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Chapter 1

Introduction

In the general theory of relativity the
doctrine of space and time, or
kinematics, no longer figures as a
fundamental independent of the rest of
physics. The geometrical behaviour of
bodies and the motion of clocks rather
depend on gravitational fields, which in
their turn are produced by matter.

A. Einstein

With these words, in his non-scientific book "The World As I See It" [Ein35], Albert
Einstein effectively resumes one of his most famous equations. Mathematically, this translates
into having a complete Lorentzian manifold (M,g) satisfying the equation

Ric−
(

S
2

)
g = T, (1.1)

where Ric = Ric(·, ·) is the Ricci tensor of (M,g), S = trgRic and T is a given symmetric
smooth (0,2)-type tensor field called energy-momentum tensor. Even if in the present Thesis
the Einstein equation (1.1) plays a marginal role, the author believes appropriate to review it
here since it describes the "world" where the protagonists of the next Chapters live.

We will focus our attention on isolated gravitational systems. These physical models are
well-described by 3-dimensional submanifolds of (M,g) with suitable asymptotics. In the
following, we will assume that there exists a smooth immersion j : M ↪→ M and a smooth
vector field e0 on M such that e0 is timelike and the restriction of g to M , i.e. g := j∗g,
is a Riemannian metric. We additionally suppose that M contains a compact subset C ⊂M
such that M \C, called end of the manifold M , is diffeomorphic to R3 \B1(⃗0) through a chart
x⃗ :M \ C→ R3 \ B1(⃗0) which induces a Euclidean metric ge :=

(
x⃗−1

)∗ ⟨·, ·⟩R3 . Furthermore,
we assume that g − ge, and its derivatives, decay suitably at infinity. At the moment we do
not specify which decay we need, see Definition 1.1.1 for details. We finally set

K(·, ·) := ⟨A(·, ·),−e0⟩, µ := T(e0, e0), J(·) := T(e0, ·), (1.2)

where A is the second fundamental form of the immersion j. K, µ and J are, respectively,
the (scalar) spacetime second fundamental form of M , the energy density and the momentum
density. In term of these new quantities, the Einstein equations (1.1) can be written, through
the Gauss-Mainardi-Codazzi equations [Lee18, Thm. 8.3], as{

S− |K|2 + (trgK)2 = 2µ

∇ ·
(
K
)
− d

(
trgK

)
= J.

(1.3)
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Choquet-Bruhat proved that the validity of the system (1.3) for a tuple (M, g,K, µ, J) implies
the existence of a spacetime associated to this tuple in the sense of (1.2), see [CB09], [Lee19].
This remark allows us to define an initial data set as a notion which is independent from the
one of spacetime manifold (at least formally), but including the whole information encoded.

For isolated gravitational systems, a notion of energy can be given, provided they satisfy
suitable asymptotics. More precisely, if the scalar curvature of (M, g) is integrable, i.e. S ∈
L1(M, g), then it is possible to define the so called ADM-energy, named after Arnowitt, Deser
and Misner [ADM61], given by the following limit of flux integrals

EADM := lim
r→∞

(16π)−1
∑
α,β

ˆ
x⃗−1(Sr (⃗0))

(
∂βgαβ − ∂αgββ

)
ναr dµr, (1.4)

where x⃗−1(Sr (⃗0)) is the Euclidean sphere immersed in (M, g), νr and dµr are, respectively, its
normal vector and its volume form in (M, g) and ∂α is the derivative in local coordinates in
the chart x⃗. In a similar way, Beig-Ó Murchadha [BOM87] defined the so called ADM-center
of mass. It is a vector of R3 which is given as a limit of flux integrals on Euclidean spheres,
similarly to the definition of ADM-energy. Explicitly,(

C⃗ADM

)
γ
:=

1

16πEADM
lim
r→∞

[ˆ
x⃗−1(Sr (⃗0))

∑
α,β

x⃗γ
(
∂αgαβ − ∂βgαα

) x⃗β
r
dµr

−
ˆ
x⃗−1(Sr (⃗0))

∑
α

(
gαγ

x⃗α
r
− gαα

x⃗γ
r

)
dµr

]
,

(1.5)

for γ ∈ {1, 2, 3}. Note that in these definitions the Euclidean foliation
{
x⃗−1

(
Sr (⃗0)

)}
r≥r0

has the important role of being used in order to encode physically relevant information of the
system. With few computations, one can show that x⃗−1

(
Sr (⃗0)

)
in (1.4) can be replaced with

other families of surfaces, provided they are sufficiently round, in a precise sense (see Lemma
3.1.3).

Round surfaces such as the Euclidean spheres, however, do not represent in general a good
coordinate system for (M, g). This is essentially due to the fact that the round surfaces do not
necessarily have constant mean curvature (CMC). In the context of Mathematical General
Relativity, in the late ’80s Christodoulou and Yau employed CMC surfaces in the study of
the quasi-local mass.

In 1996, the seminal work of Huisken and Yau [HY96] showed that, in an asymptotically
Schwarzschildean setting of positive mass, i.e. a metric gS on M \C which satisfies, for some
m > 0,

4∑
N=0

|x⃗|N
∣∣∣∣∣∂|N |

(
gSαβ −

(
1 +

m

2|x⃗|

)4

δαβ

)∣∣∣∣∣ ≤ c

|x⃗|2
, (1.6)

one can construct a family of CMC-surfaces {Σσ}σ≥σ0 which exhaust the end of the manifold.
Moreover they do not self-intersect and HΣσ → 0 as σ →∞. Setting sσ := 2

HΣσ
, since Σσ is

diffeomorphic to S1, one can define a bijective map

Φ : (s0,∞)× S1 →M \ C. (1.7)

such that, for every s > s0, Φ(s, ·) maps S1 in the unique CMC round surface Σs of mean
curvature 2/s. The definition of this map goes through the use of the inverse function, see
e.g. [Hua12, Sect. 5.3]. Such a family of leaves is called CMC-foliation. From a physical
point of view, a CMC-foliation is a sort of abstract center of mass, which allows to describe
the manifold (M, g) through the polar representation (1.7).
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In the construction of Huisken-Yau, each CMC-leaf is obtained trough the deformation
of a Euclidean sphere, performed by the so called volume preserving mean curvature flow.
Once the large time existence of this flow is proved, each CMC-leaf is obtained as a long time
limit of the flow. This flow has no longer been studied in the context of asymptotically flat
manifolds, except for the work of Corvino and Wu [CW08].

After this seminal result, the foliation described above has been constructed by different
methods and under different hypotheses in various papers. Ye, and later Huang, based their
construction on the implicit function theorem, see [Ye97],[Hua10], while the work of Metzger
[Met07] gave rise to a branch of the field of study in which the foliation is constructed through
a continuity method. This culminated with the work of Nerz [Ner15], which obtained the
foliation under the decay assumption we will describe in Definition 1.1.1. The optimality
of these hypotheses has been highlighted in [Ner18]. Nerz’s result was later modified by
Cederbaum and Sakovich in order to construct a different type of foliation, which we will
explain in more detail below. Recently, Eichmair and Koerber presented a new construction
of the foliation trough a Lyapunov-Schmidt reduction [EK24]. The advantage of the method
employed by Eichmair and Koerber is that this works in every dimension n ≥ 3.

