,ν,n or P̂NV,ν,n to
emphasize what semigroup approximation is used.

On a single time step, the scheme associated to P̂NVt is given by

X̂x,y
t = x+ (r − ρ

σ
a)t+

ρ

σ
(Ŷ y
t − y) + (

ρ

σ
b− 1

2
)
y + Ŷ y

t

2
t+

√
(1− ρ2) t

2

(
√
yN1 +

√
Ŷ y
t N2

)
,

Ŷ y
t = (a− σ2

4
)ψb(

t

2
) + e−b

t
2

(√
(a− σ2

4
)ψb(

t

2
) + e−b

t
2 y +

σ
√
t

2
G

)2

,

where N1, N2, G are three independent random variables with the standard normal distribution. It
is obtained from the composition (3.24) and by using accordingly the maps φ0, φ1 and φB that
represent the semigroups, see Equations (3.19) and (3.23).

One should remark however that the conditional law of X̂(x,y)
t given Ŷ y

t is normal with mean
x+ ρ

σ (Ŷ
y
t − y) + (r− ρ

σ b)t+ ( ρσ b−
1
2)
y+Ŷ y

t
2 t and variance t(1− ρ2)(y+ Ŷ y

t )/2. Therefore, we rather
consider the following probabilistic representation, that has the same law and requires to simulate
one standard Gaussian random variable N instead of the couple (N1, N2) for the first component:

X̂x,y
t = x+ (r − ρ

σ
a)t+

ρ

σ
(Ŷ y
t − y) + (

ρ

σ
b− 1

2
)
y + Ŷ y

t

2
t+

√
(1− ρ2)y + Ŷ y

t

2
tN,

Ŷ y
t = (a− σ2

4
)ψb(

t

2
) + e−b

t
2

(√
(a− σ2

4
)ψb(

t

2
) + e−b

t
2 y +

σ
√
t

2
G

)2

.

We note φNV (t, x, y,N,G) := (X̂x,y
t , Ŷ y

t ) this map. The same trick can be used for P̂Ext when the
exact simulation is used for the CIR component, and we define

φExX (t, x, y,N, Y y
t ) = x+ (r − ρ

σ
a)t+

ρ

σ
(Y y
t − y) + (

ρ

σ
b− 1

2
)
y + Y y

t

2
t+

√
(1− ρ2)y + Y y

t

2
tN,
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the map that gives the log-stock component.
We now explain how to get the Monte-Carlo estimator for P̂1,n and then P̂2,n. We start with

the simulation scheme for P̂Ext . Let us consider T > 0, h1 = T/n and the regular time grid
Π0 = {kh1, 0 ≤ k ≤ n}. We simulate exactly Ykh1 , 1 ≤ k ≤ n, the CIR component starting from
Y0 = y, and we set

X̂Ex,0
kh1

= φEx,0X (h1, X̂
Ex,0
(k−1)h1 , Y(k−1)h1 , Nk, Ykh1), 1 ≤ k ≤ n,

where (Nk)1≤k≤N are standard normal random variable such that Nk is independent of (Nk′)k′<k
and the process Y . The Monte-Carlo estimator of P̂Ex,1,n is then

1

M1

M1∑
m=1

f(X̂
Ex,0,(m)
T , Y

(m)
T ),

where M1 is the number of independent samples. We now present how to calculate the correcting
term in P̂2,n. To do so, we draw an independent random variable κ that is uniformly distributed on
{0, . . . , n− 1} and selects the time-step to refine. We note Π1 = Π0 ∪ {κh1 + k′h2, 1 ≤ k′ ≤ n− 1}
the refined (random) grid, where h2 = T/n2. We simulate exactly Y on this time grid and define
the scheme X̂Ex,1 as follows:

X̂Ex,1
kh1

= X̂Ex,0
kh1

for k ≤ κ,

X̂Ex,1
κh1+k′h2

= φExX (h2, X̂
Ex,1
κh1+(k′−1)h2 , Yκh1+(k′−1)h2 , Ñk′ , Yκh1+k′h2), 1 ≤ k′ ≤ n,

X̂Ex,1
kh1

= φEx,1X (h1, X̂
Ex,1
(k−1)h1 , Y(k−1)h1 , Nk, Ykh1), κ+ 2 < k ≤ n,

where (Ñk′)1≤k′≤N are i.i.d. random normal variable, independent of κ and (Nk, Ykh1)k≤κ. We then
define the Monte-Carlo estimator of P̂Ex,2,n (see Eq. (3.11)) by

1

M1

M1∑
m=1

f(X̂
Ex,0,(m)
T , Y

(m)
T ) +

1

M2

M2∑
m=1

n
(
f(X̂

Ex,1,(m)
T , Y

(m)
T )− f(X̂Ex,0,(m)

T , Y
(m)
T )

)
.

Note that we reuse the same Monte-Carlo samples in the two sums as it has been observed in [7,
Subsection 6.3] that it is more efficient. The tuning of the parameters M1 and M2 is made to
minimize the computational cost to achieve a given precision, see [7, Eq. (6.11)] for the details. Let
us stress here that it is important for the variance of the estimator to use the same noise for the
simulations of X̂Ex,1 and X̂Ex,0. In particular, the normal random variable Nκ+1 should depend
on (Ñk)1≤k≤N . A natural choice is to take

Nκ+1 = N st
κ+1 where N st =

1√
n

n∑
k=1

Ñk,

if we think of Brownian increments. We will discuss this choice later on in Subsection 3.3.3.
Let us now present the scheme for P̂NVt , that is well-defined for σ2 ≤ 4a. The scheme on the

coarse grid Π0 is defined by

(X̂NV,0
kh1

, Ŷ NV,0
kh1

) = φNV (h1, X̂
NV,0
(k−1)h1 , Ŷ

NV,0
(k−1)h1 , Nk, Gk), 1 ≤ k ≤ n,

whereNk, Gk, 1 ≤ k ≤ n, are two independent standard normal variables independent of (Nk′ , Gk′)k′<k.
The Monte-Carlo estimator of P̂NV,1,n is then 1

M1

∑M1
m=1 f(X̂

NV,0,(m)
T , Ŷ

NV,0,(m)
T ). The scheme on

the refined random grid Π1 is defined by

(X̂NV,1
kh1

, Ŷ NV,1
kh1

) = (X̂NV,0
kh1

, Ŷ NV,0
kh1

) for k ≤ κ,

(X̂NV,1
κh1+k′h2

, Ŷ NV,1
κh1+k′h2

) = φNV (h2, X̂
NV,1
κh1+(k′−1)h2 , Ŷ

NV,1
κh1+(k′−1)h2 , Ñk′ , G̃k′), 1 ≤ k′ ≤ n,

(X̂NV,1
kh1

, Ŷ NV,1
kh1

) = φNV (h1, X̂
NV,1
(k−1)h1 , Ŷ

NV,1
(k−1)h1 , Nk, Gk), κ+ 2 < k ≤ n,
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where (Ñk′ , G̃k′)1≤k′≤N , are independent standard normal variables that are also independent of κ
and (Nk, Gk)k≤κ. The Monte-Carlo estimator of P̂NV,2,n is then defined by

1

M1

M1∑
m=1

f(X̂
NV,0,(m)
T , Y

NV,0,(m)
T ) +

1

M2

M2∑
m=1

n
(
f(X̂

NV,1,(m)
T , Ŷ

NV,1,(m)
T )− f(X̂NV,0,(m)

T , Y
NV,0,(m)
T )

)
.

Again, to reduce the variance of the estimator, it is important to use the same noise for the coarse
and the refined grids. In particular, we take for the scheme (X̂NV,0

kh1
, Ŷ NV,0

kh1
) on the coarse grid

Nκ+1 = N st and Gκ+1 = Gst :=
1√
n

n∑
k=1

G̃k.

Another choice will be considered for Nκ+1 in Subsection 3.3.3, but we will always use Gκ+1 = Gst
κ+1

in our experiments.
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Figure 3.1: Test function: f(x, y) = (K − ex)+. Parameters: S0 = ex = 100,
r = 0, y = 0.2, a = 0.2, b = 1, σ = 0.5, ρ = −0.7, T = 1, K = 105. Statistical
precision ε = 5e-4. Graphic (a) shows the Monte Carlo estimated values of P̂NV,1,nf ,
P̂NV,2,nf as a function of the time step 1/n and the exact value. Graphic (b) draws
log(|P̂NV,ν,nf − PT f |) in function of log(1/n): the regressed slopes are 1.89 and 4.27

for the second and fourth order respectively.

3.3.2 Pricing of European and Asian options

We present in Figure 3.1 the convergence of the approximations P̂NV,1,n and P̂NV,2,n for the price
of a European option in a case where σ2 ≤ 4a. On the left graphic, we draw the values in function
of the time step and the exact value of the option price PT f , that can be calculated with Fourier
transform techniques. On the right graphic is plotted the log error in function of the log time step:
the estimated slopes are in line with the theoretical order of convergence (2 and 4), even though
the test function f(x) = (K − ex)+ is not as regular as required by Theorem 3.1.1. In Figure 3.2,
we illustrate similarly the convergence of the approximations P̂Ex,1,n and P̂Ex,2,n for the price of a
European option in a case where σ2 ≫ 4a. Again, we observe the theoretical rates of convergence
given by Theorem 3.1.1.

We now consider the case of Asian options, for which we need to simulate a third coordinate:
It =

∫ t
0 S

s,y
u du =

∫ t
0 e

Xx,y
u du. We explain how to simulate this coordinate for P̂Ex, and we do exactly
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Figure 3.2: Test function: f(x, y) = (K − ex)+. Parameters: S0 = ex = 100,
r = 0, y = 0.1, a = 0.1, b = 1, σ = 1.0, ρ = −0.9, T = 1, K = 105. Statistical
precision ε = 5e-4. Graphic (a) shows the Monte Carlo estimated values of P̂Ex,1,nf ,
P̂Ex,2,nf as a function of the time step 1/n and the exact value. Graphic (b) draws
log(|P̂Ex,ν,nf − PT f |) in function of log(1/n): the regressed slopes are 1.89 and 4.26

for the second and fourth order respectively.

the same then for P̂NV . We approximate the integral It by the trapezoidal rule. This gives

ÎEx,0kh1
= ÎEx,0(k−1)h1 +

e
X̂Ex,0

(k−1)h1 + e
X̂Ex,0

kh1

2
h1, 1 ≤ k ≤ n,

ÎEx,1kh1
= ÎEx,0kh1

, 0 ≤ k ≤ κ,

ÎEx,1κh1+k′h2
= ÎEx,1κh1+(k′−1)h2 +

e
X̂Ex,1

κh1+(k′−1)h2 + e
X̂Ex,1

κh1+k′h2

2
h2, 1 ≤ k′ ≤ n,

ÎEx,1kh1
= ÎEx,1(k−1)h1 +

e
X̂Ex,1

(k−1)h1 + e
X̂Ex,1

kh1

2
h1, κ+ 2 < k ≤ n,

with ÎEx,00 = ÎEx,10 = 0. Let us mention here that the trapezoidal rule corresponds to the Strang
splitting for the generator L+ ex∂I . Our formalism would allow to analyse the convergence rate for
the Strang splitting for L+ h(x)∂I , when h is smooth with derivatives of polynomial growth. The
exponential function does not fit this condition, and we analyse here the convergence on numerical
experiments.

Figure 3.3 shows the convergence of the approximations P̂NV,1,n and P̂NV,2,n to calculate the
Asian option price PT f = E[(K−IT /T )+], with f(x, y, i) = (K−i/T )+. The left graphic draws the
obtained value in function of the time step. This time, we do not have an exact value, and we draw
in the log-log plot the logarithm of the difference between P̂NV,ν,2n and P̂NV,ν,n. If P̂NV,ν,n = PT f+
c
nη +o(n−η) for some η > 0, then log(|P̂NV,ν,2n−P̂NV,ν,n|) = log(|c|(1−2−η))−η log(n)+o(log(n)),
and therefore the slope of the log-log plot can be seen as an estimation of the rate of convergence.
Again, we find empirical rates that are close to 2 for ν = 1 and 4 for ν = 2, which is in line with the
theoretical results. The same observation holds in Figure 3.4 for P̂Ex,ν,n in a case where σ2 ≥ 4a.
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Figure 3.3: Test function: f(x, y, i) = (K − i/T )+. Parameters: ex = 100, r = 0,
y = 0.2, a = 0.2, b = 2, σ = 0.5, ρ = −0.7, T = 1, K = 100. Statistical precision
ε = 5e-4. Graphic (a) shows the Monte Carlo estimated values of P̂NV,1,nf , P̂NV,2,nf
as a function of the time step 1/n. Graphic (b) draws log(|P̂NV,ν,2nf −P̂NV,ν,nf |) in
function of log(1/n): the regressed slopes are 1.85 and 4.30 for the second and fourth

order respectively.
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Figure 3.4: Test function: f(x, y, i) = (K − i/T )+. Parameters: ex = 100, r = 0,
y = 0.1, a = 0.1, b = 1, σ = 1.0, ρ = −0.9, T = 1, K = 100. Statistical precision
ε = 5e-4. Graphic (a) shows the Monte Carlo estimated values of P̂Ex,1,nf , P̂Ex,2,nf
as a function of the time step 1/n. Graphic (b) draws log(|P̂Ex,ν,2nf − P̂Ex,ν,nf |) in
function of log(1/n): the regressed slopes are 1.72 and 3.98 for the second and fourth

order respectively.

3.3.3 Estimators variance and schemes coupling

In this paragraph, we discuss how to couple the refined path and the coarse one in order to minimize
the variance of the correction term

n
(
f(X̂SCH,1

T , Ŷ SCH,1
T )− f(X̂SCH,0

T , Ŷ SCH,0
T )

)
,
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where SCH ∈ {Ex,NV } indicates the scheme used. We will note

V(n) = Var
(
n
(
f(X̂SCH,1

T , Ŷ SCH,1
T )− f(X̂SCH,0

T , Ŷ SCH,0
T )

))
.

While it is rather natural to take the same driving noise for the other time steps, the difficulty is
to find a good coupling on [κh1, (κ+ 1)h1] between the noise used on the refined time grid and the
one of the coarse grid. This issue does not exist for Y when it is simulated exactly, and for the
Ninomiya-Victoir scheme we always take Gκ+1 = 1√

n

∑n
k=1 G̃k. We therefore discuss the choice of

Nκ+1 that is used for the simulation of X. We consider the two following choices:

Nκ+1 = N st =
1√
n

n∑
k=1

Ñk, or Nκ+1 = Nav =

∑n
k=1

√
Ŷ SCH,1
κh1+(k−1)h2 + Ŷ SCH,1

κh1+kh2
Ñk√∑n

k=1 Ŷ
SCH,1
κh1+(k−1)h2 + Ŷ SCH,1

κh1+kh2

.

Note that Nav ∼ N (0, 1), since the normal variables Ñk, 1 ≤ k ≤ n, are independent of the Y
component. This second choice is also rather natural since it weights each normal variable with the
corresponding volatility on each fine time-step. A similar coupling has been proposed by Zheng [44]
in a context of Multi-Level Monte-Carlo for the Heston model.

Besides this choice of coupling, we also consider another scheme for the Heston model. In fact,
an alternative of Strang’s scheme is to introduce a Bernoulli random variable of parameter 1/2 that
selects which scheme is used first. We want to see if this additional random variable has an incidence
on the variance of the correcting term. This scheme is given by

X̂SCH,x,y
t = x+ (r − ρ

σ
a)t+

ρ

σ
(Ŷ y
t − y) + (

ρ

σ
b− 1

2
)
y + Ŷ y

t

2
t+

√
y +B(1− ρ2)(Ŷ SCH,y

t − y)tN,

where N ∼ N (0, 1) and B ∼ B(1/2) is an independent Bernoulli random variable. The random
variable Ŷ SCH,y

t is either equal to Y y
t for SCH = Ex or to Ŷ y

t for SCH = NV . This scheme has
been used in the numerical experiments of [7] and is indicated with "Bernoulli" in the following
tables.

Scheme Coupling n = 2 n = 4 n = 8 n = 16 n = 32

NV N st 12.13 18.48 21.85 23.56 24.41
(0.01) (0.01) (0.01) (0.02) (0.02)

NV Nav 8.31 9.08 8.91 8.70 8.57
(0.01) (0.01) (0.01) (0.01) (0.01)

NV , Bernoulli N st 33.27 41.96 46.14 48.27 49.37
(0.02) (0.03) (0.03) (0.04) (0.04)

NV , Bernoulli Nav 25.11 28.55 30.74 32.13 32.85
(0.02) (0.02) (0.03) (0.03) (0.03)

Ex N st 30.19 30.19 28.09 26.74 26.02
(0.02) (0.02) (0.02) (0.02) (0.02)

Ex Nav 26.35 20.80 15.17 11.88 10.18
(0.01) (0.01) (0.01) (0.01) (0.01)

Table 3.1: Variance V(n) estimated with 108 samples, the 95% confidence precision
is indicated below in parentheses. Test function: f(x, y) = (K − ex)+. Parameters:

ex = 100, r = 0, x = 0.2, a = 0.2, b = 1.0, σ = 0.5, ρ = −0.7, T = 1, K = 105.

We have reported in Tables 3.1 and 3.2 the variance of the correcting term for the different
schemes, the two different choices for Nκ+1 and different values of n. Table 3.1 reports a case with
σ2 ≤ 4a where the Ninomiya-Victoir scheme is well-defined, while Table 3.2 reports a case with
σ2 > 4a. In both cases, we have taken the example of a European Put option. In both tables, we
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Scheme Coupling n = 2 n = 4 n = 8 n = 16 n = 32

Ex N st 38.69 39.51 36.96 35.23 34.32
(0.03) (0.03) (0.03) (0.03) (0.03)

Ex Nav 32.49 26.01 19.16 15.20 13.17
(0.02) (0.02) (0.02) (0.01) (0.01)

Ex, Bernoulli N st 65.66 68.93 66.95 65.47 65.01
(0.04) (0.05) (0.05) (0.05) (0.05)

Ex, Bernoulli Nav 61.04 57.45 50.98 47.03 45.12
(0.04) (0.04) (0.04) (0.04) (0.04)

Table 3.2: Variance V(n) estimated with 108 samples, the 95% confidence precision
is indicated below in parentheses. Test function: f(x, y) = (K − ex)+. Parameters:

ex = 100, r = 0, x = 0.1, a = 0.1, b = 1.0, σ = 1.0, ρ = −0.9, T = 1, K = 105.

observe that the scheme using a Bernoulli random variable has a correcting term of higher variance.
Besides, it requires to simulate one more random variable. Thus, the schemes based on the Strang
composition are better suited with the convergence acceleration using random grids.

We now comment the coupling of the schemes. In all our experiments, the coupling using Nav

gives a lower variance than the one using N st. Besides, we observe that the gain factor between
the two choices is increasing with n. We have a gain factor of 24.41

8.57 ≈ 2.85 in Table 3.1 for the
Ninomiya-Victoir scheme and n = 32, and of 2.32 in Table 3.2 for the scheme Ex with n = 16. As
a consequence, we recommend the use of Nav to couple the schemes on the coarse and fine grids.

3.3.4 Towards higher order approximations of Rough Heston process

In this last paragraph, we propose to investigate numerically the approximations with random grids
in the case of the rough Heston model. We first recall that the rough Heston model proposed by El
Euch and Rosenbaum [29] is given by St = eX

x,y
t , where

Xx,y
t = x+

∫ t

0

(
r − 1

2
Y y
u

)
du+

∫ t

0

√
Y y
u (ρdWu +

√
1− ρ2dBu), (3.35)

Y y
t = y +

∫ t

0
K(t− u)(a− bY y

u )du+

∫ t

0
K(t− u)σ

√
Y y
u dWu, (3.36)

where K is the fractional kernel given by

K(t) =
tH−1/2

Γ(H + 1/2)
(3.37)

with Hurst parameter H ∈ (0, 1/2). The convolution through the kernel K in (3.36) introduces a
dependence of the volatility Y on the past, and the process (X,Y ) is not Markovian. Despite this,
it is possible to find a process in larger dimension that is Markovian and approximates the rough
process well. It is well known (see e.g. Alfonsi and Kebaier [6, Proposition 2.1]) that if we replace
the rough kernel K in (3.36) by a discrete completely monotone kernel

K̃(t) =

d∑
k=1

γke
−ρkt, γk, ρk ≥ 0, k ∈ {1, . . . , d}, (3.38)

then the solution of the Stochastic Volterra Equation

Ỹt = y +

∫ t

0
K̃(t− u)(a− bỸ y

u )du+

∫ t

0
K̃(t− u)σ

√
Ỹ y
u dWu, (3.39)
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is given by Ỹt = y +
∑d

k=1 γkỸ
k
t , where Ỹ = (Ỹ 1, . . . , Ỹ d) solves the SDE in Rd:

Ỹ k
t = −ρk

∫ t

0
Ỹ k
u du+

∫ t

0
(a− bỸu)du+

∫ t

0
σ

√
ỸudWu, k ∈ {1, . . . , d}, t ≥ 0. (3.40)

We want to build a second order scheme for (3.40) along with

X̃t = x+

∫ t

0
(r − 1

2
Ỹu)du+

∫ t

0

√
Ỹu(ρdWu +

√
1− ρ2dBu).

