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Chapter 1

Introduction

In the general theory of relativity the
doctrine of space and time, or
kinematics, no longer figures as a
fundamental independent of the rest of
physics. The geometrical behaviour of
bodies and the motion of clocks rather
depend on gravitational fields, which in
their turn are produced by matter.

A. Einstein

With these words, in his non-scientific book "The World As I See It" [Ein35|, Albert
Einstein effectively resumes one of his most famous equations. Mathematically, this translates
into having a complete Lorentzian manifold (M, g) satisfying the equation

e ($) - "

where Ric = Ric(+,-) is the Ricci tensor of (M, g), S = trgRic and T is a given symmetric
smooth (0,2)-type tensor field called energy-momentum tensor. Even if in the present Thesis
the Einstein equation (1.1) plays a marginal role, the author believes appropriate to review it
here since it describes the "world" where the protagonists of the next Chapters live.

We will focus our attention on isolated gravitational systems. These physical models are
well-described by 3-dimensional submanifolds of (M, g) with suitable asymptotics. In the
following, we will assume that there exists a smooth immersion j : M — M and a smooth
vector field eg on M such that eg is timelike and the restriction of g to M | i.e. g := j'g,
is a Riemannian metric. We additionally suppose that M contains a compact subset C C M
such that M\ C, called end of the manifold M, is diffeomorphic to R?\ By (0) through a chart
#: M\ C — R\ B;(0) which induces a Euclidean metric g° := (Z71)" (-, ")gs. Furthermore,
we assume that g — g°, and its derivatives, decay suitably at infinity. At the moment we do
not specify which decay we need, see Definition 1.1.1 for details. We finally set

K(-,-) = (A(-,), —eo), i :=T(eo, ep), J(-) :=T(eo, "), (1.2)

where A is the second fundamental form of the immersion j. K, 7 and J are, respectively,
the (scalar) spacetime second fundamental form of M, the energy density and the momentum
density. In term of these new quantities, the Einstein equations (1.1) can be written, through
the Gauss-Mainardi-Codazzi equations [Leel8, Thm. 8.3, as
S — K2 + (trgK)? = 21 (13)
V- (K) —d (trgK) = J. '
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Choquet-Bruhat proved that the validity of the system (1.3) for a tuple (M, g, K, 1z, J) implies
the existence of a spacetime associated to this tuple in the sense of (1.2), see [CB09|, [Leel9].
This remark allows us to define an initial data set as a notion which is independent from the
one of spacetime manifold (at least formally), but including the whole information encoded.

For isolated gravitational systems, a notion of energy can be given, provided they satisfy
suitable asymptotics. More precisely, if the scalar curvature of (M,g) is integrable, i.e. S €
L'(M,g), then it is possible to define the so called ADM-energy, named after Arnowitt, Deser
and Misner [ADMG61], given by the following limit of flux integrals

Bao = lim (1607 3" [ {0y~ 0uis) 7 d (1.4)
r—00 op ffl(gr(o))

where #71(S,(0)) is the Euclidean sphere immersed in (M, g), v, and dp, are, respectively, its
normal vector and its volume form in (M, g) and 0, is the derivative in local coordinates in
the chart Z. In a similar way, Beig-O Murchadha [BOMS7] defined the so called ADM-center
of mass. It is a vector of R which is given as a limit of flux integrals on Euclidean spheres,
similarly to the definition of ADM-energy. Explicitly,

- 1 . = a- \Ig
(CADM)’Y = 167 EApM rll{go |:/i"1(87‘(6)) azﬁ:x’Y (Bagaﬁ aﬁgaa) r dpiy

_ j'oz — _)'y
- 8oy~ T Baa d:uT:| ’
/g::l(gr(a)) Za: < T r )

for v € {1,2,3}. Note that in these definitions the Euclidean foliation {:Z"_l (ST(6)> }T>r0

has the important role of being used in order to encode physically relevant information of the

(1.5)

system. With few computations, one can show that 7~ <Sr(6)) in (1.4) can be replaced with

other families of surfaces, provided they are sufficiently round, in a precise sense (see Lemma
3.1.3).

Round surfaces such as the Euclidean spheres, however, do not represent in general a good
coordinate system for (M, g). This is essentially due to the fact that the round surfaces do not
necessarily have constant mean curvature (CMC). In the context of Mathematical General
Relativity, in the late ’80s Christodoulou and Yau employed CMC surfaces in the study of
the quasi-local mass.

In 1996, the seminal work of Huisken and Yau [HY96] showed that, in an asymptotically
Schwarzschildean setting of positive mass, i.e. a metric g on M \ C which satisfies, for some

c
< =3 (1.6)

m > 0,
4 m 4
1" o (855 (1+ 575 ) B )| < 12
g; o 2071} "7 )| = 14

one can construct a family of CMC-surfaces {37 },>4, which exhaust the end of the manifold.

Moreover they do not self-intersect and H>" — 0 as 0 — 0o. Setting s, := %, since X7 is
diffeomorphic to S1, one can define a bijective map
D . (So,OO) XS —> M \ C. (1.7)

such that, for every s > sg, ®(s,-) maps S; in the unique CMC round surface ¥* of mean
curvature 2/s. The definition of this map goes through the use of the inverse function, see
e.g. [Hual2, Sect. 5.3]. Such a family of leaves is called CMC-foliation. From a physical
point of view, a CMC-foliation is a sort of abstract center of mass, which allows to describe
the manifold (M,g) through the polar representation (1.7).
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In the construction of Huisken-Yau, each CMC-leaf is obtained trough the deformation
of a Euclidean sphere, performed by the so called volume preserving mean curvature flow.
Once the large time existence of this flow is proved, each CMC-leaf is obtained as a long time
limit of the flow. This flow has no longer been studied in the context of asymptotically flat
manifolds, except for the work of Corvino and Wu [CWO08].

After this seminal result, the foliation described above has been constructed by different
methods and under different hypotheses in various papers. Ye, and later Huang, based their
construction on the implicit function theorem, see [Ye97|,[Hual0], while the work of Metzger
[Met07] gave rise to a branch of the field of study in which the foliation is constructed through
a continuity method. This culminated with the work of Nerz [Nerl5|, which obtained the
foliation under the decay assumption we will describe in Definition 1.1.1. The optimality
of these hypotheses has been highlighted in [Nerl8]. Nerz’s result was later modified by
Cederbaum and Sakovich in order to construct a different type of foliation, which we will
explain in more detail below. Recently, Eichmair and Koerber presented a new construction
of the foliation trough a Lyapunov-Schmidt reduction [EK24|. The advantage of the method
employed by Eichmair and Koerber is that this works in every dimension n > 3.

The foliation-approach started by Huisken and Yau allows to introduce another notion of
center of mass, whose definition formally coincides with the one we would use in a Euclidean
context, i.e. the limit of the integral mean of barycenters. This new center of mass, sometimes
called geometric center of mass, is given by

Comc := Crli_}rrgo ﬁ . Z du’, (1.8)
where du? is the measure induced by g on 37 and |X9| is its area. In other words, passing to the
CMC-coordinate system flattens the manifold without losing the non-Euclidean information.

Under suitable symmetry assumptions, known as weak Regge-Teitelboim conditions, it was
proved that the CMC-center of mass exists if and only if the Beig-O Murchadha center of
mass exists. In the case in which both exist, they coincide. Moreover, under the so called
strong Regge- Teitelboim conditions, the Beig-O Murchadha center of mass exists, and thus also
the CMC-center of mass. On the other hand, on an asymptotically flat manifold where the
Regge-Teitelboim condition are not satisfied, these centers of mass may not be well-defined.
In particular, Cederbaum and Nerz [CN15] constructed explicit examples where both these
objects do not converge.

For this reason, Cederbaum and Sakovich [CS21] introduced a new foliation, based on
a modified curvature, whose leaves are not CMC but satisfy a prescribed mean curvature
equation. As said before, their construction is based on the method of continuation of Nerz.
In order to understand their foliation, it is necessary to introduce the notion of spacetime
mean curvature of a surface X, which is given by

H? = H? — P?, (1.9)

where P := try(K) and g is the metric on ¥ induced by g. See Section 2.1 for more details.
In the present Thesis, we will also work with a generalization of (1.9), see equation (2.12). In
|CS21], Cederbaum and Sakovich prove the existence of a constant spacetime mean curvature
(CSTMC) foliation of the outer part of M, and define a corresponding CSTMC-center of
mass as the limit of the barycenters of the leaves. It is proved that the CSTMC-center of
mass exists also in some cases in which the previous one does not. Moreover, the new center
of mass has a physical relevance. From a spacelike point of view, the equation satisfied by
each CSTMC surface looks like a prescribed mean curvature equation. A similar equation
was present in the work of Metzger [Met07], who constructed surfaces satisfying the so called
constant expansion equation ©4 = H + P = const, where ©F are the null curvatures of X.
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Instead, each leaf in the foliation constructed by Cederbaum and Sakovich in [CS21] satisfies
the equation

const =H =+ H2—-P2=+H+PVH—-P=:,/0,,/0_.

The two equations are different if the right hand side is strictly positive, as in the case of our
interest. On the other hand, it is interesting to notice that they coincide if the right-hand
side is zero, in which case we recover a well-known class called trapped surfaces, or MOTS,
which has been studied by various authors (for example [AEM11]| or [EHLS15]).

1.1 Results of the present Thesis

This Thesis has two main goals. The first is recovering the CMC-foliation constructed by
Nerz in [Nerl5|, through a volume preserving mean curvature flow, i.e. generalizing the work
of Huisken-Yau [HY96]. Secondly, we also aim to recover the spacetime CMC-foliation of
Cederbaum-Sakovich through a volume preserving flow. In order to do this, we have to de-
fine a non-linear version of the volume preserving mean curvature flow, which we call volume
preserving spacetime mean curvature flow.

Volume preserving mean curvature flow (Chapter 4). Similarly to Huisken-Yau, we
study a volume preserving mean curvature flow starting from Fuclidean spheres, namely we
consider a smooth family of immersions {F}},c(o,7), 0 < T < oo which evolves according to

: 1.10
Py (1.10)

0

{5?(-) = — (H(t,") = h(t) v(t,")
where ¢ is the immersion of the Euclidean sphere Sr(ﬁ) in M. Moreover, from now on, we are
supposing M to be an asymptotically flat manifold, see Definition 1.1.1. We remark that our
hypotheses on the ambient manifold M are more general and differs from those of Huisken-Yau
because of two main reasons, as we will explain after the following Definition.
Definition 1.1.1. Let § € (0,3]. A Riemannian 3-manifold (M,g) is said to be CEH-

2

asymptotically flat if there exist a compact subset C C M, a constant ¢ > 0 and a diffeomor-
phism @ : M \ C — R3\ By (0) such that

_ ) _ ) _ i o—Li_§
|gaﬁ - 50&5‘ + ’(L" ‘8’Ygo¢ﬁ‘ + ‘$|2 ‘a"/awga,@‘ < C|$’ 2 (111)

where 8,5 := (T*8)ap and 0y is the local derivative in the chart. We moreover assume that the
scalar curvature S = trg (Ric) satisfies S| < ¢lZ| =370, We will often refer to this hypothesis
as the mass condition.

In the following, we will always assume that Eapy > 0, and we refer to this condition as
the positive mass condition. The integrability of the scalar curvature is a sort of reminiscence
of the scalar flatness of the Schwarzschild space. Some comments concerning the negative
mass case can be found in Section 4.3.2.

Note that in Definition 1.1.1 we require a suitable decay only for two derivatives of the
metrics, and not for four derivatives as in [HY96], see (1.6). Note also that in the asymp-
totically Schwarzschildean case of Huisken-Yau we have § = % For this reason, our methods
to prove long time existence and asymptotic convergence of the flow use different techniques
from those of Huisken-Yau. In particular, the lack of control on the derivatives of the Rie-
mann tensor of our case does not allow to control the roundness of the evolving surfaces by
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the usual maximum principle arguments employed in the literature on mean curvature flow.
The core of our proof is a suitable definition of the class of round surfaces, which involves
integral norms of the traceless second fundamental form and of the oscillation of the mean
curvature. Since we are interested in the analysis of these integral quantities, a crucial role in
the proof is played by integration by parts, in the spirit of Metzger, see for example [Met07,
Lemma 3.3].

We are then able to prove invariance of this class by a careful analysis of the time evolution
of our integral quantities, combined with powerful recent results from the literature [DLMO5],
and estimates on the barycenter of the evolving surface. In order to carry out a fruitful
analysis on the evolution of the barycenter, we need to additionally suppose that (M, g) sat-
isfies a weak Regge-Teitelboim condition, see for example Definition 3.1.19. This is again
a reminiscence of the Schwarzschildean setting of Huisken-Yau. However, being asymptoti-
cally Schwarzschildean is a requirement stronger than the Regge-Teitelboim condition, since
it includes an asymptotic radial symmetry assumption. A crucial ingredient in the proof is
a slight generalization of the spectral theory of the stability operator as presented in [Nerl5]
and [CS21]. We present an analysis of this operator which is similar to the one carried out by
Nerz and Cederbaum-Sakovich. Since our surfaces are just round and not CMC, the presence
of some additional terms which does not allow us to deduce the positivity of the stability
operator. However, in our dynamical analysis, we only apply the stability operator to the
deformation H — h, and in this case also the additional terms will give good contributions to
our purposes. We end the paragraph stating the first main theorem of the Thesis.

Theorem 1.1.2 (Sinestrari-T.). Let (M,g) be a C§+5—a5ymptotz'cally flat 3-manifold with
Eapm > 0 and satisfying the weak Regge-Teitelboim conditions. Let ¥ be the solution of
the volume preserving mean curvature flow starting from the Fuclidean coordinate sphere
7! (Sr(ﬁ)), for a large enough radius r > 0. Then 3, exists for all t € [0,00) and ex-
ponentially converges to a CMC-surface as t — oo.

Volume preserving spacetime mean curvature flow (Chapter 5). The aim of Chapter
5 is to consider again the flow approach of Huisken-Yau and extend it to the context of
spacetime mean curvature. We study here a volume preserving flow where the mean curvature
is replaced by the spacetime mean curvature. In particular, we consider an initial data set

(M, g, K) which satisfies (1.1.1) and the following asymptotic flatness.

Definition 1.1.3. Let 6 € (0, %] An asymptotically flat initial data set is a triple (M, g, K)
such that the pair (M,g) is a C’%M-asymptotically flat (with respect to the chart Z) and
2

moreover it holds B B ,
Kol + 110, Kag| <7277, (1.12)

where Ko = (*K)ag. On the other hand, we say that (M,g,K) is constrained by the pair
(7, J) if (1.3) holds together with

il + 7] < el (1.13)

Observe that in the definition of initial data set the decay of the scalar curvature is a
consequence of equation (1.3). In this context, for an arbitrary but fixed power g > 2, we set

H = ¢/Hi— |P|a. (1.14)
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We denote with & the integral mean of H. We then aim to show long time existence and
convergence of solutions of the system

{%?(-) = —[H(t,) = h()] V(L") (1.15)
FO =1

This time we choose as initial data the immersion ¢ : ¥ < M of a surface of the spacelike
CMC-foliation, which satisfies better estimates than a Euclidean coordinate sphere. A similar
choice is made in [CS21], where the continuity method is implemented taking the CMC-leaves
as starting surfaces. As for the flow (1.10) above, we show that with our choice of initial
data the solution of (1.15) exists for all times and converges to a limit that is CSTMC. The
CMC-property of the initial surface allows us to carry out the spectral analysis on a more
restricted class of surfaces, on which the stability operator has a better behaviour than in the
previous case. On the other hand, there are new difficulties because the speed of the flow is
nonlinear in H and moreover the flow is no longer area-decreasing. In particular, the crucial
step of our analysis (Theorem 5.0.14), where the invariance of the roundness class under the
flow is obtained, requires a different argument from the space-like case, which combines the
estimates of different integral norms of the oscillation of the space time mean curvature. Our
convergence result provides an alternative construction of the foliation obtained in [CS21], and
has an independent interest in the analysis of the behaviour of curvature flows in asymptoti-
cally flat spaces. A further motivation for our study comes from the recent work of Huisken
and Wolff, who study a spacetime version of the inverse mean curvature flow, see [HW22].

We finally highlight that the hypotheses of the results described in Chapter 5 could be
generalized, for example modifying H to be a nonlinear function of H with suitable asymp-
totics. However, we do not focus our interest on these technicalities in order to maintain a
point of contact between the flow and the physical setting. We end stating the main theorem
of this Chapter.

Theorem 1.1.4 (T.). Let (M,g,K) be a constrained Ci+5-asymptotically flat initial data set
2

in the sense of Definition 1.1.3, and suppose that Eapy > 0. Fiz g > 2. Let v: X <— M be a
closed CMC-surface immersed in (M,g) and, setting o = oy, := +/|X|/4w, suppose that there
exists Cy > 0 such that

° (o
HAHL“(E) < 000—1—6, ‘52’ < 000'1_6, — <1+ Co_l, (1.16)
rs

where ry, := mingey, |Z(x)|. Then, there exists o9 = 00(Co,¢,0,q) > 1 such that if o > o,
the solution ¥, to the spacetime mean curvature flow (1.15) exists for every t € [0,00) and
converges exponentially fast to a surface ¥3% satisfying the prescribed mean curvature equation

Hiy = |PlLy + iy (1.17)

Jor some constant hgse > 0.
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Surfaces in asymptotically flat spaces

2.0.1 Definitions and basic properties

In this introductory Section we briefly review some definitions, notations and well-known
results in Riemannian geometry.

In the following we will always indicate with (M, g) a 3-dimensional complete Riemannian
manifold. Local coordinates on M will be indicated with Greek letters, such as «, 3,7, w, etc.
Moreover, ¥ or ¢ : ¥ — M will always be a surface immersed in M, with induced metric
g := 1*g. Local coordinates on ¥ will be indicated with Latin letters, such as i, j, k, [, etc.
Similarly to the notation for the metrics, the overlined geometric quantity will refer to (X, g);
otherwise, they refer to (3, ¢g). Sometimes, for example when writing the Ricci tensor of X,
we will put the focus on ¥ writing Ric”.

We will indicate with TM the tangent space to M, and with T2 the tangent (phase)
plane to Y. The outer unit normal to 3 in T'M will be indicated with v. We highlight that
the field v is defined on X but for each x € ¥ we have v, € T),)M. In general, to indicate
that V' is a smooth vector field, we write V € F°°.

As we will review in Section 2.1, we represent with A = {h;;} the second fundamental
form of ¥, and with H = ¢g"h;; = try(A) the mean curvature of ¥. Moreover, du = dpg will
be the volume form of ¥ induced by g.

We now recall the main well-known identities. The Gauss equation and the Gauss-Codazzi
equation say, respectively, that

Rimyitm = Ry + hithim — Pgm i, (2.1)
Tracing (2.2) with respect to the indexes ¢ and j, we get
Vihi — Vi H = Ric ,* — %wakgywuauﬂ = Ricy,”. (2.3)

This allows us to deduce the Simons’ identity. We briefly prove it as stated in [Met07]. This
identity relates the Hessian of the mean curvature to the laplacian of the second fundamental
form.

Lemma 2.0.1 (Simons’ identity).

Ahi; =ViVH + Hhihy; — |Ahij + hiRmpgr + bRy

_ P (2.4)
+V; (Riciwl/‘”) +V (meiﬂyw)

Proof. We use normal coordinates on X.. Taking the derivative Vj of (2.2) we get

ViVihi; = ViVihj + Vi (Rmgja®) . (2.5)
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By the commutation of the derivatives and the symmetry of the second fundamental form, it
holds
VieVihij = ViVihj + R, hnj + Rog o, A

Combining this with (2.2) and the Gauss equation (2.1), we have

ViVihij =V Vihi; + Rmgiimhmg + (Piihim — hembir) Bmg

+ R jm ot + (hijhim — Bimhig) hint + Vi (Rmgjv®) (2:6)
Using again (2.2), we have
ViVihiy = Vi (Vjihi + Ry ) - (2.7)
The thesis follows combining (2.6) and (2.7), summing over k = [ and noting that
hijhimPmk — Pemhichmj = Rjkhimbmi — Rjmhmiehie; = 0.
O

Lemma 2.0.2. Let M and X be as above, and consider a smooth bilinear form Eag on M.
Then B - B B
ViBij = (V (B))ijk — hkiBwjl/w — hijmV'y, (2.8)

where V (E) is the covariant derivative of B.

Proof. Consider local normal coordinates {e;}; on 3, completed by v to a local frame of M.
Since B(e;, e5) is a scalar function on X,

Vi(B(ei,e5)) = (V (B)) (ei ¢, ex) — B(Viei, e5) — Bles, Vie;).

We used that Vj, and V}, on scalar functions, coincide with the derivative with respect to ej.
Note that, by definition of second fundamental form and the choice of normal coordinates we
have

Viei = Viei + hpiv = hyv,

and thus the thesis follows. O

2.0.2 Energy and center of mass

The mass condition introduced in Definition 1.1.1 can be generalized by the request S €
L'(M,g). This allows to define the ADM-energy, named after Arnowitt, Deser and Misner
[ADMG61] recalled in (1.4). However, for our aims, we will use the following equivalent charac-
terization of the energy of the system, proved in [MT16]| but already well-known in literature
(see, for example, [Chr86], [Sch88]).

Definition 2.0.3 (ADM-energy). Let (M,g) be a C’E_Fts—asymptotically flat 3-manifold that
satisfies the mass condition. The ADM-enerqgy is deﬁ;ed as

. R =
EADM = — lim / . G(I/R, I/R) dMR7 (29)
Z=1(Sr(0))

R—oo 8T
where G := Ric — (%) g is the (spacelike) Einstein tensor.

In the time-symmetric case (i.e. K = 0) the ADM-energy is also called ADM-mass.
However, when K # 0, the two definitions differ. Thus, avoiding ambiguities, during this
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Thesis we will refer to the limit in (2.9) always as ADM-energy. We remark also that, in
the case of the asymptotically Schwarzschildean manifolds of Huisken-Yau [HY96], the ADM-
energy coincides with the parameter m > 0. We now introduce the notion of ADM-mass
when K # 0.

Definition 2.0.4 (ADM-mass). Let (M,g,K) be a Cf/2+5 asymptotically flat initial data set
and define g = (trgﬁ) g — K, the so called conjugate momentum tensor. The ADM-linear
momentum is a vector @ = (w1, 72, m3) € R? defined by

where duf, is the Euclidean volume form on {|Z| = R}. Then the ADM-mass of (M,g,K) is
defined as

MADM ‘= E;ZXDM — |7_r'|2.

Using the divergence theorem, it can be easily proved that the mass condition implies
that the ADM-energy is well defined. The notion of mass also clarifies why we require the
decay exponent % + 4, with ¢ € (0, %] In fact, in the case 6 < 0 it has been proved that
R3 can be equipped with a chart which does not have zero energy, as one would expect from
the Euclidean space, see |DS83]. On the other hand, if § > %, it is easy to see, from the
definition of Fapn, that Eapy = 0. This is not desirable when working with centers of mass
(as can be seen in the definition we will give in a moment); moreover, we will work just in the
case of positive ADM-energy, as we will see in the next Chapters and as we underlined in the
introduction.

In [RT74] and [BOMS7], Regge-Teitelboim and Beig-O Murchadha introduced the so called
ADM-center of mass, named again after Arnowitt, Deser and Misner and recalled in (1.5).
Similarly to the case of the ADM-energy, we use here an equivalent definition introduced by

Miao and Tam in [MT16].

Definition 2.0.5 (ADM-center of mass). Let (M, g, ¥) be a C’%H—asymptotically flat manifold
2
with Eapm # 0. We say that (M, g,Z) admits the ADM-center of mass if the limits

Wq = lim G(Ya,vr) dur (2.10)
R=oe J{|z|=R}

exist finite, where Y, (T) = (R?6*% — 2z°7") %. In this case, we set & := (w1, w2, ws) and
>3
C T 8wEapMm

The mass condition is not enough to assure the existence of the vector C. However, an
asymptotic symmetry condition which guarantees the existence of the center of mass is the so
called (strong-)Regge-Teitelboim condition. Even if the original references for this condition

goes back to [RT 74|, we mainly refer to [Hual0O], [Nerl5].

Definition 2.0.6 (Strong Regge-Teitelboim condition). Let (M,g, ) a CEH—asymptotically
2
flat manifold. We say that this manifold satisfies the strong or C§+5-Regge— Teitelboim condi-
2

tion if there exists a positive constant ¢ > 0 such that

+ [Z| |Top(@) + Tap(—7)| + |7]? |Ricap(T) — Ricas(—7)]

|(Bap) s — (Bas) s
+ |77 S@) - S(-7)| < x|§+5’
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for everyT € M \ C.