The foliation-approach started by Huisken and Yau allows to introduce another notion of
center of mass, whose definition formally coincides with the one we would use in a Euclidean
context, i.e. the limit of the integral mean of barycenters. This new center of mass, sometimes
called geometric center of mass, is given by

C⃗CMC := lim
σ→∞

1

|Σσ|

ˆ
Σσ

x⃗ dµσ, (1.8)

where dµσ is the measure induced by g on Σσ and |Σσ| is its area. In other words, passing to the
CMC-coordinate system flattens the manifold without losing the non-Euclidean information.

Under suitable symmetry assumptions, known as weak Regge-Teitelboim conditions, it was
proved that the CMC-center of mass exists if and only if the Beig-Ó Murchadha center of
mass exists. In the case in which both exist, they coincide. Moreover, under the so called
strong Regge-Teitelboim conditions, the Beig-Ó Murchadha center of mass exists, and thus also
the CMC-center of mass. On the other hand, on an asymptotically flat manifold where the
Regge-Teitelboim condition are not satisfied, these centers of mass may not be well-defined.
In particular, Cederbaum and Nerz [CN15] constructed explicit examples where both these
objects do not converge.

For this reason, Cederbaum and Sakovich [CS21] introduced a new foliation, based on
a modified curvature, whose leaves are not CMC but satisfy a prescribed mean curvature
equation. As said before, their construction is based on the method of continuation of Nerz.
In order to understand their foliation, it is necessary to introduce the notion of spacetime
mean curvature of a surface Σ, which is given by

H2 = H2 − P 2, (1.9)

where P := trg(K) and g is the metric on Σ induced by g. See Section 2.1 for more details.
In the present Thesis, we will also work with a generalization of (1.9), see equation (2.12). In
[CS21], Cederbaum and Sakovich prove the existence of a constant spacetime mean curvature
(CSTMC) foliation of the outer part of M , and define a corresponding CSTMC-center of
mass as the limit of the barycenters of the leaves. It is proved that the CSTMC-center of
mass exists also in some cases in which the previous one does not. Moreover, the new center
of mass has a physical relevance. From a spacelike point of view, the equation satisfied by
each CSTMC surface looks like a prescribed mean curvature equation. A similar equation
was present in the work of Metzger [Met07], who constructed surfaces satisfying the so called
constant expansion equation Θ± := H ± P ≡ const, where Θ± are the null curvatures of Σ.
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Instead, each leaf in the foliation constructed by Cederbaum and Sakovich in [CS21] satisfies
the equation

const ≡ H =
√
H2 − P 2 =

√
H + P

√
H − P =:

√
Θ+

√
Θ−.

The two equations are different if the right hand side is strictly positive, as in the case of our
interest. On the other hand, it is interesting to notice that they coincide if the right-hand
side is zero, in which case we recover a well-known class called trapped surfaces, or MOTS,
which has been studied by various authors (for example [AEM11] or [EHLS15]).

1.1 Results of the present Thesis

This Thesis has two main goals. The first is recovering the CMC-foliation constructed by
Nerz in [Ner15], through a volume preserving mean curvature flow, i.e. generalizing the work
of Huisken-Yau [HY96]. Secondly, we also aim to recover the spacetime CMC-foliation of
Cederbaum-Sakovich through a volume preserving flow. In order to do this, we have to de-
fine a non-linear version of the volume preserving mean curvature flow, which we call volume
preserving spacetime mean curvature flow.

Volume preserving mean curvature flow (Chapter 4). Similarly to Huisken-Yau, we
study a volume preserving mean curvature flow starting from Euclidean spheres, namely we
consider a smooth family of immersions {Ft}t∈[0,T ), 0 ≤ T ≤ ∞ which evolves according to{

∂Ft
∂t (·) = − (H(t, ·)− h(t)) ν(t, ·)
F0 = ι

, (1.10)

where ι is the immersion of the Euclidean sphere Sr (⃗0) in M . Moreover, from now on, we are
supposing M to be an asymptotically flat manifold, see Definition 1.1.1. We remark that our
hypotheses on the ambient manifoldM are more general and differs from those of Huisken-Yau
because of two main reasons, as we will explain after the following Definition.

Definition 1.1.1. Let δ ∈ (0, 12 ]. A Riemannian 3-manifold (M, g) is said to be C2
1
2
+δ

-
asymptotically flat if there exist a compact subset C ⊂ M , a constant c > 0 and a diffeomor-
phism x⃗ :M \ C→ R3 \ B1(⃗0) such that

|gαβ − δαβ|+ |x⃗|
∣∣∂γgαβ∣∣+ |x⃗|2 ∣∣∂γ∂ωgαβ

∣∣ ≤ c|x⃗|− 1
2
−δ, (1.11)

where gαβ := (x⃗∗g)αβ and ∂γ is the local derivative in the chart. We moreover assume that the
scalar curvature S = trg

(
Ric
)

satisfies |S| ≤ c|x⃗|−3−δ. We will often refer to this hypothesis
as the mass condition.

In the following, we will always assume that EADM > 0, and we refer to this condition as
the positive mass condition. The integrability of the scalar curvature is a sort of reminiscence
of the scalar flatness of the Schwarzschild space. Some comments concerning the negative
mass case can be found in Section 4.3.2.

Note that in Definition 1.1.1 we require a suitable decay only for two derivatives of the
metrics, and not for four derivatives as in [HY96], see (1.6). Note also that in the asymp-
totically Schwarzschildean case of Huisken-Yau we have δ = 1

2 . For this reason, our methods
to prove long time existence and asymptotic convergence of the flow use different techniques
from those of Huisken-Yau. In particular, the lack of control on the derivatives of the Rie-
mann tensor of our case does not allow to control the roundness of the evolving surfaces by
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the usual maximum principle arguments employed in the literature on mean curvature flow.
The core of our proof is a suitable definition of the class of round surfaces, which involves
integral norms of the traceless second fundamental form and of the oscillation of the mean
curvature. Since we are interested in the analysis of these integral quantities, a crucial role in
the proof is played by integration by parts, in the spirit of Metzger, see for example [Met07,
Lemma 3.3].