This multifactor model has been first developed by Abi Jaber and El Euch [1] and can be seen
under a suitable choice of K̃(t) =

∑d
k=1 γke

−ρkt as an approximation of the rough Heston model.
We present here a second order approximation scheme for the couple (X̃, Ỹ ) that preserve the

positivity of Ỹ as proved by Alfonsi in [8, Theorem 4.2 and Subsection 4.3]. The infinitesimal
generator of the d+ 1 dimensional process (X̃, Ỹ) is given by

Lf(x,y) = (r − 1

2
y′)∂xf(x,y) +

d∑
k=1

(a− ρkyk − by′)∂ykf(x,y)

+
1

2
∂2xf(x,y) +

d∑
k=1

2ρσ∂x∂ykf(x,y) +
1

2

d∑
k,l=1

σ2y′∂yk∂ylf(x,y), (3.41)

where y = (y1, . . . , yd) and y′ = y +
∑d

j=1 γjyj . We use the following splitting L = L1 + L2, where
L1f = −

∑d
k=1 ρkyk∂ykf is the infinitesimal generator associated to

dXt = 0,

dY k
t = −ρkY k

t dt, k ∈ {1, . . . , d},
(3.42)

and L2 is associated to

dXt = (r − 1

2
Yt)dt +

√
Yt(ρdWt +

√
1− ρ2dBt),

dY k
t = (a− bYt)dt+ σ

√
YtdWt, with Yt = y +

d∑
k=1

γkY
k
t k ∈ {1, . . . , d}.

(3.43)

The linear ODE (3.42) has the exact solution

ψ1(t, x,y) = (x,yt), with yt = (y1e
−ρ1t, . . . , yde

−ρdt). (3.44)

From (3.43), we obtain that (Xt, Yt) satisfies the following log-Heston SDEs

Xt = x+

∫ t

0
(r − 1

2
Yu)dt +

∫ t

0

√
Yu(ρdWu +

√
1− ρ2dBu),

Yt = y′ +

∫ t

0
K(0)(a− bYu)du+

∫ t

0
K(0)σ

√
YudWu,

(3.45)

and dY k
t = 1

K(0)dYt (note that K(0) =
∑d

j=1 γj). So, having a second order scheme (X̂x,y′

t , Ŷ y′

t ) for
(Xt, Yt), we can build a second order scheme for (3.43) by

(X̂x,y
t , Ŷ 1,y

t , . . . , Ŷ d,y
t ) = (X̂x,y′

t , Ay(Ŷ
y′

t )), (3.46)

where
Ay(z) =

(
y1 +

z − y′

K(0)
, . . . , yd +

z − y′

K(0)

)
. (3.47)
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In the end, we use again the Strang composition to get the second order scheme for (3.41) starting
from (x,y) and time-step t > 0:

ψ1

(
t/2, X̂

x,y′
t/2

t , Ayt/2
(Ŷ

y′
t/2

t )

)
, (3.48)

where y′t/2 = y +
∑d

j=1 γjyje
−ρjt/2.

Now that we have defined the approximation scheme (3.48) for the multifactor Heston model,
we want to use it to test numerically the convergence acceleration provided by the random grids.
The construction of the estimators is identical to the one of P̂NV,1,n and P̂NV,2,n in Subsection 3.3.1
and we do not reproduce it here. Also, by a slight abuse of notation, we still denote by P̂NV,1,n and
P̂NV,2,n these estimators that are well-defined K̃(0)σ2 < 4a. Unfortunately, there does not exist
yet – up to our knowledge – efficient exact simulation method for the multifactor Cox-Ingersoll-
Ross process. It it were the case, we could then define the corresponding estimators P̂Ex,1,n and
P̂Ex,2,n exactly as in Subsection 3.3.1, for any σ > 0. Here, we thus present only simulation in
the case K̃(0)σ2 < 4a. These simulations are intended to be a first attempt to get higher order
approximations of the multifactor Heston model. We let the case K̃(0)σ2 > 4a as well as theoretical
proofs of convergence in this model for future studies.

Multi exponential approximations of the rough kernel are available in literature, see e.g. Abi
Jaber, El Euch [1] and Alfonsi, Kebaier [6]. In our simulation we will use the algorithm BL2
suggested by Bayer and Breneis in [13], that optimizes the 2([0, T ])-error between K and K̃ while
limiting high values of ρk. In particular, we will use the approximate BL2 Kernel with d = 3
exponential factors, that has been proven to approximate a whole volatility surface of rough Heston
call prices with approximately 1% of maximal relative error [13, Table 4, third column]. When the
Hurst parameter H = 0.1 the nodes and weights are resumed following table

ρ1 = 0.08399474 ρ2 = 5.64850577 ρ3 = 118.00624702

γ1 = 0.80386099 γ2 = 1.60786461 γ3 = 8.80775525

We consider European put option prices and present in Figure 3.5a a plot of the values of P̂NV,1,nf
and cPhNV,2,nf as a function of the time step with the exact value obtained by Fourier techniques.
In Figure 3.5b, we draw a log-log plot to quantify the order of convergence. First, we observe that
we obtain a much larger bias than in our previous numerical experiments for the Heston process,
Figure 3.2a. This is mainly due to the map ψ1 that has a relatively large nodes, namely ρ2 and
especially ρ3. The contribution of these exponential factors in the dynamics of the scheme gets more
important when the time step is sufficiently small. However, even if the bias is more important, the
speed of convergence are still in line with the theoretical ones. The regressed slopes for P̂NV,1,nf
and cPhNV,2,nf are respectively 1.89 and 3.98, showing that the scheme is indeed a second-order
scheme and that the boosting technique with random grids works again in this case.
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Figure 3.5: Test function: f(x, y) = (K − ex)+. Parameters: S0 = ex = 100, r = 0,
y = 0.1, a = 0.3, b = 1, σ = 0.1, ρ = −0.7, T = 1, K = 105. Statistical precision
ε = 2e-3. Graphic (a) shows the Monte Carlo estimated values of P̂NV,1,nf , P̂NV,2,nf
as a function of the time step 1/n and the exact option value. Graphic (b) draws
log(|P̂NV,ν,nf − PT f |) in function of log(1/n): the regressed slopes are 1.89 and 3.98

for the second and fourth order respectively.





73

Chapter 4

Some PDE results in Heston model with
applications

We present here some results for the PDE related to the logHeston model. We present different
regularity results and prove a verification theorem that shows that the solution produced via
the Feynman-Kac Theorem is the unique viscosity solution for a wide choice of initial data (even
discontinuous) and source data. In addition, our techniques do not use Feller’s condition at any
time. In the end, we prove a convergence theorem to approximate this solution by means of a
hybrid (finite differences/tree scheme) approach.

Introduction

The stochastic volatility model proposed by Heston in [34] is one of the most famous and used models
in mathematical finance. It describes the evolution of the price of an asset S and its instantaneous
volatility Y , according to the following couple of stochastic differential equations

dSt = (r − δ)Stdt+ St
√
Yt(ρdWt + ρdBt),

dYt = (a− bYt)dt+ σ
√
YtdWt,

(4.1)

where r ∈ R, δ ≥ 0, a, b, σ > 0, ρ ∈ (−1, 1), ρ =
√
1− ρ2, (x, y) ∈ R × [0,∞) and (W,B) is a

standard 2-dimensional Brownian motion. In order to study and discretize the asset S, it is useful
to consider the logHeston diffusion obtained by applying the transformation (s, y) 7→ (log(s), y) to
the asset and the volatility. To this purpose, we consider a slightly general model from which we
can recover the logHeston by a precise choice of the parameters:

dXt = (c+ dYt)dt+ λ
√
Yt(ρdWt + ρdBt)

dYt = (a− bYt)dt+ σ
√
YtdWt,

(4.2)

where b, c, d ∈ R, a, λ, σ > 0 ρ ∈ (−1, 1). Indeed, one can show that the price of financial derivatives
written on (X,Y ), or equivalently on (X,Y ), satisfies a peculiar parabolic PDE that is degenerate,
i.e. the matrix of the second-order derivative coefficients fails to be strictly positive definite when
the boundary {y = 0} is attained. In this case, the classical existence and uniqueness results using
the uniform ellipticity property fail, and an ad hoc method must be found to prove them.

The literature presents various existence and uniqueness results derived from analyzing the
Heston and logHeston PDEs. Ekström and Tysk [28] examined a PDE arising from a generalized
Heston model. While their model employs more general drift and volatility functions, these retain
key characteristics of the original ones, such as positive drift of the volatility process when Yt = 0
and sufficient regularity of the squared volatility function. Within their model, they establish a
verification theorem and a uniqueness result contingent upon certain mild assumptions on the payoff
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function f . Costantini et al. groundbreaking study in [23] establish the existence and uniqueness of a
viscosity solution for a PDE encompassing a wide array of jump-diffusion models, including Heston,
applicable to both European and Asian options. Notably, when applied to the Heston model, their
innovative approach necessitates a condition akin to the Feller condition (i.e. σ2 ≤ 2a), ensuring the
volatility process remains strictly positive. Consequently, their result cannot cover the full range
of parameters in the Heston case. For numerical reasons, Briani et al. [17] need regularity results
for functional of the diffusion (Xt,x,y, Y t,y), representing the solution of (4.2) starting from (x, y)
at time t ∈ [0, T ). This is important because the expectation of such functionals gives the price of
European options. In order to do that, they prove first a verification result (cf. [17, Lemma 5.7])
for the logHeston PDE (4.4): under appropriate regularity hypotheses on f and h, the function

u(t, x, y) = E
[
eϱ(T−t)f(Xt,x,y

T , Y t,y
T )−

∫ T

t
eϱ(s−t)h(s,Xt,x,y

s , Y t,y
s )ds

]
(4.3)

is a solution of{
∂tu(t, x, y) + Lu(t, x, y) + ϱu(t, x, y) = h(t, x, y), t ∈ [0, T ), (x, y) ∈ O,
u(T, x, y) = f(x, y), (x, y) ∈ O,

(4.4)

where O = R× (0,∞) and L is the infinitesimal generator of (4.2):

L =
y

2
(λ2∂2x + 2ρλσ∂x∂y + σ2∂2y) + (c+ dy)∂x + (a− by)∂y. (4.5)

Moreover, when the Feller condition σ2 ≤ 2a is satisfied, the uniqueness of the solution holds. In
fact, since the boundary R × {0} is inaccessible to the process (X,Y ) under the Feller condition,
the behaviour of u if R × {y = 0} is irrelevant and one can achieve uniqueness of the solution. In
second instance, they prove a stochastic representation for the derivatives of u. As a consequence
of this result, and under specific conditions on final data f , they show that u is regular enough
to solve, by continuity, the problem even on O = R × [0,∞), so the PDE is satisfied even when
volatility collapses in 0. This gives an additional boundary condition, giving an equation involving
the function and its derivatives at the domain boundary. It is worth noting that this is called a
Robin boundary condition. Briani et al. did not establish uniqueness for the PDE over O, as their
primary objective was different.

In this paper we restart from the logHeston setting of [17] and study minimal hypotheses over f
and h under which we can prove a verification theorem that characterizes u in (1.52) as the unique
solution of (4.4) even when the Feller condition is not met (σ2 > 2a). Let us stress that, due to
the connection between u in (4.3) and option prices problems, weaker requests on f and h translate
into the choice of more general payoffs and h running costs in finance. First, we consider classical
solutions. To this purpose, in Section 4.1, after reviewing a slight extension of the regularity result
obtained in [17], we characterize u as the unique classical solution of (4.4) over O = R × [0,∞)
under relaxed hypotheses on f and h. However, this requires that f and h have some differentiability
conditions: merely continuity properties are not enough. In order to contour this difficulty, solutions
in weak or viscosity sense are typically taken into account. Here, in Section 4.2, we tackle the
problem from a viscosity solutions point of view: we prove an existence and uniqueness result
without the restriction of the Feller condition. We stress that the initial data may have some types
of discontinuities, allowing us to deal with valuable financial examples such as Digital options.

We point out that, under the Feller condition, uniqueness results for classical, viscosity or weak
solutions over O or O have already been studied in the literature (see, e.g. [17, 23, 22]), possibly
requiring strong hypotheses on f and h. However, when the Feller condition does not hold, to the
best of our knowledge, the literature is very poor on results concerning the uniqueness of classical
and viscosity solutions (see, e.g. [28] for classical solutions). Thus, the main original contributions
of this paper delve into this direction.
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Finally, we deal with the convergence of a hybrid numerical method introduced in [19]. If f is
smooth enough, the convergence rate has already been provided in Briani et al. [17], independently
of the validity of the Feller condition. As the authors need the regularity of the price function, they
strongly use classical solution results. Thus, their approach must keep the regularity of f . Here, by
exploiting the tools and techniques introduced to get the results concerning viscosity solutions, we
can prove the convergence of the above-cited hybrid numerical scheme whenever f is continuous,
see Theorem 4.3.4. The result of this theorem is confirmed empirically by the numerical experiment
carried out in [19], which computes the price of a European put option in the Heston model. Other
numerical experiments that use the hybrid algorithm for the Bates and for the Heston-Hull-White
models have been carried out in [18] and [20] respectively.

4.1 Existence and uniqueness of classical solutions

This section contains a slight improvement of some results proven in [17] regarding the log-Heston
PDE in which we add a uniqueness result inspired by [28].

We start by introducing some notations. We set R+ = [0,∞), R∗+ = (0,∞) and name Cq(R×R+)
the set of all functions on R×R+ which are q-times continuously differentiable. We set Cqpol(R×R+)
the set of functions g ∈ Cq(R× R+) such that there exist C,L > 0 for which

|∂αx ∂βy g(x, y)| ≤ C(1 + |x|L + yL), (x, y) ∈ R× R+, α+ β ≤ q.

For T > 0, we set Cqpol,T (R × R+) the set of functions v = v(t, x, y) such that v ∈ C⌊q/2⌋,q([0, T ) ×
(R× R+)) and there exist C,L > 0 for which

sup
t∈[0,T )

|∂kt ∂αx ∂βy v(t, y)| ≤ C(1 + |x|L + yL), (x, y) ∈ R× R+, 2k + α+ β ≤ q.

We set C(R×R+) = C0(R×R+), Cpol(R×R+) = C0pol(R×R+) and Cpol,T (R×R+) = C0pol,T (R×R+).
We also need another functional space, that we call Cp,qpol(R,R+), p ∈ [1,∞], q ∈ N,m ∈ N∗ : g =

g(x, y) ∈ Cp,qpol(R,R+) if g ∈ Cqpol(R× R+) and there exist C, c > 0 such that

|∂αx ∂βy g(·, y)|Lp(R,dx) ≤ C(1 + |y|c), α+ β ≤ q,

where |h|Lp,dx = (
∫
R h(x)

pdx)1/p if p > 1, and the standard sup norm if p =∞. Similarly, as above,
we set Cp,qpol,T (R,R+) the set of the function v ∈ Cqpol,T (R× R+) such that

sup
t∈[0,T )

|∂kt ∂l
′
x∂

l
yv(t, ·, y)|Lp(R,dx) ≤ C(1 + |y|c), 2k + |l′|+ |l| ≤ q.

We call the solution of the logHeston SDE (4.2)

Xt,x,y
T = x+

∫ T

t

(
c+ dY t,y

s

)
ds+

∫ T

t
λρ

√
Y t,y
s dWs +

∫ T

t
λρ̄

√
Y t,y
s dBs,

Y t,y
T = y +

∫ T

t
(a− bY t,y

s )ds+

∫ T

t
σ

√
Y t,y
s dWs. (4.6)

We define the candidate solution

u(t, x, y) = E
[
eϱ(T−t)f(Xt,x,y

T , Y t,y
T )−

∫ T

t
eϱ(s−t)h(s,Xt,x,y

s , Y t,y
s )ds

]
, (4.7)

to the reference PDE{
∂tu(t, x, y) + Lu(t, x, y) + ϱu(t, x, y) = h(t, x, y), t ∈ [0, T ), (x, y) ∈ R× R+,

u(T, x, y) = f(x, y), (x, y) ∈ R× R+,
(4.8)
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where L is defined in (4.5). One can remark that when c = r− δ (interest rate minus dividend rate)
and d = −1

2 , then (X,Y ) is the standard logHeston model for the log-price and volatility. When
instead ρ = 0, c = r − δ − ρ

σa and d = ρ
σ b −

1
2 and λ = ρ, we recover a formulation that will be

useful to discretize the solution u in Section 4.3.
In order to present the main contribution in this section, we present a slight extension of a

regularity result presented in [17], that can be summarized Lemma 4.1.1 and Proposition 4.1.2.

Lemma 4.1.1. Let u be defined in (4.7), with f and h such that, as j = 0, 1, ∂2jx g ∈ C1−j
pol (R×R+),

∂2jx h ∈ C1−jpol,T (R × R+) along with h and ∂yh locally Hölder continuous in [0, T ) × R × R∗+. Then
∂2jx u ∈ C1−jpol,T (R× R+) for j = 0, 1, and one has for

∂mx u(t, x, y) = E
[
eϱ(T−t)∂mx g(X

t,x,y
T , Y t,x,y

T )−
∫ T

t
eϱ(s−t)∂mx h(s,X

t,x,y
s , Y t,x,y

s )ds

]
, m = 1, 2, (4.9)

∂yu(t, x, y) = E
[
e(ϱ−b)(T−t)∂yg(X

1,t,x,y
T , Y 1,t,x,y

T )

+

∫ T

t
e(ϱ−b)(s−t)

[λ
2
∂2xu+ d∂xu− ∂yh

]
(s,X1,t,x,y

s , Y 1,t,x,y
s )ds

]
, (4.10)

where (X1,t,x,y
s , Y 1,t,x,y

s ) solves (4.2) with new parameters ρ1 = ρ, c1 = c + ρλσ, d1 = d, λ1 = λ,
b1 = b, a1 = a+ σ2

2 , σ1 = σ. Furthermore, v = ∂yu is the unique solution to the following PDE{[
(∂t + L1 + ϱ− b)v + (λ2/2∂2x + d∂x)u− ∂yh

]
(t, x, y) = 0, t ∈ [0, T ), (x, y) ∈ R× R∗+,

v(T, x, y) = ∂yf(x, y), (x, y) ∈ R× R∗+,
(4.11)

where L1 = y
2 (λ

2∂2x + 2ρσ∂x∂y + σ2∂2y) + (c+ ρλσ + dy)∂x + (a+ σ2/2− by)∂y.

Iterating this Lemma, it is possible to prove the following result.

Proposition 4.1.2. Let q ∈ N. For every j = 0, 1, . . . , q, ∂2jx f ∈ Cq−jpol (R×R+), ∂
2j
x h ∈ Cq−jpol,T (R×

R+), and for all (m,n) ∈ N2 such that m + 2n ≤ 2q and m ≤ 2(q − 1), ∂mx ∂ny h locally Hölder
continuous in [0, T )× R× R∗+. Let u as in (4.7).

Then ∂2jx u ∈ Cq−jpol,T (R× R+) for every j = 0, 1, . . . , q. Moreover, the following stochastic repre-
sentation holds: for m+ 2n ≤ 2q,

∂mx ∂
n
y u(t, x, y) = E

[
e(ϱ−nb)(T−t)∂mx ∂

n
y f(X

n,t,x,y
T , Y n,t,x,y

T )
]

+ E
[∫ T

t
e(ϱ−nb)(s−t)

[
n
(λ
2
∂m+2
x ∂n−1y u+ d∂m+1

x ∂n−1y u
)
− ∂mx ∂ny h

]
(s,Xn,t,x,y

s , Y n,t,x,y
s )ds

]
,

(4.12)

where ∂mx ∂n−1y u := 0 when n = 0 and (Xn,t,x,y, Y n,t,x,y), n ≥ 0, denotes the solution starting from
(x, y) at time t to the SDE (4.2) with parameters

ρn = ρ, cn = c+ nρλσ, dn = d, λn = λ, an = a+ n
σ2

2
, bn = b, σn = σ. (4.13)

In particular, if q ≥ 2 then u ∈ C1,2([0, T ]× R× R+), solves the PDE{
∂tu(t, x, y) + Lu(t, x, y) + ϱu(t, x, y) = h(t, x, y), t ∈ [0, T ), (x, y) ∈ R× R+,

u(T, x, y) = f(x, y), (x, y) ∈ R× R+.
(4.14)
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Remark 4.1.3. For discretization purposes, as done in Briani et al. [17], one can consider an
Lp property for x 7→ u(t, x, y), and similarly for the derivatives. In this case, one can reformulate
Proposition 4.1.2 as follows. Let p ∈ [1,∞], q ∈ N. For every j = 0, 1, . . . , q, ∂2jx f ∈ Cp,q−jpol (R,R+),
∂2jx h ∈ Cp,q−jpol,T (R,R+), and for all (m,n) ∈ N2 such that m + 2n ≤ 2q and m ≤ 2(q − 1), ∂mx ∂ny h
locally Hölder continuous in [0, T )× R× R∗+. Then ∂2jx u ∈ Cp,q−jpol,T (R,R+) for every j = 0, 1, . . . , q.
Moreover, the stochastic representation (3.26) holds and, if q ≥ 2, u solves PDE (4.14).