The following Lemma shows how the divergence theorem and the Regge-Teitelboim con-
dition assure the existence of C.

Lemma 2.0.7. Let (M,g,Z) be a C§+6—asymptotically flat manifold. If it satisfies the C’%M—
2 2

Regge-Teitelboim conditions, then the ADM-center of mass, i.e. the vector C= &TLE, is well-

defined.

Proof. We prove the existence of the limits in (2.10). Identifying, for sake of simplicity, Sg(0)
with its preimage through &, and using the divergence theorem, we compute, for .S larger than

R,

. (2.11)

G (Ya,v) d,u—/ G (Ya,v) du
Sr(0)

/ TP, (Va) dx
Ss(0) Bs(0)\Br(0)

where dX is the volume form of (M,g). Since 0z,(Ya)" = 27769 — 20,577 — 27%0 5, we find
that equation (2.11) equals

2/  GpazPdx— 2/ Gon@? dx + 2/  Gppz" dx
Bs(0)\Br(0) Bs(0)\Br(0) Bs(0)\Br(0)

/ . . @ﬁgfa dx
Bs(0)\Br(0)

using that G is symmetric. Since égg = %, we proceed as follows. We introduce the antipodal
map on M, given by p : M — M that sends T + (Z)~!(—&(Z)) =: —Z. Then, there exists
U C M such that Bg(0) \ Bg(0) = UUp(U). Then

/ )  Szz® dx = / Sz dx + / Sz dX = / Sz dx — / S_z7° dx.
Bs(0)\Br(0) U p(U) U U

Then

=2

9

Bs(0)\Br(0)

/ o SmEedx| < / ISz — S_z||[z7%] dx < c/ z%||z| 740 dx,
Bs(0)\Br(0) U

using the Regge-Teitelboim condition. Using polar coordinates, we conclude that

/ G (Yy,v) du—/ G (Y, v) du
$s(0) Sr(0)

This proves the claim. O

lim =0.

R,S—o0

Weak Regge-Teitelboim condition. As we have already seen in the hypothesis of The-
orem 1.1.2 in Chapter 1, we will assume a weak version of the Regge-Teitelboim condition,
which differs from Definition 1.1.2 for a decay 1 + § instead of % + 6. This change of the
decay assumptions does not assure anymore the existence of C. However, it is well-known
that if the weak Regge-Teitelboim condition holds and C exists, then the foliation constructed
in Theorem 1.1.2 admits a barycenter which coincides with the ADM-center of mass. See
[Nerl5, Thm. 6.3].
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ADM-CoM in initial data sets. Cederbaum-Nerz [CN15] showed the existence of explicit
examples of initial data sets with non-converging ADM-center of mass. These examples
arise as 3-dimensional submanifolds of the Schwarzschild spacetime, solution to the vacuum
field equations, and thus they are expected to have 0 as ADM-center of mass. Recently,
Cederbaum-Sakovich [CS21] have given a characterization for the existence of a modified
center of mass that takes into account the spacetime nature of the examples constructed
in [CN15]. In particular, the ADM-center of mass is modified by a correction term which
compensates the non-converging behavior of the limit in the definition of center of mass,
giving the expected center of mass. In the second part of the Thesis (Chapter 5) we will
define a spacetime version of the volume preserving mean curvature flow with the aim of
recovering the modified ADM-center of mass introduced in [CS21].

2.1 Surfaces in asymptotically flat manifolds

We dedicate this Section to surfaces in asymptotically flat manifolds, both in the time-
symmetric and the non time-symmetric case. Even if in the Introduction we fixed the notation
for describing Riemannian 3-manifolds, we saved until the present Section the moment to fix
the basic definitions about surfaces, since they are the main object of the whole Thesis, and we
want to imprint their notion in the context of the asymptotically flat manifolds as presented
up to this point in the Chapter.

From now on, with 2-surface we mean an immersion ¢ : ¥ — M \ C, with dim¥ = 2,
which is closed, connected and 2-faced. Since M \ C is dlffeomorphlc to R3 \ B1(0), the sur-
face ¥ inherits two Riemannian metrics: a physical metric g := (*g and a Fuclidean metric
ge
time a quantity is computed with respect to the Euclidean metric, and we will omit the apex
if it is computed using the physical metric. Then, fixed an outer unit normal v : ¥ — T M,
we represent with A = {h;;}, H and dpu, respectively, the second fundamental form, the mean

:= 1*g¢, where g° is the Euclidean metric on M. From now on, we will use the apex e each

o
curvature and the volume form of ¥ with respect to g. Moreover we write A = A — & 5.
On the other hand, if v¢ : ¥ — TM is the outer normal ﬁeld of X with respect to g¢, we

represent the same quantities with A¢ = {h -}, He, dp® and A Observe that, when we are
on a hypsersurface ¥, we use the latin 1ndexes 1,7, k, [, etc, to distinguish from the ambiental
coordinates, which are indicated with the greek indexes «, 3,7, €, etc. Finally, we define

1 1
h—/Hd,u, he:—/Hed,ue7
2 Js 12l Js

which are, respectively, the mean of the mean curvature computed with respect to the physical
and the Euclidean metric. Here |X| = [ dp and |X¢] = [ dp°.

In order to estimate the Euclidean position of an immersed surface and its area, we
introduce now some useful definitions.

Definition 2.1.1. Let (M,g) be a 3-manifold, and consider an immersed surface v : 3 —
M\ C with induced metric g = 1*g. Then we set

_ ]2l
re=min |Z(e(2)),  Rp=max|@((z))l,  oz=4/
These radit are called Fuclidean radius, Fuclidean diameter and area radius, respectively.

Surfaces of codimension 2. If (M,g K) is an asymptotically flat initial data set and
> — M, the surface 3 can be seen as a codimension 2 submanifold of the spacetime associated
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to (M,g,K). As a result, together with the spacelike mean curvature, which we continue to
call simply mean curvature, we have an additional scalar mean curvature called timelike mean
curvature and a spacetime mean curvature which takes into account each extrinsic curvature.

Definition 2.1.2. Fiz ¢ > 2. Let (M,g,K) be C§+5—asymptotically flat initial data set. Let
2

L X% — M be a surface of M, with induced metric g :== (1*g. We define the timelike mean
curvature of ¥ as P = tr,(K) := g“K;;. Let moreover H be the (spacelike) mean curvature
of X. Then, we define the spacetime (q-)mean curvature of X, if it exists, as

M, = HI— |PJs, (2.12)

This is essentially the Minkowski q-length of the vector (ﬁ, P), where H is the vector mean
curvature of X.. In the case (2.12) is globally defined on X, we furthermore set

hy = ][ H, dp. (2.13)
%

Since g will be arbitrary but fixed, in the following we will simply write H and A, without
ambiguities.
Lemma 2.1.3. Let (M,g,K) be a Cia-asymptotically flat initial data set. Then there exist

2
constants C = C(¢) > 0 and cin = cin(¢) > 0, also depending on the choice of q, such that if
t: X — M\ C is a surface with induced metric g :== 1*g and there exists o > 1 such that

1 5
2 > e > 2, —gngi Vr e, (2.14)
2 o o
then the following properties hold.
: _3_
(i) 1Pllpoo(sy + o VP poo(sy < Com270;
(i1) My is well defined for every x € ¥;
(iif)
sup|H — H| < Co™729° P |h— k| < Co 2079,
bl

(iv) If H is constant on X, i.e. H = h, then [|H — hl|poo sy + 0| VH|| Lo (n) < o130

In the following, we will mainly use the H'-estimate on H — h, which follows from the
W12 bound in the above statement, and we will continue to call ¢, the constant at the
right-hand side. Observe that this is the only case in which we use the lowercase in order to
indicate a constant depending on the setting and not on the "roundness of the surface" (in a
sense we will make more clear later, see Definition 2.3.1 below).

— _3_
Proof. Point (i) and point (ii) follow from |P,| < 2|K|g < 2ery,? ’ O(O'_%_(S) and
(VP)i = ¢*¢"'ViKj,

since |ViKj| < co 59, using also Lemma 2.0.2. Thus, point (iii) follows from the Lagrange

mean value theorem. Also point (iv) follows in a similar way, using the constancy of the mean
curvature and the equation

HITIWVH = HI7I'VH — |P|e! (,;) VP. (2.15)

O
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2.1.1 Geometry of surfaces in asymptotically flat manifolds

The definition of asymptotically flat manifold implies that the decay rate between the physical
and the Euclidean metric is controlled outside a compact set. In this Section, we show that
this fact is inherited by the induced metrics g and ¢¢, by the induced connections and the
other (extrinsic) geometric objects of a surface 3 < M. The facts stated and proved here are
well-known, see for example [Met07] or [CS21, Lemma 11]. We give a proof of these results
for sake of completeness.

Lemma 2.1.4. Let (M,g) be a C’i+5—asymptotically flat manifold and let v : ¥ — M be an
2
immersed surface. Then there exists C = C(¢) > 0 such that

=1 L —3_
lg—9g°ly <ClE27°  TE = (T)FI <l

where Ffj and (Fe)fj are the Christoffel symbols of ¥ with respect to g and g¢, respectively.

Proof. The first inequality is straightforward, using the asymptotically flatness of the 3-
manifold and the restriction of the metrics to . For the other inequality, consider in an
arbitrary point € ¥ and the frames {ej, ez, v} and {e1, e2,v°} where v and v¢ are orthog-
onal to T3 with respect to g and g°, respectively. Using the definition of (vector) second
fundamental form and since Ve; € T3, we have

L = (T)f = (Veej,en)g = (Veiej,€5)ge
= (V,ej — Ales, e5)v, ex)g — <§2i€j — A%(e;, €5)V°, ex)ge (2.16)
= (Veiej = Vesej,enhg = 01272 7).
O

As we measured the distance between the two induced metrics in an suitable coordinate
system, we analyze now how the volume form changes from the physical to the Euclidean
point of view.

Lemma 2.1.5 (Volume forms). Let (M,g, %) be a C’i+5—a5ympt0tically flat manifold and
2

consider an surface v : X — M. Consider g = *g and g¢ = *g¢. Then, there exist C' =
C(¢) > 0 and o9 = oo(¢) such that, if rs, > o > oy,

(i) The volume forms satisfy
1
|dpg — dpge| < Co™2%dpy;

(ii) For every ¢ € C*°(X;R) it holds

/E Y dpg — /E Ydpge

Proof. Let {e1,e2} be a local frame on ¥ with respect to a local coordinate system. In the
following we will use the abuse of notation of identifying the metric coordinates g;; and 95
with their matrix representation (g;;) and (95;) respectively. Using the mean value theorem
to obtain

1
< Co 20l 1 (-

aetta) — faer(a)| < det(a) — denty)|.
and Lemma 2.1.4, we conclude that

o1
dpg — dpge = O(|1Z 27" )dpsg.
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Point (ii) follows integrating the volume form against a smooth function . O

Lemma 2.1.6. Let (M,g,%) be a CEM—asymptotz'cally flat manifold, and X — be a surface.
2
Then, there exist C' = C(¢) > 0 and o9 = 0¢(¢) > 1 such that, if rs > o > 09, then

lv — vy < 007%7‘5, Vv — Ve, < Co279.

Proof. Set X := v° — v, and consider an adapted coordinate frame on ¥, say {ej,es}, such
that g°(du(e;), du(ej)) = ;5. By construction g°(v¢, v¢) = 1, and g°(v°, du(e;)) = 0. Then

1=g(v+X,v+X)=28%,v)+28°(v,X) + 2°(X, X). (2.17)

Let {€,}a an orthonormal coordinate system in (M,g¢), and consider the coordinates X =
Xa€as V = Va€q. The equation (2.17) then becomes

D X2+2) Xava+ (8 (vv)—1) =0.
(6% (6%

This is a second order equation in R3, of the form |X|? + 2(X,#)gs + € = 0, where X =
(X1, X2, X3), V= (v1,v2,v3) and € := g°(v,v) — 1. Writing X = t&, with ¢ > 0 and || = 1,
we have

2+ 2t(3, P)gs + € =0,

UG UG N2~
which implies t = 2@+ 24<w’y> A€ This implies the thesis.
For the second part, we want to study the decay of |[VX|. Consider the identity g(v, di(e;)) =
0. Deriving this expression with respect to e;, we get that

8ap Ve, (du(ei), €)g = 0.

Using Ve, v = V,,v° — V. X, it turns out that, in order to estimate |VX|, it is sufficient to
estimate g,5Ve, (v°)” (di(e;), es)g. Since

N 8vi i 8Vi e i e\i
(Vv =Viv)' = (c?x] " jka> - (8xj +(I )jkvk) = (T3, = (T)5)v",

and g — g° = O(a_%_‘s) and also g7 5Ve; (1) (di(e;),€s)ze = 0, because by definition
g¢(v°,du(e;)) =0, we get the thesis. O

We end this Section reviewing a result that compares extrinsic curvatures on X in the case
of the physical metric and the Euclidean metric.
Lemma 2.1.7 (Lemma 11, [CS21]). Let (M,g,Z) be a Ci+d—asymptotically flat manifold and
2

let v : ¥ <= be a surface. Then, there exists C' = C(¢) and oo = 00(¢) such that if rs, > o > og
then

\H - H°| < C <a—%—5 + a—%—5|Ay) . |A-A<C (0—3—5 + a—%—éyA\) L (2.18)
3_ 3 _

[¢]
Moreover, if |A¢| < &, then |[A— A°| < Co™270. Finally, if |H®| < & and |A] < co™27°, then
there exists o1 = o1(c,€) such that if also o > o1 then |H — H¢| < Co=279,
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Proof. By definition, we have that

hij — he <vezV e]> <V v,ej)g + (g g )(v;% ej)

_ —e 1 3 (2.19)
<(Vei — Vei)u, ej>g+ O(J 2 )hij + O(U 2 )

Since also the first addend is of order O(O'_%_(S), (2.18) follows.
We now prove the other results. From the second inequality in equation (2.18) it follows
immediately

|A— A¢| < C (0*3*5 +om3 A - A% + a*%*5|Ae|)
Moreover, using that

He

H V2 V2
|A] < 'A—29‘+‘g—g

4] + 7\H HE| + —-|H",

e -
and using equation (2.18),

|H - H|<C (035 to2? (\ﬁu +|H — H°| + |He\)) .

Since by the hypothesis [A| < ca_%_‘s, it follows that, for o large enough,
|H — H?| <200~ 2° + Co~ 2 9|H — H| + 6Co 29
Then, being o large, |H — H¢| < 16Co 2. O

Corollary 2.1.8. Let (M,g,%) be a 02 s-asymptotically flat manifold and let v : ¥ — be a
surface. Then, there exists C = C(¢) and oo = 0o(C) such that if rs, > o > 09, |hij| < g and
VeH® =0, then
5
\VH| < Co— 279, (2.20)

Proof. Deriving equation (2.19) and using Lemma 2.0.2 and the hypothesis V¢H¢ = 0 we get
the thesis. Observe moreover that in general

VA - VA <C (0—3—5 + a—%—5|VAe\) ,
and the same holds for VH instead of VA. O

Remark 2.1.9. If X¢ is an Euclidean sphere, then (2.20) holds.

Lemma 2.1.10. Let (M,g,Z) be a Cl 5 -asymptotically flat manifold and let v : X — be a

surface. Then, there exist C = C(¢) and oo = 00(¢) such that if r, > 0 > o¢ and |A| < 60~
then

(o]
‘|A[ - <Co 20

Proof. By definition, it follows that

\|A|

H  H°
A—A*— Zg+ =
’ 59+ 59

||H||L

(2.21)

1
<A =A%+ g — ¢°| + 5 |H" — HI|g"),
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and thus, since ||H||z~ < Co~!, |4 — A¢] < Co=279, |H — H¢| < Co~279, the thesis
follows. O

2.2 Umbilical surfaces

The traceless second fundamental form turns out to be a powerful geometric tool. It measures
the distance between the principal curvatures k1, ko of a surface and thus the umbilicality of
its points. In 2005 De Lellis-Miiller [DL.MO05] showed that the nearly umbilicality of a surface
(in particular, in L?-norm) in R3 implies that the surface is near, in a suitable norm, to a
Euclidean sphere with radius which equals the area radius of the surface.

In this Section, we will always consider surfaces in R3. However, we keep in mind that the
Euclidean surfaces we consider arise as the Euclidean image of a surface in an asymptotically
flat manifold, and, at end of the Section, we will remark the consequences of this fact at the
light of Lemma 2.1.10.

2.2.1 Roundness of Euclidean surfaces

De Lellis and Miiller proved that, in the Euclidean space, umbilical surfaces are close to round
spheres. We state their Theorem 1.1 from [DLMO05], then we recall some corollaries of it.

Theorem 2.2.1 (Theorem 1.1 [DLMO05|, Theorem [Met07]). There exists a universal constant
cpm > 0 such that for each surface ¥¢ — R3, setting 0 = oxe, the following estimate holds

e

14° = 07 g%l L2(se) < comllA [|2se)- (2.22)

o€
If in addition || A HL2(E€) < 8, then X¢ is topologically a sphere and there exists a conformal
parametrization 1 : Sy (2) — X¢, with 7 := |X¢| 7! Jse @ du®, such that *g° = UBSU for some
scalar function u : S;(Z) — R and

o€
19 = idlln2(s, ) < como® 14 [l2(e),
where id is the identity on Sy(Z) and ESU 15 the round metric on spheres.

L*°-type estimates. In his Ph.D. thesis, Nerz [Nerl4| proposed an L*-version of the De
Lellis-Miiller estimate that, in a certain sense, looks also like a nearly Alexandroff theorem.
In fact, in order to have a suitable W?™-vicinity to a sphere, he also requires a control on
how much the surface fails to be a constant mean curvature (CMC) surface. In order to
understand Nerz’s statement, we introduce a definition.

Definition 2.2.2 (Graph on a Euclidean sphere). Let f : S;(2)) — R be a function, for some
o >1 and zy € R3. We define the graph of f over S, (%) as

graph(f) == {7+ f(Z)vg: T € Se(%)} = {%0 + 0¥z + f(Z)¥z : ¥z € S}, (2.23)
where V5 is the normal to S;(Zy) in Z. We remark that we can also write & = Zy + oz for
some Jz € $1(0) and v& = f;zo = Uz.

Remark 2.2.3. We remark that, if 3¢ is a graph on a sphere, scalar functions defined on %€
can also be read as functions on the (approximating) sphere S,. With an abuse of notation,
we will indicate these two kind of functions with the same symbol, omitting the (bijective) map
T— T+ f(T)g.
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We then re-state [Nerl5, Cor. E.1] in the version we need.

Corollary 2.2.4. Let ¢ < R3 be a closed surface in R® and |X¢| = 4no?. Suppose that
there exists a constant ¢ > 0 such that

o€
c:=|A HHe— Scafgfé.
Loo(S€) L= (5e)
Then there exist oo(c) > 0 and é = &(c) > 0 such that if ¢ > oq then there exist a point
Zo € R3 and a function f :S (z_’) — R such that $¢ = graph(f) and

||JE||Loo(ie) + UHVJEHLoo(ie) + 02”V2f”Loo(ie) < co’e

2.2.2 Pseudo-spheres

At the light of the results of the previous Subsection, in particular Corollary 2.2.4, we continue
to study Euclidean surfaces, with particular interest in surfaces of the following type.

Definition 2.2.5. A surface ¢ of R3 is said to be a pseudo-sphere if it is the graph of a
function on the sphere Sq(2y) for some f € C*(S5(Z0);R) and f satisfies || fllw2oo(s, (z)) <

002 6

Since the extrinsic curvatures of Euclidean surfaces are invariant under translations, we
will always consider, in this Section, the sphere S, (0).

Lemma 2.2.6. Let X¢ be a pseudo-sphere on the sphere S,(0), o > 1, with f € C%(S4(0); R).
We equip it with the metric induced by the immersion graph(f) < R?, and we call it Garaph()-
Moreover we indicate with A = A8#PY(F) jts second fundamental form. Then, if for some ¢ > 0
it holds

sup |f| < cob ™0, sup [Vf|<co 30, sup [V2f| <o i,

5.0 So (D) So(0)

we find that there exists ¢(c) > 0 such that

[NIE

29 h e h S1(0 5 =
‘J Js _ggrap (f)‘ggmph(f) <coT279, ’Vgrap () _ v 1(0) <

M\w
0’1

| Asraph(f) |ggraph<f)

IN
o
q

3

The proof is standard and uses the formulas for the first and second fundamental forms
of surfaces in R3.

The smallness of the error committed comparing the geometric quantities of a pseudo-
sphere and that of a sphere leads to the following straightforward generalization of Poincaré
inequality on spheres.

Lemma 2.2.7 (Poincaré inequality on pseudo-spheres). Let (M,g,%) a CEH-asymptotically
2

flat manifold, and let (X,g9) < M be a surface such that its Euclidean image ¢ := Z(X)
is a pseudo-sphere, i.e. ¢ = graph(f), with f : S,(%) — R for some zy € R3 and for
o = /(4m)~YX],. Suppose that there exists ¢ > 0 such that

sup |f] < co2 %, sup IVfl < co 2% sup |V2f| < co™379, (2.24)
Se(20) Se(20) Se (20)

Fiz p > 2. Then they exist o9 = oo(c,¢,0) > 0 and ¢s;, > 0 such that, if o > o9 and
¢ € CH(Z;R) then

[ 16 duy <es,0m [ 100 du, (2.25)
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Inspired by the scaling factor obtained when integrating the derivatives of a function on
a Euclidean sphere, we give the following definition of Sobolev norm.

Definition 2.2.8 (Sobolev norms). Let (M,g, %) be a C’1 " -asymptotically flat manifold, and

consider the surface v : (3, g) — M with area radius oy,. Let T be a smooth tensor defined on

¥, with LP-norm given by || T||Lr(s p.,)- Then we define the Sobolev norm || - lykp(sy of T' as

ITllworcsy = Tlzesy, 1 Tlwro) = 1T lees) + oslIVTwe-10(s),
for every k € N and p € [1,00].

Remark 2.2.9. In the light of this definition, equation (2.24) takes the form | f|lw2e0 <
5

cos

We furthermore notice that the definition above is coherent with the Simon-Sobolev in-
equality when the mean curvature of the surface is comparable with that of a Euclidean
sphere.

2.2.3 Some useful nearly umbilical-type results in literature

We will also need two further results on nearly umbilical surfaces. The first result we state
has been proved by Nerz [Nerl5, Prop. 4.1] and relies on the Stampacchia’s iteration. It has
a different fashion from the other (Euclidean) results presented in this Section, since it shows
that, in a Riemannian 3-manifold with some asymptotic decay assumptions on the curvatures,
surfaces with small traceless second fundamental form (in L?) must satisfy higher-regularity
estimates.

The second result, proved by Perez [Perl1], is a supercritical version of the De Lellis-Miiller
theorem, and it will play an important role in the next Chapters.

Nerz’s bootstrap. The (bootstrapping) regularity theory developed by Nerz (see [Nerl5])
implies that a control on the smallness of the L?-norm of A and a decay on the the curvatures

and the norm ||[H — h||y1.p(x), with p > 2, imply that also A and VA have a controlled decay
in L2-norm. The result presented in [Nerl5, Prop. 4.1] is very general, and we adapt its
statement to our particular case.

Lemma 2.2.10 (Nerz’s bootstrap, [Nerl5]). Suppose that (M,g) is a 3-dimensional C2+5
2
asymptotically flat Riemannian manifold, and let (X, g) < (M, g) be a closed surface. Suppose
that there exist cy,co > 0, p > 2. such that

c1 2 C2
IH = Hlos < o - 2| <o
s %>

where oy, is the area radius. Suppose finally that on 3 it holds the inequality
Cs
]l 2my < gWHWLl(Z): vip € WH(D) (2.26)

for some cs > 0. Then, there exist constants og(c1,c2,cs,p,0) and c(ca,cs,p,0) such that, if

o> 00,
2 ° 1. cic
HAHL2(2 — = | All=) +021HAHH1(E) < i

2.2
o (227)
ox
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p-supercritical regularity (4 la De Lellis-Miiller). Finally, the following result is a
generalization of DeLellis-Miiller’s result, proved by Perez in his Ph.D. thesis [Perl1]. This
is a bit different from the results proposed until now in this Section. It implies that, if the
a surface is round in LP-sense (with p > n), then the oscillation of the mean curvature are
controlled. This would be a fundamental step in the definition of our roundness class.