We are then able to prove invariance of this class by a careful analysis of the time evolution
of our integral quantities, combined with powerful recent results from the literature [DLM05],
and estimates on the barycenter of the evolving surface. In order to carry out a fruitful
analysis on the evolution of the barycenter, we need to additionally suppose that (M, g) sat-
isfies a weak Regge-Teitelboim condition, see for example Definition 3.1.19. This is again
a reminiscence of the Schwarzschildean setting of Huisken-Yau. However, being asymptoti-
cally Schwarzschildean is a requirement stronger than the Regge-Teitelboim condition, since
it includes an asymptotic radial symmetry assumption. A crucial ingredient in the proof is
a slight generalization of the spectral theory of the stability operator as presented in [Ner15]
and [CS21]. We present an analysis of this operator which is similar to the one carried out by
Nerz and Cederbaum-Sakovich. Since our surfaces are just round and not CMC, the presence
of some additional terms which does not allow us to deduce the positivity of the stability
operator. However, in our dynamical analysis, we only apply the stability operator to the
deformation H − h, and in this case also the additional terms will give good contributions to
our purposes. We end the paragraph stating the first main theorem of the Thesis.

Theorem 1.1.2 (Sinestrari-T.). Let (M, g) be a C2
1
2
+δ

-asymptotically flat 3-manifold with
EADM > 0 and satisfying the weak Regge-Teitelboim conditions. Let Σt be the solution of
the volume preserving mean curvature flow starting from the Euclidean coordinate sphere
x⃗−1

(
Sr (⃗0)

)
, for a large enough radius r > 0. Then Σt exists for all t ∈ [0,∞) and ex-

ponentially converges to a CMC-surface as t→∞.

Volume preserving spacetime mean curvature flow (Chapter 5). The aim of Chapter
5 is to consider again the flow approach of Huisken-Yau and extend it to the context of
spacetime mean curvature. We study here a volume preserving flow where the mean curvature
is replaced by the spacetime mean curvature. In particular, we consider an initial data set
(M, g,K) which satisfies (1.1.1) and the following asymptotic flatness.

Definition 1.1.3. Let δ ∈ (0, 12 ]. An asymptotically flat initial data set is a triple (M, g,K)
such that the pair (M, g) is a C2

1
2
+δ

-asymptotically flat (with respect to the chart x⃗) and
moreover it holds

|Kαβ|+ |x⃗||∂γKαβ| ≤ c|x⃗|−
3
2
−δ, (1.12)

where Kαβ = (x⃗∗K)αβ. On the other hand, we say that (M, g,K) is constrained by the pair
(µ, J) if (1.3) holds together with

|µ|+ |J| ≤ c|x⃗|−3−δ. (1.13)

Observe that in the definition of initial data set the decay of the scalar curvature is a
consequence of equation (1.3). In this context, for an arbitrary but fixed power q ≥ 2, we set

H = q
√
Hq − |P |q. (1.14)
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We denote with ℏ the integral mean of H. We then aim to show long time existence and
convergence of solutions of the system{

∂Ft
∂t (·) = − [H(t, ·)− ℏ(t)] ν(t, ·)
F0 = ι

. (1.15)

This time we choose as initial data the immersion ι : Σ ↪→ M of a surface of the spacelike
CMC-foliation, which satisfies better estimates than a Euclidean coordinate sphere. A similar
choice is made in [CS21], where the continuity method is implemented taking the CMC-leaves
as starting surfaces. As for the flow (1.10) above, we show that with our choice of initial
data the solution of (1.15) exists for all times and converges to a limit that is CSTMC. The
CMC-property of the initial surface allows us to carry out the spectral analysis on a more
restricted class of surfaces, on which the stability operator has a better behaviour than in the
previous case. On the other hand, there are new difficulties because the speed of the flow is
nonlinear in H and moreover the flow is no longer area-decreasing. In particular, the crucial
step of our analysis (Theorem 5.0.14), where the invariance of the roundness class under the
flow is obtained, requires a different argument from the space-like case, which combines the
estimates of different integral norms of the oscillation of the space time mean curvature. Our
convergence result provides an alternative construction of the foliation obtained in [CS21], and
has an independent interest in the analysis of the behaviour of curvature flows in asymptoti-
cally flat spaces. A further motivation for our study comes from the recent work of Huisken
and Wolff, who study a spacetime version of the inverse mean curvature flow, see [HW22].

We finally highlight that the hypotheses of the results described in Chapter 5 could be
generalized, for example modifying H to be a nonlinear function of H with suitable asymp-
totics. However, we do not focus our interest on these technicalities in order to maintain a
point of contact between the flow and the physical setting. We end stating the main theorem
of this Chapter.

Theorem 1.1.4 (T.). Let (M, g,K) be a constrained C2
1
2
+δ

-asymptotically flat initial data set
in the sense of Definition 1.1.3, and suppose that EADM > 0. Fix q ≥ 2. Let ι : Σ ↪→M be a
closed CMC-surface immersed in (M, g) and, setting σ = σΣ :=

√
|Σ|/4π, suppose that there

exists C0 > 0 such that

∥
◦
A∥L4(Σ) ≤ C0σ

−1−δ, |z⃗Σ| ≤ C0σ
1−δ,

σ

rΣ
≤ 1 + C−1

0 , (1.16)

where rΣ := minx∈Σ |x⃗(x)|. Then, there exists σ0 = σ0(C0, c, δ, q) > 1 such that if σ > σ0,
the solution Σt to the spacetime mean curvature flow (1.15) exists for every t ∈ [0,∞) and
converges exponentially fast to a surface Σst

∞ satisfying the prescribed mean curvature equation

Hq
Σst

∞
= |P |qΣst

∞
+ ℏqΣst

∞
(1.17)

for some constant ℏΣst
∞
> 0.
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Chapter 2

Surfaces in asymptotically flat spaces

2.0.1 Definitions and basic properties

In this introductory Section we briefly review some definitions, notations and well-known
results in Riemannian geometry.

In the following we will always indicate with (M, g) a 3-dimensional complete Riemannian
manifold. Local coordinates on M will be indicated with Greek letters, such as α, β, γ, ω, etc.
Moreover, Σ or ι : Σ ↪→ M will always be a surface immersed in M , with induced metric
g := ι∗g. Local coordinates on Σ will be indicated with Latin letters, such as i, j, k, l, etc.
Similarly to the notation for the metrics, the overlined geometric quantity will refer to (Σ, g);
otherwise, they refer to (Σ, g). Sometimes, for example when writing the Ricci tensor of Σ,
we will put the focus on Σ writing RicΣ.

We will indicate with TM the tangent space to M , and with TΣ the tangent (phase)
plane to Σ. The outer unit normal to Σ in TM will be indicated with ν. We highlight that
the field ν is defined on Σ but for each x ∈ Σ we have νx ∈ Tι(x)M . In general, to indicate
that V is a smooth vector field, we write V ∈ F∞.

As we will review in Section 2.1, we represent with A = {hij} the second fundamental
form of Σ, and with H = gijhij = trg(A) the mean curvature of Σ. Moreover, dµ = dµg will
be the volume form of Σ induced by g.