It is possible to prove these results with the exact proofs presented in [17], with little changes
due to the presence of the source term h, so we omit the proofs here.

One could be interested to see if we can ask for less regular f and h and still have existence of
a classical solution and in which case the solution is unique. In order to do that we first fix other
notations that will be required in what follows.

Let T > 0 and a convex domain D ⊂ [0, T ]× Rm and P1 = (t1, z1), P2 = (t2, z2) ∈ D we define
the “parabolic” distance dP : D ×D → R+ as

dP(P1, P2) =
(
|t1 − t2|+ |z1 − z2|2

)1/2
. (4.15)

Let v : D → R, using the notation |v|D0 = supP∈D |v(P )|, we introduce the following notation of the
α-Hölder norm. For α ∈ (0, 1):

|v|Dα = |v|D0 +H
D
α (v), where H

D
α (v) = sup

P ̸=Q|P,Q∈D

|v(P )− v(Q)|
dP(P,Q)α

(4.16)

We will say that v is α-Hölder for the parabolic distance if HDα (u) < ∞ that is equivalent to say
that v = v(t, z) is α/2-Hölder in t and α-Hölder in z. We define the (2 + α)-Hölder norm

|v|D2+α = |v|Dα + |∂tv|
D
α +

∑
1≤|l|≤2

|∂lzv|
D
α . (4.17)

To define the weighted α-Hölder norm, we must first introduce the notion of weight. We call for
τ > 0 and Qi = (τi, z) i = 1, 2

∂Dτ = {(t, z) ∈ ∂D | t ∈ [0, τ ]}, dQi = inf
P∈∂Dτi

dP(Qi, P ) and dQ1,Q2 = min(dQ1 , dQ2), (4.18)

where dQi , i ∈ {1, 2}, measures the parabolic distance of Qi from the boundary ∂Dτi . Similarly to
(4.16), for m ∈ N, α ∈ (0, 1) we define

|v|Dα,m = |v|D0,m +HDα,m(v), (4.19)

where
|v|D0,m = sup

P∈D
dmP |v(P )|, HDα,m(v) = sup

P ̸=Q|P,Q∈D
dm+α
P,Q

|v(P )− v(Q)|
dP(P,Q)α

. (4.20)

With the notation |v|Dα = |v|Dα,0 weighted (2 + α)-Hölder norm is as follows

|v|D2+α = |v|Dα + |∂tv|Dα,1 +
∑

1≤|l|≤2

|∂lzv|Dα,|l|, (4.21)

where l = (l1, . . . , lm), ∂lz = ∂l1z1 · · · ∂
lm
zm and |l| =

∑m
i=1 li. The main difference between the standard

and the weighted α-Hölder norm is that the latter allows explosions for the derivatives of v and the
difference |v(P )− v(Q)| when we evaluate them near the boundary.

Now we can state the following result, which clarifies the behavior of the second order spatial
derivatives of the solution u near the spatial boundary R×{0}, in which we place hypotheses slightly
stronger than the ones in Lemma 4.1.1.
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Proposition 4.1.4. Let u as in (4.7), f and h such that, for j = 0, 1, ∂2jx f ∈ C1−jpol (R × R+),
∂2jx h ∈ C1−jpol,T (R × R+). Furthermore, we take |h|Kα,2, |∂yh|Kα,2 < ∞, for all K convex compact set
contained in [0, T )× R× R+. Then, for all t0 ∈ (0, T ) and x0 ∈ R one has

lim
(t,x,y)→(t0,x0,0)

y∂2yu(t, x, y) = 0 and lim
(t,x,y)→(t0,x0,0)

y∂x∂yu(t, x, y) = 0. (4.22)

Proof. The proof takes inspiration from [28]. Under these hypotheses, as shown in Lemma 4.1.1,
we know that v = ∂yu solves{[

(∂t + L1 + ϱ− b)v + (λ2/2∂2x + d∂x)u− ∂yh
]
(t, x, y) = 0, t ∈ [0, T ), (x, y) ∈ R× R∗+,

v(T, x, y) = ∂yf(x, y), (x, y) ∈ R× R∗+,
(4.23)

where L1 = y
2 (λ

2∂2x+2ρσ∂x∂y +σ2∂2y)+ (c+ ρλσ+ dy)∂x+(a+σ2/2− by)∂y. We consider, now, a
sequence (tn, xn, yn)n∈N∗ ⊂ [0, T )× R× R∗+ converging to (t0, x0, 0), where t0 ∈ [0, T ) and x0 ∈ R.
By the convergence yn → 0, there exists n0 such that for all n ≥ n0 yn ∈ ( 1

mn
, 2
mn

), and mn → ∞
when n→∞. Then we define

χn : (t, x, y) 7−→ (s, η, ζ) = (mn(t− tn),mn(x− xn),mny)

and the functions wn as

wn(s, η, ζ) = v(χ−1n (s, η, ζ)) = v
( s

mn
+ tn,

η

mn
+ xn,

ζ

mn

)
.

One can check that wn satisfies the following PDE

∂swn +
ζ

2
(λ∂2η + 2ρλσ∂η∂ζ + σ2∂2ζ )wn + (c+ ρλσ + d

ζ

mn
)∂ηwn

+ (a+
σ2

2
+ b

ζ

mn
)∂ζwn + (ϱ− b)wn +

1

mn
gn = 0, (4.24)

where
gn(s, η, ζ) = (λ2/2∂2x + d∂x)u(χ

−1
n (s, η, ζ)) + ∂yh(χ

−1
n (s, η, ζ)).

We also define

un = u ◦ χ−1n , hn = h ◦ χ−1n
Then, we consider the rectangle Rn = [tn − 2δ

mn
, tn + 2δ

mn
] × [xn − 2

mn
, xn + 2

mn
] × [ 1

2mn
, 4
mn

],
(tn, xn, yn), and we define R = χnRn = [−2δ, 2δ]× [−2, 2]× [1/2, 4]. By (4.24) in R thanks to the
Schauder interior estimates (cf. Theorem 5 in Sec.5 of Chap. 2 [32]), one has

|wn|R2+α ≤ |wn|R0 +
1

mn
|gn|Rα,2

≤ |wn|R0 +
1

mn

(λ2
2
|∂2xun|Rα,2 + |d||∂xun|Rα,2 + |∂yhn|Rα,2

)
≤ |v|Rn

0 +
1

mn

(λ2
2
|∂2xu|

Rn
α,2 + |d||∂xu|

Rn
α,2 + |∂yh|

Rn
α,2

)
≤ |v|Rn

0 +
C

mn

(
|u|Rn

0 + |h|Rn
α,2 + |∂yh|

Rn
α,2

)
≤ |v|Rn

0 +
C

mn

(
|u|K0 + |h|Kα,2 + |∂yh|Kα,2

)
< Ĉ <∞,
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where we pass from the third to fourth line using in succession: that exist C1 > 0 such |∂xu|Rn
α,2 ≤

C1|∂xu|Rn
α,1, that we can upper bound thanks to Schauder interior estimates on u the two seminorms

|∂xu|Rn
α,1, |∂2xu|

Rn
α,2 as follows

|∂xu|Rn
α,1 + |∂

2
xu|

Rn
α,2 ≤ |u|

Rn
2+α ≤ |u|

Rn
0 + |h|Rn

α,2.

The passage to the fifth line is because there exist n̂ ∈ N and K compact set such that Rn ⊂ K for
all n ≥ n̂. The uniform bound by Ĉ follow by |u|Rn

0 → |v(t0, x0, 0)|. Now that we have the weighted
holder norm estimate |wn|R2+α < Ĉ, we can consider a smaller rectangle R′ = [δ, δ] × [−1, 1] ×
[1, 2] who has strictly positive distance from ∂R and get, in terms of standard holder norms, the
uniform bound |wn|

R′

2+α < C̃. Now using the equi-boundedness and equi-continuity of a general
subsequence (wnj )j and of its derivatives (∂ηwnj )j and (∂ζwnj )j , by Ascoli-Arzela Theorem one can
find subsequences (wnjk

)k, (∂ηwnjk
)k and (∂ζwnjk

)k that converge uniformly on R′ to continuous
functions w, ∂ηw and ∂ζw respectively. Being the uniform limit of the original sequence wn a
constant equal to v(t0, x0, 0) then ∂ηwn and ∂ζwn have to converge uniformly to ∂ηw = 0 and
∂ζw = 0. So

0
|·|R′

0←−−−
∞←n

ζ∂ηwn(s, η, ζ) =
ζ

mn
∂yv
( s

mn
+ tn,

η

mn
+ xn,

ζ

mn

)
and

0
|·|R′

0←−−−
∞←n

ζ∂ζwn(s, η, ζ) =
ζ

mn
∂xv
( s

mn
+ tn,

η

mn
+ xn,

ζ

mn

)
,

so, in particular, the limits hold if we restrict to the sequence (tn, xn, yn)n∈N∗ . Being ∂yv = ∂2yu
and ∂xv = ∂x∂yu, then the proof is completed.

Remark 4.1.5. Under the hypotheses of Proposition 4.1.4, the equation

∂tu(t, x, 0) + (c∂x + a∂y + ϱ)u(t, x, 0) = h(t, x, 0)

is satisfied for all t ∈ [0, T ), and so does not hold only as a limit.

Proof. Let t ∈ (0, T ), since ∂yu is continuous up to the boundary, we expand u in the direction y
around (t, x, 0) and (t+ ϵ, x, 0), and use the mean value theorem to get

∂tu(t, x, 0) = lim
ϵ→0+

u(t+ ϵ, x, 0)− u(t, x, 0)
ϵ

= lim
ϵ→0+

u(t+ ϵ, x, ϵ2)− u(t, x, ϵ2) +O(ϵ2)

ϵ

= lim
ϵ→0+

∂tu(t+ ξϵ, x, ϵ
2) +O(ϵ),

for some ξϵ ∈ (0, ϵ). Since for y > 0 one has ∂tu = −(L+ ϱ)u+ h, then by (4.22) and continuity of
∂xu and ∂yu up to the boundary {y = 0}, one has

∂tu(t, x, 0) = lim
ϵ→0+

−(L+ ϱ)u(t+ ξϵ, x, ϵ
2) + h(t+ ξϵ, x, ϵ

2) = −(c∂x + a∂y + ϱ)u(t, x, 0) + h(t, x, 0).

Since the functions on both sides are continuous up to t = 0, this is verified for t = 0, too.

So, we have just proven the following result.

Proposition 4.1.6. Let u defined as in (4.7). Let f and h such that, as j = 0, 1, ∂2jx f ∈ C1−jpol (R×
R+), ∂

2j
x h ∈ C1−jpol,T (R × R+), h, ∂yh and |h|Kα,2, |∂yh|Kα,2 < ∞ for all K compact set contained in

[0, T )× R× R+. Then ∂2jx u ∈ C1−jpol,T (R× R+) for j = 0, 1 and solves{
∂tu(t, x, y) + Lu(t, x, y) + ϱu(t, x, y) = h(t, x, y), t ∈ [0, T ), (x, y) ∈ R× R+,

u(T, x, y) = f(x, y), (x, y) ∈ R× R+.
(4.25)
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We can compare the result we have just proven with the one in Proposition 4.1.2. In the latter
one, Briani et al. use the stochastic representation (4.12), with q = 2, to prove the function u belongs
to C1,2([0, T ] × R × R+) and so by continuity of all the derivatives involved in the problem, that
initially (for example taking only the final data f just continuous) is solved only over [0, T )×R×R∗+,
is solved even over [0, T ) × R × {0}. To get all this regularity for u one has to request a lot of
regularity on f and h: ∂2jx f ∈ C2−jpol (R× R+), ∂

2j
x h ∈ C2−jpol,T (R× R+), and for all (m,n) ∈ N2 such

that m+ 2n ≤ 4 and m ≤ 6, ∂mx ∂ny h locally Hölder continuous in [0, T )× R× R∗+. We are capable
of lowering these requests on f and h because even if u is less regular, it can still solve the reference
problem. With the hypotheses considered in (4.1.6), we do not have the continuity of ∂x∂yu and
∂2y , but we prove only (4.22) and this is enough, as shown in Remark 4.1.5, to prove the PDE is
solved over the boundary [0, T )× R× {0}.

We now state sufficient conditions to ensure the uniqueness of the solution.

Proposition 4.1.7. There is at most one classical solution u ∈ C1,2([0, T )×(R×R∗+))∩C1,1,1([0, T )×
R×R+)∩C([0, T ]×R×R+) to the PDE (4.8) such that the solution has polynomial growth in (x, y)
uniformly in t. In particular, under the hypothesis of Proposition 4.1.6, u defined as in (4.7) is the
unique solution.

Proof. Suppose that u and v are two solutions in the reference space C1,2([0, T ) × (R × R∗+)) ∩
C1,1,1([0, T )×R×R+)∩ C([0, T ]×R×R+), clearly the difference w = u− v lies in the same space.
For simplicity, we reverse the time by the change of variable t 7→ T − t, so w solves{

(∂t − L− ϱ)w(t, x, y) = 0, t ∈ (0, T ], x ∈ R, y ∈ R+,

w(0, x, y) = 0, x ∈ R, y ∈ R+.
(4.26)

From now on we consider ϱ = 0, because exp(−ϱt)w(t, x, y) solves the problem with the constant
equal to 0, and the function Mϱ : w(t, x, y) 7→ exp(−ϱt)w(t, x, y) is a bijection from the reference
space to itself. Let L the first even integer such that |w(t, x, y)| ≤ C(1 + xL + yL). We call
h(x, y) = 1 + xL+2 + yL+2 and with a little algebra one can show that exists M > 0 such that

Lh(x, y) = (L+ 2)(L+ 1)

2
y(λ2xL + σ2yL) + (L+ 2)((c+ dy)xL+1 + (a− by)yL+1) < Mh(x, y).

Let ε > 0, we define wε : [0, T ]× R× R+ → R by

wε(t, x, y) = w(t, x, y) + εeMth(x, y),

then
(∂t − L)wε(t, x, y) = εeMt(M − L)h(x, y) > 0

for all the interior points. Let Γ := {(t, x, y) | wε(t, x, y) < 0}, we remark that Γ is bounded
(because of the growth bound |w(t, x, y)| ≤ C(1 + xL + yL)), and then Γ is compact by continuity
of wε. Assume that Γ ̸= ∅ and define t0 = inf{t ≥ 0 | (t, x, y) ∈ Γ, for some (x, y) ∈ R × R+}.
We consider a point (t0, x0, y0) ∈ Γ. By continuity of wε and definition of t0, w must be equal 0
in (t0, x0, y0). In the meantime, being wε(0, x, y) ≥ 1 and Γ compact, one has t0 > 0. We suppose
first y0 = 0. Then, by the fact that t0 is an infimum, we have

∂tw
ε(t0, x0, 0) ≤ 0, ∂xw

ε(t0, x0, 0) = 0, ∂yw
ε(t0, x0, 0) ≥ 0

otherwise we can find a triple (t1, x1, y1) with t1 < t2 such that wε(t1, x1, y1) < 0 contradicting the
minimality of t0. Being a > 0, one has

0 ≥ ∂twε(t0, x0, 0)− a∂ywε(t0, x0, 0) = εeMtM(1 + xL+2
0 ) > 0

so y0 = 0 is not possible. We consider now y0 > 0, then (t0, x0, y0) is an interior point of the
domain. By minimality of t0 one has ∂twε(t0, x0, y0) ≤ 0 and (x0, y0) is a minimum point for
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the map (x, y) 7→ wε(t0, x, y). Then, this map has a gradient equal to 0 and Hessian positive
semi-definite, so Lwε ≥ 0. One has

0 ≥ (∂t − L)wε(t0, x0, y0) = εeMt(M − L)h(x0, y0) > 0.

This contradiction implies that Γ = ∅. Since this holds for all ε > 0, it follows that w ≥ 0. Applying
the same argument to −w shows that w ≤ 0 and so w = 0.

4.2 Existence and uniqueness of viscosity solutions

Here, we want to explore the extended problem (4.8) from the point of view of viscosity solutions
in order to reduce the regularity on the function f . Now, we introduce some definitions (cf. [26])
that will be useful from now on.

Let F : (0, T ] × Rm × R × Rm × S(m) → R a continuous function where S(m) is the set of
m×m-dimensional, R-valued symmetric matrices.

Definition 4.2.1 (Degenerate ellipticity). F is called degenerate elliptic if it is nonincreasing in
its matrix argument

F (t, x, u, p,X) ≤ F (t, x, u, p, Y ) for Y ≤ X,
with the classical ordering ≤ over S(m) defined by the relation

Y ≤ X ⇔ ⟨Y ζ, ζ⟩ ≤ ⟨Xζ, ζ⟩ for all ζ ∈ Rm.

Definition 4.2.2 (Proper). F is called proper if it is degenerate elliptic and nondecreasing in u.

Remark 4.2.3. With the change of variable s = T − t the original problem (4.8) becomes
∂su(s, x, y) + F (s, (x, y), u(s, x, y), D(x,y)u(s, x, y), D

2
(x,y)u(s, x, y)) = 0,

∀s ∈ (0, T ], x ∈ R, y ∈ R+,

u(0, x, y) = f(x, y), ∀x ∈ R, y ∈ R+,

(4.27)

where

F (s, (x, y), r, p,X) = −y
2
(λ2X1,1 + 2ρλσX1,2 + σ2X2,2)− µX(y)p1 − µY (y)p2 − ϱr + h(T − s, x, y)

(4.28)
is degenerate elliptic (and proper if ϱ ≤ 0).

We consider a convex domain (possibly closed) O ⊆ Rm, T > 0 and we name OT = (0, T ]×O.
We study the following partial differential equation problem{

ut(t, x) + F (t, x, u(t, x), Dxu(t, x), D
2
xu(t, x)) = 0 if t ∈ (0, T ], x ∈ O,

u(0, x) = f(x), x ∈ O.
(4.29)

We define

LSC(OT ) = {f : OT → R | f is lower semi-continuous at every (t, x) ∈ OT },
USC(OT ) = {f : OT → R | f is upper semi-continuous at every (t, x) ∈ OT },

and we give the following definition.

Definition 4.2.4. Given a function u and (t, x) ∈ (0, T ]×O, we say that at (t, x)

∂tu(t, x) + F (t, x, u(t, x), Dxu(t, x), D
2
xu(t, x)) ≥ 0 (resp. ≤ 0) in viscosity sense

if, for each smooth function ϕ such that u − ϕ has a local minimum (resp. a local maximum) at
(t, x)

∂tϕ(t, x) + F (t, x, u(t, x), Dxϕ(t, x), D
2
xϕ(t, x)) ≥ 0 (resp. ≤ 0) in classical sense.
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We introduce the notion of semijets to give an equivalent definition that will be useful in the
following.

Definition 4.2.5. Let u : OT → R, then its upper parabolic second order semijet P2,+
O u is defined

by

P2,+
O u : OT →P(R× Rm × S(m))

(t, x) 7→ P2,+
O u(t, x)

where (c, p,X) lies in the set P2,+
O u(t, x) if

u(s, z) ≤ u(t, x) + b(s− t) + ⟨p, z − x⟩+ 1

2
⟨X(z − x), x− z⟩

+ o(|s− t|+ |z − x|2) as OT ∋ (s, z)→ (t, x),
(4.30)

and we define the lower parabolic second order semijet P2,−
O u := −P2,+

O (−u). We also define the
closure of these set-valued mappings as

P2,+
O u(t, x) = {(c, p,X) ∈ R× Rm × S(m) | ∃

(
(tn, xn), cn, pn, Xn

)
∈ OT × R× Rm × S(m) s.t.

(cn, pn, Xn) ∈ P
2,+
O u(tn, xn) and

(
(tn, xn), u(tn, xn), cn, pn, Xn

)
→
(
(t, x), u(t, x), cn, pn, Xn

)
},

(4.31)

and P2,−
O u, closure of P2,−

O u, is defined in the same way.

We now give the definition of viscosity super and sub-solutions.

Definition 4.2.6 (Viscosity super-solution (sub-solution)). Let F be a proper operator and T > 0.
A function u that is LSC(OT ) (resp. USC(OT )) is called a viscosity super-solution (resp. sub-
solution) with initial value f if,

• for any (t, x) ∈ OT , ∂tϕ(t, x)+F (t, x, u(t, x), Dxu(t, x), D
2
xu(t, x)) ≥ 0 (resp. ≤ 0) in viscosity

sense,

• for any x ∈ O, u(0, x) ≥ f(x) (resp. ≤ f(x)).

A function u that is both a super and a sub-solution is called a viscosity solution.

The following result gives an interesting equivalent definition.