Theorem 2.2.11 (Thm. 1.1, [Perll|). Let n > 2, p € (n,00) and ¢g > 0. There exists
CPer = CPer(N, P, co) > 0 such that if ¥ < R™ ! is a smooth, closed and connected surface
with induced metric g¢ and such that

(i) Volge () = 1;

(i) [[Allpr(s,ue) < co;
then

o€

min [|A° = Ag°llzo(z ey < cperllA llzo(s pe)-

This estimate looks implicit, if written in the current form. In fact, it essentially gives a
bound on [|A¢ —A*g°| 1o(s: ), for some A* € R for which the minimum is achieved. However,
A\* strictly depends on 3, and so it is not a universal value. We replace this specific real
number with geometric quantities, which obviously depend on the geometry of the surface,
but in an explicit (extrinsic) way.

(H® —2))%,

N |

In the case n = 2, by the Cauchy-Schwarz inequality we have [A°—\¥¢¢|? >
This implies that

|H¢ — 2)\E||Lp(27ﬂe) < \/icPerHA [FEI

Since
1HE = B o pe) < IH = 227 | o(s o) + I = 207 o5 e

and using the definition of integral mean and the Holder’s inequality, we have
b ST b 51 2
< H® =20 [ (s ey + [ = 207[[B]E < [[H® = 207 || (s ey + [E]E / |H® —2X%| dp°
%

1 4 1—1
<H® = 2X o) + 1518 1Sle PIHS = 207 || oz pe) < 201H = 2207|105 )

Finally we get
oe
I1H® = h°l| ooz ey < 2V20perl|A (| Loz pue)- (2.28)

Therefore we re-write Theorem 2.2.11 in an asymptotically flat version, at the light of the
estimates on |H — H¢| and |A — A°|.

Theorem 2.2.12. Let (M,g) be a Ciré—asymptotically flat manifold and consider a surface
2

Y — M, with induced metric g. Suppose that there exists o > 1 such that |A] < 10—0 and
ry > 5. Then there exist oo(C,6) > 0 and cy(C, 6, p) > 0 such that if o > o¢ then

° —p—46
| H — h”ip(z) < CpHA”ip(z) + Cpazp k.

If (M,g) = (R3,8cuc1), the second addend would not appear. Its presence is due to the
asymptotically flatness of the ambient manifold.

2.3 Round surfaces

We give the definition of round surface. As we can see comparing with [HY96], [Hual0],
[Met07], [Nerl5], there are some similarities between our definition of roundness and the ones
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proposed in literature up to this point. While the class of round surfaces in [HY96] is defined
in terms of pointwise properties, our definition includes assumptions which involve integral
norms of the curvature. The integral form is more suitable to study the invariance properties
under the volume preserving mean curvature flow under our weaker hypotheses on the ambient
space.

Definition 2.3.1. Let (M,g, %) be a Ci+6—asympt0tz’cally flat manifold and let v : ¥ — M be
2
a surface, with induced metric g := 1*g.
For a given radius o > 1 and parameters n, By, By > 0 we say that (X, g) is a round
surface in (M, g), and we write quantitatively ¥ € W3 (B1, Bs) if the following inequalities are
satisfied

5
(7/2)m0? < |8, < 5mo?, |A| < 357 (2.29)
b
3 ry Rs, 5
1555 <71 (2:30)
Al Lags 0y < Bio™7°, (2.31)
no I H = hl|7asy + IVH| Lagsy < Bao 5% (2.32)

For a given radius o > 1 and n, By, Ba, Been > 0, we moreover say that (X, g) is a well-
centered round surface, and we write ¥ € Ba(Bi, By, Been) if it satisfies the above properties
and in addition

25| < Beeno!™°. (2.33)

Finally, we write WZ(Bl,Bg) or BZ(Bl,Bg,Bcen) when (X, g) satisfies the bounds above
with at least one < replaced by <.

Throughout the Thesis, when deriving estimates on geometric quantities on a surface 3, we
denote by C, C1,Cs, ... constants which only depend on properties of the ambient manifold,
such as ¢,0 in (1.11) or the mass Eapym and by ¢, ¢1, ¢a, . .. constants which in addition depend
on the constants Bj, Ba, Been in the previous conditions. We say that a constant is universal
if it is independent on any other parameter of our problem. As usual, the letters ¢ or C' will
often denote constants which may change from one line to the other, but each time depending
on the same parameters.

Remark 2.3.2. Property (2.29) implies that the Euclidean radius and the area radius are
comparable. Because of the asymptotic flatness of (M,g), we obtain the following bound on
the Riemannian tensor

[Rml|z < Co~ 27 on X. (2.34)

Remark 2.3.3. In the following, the constant n will be fized in an explicit way, see Lemma
4.1.11 below, depending only on the ambient manifold. For this reason, even if in the following
computations some quantities will depend on n, we will omit these dependencies, considering
i a certain sense n as already fized.

Remark 2.3.4. The decay rates in conditions (2.31)-(2.32) are modelled on the ones of the
FEuclidean coordinate spheres. In fact, by Lemma 2.1.7, it is easy to check that if By, By are
large enough, depending on ¢ in (1.11), then S,(0) belongs to By (B1, Ba, Been) for r large
enough and r/o enough close to 1. Conversely, we will see in Lemma 2.3.5(iv) that a round
surface is close to a sphere in Euclidean coordinates.

We briefly recall the Michael-Simon inequality in FEuclidean space which, together with
the curvature bound in (4.11) and Lemma 2.1.7, implies the existence of a universal Sobolev
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constant cg > 0 such that

C

[¥llesy < = l¥llwrais), Ve WhHi(n), (2.35)

-l
o
provided o > o9 = 0¢(¢,0) > 0. From this, the other Sobolev inequalities can be deduced. In
particular (see e.g. Lemma 12 in [CS21] and the references therein) we have, for every p > 2,

2(p—1) _2
[Pl ooy <2972 co ?[Yllwrns), Vo € WHP(E), (2.36)
and also
[l oo sy < 32207 [Wllp2esy, Vo € HA(E). (2.37)

We now state and prove a Lemma which lists various properties of a round surface, from
different points of view. The results summarized by this Lemma are easy consequence of
known results, but we give detail for sake of completeness.

Lemma 2.3.5. Let (M,g) be a C’ir&—asymptotically flat manifold. Let v : X — M be a
2

surface, and let g := *g be the induced metric. Fiz a weight n > 0 and By > 0, By > 0.
There ezists o9 = 0o(B1, B2,¢,8,1) > 0 such that whenever o > oy, if (X,g9) € W (B1, Bs),
then the following conclusions hold:

(i) There exists cs > 0 such that it holds
¢
[llze < Zldllwing Vv e WH(E), (2.38)
and, for every p > 2,
2(p—1) _2 1
[Ylle 27072 cso #[Pllwre VY € WHP(E). (2.39)
Moreover, there exists a constant c¢(Ba,n) > 0 such that
1H — = < e(Ba,n)o— 2" (2.40)

(ii) It holds the estimate
h— = | <cBy,Bs,e)o 27", (2.41)

2
g%

and the principal curvatures k1, ko satisfy

1 V5
— <K < — 2.42
205 i 205 ( )

fori e {1,2}.
(ii) There exists a constant Bo, = Boo(B1, B2,1,¢s,0,¢) such that || Al peo(s) < BOOO'_%_(S.

(iv) There exists ¢ = ¢(6,¢, By, B2,n), co = ¢(B1,¢,0), Zo € R3, and f : Sp (%) — R such
that ) )
2¢ =graph(f),  |[flwee <co?™®, | — 5| < co2 . (2.43)

(v) There exists cs > 0, a Sobolev constant, such that the following inequality holds

/(w — )t dpy < csa“/ Vo[t dpy, Ve WHAD), (2.44)
b >
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where 1 = ][ P dpg.
%

-

(vi) It holds ||Allpay < 41 5/27&0‘5 and thus there exists a constant cpey = Cper(0,€)
such that

HH hHL4 < CPerHAHL4 + CPer0 176-

Remark 2.3.6. Point (iv) explicitly says that each point of ¥¢ := Z(X) can be written as

8

((2)) = 20 + oxr(z) + f(z)v(z), VrekX.
Thanks to (2.43), modulo modifying f, we can also write, without loss of generality,
Z(u(x)) = 2 + ox®(x) + f(z)vf(x), Vze . (2.45)

Since by the asymptotic flatness we also have |25 — Zxe| < Caéf‘s, we can give a completely
Euclidean description of X¢ as

~

Z(1(z)) = Zxe + oxv®(z) + f(x)v(x), Ve X.
However, we will mainly use identity (2.45).

Remark 2.3.7. It follows from the elliptic reqularity theory and the Simons’ identity that
fe CQ( o (20 )), and so, in the W -norm, the two derivatives have to be meant as classical

since in thzs case it holds f € W3P(S, (%)), where p p > 2 is such that we have a contml on
|H — h|lwir. However, [Nerl6, Prop. 2.4] shows that f € C? also if we only assume the
decay of the Ricci tensor, see [Nerlt, Prop. 2.4.].

Proof. (i) It is well known that there exists ¢S > 0 such that

1
2
(waw>§éégww+wwmm

if ¢ < R3 and o € WH1(X2€). Thanks to the asymptotics of (M, g, Z), this is also
true omitting the apex e, possibly enlarging the constant cS. Thanks to the estimate

|H| < @ we have the thesis. The general case for p > 2 follows from [CS21, Lemma

12]. Moreover, p = 4 in (2.39), and ¢ := H — h, we obtain
_1 1
I|H — hHLoo 23C502 |H — k|l Ay S 23 CsOy, ° <7]‘1132 + B;) 07176,

which implies the conclusion.

(i) Observing that = is positive, bounded and bounded away from zero, proceeding as in
[Nerl5, Prop. 4.1]E we find

he He

2/mos | — 59— 5o

<¢'

2 +\ng — A

LA L&D (2.46)

o€

+ \fQCDM A

L3(Z)



2.3. Round surfaces 23

(iii)

(iv)

By Lemma 2.1.7, the hypothesis |A| < \/ga—l’ and |H — hHL2(E) < C(BQ,?])O'_%_(S, we
conclude that

2
'h - S 0(31,3277775)0_%_6>

oy

using also that HAHL4 < Bio~'7%. Finally, since |H — h| < ¢(Ba,n)o -3 9 it follows
that

2
H— | <¢(Bi,Byn,e)o 279, (2.47)

oy

We apply Nerz’s bootstrap (see Lemma 2.2.10) to X, with the area radius oy, p = 4,
c1 = ¢(Ba,n), ca = ¢(B1,Ba,n,¢) as in equation (2.47). It follows that, if ||Al|z2 is

sufficiently small with respect to Sc 1 ie. o is sufficiently large, then

3
2

||A”L°° < C(BQ)C(67 BlﬂB27nvéa CS)O-g - < BOOO-_%_57

ChOOSng Boo = BOO((s?BlaBQanaé’CS)' SiHCG H = k1 + k2, |A| - 2_%|I{1 N ,{2| é
BOOJ_%_(S, we find that for o very large (depending on By, Bz, 7 and ¢),

Ki > 051, H ~ 2051

VB

using again (2.47). In particular we can choose o so large that |A| < T

By [Nerl5, Cor. E.1], or Corollary 2.2.4, since B, and ¢(Bs,n) control the L*°-norm

of |A| and H — h, respectively, by the point (i)-(iii), the Euclidean image of X, i.e.
3¢, is a graph on the sphere S, (%), for some vector zy € R3. By Theorem 2.2.1, see
[DLMO5], applied on X¢, there exists 2 (conformal) parametrization of ¥¢, say ¥, such

that o5l || ¥ — Id| g2z < (e, 6)age||A lz2(m) < c(g, 4, Bl)aze 7, and using the Sobolev
inequality it follows

1
]22—20\<7[|\Il—1d| dp® < coode " <¢

i\:)\»—‘

Since from the Euclidean point of view X is a graph on the sphere Sy, (%)), Lemma 2.2.7
implies equation (2.44).

This follows from the inequalities of the previous points applied to Theorem 2.2.11. See
also inequality (2.28).
O
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Chapter 3

Spectral Theory

In |[Nerl5| and [CS21], a deep study of the stability operator was carried out in the field of
asymptotically flat manifolds and initial data sets. The invertibility of the stability operator
L* around a CMC surface ¥ is at the basis of the continuation method employed in [Ner15]
and [CS21]. In particular, in [Nerl5, Prop. 4.7|, Nerz characterizes, in a Fredholm-alternative
fashioned statement, the eigenvalues of the stability operator of a CMC-surface. This result
then implies that the leaves of the CMC-foliation constructed in his paper [Nerl5] are stable
or unstable according to the sign of the ADM-energy of the system. In the case of initial data
sets, the result is generalized by [CS21, Prop. 2].

In this Chapter, we generalize this analysis to round surfaces where we only assume that
H has a small oscillation as in (2.32). We will see that the positivity property of L* when
Eapm > 0 is no longer true, but that the error terms can be estimated in a way that will be
enough for our purposes.

3.1 Hawking energy and stability operator

3.1.1 The Hawking energy

Since our aim is to mostly investigate the extrinsic geometry of surfaces, we start defining a
notion of mass which gives a "weight" to surfaces immersed in 3-manifolds. It heuristically
and physically measures the bending of the rays which crosses the surface enclosing the mass
orthogonally. We start with a formal definition.

Definition 3.1.1. Let (M,g) be a 3-dimensional manifold, and v : ¥ — M be a surface. Let
g :=1*g be the induced metric. The Hawking energy of 3 is defined as

(%) = @ <1 - % [ d,u) . (3.1)

Remark 3.1.2. We use the notation mg(X) to represent the Hawking energy of ¥ because
of the interchangeability of the terms mass and energy. Moreover, to be more precise, the
quantity in (3.1) takes the name of Geroch mass. The exact definition for the Hawking energy

s given by
[12lg 1 / 2
Ey(X)=/—(1-—— .
(%) 167 Tor Jy 7

However, if (M,g,K) is an initial data set, and ¥ satisfies hypothesis (2.14), Lemma 2.1.5,
since q > 2, implies that there exists a constant ¢ = ¢(¢) > 0 such that

Imy(X) — Ex(2)| < éo™ .

Because of this estimate, the two notion are interchangeable for our purposes.
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Lemma 3.1.3. Let (M,g, ) be a Cir&—asymptotically flat manifold which satisfies the mass
2

condition. Let 1 : ¥ — M be a surface such that (¥, g) € W,(Bi, B2) for some By, By > 0.
Then there exist ¢ = ¢(B1, B2, ¢) and oy = 0¢(B1, Ba,¢,9) such that, for o > o,

(i)
‘mH(E) + % /EG(V, v) du| < éo™ %, (3.2)

(if)

‘EADM T JE/ G(v,v) du| <o (3.3)
& b
Proof. (i). Using the Gauss equation we find

/g (2 — Ric(, V)) dp = /E (S; - f-%mz) dp. (3.4)

Since ¥ is homeomorphic to a sphere (via De Lellis-Miiller Theorem), the definitions of oy,
and mpg(X), together with the Gauss-Bonnet theorem imply

ma() - o2 S ~Ric(v,v) ) du| = 2= | [ (51— 2)? d|.
8t [y \ 2 167 |Jx

o
The conclusion follows from the estimate on [|A[ (s in Lemma 2.3.5.

(ii). By the roundness hypothesis, we have that ry > %a > %ag. Moreover, by Lemma

2.3.5, we have that di(v°) = o' (& — Z) — p), for some i such that || = O(U%_‘S). Thus

G(UZV, V) = O'Zé(]/e, 1/) + gzé(y _ Ve’ I/) — Ugé(l/e, I/) + 0(0—2—26)
= G(dz™'(¥) — di~' (%) — d7~' (7),v) + O(0™7).

This implies that

/E Closw,v) du— /E G(di' (@), ) d,u‘ <

[ Gl o)) du| + 0(0),

using the estimate on [p]. If it also holds that

/EG(dfl(Zo),y) d,u' = 0(0™%), (3.5)

then, in order to have the thesis, it is sufficient to prove
1 _
Baona + - [ G @).) du] = 0(0~) (3.
by

Proof of (3.5). Decomposing d7~1(Z) = 2§0a, since |2§| < 2Rx +ox < (% + é) o, it turns
out that it is sufficient to prove

/E G, v) du’ _ O(—1?),

Consider the Euclidean sphere 7! (SR(6)> such that R is so large that ¥ is contained in
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71 (IB% R(ﬁ)) Define Ug to be the volume enclosed between these two boundaries. Then,

using the divergence theorem,

/ Gz(v,04) dug — / Gz(v,04) du
#=1(Sr(0)) b))

/ Gy - (Vada) dx|,
Ur

-,

and since Ug C 77! <]BR(6)) \ 771 <IB% \3}02(0)> and using polar coordinates we get
2v5

R
<c@ [, [t duar
225on JE16,0)

where we also used that |§5a55\ = ‘Zw flﬁgv‘ = 0(07%7‘5). We conclude computing the
1-dimensional integral and letting R — oc.
Proof of (3.6). Choosing R and Ug as above, since VzZ = Id as a bilinear form and thus
G - VzZ =S, using the divergence theorem we get
/ S dx
Ugr

where the order of the integral of the scalar curvature has been computed as in the previous
point. Letting R — oo we have the thesis. O

ﬁ B G(dz1(#(z)),v) d,u—/G(df_l(f(az)),u) du
Z-1(Sr(0)) b

3.1.2 The stability operator

We now introduce the stability operator, which occurs as the second variation of the area
functional.

Definition 3.1.4. Let (M,g) be a C’iH-asymptotz'cally flat 3-manifold. Given a surface
2
L: Y <= M and a smooth function f € H*(X), we define the stability operator associated to ¥,
L*: H?(X) — L*(%), as
L¥f:= —Af — (JA]? + Ric(v, v))f.

We simply write L instead of L™ whenever the role of the surface ¥ is not ambiguous.

Consider a surface ¥ and a normal variation F': X x I — M, with 0 € I, satisfying

O F (x,t) = n(z, t)v(z,t) (3.7)
F(2,00=% |

A routine computation shows that the mean curvature locally represent the first variation of
the area functional, that is

d -
—13¢ = | Hnd 3.8
Fs1= [ an (39)

where f]t = Ft(E). It turns out that if the variation is volume preserving, i.e. fz n dp =0,
then a CMC-surface X, i.e. ¢ =0, is a critical point of the area functional ¢ — |i]t]
Moreover, if X is a CMC-surface, the second variation of the area functional is given by
d2

Gl = [ (90 = (4P + Rictv.) ) dia= [ (T d (39)
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If the variation was not volume preserving, in (3.9) there would be a term involving the second
derivative of the volume enclosed by S

Since the "differential part" of the stability operator is totally given by the Laplace-
Beltrami operator, in order to understand the properties of I we are interested in we have
to briefly review the spectral theory for the operator —A. The following Lemma is taken
from [CS21, Lemma 2|. Observe that, together with adapting the notations of the Lemma
with our definition of roundness class, we remove the hypothesis of having a CMC-surface. In
fact, reading the proof of [CS21, Lemma 2| with attention, one can observe that the CMC-
hypothesis is just needed in order to compare the area radius with the curvature radius used
in [Nerl5] and [CS21].

Remark 3.1.5. At the light of Lemma 2.3.5, i.e. of the De Lellis-Miiller theorem [DLM05,
Thm. 1.1/, scalar functions on a round surface ¥ can be also meant as functions on the
approximating sphere Sqy,. With an abuse of notation, we identify such kind of functions.

We first recall some properties of the Laplace-Beltrami operator on a round sphere S, (6) -
R3 with the Euclidean metric. On a general closed surface, the eigenvalues of A are all positive,
except the first one which is zero, with eigenspace given by the constant functions. For the
FEuclidean sphere, the first nonzero eigenvalue has multiplicity three and is given by

2
)\e

= o>
ey o2

a=1,23. (3.10)

An orthonormal basis for the eigenspace is given by the normalized coordinate functions

3
fg(f) = 7456’@, a=1,2,3, (3.11)
47r0E

restricted on S, (6) The remaining eigenvalues satisfy the bound

6

Vi> 4. (3.12)

Moreover, we have

35a6 foecfg
47ror4Z 0%

Hess (f¢) =0,  (V°fe,Vefs) — — 0. (3.13)

We recall the statement of Lemma 2 of [CS21], which measures how much the first eigenvalues
and the corresponding eigenfunctions of the Laplace-Beltrami operator on a round surface in
the physical metric differ from the ones of the approximating sphere in the Euclidean metric.

Lemma 3.1.6. Let (M,g) be a CEM-asymptotically flat manifold and let v : X — M be a
2

surface. Suppose that ¥ is in WU(Bl,Bg) for some B1,By > 0. Then there exist a constant
¢ = ¢(By,B2,¢) > 0 and a radius o9 = oo(B1, B2,¢,0) > 1, such that, if o > oy, there is a
complete orthonormal system in L?(X) consisting of the eigenfunctions { fa oro such that

—Afy = Aafas with 0 =X g < A\ < A2 < ..

Set Sy, to be the round sphere approzimating ¥ in the sense of Lemma 2.3.5. Then there
exists an orthonormal triple { f5, fS, f§} of eigenfunctions of —ASos such that, fora =1,2,3,

A= 5| <o 370 |fu = [Elwongm < co 270, (3.14)

2
oy,
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Moreover
o 30 a 5
st st [ o - e Py <ot )
L2(%) pX 05Xl b
On the other hand, for a > 3 we have
5
Ao > —5- (3.16)
>

Remark 3.1.7. The following proof is mainly based on [CS21, Lemma 2/, but we rewrite it
for reader’s convenience. As a byproduct of the following proof, it is important to keep in
mind that such a orthonormal system also satisfies the inequality || fo|lg2(s) < C.

Observe moreover that [CS21, Lemma 2] is stated with the additional hypothesis of constant
mean curvature. However, reading the proof of this Lemma, one can see that this hypothe-
sis is only used in order to replace the area radius (compatible with our "roundness" radius
introduced in Definition 2.5.1) with the curvature radius of [CS21, Lemma 2].

Proof. We have already seen that, thanks to the result of DeLellis-Miiller [DLMO05]|, the Eu-
clidean image of ¥ is a graph of a function on the Euclidean sphere S, = S,y (2%). We
consider a family {f,}22, of eigenfunctions of the Laplace-Beltrami operator —A on ¥ as-
sociated to the eigenvalues {\,}22 . We choose three orthonormal eigenfunctions fi, fa, f3

corresponding to the three eigenvalues A1, A2, Az, respectively. By the Rayleigh quotient, it is
easy to see that |\, — (%2 = 0(07%75). In the Euclidean case, each rotation of the triple in
>

(3.11) is a good choice of eigenfunctions for the Laplace-Beltrami operator. For our purposes,
we want to choose one of these triples of Euclidean eigenfunctions in a way such that the
second inequality in (3.14) holds. We proceed as follows.

We remark that

1
/ fo dp = / — (=Afy) dp=0. (3.17)
by by )‘a
We choose f$ = fo — vq, Where v, is a solution of the following equation
—ASnu, — Movg = —ASes f — AE S (3.18)

A solution to this equation exists since the right hand side is orthogonal in L?(S,y.) to the
kernel of the operator —ASes — X¢ of the left hand side', by the Fredholm alternative. More-
over, since the kernel of the operator on the left hand side (LHS) of (3.18) is not trivial, the
solutions to (3.18) form an affine space, with associated vector space Ker(—ASss — \¢). The
canonical choice of a solution to the equation (3.18) is given by the one which is orthogonal
to Ker(—ASoz — \¢).

Lemma 13 in [CS21], combined with (3.17), implies

[ follmz =

m—fmwﬂ < Co?|Afullpr < C (3.20)
> H?

since ||Afall2 = Ao = O(c72). This is enough to deduce that

5

| = ASrmvy — Aovgl|2 < Co279, (3.21)

IThis is true since if w satisfies —AS7zw = A\%w, then by the self-adjointness of ASos

<7AS(TE fa — /\gfozaw>L2(ng) = Ag(fa,wh,?(sa):) - /\Z<fa,w>L2(ng) =0. (3.19)



30 Chapter 3. Spectral Theory

The elliptic theory reviewed in [Bes07, Thm. 27, Appendix H| implies that ||ve||z2 = ||fa —
el < Com270

By (fa, f8)12(s) = dap and the bound above, it follows that [(f5, f§) r2(s,,)| = 0(07%76)
for a # B, while ||f&||2 ~ 1. Using the Gram-Schmidt algorithm, we can modify the triple
{1, f3, f5} so that (f&, f§)12(s,,) = 0, while the estimate on |[fo — f§||z2 continues to be
true, as one can see writing down the difference between the new and the old basis in the
Gram-Schmidt algorithm and derivating these expressions, together with the estimates on
(f&, [§)12(s,,,)- Thus we can assume that {ff, f§, f§} is an orthonormal system in L?(Spy,) of
eigenfunctions of the Laplace operator on the round sphere S,,. This implies that there exists
a triple of orthonormal vectors of R, say {#, ¥, U3}, such that f¢ = /475’042 (—2) Uy In

particular, modulo a rotation and in view of (3.13), the estimate on the traceless Hessian of
fa in the statement of the Lemma and (3.15) are satisfied. O

This description of the spectrum of the Laplace-Beltrami operator allows to define a
decomposition of L?(X) in terms of the eigenfunctions of —A.