We now recall the main well-known identities. The Gauss equation and the Gauss-Codazzi
equation say, respectively, that

Rmkilm = Rmkilm + hklhim − hkmhil, (2.1)

∇ihjk −∇khij = Rmωjkiν
ω. (2.2)

Tracing (2.2) with respect to the indexes i and j, we get

∇ihik −∇kH = Ricωkνω − Rmωαkβν
ωνανβ = Ricωkνω. (2.3)

This allows us to deduce the Simons’ identity. We briefly prove it as stated in [Met07]. This
identity relates the Hessian of the mean curvature to the laplacian of the second fundamental
form.

Lemma 2.0.1 (Simons’ identity).

∆hij =∇i∇jH +Hhlihlj − |A|2hij + hliRmkjkl + hlkRmlijk

+∇j

(
Riciωνω

)
+∇l

(
Rmωijlν

ω
) (2.4)

Proof. We use normal coordinates on Σ. Taking the derivative ∇k of (2.2) we get

∇k∇lhij = ∇k∇ihjl +∇k

(
Rmωjilν

ω
)
. (2.5)
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By the commutation of the derivatives and the symmetry of the second fundamental form, it
holds

∇k∇ihlj = ∇i∇khlj + RmΣ
kilmhmj + RmΣ

kijmhml.

Combining this with (2.2) and the Gauss equation (2.1), we have

∇k∇lhij =∇i∇khlj + Rmkilmhmj + (hklhim − hkmhil)hmj

+ Rmkijmhml + (hkjhim − hkmhij)hml +∇k

(
Rmωjilν

ω
) (2.6)

Using again (2.2), we have

∇i∇khlj = ∇i

(
∇jhlk + Rmωlkjν

ω
)
. (2.7)

The thesis follows combining (2.6) and (2.7), summing over k = l and noting that

hkjhimhmk − hkmhikhmj = hjkhkmhmi − hjmhmkhki = 0.

Lemma 2.0.2. Let M and Σ be as above, and consider a smooth bilinear form Bαβ on M .
Then

∇kBij =
(
∇
(
B
))

ijk
− hkiBωjν

ω − hkjBiγν
γ , (2.8)

where ∇
(
B
)

is the covariant derivative of B.

Proof. Consider local normal coordinates {ei}i on Σ, completed by ν to a local frame of M .
Since B(ei, ej) is a scalar function on Σ,

∇k(B(ei, ej)) =
(
∇
(
B
))

(ei, ej , ek)− B(∇kei, ej)− B(ei,∇kej).

We used that ∇k and ∇k, on scalar functions, coincide with the derivative with respect to ek.
Note that, by definition of second fundamental form and the choice of normal coordinates we
have

∇kei = ∇kei + hkiν = hkiν,

and thus the thesis follows.

2.0.2 Energy and center of mass

The mass condition introduced in Definition 1.1.1 can be generalized by the request S ∈
L1(M, g). This allows to define the ADM-energy, named after Arnowitt, Deser and Misner
[ADM61] recalled in (1.4). However, for our aims, we will use the following equivalent charac-
terization of the energy of the system, proved in [MT16] but already well-known in literature
(see, for example, [Chr86], [Sch88]).

Definition 2.0.3 (ADM-energy). Let (M, g) be a C2
1
2
+δ

-asymptotically flat 3-manifold that
satisfies the mass condition. The ADM-energy is defined as

EADM := − lim
R→∞

R

8π

ˆ
x⃗−1(SR (⃗0))

G(νR, νR) dµR, (2.9)

where G := Ric−
(

S
2

)
g is the (spacelike) Einstein tensor.

In the time-symmetric case (i.e. K ≡ 0) the ADM-energy is also called ADM-mass.
However, when K ̸≡ 0, the two definitions differ. Thus, avoiding ambiguities, during this
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Thesis we will refer to the limit in (2.9) always as ADM-energy. We remark also that, in
the case of the asymptotically Schwarzschildean manifolds of Huisken-Yau [HY96], the ADM-
energy coincides with the parameter m > 0. We now introduce the notion of ADM-mass
when K ̸≡ 0.

Definition 2.0.4 (ADM-mass). Let (M, g,K) be a C2
1/2+δ asymptotically flat initial data set

and define ϱ :=
(
trgK

)
g − K, the so called conjugate momentum tensor. The ADM-linear

momentum is a vector π⃗ = (π1, π2, π3) ∈ R3 defined by

πβ :=
1

8π
lim

R→∞

ˆ
|x⃗|=R

3∑
α=1

ϱαβ
x⃗α
R

dµeR,

where dµeR is the Euclidean volume form on {|x⃗| = R}. Then the ADM-mass of (M, g,K) is
defined as

mADM :=
√
E2

ADM − |π⃗|2.

Using the divergence theorem, it can be easily proved that the mass condition implies
that the ADM-energy is well defined. The notion of mass also clarifies why we require the
decay exponent 1

2 + δ, with δ ∈ (0, 12 ]. In fact, in the case δ ≤ 0 it has been proved that
R3 can be equipped with a chart which does not have zero energy, as one would expect from
the Euclidean space, see [DS83]. On the other hand, if δ > 1

2 , it is easy to see, from the
definition of EADM, that EADM = 0. This is not desirable when working with centers of mass
(as can be seen in the definition we will give in a moment); moreover, we will work just in the
case of positive ADM-energy, as we will see in the next Chapters and as we underlined in the
introduction.

In [RT74] and [BOM87], Regge-Teitelboim and Beig-Ó Murchadha introduced the so called
ADM-center of mass, named again after Arnowitt, Deser and Misner and recalled in (1.5).
Similarly to the case of the ADM-energy, we use here an equivalent definition introduced by
Miao and Tam in [MT16].

Definition 2.0.5 (ADM-center of mass). Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold
with EADM ̸= 0. We say that (M, g, x⃗) admits the ADM-center of mass if the limits

ωα := lim
R→∞

ˆ
{|x⃗|=R}

G(Yα, νR) dµR (2.10)

exist finite, where Yα(x) =
(
R2δαβ − 2xαxβ

)
∂

∂xβ
. In this case, we set ω⃗ := (ω1, ω2, ω3) and

C⃗ := ω⃗
8πEADM

.

The mass condition is not enough to assure the existence of the vector C⃗. However, an
asymptotic symmetry condition which guarantees the existence of the center of mass is the so
called (strong-)Regge-Teitelboim condition. Even if the original references for this condition
goes back to [RT74], we mainly refer to [Hua10], [Ner15].

Definition 2.0.6 (Strong Regge-Teitelboim condition). Let (M, g, x⃗) a C2
1
2
+δ

-asymptotically

flat manifold. We say that this manifold satisfies the strong or C2
3
2
+δ

-Regge-Teitelboim condi-
tion if there exists a positive constant c > 0 such that∣∣∣(gαβ)x − (gαβ)−x

∣∣∣+ |x| ∣∣Γγ
αβ(x) + Γ

γ
αβ(−x)

∣∣+ |x|2 ∣∣Ricαβ(x)− Ricαβ(−x)
∣∣

+ |x|
5
2

∣∣S(x)− S(−x)
∣∣ ≤ c

|x|
3
2
+δ
,
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for every x ∈M \ C.