Proposition 4.2.7. Let (t, x) ∈ OT . Then

P2,+
O u(t, x) = {(∂tϕ(t, x), Dxϕ(t, x), D

2
xϕ(t, x)) | ϕ is C1,2 and u− ϕ has local max. at (t, x)},

(4.32)

P2,−
O u(t, x) = {(∂tϕ(t, x), Dxϕ(t, x), D

2
xϕ(t, x)) | ϕ is C1,2 and u− ϕ has local min. at (t, x)}.

(4.33)

Proof. The inclusion ⊇ follows easily by using the local maximum (respectively minimum) property
and developing ϕ using Taylor Theorem around (t, x) up to the first order in t, and to the second
in x. The nontrivial inclusion ⊆ requires constructing, for every (c, p,X) ∈ P2,+

O u(t, x), a regular
function such that the difference u − ϕ has a local minimum at (t, x). We refer to Fleming and
Soner [31], V.4 Proposition 4.1.

As an immediate consequence, we have the following characterization of super and sub-viscosity
solutions.



4.2. Existence and uniqueness of viscosity solutions 83

Corollary 4.2.8. A function w ∈ USC(OT ) is a viscosity sub-solution with initial value f , if and
only if{

c+ F (t, x, w(t, x), p,X) ≤ 0 for all (t, x) ∈ OT and (c, p,X) ∈ P2,+
O w(t, x),

w(0, x) ≤ f(x), for any x ∈ O.
(4.34)

A function v ∈ LSC(OT ) is a viscosity super-solution with initial value f , if and only if{
c+ F (t, x, v(t, x), p,X) ≥ 0, for all (t, x) ∈ OT and (c, p,X) ∈ P2,−

O v(t, x),

v(0, x) ≥ f(x), for any x ∈ O.
(4.35)

Here, we give a key Lemma to prove the verification Theorem, which says that viscosity solutions
are stable under local uniform convergence.

Lemma 4.2.9 (Stability). Let F, (Fn)n∈N be continuous and degenerate elliptic such that for all
K∗T ⊆ OT × R× Rm × S(m)

|F − Fn|
K∗

T
0 −−−→

n→∞
0,

and (un)n∈N ⊂ C(OT ) such that

1. for all n, ∂tun(t, x) + Fn(t, x, un(t, x), Dxun(t, x), D
2
xun(t, x)) ≥ 0 (resp. ≤ 0) for all (t, x) ∈

OT in viscosity sense,

2. there exists u such that for each KT ⊆ OT compact set one has

|un − u|KT
0 −−−→

n→∞
0.

Then u ∈ C(OT ) satisfies ∂tu(t, x) + F (t, x, u(t, x), Dxu(t, x), D
2
xu(t, x)) ≥ 0 (resp. ≤ 0) for all

(t, x) ∈ OT in viscosity sense.

Proof. We only prove that u satisfies ∂tu(t, x)+F (t, x, u(t, x), Dxu(t, x), D
2
xu(t, x)) ≥ 0 in viscosity

sense, the reverse inequality can be proven in the same way. Let ϕ ∈ C1,2(OT ) and (t, x) ∈ OT such
that is a global minimum for u − ϕ. We consider a compact neighbourhood KT of (t, x). Suppose
the minimum is strict at (t, x), then thanks to the local uniform convergence of (un)n∈N∗ exists a
sequence of points (tn, xn)n∈N∗ eventually in the interior of KT that are minima for the sequence
(un − ϕ)n∈N∗ and such that (tn, xn) → (t, x). Being (tn, xn) minimizer for un − ϕ with ϕ smooth,
then by (1)

0 ≤ ∂tϕ(tn, xn) + Fn(tn, xn, un(tn, xn), Dxϕ(tn, xn), D
2
xϕ(tn, xn)).

By uniform convergence of un through u over KT , one has un(tn, xn) → u(t, x). Then thanks to
continuity of Dϕ and D2ϕ one has that (tn, xn, un(tn, xn), Dxun(tn, xn), D

2
xun(tn, xn))n∈N ⊂ KT×R

compact set of (0, T ]×O × R× Rm × S(d). So, thanks to uniformly convergence of Fn through F
over KT ×R we conclude that

0 ≤ lim
n→∞

∂tϕ(tn, xn) + Fn(tn, xn, un(tn, xn), Dxϕ(tn, xn), D
2
xϕ(tn, xn))

= ∂tϕ(t, x) + F (t, x, u(t, x), Dxϕ(t, x), D
2
xϕ(t, x)). (4.36)

If the minimum is not strict we consider the function ϕ∗(s, y) = ϕ(s, y)− (t− s)2 − |x− y|4. This
function ϕ∗ is such that u−ϕ∗ has strict min in (t, x) and has same derivatives up to first order in t
and up to the second one in (t, x), so we can apply the previous technique and conclude remarking

lim
n→∞

∂tϕ
∗(tn, xn) + Fn(tn, xn, un(tn, xn), Dxϕ

∗(tn, xn), D
2
xϕ
∗(tn, xn))

= lim
n→∞

∂tϕ(tn, xn) + Fn(tn, xn, un(tn, xn), Dxϕ(tn, xn), D
2
xϕ(tn, xn)).
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We want to use the notion of viscosity solution to extend the verification results obtained in the
previous section. Given

u(t, x, y) = E
[
eϱ(T−t)f(Xt,x,y

T , Y t,y
T )−

∫ T

t
eϱ(s−t)h(s,Xt,x,y

s , Y t,y
s )ds

]
, (4.37)

we will verify that uF (candidate forward solution)

uF (t, x, y) = u(T − t, x, y) (4.38)

is a viscosity solution of the forward problem (4.27) with more general initial data f (even with
discontinuities) and source terms h. We emphasize that whenever we have u solution of (4.8), we
know that uF is a solution of (4.27) and vice versa.

4.2.1 Continuous initial data

In this subsection, we deal with problem (4.27) where the initial data f is chosen to be just contin-
uous.

In the sequel, we will need some smoothing arguments, which can be resumed as follows.

Lemma 4.2.10. Let f ∈ C(R× R+) and h ∈ C([0, T ]× R× R+). Then there exist

• (fn)n∈N ⊂ C∞(R2) such that |fn − f |K0 → 0 for every compact set K ⊂ R× R+,

• (hn)n∈N ⊂ C∞(R3) such that |hn − h|KT
0 → 0 for every compact set KT ⊂ [0, T ]× R× R+.

Furthermore, if f and h are uniformly continuous and bounded then |fn − f |R×R+

0 → 0 and |hn −
h|[0,T ]×R×R+

0 → 0.

Proof. We need only to extend f and h in a continous way respectively around R×R+ and [0, T ]×
R×R+ and than to take convolution with a mollifier (φn)n∈N. We finish applying Proposition 4.21
of [16]. We start by extending f and h in the following continuous way

f̃(x1, x2) = f(x1, 0 ∨ x2) and h̃(t, x1, x2) = h(0 ∨ t ∧ T, x1, x2).

If f and h are uniformly continuous and bounded, then the same proof in [16] guarantees uniform
convergence without any restriction over compact sets (so in R× R+ and [0, T ]× R× R+).

We recall that for every compact set KT in [0, T ]× R× R+ and p ∈ N, one has

sup
(t,x,y)∈KT

E
[∣∣Xt,x,y

T

∣∣p + ∣∣Y t,y
T

∣∣p] <∞, (4.39)

where
(
(Xt,x,y

T , Y t,y
T )
)
t∈[0,T ] denotes the solution to (4.6).

We are now ready to prove that (4.8) has a viscosity solution, with quite general requests on
the function f giving the Cauchy condition. We underline that we do not operate any restriction
on the parameters: no Feller’s condition is required.

Proposition 4.2.11. Let f ∈ C(R×R+) and h ∈ C([0, T )×R×R+) be such that for all compact
set KT ∈ [0, T ]× R× R+ there exists p > 1 such that

sup
(t,x,y)∈KT

∥f(Xt,x,y
T , Y t,y

T )
∥∥
Lp(Ω)

, sup
(t,x,y)∈KT

∫ T

t
∥h(s,Xt,x,y

s , Y t,y
s )∥Lp(Ω)ds <∞. (4.40)

Then,

u(t, x, y) = E
[
eϱ(T−t)f(Xt,x,y

T , Y t,y
T )−

∫ T

t
eϱ(s−t)h(s,Xt,x,y

s , Y t,y
s )ds

]
is C([0, T ]× R× R+) and is a viscosity solution to the PDE (4.8).
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Proof. In order to simplify the proof, we write u = v − w where

v(t, x, y) = E[eϱ(T−t)f(Xt,x,y
T , Y t,y

T )] and w(t, x, y) = E
[∫ T

t
eϱ(s−t)h(s,Xt,x,y

s , Y t,y
s )ds

]
,

and we will show all the due convergences in the “w” part, being the v part similar and simpler. Let
R > 1/T and consider the smoothly truncated version fR and hR of f and h, that is, fR(x, y) =
f(x, y)ζR(x, y) and hR(t, x, y) = h(t, x, y)ξR(t)ζR(x, y), where ζR and ξR are smooth function such
that

1B(0,R) ≤ ζR ≤ 1B(0,R+1) and 1[0,T− 1
R
] ≤ ξR ≤ 1[0,T− 1

R+1
].

fR and hR, being continuous and having compact support, are, in particular, uniformly continuous
and bounded. Then by Lemma 4.2.10 there exist two sequences (fRn )n∈N, (hRn )n∈N that approximate
in uniform norm fR over R × R+ and hR over [0, T ] × R × R+. We define in an intuitive way
vR, vRn , w

R and wRn as the functions obtained by replacing in v and w the functions f and h with
fR, fRn and hR, hRn . Being the sequences (fRn )n∈N ⊂ C∞c (R× R+) ⊂ C∞pol(R× R+) and (hRn )n∈N ⊂
C∞c ([0, T ]×R×R+) ⊂ C∞pol([0, T ]×R×R+), they satisfy the regularity conditions in Proposition
4.1.2, then for all n ∈ N, uRn (t, x, y) is a C∞ classical solution to (4.8) with final value fRn and source
term hRn instead of h. Now, chosen a compact set KT ⊂ [0, T ]× R× R+, for all R > 1/T one has

|uR − uRn |
KT
0 ≤ |vR − vRn |

KT
0 + |wR − wRn |

KT
0

= sup
(t,x,y)∈KT

∣∣E[eϱ(T−t)(fR(Xt,x,y
T , Y t,y

T )− fRn (X
t,x,y
T , Y t,y

T )
)]∣∣

+ sup
(t,x,y)∈KT

∣∣∣∣E[ ∫ T

t
eϱ(s−t)

(
hR(s,Xt,x,y

s , Y t,y
s )− hRn (s,Xt,x,y

s , Y t,y
s )
)
ds
]∣∣∣∣

≤C1|fR − fRn |
R×R+

0 + C2|hR − hRn |
[0,T ]×R×R+

0 −→ 0.

We show now that |wR −w|KT
0 → 0 when R→∞, similarly one can do the same for v and get the

convergence in uniform norm for u. We write z = (x, y) and Zt,zT = (Xt,x,y
T , Y t,y

T ) and show that∣∣∣∣E[ ∫ T

t
eϱ(s−t)

(
h(s,Xt,x,y

s , Y t,y
s )−hR(s,Xt,x,y

s , Y t,y
s )
)
ds
]∣∣∣∣

≤ 2e(0∨ϱ)TE
[ ∫ T

t
|h(s, Zt,zs )|1([0,T− 1

R
]×BR(0))C (s, Z

t,z
s )ds

]
,

≤ 2e(0∨ϱ)T
∫ T

t
E
[
|h(s, Zt,zs )|1BC

R (0)(Z
t,z
s )
]
ds,

≤ 2e(0∨ϱ)T
∫ T

t
∥h(s, Zt,zs )∥LP (Ω)dsP(|Z

t,z
T | > R)

p−1
p ,

where we used the Tonelli Theorem to exchange the order of the expected value and the integral
and the Hölder inequality to get the last inequality. Now, using Markov inequality,

P(|Zt,zT | > R) ≤
E[|Zt,zT |]

R
.

Using this last inequality and passing to the supremum over KT , we get

|wR − w|KT
0 ≤ C sup

(t,x,y)∈KT

∫ T

t

∥h(s,Xt,x,y
s , Y t,y

s )∥Lp(Ω)ds
sup(t,x,y)∈KT

E[|(Xt,x,y
T , Y t,y

T )|]
p−1
p

R
(p−1)

p

−−−−→
R→∞

0,

that proves the limit. Furthermore, thanks to triangular inequality, one has

|u− uRn |
KT
0 ≤ |u− uR|KT

0 + |uR − uRn |
KT
0 ,
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so, for all n ∈ N∗, we can pick Rn such that the second norm on the right-hand side is upper bounded
by 1/(2n). Then, replacing R with Rn in the first norm of the right-hand part of the inequality, it
exists k(n) such that this norm is upper bounded by 1/(2n) too. So we define ûn = uRn

k(n) and

|u− ûn|KT
0 ≤ 1

n
. (4.41)

The functions (uFn )n∈N =
(
ûn(T − ·, ·, ·)

)
n∈N are classical solutions (so in particular viscosity solu-

tions) to (4.27) where we have Fn instead of F by replacing in it h with hRn

k(n). u (and so uF ) is
C([0, T ]×R×R+) thanks to (4.41). Furthermore is easy to prove the uniform convergence hypoth-
esis Fn → F (because hRn

k(n) → h uniformly over the compact sets of [0, T )×R×R+), so thanks to
Lemma 4.2.9, uF satisfies

∂tu
F (t, x) + F (t, x, uF (t, x), Dxu

F (t, x), D2
xu

F (t, x)) = 0 for (t, x, y) ∈ (0, T ]× R× R+

in viscosity sense. Furthermore, uF (0, x, y) = f(x, y) for every (x, y) ∈ R×R+, so uF is a viscosity
solution of (4.27) with initial value f .

Remark 4.2.12. The hypothesis (4.40) with p > 1 is not restrictive. For example all the functions
f ∈ Cpol(R× R+), h ∈ Cpol,T (R× R+) satisfy this hypothesis for all p > 1. In fact

sup
(t,x,y)∈KT

∥f(Xt,x,y
T , Y t,y

T )∥Lp(Ω) ≤ [C(1 + sup
(t,x,y)∈KT

E[|(Xt,x,y
T |ap + |Y t,y

T )|ap])]
1
p <∞,

and

sup
(t,x,y)∈KT

∫ T

t
∥h(s,Xt,x,y

s , Y t,y
s )∥Lp(Ω)ds ≤ C(1 + sup

(t,x,y)∈K̂T

E[|(Xt,x,y
T |ap + |Y t,y

T )|ap]) <∞

with K̂T = {(t, x, y) ∈ [0, T ]× R× R+ | ∃t0 ∈ [0, T ] such that (t0, x, y) ∈ KT }.

4.2.2 Comparison principle and uniqueness for continuous initial data

In this subsection, we prove a comparison principle for our reference PDE (4.27). In Subsection
4.2.3, we prove this result allows getting uniqueness of solutions even for initial data f that present
“some discontinuities”.

We start by stating two results that will be crucial to prove a comparison argument needed to
prove the uniqueness of the solution. We first recall a lemma proved in [26], Proposition 3.7.

Lemma 4.2.13. Let M ∈ N∗, A be a subset of RM , Φ ∈ USC(A), Ψ ∈ LSC(A),

Mα = sup
A

(Φ(x)− αΨ(x)) (4.42)

for α > 0. Let limα→∞Mα ∈ R and xα ∈ A be chosen so that

lim
α→∞

(
Mα − (Φ(xα)− αΨ(xα))

)
= 0. (4.43)

Then, the following hold
(i) limα→∞ αΨ(α) = 0,

(ii) Ψ(x̂) = 0 and limα→∞ = Φ(x̂) = sup{x∈A|Ψ(x)=0}Φ(x)

whenever x̂ ∈ A is a limit point of xα as α→∞.
(4.44)
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Proposition 4.2.14. Let ui ∈ USC((0, T ] × Oi) for i = 1, . . . , k where Oi is s locally compact
subset of RNi. Let φ be defined on an open neighborhood of (0, T ] × O1 × · · · × Ok and such that
φ : (t, x1, . . . , xk) 7→ φ(t, x1, . . . , xk) is once continuously differentiable in t and twice continuously
differentiable in (x1, . . . , xk) ∈ O1 × · · · × Ok. Suppose that t̂ ∈ (0, T ], x̂i ∈ Oi for i = 1, . . . , k and

w(t, x1, . . . , xk) ≡ u1(t, x1) + · · ·+ uk(t, xk)− φ(t, x1, . . . , xk)
≤ w(t̂, x̂1, . . . , x̂k),

for 0 < t ≤ T and xi ∈ Oi. Assume, moreover, that there is an r > 0 such that for every M > 0
there is a C such that for i = 1, . . . , k

bi ≤ C whenever (bi, qi, Xi) ∈ P2,+
Oi

ui(t, xi),

|xi − x̂i|+ |t− t̂| ≤ r and |ui(t, xi)|+ |qi|+ ∥Xi∥ ≤M. (4.45)

Then for each ε > 0 there are Xi ∈ S(Ni) such that

(i) (bi, Dxiφ(t̂, x̂1, . . . , x̂k), Xi) ∈ P
2,+
Oi
ui(t̂, x̂i) for i = 1, . . . , k,

(ii) −
(
1
ε + ∥A∥

)
I ≤


X1 · · · 0
...

. . .
...

0 · · · Xk

 ≤ A+ εA2

(iii) b1 + · · ·+ bk = ∂tφ(t̂, x̂1, . . . , x̂k),

(4.46)

where A = (D2
xφ)(t̂, x̂1, . . . , x̂k).

Proof. We refer to the proof in [25] with a small modification. Here, the ui-s are USC up to T , so
we must consider possible maximum points over T ×O1 × · · · ×Ok. In the proof [25, Lemma 8] we
redifine the vi-s functions equal to −∞ only when |xi| > 1 and t < s/2, so ti,δ belongs to [s/2, T ]
and the rest of the proof still the same.

We can now state a comparison principle for semicontinuous functions of the problem (4.27).

Proposition 4.2.15. (Comparison principle) Let w ∈ USC([0, T ]×R×R+) and v ∈ LSC([0, T ]×
R×R+) be respectively a subsolution and a supersolution to (4.27) with polynomial growth uniformly
in time, where F is as in (4.28). Then w ≤ v.

Proof. It is simple to show (using the Definition 4.2.6) that if w and v are subsolution and superso-
lution to the general problem (4.27) with ϱ ∈ R then e−θtw(t, x, y) and e−θtv(t, x, y) are subsolution
and supersolution to (4.27) with ϱ replaced by ϱ − θ. So we need only to prove the result when
ϱ = 0. We start by remarking that w, v and h have polynomial growth uniformly in time, then

sup
t∈[0,T ]

|w(t, x, y)|, sup
t∈[0,T ]

|v(t, x, y)|, sup
t∈[0,T ]

|h(t, x, y)| ≤ C(1 + xL + yL) for some C > 0, L ∈ 2N∗

(4.47)
We define the function ϕε(t, x, y) = εeMt(1 + xL+2 + yL+2). It’s easy to check that ϕε is

C∞([0, T ]× R× R+) and, for every ε, M > 0 can be chosen such that{
(∂t − L)ϕε(t, x, y) ≥ ε, ∀t ∈ (0, T ], x ∈ R, y ∈ R+,

ϕε(0, x, y) ≥ ε, ∀x ∈ R, y ∈ R+.
(4.48)

Then, called vε = v + ϕε and O = R+ × R, for all (t, x, y) ∈ OT = (0, T ]×O one has

P2,−
OT

(v + ϕε)(t, x, y) =
{
(α+ ∂tϕε(t, x, y), (β, γ) +D(x,y)ϕε(t, x, y), X +D2

(x,y)ϕε(t, x, y)) |

(α, (β, γ), X) ∈ P2,−
OT

v(t, x, y)
}
,
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and by the linearity of the reference PDE, one has that

c+ F (t, (x, y), vε(t, x, y), p,X) ≥ ε, for all (t, x, y) ∈ OT and (c, p,X) ∈ P2,−
OT

vε(t, x, y), (4.49)

and clearly w− vε ≤ −ε, that means vε is a strict super-solution. Thanks to the growth hypothesis
(4.47)

w(t, x, y)− vε(t, x, y) ≤ 2C(1 + xL + yL)− ε(1 + xL+2 + yL+2) −−−−−−→
|(x,y)|→∞

−∞,

then there exists R > 0 such that, w−vε ≤ 0 outside a rectangle [0, T ]×R, where R = ×[−R,R]×
[0, R]. We now suppose that there exist a point (t0, x0, y0) ∈ R such that (u − vε)(t0, x0, y0) =
δ > 0. If such a point exists, t0 must be > 0 by the initial condition. In order to come up with a
contradiction we use the well known technique in classical viscosity solutions framework of doubling
the variables. We define, for all α > 0

φα : ([0, T ]× R2 × R2) ∋ (t, η, ζ) 7→ 1

2
|η − ζ|2 ∈ R+.

We penalize the function w−vε subtracting the function αφα, while we double the spatial variables,
and study

Mα = sup
(t,η,ζ)∈[0,T ]×R×R

w(t, η)− vε(t, ζ)− αφα(t, η, ζ).