Definition 3.1.8. Let X be a surface and consider the Hilbert space L*(X) equipped with the
standard scalar product. Consider the orthonormal system constructed in Lemma 3.1.6. Then
for every w € L%(X) we define

3

a=1
We call w° the mean part of w, and w' the translational part of w. Finally, we set
wli=w—w! (3.22)
the so called difference part, which obviously also contains the information about w°.

Before starting to study the properties of the stability operator, we give a more general
version of [Nerl5, Lemma 4.5], which holds for round surfaces which are not necessarily CMC.
Observe that, with respect to the results of [Nerl5|, we get some additional terms of order

O(afgf‘;), which can not be absorbed by the right hand side. These terms are the crucial
differences with the CMC-case of the spectral theory.

Proposition 3.1.9. Let (M,g) be a C’i+5-asympt0tz’cally flat manifold and let v : 2 — M be
2

a surface. Suppose that % is in WJ(Bl, Bs) for some By, Ba > 0. Then there exist a constant
¢ = ¢(By,B2,¢) > 0 and a radius o9 = oo(B1, B2,¢,0) > 1, such that, if o > o9, for every
a# B, a,p€{1,2,3}, it holds

. H2 o h2
/ (Ric(u, v)— > fafs d,u' < co379,
> 4
Moreover, for every i € {1,2,3}, we have

2 2_p2 .
Aa — hf — M _/ <1:{iC(V, y) — H) fﬁ dﬂ‘ S CO'_S_(S.
b

4

Proof. Using the Bochner’s formula as in [CS21, Lemma 3|, we get the estimate

A2 305 — / R¥(V fa, V f35) du‘ < Co™7°, (3.23)
%
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By the Gauss formula and the estimate |A| = 0(07%75), (3.23) implies
2

N H
Nap — /E <S — 2Ric(v,v) + 2) (Vfa,Vfs) du‘ < Co™7°, (3.24)

Using that H? = h2+(H?—h?) and the variational formulation for the equation —Af, = A\ fa,
we get

2 h’ T _ona H? — 17 —5-6
AL — )\a? dap — g S — 2Ric(v,v) + — (Vfa,Vfg)du| < Co . (3.25)

Since H? — h? = O(Jfgf‘;) by Lemma 2.3.5, using (3.15) we get

2 12 2 72
/1%[2h<vfomvfﬁ> d,u:/ H h < 3504,3 _ foz2fﬁ> dlu,—l—O(0'75725)
> ) 2

U%|E|g 0%

- HQ;hQ <f“fﬁ> dp+ O(o—>2).
b

2
o5

(3.26)

Moreover, in [Ner15] and [CS21], it has been shown that the remaining terms in (3.25) satisfy

h? — —
<)\i - /\a2> 5a6 - /2 (S - QRiC(V, V)) <vfaavf5> d

2 h? 12mpy (%) 2 (3:27)
mg —_ —5—6

= 2 (=) by = 2 s 2 Ric(v, v) fufs dp 4+ O .

O'% < 9 ) af O'% af O'% /Z) IC(V V)f f,@ M+ (U )

Combining (3.25), (3.26), (3.27) and dividing by we get the thesis. O

The previous Lemma leads to the following.

Proposition 3.1.10. Let (M,g) be a Ci+5—asympt0t7jcally flat manifold and let v : ¥ — M be
T 2

a surface. Suppose that X is in W, (B1, Be) for some By, Bo > 0. Then there exist a constant

¢ = ¢(B1,B2,¢) > 0 and a radius o9 = oo(B1, B2,¢,0) > 1, such that, if o > og, for every

f € span{fi, fa, f3} and ¢ € span{f, : « > 4} the following inequalities hold

6mH( ) 3h

(Lf. f)s— 1F13+ 2 / (H — 1) f° du‘ < co B f|I2 (3.28)

_5_ 2
(Lf,@)2l < co 27| fllallglla, (Lo, p)a > ;Qllso\l%- (3.29)
>

Proof. Let f € span{fi, fo, f3}, f = Zi:1<f, fa)2fa. By definition and using both inequali-
ties of Proposition 3.1.9 we get

2 _ 12
(0. 2 = 21— [ ) k072 11

where we also used that HAH%OO(E) = O(c737%) thanks to Lemma 2.3.5. Using that H2—h% =
2h(H — h) + O(c=372%), we find

6mH( ) 3h

(Lf, )2 = T / (H — )2 dpi+ O(o 52| £|3
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Suppose now that ¢ € span{f, : « > 4}. Then
(Lo, )2 > <A4 —sup || A + Ric(v, V)\) / ¥? dp,
5 b

using the characterization of A\y. Thus, since Ay > U% by Lemma 3.1.6 and since, by the

R z
roundness hypothesis ||A|? + Ric(v,v)| < 41712, we get the second part of equation (3.29). On
=
the other hand
2

(L1902 = [ (-1AP = Rictw,) fi du = [ (=142 - Rt + ) o a

concludes the proof, together with |A|? — %2 = |A]? + # and, by Lemma 2.3.5, ||H? —
h2|| sy = O(0379). O

We conclude with an auxiliary estimate that will be needed in the following.

Corollary 3.1.11. Let (M,g) a C§+5—asymptotical1y flat manifold such that |Eapm| # 0.
- 2

Let v : ¥ < M be a surface in Wy (B1, Ba) for some By, Ba > 0. Then there exist a constant

¢ = ¢(By, Ba,¢) > 0 and a radius oy = 09(B1, Be,¢,0, |Eapm|) > 1, such that, if o > o then,

for every v,w € span{ fi, fo, f3}, it holds

/(Lv)w du‘ < com 2 ll2lwll2.
>

Proof. It follows from the identity,

h? h? — H? .
/Z(Lfa)fﬁ dn = (Aa B 2) Oap + /E Tfafﬂ dp+ O(c7279),

for every «, 8 € {1,2,3}. This, combined with Proposition 3.1.9 and |myg(3)| < 2Eapym for
o large (in view of Lemma 3.1.3), leads to the thesis. O

In the next Chapter, we will investigate the role of the stability operator in the evolution
of round surfaces (maintaining the volume constant and decreasing the area). In order to do
this, we estimate here some stability operator-related functions.

Lemma 3.1.12. Let (M,g) a Ci+5-asympt0tically flat manifold such that |Eapm| # 0. Let
2

t: X <= M be a surface in WJ(Bl,BQ) for some By, By > 0 and consider the setting of
Lemma 3.1.6, with {¥, U2, U3} as in its proof. Then there exist a constant ¢ = ¢(By, B2,¢) > 0
and a radius o9 = 0o(B1, B2,¢,0, |EapMm|) > 1, such that, if o > og, then for a € {1,2,3}

4 .7,
<L(H —h), gfa - VUU > <co 8
R AT)

Proof. First of all, observe that the roundness of 3 implies that |H — h[|g1(s) < co— 279 for

some ¢ = ¢(By, B2) > 0. Moreover, Lemma 3.1.6 implies that [|fo — f5llw22(n) < com 270,

where f$ = 47374 (& - Uy), restricted to ¥ and with the abuse of notation of & ~ Id. This,
>z

multiplied by ‘/ﬁgz, also equals the projection v57= - @,, where 5= is the normal to the

round sphere. In view of Lemma 2.3.5, it also holds || — 157 || 1.0 = 0(07%7‘5), where ¢
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is the Euclidean normal of ¥. Thus it follows that

Using Lemma 2.1.6 and the estimate for || f5 — fallg2(x) in Lemma 3.1.6, we conclude that

(47 V-,
(>

Thus, for a € {1, 2,3}, we obtain

<L<H—h>7 v la 4”fa> B
oy, 3 L2(3)
[ (0 = 1) — (AP + Rictv )1 — ) (— ‘“Tfa> du

b oy 3
V- Uy 4
V(H—h)~V< — Sfa> du

Ve - Uy

%fg - — 0(c~379). (3.30)

Wsoo

)

1
< co"270,

HY(%)

<
X oy
9 = V- Uy A7
+ | ([ + [Ric(v, v)[) [H — h] — A\ 5 fa| dn
b)) o 3
and we conclude using Holder’s inequality. O

Corollary 3.1.13. Let (M,g) a C§+5—asymptotz'cally flat manifold such that |Eapm| # 0.
2

Let v : X — M be a surface in WU(Bl, Bs) for some By, By > 0. Then there exist a constant
¢ = ¢(B1, B2,¢) > 0 and a radius o9 = 0¢(B1, B2, ¢, 6, |EapMm|) > 1, such that, if o > o9, then

Va
=

< o3, 31
. >L2(Z) co (3.31)

‘<L(H —h)

Proof. 1t is convenient to do the computation with f,. Since the stability operator is self-
adjoint in L?(X), we have

(L(H = h), fa)r2(sy = (H = h)', Lfa)2(s) + (H — h)*, Lfa) 12(x).-

Using Corollary 3.1.11 and Proposition 3.1.10, together with ||(H — h)Y||3 + ||(H — h)?||3 =
|H — h||2 < Co™'729 we get |<L(H - h),fa>L2(E)‘ = O(0c=37%9) and thus we conclude by
Lemma 3.1.12, the orthonormality of {#, v, U3} and the boundedness of Z=. O

3.1.3 The translational part of the mean curvature

We analyze now an important property of the translational part of a function, which we have
introduced in Definition 3.1.8.

Remark 3.1.14. Note that, by Remark 5.1.7, || fall p2(x) is bounded, uniformly in o. They, by

Sobolev’s embedding H* — L>, we have that ||(H — h)!|| joc(s) < C’a_%_‘;, where C' depends
on the roundness class to which ¥ belongs. Since by definition (H —h)? := (H —h)— (H —h)?,
we also have ||(H — h)?|| oo (s < Co=379, using also Lemma 2.5.5.
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We compute the error that we commit in a specific integral when replacing ¥ with its
approximating FEuclidean sphere.

Lemma 3.1.15. Let (M,g) a Czw—asymptotically flat manifold. Let ¢ : % — M be a surface
2

in Wy (By, Ba) for some By, By > 0. Then there exist a constant ¢ = c¢(By, Ba,¢) > 0 and a
radius oo = oo(B1, B2,¢,0) > 1, such that, if o > oy,

< co 72| (H — h)'[3.

t t Ss
LG =R =1 d= [ (= (= B i

Sog,

(3.32)

Proof. By Lemma 2.3.5, scalar functions on X can be also meant as function on the Euclidean
sphere S,,., and moreover |du — duSes| = O(c~27°)du. Thus the left hand side of (3.32) is
bounded by

< o ANH — bl [ (=) do < o™ [ (1= 1) dp

O

Roughly speaking, equation (3.32) says that we can replace, modulo an error, the integral
over X with the same integral over the sphere S,,,. Thus, we now consider the case in which the
integral is computed on a Euclidean round sphere. In this case, for any u € span{ff, f5, f5},
we find, because of symmetry reasons,

/ kL dps, =0 (3.33)
Sq

for every k € N. This allows to obtain a strong bound on the corresponding integral when we
consider a round surface in an asymptotically flat space. We focus here on the case of a third
power, which is the one that we need in the sequel.

Lemma 3.1.16. Let (M,g) a CEM—asymptotically flat manifold. Let v : 3 — M be a surface
2

m WU(Bl,Bg) for some By, Bs > 0. Then there exist a constant ¢ = ¢(By, B2,¢) > 0 and a
radius oo = oo(B1, B2,¢,0) > 1, such that, if o > o,

i [ =09 ] < o BN = 1
by
Remark 3.1.17. Observe that this Lemma is more accurate then the one we would obtain
simply estimating |(H — h)'| with [|[H — k| peo(5)).-
Proof. Define the following auxiliary function on the sphere S,,,,

3

Hr = Z<H - h?fOé>L2(E)foez'

a=1

Since Hr is an odd function on Sy, = S,y (20), we have that

/ H3 dpSos = 0. (3.34)
Sos,
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Moreover, using equation (3.14) (combined with the immersion H? <+ L*) and the Cauchy-
Schwarz inequality for sums, we have

3

1
2
I(H — h)" — Hrllpo(s) < Co270 <Z<H — h, fa>§> = Co‘g—5|y(H —h)|e = 0(0—2—25).
a=1
(3.35)
Considering (H — h)! as a function on S,,, equation (3.34) implies that

|-y aes

Se,

gmH—mtﬂﬂhMm(é «H—hﬁ2¢ﬁz+/'f@dﬁm+2/ (H — h)YHy dpSes

= Soy, Soy,

Since (3.35) implies that |||(H — h)!||2 — [|Hr||2| < Caféf‘sH(H—h)tHg, replacing du°7s with
dp through Lemma 3.1.15, we get

h

= apes

b

<Co [ (= n' dp,

and thus we conclude again with Lemma 3.1.15. O

Lemma 3.1.18. Let (M,g) be a C%+6-a5ymptotically flat manifold and consider a surface
- 2
L:3 = M in Wy(B1, Bs) for some By, By > 0 such that

J(r=nh)" du< [ (=11 d (3.30
Set moreover

= Z <H B 7>L2(Z)

Then there exist a constant ¢ = ¢(B1, Ba,¢) > 0 and a radius oy = o¢(B1, Ba,¢,9) > 1 such
that, if o > oy,

4 2 _1_

= [ (=0 ] < oo O~ g

Proof. Thanks to hypothesis (3.36) we have that |H — hHL2 <2 [ ((H—h) ) dp. More-
over

47 2

m—— H-hYH" d

‘ 3 Js ( ") M’

2
Vg \ 2 4
(H=n22)  —(H=hy [
o/ L2(%) 3
L2(%)
v, 4 v, 4
H—h, =%+ = fa H—h, =%/ =fa
o 3 o 3
L2(%) L3(%)

47 Vo
B3l

M«

Q
Il
—

I
NE

Q

AN
o
- L

1H = hll2s)

_1_
JH = d < o O H = Bl
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where in the latter estimate we used equation (3.30). This ends the proof. O

3.1.4 Regge-Teitelboim conditions

In Section 2.0.2 we have defined the strong Regge-Teitelboim conditions, which, in view of
Lemma 2.0.7, allows us to prove the existence of the ADM-center of mass. A weaker version
of these conditions has been introduced in [Nerl5]. Under these weaker hypotheses, Nerz
proved that, if the ADM-center of mass exists, it coincides with another notion of center of
mass, called CMC-center of mass. Nerz proved that the geometric structure at the basis of
this definition always exists: a C s-asymptotically flat manifold admits a CMC-foliation.

The CMC-center of mass is the hmlt of the barycenters of the leaves of this foliation, if it
exists.

We conclude the section by observing that the translational part of the mean curvature of
a coordinate sphere satisfies an improved estimate if our ambient manifold satisfies the weak
Regge-Teitelboim conditions.

Definition 3.1.19 (Cll+5—Regge—Teitelboim conditions). Let (M,g, ¥) be a C’1 +6 -asymptotically

at manifold. We say that this manifold satisfies the C?, s-Regge- Teitelboim condztzons if there
144
exists ¢ > 0 such that

[8(®) = 8 (=2)| + 7 [T (@) + T35 (-9)| < = (3.37)
for every T € M\ C.
First of all, we remark that this conditions imply that
e+ vE | =0 7%,  |HY - HZ,|=0("*"), (3.38)

for ¥ =7 (Sg(ﬁ)) The first decay in (3.38) is a consequence of the fact that the metric is

asymptotically even. The second one follows from the definition of shape operator and the
decay of the Christoffel symbols in (3.37).

The next Lemma shows that (3.38) implies that the translational part of H — h is suffi-
ciently small. It is essentially inspired by the results in [Hual0].

Lemma 3.1.20. Let (M, g, %) be a CE -asymptotically flat 3-manifold that satisfies the Cl+6
2

Regge-Teitelboim conditions. Consider the immersion Sy(0) < M, i.e. ¥ :=Z (Sg(ﬁ)), for
o > 1 fized but large. Then there exists a constant C' = C(¢) > 0 such that

3 2
Z::< >L2(E) < Co—2729

Proof. We define 1, the reflection with respect to 0, i.e. ¢ : Z — @ ! (—Z(T)), defined on
M\ Z <Bdiam(C) /2(6)> With an abuse of notation, we now identify S,(0) with its image

0)
through #, and we decompose S,(0) = S}(0) U'S; (0), such that (SE(O)) = SH(0), 0 >
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di%(c). Then, also using that du, — du_, = O(c~'7?) thanks to the hypothesis (3.37),

/ VdM:/ deﬂz'i‘/ Vg dty =
So(0) 55 (0) S5 (0)
= / Vg dﬂx _/ Vg dﬂx +/ (VJ: + V—x) d,ucc =
53 (0) S5 (0) S5 (0)

- / e dpa— / v dp, - / vy (dpe — ) + O(0" )
53 (0) Sz (0) So (0)

and changing the variable x — —x we get

:/ Vg dilg —/ Vg dpg + O(c'7%) = O(c179).
$5(0) Sz (0)

This implies that
/ (H—h)v dp = Hyv dpu+ O(c79), (3.39)
Se (0) Se(0)

and using moreover (3.38), we find
Hv dp = 0(c7?), (3.40)
that implies the thesis. O

3.2 Spectral theory in initial data sets

In this Section we consider closed surfaces ¥ belonging to a roundness class WZ(Bl, Bs) for
fixed parameters n, By, By and a general large 0. Moreover, we will suppose that Eapy > 0
and that 3 is almost CMC.

Definition 3.2.1. Let (M,g) a CEH-asymptotically flat manifold with energy Eapm > 0.
2

Fiz o > 1 and c¢iy > 0. We say that ¥ < M is (0, cin)-almost-CMC if (X, g) € We(By, Bs)
for some By, By > 0, and
[H = hllr2z) < cino 0. (3.41)

We sometimes simply say that ¥ is cip-almost CMC' if ¥ is (cip, ox)-almost CMC. Thus,
we will tacitly mean that the constants ¢ and oy which appear in the statements below only
depend on 7, By, Bs, on the constants ciy, ¢, and possibly on the energy Fapy. We remark
that assumption (3.41) is stronger than the L?-estimate satisfied by H — h on Euclidean
spheres.

Throughout these Lemmas, the setting will be the same of Lemma 3.1.6. Remember
moreover that i := |S|7! [ H dp.

Lemma 3.2.2. There exist ¢ > 0 and o9 > 1 such that, if ¥ € W (By, By) and it also is
(Cin, 0)-almost CMC with o > og, the complete orthonormal system in L*(X) given by Lemma
3.1.6 is such that

R emy (S —
>\a _ ? _ mLB() _ / R,iC(l/, l/)fj d'ug S 60_3_6, o € {1, 2, 3}, (342)
0‘2 »

and the corresponding eigenfunctions f1, fo, f3 satisfy

/ Ric(v, u)fafﬁ‘ < o379, a#B, a,Be{l,23}. (3.43)
b))
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Sketch of the proof. The proof is analogous to the one of [CS21, Lemma 3]. We remark that,

using that |A| = 0(0_%_6), we can write the Gauss equation as

o 2
§% = § - 9Wic(v, ) — |42 + -
_ K2 (7_[2_ h)? (3.44)
=S — 2Ric(v,v) + o + 5+ h(H —h) + O(c7>7").

since, using Lemma 2.1.3 and the roundness, we find H —H = O(c272°) and H = O(c™1).
2

We thus set R := @ + I(H — h) + O(c—37%) and, analogously to the proof of Lemma

3.1.9, we get

N2 — /E SV, V15) ditg

) (3.45)

Nop — /E <(s — 2Ric(v,v)) + <h2 + R>) (Vfa, Vi) dug

Since the spacelike case corresponds to R = 0, in the spacetime case we just have to estimate

H — h)? _a_
’/Emwa,w/g) du‘ _ ’/E <(2) +B(H — )+ O(0? 5)) (V fu V 5) dﬂl. (3.46)
Remember, comparing this proof with the one of Lemma 3.1.9, that the aim is to show that

this remainder is of order O(c—°7%). Since | fallm2(sy = O(1), and thus ||V fallr2s) < c

/Z (Vfar Vs du

two terms can be bounded, using Young’s inequality, equation (3.41) and H—H = O(o
by

notice that < Co 2, which bounds the latter term in (3.46). The other

72726)
M

Co M| H = hll 2|V fall Lol V 5l o < Co™72 (3.47)

using that || fallyia < Co 2| fall g2, and so |V f;|ls < Co~2. Thus we obtain

h? S 30, fof,
2 - _ > ag  JaJB
‘()\a 5 )\a) dap /Z (S — 2Ric(v,v)) <02\Z|g 2 > dpig

which is analogous to (3.27). O

< Co™o79, (3.48)

Remark 3.2.3. Observe that equation (3.42) gives the following bound. Since 6 € (0, %],
m3(2)] < 2| Eapml, Ricz = O(|#|727%) and || fall2 = 1, then

5

= O(J_i_ )a

with a constant possibly depending on |Eapwm|.

The proof of the following Lemma is similar to [CS21, Prop. 2].
Lemma 3.2.4. There exist ¢ > 0 and og > 1 such that, if ¥ € WZ(Bl, Bs) with o > o9, for
every w, v € H?(X) it holds

6y () cllwll L2y IVl 22
ot tot
/E(LW)V du—B/ZWV du| < S3+8 :

Oy

This leads to the following
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Lemma 3.2.5. There exist ¢ > 0 and og > 1 such that, if & belongs to Wi (B1, Bz) and it is
(¢in, 0)-almost CMC with o > oq, for every w € H?(X) such that w° = 0 we find

(i) The translational part, in view of Lemma 3.2.4, satisfies

6my(2) 3
[ @yt dp = | — e
5
(ii) The remaining part satisfies
7
[ @i duz Ty [ o dn
) 05, Jx

Proof. Point (ii) follows from

. (B g 55
/E(Lwd)(wd) dp = /Ewd( Aw?) dp /E < 5 T 5 +h(H —h)+O(o )) (wh)? dp.

Combining this with & = %—1—0(0_%_5), together also with Lemma 2.3.5, i.e. ||H—Apeo(s) <
C’J_%_‘S, and equation (3.16), we get

5 2 7
Lty anz (5 - 5 voe ) [wpanz Ty [ o7 aa
> Ox Ox. b 40’2 »
where we also used the equivalence of the radii ¢ and oy, for surfaces in the class. O

Lemma 3.2.6. There exist ¢ > 0 and oo > 1 such that, if © € W(By, By) with o > aq, for
every w € H%(X) it holds
IZw!]3 < e |lw]|3.

Proof. We estimate

+0(07370)|wll2.
2

w! + A(H — h)w!

2 (H — h)?
Il < | - Awt = Dt | P55

Using the definition of w', and, by Remark 3.2.3, |\; — %]2 = O(07572%), we have

2
< Co | |wl3,

v
2

—Awl — —w
2

Moreover, we conclude with the estimate

s

. < 10071 (H = B)wt]ls < Co=30|wlla,

2

w' + A(H — h)w'

using again Lemma 2.3.5. O
The previous Lemmas lead to the following conclusion.

Proposition 3.2.7. There exist ¢ > 0 and oo > 1 such that, if © belongs to W (B, By) and
it 1s (cin, 0)-almost CMC with o > oy,

2F
inf {/ (Lw)w dp = [[w][2s) = 1, / wdp = 0} > A3DM.
b by >
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Proof. Decomposing the operator L as follows

/(LW)W dyp = /(Lwt)wt dp + 2/(Lwt)wd du + / (Lwhyw? dy,

by b b b

and using Lemma 3.2.5, together with the parametric Young’s inequality with et = (40%)_1
for the intermediate term, we get

6my(X) —3— 7
[ @y d = THEE - oSSl Ty [ d
b O 05 Jx
d||2
— 42| Lwt 2_HW HQ
os|| w3 102

Using (3.2) and choosing o large we have my (X) > EA%, and also Lemma 3.2.6, we have

3EapM s 3
/(LW)W dp > == W[5 = co 0wl + S5 w3
b 2> 20‘2

3 3E

We conclude using ||w||%2(2) = ||Wt||%z(z)+ ||Wd|\%2(2) choosing o so large that Byl > ASDM,
% 7%

O




41

Chapter 4

Volume preserving mean curvature
flow

4.1 Definition of the flow and evolution equations

4.1.1 Definition of the flow

Definition 4.1.1. Let (M,g) be a 3-dimensional manifold, and let v : ¥ — M be a closed
surface. A time dependent family of immersions Fy : ¥ — M, with t € [0,T) for some
0 < T < +o00, which satisfies

DF,() = —(H(-,t) — h(t))v(-1) (4.1)
Fo =1 |

1s called a solution to the volume preserving mean curvature flow, with initial value t.