The following Lemma shows how the divergence theorem and the Regge-Teitelboim con-
dition assure the existence of C⃗.

Lemma 2.0.7. Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold. If it satisfies the C2
3
2
+δ

-

Regge-Teitelboim conditions, then the ADM-center of mass, i.e. the vector C⃗ = ω⃗
8πE , is well-

defined.

Proof. We prove the existence of the limits in (2.10). Identifying, for sake of simplicity, SR(⃗0)
with its preimage through x⃗, and using the divergence theorem, we compute, for S larger than
R, ∣∣∣∣∣

ˆ
SS (⃗0)

G (Yα, ν) dµ−
ˆ
SR (⃗0)

G (Yα, ν) dµ

∣∣∣∣∣ =
∣∣∣∣∣
ˆ
BS (⃗0)\BR (⃗0)

Gβγ∂xβ
(Yα)

γ dx

∣∣∣∣∣ , (2.11)

where dx is the volume form of (M, g). Since ∂xβ
(Yα)

γ = 2xβδαγ − 2δαβx
γ − 2xαδβγ , we find

that equation (2.11) equals∣∣∣∣∣2
ˆ
BS (⃗0)\BR (⃗0)

Gβαx
β dx− 2

ˆ
BS (⃗0)\BR (⃗0)

Gαγx
γ dx + 2

ˆ
BS (⃗0)\BR (⃗0)

Gββx
α dx

∣∣∣∣∣
= 2

∣∣∣∣∣
ˆ
BS (⃗0)\BR (⃗0)

Gββx
α dx

∣∣∣∣∣ ,
using that G is symmetric. Since Gββ = S

2 , we proceed as follows. We introduce the antipodal
map on M , given by p : M → M that sends x 7→ (x⃗)−1(−x⃗(x)) =: −x. Then, there exists
U ⊂M such that BS (⃗0) \ BR(⃗0) = U ∪ p(U). Then

ˆ
BS (⃗0)\BR (⃗0)

Sxx
α dx =

ˆ
U

Sxx
α dx +

ˆ
p(U)

Sxx
α dx =

ˆ
U

Sxx
α dx−

ˆ
U

S−xx
α dx.

Then ∣∣∣∣∣
ˆ
BS (⃗0)\BR (⃗0)

Sxx
α dx

∣∣∣∣∣ ≤
ˆ

U
|Sx − S−x||xα| dx ≤ c

ˆ
BS (⃗0)\BR (⃗0)

|xα||x|−4−δ dx,

using the Regge-Teitelboim condition. Using polar coordinates, we conclude that

lim
R,S→∞

∣∣∣∣∣
ˆ
SS (⃗0)

G (Yα, ν) dµ−
ˆ
SR (⃗0)

G (Yα, ν) dµ

∣∣∣∣∣ = 0.

This proves the claim.

Weak Regge-Teitelboim condition. As we have already seen in the hypothesis of The-
orem 1.1.2 in Chapter 1, we will assume a weak version of the Regge-Teitelboim condition,
which differs from Definition 1.1.2 for a decay 1 + δ instead of 3

2 + δ. This change of the
decay assumptions does not assure anymore the existence of C⃗. However, it is well-known
that if the weak Regge-Teitelboim condition holds and C⃗ exists, then the foliation constructed
in Theorem 1.1.2 admits a barycenter which coincides with the ADM-center of mass. See
[Ner15, Thm. 6.3].
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ADM-CoM in initial data sets. Cederbaum-Nerz [CN15] showed the existence of explicit
examples of initial data sets with non-converging ADM-center of mass. These examples
arise as 3-dimensional submanifolds of the Schwarzschild spacetime, solution to the vacuum
field equations, and thus they are expected to have 0⃗ as ADM-center of mass. Recently,
Cederbaum-Sakovich [CS21] have given a characterization for the existence of a modified
center of mass that takes into account the spacetime nature of the examples constructed
in [CN15]. In particular, the ADM-center of mass is modified by a correction term which
compensates the non-converging behavior of the limit in the definition of center of mass,
giving the expected center of mass. In the second part of the Thesis (Chapter 5) we will
define a spacetime version of the volume preserving mean curvature flow with the aim of
recovering the modified ADM-center of mass introduced in [CS21].

2.1 Surfaces in asymptotically flat manifolds

We dedicate this Section to surfaces in asymptotically flat manifolds, both in the time-
symmetric and the non time-symmetric case. Even if in the Introduction we fixed the notation
for describing Riemannian 3-manifolds, we saved until the present Section the moment to fix
the basic definitions about surfaces, since they are the main object of the whole Thesis, and we
want to imprint their notion in the context of the asymptotically flat manifolds as presented
up to this point in the Chapter.

From now on, with 2-surface we mean an immersion ι : Σ ↪→ M \ C, with dimΣ = 2,
which is closed, connected and 2-faced. Since M \ C is diffeomorphic to R3 \ B1(⃗0), the sur-
face Σ inherits two Riemannian metrics: a physical metric g := ι∗g and a Euclidean metric
ge := ι∗ge, where ge is the Euclidean metric on M . From now on, we will use the apex e each
time a quantity is computed with respect to the Euclidean metric, and we will omit the apex
if it is computed using the physical metric. Then, fixed an outer unit normal ν : Σ → TM ,
we represent with A = {hij}, H and dµ, respectively, the second fundamental form, the mean

curvature and the volume form of Σ with respect to g. Moreover we write
◦
A = A − H

2 g.
On the other hand, if νe : Σ → TM is the outer normal field of Σ with respect to ge, we

represent the same quantities with Ae = {heij}, He, dµe and
◦
A

e

. Observe that, when we are
on a hypsersurface Σ, we use the latin indexes i, j, k, l, etc, to distinguish from the ambiental
coordinates, which are indicated with the greek indexes α, β, γ, ϵ, etc. Finally, we define

h :=
1

|Σ|

ˆ
Σ
H dµ, he :=

1

|Σe|

ˆ
Σ
He dµe,

which are, respectively, the mean of the mean curvature computed with respect to the physical
and the Euclidean metric. Here |Σ| =

´
Σ dµ and |Σe| =

´
Σ dµ

e.
In order to estimate the Euclidean position of an immersed surface and its area, we

introduce now some useful definitions.

Definition 2.1.1. Let (M, g) be a 3-manifold, and consider an immersed surface ι : Σ →
M \ C with induced metric g = ι∗g. Then we set

rΣ := min
x∈Σ
|x⃗(ι(x))|, RΣ := max

x∈Σ
|x⃗(ι(x))|, σΣ :=

√
|Σ|g
4π

.

These radii are called Euclidean radius, Euclidean diameter and area radius, respectively.

Surfaces of codimension 2. If (M, g,K) is an asymptotically flat initial data set and
Σ ↪→M , the surface Σ can be seen as a codimension 2 submanifold of the spacetime associated
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to (M, g,K). As a result, together with the spacelike mean curvature, which we continue to
call simply mean curvature, we have an additional scalar mean curvature called timelike mean
curvature and a spacetime mean curvature which takes into account each extrinsic curvature.