By the upper semi-continuity of the function w(t, η) − vε(t, ζ) − αφα(t, η, ζ), and compactness of
[0, T ]×R×R,

δ ≤Mα = w(tα, ηα)− vε(tα, ζα)− αφα(tα, ηα, ζα)

for some (tα, ηα, ζα) ∈ [0, T ]×R×R. We apply now Lemma 4.2.13 with O = [0, T ]×R×R, Ψ = φ
and we chose the point xα in the lemma to be the point (tα, ηα, ζα) that realizes the maximum Mα.
Then (4.44) translates to

(i) limα→∞
α
2 |ηα − ζα|

2 = 0,

(ii) limα→∞Mα = u(t̂, η̂)− vε(t̂, η̂) = sup{(t,η)∈[0,T ]×R}w(t, η)− vε(t, η)
whenever (t̂, η̂) ∈ [0, T ]×R is a limit point of (tα, ηα) as α→∞.

(4.50)

Now, because of the initial condition, (4.50) (i) and (ii), (tα, ηα, ζα) must lie inside (0, T ]×R×R
for large α. We want to show that there exists values in P2,+

(0,T ]×Rw(tα, ηα) and P2,−
(0,T ]×Rvε(tα, ηα)

that are not compatible. We apply Proposition 4.2.14 to the point (tα, ηα, ζα) with u1 = w and
u2 = −vε, φ = φα, O1 = O2 = R× R+, and ε equal to α−1, one get

(c1, α(ηα − ζα), Xα) ∈ P
2,+
O w(tα, ηα), (c2, α(ηα − ζα), Yα) ∈ P

2,−
O vε(tα, ζα)

such that c1 = c2 and

−3α
(
I 0
0 I

)
≤
(
Xα 0
0 −Yα

)
≤ 3α

(
I −I
−I I

)
,

from which we derive
Xα ≤ Yα and |⟨Xαz, z⟩| ≤ 3α|z|2. (4.51)

Using that u is a sub-solution (4.34) and vε is a strict super-solution (4.49), one has

c1 + F (tα, ηα, w(tα, ηα), α(ηα − ζα), Xα) ≤ 0,

c2 + F (tα, ζα, vε(tα, ζα), α(ηα − ζα), Yα) ≥ ε,
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using Xα ≤ Yα, vε(tα, ζα) ≤ w(tα, ηα) and that F is proper (ϱ = 0) imply

ε ≤ F (tα, ζα, vε(tα, ζα), α(ηα − ζα), Yα)− F (tα, ηα, w(tα, ηα), α(ηα − ζα), Xα)

≤ F (tα, ζα, w(tα, ηα), α(ηα − ζα), Xα)− F (tα, ηα, w(tα, ηα), α(ηα − ζα), Xα).

Naming ηα = (xηα, y
η
α), ζα = (xζα, y

ζ
α), and using the definition of F in (4.28) one has

ε ≤ (yζα − yηα)
2

(λ2X1,1
α + 2ρλσX1,2

α + σ2X2,2
α ) + d(yζα − yηα)α(xζα − xηα)

− b(yζα − yηα)α(yζα − yηα) + h(T − tα, xζα, yζα)− h(T − tα, xηα, yηα). (4.52)

The first term on the right-hand side is upper bounded by 3/2(λ2+σ2)α(yζα−yηα), so the first three
terms go to 0 thanks to (4.50) (i) while h(T − tα, xζα, yζα)−h(T − tα, xηα, yηα) goes to 0 when α→∞
by continuity of h (up to choose a subsequence of αs for which (tα, ηα) → (t̂, η̂)). So ε, that is
strictly positive, is upper bounded by a quantity that goes to 0 when α → ∞. This contradiction
yields that there is no point (t0, x0, y0) in which u − vε > 0 than u ≤ vε for every ε > 0 and so
u ≤ v.

We finish by stating and proving the two following results, which discuss the uniqueness of the
reference PDE and the regularity of the solution.

Corollary 4.2.16. The problem (4.8) has a unique viscosity solution that is continuous over [0, T ]×
R× R+ and that has polynomial growth in (x, y) uniformly in t.

Proof. For simplicity, we consider the equivalent forward PDE (4.27) and two solutions u1 and u2
with polynomial growth. Then, by the linearity of the PDE, u = u1 − u2 is a viscosity solution of{

(∂t − L)u(t, x, y) = 0, t ∈ (0, T ], x ∈ R, y ∈ R+,

u(0, x, y) = 0, x ∈ R, y ∈ R+,
(4.53)

with polynomial growth, so it exists L ∈ 2N such that |u(t, x, y)| ≤ C(1 + xL + yL). We remark
that v(t, x, y) = 0 is a solution to the problem, then by Proposition 4.2.15 u ≤ v and u ≥ v, so
u1 = u2 is the unique solution.

Proposition 4.2.17. Let f ∈ Cpol(R × R+) and h ∈ Cpol,T (R × R+). Then u as in (4.7) is the
unique viscosity solution of (4.8) that belongs to C([0, T ]×R×R+) and that has polynomial growth
in (x, y) uniformly in t.

Furthermore, if h is locally Hölder in the compact sets of [0, T )×R×R∗+ then u ∈ C1,2
(
[0, T )×

(R× R∗+)
)
.

Proof. The first hypotheses over f and h guarantee u to be continuous over [0, T ] × R × R+ and
to have polynomial growth, so to be the unique solution. Furthermore, if f and h are locally
Hölder in the compact sets of [0, T ) × R × R∗+, one can consider the PDE locally in a compact
inside [0, T ) × R × R∗+ to prove further regularity. Let t < S ∈ [0, T ), (x, y) ∈ R × R∗+ and
R = (x−R, x+R)× (y/2, 2y), R > 0, Q = [0, S)×R and consider the PDE problem{

∂tv + Lv + ϱv = h, in Q,
v = u, in ∂0Q,

(4.54)

∂0Q denoting the parabolic boundary of Q. The coefficients satisfy in Q all the classical assumptions
(see A. Friedman [32] Theorem 9 and Corollary 2 in Chapter 3, Sec. 4), so a unique (bounded)
solution v ∈ C1,2([0, S)×R)∩ C([0, S]× R̄) actually exists (and have Hölder continuous derivatives
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vt, D(x,y)v and D2
(x,y)v in any compact set contained inside Q). In Proposition 4.2.15 we proved a

comparison principle on the unbounded spatial domain R×R+ it is easy (even easier) to prove with
the same techniques a comparison principle for the problem above (4.54): this time the “strictificate”
the super-solution v can just add the term ϕε = εeMt. So u that is a viscosity solution and v that
is a classic one (hence a viscosity one, too) must be the same over Q. Then we have the regularity
claimed for u over a generic point (t, x, y) ∈ [0, T )× (R× R∗+).

4.2.3 Discontinuous initial data

Here, we present a general result that allows us to reduce the regularity of the initial data and
consider functions that are not continuous everywhere.

Let f be a locally bounded function defined over a locally compact domain O. We define the
upper-semicontinuous envelope f∗ and the lower-semicontinuous envelope f∗ on Ō by

f∗(x) = lim sup
z→x

f(z), f∗(x) = lim inf
z→x

f(z).

We call Df the set of the discontinuity points of f , i.e.

Df = {x ∈ Ō | f∗(x) ̸= f∗(x)}. (4.55)

Now, we state and prove a result that says the lower semicontinuous and upper semicontinuous
functions belong to the Baire class 1 functions (i.e. they are the pointwise limit of continuous
functions) and can be approximated in a monotone way.

Proposition 4.2.18 (Baire). Let X ⊂ Rd closed. Let f ∈ LSC(X) then there exist a non-decreasing
sequence (f−n )n∈N∗ ⊂ C(X) such that f−n → f . If f ∈ USC(X) then there exist a non-increasing
sequence (f+n )n∈N∗ ⊂ C(X) such that f+n → f .

Proof. We prove only the first result; the second follows from the first, considering −f . We now
sketch the proof. Let f ≤ 0, for f not bounded below, we can find a continuous function h ≤ f , and
we apply what follows to f̂ = f−h, find approximations f̂n and define fn = f̂n+h. We consider the
continuous function g : x → x/(1 + x), prove the result for f̃ = g(f) taking values in [0, 1] (closed
set) as in the proof in Proposition 11 in Section 2 of Chapter 9 of [15], consider the approximations
f̃n given by proving the result for f̃ and then name fn = f̃n/(1− f̃n).

We want to show that (t, x, y) 7→ E[eϱ(T−t)f(Xt,x,y
T , Y t,y

T )] is a continuous mapping for t < T ,
even when the final data is discontinuous. To this purpose, we use the fact that the distribution
of the couple (Xt,x,y

T , Y t,y
T ) for t < T is absolutely continuous (with respect to Lebesgue measure).

In fact, in [41], it has been shown that (exp(Xt,x,y
T ), Y t,y

T ) has a C∞(R∗+ × R∗+) density so using a
change of variable argument, it easily follows that (Xt,x,y

T , Y t,y
T ) has a C∞ density over R× R∗+.

Proposition 4.2.19. Let f : R × R+ 7→ R be a function such that the closure Df of the set
of its discontinuity points has zero Lebesgue measure. We assume that for all compact set KT ∈
[0, T ]× R× R+ there exists p > 1 such that

sup
(t,x,y)∈KT

∥f(Xt,x,y
T , Y t,y

T )∥Lp(Ω) <∞.

Then v(t, x, y) = E[eϱ(T−t)f(Xt,x,y
T , Y t,y

T )] ∈ C
(
([0, T ]× R× R+)\({T} ×Df )

)
.

Proof. Since (t, x, y) 7→ eϱ(T−t) is continuous, we can consider the case ϱ = 0. We consider (t, x, y) ∈
[0, T )× R× R+ and a sequence (tk, xk, yk) that converges towards it, we want to show that

|E[f(Xtk,xk,yk
T , Y tk,yk

T )]− E[f(Xt,x,y
T , Y t,y

T )]| −−−→
k→∞

0.
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Let ε > 0. First, thanks to Hölder inequality

|E[f(Xtk,xk,yk
T , Y tk,yk

T )1|(Xtk,xk,yk
T ,Y

tk,yk
T )|>R]| ≤

||f(Xtk,xk,yk
T , Y tk,yk

T )||Lp(Ω)P(|(X
tk,xk,yk
T , Y tk,yk

T )| > R)
p

p−1 .

One can choose R such that the same inequality holds replacing (Xtk,xk,yk
T , Y tk,yk

T ) with (Xt,x,y
T , Y t,y

T ).
So, for R big enough, one has

|E[f(Xtk,xk,yk
T , Y tk,yk

T )]− E[f(Xt,x,y
T , Y t,y

T )]| ≤
|E[f(Xtk,xk,yk

T , Y tk,yk
T )1|(Xtk,xk,yk

T ,Y
tk,yk
T )|≤R]− E[f(Xt,x,y

T , Y t,y
T )1|(Xt,x,y

T ,Y t,y
T )|≤R]|+ 2ε.

Let δ > 0, we define the compact set AδR = {z ∈ R × R+ | d(z,Df ) ≥ δ, |z| ≤ R} and CδR = {z ∈
R × R+ | d(z,Df ) < δ, |z| ≤ R}. CδR ↘ Df ∩ BR(0) that is a null set, so thanks to the absolute
continuity of (Xt,x,y

T , Y t,y
T ) one has

P((Xt,x,y
T , Y t,y

T ) ∈ CδR)→ 0 when δ → 0. (4.56)

Furthermore, the boundary ∂CδR is a null set. In fact, it is contained in Df ∪∂BR(0)∪{z ∈ R×R+ |
d(z,Df ) = δ} that are three null sets, the first by hypothesis and the second two being sets whose
points are exactly distant a strictly positive number from closed sets ({0} and Df ) (look here [30]
for a simple proof). So, by convergence in distribution of (Xtk,xk,yk

T , Y tk,yk
T ) towards (Xt,x,y

T , Y t,y
T )

P((Xtk,xk,yk
T , Y tk,yk

T ) ∈ CδR) −−−→
k→∞

P((Xt,x,y
T , Y t,y

T ) ∈ CδR). (4.57)

Thanks to the following inequality

|E[f(Xtk,xk,yk
T , Y tk,yk

T )1
(X

tk,xk,yk
T ,Y

tk,yk
T )∈Cδ

R

]| ≤

||f(Xtk,xk,yk
T , Y tk,yk

T )||LP (Ω)P((X
tk,xk,yk
T , Y tk,yk

T ) ∈ CδR)
p

p−1 ,

that still valid replacing (tk, xk, yk) with (t, x, y), using the uniform boundedness in LP hypothesis,
(4.56) and (4.57), if δ is small enough and k ≥ k0 one has

|E[f(Xtk,xk,yk
T , Y tk,yk

T )1
(X

tk,xk,yk
T ,Y

tk,yk
T )∈Cδ

R

]− E[f(Xt,x,y
T , Y t,y

T )1(Xt,x,y
T ,Y t,y

T )∈Cδ
R
]| ≤ 2ε.

The set ∂AδR is a null set, because it is contained in ∂BR(0) ∪ {z ∈ R × R+ | d(z,Df ) = δ},
that are two null set, as explained above. So, the function f1Aδ

R
are continuous over the compact

AδR, therefore, they are bounded and are discontinuous only over the null set ∂AδR. Thanks to the
absolute continuity of (Xt,x,y

T , Y t,y
T ) and convergence in distribution of (Xtk,xk,yk

T , Y tk,yk
T ) towards it,

if k ≥ k1

|E[f(Xtk,xk,yk
T , Y tk,yk

T )1
(X

tk,xk,yk
T ,Y

tk,yk
T )∈Aδ

R

]− E[f(Xt,x,y
T , Y t,y

T )1(Xt,x,y
T ,Y t,y

T )∈Aδ
R
]| ≤ ε

Finally if k ≥ max(k0, k1) one has

|E[f(Xtk,xk,yk
T , Y tk,yk

T )]− E[f(Xt,x,y
T , Y t,y

T )]| ≤ 5ε.

If we consider (t, x, y) ∈ {T} × A, where A = (R × R+)\Df then for any sequence (tk, xk, yk)k∈N
that convergences to (t, x, y) and all the previous estimation still works because the limit law this
time is a Dirac mass over (t, x, y) that is not a discontinuity point of f .

Thanks to the previous proposition, we can consider some type of discontinuities in the final
data f (or initial data if we consider the forward problem). We state and prove the following result.
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Theorem 4.2.20. (Verification Theorem) Let f : R×R+ → R be a polynomial growth function
such that Df has zero Lebesgue measure, and h ∈ Cpol,T (R × R+). Then u in (4.37) is the unique
viscosity solution to the problem (4.8) that is C

(
([0, T ] × R × R+) \ ({T} × Df )

)
and that has

polynomial growth in (x, y) uniformly in t.

Proof. Let u be as in (4.37) that is a function in the class considered, and let v a solution in this
same class. We use an approach that directly proves that u is a solution and is the only one in
the class considered. We show that exist a continuous sequence (u−n )n∈N of sub-solution and a
continuous sequence (u+n )n∈N of super-solution such that

u−n (T, ·, ·) ≤ v∗(T, ·, ·) ≤ v∗(T, ·, ·) ≤ u+n (T, ·, ·), (4.58)

for any compact set KT ⊂ [0, T )× R× R+, one has lim
n→∞

|u±n − u|
KT
0 , (4.59)

where v∗, v
∗ are respectively the lower and the upper semicontinuous envelope of v. The local

uniform convergence (4.59) tells us, thanks to Lemma 4.2.9, the limit u is both sub and a super-
solution, so it is a solution. Then, if one has the inequalities (4.58), one can apply the comparison
principle (reverting in time the solutions) comparing u−n to v∗, and u+n to v∗ getting the relations

u(t, x, y) = lim
n→∞

u+n (t, x, y) ≥ v∗(t, x, y) = v(t, x, y), for all t < T, (x, y) ∈ R× R+,

u(t, x, y) = lim
n→∞

u−n (t, x, y) ≤ v∗(t, x, y) = v(t, x, y), for all t < T, (x, y) ∈ R× R+,

where we used the fact that v∗(t, x, y) = v(t, x, y) = v∗(t, x, y) because v is continuous for every
point such that t < T . Then, u = v everywhere because they have the same final data. We prove,
so, the existence of continuous sequences of solutions that satisfy (4.58). We consider a modified
version of final data f± defined as follows{

f±(x, y) = ±χ(x, y) for (x, y) ∈ N
f±(x, y) = f(x, y) otherwise,

(4.60)

where χ(x, y) = C(1 + |x|L + yL) (C > 0, L ∈ N∗) is such that |u(t, x, y)|, |v(t, x, y)| ≤ χ(x, y), and
we define the functions u±

u±(t, x, y) = E
[
eϱ(T−t)f±(Xt,x,y

T , Y t,y
T )−

∫ T

t
eϱ(s−t)h(s,Xt,x,y

s , Y t,y
s )ds

]
.

Being f− and f+ respectively lower semicontinuous and upper semicontinuous, thanks to Propo-
sition 4.2.18, there exists (f−n )n∈N∗ ⊂ C(R × R+) non-decreasing sequence converging to f− and
such that f−n ≥ −χ (otherwise consider f̂−n = f−n ∨−χ) and (f+n )n∈N∗ ⊂ C(R×R+) non-increasing
sequence converging to f+ and such that f+n ≥ χ (otherwise consider f̂+n = f+n ∧ χ). We define in
the same way as u±

u±n (t, x, y) = E
[
eϱ(T−t)f±n (Xt,x,y

T , Y t,y
T )−

∫ T

t
eϱ(s−t)h(s,Xt,x,y

s , Y t,y
s )ds

]
.

By Proposition 4.2.11 u+n are continuous solution with final data f+n ≥ f ≥ v∗(T, ·, ·) and u−n are
continuous solution with final data f−n ≤ f ≤ v∗(T, ·, ·) (proving (4.58)). Furthermore, thanks to
Lebesgue Theorem u±n → u± when n→∞ and u± = u for t < T because f differs from f± only on
a negligible set and (Xt,x,y

T , Y t,y
T ) has density, and the convergence is monotone in n for any point.

Then, considering the convergence on any compact set KT ⊂ [0, T )× R× R+ we have a monotone
sequence (u+n or u−n ) of continuous functions that converges everywhere over KT to a continuous
function u, so this convergence must be uniform for Dini’s Theorem (proving (4.59)).

We conclude with one remark and an example.
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Remark 4.2.21. One should remark that if we add in Theorem 4.2.20 that h is locally Hölder in
the compact sets of [0, T ) × R × R∗+, then u belongs also to C1,2

(
[0, T ) × (R × R∗+)

)
. The proof of

the regularity is the same as in Proposition 4.2.17, so we do not repeat here.

Example 4.2.22. Theorem 4.2.20 covers a wide range of possibilities. One of them is the case of
digital options in the Heston Model. We fix the parameters c = r − δ, d = −1/2, λ = 1 and ϱ = r{

∂tu(t, x, y) + Lu(t, x, y) + ru(t, x, y) = 0, t ∈ [0, T ), x ∈ R, y ∈ R+,

u(T, x, y) = 1[c,d)(exp(x)), x ∈ R, y ∈ R+,

where 0 ≤ c < d ≤ ∞.

4.3 Application to finance: a hybrid approximation scheme for the
viscosity solution

Consider the standard Heston model given by the following SDE

St,s,yT = s+

∫ T

t
(r − δ)Sudu+

∫ T

t
ρSu

√
Y t,y
u dWu +

∫ T

t
ρSu

√
Y t,y
u dBu,

Y t,y
T = y +

∫ T

t
(a− bY t,y

u )du+

∫ T

t
σ

√
Y t,y
u dWu. (4.61)

In order to build our approximation, we apply the transformation (s, y) 7→ (log(s)− ρ
σy, y) obtaining

the following SDE

Xt,x,y
T = x+

∫ T

t

(
r − δ − ρ

σ
a+

(ρ
σ
b− 1

2

)
Y t,y
s

)
ds+

∫ T

t
ρ̄

√
Y t,y
s dBs,

Y t,y
T = y +

∫ T

t
(a− bY t,y

s )ds+

∫ T

t
σ

√
Y t,y
s dWs, (4.62)

that given corresponds to a precise choice of the parameters in (4.6): ρ = 0, c = r−δ− ρ
σa, d = ρ

σ b−
1
2

and λ = ρ. The advantage of studying (4.62) instead of the SDE obtained by (s, y) 7→ (log(s), y)
is that we can exploit that the noise driving the law of X|Y is independent of the one driving Y .
Hereafter, we fix T > 0, f ∈ Cpol(R× R+) and define

u(t, x, y) = E[f(Xt,x,y
T , Y t,y

T )], (t, x, y) ∈ [0, T ]× R× R+. (4.63)

We know that

1. P((Xt,x,y
s , Y t,y

s ) ∈ R× R+, ∀s ∈ [t, T ]) = 1;

2. the function u in (4.63) solves the PDE{
(∂t + L)u(t, x, y) = 0, t ∈ [0, T ), x ∈ R, y ∈ R+,

u(T, x, y) = f(x, y), x ∈ R, y ∈ R+,
(4.64)

where
L =

y

2
(ρ2∂2x + σ2∂2y) + µX(y)∂x + µY (y)∂y, (4.65)

and µX(y) = r − δ − ρa/σ + (ρb/σ − 1/2)y, µY (y) = a− by.