It is well-known that this flow is parabolic and it has a smooth solution at least locally in
time.

Remark 4.1.2. In general, short-time existence and uniqueness of solutions to a general
system

GE() = ~H(k1, ey B, )V (-, ) (4.2)
F[) =1 |

where K1, ...k, are the principal curvatures of X3, are guaranteed provided that the speed satisfies

of
8/411'

> 0, i€ {1,2}.

This is proved, for example, in [Ger06, Chapter 2]. It is well-known that the uniform bounded-
ness of |Al is sufficient to assure that also the derivatives of each order of the curvatures of the

flow remain bounded, see Section 4.3. This argument allows to deduce that if sup |A| < oo
=x[0,T)

for some T > 0, then the flow can be extended past T.
In the following, we always assume that the ambient manifold (M,g) is C%Jr s-asymptotically
2

flat. We write ¥ := F;(X) to denote the immersed surface at time ¢, and we call for simplicity
Y the “solution of the flow” (4.1) without mentioning explicitly the immersions F;. We call
g(t) the induced metric on ¥ at time ¢ and by dp; the corresponding measure.

4.1.2 Evolution equations

We now recall the evolution equations satisfied by the main geometric quantities on ;. We
choose at each fixed time a frame €, on the ambient manifold M such that €7, & are tangent
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vectors on ¥ and €3 = v. Then the main geometric quantities on X; satisfy the following
equations along the flow, see e.g. [HP99].

Lemma 4.1.3 (Evolution of g(t), du: and curvatures). Let (M,g) be a 3-dimensional man-
ifold, and let v : ¥ < M be a closed surface. Suppose that {Fi}icpor) is a solution to the
equation (5.2), with initial datum ¥. Then we have

N 0gij
(1) (gt] = —Q(H— h)hw,

(ii) % = 2(H — h)hil;

(iii) %(dﬂt) = —(H — h)Hdpy;

(iv) v =VH;

(v) Zhij =V, V;H + (H — h) (—hikhé? + Rﬁi3j3> ;
(vi) 2L = AH + (H — h)(|A2 + Ric(v, v)).

As an immediate consequence of the above equations we also have

d
SIS = —IH = A, (4.3)

d
I = Hlagsy = =200 =, =) = [ HOT =1 (1.4)

We can rewrite the term V;V;H in the right-hand side of (iv) by means of the Simons identity,
as in Metzger [Met07], see Lemma 2.0.1. Thus, we obtain

Lemma 4.1.4. Along a solution of the volume preserving mean curvature flow we have
AP = AR - 29AR + Bl - () +2ap (D) AP
+2(H — h)hig Ry — 2 (iR + b R ) hig (4.5)
~2(V; (Ricier®) + V) (Runegjuv) ) hij.
;WHF = A|VH]* - 2|V?H|* + 2(H — h)hV;HV ;H
+2(|AJ? + Ric(v,v))|VH|* — 2Ric™(VH, VH) (4.6)
+2(H — h)(V|A]>, VH) + 2(H — h)(V (Ric(v,v)) , VH),
where Ric™ is the Ricci tensor on X and (-,-) = (-,-),.
For sake of completeness, we sketch a proof of these equations.

Proof. (i) Using Lemma 5.0.2 and Simons’ identity, we obtain

0

S5hig = Ay — Hhlhy; + |APhi; + (H = ) (—hakh + Rimisjs )

— hiRmyj — h*Rimyig, — Vi (Riciwr) — V! (Rmgijin®) -

(4.7)
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By the definition of |A|?, we obtain
0
a’AF =4(H — h)himhmjhij + QAhijhij — QHhilhljhij + 2|A‘4—|—
—2(H — h)hihgjhi; + 2(H — h)Rmys shij+
— 2 (hiRmgjpr + W Rinuige ) hig = 2 (¥ (Riciwr”) + ' (Rmaig) ) hij.
Observe that, by definition, Ajpfm;hij = tr(A%). Moreover,
A‘A|2 =A(AA) = 2Ah;jhi; + 2|VA’2,

and thus 5
a|A|2 = A|A]> = 2|VA? 4+ 2|A* — 2htr(A?)

+ 2(H — h)Rmysj3h;j — 2 (hﬁﬁkjkl + hlkRTnlijk) hij
-2 <V] (ﬁiuﬂ/w) + Vl (%wiﬂyw)> hij.

Moreover, the mean curvature has a similar, but simpler, evolution. In fact

;(€32A<g3—WWP+HW—MWW+RMMW) (48)

It follows that

d .59 O . H*\
aﬁ”—mcm 2)—

— AJA]Z — 2[VAP + 2|A* — 2hte(A%) — H|AP(H — h) 49)
— H(H — h)Ric(v,v) + 2(H — h)Rmysjshi; — 2 (thTnW + hlkﬁlijk> hij
=2V, (Ricr?) + V! (Rmiv®) ) i
Observe that equation (4.9) can be rewritten as
AJA]Z = 2[VAP + 2| A[* — 2htr(A%) — H|APX(H — h)
— AJAP - 2|VAP + %\Aﬁ — 2htr(A%) + 2 AP (1 - Z) AP,
while it also holds
“H(H — WRic(v, v) + 2(H — h)Rmysjshi; = 2hs;(H — h)Ringis;.

We finally observe that

o

—2 (VJ (miwljw) + Vl (ﬁwijlyw)) hij =-2 (VJ (ﬁiwyw) +V; (ﬁwijly“)) hija

using the symmetries of the Riemannian tensor.
(ii) Deriving the evolution 0y H, taking into account also the derivative of the metric, and
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using the Bochner formula, we get

;\VH\Q = A|VH]* - 2|V?H|* + 2(H — h)hV,;HV ;H
+ 2(JAP? + Ric(v, v))|VH|? — 2Ric>(VH, VH) (4.10)
+2(H — h)(V|AP?, VH) + 2(H — h)(V (Ric(v,v)) , VH).

4.1.3 Evolution of integral quantities
In this subsection we study the evolution of the integral quantities which appear in the

definition of round surfaces, with the aim of showing that this roundness is preserved.

Hypotheses of the Chapter. For the rest of the Chapter, we will suppose that (M, g, )
is a C’E+ s-asymptotically flat manifold, ¢ : ¥ < M is an embedded surface and (X, F}) is a
2

solution to the volume preserving mean curvature flow system (4.1) with initial datum Fy = ¢
on the time interval [0, T, for some T' > 0. We fix here, once for all, o := oy, the area radius
at the initial time ¢ = 0. We suppose moreover that there exist Bs, > 0 and ¢ > 0 such
that the flow satisfies the following hypotheses:

(i) For every t € [0,T], it holds
5 1
|A(t)] < 37 ki(t) > %" (4.11)

where k;, i € {1,2} are the principal curvatures of 3

(ii) For every t € [0,T7] it holds

1H = Rl () < Coo0 270, A(t) < Booo 279, (4.12)
L(%)
(iii) For every t € [0,T7, it holds
9% < 3, (7/2)m0? < |%4| = 4no3, < 5mo. (4.13)
rs(t)

We remark that, even if we are now assuming these inequalities for the Section, our approach
will be that of showing that none of the above inequalities can become false first.

Remark 4.1.5. In the following Lemmas and Propositions we will need sometimes weaker
hypotheses. We will specify these cases along the statements.

Proposition 4.1.6. Let (X, F;), t € [0,T], such that (4.11), (4.13) and

1
| H — hl|peo(s,) < 205" vVt € [0,T] (4.14)

0
hold. Then there exist a constant C' = C(¢,0) > 0 and a radius o9 = 0¢(9,¢) > 0 such that if
o > oq then

d o o o 1 o o
dt/z|A|4 dpy < —2/E|A]2|VA]2 dpy — M/Z\Aﬁ dyy + Co 04, (4.15)
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As a consequence, if / |A[* duo < Bio™** and By > 2C, then / |A]* dpy < Bio™4% for
z by
every t € [0,T].

Proof. Integrating (4.5) and using integration by parts,
d o o 0 © o
G A aw =2 [ AP (AR ) du+ [ A~ H) d
=2 [ [VIAPE dpe— 1 [ JAPIVAP du
b b
o h h o
4 [P (A1 = Her(a) du v [ 4P (1= 5 ) 1A d
s H o H
+4/(H — h)’A‘thj%kiljkal th — 8/ R7m1212‘14|4 dut
b b
- 4/ (V] (ﬁiwl/w) + Vl (Rimwijlyw)) h”|A|2 d,LLt +/ |A’4H(h — H) d,LLt
b b

(4.16)
where we used that the symmetries of the Riemannian tensor imply

—2 (hé%kjkl + hlkﬁlijk) hij = —2 (hjihiRoygj, — highjiRmyjy;) = —4|A*Rmiio.

(4.17)
In order to estimate (4.16), we note that (4.11) and (4.12) imply
1 V5 h 1 1
- <HL — 1——| < — Hh—-H| < —. 4.1
o~ ~ o’ ‘ H‘_207 | |_402 (4.18)
Using (4.11) and the well-known identity
|AI* — Htr(A%) = —2r1 ko] A|? (4.19)

we find, using the estimate (4.14),

o h h o o
[ VAR Al = mra(a) dueea [ 1AR (1= g ) A s A1 - 1) du
> H > H >

1 19 1\ 1 ° 1 °
<=4z ) = [ 1A due < — [ A" du. 4.2
<(1-10+3) 5 LA d < [ 1A dug (4.20

We now consider the terms
4/ (H — h)|A’2hin7mkiljl/k1/l dﬂt — 8/ R7m1212]A\4 d/Lt
by by
< C/ o 30 AP dpy +C/ o730 AI dpy (4.21)
by by

-2 5 4 o
< c/ 350 T A 1 ot (f“) dps +c/ o= 30| A[* dp
5 4 >
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where we used the parametric Young’s inequality.
Estimating the remaining term we have

— 4/ (V] (Riciwuw) + Vl (meijll/w)) hij|A’2 d,ut
by
= 4/ RiCiwl/ij <hij’j4‘2> + Rmmjll/wvl <hij’;12> dﬂt
¥

< ¢ [ Ral|VAIAR d < Co~2 [ [VAIAP dy,
2 >

also using the inequality |V|A|| < |V A|. The latter term can be estimated as
00—3—5/ |VA||A]? dus < ;/ VA% A)? dut+C(5)C’20_5_25/ |A? dus.
b P X

e}
Proceeding as above, we get a term 50‘2HAHZL and a reminder C.o— 649,

We conclude by choosing ¢ suitably small and ¢ large, depending on ¢ and §. In particular,
we have d

o o o 1 o
4 2 2 4 —6—45
aHA‘|L4(E,;Lt) = —2/2 |A[F[VA[" dpe — T‘_QHAHL‘*(E,/M) +Cao : (4.22)

o]
Finally, suppose that [y |A|* duy < Bio~*7%9 is not true for every ¢t € [0,7]. Then, there
(o] o
exists to > 0 a first time such that [ |A[* duy, = Bio™7% and so D = o4 [ |A[* dpy, =

By > [ |A[* duoo®™. Since for every t € [0,t9) we had [y, |A|* dyy < Bio=*74, then

d
<
O_dt

o o o 1 o
[IA die < =2 [ JAPIVAR dysy — 55 [ 1A dy,+ oo
t=tog /X b)) 0% Jx

It follows that D < 2C' < B, which is a contradiction. O

Lemma 4.1.7 (Rate of change of h(t)). Suppose that (¥, F}), t € [0,T], satisfies (4.11),
(4.12) and (4.13). Then there exists a constant ¢ = ¢(cs0,¢) > 0 and g = 00(Coo, Boo, €) > 1
such that, if o > og,

h(t)| < co™ 4720, (4.23)
Proof. By definition of h we get

: OH
Silht) = [ S dut+/ H2(h — H) dut+h/(H—h)2 dpuy
by by b

:/E(H—h) <|;1]2+Ric(u,u)> dut—/E(H—h) (f—HthhQ) dpu
- /z(Hh) (I2!2+Ric(u, v)) dpry — ;/Z(H h)? dp,

using that /(H — h) duy = 0. In absolute value, we estimate
b

. by
[Sella(t)] < (%] (coco™7) (BLo ™ 4207870 4 |2t| (Bo™27%).
The thesis follows dividing by |%;| and choosing o large depending on ¢, B and €. O

The previous preliminary Lemma leads to the following
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Lemma 4.1.8 (Evolution of the oscillation). Suppose that (3, F), t € [0,T], satisfies (4.11),
(4.12) and (4.13). Then there exist a constant C = C(¢) > 0, a constant ¢ = ¢(¢x,¢) > 0
and a radius 09 = 00(Boo, Coo, G, 0) > 1 such that, if o > oy,

d
7 [(H - R dpy < —12/(H — h)?|VH? dy; + Co 2 / (H — h)* dpy + co— 2
b X Y

Proof. We consider the evolution

d OH

T z(H_h)4 d,ut:4/2<at—h> (H—h)3dut—/EH(H—h)5 dus.

By Lemma 5.0.2 and integration by parts, we get

d _
o [ (- R dpy = — 12/ (H — h)?*|VH|* du; + 4/ (H — h)*(JA]> + Ric(v,v)) du
P % ¥

—4h/E(H—h)3 dut—/ZH(H—h)5 dps.

By the hypothesis, since 75! (t) < 305" and |Ricz| < E|§|_g_5, we find HA]Q + Ric(v, 1/)} <
Co~2. Combining this with the following consequence of Lemma 4.1.7

< c(Co0, )2, (4.24)

i [t 1

we get the Thesis, also observing that, for ¢ large depending on coo, |H(H — h)| < v/5072 in
view of hypothesis (ii). O

We now estimate the evolution of [VH]|. In the proof below, observe that we do not use
Hypothesis (ii).

Lemma 4.1.9. Suppose that (X, F}), t € [0,T7], satisfies (4.11), (4.12) and (4.13). Then there
exist a constant C = C(¢) > 0 and radius oo = 00(¢,0) such that if o > oo then

d
/ \VH* dyy < —3/ \V2H||VH|? dut+Ca_6/(H—h)4 d,ut—i—Ca_2/ |VH|* dpy.
dt Jx 2 ) >
Proof. Integrating by parts (4.6) we get
d/ VH* dy :/ 9 (IVHP)?) dn +/ VH|*H(h— H) dy
dt /s L T Sy !
:—4/ \VIVH?|? duy —4/ |VZH|?|VH? dpy
by b
+4/(H—h)hijViHVjH\VH\2 dpg (4.25)
Y
—4/(H—h) (JAP + Ric(v, 1)) V- (IVHPVH) du
b

—4/ Ric™(VH,VH)|VH| dut+/ \VH*H(h — H) dpu
) %
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By (4.11), H, |H — h| and |A| are all bounded by Co~!. On the other hand, the asymptotic
flatness implies that |Ric™| < Co~2 and |A|?> 4 Ric(v,v)| < Co~2. Then, for every ¢ > 0,

d
/ \VH|* dp; < —4/ \V2H||VH|? d,ut—i-CU_z/ |VH|* dyy
dt Js ) >

+Ca—2/ |H — h||VH*|V?H| dy

-C (4.26)

< < ~ 4) / |VZH|?|VH* du; + 002/ \VH|* duy

—4 2
+ 5, / H— W2V H dus.
2e b))

We conclude choosing € = % and using Young’s inequality in the following way

—4/ \H — B2V H dgy < o / (H = B dpy + 0_2/ VH* dp. (4.27)
by by by

O

At this point, we prove the the following flow independent-inequality.

Lemma 4.1.10. Let X < M be a surface. Then we have, for every e >0 and o > 1,
—04/(H —h)AVH|]? du < —52/ \VH|* du+52/ \VZH|?|VH? dp.
D 20° Jx =
Proof. Since h is constant,

0—2/ |\VH|* dy = 0_2/<V(H —h),VH)|VH|? du
by b))

= g2 / (H — h)(AH)gM"V . HVH dp — 202 / (H — h)g"V;Hg"V,V,HV H du
¥ )
f + 2

/ |H — h||V2H||VH|? du < 2/ <(H€;4h>2 +syv2H|2> \VH|? dp,

using also the (parametric) Young’s inequality. O
Lemma 4.1.11. Let (X, F}), t € [0,T], be as above. Forn >0, let us set

ar(t) = ko H = hllzags ) + IVH | Lags ,)- (4.28)

Then there exist a constant ny = n(¢) > 0, a constant ¢ = ¢(B1,9,¢) and a radius oy =
00(Boo, B1, €0, 0,¢) > 1 such that, for k = ny, Bs > ¢(B1,d,¢) and o > og, we have the
implication

2y, (0) < Beo 874 — a, (t) < Bao 3% for every t € [0, T). (4.29)

Proof. Combining the previous Lemmas, we have that
d
ap(t) == — (/ |VH|* dp + ka4/(H —h)* dut>
< - 3/ |V2H||VH|? dpg + CUG/(H —h) dus + CO’Q/ IVH[* dyy
% P P

- 12k0_4/(H — h)*|VH[* dps + Cko ™ / (H — h)* dpys + kc(coo,é)a_%—%,
z b



4.1. Definition of the flow and evolution equations 49

where C'= C(¢) > 0 is the constant introduced in the statement of Lemma 4.1.8 and Lemma
4.1.9, while ¢(coo, ¢) > 0 have been introduced in Lemma 4.1.8. By Lemma 4.1.10 multiplied
by 12k,

12k

04

/(H R|\VH|? du < —6’“’/ \VH[*du + 12ke? /]VQH\ \VH|? dp,

and Sobolev inequality, we rewrite a5 (t) as

i </ \VH|* dps + ka—4/(H —h)4 dut)

< (C - 6ke) 0—2/ VH dpy + (12k:52—3)/ V2HPVH]? dp
> >

N (4.30)
+ Cko ™6 / (H — h)* dpg + ke(coo,€)o 2 7.
b
We thus solve the system
C — 6ke = -C
12ke? =1
that is k = %CQ and € = i. With this choice, we get
d 4 4 o 4 4
— \VH|* dus + -C* o (H — h)* du
t \Js 3 2
< - 00—2/ |VH|* - 2/ \VZH|?|VH|?
= = (4.31)
4 3 ¢ 4 4 o o255
+ §C o (H —h)* dp + gC c(coo,C)o 2 7.
b
So we choose 7y := %CQ. Then point (iv) of Lemma 2.3.5 implies that
=t du < b (\|A||L4 Sy + 0445> < he(BE + 1)o7, (4.32)
Observe moreover that
c(coo,é)o—_%l_“ _ (C(COO Ao~ i 5) 51048 < ;1045
if g2 +o > 00(Bso, Coos €), and o > 0. This implies that
~ (/ IVH[* dp +nwff‘4/(H —h)* dm)
dt \ /v
4
< — 2/ IVHIAL CB Per(Bil + 1)0,710745 + 5020,710745. (4.33)
This implies
an(t) < —Co~2a,(t) 4+ co 1074, (4.34)
with ¢ = ¢(B1, cper, ¢), using again (4.32). The thesis follows. O

From now on, when considering the roundness class W, (B1, Bs), we fix the parameter 7
equal to the value 7, given by the previous Lemma, and we will no longer need to specify the
dependence on 7 of the constants in the estimates. Moreover, we will simply write W, (B1, B2)
and B, (B1, Ba, Been). See also Remark 2.3.3.
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4.1.4 Evolution of the barycenter and convergence

In this Subsection, we obtain a first result which is an important block in the proof of Theorem
1.1.2. In particular, we show that by an appropriate choice of the parameters of the class
Bd(Bi, By, Been) and under suitable conditions on the initial surface, the solution of the flow
remains inside the class for arbitrary times. However, in order to control the possible drift of
the barycenter, we will need an additional smallness requirement on the L?-norm of the mean
curvature of ¥: in terms of Definition 3.2.1, we prove that the flow exists for every ¢ > 0 if
the initial surface is almost CMC.

An important assumption in the previous results was the uniform comparability between
ry, and o in (2.29), which shows that ¥, stays enough far from the coordinate origin to ensure
the desired decay of the ambient curvature. To justify this assumption, we study now the
evolution of the barycenter under the flow.

Proposition 4.1.12. Let (M,g, %) be a Ciré—asymptotically flat manifold with ADM-energy
2

Eapym > 0 and let v+ X — M be a surface. Let (X, F;) be a solution to the volume preserving
mean curvature flow system (4.1) with initial datum Fy = v. Suppose that the flow exists
on a compact interval of time [0,T], with T > 0, and that (X, g(t)) € Wy(Bi, B2) for some
Bi1,By > 0. Then there exists og = oo(B1, B2,¢,0, EApm) such that, for every o > o¢ and
every t € (0,77,

d 4FEApMm 2
FrL Ml < == 5 IH = 1) 1Lags,) =~ ICH = B) s,
O'Et O—Et

Proof. In the following, ¢ will be a positive constant that can change from line to line and
that depends on the roundness constants. Combining the inequalities obtained in Proposition
3.1.10, since (H — h)? € span{fy : k > 4}, we get

(L(H = h), H = h)2 >

> Oy gy 2 / (H = B)((H = n)")? dp— co™ 2| (H — n)'[3
oy, b
+ :%H(H— U3 = co 50 (H — b ol (H — h))|> >
S5mp(Xt) ¢ 3h t t 3
> :%tH(H_h) Hg_Q/Z((H—h) +(H—h)d> ((H —h)")? du+20%t”(H—h)dH%,

for o large enough. Keep in mind that, moreover, for o sufficiently large, mg (%) > % > 0.
From a dynamical point of view we find

d
SGH = HIB = ~2(L(H = ). 1~ hyy— [ H(H =) dy
b

< SEADM H(H . h)tHg + 3h/2((H — h)t + (H — h)d)((H — h)t)2 du

o3,
3 _3_
N b [ ko [ (2 dp,
Oy, pY p)

where ¢ = ¢(coo) > 0. Thus, we have to study the integrals

h/z((H—h)t)?’ dp, h/Z(H—h)d((H—h)t)Q i, h/z((H—h)tJr(H—h)d)?’ dp. (4.35)
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The first integral in (4.35) is estimated by Lemma 3.1.16. The second integral can be estimated
. _8_ _
combining [|(H — h)"|| ooy = O(6727%), || fallzoe(z) = O(c ") and

d -5 RY: o
i L = ] < ot [ (G

co™2
<

- 2

[ (o5 =+ o = ')
By the formula of the cube of a binomial, it only remains to estimate
L sn [ Y

X X

< ||h(H — h)? + 3h(H — h)t”oo/z((H ~)"? dp < 6035/2((1[1 ~)")? dp,

since also [|(H — h)4|| poo(syy = |(H — h) — (H — h)!|| o (s) = O(a_%_‘s). Putting the pieces
together, we get

d 4EApM 2
—||H — b} < ——5 I(H — h)'13 — - II(H — h)*|]3.
dt O-Zt o

O

Remark 4.1.13. An immediate consequence, if o is sufficiently large depending on Eapm,

ie. —2 > 4EADM s that
o 0.3 Y
D¢ P

4EApM
3
o3,

d
S~ Bl < =AM 5 — b3

The next result, which is similar to Proposition 3.4 in [HY96], gives a bound on the
possible change of area of the surface along the flow as long as it remains round.

Lemma 4.1.14. Given By, Ba, there exist constants ¢ > 0 and o9 > 1 such that, if o > og
and Xy is a solution of the flow (5.2) for t € [0,T] with ¥y € We(Bi, Bs) for all t € [0,T]
then

1_
0<ox, 0oy, <co2 g

for every t € [0,T].

Proof. Suppose that o > 2diam (C) and consider the sphere S¢ (0). Since the flow is volume

preserving, we have that the volume enclosed between ¥; and S% (0) remains the same for
every t € [0,T]. We call this region €, while A; is the Euclidean volume of the region enclosed
by ¥;. Since X; belongs to the roundness class for every ¢ € [0, 7], we find that

IVolg(€) — Volge ()] < Co3 0, (4.36)

3
47r02t

Volge (A¢) — =% | = Vol (Ar) = Volg: (S, (35,)| < CIZ IS ()l < o0, (4.37)

for every t € [0,7]. Combining the identity Volge(£2;) = Volge (As) — %‘3 with (4.36) and
(4.37), we get

3
47r02t

< C’agﬂs + < cagf‘s. (4.38)

VOlge (At) —

Ao Tod
Volg(€) — ( 3Et - 3)
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3
We conclude noticing that Volg(£2;) = Volg(£p), and thus mzt - %’3, up to an error of order
o279, is constant in [0, 7. This implies the thesis. O

We are now ready to prove that, by an appropriate choice of the parameters of roundness
class, a well-centered almost CMC round surface remains inside the class for arbitrary times.
We remember that the definition of roundness class has been given in Definition 2.3.1.