Definition 2.1.2. Fix q ≥ 2. Let (M, g,K) be C2
1
2
+δ

-asymptotically flat initial data set. Let
ι : Σ ↪→ M be a surface of M , with induced metric g := ι∗g. We define the timelike mean
curvature of Σ as P := trg(K) := gijKij. Let moreover H be the (spacelike) mean curvature
of Σ. Then, we define the spacetime (q-)mean curvature of Σ, if it exists, as

Hq :=
q
√
Hq − |P |q, (2.12)

This is essentially the Minkowski q-length of the vector (H⃗, P ), where H⃗ is the vector mean
curvature of Σ. In the case (2.12) is globally defined on Σ, we furthermore set

ℏq :=
 
Σ
Hq dµ. (2.13)

Since q will be arbitrary but fixed, in the following we will simply write H and ℏ, without
ambiguities.

Lemma 2.1.3. Let (M, g,K) be a C2
1
2
+δ

-asymptotically flat initial data set. Then there exist

constants C = C(c) > 0 and cin = cin(c) > 0, also depending on the choice of q, such that if
ι : Σ ↪→M \ C is a surface with induced metric g := ι∗g and there exists σ > 1 such that

2σ ≥ rΣ ≥
σ

2
,

1

σ
≤ Hx ≤

√
5

σ
∀x ∈ Σ. (2.14)

then the following properties hold.

(i) ∥P∥L∞(Σ) + σ∥∇P∥L∞(Σ) ≤ Cσ−
3
2
−δ;

(ii) Hx is well defined for every x ∈ Σ;

(iii)
sup
Σ
|H −H| ≤ Cσ−1− 1

2
q−qδ, |h− ℏ| ≤ Cσ−1− 1

2
q−qδ;

(iv) If H is constant on Σ, i.e. H ≡ h, then ∥H− ℏ∥L∞(Σ) + σ∥∇H∥L∞(Σ) ≤ cinσ
−1− 1

2
q−qδ.

In the following, we will mainly use the H1-estimate on H − ℏ, which follows from the
W 1,∞ bound in the above statement, and we will continue to call cin the constant at the
right-hand side. Observe that this is the only case in which we use the lowercase in order to
indicate a constant depending on the setting and not on the "roundness of the surface" (in a
sense we will make more clear later, see Definition 2.3.1 below).

Proof. Point (i) and point (ii) follow from |Px| ≤ 2|K|g ≤ 2cr
− 3

2
−δ

Σ = O(σ−
3
2
−δ) and

(∇P )i = gikgjl∇kKjl,

since |∇kKjl| ≤ cσ−
5
2
−δ, using also Lemma 2.0.2. Thus, point (iii) follows from the Lagrange

mean value theorem. Also point (iv) follows in a similar way, using the constancy of the mean
curvature and the equation

Hq−1∇H = Hq−1∇H − |P |q−1

(
P

|P |

)
∇P. (2.15)
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2.1.1 Geometry of surfaces in asymptotically flat manifolds

The definition of asymptotically flat manifold implies that the decay rate between the physical
and the Euclidean metric is controlled outside a compact set. In this Section, we show that
this fact is inherited by the induced metrics g and ge, by the induced connections and the
other (extrinsic) geometric objects of a surface Σ ↪→M . The facts stated and proved here are
well-known, see for example [Met07] or [CS21, Lemma 11]. We give a proof of these results
for sake of completeness.

Lemma 2.1.4. Let (M, g) be a C2
1
2
+δ

-asymptotically flat manifold and let ι : Σ ↪→ M be an

immersed surface. Then there exists C = C(c) > 0 such that

|g − ge|g ≤ C|x⃗|−
1
2
−δ, |Γk

ij − (Γe)kij | ≤ C|x⃗|−
3
2
−δ,

where Γk
ij and (Γe)kij are the Christoffel symbols of Σ with respect to g and ge, respectively.

Proof. The first inequality is straightforward, using the asymptotically flatness of the 3-
manifold and the restriction of the metrics to Σ. For the other inequality, consider in an
arbitrary point x ∈ Σ and the frames {e1, e2, ν} and {e1, e2, νe} where ν and νe are orthog-
onal to TxΣ with respect to g and ge, respectively. Using the definition of (vector) second
fundamental form and since ∇eiej ∈ TxΣ, we have

Γk
ij − (Γe)kij = ⟨∇eiej , ek⟩g − ⟨∇e

eiej , ej⟩ge

= ⟨∇eiej −A(ei, ej)ν, ek⟩g − ⟨∇
e
eiej −A

e(ei, ej)ν
e, ek⟩ge

= ⟨∇eiej −∇
e
eiej , ek⟩g = O(|x⃗|−

3
2
−δ).

(2.16)

As we measured the distance between the two induced metrics in an suitable coordinate
system, we analyze now how the volume form changes from the physical to the Euclidean
point of view.

Lemma 2.1.5 (Volume forms). Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold and
consider an surface ι : Σ ↪→ M . Consider g = ι∗g and ge = ι∗ge. Then, there exist C =
C(c) > 0 and σ0 = σ0(c) such that, if rΣ ≥ σ ≥ σ0,

(i) The volume forms satisfy

|dµg − dµge | ≤ Cσ−
1
2
−δdµg;

(ii) For every ψ ∈ C∞(Σ;R) it holds∣∣∣∣ˆ
Σ
ψ dµg −

ˆ
Σ
ψdµge

∣∣∣∣ ≤ Cσ− 1
2
−δ∥ψ∥L1(Σ).

Proof. Let {e1, e2} be a local frame on Σ with respect to a local coordinate system. In the
following we will use the abuse of notation of identifying the metric coordinates gij and geij
with their matrix representation (gij) and (geij) respectively. Using the mean value theorem
to obtain ∣∣∣∣√det(gij)−

√
det(geij)

∣∣∣∣ ≤ |det(gij)− det(geij)|,

and Lemma 2.1.4, we conclude that

dµg − dµge = O(|x⃗|−
1
2
−δ)dµg.
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Point (ii) follows integrating the volume form against a smooth function ψ.

Lemma 2.1.6. Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold, and Σ ↪→ be a surface.

Then, there exist C = C(c) > 0 and σ0 = σ0(c) > 1 such that, if rΣ ≥ σ ≥ σ0, then

|ν − νe|g ≤ Cσ−
1
2
−δ, |∇ν −∇eνe|g ≤ Cσ−

3
2
−δ.

Proof. Set X := νe − ν, and consider an adapted coordinate frame on Σ, say {e1, e2}, such
that ge(dι(ei), dι(ej)) = δij . By construction ge(νe, νe) = 1, and ge(νe, dι(ei)) = 0. Then

1 = ge(ν +X, ν +X) = ge(ν, ν) + 2ge(ν,X) + ge(X,X). (2.17)

Let {eα}α an orthonormal coordinate system in (M, ge), and consider the coordinates X =
Xαeα, ν = ναeα. The equation (2.17) then becomes∑

α

X2
α + 2

∑
α

Xανα + (ge(ν, ν)− 1) = 0.