In what follows, we prove the convergence for a large space of functions using the recent hybrid
approach introduced in [17] that we recall in what follows.
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4.3.1 The hybrid procedure

Let u be given in (4.63). We recall, briefly, the main ideas and describe the approximation of u. We
use the Markov property to represent the solution u(nh, x, y) at times nh, h = T/N , n = 0, . . . , N
for (x, y) ∈ R× R+ {

u(T, x, y) = f(x, y) and n = N − 1, . . . , 0 :

u(nh, x, y) = E[u((n+ 1)h,Xnh,x,y
(n+1)h, Y

nh,y
(n+1)h)].

(4.66)

The goal is to build good approximations of the expectations in (4.66). First, let (Ŷ h
n )n=0,...,N be

a Markov chain which approximates Y , such that (Ŷ h
n )n=0,...,N is independent of the noise driving

X. Then, at each step n = 0, 1, . . . , N − 1, for every y ∈ Yhn ⊂ R+ (the state space of Ŷ h
n ), one

writes
E[u((n+ 1)h,Xnh,x,y

(n+1)h, Y
nh,y
(n+1)h)] ≈ E[u((n+ 1)h,Xnh,x,y

(n+1)h, Ŷ
h
n+1) | Ŷ h

n = y].

As a second step, one approximates the component X on [nh, (n+ 1)h] by freezing the coefficients
in (4.62) at the observed position Ŷ h

n = y, that is, for t ∈ [nh, (n+ 1)h],

Xnh,x,y
t

law
≈ X̂nh,x,y

t = x+
(
r − δ − ρ

σ
a+

(ρ
σ
b− 1

2

)
y
)
(t− nh) + ρ

√
y(Zt − Znh).

Therefore, by the fact that the Markov chain and the noise driving X are independent, one can
write

E[u((n+ 1)h,Xnh,x,y
(n+1)h, Y

nh,y
(n+1)h)] ≈ E[u((n+ 1)h, X̂nh,x,y

(n+1)h, Ŷ
h
n+1) | Ŷ h

n = y]

= E[ϕ(Ŷ h
n+1;x, y) | Ŷ h

n = y]

where
ϕ(ζ;x, y) = E[u((n+ 1)h, X̂nh,x,y

(n+1)h, ζ)]. (4.67)

From the Feynman-Kac formula, one gets ϕ(ζ;x, y) = v(nh, x; y, ζ), where (t, x) 7→ v(t, x; y, ζ) is
the solution at time nh of the parabolic PDE Cauchy problem{

∂tv + L(y)v = 0, in [nh, (n+ 1)h)× R,
v((n+ 1)h, x; y, ζ) = u((n+ 1)h, x, ζ), x ∈ R,

(4.68)

where L(y) acts on function g = g(x) as follows

L(y)g(x) =
(
r − δ − ρ

σ
a+

(ρ
σ
b− 1

2

)
y
)
∂xg(x) +

1

2
ρ2y∂2xg(x). (4.69)

We remark that in (4.68)-(4.69), y ∈ R+ is just a parameter, so L(y) has constant coefficients.
Consider now a numerical solution of the PDE (4.68). Let ∆x denote a fixed initial spatial step,
and set X as a grid on R given by X = {x ∈ R | x = X0 + i∆x, i ∈ Z}. For y ∈ R, let Πh∆x(y) be a
linear operator (acting on suitable functions on X ) which gives the approximating solution to the
PDE (4.68) at time nh. Then, as x ∈ X , we get the numerical approximation

E[u((n+ 1)h,Xnh,x,y
(n+1)h, Y

nh,y
(n+1)h)] ≈ E[Πh∆x(y)u((n+ 1)h, ·, Ŷ h

n+1)(x) | Ŷ h
n = y].

Therefore, by inserting in (4.66), one sees that the hybrid numerical procedure works as follows:
the function x 7→ u(0, x, Y0), x ∈ X , is approximated by uh0(x, Y0) backward-defined as{

uhN (x, y) = f(x, y), (x, y) ∈ X × YhN , and as n = N − 1, . . . , 0 :

uhn(x, y) = E[Πh∆x(y)uhn+1(·, Ŷ h
n+1)(x) | Ŷ h

n = y], (x, y) ∈ X × Yhn .
(4.70)
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4.3.2 Convergence in ℓ∞

We recall the finite difference scheme and the Markov chain (Ŷ h
n )n=0,...,N , that under suitable hy-

pothesis on f assures the convergence of the Hybrid procedure to the solution u (4.63). Specifically,
if µX(y) = h

∆xr − δ −
ρ
σa+

( ρ
σ b−

1
2

)
y ≥ 0, we approximate (∂t + L(y))v by using the scheme

vn+1
i − vni

h
+ µX(y)

vni+1 − vni
∆x

+
1

2
ρ2y

vni+1 − 2vni + vni−1
∆x2

,

while, if µX(y) ≤ 0, we use the approximation

vn+1
i − vni

h
+ µX(y)

vni − vni−1
∆x

+
1

2
ρ2y

vni+1 − 2vni + vni−1
∆x2

.

The resulting scheme is
Ah∆x(y)v

n = vn+1, (4.71)

where Ah∆x(y) is the linear operator given by

(Ah∆x)ij(y) =


−βh∆x(y)− |αh∆x(y)|1αh

∆x(y)<0, if i = j + 1,

1 + 2βh∆x(y) + |αh∆x(y)|, if i = j,

−βh∆x(y)− |αh∆x(y)|1αh
∆x(y)>0, if i = j − 1,

0, if |i− j| > 1,

(4.72)

with
αh∆x(y) =

h

∆x
r − δ − ρ

σ
a+

(ρ
σ
b− 1

2

)
y, βh∆x(y) =

h

2∆x2
y.

We finally define Πh∆x(y) =
(
Ah∆x(y)

)−1.
Along with the finite different scheme, we need a Markov chain (Ŷ h

n )n=0,1,...,N approximating
the CIR process Y over the time grid (nT/N)n=0,1,...,N . The state space is the following, for
n = 0, 1, . . . , N one has the lattice

Yhn = {ynk}k=0,1,...,n with ynk =
(√

y +
σ

2
(2k − n)

√
h
)2
1{√y+σ

2
(2k−n)

√
h>0}. (4.73)

Note that Yh0 = {y}. For each fixed node (n, k) ∈ {0, 1, . . . , N − 1} × {0, 1, . . . , n}, the “up” jump
ku(n, k) and the “down” jump kd(n, k) from ynk ∈ Yhn are defined as

ku(n, k) = min{k∗ : k + 1 ≤ k∗ ≤ n+ 1 and ynk + µY (y
n
k )h ≤ yn+1

k∗ }, (4.74)

kd(n, k) = max{k∗ : 0 ≤ k∗ ≤ k and ynk + µY (y
n
k )h ≥ yn+1

k∗ }, (4.75)

where µY (y) = a− by and with the understanding ku(n, k) = n+1, resp. kd(n, k) = 0, if the set in
(4.74), resp. (4.75), is empty. Starting from the node (n, k) the probability that the process jumps
to ku(n, k) and kd(n, k) at time-step n+ 1 are set respectively as

pu(n, k) = 0 ∨
µY (y

n
k )h+ ynk − y

n+1
kd(n,k)

yn+1
ku(n,k)

− yn+1
kd(n,k)

∧ 1 and pd(n, k) = 1− pu(n, k).

We call (Ŷ h
n )n=0,1,...,N the Markov chain governed by the above jump probabilities.

Let ℓ∞(X ) = {g : X → R | supx∈X g(x) < ∞} with the norm |g|ℓ∞ = supx∈X g(x). With the
above Markov chain, Briani et al. in [17] proved that Πh∆x(·) satisfies the following Assumption K
with c = 1 and E = h+∆x.
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Definition 4.3.1 (Assumption K(∞, c, E)). Let c = c(y) ≥ 0, y ∈ R+, and E = E(h,∆x) ≥ 0
such that lim(h,∆x)→0 E(h,∆x) = 0. We say that the linear operator Πh∆x(y) : ℓ∞(X ) → ℓ∞(X ),
y ∈ D, satisfies this assumption if

∥Πh∆x(y)∥∞ := sup
|f |ℓ∞=1

|Πh∆x(y)f |ℓ∞ ≤ 1 + c(y)h, (4.76)

and, with u being defined in (4.63), for every n = 0, . . . , N − 1, one has

E[Πh∆x(Ŷ h
n )u((n+ 1)h, ·, Ŷ h

n+1)(x) | Y h
n ] = u(nh, x, Ŷ h

n ) +Rhn(x, Ŷ h
n ), (4.77)

where the remainder Rhn(x, Ŷ h
n ) satisfies the following property: there exists h̄, C > 0 such that for

every h < h̄,∆x < 1, and n ≤ N = ⌊T/h⌋ one has∥∥∥e∑n
l=1 c(Ŷ

h
l )h|Rhn(·, Ŷ h

n )|ℓ∞
∥∥∥
L1(Ω)

≤ ChE(h,∆x). (4.78)

In [17], Briani et al. proved the following Theorem.

Theorem 4.3.2. Let u defined in (4.63), (uhn)n=0,...,N be given by (4.70) with the choice

Πh∆x(y) =
(
Ah∆x(y)

)−1
,

where Ah∆x(y) is given in (4.72), and (Ŷ h
n )n=0,1,...,N defined as above. If ∂2jx f ∈ C∞,q−jpol (R,R+), for

every j = 0, 1, . . . , 4, then, there exist h̄, C > 0 such that for every h < h̄ and ∆x < 1 one has

|u(0, ·, y)− uh0(·, y)|ℓ∞ ≤ C(h+∆x). (4.79)

We are about to show that, under less regular f , we still have the convergence of the hybrid
procedure. We present a lemma that will help us prove this result.

Lemma 4.3.3. Let f ∈ C∞,0pol (R,R+), (φl)l∈N∗ a sequence of mollifiers over R2 and

f̃(x, y) = f(x, 0 ∨ y) and fl = f̃ ∗ φl. (4.80)

Then, for all q ∈ N, fl ∈ C∞,qpol (R,R+). In particular ∃C0, C
∗
0 > 0 such that for all l ∈ N, x ∈ R and

y ∈ R+

|fl(x, y)| ≤ C0(1 + |x|L + yL), sup
x∈R
|fl(x, y)| ≤ C∗0 (1 + yL). (4.81)

Proof. Let q ∈ N. Let f ∈ C∞,0pol (R,R+), then f̃ ∈ C∞,0pol (R,R) and in particular f̃ ∈ L∞loc(R2), hence
fl ∈ C∞(R2) and, for all multi-index k, Dkfl = f̃ ∗Dkφl. It remains for us to prove the polynomial
growth of Dkfl and supx∈R |Dkfl(x, y)| for all multi-index k such that |k| ≤ q. Let x ∈ R, y ∈ R+,
using that f̃ ∈ C∞,0pol (R,R) and (a+ b)L ≤ 2L−1(aL + bL) for all a, b ≥ 0

|Dkfl(x, y)| =
∣∣∣∣∫

R2

f̃(ζ − x, η − y)Dkφl(ζ, η)dζdη

∣∣∣∣ ≤ ∫
R2

|f̃(ζ − x, η − y)||Dkφl(ζ, η)|dζdη

≤
∫
R2

C(1 + |ζ − x|L + |η − y|L)|Dkφl(ζ, η)|dζdη

≤ C + CL(|x|L + yL) + CL

∫
R2

(|ζ|L + |η|L)|Dkφl(ζ, η)|dζdη

≤ Ck(l)(1 + |x|L + yL)

≤
(

max
k s.t. |k|≤q

Ck(l)
)
(1 + |x|L + yL),
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where we used the fact that Dkφl is C∞c (R2). Furthermore, if k = 0 than |Dkφl(ζ, η)| = φl(ζ, η)
and the integral

∫
R2(|ζ|L + |η|L)φl(ζ, η)dζdη → 0 when l goes to ∞. So the constant C0(l) = C0.

Now, let y ∈ R+,

sup
x∈R
|Dkfl(x, y)| = sup

x∈R

∣∣∣∣∫
R2

f̃(ζ − x, η − y)Dkφl(ζ, η)dζdη

∣∣∣∣
≤
∫
R2

sup
z∈R
|f̃(z, η − y)||Dkφl(ζ, η)|dζdη,

≤ (C + CLy
L) + CL

∫
R2

|η|L|Dkφl(ζ, η)|dζdη

≤ C∗k(l)(1 + yL)

≤
(

max
k s.t. |k|≤q

C∗k(l)
)
(1 + yL),

where once again, we used the fact that Dkφl is C∞c (R2). As in the previous estimate, if k = 0 than
|Dkφl(ζ, η)| = φl(ζ, η) and the integral

∫
R2 |η|Lφl(ζ, η)dζdη → 0 when l goes to∞. So the constant

C∗0 (l) = C∗0 .

We state and prove the main contribution of this section.

Theorem 4.3.4. Let f ∈ C∞,0pol (R,R+) and suppose that f is uniformly continuous over the sets
R × [0,M ] for all M > 0. Let u be the viscosity solution defined in (4.63) and uh0 the discrete
solution (4.70) produced by the backward hybrid procedure starting from f . Then

uh0(·, y)
l∞−−−−−−→

(h,∆x)→0
u(0, ·, y). (4.82)

Proof. Let (φl)l∈N∗ a sequence of mollifiers. For all l ∈ N∗, we define ul(t, x, y) = E[fl(Xt,x,y
T , Y t,y

T )]
where we replaced f with a mollified final data fl = f ∗φl, and uhn,l as the discrete solution produced
by the backward hybrid procedure starting from fl. Let x ∈ X and y ∈ R+, then

|u(0, ·, y)− uh0(·, y)|ℓ∞ ≤ |u(0, ·, y)− ûl(0, ·, y)|ℓ∞︸ ︷︷ ︸
I

+ |ul(0, ·, y)− uh0,l(·, y)|ℓ∞︸ ︷︷ ︸
II

+ |uh0,l(·, y)− uh0(·, y)|ℓ∞︸ ︷︷ ︸
III

.

Thanks to Theorem 4.3.2, term II can be upper bounded by ClT (h+∆x) that goes to zero when
(h,∆x) goes to zero (and does not depend on x). Regarding the term I, defined (X ·,yT , Y y

T ) =

(X0,·,y
T , Y 0,y

T ) one has

|u(0, ·, y)− ul(0, ·, y)|ℓ∞ ≤ |E[f(X ·,yT , Y y
T )− fl(X

·,y
T , Y y

T )]|ℓ∞
≤ |E[

(
f(X ·,yT , Y y

T )− fl(X
·,y
T , Y y

T )
)
1Y y

T ≤M
]|ℓ∞

+ |E[
(
f(X ·,yT , Y y

T )− fl(X
·,y
T , Y y

T )
)
1Y y

T >M
]|ℓ∞

≤ sup
x∈R,y∈[0,M ]

|f(x, y)− fl(x, y)|

+ E
[(
|f(·, Y y

T )|ℓ∞ + |fl(·, Y y
T )|ℓ∞

)
1Y y

T >M

]
.

Using (4.81), ∃C > 0 such that |f(·, Y y
T )|ℓ∞ + |fl(·, Y y

T )|ℓ∞ ≤ C(1 + (Y y
T )

L), then using Holder
inequality and then Markov inequality one has

I ≤ sup
x∈R,y∈[0,M ]

|f(x, y)− fl(x, y)|+ C∥(1 + (Y y
T )

L)∥Lp(Ω)

(
E[Y y

T ]

M

) p−1
p

. (4.83)
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Regarding the term III, by linearity of the conditional expectation and of the linear operator
Πh∆x(y) for n = 0, . . . , N − 1

uhn,l(·, y)− uhn(·, y) = E
[
Πh∆x(Ŷ

h
n )
(
uhn,l(·, Ŷ h

n+1)− uhn+1(·, Ŷ h
n+1)

)
| Ŷ h

n = y
]
.

Then we can rewrite the difference uh0,l(·, y)−uh0(·, y) can be seen as the discrete solution constructed
starting from fl − f . In fact, using the tower properties, we get by induction

uh0,l(·, y)− uh0(·, y) =E
[N−1∏
j=0

Πh∆x(Ŷ
h
j )
(
fl(·, Ŷ h

N )− f(·, Ŷ h
N )
)
| Ŷ h

0 = y

]

=E
[N−1∏
j=0

Πh∆x(Ŷ
h
j )
(
fl(·, Ŷ h

N )− f(·, Ŷ h
N )
)]
.

Furthermore, [17, Lemma 4.7] guarantees ∥Πh∆x(y)∥∞ ≤ 1 and so

∥∥∥N−1∏
j=0

Πh∆x(Ŷ
h
j )
∥∥∥
∞
≤ 1.

Then

|uh0,l(·, y)− uh0(·, y)|ℓ∞ ≤ E
[∥∥∥N−1∏

j=0

Πh∆x(Ŷ
h
j )
∥∥∥
∞
|fl(·, Ŷ h

N )− f(·, Ŷ h
N )|ℓ∞

]
≤ E[|fl(·, Ŷ h

N )− f(·, Ŷ h
N )|ℓ∞ ].

Now proceeding as for term I, one can show

III ≤ sup
x∈R,y∈[0,M ]

|f(x, y)− fl(x, y)|+ C∥(1 + (Ŷ h
N )

L)∥Lp(Ω)

(
E[Ŷ h

N ]

M

) p−1
p

. (4.84)

Finally, for every ε > 0, thanks to the boundedness of the moments of Y 0,y
T and the uniform (in

N) boundedness of all the moments of Ŷ h
N , we can choose M > 0 big enough to guarantee that the

second term in the right-hand sides of (4.83) and (4.84) are less than ε/5. Chosen M , thanks to
the uniform continuity of f , we can take l big enough to guarantee supx∈R,y∈[0,M ] |f − fl| ≤ ε/5 and
N0 ∈ N∗, δ > 0 such that for every N ≥ N0 and ∆x < δ one has ClT (h+∆x) < ε/5, and so

|u(0, ·, y)− uh0(·, y)|ℓ∞ ≤
2ε

5
+
ε

5
+

2ε

5
= ε.
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Appendix A

Appendices of Chapter 2

A.1 Proofs of Section 2.3

Proof of Lemma 2.3.1. (1) Let f ∈ PL(R). We haveX0(t, x)
j =

∑j
i=0

(
j
i

)
((a−σ2/4)ψk(t))j−ie−ktixi

and thus

f(X0(t, x)) =

L∑
j=0

aj

j∑
i=0

(
j

i

)
((a− σ2/4)ψk(t))j−ie−ktixi.

Therefore, f(X0(t, ·)) ∈ PL(R) and we have

∥f(X0(t, ·))∥ ≤
L∑
j=0

|aj |
j∑
i=0

(
j

i

)
(|a− σ2/4|ψk(t))j−ie−kti =

L∑
j=0

|aj |X̃0(t)
j ,

with X̃0(t) = e−kt + |a − σ2/4|ψk(t). For k ≥ 0, we have 0 ≤ ψk(t) ≤ t and thus X̃0(t) ≤
(1 + |a − σ2/4|t). For k < 0, we have X̃0(t) = e−kt(1 + |a − σ2/4|ψ−k(t)) ≤ e−kt(1 + |a − σ2/4|t).
Since (1 + |a− σ2/4|t)L ≤ 1 + t

∑j
i=1

(
j
i

)
|a− σ2/4|i(1 ∨ T )i ≤ 1 + t(1 + |a− σ2/4|(1 ∨ T ))L, we get

X̃0(t)
j ≤ (1 ∨ e−kLt)[1 + t(1 + |a− σ2/4|(1 ∨ T ))L] for j ∈ {0, . . . , L} and then

∥f(X0(t, ·))∥ ≤ (1 ∨ e−kLt)(1 + (1 + |a− σ2/4|(1 ∨ T ))Lt)∥f∥,

which gives the claim with CX0 = 1 + |a− σ2/4|(1 ∨ T ).

(2) Since Y is a symmetric random variable, we have

E[f(X1(
√
tY, x))] =

L∑
j=0

ajE[X1(
√
tY, x)j ] =

L∑
j=0

aj

2j∑
i=0

(
2j

i

)(
σ
√
t

2

)2j−i
E[Y 2j−i]xi/2

=
L∑
j=0

aj

j∑
i=0

(
2j

2i

)(
σ2t

4

)j−i
E[Y 2(j−i)]xi

=

L∑
j=0

ajx
j + t

L∑
j=0

aj

j−1∑
i=0

(
2j

2i

)(
σ2

4

)j−i
tj−i−1E[Y 2(j−i)]xi.