Lemma 4.1.15. Let (M,g,%) be a C’1 s-asymptotically flat manifold with Expm > 0. Let

Lt : X < M be surface and set o = Jg, Fix Q@ > 1 and ciy > 0. There exists C' =
C(Q, cin, Eapm) > 0 such that if By is chosen as in Lemma 4.1.6 and n and By as in Lemma
4.1.11, and Been > C, then the following statement holds. Let (X, F}) be a solution to the
volume preserving mean curvature flow with initial datum Fy = 1. Suppose that the flow
exists on a compact interval of time [0, T, with T > 0, and that the following conditions hold

(1) (27 FO) € Ba(Bla 327 Bcen);
(i) (X3, Fy) is (0, cin)-almost-CMC, in the sense of Definition 3.2.1.
(iii) (X, Fy) € By (B1, Ba, QBcen) for every t € [0,T).

Then there exists oo = 0¢(¢,d, B1, B2, Been, EaDM, Q) such that, if o > o9, then (X,g(t)) €
BO’(Bl) B27 QBcen) fOT every t € [07 T]

Proof. In this proof, for the reader’s convenience, we set F = Eapn. Moreover, for sake of
brevity, we will indicate with Z(t) the barycenter zx,. We have to show that no equality in the
definition of B, (Bi, B2, QBcen) can occur. If we start in By (B1, Ba, Been), then there exists
a maximal time ¢y € (0,7 such that (X, g(t)) € By(B1, B2, QBeen) for every t € [0,19) and
(2,9(to)) € By(B1, Ba,QBeen). This means that, at t = tg, at least one of the inequalities
in Definition 2.3.1 is an equality, with Bee, replaced by QQBeen. We note that the conditions
(2.29) are preserved: Lemma 2.3.5 says that, for o sufficiently large, a surface in W, (B, Ba)

satisfies the strict bounds (2.42) on k;, and thus |A| < y/5/2024 must hold; moreover, thanks
to the choice of o, Lemma 4.1.14 implies that the area radius oy, is controlled for every
t € [0,7T] in the sense of (2.29), if o is large. Thus, it is enough to prove the strict inequalities
n (2.31) and (2.32).

In a first step, we suppose that |Zx,| < QBeeno! ™0 for every t € [0, ] and we show that
the other inequalities are strict. In a second moment we will show that also this condition
holds strictly. Observe that, thanks to Lemma 2.3.5, if o is suitably large

f@.t) ()| >1—co® > %, (4.39)

we are in the hypothe31s of the Lemmas of Sectlon 4.1.3 and of Proposmon 4 1.12. Thus,

choosing Bj as in Lemma 4.1.6, we have that ”AHL‘*(&) can never reach the bound Byo—179.

In the same way, choosing By as in Lemma 4.1.11, depending only on Bj, and By and
Coo = Coo(B2,m) as in Lemma 2.3.5, we also have that the left hand side of (2.32) remains
strictly below Bao 8% if ¢ is sufficiently large, depending on B, By and the universal
constants.

We now suppose that there exists o € (0,77, such that |75, | = QBeeno' ™°. Also in this
case, for every t € [0,ty] we continue to be in the hypothesis of Proposition 4.1.12; and this

implies that
Lo n? de< ([ 02 aa) 3
b)) by
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also using the bounds on the area radius, for every t € [0,to], where dug = du®»9). By the
hypothesis on the (cj,, 0)-almost-CMC of X, we find

S5E

1H = hll 2 < cmo™0e728, Vi€ [0,t]. (4.40)

In the following, we indicate with Zy(¢) the center of the Euclidean sphere of radius oy
approximating 3, defined as in Lemma 2.3.5. This Lemma also implies that |Zy(¢) — Z(¢)]| <
co(Bi, ¢, 5)(7%_5, uniformly in ¢. A straightforward computation shows that the barycenter
evolves according to

Js(h = H) v + H (Fi(z) — Z(t))] dpe.

B2 (t) = By 7%, = =

(4.41)

See for example [CW08, Remark 3.1]. Since 2o(t) = Z(Fi(7)) — 05, Voy, — ftVoy,, Where f; is
defined in Lemma 2.3.5 and v,y is the Euclidean normal of the sphere Syy, (20(t)), we find
that, for o large (depending on the roundness constants), z(t) is bounded by O(o), uniformly
with respect to the roundness constant, since max, |Z(F;(z))| is the Euclidean radius of 3,
i.e. Rx(t). Thus

5Et

C _9_
7||H— hHL?(Z}t) < c(cin)a 2 66 203,

. c
0:2(t)] < Et!/z |H — h| duy <

1
|2¢|2

Integrating this expression in [0, tg], we get

to 203 5Et
1Z(to) — 2(0)| < / 0,21 dt < c(cm)o2 (;:E) (1 e ) < Co',
0

where C' = C(cin, F) > 0. Using now hypothesis (i), we conclude that
|25, | < Beeno'° + Co' ™ < QBeeno' ™,

if Been is sufficiently large depending on C' and @ > 1, and thus we have a contradiction with
the definition of ty. This implies the thesis. O

Theorem 4.1.16 (Existence of the flow - Part I). Let (M,g,%) be a CEH—asymptotically
2

flat manifold with Eapm > 0. Let ¢ : X — M be a surface and set ¢ := ox. Fiz @ > 1
and ciy > 0. Set By, Ba, Been and oo as in Lemma 4.1.15, and suppose that o > g, (%, Fp)
belongs to B, (B1, Ba, Been) and that it is (o, cin)-almost-CMC. Let (X, F;) be a solution to the
volume preserving mean curvature flow with initial datum Fy = ¢. Then, this solution exists
for every t € [0,00) and (X, F;) belongs to By(B1, B2, QBeen) for every t € [0,00).

Proof. Since (X, Fy) belongs to By (B1, Ba, Been ), for t small we have that (3, F}) belongs to
By(B1, B2, QBeen). Define Tiax as

sup {T : (%, F}) exists in [0,T) and it belongs to By (Bi, Ba, QBcen) for every t € [0,T)} .
(4.42)
Of course Tiax > 0. Suppose that Ti.x < 0o. Then, we can consider the limit (ETmax, OTmas) i=
lim (X, g(t)), which is a smooth surface, since we are considering the limit of a sequence of

max

surfaces whose second fundamental form is uniformly bounded, together with its derivative
of each order, see Section 4.3. Thus, [0, Tmax) 2 t — ¢(t) is smoothly extended to [0, Tinax]-
We have that (X, g(t)) e[0T 18 @ (sSmooth) solution to the flow which belongs, for every
t, to B, (B1, Ba, QBcen) and which at t = 0 belongs to B,(Bi, B2, Been) and is almost-CMC.
Choosing o as in Lemma 4.1.15 with 7' = Tjax (observing that the choice of og does not
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depends on T') and o > o, we have that (X, g(t)) € By(B1, B2, QBcen) for every t € [0, Tiax)-
Thanks again to the computations in Section 4.3, see also Remark 4.1.2, we can smoothly ex-
tend the solution past Tiax, that is, there exists 7 > 0 such that the solution can be extended
to [0, Timax + 7). Since (X, g(Tmax)) belongs to B, (B1, Ba, QBcen), possibly choosing 7 > 0
smaller we have that (3, g(t)) belongs to B, (B1, B2, QBcen) for every t € [0, Tinax + 7). But
this contradicts the definition of Ty ax unless Tax = 00. O

4.2 Proof of Theorem 1.1.2

4.2.1 Evolution of Euclidean spheres

We conclude by considering the explicit example of a Euclidean coordinate sphere S,(0) as
initial surface for our flow. To ensure that condition (ii) of Theorem 4.1.15 is satisfied (for
an initial time which is possibly non-zero), we have to strengthen the assumptions on our
ambient manifold by requiring the Cf} s-Regge-Teitelboim conditions in Definition 3.1.19.
Even if under this condition the existence of the ADM-center of mass is not guaranteed,
at the end we will prove the existence of an abstract center of mass, i.e. a CMC-foliation
constructed via volume preserving mean curvature flow.

We consider the immersion Fy = ¢ : 7! Sr(ﬁ)) — M, and we set, as usual, 0 := og ()’
T

the area radius of the Euclidean sphere. First of all, we remember that Lemma 3.1.20 implies
the following result.

Lemma 4.2.1. Let (M,g, ) be a C;ré-asymptotically flat 3-manifold that satisfies the 012+5-

Regge- Teitelboim conditions. Consider the immersion 2! (ST(6)> — M and set o as above.

Then there exist two universal constants Cioy > 0 and Cirast > 0 such that the family of
FEuclidean spheres satisfies

< Ctraslg_2_25, (443)

3
_l_s Vo \?
I = . < G200 3 =0

for every r sufficiently large, where, with an abuse of notation, we identified " (Sr(6)> and
S,(0).

We study the evolution of the quantity in (4.43).

Lemma 4.2.2. Let (M,g, %) be a Cz+§-asymptotically flat manifold with Eapm > 0. Let
2

L: X < M be a surface and set o := ox. Let (3, F}) be a solution to the volume preserving
mean curvature flow with initial datum Fy = 1. Suppose that the flow exists on a compact
interval of time [0,T], with T > 0, and that (,9(t)) € Wy(B1, Ba) for every t € [0,T]
and some Bi,By > 0. Then there exist a constant ¢ = ¢(By, B2,¢,0) > 0 and a radius
o = o0o(B1,B2,¢,0) > 1 such that if 0 > og then

d<H—h5

— , > < o3
dt o/ L2(%y)

— )

for every t € [0,T].

Proof. By the definition of scalar product in L?(3;) we find

% <H —h %1>L2(Et) -



4.2. Proof of Theorem 1.1.2 55

_ é </E (%fh) Ve d,ut+/(H h) <0a”ta> dut/E(Hh)QHya d,ut)
:/E(—L(H—h))y: du—i—{—i/sza d’”i/E(H_h) <8a’/;> du+0(a325)},

using also Lemma 5.0.2. This also implies

1 vy _ _a_
s (%) da) < o7 =l < o5, (4.44)

where we used that o||VH|2 + ||H — hlj2 < co~27%. Then inequality (4.44), Lemma 4.1.7
and equation (3.31) imply the thesis. O]

We finally conclude the proof of Theorem 1.1.2.

Proposition 4.2.3 (Existence of the flow - Part II). Let (M,g,Z) be a C s-asymptotically

flat manifold with Eapy > 0 that satisfies the Cll+5—Regge—Teltelb01m condltlons, i.e. (3.37)
holds. There exists ro = ro(¢,0) > 1 such that for every r > 1o the solution (X, Fy) to the
volume preserving mean curvature flow with initial datum Fo = ¢ : 27! ST(G)) — M exists
for every t € [0,00).

Remark 4.2.4. The weak Regge-Teitelboim assumption in the hypothesis of the statement

above could be replaced with assuming directly that the initial family of surfaces satisfy in-
equality (4.43).

Proof. In the following, r and o := Ts,.(6) will be arbitrary but fixed. In particular, we will
require o to be large, which translates into a requirement on the largeness of r, in view of the
asymptotic flatness. Set ¢, := max{ M Ctot} and Q) = %, and choose B, By and

Been as in Theorem 4.1.16, and og to be the maximum of the ogs obtained by Lemma 4.1.15
considering in the statement both the class B, (B1, B2, Been) and B, (B1, B2, 3Bcen). Suppose

moreover that By, By and Bee, are such that 21 (Sr(0)> belongs to B, (B1, B2, Been). Set

3
Z:: <H h, 7>L2@t)

Lemma 4.2.1 says that [II(0)| < Cirasio 229 Consider the solution F} starting from ¥ and
define

ST F, exists in [0,T) and T1(t) < (Cirast + 1)o™272 for every ¢ € [0,7),
max ‘= sup ¢ 1": (3, 9(t)) € By(Bi, B2,2Bcen) for every t € [0,T)

If Tihax = oo then the Theorem is proved. Suppose then that Ti.x < co. Thus, Tiax is the
first time such that

I(Thax) = (Cirast + 1)o7 272 or (2, g(Timax)) € Bo(Bi1, B2, 2Been). (4.45)

Since we have chosen B; and By as in Lemma 4.1.15, which does not require the almost-
CMCness in its hypotheses, then for o large the second case only occurs when [Z%,. | =
2Beeno' 0.

Claim. We show the following claim: if (4.45) occurs, then there exists a time tg < Tax
such that (3, g(to)) € Bs(B1, B2,3Bcen) and ||H — hHLZ(EtO) < cipo 179,



56 Chapter 4. Volume preserving mean curvature flow

In a second step, Theorem 4.1.16, with @ = % and Bcen of the statement of Theorem
4.1.16 replaced by 3Bcen, implies that (X, g(t)) exists for every ¢ € [0,00) and (3, g(t)) €
B, (B1, B2,4Bcen), thanks to the choice of By, By and Been and for o is suitably large.

Proof of the claim. At first, suppose that Tyax is the first time such that II(Tax) =
(Cirast + 1)072729 and that moreover it holds (X, ¢(Timax)) € Bo(B1, B2, 2Been).

(i) If there exists tg € [0, Timax] such that
d 2 £\ 2
: ((=1)D)" dpuy < (= 0))? dp, (4.46)

then |H — hH%2(Et ) < 2 [, (H - h)t)2 dpt,, and moreover, thanks to Lemma 3.1.18,
0
with IT = Tl(tp), we get

a7 _1_
‘ SCO‘ 2 6“H*h”%2(2t0),

H(to) — 3/; ((H — h)t)z d,uto

where in the latter inequality we combined the proof of Lemma 3.1.18 with the estimate
on |0 — oy, | given by Lemma 4.1.14.

- 3 3 C rans —4—
Since H(to) < (Chransi+1)0~2"2%, (4.46) implics that HH—hH%Q(EtO) < 2Cuanal) ;—2-25

for o large. Moreover, (X, ¢g(to)) € By (B1, B2, 2Bcen) and thus we have the claim thanks
to the definition of c¢jy,.

(ii) Suppose now that for every t € [0, Tinax] it holds

2
/ ((H—h)d)) dyy > / ((H = h)")* dyu. (4.47)
X X
Thus Lemma 4.1.12 implies that
d 2 1 1
—H = hl} < = I(H = n)?|13 < = I(H = b)'|3 = 5 |I(H = h)’|3,
dt o3, o3, o3,

that is
At —1-25 — 2
|H — h||L2 (=) < |H — hHL2 )€ “n0? < Choto e 5mo? (4.48)

for every t € [0,Tmax). On the other hand, Lemma 4.2.2, combined with /II(t) <
VCirasl + 107179 for every t € [0, Tinax), implies that

2
d <H _n, ”£> < o430
dt o/ L2(%y)

for every t € [0, Tinax], with ¢ depending on By, Bs, ¢, 0 and also on Cias. This means
that, integrating and computing in t = Tiyax,

(Corasi 1)o7 e Z <H b, >;(E Z <H b, 7>L2(2 )+ AT
«Q 0

Since the L2-product at the initial time is smaller than Clrasio 2720 the inequality leads
10 Tipax > %02”. Computing (4.48) in Tinax we get

ax

4Ty of
I1H — h||%2(2T y < Croto ™ "2 5me? < Cioro™ " Pe 5 < Ciopo 272, (4.49)
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for o large. We get the claim choosing tg = Tax, thanks to the definition of cjy,
observing also that (X, g(t)) € B(B1, B2,2Bcen)-

To conclude with the remaining case, suppose secondly that Ti,.x is the first time such that
|Zsr | = 2Beenot ™ and II(t) < (Cirast + 1)o=272 for every t € [0, Tmax]. As above, we
consider two cases.

o If Thax > 0219, we conclude as above, distinguishing again the two cases: the case (i)
is identical to the one exposed above; in the case (ii) we skip from inequality (4.48) to
(4.49) and we conclude setting ty := Tyax as above.

e Otherwise, Tmax < 0219, Since II(t) < (Ctras + 1)0*2*25 for every ¢t € [0, Tiax], it
follows that [ (H — h,v) 25,y | < ¢(Ciras)o %, Thus the evolution (4.41) implies that

10:2] < [Se)7H[(h— H V) pogsy | 4+ 157!

(H — h)*(Fy(x) — 2) du
/Z (4.50)
+ 5

h /Z (h— H)(Fi(x) - 2) d

Since, by Lemma 2.3.5 Fy(z) — 2(t) = ox,v + O(a%_(s), it follows the inequality |0;2] <
¢(Cirasl, B1, B2)o 279 for every t € [0, Timax] and for o sufficiently large. Notice, in fact,
that the second and (the second addend of the) third addend in (4.50) decay with the
right order. It follows that

Tmax
"gETmax - 2(0)’ < / |atg| dt < TmaxC(Ctrasla B17 B2)0_2_6 < C(Ctrasla Bla BQ)
0

Since by the asymptotic flatness of the manifold, |2(0)| = |z (6)’ <C (E)a%—5 , we find

that |2y, |<C (6)0%75 for o large, and thus the equality |52Tmax ’ = 2Beeno! ™% cannot
hold, for ¢ large depending on Bcey, and ¢. Thus, this second scenario cannot happen.

O

4.3 Conclusions

In Section 4.2 we proved long time existence of solutions to the volume preserving mean
curvature flow starting from Euclidean spheres. In this Section we review some technical
details concerning the regularization of the second fundamental form, and its derivatives,
along the flow. We also conclude that the flow converges, as t — oo, to a CMC-surface.

It is well-known that, if

Cp = Cf, := max sup ‘ﬁlRim) , Vm e NU{0}. (4.51)
0<i<m 4

o

the derivatives of the second fundamental form of ¥; evolving by volume preserving mean
curvature flow satisfy

gt\vaF S AVTAP = 2VTTAPR + YT VMARVIAxVIAXVRA

+(h—H) Y V"s«VA«VA+Cpn> VAxVA+Cpnp1|V"A|.

i+j=m i<m
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See in example [CRMO7], [Hui87]. Since we are assuming that our flow lives in the roundness
class By (B1, B2, Been) for 0 = ox, and suitably Bi, By and Becen, and thus

|A(t)] < \/gal, (4.53)

for every t € [0, 00), the following (classical) Lemma says that also the derivatives of A(t) are
uniformly bounded.

Lemma 4.3.1. Let (M,g,Z) be a C’ir&—asymptotically flat manifold. Let (3,g(t)) be the
2

volume preserving mean curvature flow of Section 4.2 in a time interval [0,T]). Then the
second fundamental form and its derivatives remains bounded uniformly in [0, T].

Corollary 4.3.2. Let (M,g,%) be a 012/2+5-asymptotically flat manifold. Let (X, g(t)) be a

surface of M evolving by volume preserving mean curvature flow of Section 4.2. Then there
exists a constant ¢ > 0, depending on o, such that

|IVH(t)]? < c, IVZH)|> <c¢  Vte[0,00). (4.54)

Proof. This follows immediately from Lemma 4.3.1, |[VH (t)|? < 2|VA(t)|? and |[V2H(t)|*> <
2|V2A(1)]2. O

We now prove that the speed of the flow goes to zero in L?, for large times. Note that,
integrating %|Et| on [0,tg] we get

to
/0 /2 (H — h)? duy dt < 10702, (4.55)

This implies that [|[H —h||p2(s ,,) — 0 ast — oo, since % J.(H —h)? dys is bounded uniformly
in . Moreover, also the L* norm of H — h goes to zero, as the following Lemma shows.

Lemma 4.3.3. Let (M,g,7) be a Cf/2+5—asymptotically flat manifold. Let (X,9(t)) be a
surface of M evolving by volume preserving mean curvature flow of Section 4.2. Then there
exists a constant ¢ > 0, depending on o, such that

1H = hllLoo(su) < el = b2y, V€ [0,00). (4.56)

Proof. Using now the interpolation result of [Aub98, Thm. 3.69 |, withp=g¢=r =2 =mn, it
follows that
IVH 2205,y < V2IH = Bl 22,0 IV Hl| 2 (35, (4.57)

On the other hand, on ¥ it holds the Sobolev inequality (see Corollary 2.3.5), with a constant
¢ uniformly in ¢ (since we are in the class of roundness) and thus

IH — Bl < co 3| H — hllyia = co™2 (|| H — hlla + 0| VH|4). (4.58)

Since moreover H — h has zero mean, the Poincaré inequality implies that ||[H — hljs <
co||[VH||4, and thus

1 1
1H = hlle < c|VH|a < ¢ VH|F[VHI|%, (4.59)

when we let ¢ to absorb the radius . We also used the Holder’s interpolation inequality.
Thus, using Corollary 4.3.2, we obtain

1 = hll oo ) < el H = MlL2(8,)- (4.60)

O
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Conclusions. At this point, Proposition 4.1.12 implies that also |[H — h[ (s ,,) converges
exponentially to zero. Thus, for every t > tg,

t t g
< [ |H -1 dfgca/ e BT gr o (4.61)

to to

t
F
a— dr
to 87_

[F(2,t) = F(x,t0)| =

for some ¢, > 0. Thus, F(-,t) is bounded uniformly in ¢. Since the flow lives in B, (B1, B2, Bcen),
also h(t) is uniformly bounded in ¢. Thus, by standard arguments, see for example [Hui84| or
the reference therein [Ham82, Lemma 14.2]|, the limit of F} is a smooth immersion. Also h(t)
has a limit, since this is true along a sequence of times by the boundedness and also %h(t) is
uniformly bounded in ¢. Finally, the fact that H — h — 0 implies that the mean curvature of
the limit of F; equals the limit of A(t). Since o has been fixed at the beginning of the Section,
we call X7 this CMC-limit and F7(t,-) the immersion at time ¢. This concludes the proof of
Theorem 1.1.2.

4.3.1 CMC-foliation

In the previous Section, we constructed, for every o > gg a constant mean curvature surface

on (M,g), say (X7,97), where ¢g° the pullback of g through 7(-) := tlim Fe(t,-). By the
— 00

definition of roundness class, we have that there exists C' > 0, independent of ¢, such that

25| < Co', || Al|pe(sey < Booo 270, [27] < Co?, % <C, (4.62)

lhe! < |ho 207t < Co 30 42071 20, (4.63)

o
Since, moreover, by Lemma 2.3.5 and Lemma 4.1.14, 3.7 is a graph on the Euclidean sphere
Se(Zs0), for every o > og there exists a bijective map F, : S1(0) — %°. Proceeding as in
[Hual2, Section 5.3|, using also (the spacelike version of) [CS21, Lemma 9] in order to show
that the family {¥7},>, does not self intersect, we obtain a CMC-foliation of the asymptotic
flat space (M, g). Moreover, thanks to the following remark, this foliation coincide with the one

constructed by Nerz (because of the CMC-uniqueness in Nerz’s roundness class, see [Nerl5,
Thm. 5.3] and [CS21, Thm. 4]).

CMUC-surfaces are round in Nerz’s sense. We end this Section showing that our fo-
liation coincides with Nerz’s foliation (and thus it is unique). We also recall the following
definition from [Nerl5].

Definition 4.3.4 (Nerz’s class of roundness). Fiz ¢y € [0,1), ¢1 > 0 and 1) € (0,1]. We say
that ¥ < M s asymptotically centered, ¥ € A%7(cqy,c1) if, setting g := genus(X), then

X .5 X
175 < cpox + 010;777, U;Jrn < T§+5, /2H2 dp—16m(1 —g) < ciry . (4.64)

Equations (4.62) and (4.63) imply that (4.64) holds with ¢ = 0, ¢; = C and 7 = §.

Moreover .
O_2+§ o 3 +4 3
= — o
3+0 Ty
r
>

N[
N[

<Co™z, (4.65)



60 Chapter 4. Volume preserving mean curvature flow

for o9 = 0¢(C, 9) large. Since genus(X7?) =0,

H?*dpy—16r= | H*du—2[ S,du=
3o 3o 3o

= 2/ |§112 d,u+4/ (Ric(y, v) — 2) dpu < Co—270

possibly enlarging C. Thus X7 € A%(0,C). Replacing the variable o with s := s> and
using (4.63), [Nerl5, Thm. 5.3] implies that our foliation coincides with the one constructed
in [Nerl5, Thm. 5.1].

(4.66)

4.3.2 The case of negative ADM-energy

We end this Chapter analyzing what happens to the flow when the mass of the system is
negative. This scenario is interesting since the method employed by Nerz [Nerl5] allows to
prove the existence of a foliation also in this case of a negative ADM-mass. However, in
Lemma 4.1.15 we observed that there is a technical obstruction in order to use the flow with
the aim of constructing a foliation in the negative mass case, see equation (4.40). We remark
now how this obstruction is not just technical but also substantial.