This is a second order equation in R3, of the form |X⃗|2 + 2⟨X⃗, ν⃗⟩R3 + ϵ = 0, where X⃗ =
(X1, X2, X3), ν⃗ = (ν1, ν2, ν3) and ϵ := ge(ν, ν)− 1. Writing X⃗ = tω⃗, with t > 0 and |ω⃗| = 1,
we have

t2 + 2t⟨ω⃗, ν⃗⟩R3 + ϵ = 0,

which implies t = −2⟨ω⃗,ν⃗⟩±
√

4⟨ω⃗,ν⃗⟩2−4ϵ

2 . This implies the thesis.
For the second part, we want to study the decay of |∇X|. Consider the identity g(ν, dι(ei)) ≡

0. Deriving this expression with respect to ej , we get that

gαβ∇ejν
α⟨dι(ei), eβ⟩g ≡ 0.

Using ∇ejν = ∇ejν
e −∇ejX, it turns out that, in order to estimate |∇X|g it is sufficient to

estimate gαβ∇ej (ν
e)α ⟨dι(ei), eβ⟩g. Since

(∇jv−∇e
jv)

i =

(
∂vi

∂xj
+ Γi

jkv
k

)
−
(
∂vi

∂xj
+ (Γe)ijkv

k

)
= (Γi

jk − (Γe)ijk)v
k,

and g − ge = O(σ−
1
2
−δ) and also geαβ∇ej (ν

e)α ⟨dι(ei), eβ⟩ge ≡ 0, because by definition
ge(νe, dι(ei)) ≡ 0, we get the thesis.

We end this Section reviewing a result that compares extrinsic curvatures on Σ in the case
of the physical metric and the Euclidean metric.

Lemma 2.1.7 (Lemma 11, [CS21]). Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold and

let ι : Σ ↪→ be a surface. Then, there exists C = C(c) and σ0 = σ0(c) such that if rΣ ≥ σ ≥ σ0
then

|H −He| ≤ C
(
σ−

3
2
−δ + σ−

1
2
−δ|A|

)
, |A−Ae| ≤ C

(
σ−

3
2
−δ + σ−

1
2
−δ|A|

)
. (2.18)

Moreover, if |Ae| ≤ 6
σ , then |A−Ae| ≤ Cσ−

3
2
−δ. Finally, if |He| ≤ 6

σ and |
◦
A| ≤ cσ−

3
2
−δ, then

there exists σ1 = σ1(c, c) such that if also σ ≥ σ1 then |H −He| ≤ Cσ−
3
2
−δ.
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Proof. By definition, we have that

hij − heij = ⟨∇eiν, ej⟩g − ⟨∇
e
eiν, ej⟩g + (g− ge)

(
∇e

eiν, ej
)

= ⟨(∇ei −∇
e
ei)ν, ej⟩g + O(σ−

1
2
−δ)hij + O(σ−

3
2
−δ).

(2.19)

Since also the first addend is of order O(σ−
3
2
−δ), (2.18) follows.

We now prove the other results. From the second inequality in equation (2.18) it follows
immediately

|A−Ae| ≤ C
(
σ−

3
2
−δ + σ−

1
2
−δ|A−Ae|+ σ−

1
2
−δ|Ae|

)
Moreover, using that

|A| ≤
∣∣∣∣A− H

2
g

∣∣∣∣+ ∣∣∣∣H2 g − He

2
g

∣∣∣∣+ ∣∣∣∣He

2
g

∣∣∣∣ = | ◦A|+ √22 |H −He|+
√
2

2
|He|,

and using equation (2.18),

|H −He| ≤ C
(
σ−

3
2
−δ + σ−

1
2
−δ

(
|
◦
A|+ |H −He|+ |He|

))
.

Since by the hypothesis |
◦
A| ≤ cσ−

3
2
−δ, it follows that, for σ large enough,

|H −He| ≤ 2Cσ−
3
2
−δ + Cσ−

1
2
−δ|H −He|+ 6Cσ−

3
2
−δ.

Then, being σ large, |H −He| ≤ 16Cσ−
3
2
−δ.

Corollary 2.1.8. Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold and let ι : Σ ↪→ be a

surface. Then, there exists C = C(c) and σ0 = σ0(c) such that if rΣ ≥ σ ≥ σ0, |hij | ≤ 6
σ and

∇eHe = 0, then
|∇H| ≤ Cσ−

5
2
−δ. (2.20)

Proof. Deriving equation (2.19) and using Lemma 2.0.2 and the hypothesis ∇eHe = 0 we get
the thesis. Observe moreover that in general

|∇A−∇Ae| ≤ C
(
σ−

5
2
−δ + σ−

1
2
−δ|∇Ae|

)
,

and the same holds for ∇H instead of ∇A.

Remark 2.1.9. If Σe is an Euclidean sphere, then (2.20) holds.

Lemma 2.1.10. Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold and let ι : Σ ↪→ be a

surface. Then, there exist C = C(c) and σ0 = σ0(c) such that if rΣ ≥ σ ≥ σ0 and |A| ≤ 6σ−1

then ∣∣∣∣| ◦A| − | ◦Ae

|
∣∣∣∣ ≤ Cσ− 3

2
−δ.

Proof. By definition, it follows that∣∣∣∣| ◦A| − | ◦Ae

|
∣∣∣∣ ≤ ∣∣∣∣A−Ae − H

2
g +

He

2
ge
∣∣∣∣

≤ |A−Ae|+ ∥H∥L
∞

2
|g − ge|+ 1

2
|He −H||ge|,

(2.21)
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and thus, since ∥H∥L∞ ≤ Cσ−1, |A − Ae| ≤ Cσ−
3
2
−δ, |H − He| ≤ Cσ−

3
2
−δ, the thesis

follows.

2.2 Umbilical surfaces

The traceless second fundamental form turns out to be a powerful geometric tool. It measures
the distance between the principal curvatures κ1, κ2 of a surface and thus the umbilicality of
its points. In 2005 De Lellis-Müller [DLM05] showed that the nearly umbilicality of a surface
(in particular, in L2-norm) in R3 implies that the surface is near, in a suitable norm, to a
Euclidean sphere with radius which equals the area radius of the surface.

In this Section, we will always consider surfaces in R3. However, we keep in mind that the
Euclidean surfaces we consider arise as the Euclidean image of a surface in an asymptotically
flat manifold, and, at end of the Section, we will remark the consequences of this fact at the
light of Lemma 2.1.10.

2.2.1 Roundness of Euclidean surfaces

De Lellis and Müller proved that, in the Euclidean space, umbilical surfaces are close to round
spheres. We state their Theorem 1.1 from [DLM05], then we recall some corollaries of it.