This proves that E[f(X1(
√
tY, ·))] ∈ PL(R). We note that E[Y 2j ] ≥ 1 by Hölder inequality since

E[Y 2] = 1, and thus E[Y 2j ] ≤ E[Y 2L] for j ∈ {0, . . . , L}. We get

∥f(X1(
√
tY, ·))∥ ≤ ∥f∥+ tE[Y 2L]

L∑
j=0

|aj |
j−1∑
i=0

(
2j

2i

)(
σ2

4

)j−i
(1 ∨ T )j−i

≤ ∥f∥
(
1 + tE[Y 2L]

(
1 +

σ

2

√
1 ∨ T

)2L)
,
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since
∑j−1

i=0

(
2j
2i

) (
σ2

4

)j−i
(1 ∨ T )j−i ≤

(
1 + σ

2

√
1 ∨ T

)2j
≤
(
1 + σ

2

√
1 ∨ T

)2L
. This gives the claim

with CX1 =
(
1 + σ

2

√
1 ∨ T

)2
.

Proof of Lemma 2.3.2. We have ũ0(t, x) = 1, and in the case m = 1, we have ũ1(t, x) = x+
∫ t
0 (a−

kũ1(s, x))ds that has the solution:

ũ1(t, x) = xe−kt + aψk(t)

where ψk(t) = 1−e−kt

k if k ̸= 0 and ψk(t) = t otherwise. This gives the claim for m = 1 with
ũ0,1 = aψk(t) and ũ1,1 = e−kt. We then prove the result by induction and consider m ≥ 2. Using
Itô formula and taking the expected value, one has ∂tũm(t, x) = (am+ σ2m(m− 1)/2)ũm−1(t, x)−
kmũm(t, x). Hence, we have

ũm(t, x) = (e−kt)m
(
xm +

∫ t

0
(am+ σ2m(m− 1)/2)(eks)mũm−1(s, x)ds

)
,

and we get the following induction relations that give us the representation (2.20){
ũj,m(t) = (e−kt)m

∫ t
0 (am+ σ2m(m− 1)/2)(eks)mũj,m−1(s)ds, 0 ≤ j ≤ m− 1,

ũm,m(t) = (e−kt)m.

Let f ∈ PL(R). We clearly get from the preceding result that E[f(X ·t)] ∈ PL(R) and

∥E[f(X ·t)]∥ ≤
L∑

m=0

|am|
m∑
j=0

|ũj,m(t)| ≤ Ccir(L, T )∥f∥.

A.2 Proofs of Section 2.4

Proof of Lemma 2.4.1. Properties (1)–(3) are straightforward, and we prove only (4)–(6).

(4) We use the fact that 1 + xL ≤ 2(1 + xL+1) for x ≥ 0, hence

max
j∈{0,...,m}

sup
x≥0

|f (j)(x)|
1 + xL+1

≤ 2 max
j∈{0,...,m}

sup
x≥0

|f (j)(x)|
1 + xL

.

(5) Let f ∈ Cm,Lpol (R+). We will use the fact that for all x ≥ 0, (1 + x)(1 + xL) ≤ 3(1 + xL+1) so

sup
x≥0

x|f (j)(x)|
1 + xL+1

≤ 3 sup
x≥0

x

1 + x
sup
x≥0

|f (j)(x)|
1 + xL

= 3 sup
x≥0

|f (j)(x)|
1 + xL

.

Now, we use the Leibniz rule onM1f and get (xf(x))(j) = jf (j−1)(x) + xf (j)(x), so

sup
x≥0

|(xf(x))(j)|
1 + xL+1

≤ j sup
x≥0

|f (j−1)(x)|
1 + xL+1

+ sup
x≥0

x|f (j)(x)|
1 + xL+1

.

Maximizing both sides on j ∈ {0, . . . ,m} and using the previous inequality gives ∥M1f∥m,L+1 ≤
m∥f∥m−1,L+1 + 3∥f∥m,L. We get the bound by using properties (2) and (4).

(6) We have ∥Lf∥m,L+1 ≤ a∥f ′∥m,L+1+(2m+3)[|k|∥f ′∥m,L+ σ2

2 ∥f
′′∥m,L] by using the property (5).

We get the estimate by using (3), (4) and (2). The other estimate for V 2
1 /2 is obtained by taking

a = σ2/4 and k = 0, while the one for V0 follows by using the same arguments.
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Proof of Lemma 2.4.5. For x > 0, we have

ψ′g(x) =

(
1 +

β

2
√
x

)
g′(x+ β

√
x+ γ) +

(
1− β

2
√
x

)
g′(x− β

√
x+ γ)

= g′(x+ β
√
x+ γ) + g′(x− β

√
x+ γ)︸ ︷︷ ︸

ψg′ (x)

+ β2
∫ 1

0
g′′(x+ β(2u− 1)

√
x+ γ)du,

since d
dug
′(x + β(2u − 1)

√
x + γ) = 2β

√
xg′′(x + β(2u − 1)

√
x + γ). Clearly, this derivative is

continuous at 0 which shows that ψg is C1.
We are now in position to prove (2.26) by induction on n. It is true for n = 0, 1. We assume

that it is true for n. Then, we get by using the case n = 1, differentiating (2.26) and an integration
by parts for the fourth term:

ψ(n+1)
g (x) =ψg(n+1)(x) + β2

∫ 1

0
g(n+2)(x+ β(2u− 1)

√
x+ γ)du

+

n∑
j=1

(
n

j

)
β2j
(∫ 1

0
g(n+j+1)(x+ β(2u− 1)

√
x+ γ)

(u− u2)j−1

(j − 1)!
du

+β2
∫ 1

0
g(n+j+2)(x+ β(2u− 1)

√
x+ γ)

(u− u2)j

j!
du

)
.

We then reorganize the terms as follows

ψ(n+1)
g (x) =ψg(n+1)(x) + (n+ 1)β2

∫ 1

0
g(n+2)(x+ β(2u− 1)

√
x+ γ)du

+ β2n+2

∫ 1

0
g(2n+2)(x+ β(2u− 1)

√
x+ γ)

(u− u2)n

n!
du

+

n∑
j=2

(
n

j

)
β2j
(∫ 1

0
g(n+j+1)(x+ β(2u− 1)

√
x+ γ)

(u− u2)j−1

(j − 1)!
du

)

+
n−1∑
j=1

(
n

j

)
β2j+2

(∫ 1

0
g(n+j+2)(x+ β(2u− 1)

√
x+ γ)

(u− u2)j

j!
du

)
.

The last sum is equal to
∑n

j=2

(
n
j−1
)
β2j
(∫ 1

0 g
(n+j+1)(x+ β(2u− 1)

√
x+ γ) (u−u

2)j−1

(j−1)! du
)

by chang-

ing j to j − 1, and we conclude by using that
(
n
j

)
+
(
n
j−1
)
=
(
n+1
j

)
.

Proof of Corollary 2.4.6. We use (2.26) with γ = β2/4. We first notice that

|ψg(n)(x)| ≤ ∥g∥n,L(2 + (
√
x+ β/2)2L + (

√
x− β/2)2L)

= ∥g∥n,L

(
2 + 2xL + 2

L∑
i=1

(
2L

2i

)
(β/2)2ixL−i

)
.

Using that xi ≤ 1 + xL for 0 ≤ i ≤ L− 1, we get

|ψg(n)(x)| ≤ 2∥g∥n,L(1 + xL)
L∑
i=0

(
2L

2i

)
(β/2)2i = ∥g∥n,L(1 + xL)

(
(1 + β/2)2L + (1− β/2)2L

)
.

For the other terms, we use that for u ∈ [0, 1], x ≥ 0 and j ∈ {1, . . . , n},

|g(n+j)(x+ β(2u− 1)
√
x+ β2/4)| ≤ ∥g∥2n,L(1 + (x+ β(2u− 1)

√
x+ β2/4)L)

≤ ∥g∥2n,L(1 + (
√
x+ β/2)2L).
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We again expand (
√
x + β/2)L = xL +

∑2L
i=1

(
2L
i

)
(β/2)ix(L−i)/2 and use that x(L−i)/2 ≤ 1 + xL to

get
|g(n+j)(x+ β(2u− 1)

√
x+ β2/4)| ≤ ∥g∥2n,L(1 + β/2)2L(1 + xL).

Besides, we have u−u2 ≤ 1/4 for u ∈ [0, 1] and thus
∫ 1
0 (u−u

2)jdu ≤ 1
4j

, which gives supx≥0
|ψ

g(n) (x)|
1+xL

≤
C̃(β) with

C̃(β) = ∥g∥n,L
(
(1 + β/2)2L + (1− β/2)2L

)
+ ∥g∥2n,L(1 + β/2)2L

n∑
j=1

(
n

j

)(
β2

4

)j
= ∥g∥n,L

(
(1 + β/2)2L + (1− β/2)2L

)
+ ∥g∥2n,L(1 + β/2)2L(1 + β2/4)n

≤ ∥g∥2n,L
(
(1 + β/2)2L + (1− β/2)2L + (1 + β/2)2L(1 + β2/4)m

)
= Cβ,m,L∥g∥2n,L,

which gives the claim.

A.3 Assumption (H1) for symmetric random variables

Theorem A.3.1. Let η : R → R+ be a C∞ even function. Then, η∗m ≥ 0 for all m ∈ N∗
if and only if η(

√
·) is the Laplace transform of a finite positive Borel measure µ on [0,∞), i.e.

η(
√
x) =

∫∞
0 e−txµ(dt) for all x ∈ R+.

Proof. We start to prove that η∗m ≥ 0 for all m ∈ N∗ implies η(
√
x) =

∫∞
0 e−txµ(dt) for all x ∈ R. To

prove this, we use Bernstein’s Theorem for completely monotone functions (see e.g. [43, Theorem
12a p. 160]) and show that for all m ∈ N and x ∈ R∗+, (−1)m∂mx [η(

√
x)] ≥ 0. To do so, we prove by

induction on m the representation

∂mx [η(
√
x)] = −(m− 1)!

22m−1
x−m

m∑
j=1

cj,mx
j
2 η(j)(

√
x) = (−1)m (m− 1)!

22m−1
x−mη∗m(

√
x).

For m = 1, we have η∗1(
√
x) = c1,1

√
xη′(
√
x) and the representation holds from ∂x[η(

√
x)] =

1
2
√
x
η′(
√
x) = − 1

2xη
∗
1(
√
x) using that c1,1 = −1. Now, let m ≥ 2 and suppose the representation is

true for m− 1, so

∂mx [η(
√
x)] = ∂x(∂

m−1
x [η(

√
x)]) = ∂x

(
− (m− 2)!

22m−3
x−(m−1)

m−1∑
j=1

cj,m−1x
j
2 η(j)(

√
x)

)
.
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Differentiating and using that ∂x
(
x

j
2 η(j)(

√
x)
)
= 1

2x

(
jx

j
2 η(j)(

√
x) + x

j+1
2 η(j+1)(

√
x)
)
, we get

∂mx [η(
√
x)] = − (m− 2)!

22m−3

(
− m− 1

xm

m−1∑
j=1

cj,m−1x
j
2 η(j)(

√
x)

+
1

2xm

m−1∑
j=1

cj,m−1

(
jx

j
2 η(j)(

√
x) + x

j+1
2 η(j+1)(

√
x)

))

= − (m− 2)!

22m−3
x−m

((1
2
−m− 1

)
c1,m−1x

1
2 η(1)(

√
x)

+
m−1∑
j=1

(( j
2
−m+ 1

)
cj,m−1 +

1

2
cj−1,m−1

)
x

j
2 η(j)(

√
x)

+
1

2
cm−1,m−1x

m
2 η(m)(

√
x)

)

= − (m− 1)!

22m−1
x−m

(( 2

m− 1
− 4
)
c1,m−1x

1
2 η(1)(

√
x)

+
m−1∑
j=1

(( 2j

m− 1
− 4
)
cj,m−1 +

2

m− 1
cj−1,m−1

)
x

j
2 η(j)(

√
x)

+
2

m− 1
cm−1,m−1x

m
2 η(m)(

√
x)

)

and we conclude using the recursion formula (2.40) for cj,m.
We now assume that η(

√
x) =

∫∞
0 e−txµ(dt) and show that η∗m ≥ 0 for all m ≥ 1. We define

ηg(x) = e−
x2

2 and consider for all t > 0 the function ηt(x) = e−tx
2 . We remark that for all t > 0,

ηt(x) = ηg(ht(x)) with ht(x) =
√
2tx and so we can write by Lemma 2.4.14

(ηt)
∗
m(x) = (−1)m−1

m∑
j=1

cj,mx
jη

(j)
t (x) = (−1)m−1

m∑
j=1

cj,m(
√
2tx)jη(j)g (

√
2tx) = (ηg)

∗
m(
√
2tx).

Therefore, (ηt)∗m(x) ≥ 0 for all t > 0 and x ∈ R. We now consider an even function η : R → R+

such that η(
√
x) =

∫∞
0 e−txµ(dt) for some Borel measure µ on [0,∞). We then have for all x ∈ R,

η(x) =
∫∞
0 e−tx

2
µ(dt) =

∫∞
0 ηt(x)µ(dt) and thus η(j)(x) =

∫∞
0 η

(j)
t (x)µ(dt). This gives, for all

m ∈ N∗,

η∗m(x) = (−1)m−1
m∑
j=1

cj,mx
jη(j)(x) =

∫ ∞
0

(−1)m−1
m∑
j=1

cj,mx
jη

(j)
t (x)µ(dt)

=

∫ ∞
0

(ηt)
∗
m(x)µ(dt) ≥ 0

where the last integral is positive for all x ∈ R because is an integral of a positive function against
a positive measure.

Corollary A.3.2. All the densities that satisfy the hypothesis of the representation Lemma 2.4.13
for all m ∈ N∗ are such that η(

√
·) is the Laplace transform of a finite positive Borel measure µ over

[0,∞).
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Appendix B

Some other results for CIR process

In this Appendix chapter, we list some results that have been proven concerning the CIR process,
but that we have not attached to any article.

B.1 Improvements in Ck,Lpol(R+) theory for CIR

Here, we present an extension of the representation presented in Lemma 2.4.13

Lemma B.1.1. Let M,L,Ξ ∈ N. Let Y be a symmetric random variable with density η ∈ CM (R)
such that for all i ∈ {0, . . . ,M}, there exists ε > 0 such that |η(i)(v)| = o(|v|−2(L+Ξ+1+ε)−i) for
|v| → ∞. Then, for all function f ∈ CM,L

pol (R+), m ∈ {1, . . . ,M}, ν ∈ {0, . . . ,Ξ} and t ∈ [0, T ] one
has the following representation

∂mx E[Y 2νf(X1(
√
tY, x))] =

∫ ∞
−∞

∫ 1

0
(u− u2)m−1f (m)(w(u, x, v))η∗,νm (v)dudv (B.1)

where w(u, x, v) = x + (2u − 1)σ
√
tv
√
x + σ2tv2/4, η∗,νm (v) = (−1)m−1

(∑m
j=1 cj,mv

j η̂
(j)
ν (v)

)
, with

η̂ν(v) = v2νη(v) and the coefficients cj,m are defined by induction, starting from c1,1 = −1, through
the following formula

cl,m =

(
2l

m− 1
− 4

)
cl,m−11l<m +

2

m− 1
cl−1,m−11l>2, l ∈ {1, . . . ,m}, m ∈ {2, . . . ,M}. (B.2)

Let now ν = 0 and define η∗m(v) = η∗,0m (v). If the density η is such that η∗m(v) ≥ 0 for all v ∈ R,
and all m ∈ {1, . . . ,M}, then there exists C ∈ R+ such that

∀m ∈ {1, . . . ,M},∀t ∈ [0, T ] ∥E[f(X1(
√
tY, ·))]∥m,L ≤ (1 + Ct)∥f∥m,L. (B.3)

Furthermore, for all ν ∈ {1, . . . ,Ξ}, there exists C ∈ R+ such that

∀m ∈ {1, . . . ,M},∀t ∈ [0, T ] ∥E[Y 2νf(X1(
√
tY, ·))]∥m,L ≤ C∥f∥m,L. (B.4)

Let us stress here one important fact. When ν ≥ 1, differently to the case ν = 0, we do not
want to prove the sharper estimate with coefficient 1 + Ct, because we will use the estimate (B.4)
a fixed finite number of times to prove a (less demanding in derivatives) H1 property.

Proof. We sketch the proof that is almost identical to the proof of Lemma 2.4.13. The proof of
(B.1) is identical to that used to prove (2.39) but this time we replace η(v) with η̂ν(v) = v2νη(v).
(B.3) is the same as (2.41). Regarding (B.4),we have

|∂mx E[Y 2νf(X1(
√
tY, x))]| ≤

∫ 1

0
(u− u2)m−1

∫ ∞
−∞
|f (m)(w(u, x, v))||η∗,νm (v)|dvdu

≤ ∥f∥m,L
∫ 1

0
(u− u2)m−1

∫ ∞
−∞

(1 + w(u, x, v)L)|η∗,νm (v)|dvdu.
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We use that 1 + w(u, x, v)L ≤ (1 + 2L(1 + σ2Tv2/4)L)(1 + xL), and (u− u2)m−1 ≤ 1 to get

|∂mx E[Y 2νf(X1(
√
tY, x))]| ≤ ∥f∥m,L

∫ ∞
−∞

(1 + 2L(1 + σ2Tv2/4)L)|η∗,νm (v)|dv(1 + xL),

and the hypothesis on η guarantees that the integral is finite and less of a constant C depending on
σ, L and T . Finally, one has

|∂mx E[Y 2νf(X1(
√
tY, x))]| ≤ (1 + xL)C∥f∥m,L,

and this proves the desired norm inequality.

Thanks to estimate (B.4) in Lemma B.1.1, we can improve the estimate in the remainder in
formula (2.29) in Lemma 2.4.7. We state the following result.

Lemma B.1.2. Let m,L ∈ N, T > 0, t ∈ [0, T ] and Y ∼ N (0, 1). We have, for f ∈ Cm+2(ν+1),L
pol (R+),

E
[
f(X1(

√
tY, x))

]
=

ν∑
i=0

ti

i!

(
1

2
V 2
1

)i
f(x)

+ tν+1

∫ 1

0

(1− u)2ν+1

(2ν + 1)!
E
[
Y 2ν+2V 2ν+2

1 f(X1(u
√
tY, x))

]
du, (B.5)

with ∥∥∥∥∫ 1

0

(1− u)2ν+1

(2ν + 1)!
E[Y 2ν+2V 2ν+2

1 f(X1(u
√
tY, ·))]du

∥∥∥∥
m,L+ν+1

≤ C1∥f∥m+2(ν+1),L (B.6)

and C1 ∈ R+ depending on (a, k, σ), T , m, M and ν.

Proof. To get (B.5), we proceed like in the proof of (2.29) in Lemma 2.4.7, and we use Fubini
Theorem in the end to exchange the integral with the expected value. Thanks to Lemma 2.4.14,
being Y ∼ N (0, 1), η∗m ≥ 0 for all m ∈ N, then we can get the better estimate (B.6) using (B.4)
instead of exploiting the estimate in Corollary 2.4.6.

We can now prove a sharper version of Proposition 2.4.8.

Proposition B.1.3. Let Y ∼ N (0, 1), σ2 ≤ 4a and X̂x
t be the scheme (2.16). Let m ∈ N, L ∈ N∗

and f ∈ Cm+6,L
pol (R+). Then, we have for t ∈ [0, T ],

E[f(X̂x
t )] = f(x) + tLf(x) + t2

2
L2f(x) + R̄f(t, x),

with ∥R̄f(t, ·)∥m,L+3 ≤ Ct3∥f∥m+6,L.

Proof. The proof is identical to that used to prove Proposition 2.4.8, but now instead of using the
estimate found in Lemma 2.4.7 for the remainder of the expansion of the functional of f(X1(

√
tY, ·))

we use (B.6).

We state the improved version of Theorem 2.2.2

Theorem B.1.4. Let X̂x
t be the scheme defined by (2.10) for σ2 ≤ 4a and Qlf(x) = E[f(X̂x

hl
)], for

l ≥ 1. Then, for all f ∈ C12pol(R+), we have P̂ 2,nf(x)− PT f(x) = O(1/n4) as n→∞.
Besides, for f ∈ C6νpol(R+), we have P̂ ν,nf(x)− PT f(x) = O(1/n2ν).

Proof. One only needs to replace Proposition 2.4.8 with Proposition B.1.3 in the proof of Theorem
2.2.2.
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B.2 High order approximation of the CIR semigroup in the high
volatility regime

Here, we present very simple ideas to get high order approximations for CIR semigroup in the high
regime σ2 > 4a. We start stating a simple Lemma.

Lemma B.2.1. Let k ∈ N, L ∈ N∗ and f ∈ Ck+1,L
pol (R+). We define M−1f as M−1f(x) = f(x)/x

and f0 as f0(x) = f(x) − f(0) for every y ≥ 0. Then M−1f0 ∈ Ck,Lpol(R+) and there exists C > 0
such that ||M−1f0||j,L−1 ≤ C||f ||j,L for every j ∈ 0, . . . , k − 1.