We start considering the case of negative ADM-mass when (M, g) is a Schwarzschild metric

of mass m < 0. That is,
am (Hﬂ)‘he
gg = o g,

where r = r(Z) = |Z| for every Z € R?® and g is the Euclidean metric on R?\ {0}. We consider
the Euclidean sphere S, (0), which is a CMC. For sake of simplicity, we write S, = Sy (0). In
particular, the family of immersions ¢ : S, — M, for ¢ > 1, generates a CMC-foliation of
the Schwarzschild manifold. Since the Euclidean spheres have constant mean curvature, S,
is a critical point of each volume preserving variation starting at S,.

Following the classical approach (see for example [Hual2|), it can be proved that the
stability indicator of L : H*(S,) — L*(Sy), i.e.

o=t { [ty [ ndu=o. Il =1},

satisfies 61|
m —
po(E) <~ + 0o ™). (467)

In particular, the right hand side of (4.67) is obtained choosing 7 as a coordinate translation
in R3, restricted to S,. We thus modify this translation into a volume preserving (normal)
deformation setting

Gt =—(n—nw

or e (4.68)

Fo(-) =7

with v = v(z,7) the normal of F;(S,), n = n(z) as above and

1
77(7') = A/ n d/jl,q—,
|F-(Se)| Jso

where dji, is the volume form on S, induced by the immersion E,. Note that 7(0) = 0, since
71 is a coordinate translation and dfig is the standard round metric on the Euclidean sphere
Ss. On the other hand, (4.68) is volume preserving for every 7 for which it is defined, by

U]
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construction. Thus, the latter formula in [Hual2, Pg. 9] implies that

d2
ar?

B(S,)| = /S (n— ) lr—oL(n — )0 dyu < 0, (4.60)
T=0 o

since (n — 1) (0) = n, volume is constant (in order to let the additional term in (4.69) vanish)
and (4.67). Thus, 7 = 0 is a point of local maximum for 7 — [F(Sy)|, for 7 in a small
interval of time. In particular, FT(SU) perturbs the Euclidean sphere as a "volume preserving
translation", at least at the first non-zero order. Thus there exists, arbitrarily near to S, in
the C*°-topology, a round surface ¥ = F?(SU), for T fixed but depending on how we want 3
to be near to S,. In particular |X| < |S,|. Thus if we consider the volume preserving mean
curvature flow starting at 3, i.e. ¥; = F;(X), we find that this flow cannot converge to the
Euclidean sphere S,, since the flow is an area-non-increasing flow.

Observe moreover that S, is almost-CMC, in the sense of Definition 3.2.1, and thus The-
orem 4.1.16 implies that this situation does not happen when the mass is positive.

Conclusions and open problems. In the case of a asymptotically Schwarzschildean mani-
fold, Huisken-Yau proved in [HY96] that, in points of the surface where the Euclidean distance
achieves its maximum, the (vector) speed of the flow, i.e. —(H —h)v, points toward the inside
of the surface (respectively the outside) if the mass is positive (respectively negative). See
[HY96, Prop. 2.2| and the dynamical approach of [HY96, Prop. 3.5]. This suggests that in
the negative mass case an initially off-centered surface evolves drifting away.

If we show that, in the negative mass case, for each direction there exists a volume pre-
serving translation of a sphere which drifts away in that direction along the volume preserving
mean curvature flow, then we can conjecture the existence of a round surface that does not drift
away, as in the positive case. In the general case of a C’i N 5—asympt0tically flat manifold the

2

situation could be more delicate, due to the presence of some additional terms when comput-
ing the stability operator on an Fuclidean sphere, see Proposition 3.1.10. However, we think
that this argument can be applied at least to the case of an asymptotically Schwarzschildean
manifold in the sense of [HY96], providing a flow-proof of the existence of the foliation also
in the negative mass case.
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Chapter 5

Volume preserving spacetime mean
curvature flow in initial data sets

In this Chapter we study a modification of the volume preserving mean curvature flow. Let us
describe our setting in more detail. We consider an initial data set (M, g, K) which is C’% v
_ 2
asymptotically flat and constrained by the densities (fi, J). The volume preserving spacetime
mean curvature flow (VPSTMCF) is a family of time dependent immersions F' : 3 x [0,T] —

M, with ¥ a closed 2-surface, which evolves according to

oF
E(t") = - [H(t’) - h(t)] V(t")v (5‘1)

where Ai(t) is the integral average of H(t,-), see Definition 2.1.2. Observe that, for ¢ = 2,
‘H is the spacetime mean curvature defined in [CS21]. As initial data for the flow (5.1), we
consider a well-centered (in the sense of Nerz [Ner15]) CMC-surface. As in [HY96] and in the
previous Chapter, the evolution is parametrized by a non-physical time parameter and takes
place in a fixed spacelike slice, but now it has a speed that takes into account the spacetime
texture of the initial data set. We aim to prove long-time existence of this flow, together with
a convergence result. See the statement of Theorem 1.1.4 for details.

5.0.1 Definition of the flow and evolution equations

Definition 5.0.1. Let (M,g,K) be an initial data set and let v : ¥ — M be a closed surface.
A time dependent family of immersions F; : ¥ < M, with t € [0,T) for some 0 < T < oo,
which satisfies

{gtpt(.) = — (H(-,t) = h(t) v(-t) (5.2)

Fo=.

1s called a solution to the volume preserving spacetime mean curvature flow, with initial value
L.

We highlight that the function H is an increasing function of the mean curvature H. The
function P = ¢g¥K;; in H = {/H9 — |P|? depends on the metric induced on X, which only
involves first order derivatives of the immersion. Thus, without the volume preserving term,
the equation is parabolic. However, this term only depends on time, and thus it does not
affect the parabolicity and local existence of solutions and uniqueness are ensured.

In the following, we will assume that the ambient initial data set is C%Jr s-asymptotically

2

flat. We write ¥, := F;(X) to denote the solution of the flow at time ¢ and we call g(t) the
induced metric and denote by du; the induced 2-dimensional measure.

We recall the evolution equations satisfied by the main geometric quantities on ;. At
each fixed ¢, we choose a frame {€,(t)}3_; on (M,g) such that {&1(t),éx(t)} are tangent
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vectors on ¥, and €3(t) := 4. The following Lemma collects the equations satisfied by the
main geometric quantities on Xy, see [HP99)].

Lemma 5.0.2. Let {Fi},c0.1) be a solution to the flow (5.2). Then we have
(i) %5 = —2(H — W) hij;
(i) §(dpe) = — (H — h) Hdpu;
(iii) Sv = VH;
() §rhiy = ViV H + (H = B) (—hah + R )
(v) 98 = AH + (H — h) (JA? + Ric(v,v)).

Notation for the rest of the Section. In the following, it is convenient to set & =
O(s,y) = Ys4—|y]9, so that H = ®(H,P). We denote by T the derivative of & com-
puted with respect to the variable s, i.e. T := 85(1)‘(5,7):(&13)' On the other hand, we
will denote by W the derivative of ® in time, due to the dependence on P = P(t), i.e.

U= 9 (®(p, P(t))) \p:H. Thus,
Oy (®(H,P)) = YO, H + V. (5.3)

This notation is particularly useful since we will mainly take trace of the term Y. In the
following, we will have

1
_ [P\ _ H\"?( |P[ 1 |P|o2p
T_<1_<H o VI=G@=Uiy) \Tege VRt e V)

(5.4)
o0®(s, P —q®(H, P) (0:P)P _ _ 11,
vi= ’Eat) ‘: ‘((b(ﬂ(’ P>>3 (u-i\zfq < Co'!|P|"7H |9, P| < Coa 29701409, P,
s=H ’
(5.5)

where the latter inequality holds assuming (2.14), because of Lemma 2.1.3. Hypothesis (2.14)
is natural in our setting since we will work solely on round surfaces. Note also that (5.4)
implies

P q
rT-1<C ’H —0(c29¥), T —1>colP. (5.6)

Lemma 5.0.3. There exists C > 0 and o¢ > 0 such that, if ¥; satisfies |A(t)]| < \/ga_l and
(2.14) for every t € [0,T], and o > oy,

3_

0,P| < Co™ 20| — h| + Co— 20| VH]. (5.7)

Proof. We choose normal coordinates on a point x* of X+, for an arbitrary t* € [0, 7], say
{z1,x2}, and normal coordinates {y1,y2,y3} on y* := Fi=(x*) in M. Thus, if {3% 2 | is the
frame induced by the immersion, we notice that

. _(OF OF — e — (OF OF
Thus in particular

OF OFP . <8F 8F>

of 81‘2 a$j 671'1" 871']

= gij’(m*,t*) = 0ij. (5.9)
(z*,t*)
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By direct computation, using the symmetry of K we find that

OF" o (OF\ OF
P =0, (97Kyj) = 2(H — WhIKy; + Vo Kij = +2 ”K( <> )

ot 8951 ’ &%j
0 (0F\ OF (5.10)
— _ UK. L V. K v ij il I
2(H — B)hK;j + VK (h — H)vY +2¢7K <8t <8xz> , 8%) .
Since 9 (OF\ o (oF\ 0 oM v
ot <aml) = O (at) = o, (M=) = —gv+ (- H)axz (5.11)
we rewrite (5.10) as
G — i  JOHOFP o™ OFB
— — RVAYIR (B — Y _ 9t ij
0P =2(H — h)h"Kij + V Kij(h — H)v" — 297 Kopr dz: O, (h—H)g"Kap dz; 0z,
(5.12)
Note that, in normal coordinates, the Weingarten equation takes the form
. (L I (5.13)
Til(@=rr) Ti (@)

see [HP99, Pg. 63]. Thus, computing (5.12) in the point (z*,t*), and estimating, we get
|0, P| < C|H — h||A|IK| + |V K||H — i + C|K||VH], (5.14)

where we used (5.13) combined with (5.9) in order to estimate the latter term in (5.12). We
conclude using that, thanks to the assumption on |A(¢)| and (2.14), Lemma 2.1.3 implies that

K| < Co~ 279 and |A|[K| + [V K| < Co 379, O

The ®-notation, together with helping us avoiding huge formulas in the following, high-
lights that existence and convergence of the flow could be studied in the case of more general
speed functions. However, we just focus our attention on the spacetime flow. We also define

a:(0,1) = R to be a(p) := ¥/1 — pi, so that ®(s,7) = sa <|7|)

Lemma 5.0.4. Along a solution of the volume preserving spacetime mean curvature flow we
have

9 %2 Ar%2 %2, 2h 4 3 o (H =N\ %0
8t|A| = AJA]? — 2|V A +H{|A| — Htr(A%)} +2|4| = ) 14l

+ 2(7—[ - ﬁ)hij%kiljvkvl -2 (héﬁkjkl + hlkﬁlijk) hij

H? - HH
2

(5.15)
2 (V; (Riewr?) + Vi (Rivegyiv?)) oy + 2| AP <

+2(H — H)tr(AS) +(T,A);
d g _
QW%F = A|VH]? = 2|V*H|* + 2(H — )RV HV ;1 + 2(|A]* + Ric(v, v))|VH|?

— 2Ric™(VH, VH) + 2(H — h)(V|A]>, VH) + 2(H — h)(V (Ric(v,v)) , VH)

+299Vi (Y = 1) (AH + (H = )(|AP + Ric(v,v)))) ViH + 297 ViHV H
(5.16)



66 Chapter 5. Volume preserving spacetime mean curvature flow in initial data sets

where Ric” is the Ricci tensor of ¥, f:=a —1 and T := ( Tij) tis the tensor defined by
R 1P| |P| 1P| 1P\ o (1P
—(VZV]H)B<H +V,Hp Vi 7 +V,Hp i V; i

e (), (1) vj<w§>+m (1) waw, (1),

The proof is standard, and it mainly relies on the computations in [Hui87] and [HP99].
See moreover Lemma 4.1.4. Observe that the tensor T is the remainder of the Hessian of the
function @, which, due to the introduction of the auxiliary functions « and f3, is given by
Hess(H) plus the tensor T'. Finally, an easy computation shows that, since ¢ > 2,

B) < car®s 1B (D) Scap, 18"(p)] < ¢, (5.18)

1P
"

(5.17)

for p << 1, which is the case we are interested in, since p ~ which is small on a round

surface.
Proof. Using Lemma 5.0.2, we get

0

iy = ViV (D(H, P)) + (®(H, P) = h) (—hihf + Riemig;s) (5.19)

By ®(H, P) = Ha (' ') we have

v, (o) = (v a () e v (0 v () < v () 75 (1)

s (50 () (50 () ()

(5.20)
We moreover define 3 as above, obtaining 5’ = o/ and 3” = o”. We thus get
VZ-VJ (q)(H, P)) = VZ'V]'H + TZ] (5.21)
Then (5.19) becomes
0 b om—
ahij = VZVJH + (CI’(H, ) — h) (_hikhj + Rlemigjg) + T%j
= Ahg; — Hhthyj + | A% + (9(H,-) — h) (—hikhﬁ? + %ﬁjg) (5.22)
— hé%kjkl — hlkﬁlijk — Vj (ﬁigya) - VZ (%Eijlyg) + Tz’j
The conclusion follows remarking that
o o H®(H,P
A|A]? — 2|VA]? +2|A)? <|A|2 - (2’)> — 2htr(A3) + H|A]*R
2 2
+2(®(H, P) — H)tr(A®) + ﬁh\Ar* - £|A|4
: - on 5 72 (5.23)
= AJAP? —2|VA]? + ﬁ|Ay4 — 2hitr(A3) + 2|AJ? <1 H> <]A\2 5 >

H?> H®(H,P)

+2|A|2< 5 5

) + 2(®(H, P) — H)tr(A?)
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and proceeding as in Lemma 4.1.4.
Finally, equation (5.16) follows from Lemma 5.0.2 and the Bochner formula. O

5.0.2 Evolution of integral quantities

We now study the evolution of some integral quantities along the flow. Throughout the
subsection, F} : 3 — M will be a solution to the volume preserving spacetime mean curvature
flow (5.2), in a constrained initial data set (M, g, K), with t € [0, 7] for some T > 0. We will
assume that the surfaces ¥; satisfy properties (2.29) and (2.30) of round surfaces for some
given suitably large radius ¢. In some results, we further assume

A() < Booo 379, (5.24)

L= ()

3_
|H — h|poo(s,) < Boaso 277,

which are properties satisfied by round surfaces, see Lemma 2.3.5, and also
IH = Allgi s, < Cino 379, (5.25)

We do not assume apriori that ¥ satisfy properties (2.31) and (2.32). We want to analyze
the invariance of these properties along the flow. We start estimating the L* norm of the
traceless second fundamental form of ¥;. In this result, we replace hypothesis (5.24) by a
milder assumption.

Proposition 5.0.5. Let {Fi}cjo,m) be a solution to the flow satisfying (2.29) and (2.30).

Suppose in addition

1
[ H = hllpoe(s,) < 200" (5.26)

Then there exist a constant C = C(¢,0) > 0 and a radius oy = 0¢(9,¢) > 0 such that if o > o9
then

d o o o 1 o
/ A duy < —2/ ARIVAP dpy — / AR g +Co % (5.27)
dt b ) 20-2 )
As a consequence, zf/ |A[* dpg < Bio™* % and By > 2C, then/ |A|* dpy < Bro~4=4 for
z b
every t € [0,T].

Proof. The proof is an adaptation of the proof of Lemma 4.1.6 combined with Lemma 2.1.3,
Lemma 5.0.4 and the fact that there exists C such that, for every fixed € > 0 and o suitably
large it holds

’/<T,?1>y?1\2 du’ < ;/ A du+5/ ARIVAP dy + Co 5%, (5.28)
by b b

We thus prove (5.28).
Multiplying equation (5.17) by h;;|AJ*> and integrating we get

fritne e () e () (5) o () (5
e () (5) () o (5 () i
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Integration by parts, Lemma 2.1.3 and V; <hij|A]2) = V.ihi;| A2 + 2hi;| A| V5| Al imply

(V;P)H — PV;H
‘/VVH ( >hw|A\2du‘< Coz™ /VH‘ e \A|3du

(5.20)
+00125/E|VH|]A\ VA dp.

Using again Lemma 2.1.3, the parametric Young’s inequality, |[VH|? < C|VAJ? 4+ C|Ric|? (see
[Hui86]) and (1.11) we get

‘/ (ViV,;H)B ( )hU]AF du‘ < / Al du+5/ APRIVAP du + Co—5%  (5.30)

Moreover, we estimate

P P o o o o o
Lt (7)) (57) bl an| < co [ (10m11A1) 3¢ d
> b

+ca—25/ VHPIAP dp,
by

The second addend can be estimated as in (5.30), while the first addend, using Young’s
inequality, is bounded by

VH? AR o
00“5/Z | 2' +|2’ |AI dp. (5.31)

Again, the first addend of (5.31) can be treated as in (5.30), for o large.
We can also bound the term

P P P o o o o

HB' (= ) Vil = | Vi | & ) hij|AP? du| < —25/ HI*|AP|A
/E 8 (H)v (H)V(H)h | du‘_CU | [VHPIAPIA] du

Co -2 / AP dp

P||VH||VP
b [ PIVHIVPl G,
> H?

We conclude as in (5.30), also using |A| < Co™z, for o large and Young’s inequality.
Finally, integrating by parts and using the decay of 8 we get

/E HE ( )v v, <§> hog A2 du' < ot / |VH!‘(VP)H}}2(VH)P‘ AP d
(VH)

dp

_ (VH)P
H2

+ CJ_T‘S H‘ ’ 'w?u’ A dp.
3

(5.32)
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The first addend can be dealt with as (5.30), while the second as in (5.31). The third addend
in (5.32) is bounded by

ca—%—é/ VP ’vlﬁll‘ AP du+Co‘1‘2‘S/ IVHI‘VIZH‘I;H2 dps,
N b

and we conclude by Young’s inequality, combined with the estimate |VH|?> < C|VAJ]? +
C|Ric|?. O

We next estimate the rate of change of the volume preserving term h(t) and of the L*
norm of H — h. In particular the following Lemma employs some techniques learned in [Li09].

Lemma 5.0.6. Let (X, F;) be a solution to the volume preserving spacetime mean curvature
flow for t € [0,T], satisfying properties (2.29), (2.30), (5.24) and (5.25). Then, there exist
C =C(¢) >0 and o9 = 0¢(¢) > 1, such that, if o > oy,

d 1
o[- h)? dpy < —2/ \VH|? du + 00—2/(% —h)? du. (5.33)
P ) x

Moreover, there exists a constant ¢ = ¢(cin,¢) > 0 and a universal constant C = C(¢) > 0
such that

7_

|i(t)] < o3 307070a, (5.34)

d
pn (H—h)4 dus < —12/(H_h)2|v7_”2 d,LLt+CU_2/(7-l—h)4 dﬂt+CBooU_5_%q_26_36q,
b b b

provided o > oy, for a suitably 0o = 00(Boo, Cin, C, ).

Proof. We first prove (5.34). By definition of &, we get
. 0H OH
|2¢| () :/ — 4+ (T—-1)—+ T dut—l—/HH(h—H) d,ut—h/ H(h—H) duy

:/E(H—h) <|22+Ric(u,y)) dm+/2 <};2—HH> (H — h) dp
—h/EH(h—H) dm+/2<(r—1)‘?f+w> ds
:/E(H—h) <|22+Ric(u,u)> dut—/zféz(’}{—h) dis
/E(HH)H(’HH) d,uth/EH(h’H) dut+/2((“f1)%lj+\1/> du
—/E(H—h) <122+mc(y,u)> d,ut—/z?f(?-[—h) djig
+/2<%2;H2> (H — 1) d,ut—/z(’H—H)H(H—h) dut—h/H(h—’H) dus

+/E<(T—1)€f§+\1/) dyy Z

To estimate the above terms, we first note that

< o230, (5.35)

[ (147 + Rie:)) di
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and that, in addition, the following identity holds
fH2
/ — (H —h) dpth/ H(h—H) duy
s 2 s

H2 2
:—/22<%—h> dutm/E(H—m dut—n/Z«H—h)—(H—h)}(h—%) di

1
5 [0 da = [ (T =) = (M= ) (b= )
by by
(5.36)
using also /(H — h) duy = 0, where, thanks to Lemma 2.1.3,
)
‘h/ {(H—=h)—(H—h)}(h—H) dus| < co™ 179720, (5.37)
>
Since the remaining addend can be estimated in a similar way to (5.37), we get
; 1 H
|Z¢[|R(t)] < ‘2/(7-[ —h)? duy o280 4 / <(T - 1)% + \I/> dypy (5.38)
) P

Observe that the term / (H — h)? duy can be easily bounded using (5.24) and (5.25). Finally,
2

we estimate

/E ((T - 1)8813 + \I/) dyy

:—/VT-V’H dut+/(T—1)(|A’2+RiC(l/,V)) (H — h) dut+/\11dut.
b)) ¥ b

To estimate this term, we observe that equation (5.4), together with the inequalities

pr 1-1g—qs 1 |P]12P 3 1o 6(g—1
"H?le < cgo T2, 7 gl | S0’ 24-0),
imply
/VT VH dpy| < com2 87909,
)

Similarly, we also have

'/ (T —-1) (\A|2 + Ric(v,v)) (H — h) dus| < co 1710, (5.39)
b

We conclude combining (5.5), (5.7) and assumption (5.25), in order to get
/ 0| dpy < co™ ' 7297993 — Al r2cs,) + ca—%q—éqHVHHLZ(Et) <co 1T (5.40)
)

Equation (5.34) follows dividing by |3 > (7/2)m0?.
We now prove (5.33). We compute the evolution of |H — hH%Q(E ) Obtaining

% (H — h)? dy; = 2/(7—[ —h) (AH + (H - 1)(|A]? + Ric(v, v))) d
2 b
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+2 /E(’H — ) (T —1) (AH + (H — h)(|A]> + Ric(v,v))) dp

+2/\IJ(H—h) dut—/H(H—h)3 dpss.
) %

Using integration by parts, the estimate H + |H — h| + |A| < Co~!, and the inequality

/(’H —B)(Y — DA dy,
Y

= ‘—/E(T — 1)|VH|? duy — /E(H — W)VYVH duy
= /2 IVH|? dpe +C /E o3IO — B[ VHP dpy (5.41)
+ 0/Z o201 3y || VH| dy
and Young’s inequality we get
d

— [ (H=h)?du; < —(2— 25)/ \VH|? dps + Co™2 / (H — h)? du, (5.42)
dt /s > 5

where we estimated / U(H — h) dpy combining (5.5) and (5.7), i.e.
b

/Z(H R dp| < C <a—2—éq—5q/z(ﬂ B2 du+ a—l—éq—ﬁq/z M — Bl|[VH| du>

< 002/(7-[ — h)? d,u—l—E/ |VH|? dp.
by b
(5.43)

We conclude choosing ¢ suitably small.
We finally compute, using Lemma 5.0.2, the evolution

d S :
S - n)t dpy = 4/ (H — h) (A’H + (H — B)(JAP + Ric(v, v)) — h) dpuy

+ 4/ (H = WYX = 1)(AH + (H — B)(|AP + Ric(v, 1)) dp

pX
— / H(H - h)® du+/ U(H — h)? duy.
by b
We obtain the desired inequality (5.0.6) using integration by parts for the term
/(H — h)3AH duy (5.44)
b
as in Lemma 4.1.8, together with the estimate
l / [H = < o™ 373970700 (B g™870) |1 — B} < eBugo 7307070,
by

and

/E(% — BT — 1A d,L’

< o321 / (H — h)?|VH|? du + ‘— / (H — h)3VYVH du
% %

< o209 / (H — h)?|VH|? du + c/ o3BT | H — B dp.
¥ P
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Finally, we conclude combining (5.5) and (5.7), and thus estimating

< caé;qaq+5/ o730 H — B+ o720 M — RPVH]
b

< Co? / (H — h)* dpy + Co— 12970 / (H — h)?|H — h||VH| du
¥ P

/ U(H — h)? duy
¥

< Co™? /E (H — h)* dpy + Co—972% /E (H — h)?|VH|? du,

(5.45)
where we used Young’s inequality in the latter estimate. The conclusion holds for ¢ suitably
large. O

A similar estimate, but independent of the evolution of A, can be also given for VH. The

(¢}
hypothesis on A and the H'-norm of H — A are not needed in order to prove the following
Lemma.