Proof. Let f ∈ Ck+1,L
pol (R+), it is easy to show thatM−1f is k + 1 times differentiable in 0, then it

is k-times continuously differentiable in 0, as in the rest of the domain. Then, thanks to the Taylor
formula centered in 0, for all j ∈ {0, . . . , k} one has

f(x) =

j∑
i=0

f i(0)xi +

∫ x

0

(x− t)j

j!
f (j+1)(t)dt,

and so subtracting f(0) and dividing for x in both sides

M−1f0(x) =
j−1∑
i=0

f j+1(0)xi +
1

x

∫ x

0

(x− u)j

j!
f (j+1)(u)du.

Considering the j − th derivatives, we get

∂jxM−1f0(x) =
j∑
i=0

(
j

i

)
(−1)ii!
xi+1

∫ x

0

(x− u)i

i!
f (j+1)(u)du.

We can give the following estimates

|∂jxM−1f0(x)| ≤
j∑
i=0

(
j

i

)
i!

xi+1

∫ x

0

(x− u)i

i!
||f ||j+1,L(1 + uL)du

= ||f ||j+1,L

j∑
i=0

(
j

i

)
1

xi+1

(
xi+1

i+ 1
+

i∑
l=0

(
i

l

)
(−1)lxi−l

∫ x

0
uL+ldu

)

= ||f ||j+1,L

j∑
i=0

(
j

i

)
1

xi+1

(
xi+1

i+ 1
+

i∑
l=0

(
i

l

)
(−1)lxi−l x

L+l+1

L+ l + 1

)

= ||f ||j+1,L

j∑
i=0

(
j

i

)(
1

i+ 1
+

i∑
l=0

(
i

l

)
(−1)l xL

L+ l + 1

)

≤ ||f ||j+1,L

j∑
i=0

(
j

i

)
(1 + xL) ≤ 2k||f ||j+1,L(1 + xL).

Hence, for all j ∈ {0, . . . , k}, ||M−1f0||j,L ≤ C||f ||j+1,L.

Proposition B.2.2. Let t ∈ (0, T ] and consider (X1,x
t )t∈[0,T ], (X2,x

t )t∈[0,T ] solutions to (2.1)
with the parameter a replaced respectively by a1 = a + σ2/2 and a2 = a + σ2. Let f such that
lim supx→0+ |f(x)− f(0)|/x <∞ and such that E[|f(Xx

t )|] <∞, Then

E[f(Xx
t )] = f(0) + aψk(t)E[M−1f0(X1,x

t )] + e−btxE[M−1f0(X2,x
t )]. (B.7)
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Proof. Let f such that lim supx→0+ |f(x) − f(0)|/x < ∞ and E[|f(Xx
t )|] < ∞. We recall the

transition probability density of Xx
t

pa(t, x, z) =

∞∑
i=0

e−dtx/2(dtx/2)
i

i!

ct/2

Γ(i+ v)

(ctz
2

)i−1+v
e−ctz/2,

where ct =
4ψk(t)
σ2 , v = 2a/σ2 and dt = cte

−bt. For all i ∈ N and v > 0, Γ(i+1+v) = (i+v)Γ(i+v),
then for all z > 0

pa(t, x, z) =

∞∑
i=0

e−dtx/2(dtx/2)
i

i!

(i+ v)ct/2

Γ(i+ 1 + v)

(ctz
2

)i−1+v
e−ctz/2

=
2

ctz

∞∑
i=0

e−dtx/2(dtx/2)
i

i!

(i+ v)ct/2

Γ(i+ 1 + v)

(ctz
2

)i+v
e−ctz/2

=
dtx

ctz

∞∑
i=0

e−dtx/2(dtx/2)
i

i!

ct/2

Γ(i+ 2 + v)

(ctz
2

)i+1+v
e−ctz/2

+
2v

ctz

∞∑
i=0

e−dtx/2(dtx/2)
i

i!

ct/2

Γ(i+ 1 + v)

(ctz
2

)i+v
e−ctz/2

we call v1 = 1 + v = 2a1/σ
2 and v2 = 2 + v = 2a2/σ

2, and we remark that we can rewrite the
density as follows

pa(t, x, z) =
2v

ctz
pa1(t, x, z) +

dtx

ctz
pa2(t, x, z) =

aψk(t)

z
pa1(t, x, z) +

e−btx

z
pa2(t, x, z) (B.8)

We rewrite E[f(Xx
t )] = f(0) + E[f0(Xx

t )] and remark that

E[f0(Xx
t )] =

∫ ∞
0

f0(z)pa(t, x, z)dz =

∫ ∞
0

f0(z)

(
aψk(t)

z
pa1(t, x, z) +

e−bty

z
pa2(t, x, z)

)
dz

= aψk(t)

∫ ∞
0
M−1f0(z)pa1(t, x, z)dz + e−btx

∫ ∞
0
M−1f0(z)pa2(t, x, z)dz

= aψk(t)E[M−1f0(X1,x
t )] + e−btxE[M−1f0(X2,x

t )]

that concludes the proof.

Remark B.2.3. The two diffusions (Xi,y
t )t∈[0,T ] i ∈ {1, 2} have coefficients σ1 = σ2 = σ and

a1 = a+ σ2/2, a2 = a+ σ2, so both satisfy the well known Feller condition, σ2i ≤ 2ai. So equation
(B.7) shows that it is possible to apply approximation techniques that work under the Feller condition,
also in the high volatility regime σ2 > 4a.

Theorem B.2.4. Let T > 0 and σ2 > 4a. Let X̂i,x
t be second order Ninomiya Victoir schemes

for (Xi,x
t )t∈[0,T ] i ∈ {1, 2}, P̂

ν,n
i the linear operator that approximate the CIR semigroup P iT with

rate 2ν. Let f ∈ C6ν+1,L
pol (R+), L ∈ N and P̂ ν,n∗ the linear operator defined as P̂ ν,n∗ f(x) = f(0) +

aψk(t)P̂
ν,n
1 M−1f0(x) + e−bTxP̂ ν,n2 M−1f0(x), then there exists C > 0 that does not depend on the

function f such that

||P̂ ν,n∗ f − PT f ||0,L+7 ≤
C

n2ν
||f ||6ν+1,L (B.9)
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Proof. Let f ∈ 6ν + 1, by linearity of P̂ ν,n∗ and PT one has P̂ ν,n∗ f − PT f = P̂ ν,n∗ f0 − PT f0 for all
x ∈ R+. One has

||P̂ ν,n∗ f − PT f ||0,L+7 = ||P̂ ν,n∗ f0 − PT f0||0,L+7

≤ aψk(T )||P̂ ν,n1 M−1f0 − P
1
TM−1f0||0,L+7

+ e−bT ||x(P̂ ν,n2 M−1f0 − P
2
TM−1f0)||0,L+7

≤ aψk(T )||P̂ ν,n1 M−1f0 − P
1
TM−1f0||0,L+7

+ 3e−bT ||P̂ ν,n2 M−1f0 − P
2
TM−1f0||0,L+6

≤ aψk(T )C1n
−2ν ||M−1f0||6ν+1,L+1

+ 3e−bTC2n
−2ν ||M−1f0||6ν,L

≤ C∗1n−2ν ||f ||6ν+1,L+1 + C∗2n
−2ν ||f ||6ν+1,L

≤ 2C∗1n
−2ν ||f ||6ν+1,L + C∗2n

−2ν ||f ||6ν+1,L

≤ Cn−2ν ||f ||6ν+1,L,

where we used to get the first inequality Proposition B.2.2 to rewrite PT f0 as aψk(T )P 1
TM−1f0 +

e−bTxP 2
TM−1f0, Theorem B.1.4 to get the third inequality and Lemma B.2.1 to get the fourth

one.

B.3 The CIR moment formula and polynomial schemes

It is well-known in the literature that one can obtain a moment formula for the CIR process using
the CIR SDE; for example, as in Lemma 2.3.2, one can show, for all L ∈ N∗

E
[
(f(Xx

t ))
L
]
=

L∑
j=0

ũj,L(t)x
j ,

giving a recursive formula for the coefficients without writing their explicit form. We present here
a proof of the CIR moment formula that gives the explicit form of the coefficients ũj,m(t) using
the transition density of the CIR process. Then, we apply the knowledge of the exact form of the
coefficients to construct schemes that converge for all polynomial functions f ∈ P(R).

B.3.1 The CIR moment formula

To prove the moment formula, we start with one Lemma, but first, we define for all i, j ∈ N,

i∗j = i(i− 1) · · · (i− j + 1) (B.10)

with the convention i∗0 = 1 (and 0∗j = 0 for all j ≥ 1). We state and prove the following result.

Lemma B.3.1. Let L ∈ N∗, i ∈ N and v ∈ R, then

L−1∏
j=0

(i+ j + v) =
L∑
j=0

(
L

j

) L−1∏
q=j

(q + v) i∗j . (B.11)

Proof. For L = 1 the right hand of (B.11) is simply
(
1
1

)
1i∗1 +

(
1
0

)
vi∗0 = i + v, so the equality is

verified. We consider the representation true for L ≥ 1, and we prove the representation for L+ 1.

L∏
j=0

(i+ j + v) =

L−1∏
j=0

(i+ j + v)(i+ L+ v) =

L∑
j=0

(
L

j

) L−1∏
q=j

(q + v) i∗j (i− j + j + L+ v)
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we develop the multiplication by the term (i− j + j + L+ v), dividing it in i− j, j and we get

L∏
j=0

(i+ j + v) =

L∑
j=0

(
L

j

) L−1∏
q=j

(q + v) i∗j+1 +

L∑
j=0

(
L

j

)
j

L−1∏
q=j

(q + v) i∗j

+
L∑
j=0

(
L

j

) L∏
q=j

(q + v) i∗j

= i∗L+1+
L−1∑
j=0

(
L

j

) L−1∏
q=j

(q + v) i∗j+1 +
L∑
j=1

(
L

j

)
j
L−1∏
q=j

(q + v) i∗j

+

L∑
j=1

(
L

j

) L∏
q=j

(q + v) i∗j +

L∏
q=0

(q + v)

= i∗L+1+
L−1∑
j=0

(
L

j

) L−1∏
q=j

(q + v) i∗j+1︸ ︷︷ ︸
=I

+
L−1∑
j=0

(
L

j + 1

)
(j + 1)

L−1∏
q=j+1

(q + v) i∗j+1︸ ︷︷ ︸
=II

+

L−1∑
j=0

(
L

j + 1

) L∏
q=j+1

(q + v) i∗j+1︸ ︷︷ ︸
=III

+
L∏
q=0

(q + v),

where we get the second line taking out the term for j = L from the first addend and the term for
j = 0 from the third one. Now we sum the term I with the term II

I + II =

L−1∑
j=0

((
L

j

)
(j + v) +

(
L

j + 1

)
(j + 1)

) L−1∏
q=j+1

(q + v) i∗j+1

=
L−1∑
j=0

((
L

j

)
(j + v) +

L!

j!(L− j)!
(L− j)

) L−1∏
q=j+1

(q + v) i∗j+1

=

L−1∑
j=0

(
L

j

)
(L+ v)

L−1∏
q=j+1

(q + v)i∗j+1

=
L−1∑
j=0

(
L

j

) L∏
q=j+1

(q + v) i∗j+1,

and consequently the term III, and we get

I + II + III =

L−1∑
j=0

((
L

j

)
+

(
L

j + 1

)) L∏
q=j+1

(q + v) i∗j+1

=

L−1∑
j=0

(
L+ 1

j + 1

) L∏
q=j+1

(q + v) i∗j+1

=

L∑
j=1

(
L+ 1

j

) L∏
q=j

(q + v) i∗j .
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Finally,

L∏
j=0

(i+ j + v) = i∗L+1 +
L∑
j=1

(
L+ 1

j

) L∏
q=j

(q + v) i∗j +
L∏
q=0

(q + v)

=

L+1∑
j=0

(
L+ 1

j

) L∏
q=j

(q + v) i∗j .

Corollary B.3.2. Let i ∈ N, v ∈ R such that i + v > 0, Z a random variable distributes as a
Γ(i+ v, c), and we define

δcirj,L(v) =

(
L

j

) L−1∏
q=j

(q + v). (B.12)

Then for all L ∈ N∗, the L− th moment of the random variable Z is

E[ZL] =
(
1

c

)L L∑
j=0

δcirj,L(v) i
∗
j . (B.13)

Proof. The result follows from a direct application of the identity (B.11) to the well-known formula
of the moments of the gamma law

E[ZL] =
(
1

c

)LΓ(i+ L+ v)

Γ(i+ v)
=

(
1

c

)L L−1∏
j=0

(i+ j + v) =

(
1

c

)L L∑
j=0

(
L

j

) L−1∏
q=j

(q + v) i∗j .

Proposition B.3.3. Let Xx
t the CIR process starting from x ∈ R+, t ∈ [0, T ], a > 0 and v = 2a/σ2.

Then, the moment of (Xx
t )[0,T ] are given by the following formula

E
[
(Xx

t )
L
]
=

L∑
j=0

δcirj,L(v)

(
σ2ψk(t)

2

)L−j
e−jktxj . (B.14)

Proof. We recall the density of Xx
t

p(t, x, z) =

∞∑
i=0

e−dtx/2(dtx/2)
i

i!

ct/2

Γ(i+ v)

(ctz
2

)i−1+v
e−ctz/2

where ct = 4
σ2ψk(t)

, v = 2a/σ2 and dt = cte
−kt. Then, the L− th moment is given by

E
[
(Xx

t )
L
]
=

∫ ∞
0

zL
∞∑
i=0

e−dtx/2(dtx/2)
i

i!

ct/2

Γ(i+ v)

(ctz
2

)i−1+v
e−ctz/2dz

=
∞∑
i=0

e−dtx/2(dtx/2)
i

i!

∫ ∞
0

zL
ct/2

Γ(i+ v)

(ctz
2

)i−1+v
e−ctz/2dz.

We use now the formula of the L− th moment of a random variable Zi ∼ Γ(i+ v, 2/ct) in Corollary
B.3.2 to get ∫ ∞

0
zL

ct/2

Γ(i+ v)

(ctz
2

)i−1+v
e−ctz/2 = E[ZLi ] =

(
2

ct

)L L∑
j=0

δcirj,L(v) i
∗
j ,
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and so

E
[
(Xx

t )
L
]
=
∞∑
i=0

e−dtx/2(dtx/2)
i

i!

(
2

ct

)L L∑
j=0

δcirj,L(v) i
∗
j

=

(
2

ct

)L L∑
j=0

δcirj,L(v)

∞∑
i=0

e−dtx/2(dtx/2)
i

i!
i∗j

=

(
2

ct

)L L∑
j=0

δcirj,L(v)

(
dtx

2

)j

=

L∑
j=0

δcirj,L(v)

(
σ2ψk(t)

2

)L−j
(e−ktx)j ,

where we used the fact that dt = e−ktct and ct = 4
σ2ψk(t)

to get the last equality.

B.3.2 Polynomial schemes

We show now how we can take advantage of knowing the explicit form of the coefficients in the
moment formula to build weak approximation schemes when the test function f ∈ P(R).
Proposition B.3.4. Let v > 0, ν ∈ N∗ and (Z̃i)i∈N a family of positive random variable such that

E[Z̃Li ] =
L∑
j=0

δZj,L(v) i
∗
j where δZj,L = δcirj,L for all j ∈ {(L− ν) ∨ 0, . . . , L}. (B.15)

We call Zi = 2/ctZ̃i for all i ∈ N and X̂x,Z
t the random variable distributed has ZP where P ∼

P(dtx/2) (i.e. a Poisson random variable with parameter dtx/2). Then for all L ∈ N∗ and f ∈
PL(R) one has

∥E[f(X̂ ·,Zt )]− E[f(X ·t)]∥ ≤ Ctν+1∥f∥. (B.16)

Proof. Let m ∈ N, m > ν one can easily use (B.15) to show that

E
[(
X̂ ·,Zt

)m]− E[f(X ·t)m] =
m∑
j=0

(δZj,m(v)− δcirj,m(v))
(σ2ψk(t)

2

)m−j
e−jktxj

=
(σ2ψk(t)

2

)ν+1
m−ν−1∑
j=0

(δZj,m(v)− δcirj,m(v))
(σ2ψk(t)

2

)m−ν−1−j
e−jktxj

whereas on the other hand if m ≤ ν then E[X̂ ·,Zt ]−E[X ·t] vanishes. Then, let L ∈ N∗ and f ∈ PL(R),
using the previous step one has

E[f(X̂x,Z
t )]− E[f(Xx

t )] =

L∑
m=0

am

(
E
[(
X̂x,Z
t

)m]− E[f(Xx
t )
m]
)

=
(σ2ψk(t)

2

)ν+1
L∑

m=ν+1

am

m−ν−1∑
j=0

(δZj,m(v)− δcirj,m(v))
(σ2ψk(t)

2

)m−ν−1−j
e−jktxj

then E[f(X̂ ·,Zt )]− E[f(X ·t)] ∈ PL(R) and

||E[f(X̂ ·,Zt )]− E[f(X ·t)]||

≤
(σ2ψk(t)

2

)ν+1
L∑

m=ν+1

|am|
m−ν−1∑
j=0

|δZj,m(v)− δcirj,m(v)|
(σ2ψk(t)

2

)m−ν−1−j
e−jkt

≤Ctν+1∥f∥,
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where we used that ψk(t) ≤ e(−b+)T t for all 0 ≤ t ≤ T and C = (σ2e(−b+)T /2)ν+1CL and

CL = max
t≤T

m∈{ν+1,...,L}

m−ν−1∑
j=0

|δZj,m(v)− δcirj,m(v)|
(σ2ψk(t)

2

)m−ν−1−j
e−jkt.

We now provide an example of a first-order scheme that works without parameter restrictions.

Example B.3.5. Let Z̃i ∼ P(i+ v), then

E[Z̃Li ] =
L∑
j=0

δZj,L(v) i
∗
j where δZj,L = δcirj,L for all j ∈ {(L− 1) ∨ 0, L}.

So X̂x,Z
t = ZP where Zi = 2/ctZ̃i and P ∼ P(dtx/2) is a first order scheme.

Proof. Let L ∈ N∗, the moments of a Poisson random variable Zλ of parameter λ have the following
formula

E[Z̃Lλ ] =
L∑
j=0

{
L

j

}
λj

where
{
L
j

}
are Stirling numbers of the second kind. It is well known that

{
L
L

}
= 1,

{
L
L−1
}
=
(
L
2

)
=

L(L − 1)/2, and one could prove for L ≥ 2,
{

L
L−2
}

= L(L − 1)(L − 2)(3L − 5)/24. Using the
definition of Zi and the formula of the Stirling coefficients.

E[Z̃Li ] =
L∑
j=0

(i+ v)j
{
L

j

}
,

we just want to rewrite the right-hand side in terms of basis {i∗0, . . . , i∗L}, to explicit the coefficients
of the terms i∗L, i

∗
L−1 and to check that are equal respectively to δcirL,L = 1 and δcirL−1,L = L(L−1)+Lv.

The key remark in order to do this calculation is that

ij = i∗j +
j(j − 1)

2
ij−1 +

j−2∑
l=0

cli
l,

so iterating the formula, one gets

ij = i∗j +
j(j − 1)

2
i∗j−1 +

j−2∑
l=0

c∗l i
∗
l . (B.17)

Then one has

E[Z̃Li ] = (i+ v)L +
L(L− 1)

2
(i+ v)L−1 +

L−2∑
j=0

(i+ v)j
{
L

j

}
,

= iL + LviL−1 +
L(L− 1)

2
iL−1 + · · ·

= i∗L + (L(L− 1) + Lv)i∗L−1 +
L−2∑
j=0

δZj,Li
∗
j

where we expanded (i+ v)L and (i+ v)L−1 to get the second equality and used (B.17) to pass from
the base {i0, . . . , iL} to {i∗0, . . . , i∗L}. To check δZj,2 = δcirj,2 for j ∈ {0, 1, 2} is trivial.
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One could check that even δZL−2,L = δcirL−2,L when L = 2 that proves that when x is smaller than
a certain threshold Ct, the scheme is indeed of order two (because matches the first two moments
of CIR distribution). Unluckily, one can verify using the same calculations used in the proof and
the formula for

{
L
L−2
}

that δZL−2,L < δcirL−2,L for all L ≥ 3. Now, we show using numerical tests what
we have proved for f ∈ P(R): X̂x,Z

t is a scheme of order one.
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Figure B.1: Parameters: x = 0.3, a = 0.04, k = 0.1, σ = 2.0, f(z) = exp(−z) and
T = 1 (σ

2

2a = 50). Graphic (a) shows the values of P̂ 1,nf , as a function of the time
step 1/n and the exact value. Graphic (b) draws log(|P̂ 1,nf − PT f |) in function of

log(1/n) and a regressed line. The slope of the regressed line is 1.05.
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Figure B.2: Parameters: x = 0.0, a = 0.04, k = 1.0, σ = 2.0, f(z) = exp(−4z) and
T = 1 (σ

2

2a = 50). Graphic (a) shows the values of P̂ 1,nf , as a function of the time
step 1/n and the exact value. Graphic (b) draws log(|P̂ 1,nf − PT f |) in function of

log(1/n) and a regressed line. The slope of the regressed line is 1.16.
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