Lemma 5.0.7. Let (X, F}), t € [0,T], such that (2.29) and (2.30) hold for every t € [0,T].
Then there exists a constant C = C(¢) > 0 such that

d |

dt/ VH|? dpe < —2/ V22 dut+Ca_2/ V| d,ut+00_4/(7-[—h)2 dpn, (5.46)
> ¥ b b

and

d
/ \VH|* dpy < —/ IV2H |2 VH|? dut—l—CJ_g/ IVH|* dut+Ca_6/(7—[—ﬁ)4 dpg.
dt Jy 5 5 5

(5.47)

Proof. We start proving inequality (5.46). From Lemma 5.0.4, after integration we get
C?t/2|VH|2 dpy = 2/E<v (AH + (H — h)(|A]* + Ric(v,v)) , VH) du
4 2/E<v (T — 1) (AH + (H — BY(AP + Ricw, 1)) , VH) dy
+ /Z IVH|?H(h—H) dug + 2 /E(H — B)|VH|* IV HY H dpy
+2/E<V\IJ,V”H>dut.

Since H, |H — h| are bounded by Co~! and ||A|*> + Ric(v,v)| < Co~? and [Ric*| < Co~2,
using Bochner’s identity and integration by part we get

d
/ \VH|? dps < 00—2/ |VH|? dut+00_4/(7{—h)2 dut—/ \V2H|? dyuy
dt Jx, b > b

o (5.48)

/ (T — 1) (AH + (H — h)(JAP® + Ric(v,v))) AH dp
P

+2

by
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Note that, combining (5.5) and (5.7), we get

/ UAH dpy| < Caééq‘w/ (0*3*‘%{ — hl +a*%*5\vm) V21| dyy
b )
< Co™* / (H — )% dug + Co 2 / |VH|? duy + Co—9720 / |V2H|? dyy.
) by by
(5.49)
Since | — 1| = 0(07%‘17(15) and using Young’s inequality, we conclude, for o large,
d
/ |VH|? dps < 00—2/ |VH|? dut+Ca_4/(’H —h)? du —/ |V2H|? dp
dt ) » > %
+ Com 24P / IV2H|? dpy + Co™2 29790 / |H — || V2H| du,
= = (5.50)
+C’aq2q5/ \V2H|? du
)
1
< 00—2/ |VH|? dps + 00—4/(7{ —h)? dps — / IV2H % dpg.
b b 2 Js
We now prove (5.47). From (5.16) we get, after integrating by parts,
d g
dt/ |VH|* dps = 4/ (H — h)|[VH*RIN HV 7 H (5.51)
by b

+ 4/ (V (AH + (H — h)(JAP? + Ric(v,v)) , VH) du —i—/ \VH[*H(h —H) dus
by by
_ 4/ (T — 1) (AH + (H — B)(|AP + Ric(v, ) AKIVHP dyse + 4/ (Y, VH) dps.
b b
To estimates the terms above, note that, if o¢ is so large that |T — 1| < e (see (5.6)), then

‘4/ (T — 1) (AH + (K — h)(JA]? + Ric(v, v)) AH|VH|* du
%

< z—:/ IV2H 2 VH? dug + 00—2/ (H — || V2H||VH|? du.
b b

Moreover, using again integration by parts on (VU, VH) =V - (VVH) — YAH, we estimate

/ (VU VH)VH? dus
>

< Colm39% <01/ [H — h||V*H||VH|? du +/ [V2H||VH|? dﬂt)
b b))

where we also used (5.5) combined with (5.7). We conclude using Bochner’s formula, the
inequality H + |H — h| + |A| < Co~! and that |Ric*| < Co~2, obtaining

d
dt/zwm‘* dpg 3—4/2|V2H|2\VH]2+CJ‘2/E|V”H,\4 du+Ca_2/E]7-l—hHV2’HHVH|2 dpus

+e/ |V2H 2| VH|? d,uH—Co*_l/ |V2H||VH]? dpg.
b b
(5.52)

The desired inequality appears when using Young’s inequality

002/ |H — B||V2H||VH|? dut—i—Col/ \V2H||VH? dpg
b b

< 5/ \V2H 2 VH? dpg + 00‘6/(7-{ —h)Y dpy + 00—2/ |VH|* dpg
Y b b



74 Chapter 5. Volume preserving spacetime mean curvature flow in initial data sets

and choosing ¢ suitably small. O

The next simple inequality will be useful in the following Lemma. The proof is analogous
to the one of Lemma 4.1.10.

Lemma 5.0.8. Let ¥ — M be a surface. Then we have, for everye >0 and o > 1,

—0_4/(7—[—71)2]VH|2 du < —62/ IVH|* du+52/ \V2H|?|VH|? dp.
b 20° Jx b

This leads to the following Lemma.
Lemma 5.0.9. Let (3, Fy), t € [0,T], such that (2.29), (2.30), (5.24), (5.25) and ||A][za(s,) <
Bio~ 179 for every t € [0,T). Forn >0, let us set
ay(t) = 0o M = Bl Lags,y + IVHI Lz, (5.53)

Then there exist a universal constant n,, > 0 and a radius oy = o¢(B1, Cin, ¢,0) > 1 such that
if 1 =mny and o > og the following statements hold.

(i) There exists a constant ¢ = ¢(B1, My, ¢) such that if Bs > ¢ we have the implication

(U, (0) < Boo 87490 — q, (t) < Bao %% for every t € [0, T).

(ii) If in addition we suppose (5.24), there exists a constant ¢ = ¢(cin, Bso) such that if we
choose Biy > ¢(Cin, Boo) we have the implication

an(0) < Bipo 7207207300 — an(t) < Bino 7297267300 g5, every t € [0, 7.
Proof. Combining Lemma 5.0.6, Lemma 5.0.7 and Lemma 5.0.8, we get

an(t) < —Co~2a,(t) + Co™5 / (H — h)* dpy + EBogo 059720804 (5.54)
P

for some C universal constant and ¢ = &(ciy, ¢). We will use inequality (5.54) in order to prove
two different conclusions.

(i) Since ¢ > 2, choosing o suitably large depending on By, so that 6Bmo_9_%q_25_35q <

01049 we have

ay(t) < —Co~2a,(t) + Co™" / (H — h)* dpy + 071074, (5.55)
P

Moreover, Lemma 2.3.5 implies that

/Z(H — ) dpg < cpe <”AH%4(2M) + U44§> < Cpep(BY +1)a™47%.

and thus (5.55) becomes
ay(t) < —Co2a,(t) + co~ 1071 (5.56)

with ¢ = ¢(B1,¢,cper). Thus, if By > ¢/C, we get the thesis.

(ii) Since we are assuming (5.25) for every t € [0, 7], the Sobolev’s immersion (see [CS21,
Lemma 12]) implies that

g6

IH = Rllas,) < Gom2s for every t € [0, 17,
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where ¢ = é(cip, ¢). Thus (5.54) becomes

an(t) < - CU_Qan(t) 4 Go82¢—4q0 5Bma—9—%q—26—36q

5 (5.57)
<-— C’U_Qan(t) + 2¢Baoo 9297207309

for o large, since ¢ > 2 and ¢ € (0, %] Choosing Bi, > 2¢Bs,/C we have the thesis.
O

From now on, when considering the roundness class W,(B1, Bz), we fix the parameter 7
equal to the value 7, given by the previous Lemma, and we will no longer need to specify the
dependence on 7 of the constants in the estimates.

5.0.3 Evolution of [|H — Al[;2(x,) and convergence

An important assumption in the previous results was the comparability between ry and o
in (2.30) which assures that on ¥; the ambient curvature decays with the right order, as
highlighted in Remark 2.3.2. To justify this assumption, we study now the evolution of L?-
norm of H — ki, which relies on the spectral analysis of Section 3. The following Lemma is an
improvement of inequality (5.33). Under an additional hypothesis, this inequality shows that
the negative term in the evolution of ||H — h||%2(2t) is dominant.

Lemma 5.0.10. Let (X, F}), t € [0,T], be such that (2.29), (2.30), (5.24), (5.25) hold for
every t € [0,T]. For every Q > 0 there exists oo(c, Q) > 1 such that if

3dq

IH = Bl ooy < Qo 37897375 Vi e [0,T) (5.58)

and o > og, then

d Expwm
— —h)? du < — — h)?d
dt Z(H ) Mt > 0_3 /E(H ) Mt

for every t € [0,T].
Proof. We easily compute the evolution
d
L - ny dut:—Q/(H—h)L(H—h) di
+2 / (H— B)(T — 1) (AH + (H — B)(AP + Ric(v, 1)) due (5.59)
)
+/ U(H — h) dug — / H(H —h)? duy.
5 b
Combining (5.5) and (5.7) we get
W] < C(o|P)) (0_3_5\7{ —h+ a—%—éyvm) , (5.60)

which implies, using that o|P| < CJ_%_‘S,

[ =nw | < c (0-2-%q-6q [0t s =88 [ (olPy o dut)
> > >

E
< SO 4y e [ (oAP)H2IVHE dp
b b

where in the latter inequality we used parametric Young’s inequality and we have chosen o
suitably large.
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We now estimate, using integration by parts and formula (5.4) for VY, together with the
fact that ‘%| <Cand H~H ~ %,

/(H — W) (Y = 1)AH dpy
b
< —/(T—1)|VH|2dut+/ (1 P9V H| + 0| P| |V P|) [H—h||VH| du. (5.61)
b ¥

Since |H — h| < eo~! for o suitably large, and |V P| < o279 because of Lemma 2.1.3,
(o7 P VH| 4 o1 P|*HVP|) [H — h||[VH]
< 0| P VH|2 + 07370 | |7 — B||VH
< e(o|PYIVH + 072 (o | P M — B[V (5.6
< e(o|P))I|VH? + Co™ 32 |H — h* + e(o| P|)** 2| VH?
2-2 _

where in the latter inequality we used parametric Young’s inequality. Since (o|P])
(o|P|)472 (o|P])? < C(o|P])?, combining (5.61) and (5.62) we get

/(H “B)(Y — 1)AH du
by

< —/(T —D)||VH|? dy +Ca—3—25/
%

(H — B)? dpsy + eC / (o|PIVH dpy, (5.63)
> >

Note furthermore that (5.58) implies

by

if o > oy, for some op = 0p(2).
We conclude from (5.59), using Proposition 3.2.7, together with [YT—1||4|? < Co™272-% <
eEapmo 3 and T — 1 > co?|P|? because of (5.6), obtaining

d 2EApM eEADM
— —h)? du < — —h)*d —h)*d
G L0t duo < ZE ] G dpa ZEA [ 12
+ (eC — c)/ (o| P |VH|? dpug + 00—3—25/(7% — )2 dus  (5.64)
X bX
Ehmw/‘ 9
< — —h)*d
= 0_3 Z(/H ) it
for € small with respect to ¢, € < 1 and o suitably large. O

The next result, which is similar to Proposition 3.4 in [HY96], gives a bound on the
possible change of area of the surface along the flow as long as it remains round. The proof
is analogous to that of Lemma 4.1.14.

Lemma 5.0.11. Given By, B, there exist constants ¢ > 0 and oy > 1 such that, if 0 > oy
and Xy is a solution of the flow (5.2) fort € [0,T) with ¢ € Wq(B1, B2) for allt then

los, — ox,| < co2™d

for every t € [0,T7].

We are now ready to prove that, by an appropriate choice of the parameters of roundness
class, a well-centered round surface remains inside the class for arbitrary times. Remember
that hypotheses (1.16) are in particular satisfied by Nerz’s foliation.
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Remark 5.0.12. The decay rates in conditions (1.16) are modelled on the properties of the
leaves of the CMC-foliation constructed by Nerz in [Ner15]. In particular, in his Theorem
5.1, Nerz proved the existence of an exhaustive family of constant mean curvature surfaces
which foliate an asymptotically flat manifold with non-zero ADM-energy. We remark that
such foliation has been constructed via volume preserving mean curvature flow in Chapter /,
under the additional (weak) Regge-Teitelboim conditions and the hypothesis Eaxpm > 0. See
also Section 4.3.1.

We denote by {3°}s>s,, for a certain so > 1, the CMC-foliation (constructed as in [Nerl5]
or as in Chapter /). Note that we use a different letter in order to parametrize the foliation
with respect to [Ner15]. This CMC-foliation satisfies

s 2 ° _3_ o _
H* = = Al i (s¢) < CNerzs™ 22, |Z5s| < CNers™ 7, (5.65)
1s
for some CNer, > 0. Moreover, [Nerls, Prop. 4.4] proves that |s — os| < Co ~, where
o5 := oxs. Note also that [Ner15, Prop. 4.4], combined with (5.65), implies
oss — Cois® < |7 = |2° + ogsv® + f°| < oxs + Coll?, (5.66)
that is |rgs — oxs| < C’U;‘;. Then

rys
Os

>1-Coy°. (5.67)

Thus, for s large, this foliation satisfies (1.16) with o = o4. Finally observe that, by Lemma
2.1.3, the leaves %° also satisfy

1M — llwragse < cmo 2%,

for some cin = cin(€) > 0. For this reason, we will use a fixed leaf of Nerz’s foliation as the
mitial datum of our flow.

Remark 5.0.13. We remark that, using the fundamental result of DeLellis-Miiller [DLM05],
the assumptions in (1.16) imply that % s also bounded away from zero. In fact, combining
Lemma 2.1.10 with the latter assumption in (1.16), and using the DeLellis-Miiller’s Theorem,
Point (iv) of Lemma 2.5.5, combined with the second assumption in (1.16), implies that ;= >

1-— Co_l, provided that o is suitably large.
The following Theorem is the key step in the proof of Theorem 1.1.4.

Theorem 5.0.14. Let (M,g,K) be a Cz+5—asympt0tically flat initial data set, with Eapy >
0. Choose Bi as in Lemma 5.0.5 and2B2 and n as in Lemma 5.0.9. For every Cy > 0
there exist B = B(Cy) and oo = 00(¢, 8, Eapm, B1, Ba, Co) such that the following holds. Let
(3, F}) be a solution to the volume preserving spacetime mean curvature flow for t € [0,T)
such that g (i) belongs to By(B1, B, Been) with o = ox,, (i) is a CMC-surface and (iii)
125,] < Coo'™°. Then, if Been > B and 0 > oy, X; belongs to B, (B1, By, Been) for every
te[0,7].

Remark 5.0.15. Note that the following proof also works when X is almost CMC and not
exactly CMC.

Proof. Note that, since ¥y = X belongs to B,(B1, B2, Been ), then it satisfies

<= <o 1<oH< V5
ag

N



78 Chapter 5. Volume preserving spacetime mean curvature flow in initial data sets

Thus Lemma 2.1.3 implies that the initial (CMC) surface satisfies
17 = Rll g1 () < Cro™ 297 (5.68)

for some C7 = C1(¢) > 0. Thus, we define the maximal time

Fy exists in [0, 7], [|[H — hll2cs,y < (Cr+ 1)0*%‘17‘1‘S and

— > 0.
Yt belongs to B,(B1, Ba, Been) for every t € [0, T

Tinax := sup {T <T:

(5.69)
Thus, Y1, belongs to B,(Bi, By, Been) C Wy(Bi, Bs). By Lemma 2.3.5, Lemma 5.0.11
and Definition 2.3.1, the conditions (2.29) and (2.30) hold for every ¢ € [0, Tinax|. See again
Remark 5.0.12 for a direct estimate of the Euclidean radius.

Claim: There exists ci, = cin(¢) > 0 such that (5.25) holds for every ¢ € [0, Tinax]-
Proof of the Claim. Combining together (5.33) and (5.46), if C' is the maximum between the
two constants involved, we find that

d 1
— </ |VH|? d,ut+4Ca_2/(H—h)2 dut> < — / |V2H|? dut—CJ_Q/ |VH|? dpg
t \Js s 2 /s s

+(4C* + C)o ™t / (H — h)? du.
2

(5.70)
Setting a(t) := HV?—[HLQ =) T 4Co 2| H — hH%Q(Zt), since by definition of Tpay it holds ||H —

hll2(s,) < (Cr+1)o ~3979 for every t € [0, Tmax),

a(t)

IN

_Co2a(t) + (83C + C)o~ / (H = B2 dus
b

< —Co2a(t) 4+ 2(8C? + C)(Cy + 1)%g 479720

(5.71)

Since, by (5.68), a(0) < (14 4C)Cyo~27972% (5.71) implies that a(t) < C(¢, Cy)o 297204
for every t € [0, Tynax]- Since also C; = C1(¢), this proves that there exists ¢, = cin(¢) such
that the claim holds.

Now, (2.29), (2.30), (5.24) and (5.25) imply that we are in the hypotheses of Proposition
5.0.5 and of point (i) of Lemma 5.0.9. Thus, the choices of B; and By imply that 37, be-
longs to Wy (B1, Bs) for o large. Moreover, (5.24) holds for some By, = By (B1, B2), thanks
again to Lemma 2.3.5.

We conclude showing that, if also Beey is chosen suitably large, then ¥y € B, (B1, B2, Been)
for every t € [0,Tmax). Since ¥y is a CMC-surface, it is easy to verify that a,, (0) <

Bina_7_’q 20-309 {41 a constant Bi, suitably large. We remember that the function a, has

been defined in Lemma 5.0.9. Moreover, Lemma 5.0.9, point (ii), 1mphes that if Bm is chosen
[}

suitably large, depending on ciy and Boo, then [[H — Al poo(s,) < Bma_Z_Eq_i_ * holds for
every t € [0, Tiax). Thus Lemma 5.0.10, with Q := Bj,, combined with Gronwall’s Lemma,
implies that

ADIVI

_ Eapmt
1H = Bl 2y < I1H = Bllasge” 20 < (C1+ 1o 74 %™ (5.72)
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for every t € [0, Thax). Setting, Z(t) = Z5,, we show that the behavior of the barycenter is
controlled. Analogously to [CW08], we have the evolution

01 (15412(0)) = [ (h—Hpw duc-+ [ Fila) (= H) dia. 5.73)
) b
Combining this with the estimates H < 2, |Fy(z)| < Rx(t) < 30 and (5.72), we obtain

EAapmt

O (IZUIZB)]) < CollH = Bl 2z ) < C(Cr+ D)o ~E 700387, (5.74)

Integrating (5.74) over [0, Tiax|, We get

Z - g 20° _ BApyTmax
IEnmwdﬂmgwwzm4m|go«n+1ml%qé(E )(1_6 2 ).
ADM

By the hypotheses |Zs,| < Coo'~?, we find

2 2C(C1 +1
|Z(Thmax)| < — [ 57(Coo' %) + 200G+ g Beeno!™? (5.75)
T Eapm
if Been suitably large, depending on Cp, C, C7 and Eapy. Thus X7, belongs to the class
B, (Bi1, B2, Been), and combining this with (5.72) we obtain that necessarily Tiax = 7T O

Local regularity of the flow. We now review the regularity theory of the non-linear flow
we are considering. Since in a local interval of existence [0,%y) the principal curvatures are
uniformly bounded (by the preservation of the roundness), it follows that ¥; can be locally
written as a graph. Suppose in particular that ¥;N Be(zo) = {(z1, 22, u(t, x1,22)) : (z1,22) €
A}, with A C R? open. Since the metric, the unit normal vector, and the mean curvature of
> are locally given by

(=Dyu, —Dou, 1)
1+ |Dul?

gij = (5@' + DiuDju, V=
(5.76)

"o 1 sii DiuDlu D2
V1+[Duf? L+ [Duf?) =9

the equation (5.1), written in a tangential fashion, translates into an equation for u

1 . DiuDiy
Ou=+/1+|Dul?2| ® (5”—)1)?“,13 —hl, 5.77

where P = ¢g"/K;; is a smooth function and ®(s, ) = ¢/s? — |y|7. We rewrite equation (5.77)
as

o = F(D*u, Du, 2,t). (5.78)
Note that 5 ' )
L F . D*uDu
J = — = [ —— s@ .
F dOD%u (5 1+ ]Du|2> 0 (5.79)

1
and 9;® = ¢~ (s7 — |y|9)a " (gs?7!) > 0. Thus, as a matrix,

9 (. sup]Du|2 i 9 (Du-w)2 9
f O, 1l — )| < Fujw; = _ P < P ).
|w| <1g 0, ) < T+ sup [ Duf? ) = Fwiw; |w| I+ [Duf? 0s® < |w| Sljlpa
(5.80)
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Finally note that if fijMij = 0 then ((5” — ﬂfggﬁ) M;; = 0. Thus, computing Fiikl . —

w?ajia];glu’ it follows that this implies that j-;ij’klMiijl =0.
ij

This means that we are in the hypothesis of Theorem 6 in [And04], which let us obtain
a C*“ estimate on u, for some a € (0,1). By standard arguments, this means that the
coefficients of the linearization of the non-linear equation are C%“-Holder, and thus the stan-
dard theory (see for example [LSUGS|) implies uniform bounds on all higher derivatives of w.
Covering ¥; with graphs over balls of the same radius, we obtain Holder estimates on the
curvature and its derivatives.

Proof of Theorem 1.1.4. Consider a CMC surface ¥ such that, setting o = oy,

Al < Coo 7%, || < Coo' 0, <1405, (5.81)

rs
for some Cp > 3. Notice that, for By, B2 and Beey, suitably large X belongs to B, (B1, B2, Been)-
See also Remark 5.0.12. As in the proof of Theorem 4.1.16, suppose that the maximal time
of existence of the flow, say Tiax, is finite. Then, by Theorem 5.0.14 we find that also X7, ..

belongs to B,(B1, B2, Been) and thus, by the regularity theory, we can extend the flow past
Tiax, which contradicts the maximality. Thus T ax = 0.

Convergence. From Lemma 5.0.10 we see that |[H — h||;2(5,) decays exponentially as ¢t —
+o00. Since the derivatives of any order of H are uniformly bounded, interpolation estimates
imply that they also decay exponentially. Then Sobolev immersion implies that || H —h||fe(s,)
decays exponentially as well. By the bootstrapping argument described in the paragraph
above, the boundedness of the curvatures and [Hui84, Lemma 8.2 show that F'(-,t) converges
to a smooth immersion Fi(-). In particular, since H —h — 0, the limit surface Yo := Fiso (2)
satisfies H = h. Finally, Theorem 5.0.14 also shows that the requirements in the definition of
By (B1, B2, Been) still hold as strict inequalities on Y.

5.0.4 CSTMC foliation and centers of mass

In conclusion, we remark that the computation carried out in the above Lemmas also have
some consequences on the center of mass of the foliation we constructed. In this Section, we
suppose that the initial datum of our flow is a leaf of Nerz’s foliation, as recalled in Remark
5.0.12. In particular, we assume that there exists the CMC-center of mass of Nerz’s foliation,
i.e. the limit as s — oo of the Euclidean barycenters of the foliation {3°} . constructed by
Nerz (see [Nerl5]). In the following, we will suppose the change of variable s <— o, with
o(s) := oxs. Thus, we have

Corollary 5.0.16. Let (M,g,K) be a C’i+5—asymptotically flat initial data set which is con-
2

strained and with positive ADM-energy Eapm > 0. Let 17 : X7 < M \ C the inclusion of the
family {Z”}UZUO of CMC-surfaces as above and suppose that there exists the CMC-center of
mass of X7, i.e.

m T du’, (5.82)

Covmc = 1i
g—00 o

where du® is the 2-dimensional measure induced by g on ©*. Consider the CSTMC foliation
constructed above, and let Zss be the barycenter of 3¢ = tlim F(X9).
N —00

2
o then

(i) Ifg>

lim Zso = Comc. (5.83)

ag—00
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(ii)) If2<qg< 26, then there exists C' > 0 such that

N

|Z50 — x| < Co?7370, (5.84)
Proof. Integrating (5.73) in [0, ¢] we get
t E t
24 — |20 < C | 1D Y H = hl| s, dt < Co? 370 (1 =) 5.85
0 (Ze)

Since, by construction, z(0) = Zxo and Zys := lim; o 2(t), which exists since the flow
converges, letting ¢ — oo in (5.85) we get

|Zzgt — Zga| < 00‘2_%_(15.
O
Remark 5.0.17. (i) Since 5 +6 € (3,1], we have that
2< 5 <4 (5.86)
5+0

Thus, if ¢ > 4, the volume preserving spacetime mean curvature flow recovers the center
of mass Comc for every § € (0, %]

(ii) For q = 2, we recover the foliation constructed in [CS21]. In this case, the right hand
side of equation (5.84) is divergent, and the theory developed by Cederbaum and Sakovich
in [CS21] let us to conclude that {Zso }o>4, converges if and only if the correction term
converges

i k.l 2
't <§ o, ThIT m)
lim

dus, (5.87)
under the additional hypothesis that |K| < ¢|#| 2.

(11i) Finally, also in the case q € <2, %M] equation (5.84) holds with a positive exponent, and
2
thus, in a case in which the CMC-barycenter does not converge, this does not necessarily
imply the non convergence of the CSTMC-barycenter. However, differently from point
(1), where the convergence of the limit (5.87) allows to deduce a relation between the two
barycenters, for a general q we do not know if a similar correction term can be found.
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