Theorem 2.2.1 (Theorem 1.1 [DLM05], Theorem [Met07]). There exists a universal constant
cDM > 0 such that for each surface Σe ↪→ R3, setting σ = σΣe, the following estimate holds

∥Ae − σ−1ge∥L2(Σe) ≤ cDM∥
◦
A

e

∥L2(Σe). (2.22)

If in addition ∥
◦
A

e

∥L2(Σe) < 8π, then Σe is topologically a sphere and there exists a conformal
parametrization ψ : Sσ(z⃗)→ Σe, with z⃗ := |Σe|−1

´
Σe x⃗ dµ

e, such that ψ∗ge = u
◦
gSσ for some

scalar function u : Sσ(z⃗)→ R and

∥ψ − id∥H2(Sσ(z⃗)) ≤ cDMσ
2∥

◦
A

e

∥L2(Σe),

where id is the identity on Sσ(z⃗) and
◦
gSσ is the round metric on spheres.

L∞-type estimates. In his Ph.D. thesis, Nerz [Ner14] proposed an L∞-version of the De
Lellis-Müller estimate that, in a certain sense, looks also like a nearly Alexandroff theorem.
In fact, in order to have a suitable W 2,∞-vicinity to a sphere, he also requires a control on
how much the surface fails to be a constant mean curvature (CMC) surface. In order to
understand Nerz’s statement, we introduce a definition.

Definition 2.2.2 (Graph on a Euclidean sphere). Let f : Sσ(z⃗0)→ R be a function, for some
σ ≥ 1 and z⃗0 ∈ R3. We define the graph of f over Sσ(z⃗0) as

graph(f) := {x⃗+ f(x⃗)νex⃗ : x⃗ ∈ Sσ(z⃗0)} = {z⃗0 + σy⃗x⃗ + f(x⃗)y⃗x⃗ : y⃗x⃗ ∈ S1}, (2.23)

where νex⃗ is the normal to Sσ(z⃗0) in x⃗. We remark that we can also write x⃗ = z⃗0 + σy⃗x⃗ for
some y⃗x⃗ ∈ S1(⃗0) and νex⃗ = x⃗−z⃗0

σ = y⃗x⃗.

Remark 2.2.3. We remark that, if Σe is a graph on a sphere, scalar functions defined on Σe

can also be read as functions on the (approximating) sphere Sσ. With an abuse of notation,
we will indicate these two kind of functions with the same symbol, omitting the (bijective) map
x⃗ 7→ x⃗+ f(x⃗)νex⃗.
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We then re-state [Ner15, Cor. E.1] in the version we need.

Corollary 2.2.4. Let Σ̃e ↪→ R3 be a closed surface in R3 and |Σ̃e| = 4πσ2. Suppose that
there exists a constant c > 0 such that

ϵ :=

∥∥∥∥ ◦
Ã

e∥∥∥∥
L∞(Σ̃e)

+

∥∥∥∥H̃e − 2

σ

∥∥∥∥
L∞(Σ̃e)

≤ cσ−
3
2
−δ.

Then there exist σ0(c) > 0 and c̃ = c̃(c) > 0 such that if σ > σ0 then there exist a point
z⃗0 ∈ R3 and a function f̃ : Sσ(z⃗0)→ R such that Σ̃e = graph(f̃) and

∥f̃∥L∞(Σ̃e) + σ∥∇f̃∥L∞(Σ̃e) + σ2∥∇2f̃∥L∞(Σ̃e) ≤ c̃σ
2ϵ.

2.2.2 Pseudo-spheres

At the light of the results of the previous Subsection, in particular Corollary 2.2.4, we continue
to study Euclidean surfaces, with particular interest in surfaces of the following type.

Definition 2.2.5. A surface Σe of R3 is said to be a pseudo-sphere if it is the graph of a
function on the sphere Sσ(z⃗0) for some f ∈ C2(Sσ(z⃗0);R) and f satisfies ∥f∥W 2,∞(Sσ(z⃗0)) ≤
cσ

1
2
−δ.

Since the extrinsic curvatures of Euclidean surfaces are invariant under translations, we
will always consider, in this Section, the sphere Sσ (⃗0).
Lemma 2.2.6. Let Σe be a pseudo-sphere on the sphere Sσ (⃗0), σ > 1, with f ∈ C2(Sσ (⃗0);R).
We equip it with the metric induced by the immersion graph(f) ↪→ R3, and we call it ggraph(f).
Moreover we indicate with A ≡ Agraph(f) its second fundamental form. Then, if for some c > 0
it holds

sup
Sσ (⃗0)

|f | ≤ cσ
1
2
−δ, sup

Sσ (⃗0)
|∇f | ≤ cσ−

1
2
−δ, sup

Sσ (⃗0)
|∇2f | ≤ cσ−

3
2
−δ,

we find that there exists c̃(c) > 0 such that

|σ2◦gS − ggraph(f)|ggraph(f) ≤ c̃σ
− 1

2
−δ,

∣∣∣νgraph(f) − νS1 (⃗0)
∣∣∣ ≤ c̃σ− 1

2
−δ,∣∣∣∣∣|Agraph(f)|ggraph(f) −

√
2

σ

∣∣∣∣∣ ≤ c̃σ− 3
2
−δ.

The proof is standard and uses the formulas for the first and second fundamental forms
of surfaces in R3.

The smallness of the error committed comparing the geometric quantities of a pseudo-
sphere and that of a sphere leads to the following straightforward generalization of Poincaré
inequality on spheres.

Lemma 2.2.7 (Poincaré inequality on pseudo-spheres). Let (M, g, x⃗) a C2
1
2
+δ

-asymptotically

flat manifold, and let (Σ, g) ↪→ M be a surface such that its Euclidean image Σe := x⃗(Σ)
is a pseudo-sphere, i.e. Σe = graph(f), with f : Sσ(z⃗0) → R for some z⃗0 ∈ R3 and for
σ =

√
(4π)−1|Σ|g. Suppose that there exists c > 0 such that

sup
Sσ(z⃗0)

|f | ≤ cσ
1
2
−δ, sup

Sσ(z⃗0)
|∇f | ≤ cσ−

1
2
−δ, sup

Sσ(z⃗0)
|∇2f | ≤ cσ−

3
2
−δ. (2.24)

Fix p ≥ 2. Then they exist σ0 = σ0(c, c, δ) > 0 and cS,p > 0 such that, if σ > σ0 and
ϕ ∈ C1(Σ;R) then ˆ

Σ
|ϕ|p dµg ≤ cS,pσp

ˆ
Σ
|∇ϕ|p dµg. (2.25)
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Inspired by the scaling factor obtained when integrating the derivatives of a function on
a Euclidean sphere, we give the following definition of Sobolev norm.

Definition 2.2.8 (Sobolev norms). Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold, and

consider the surface ι : (Σ, g) ↪→M with area radius σΣ. Let T be a smooth tensor defined on
Σ, with Lp-norm given by ∥T∥Lp(Σ,µg). Then we define the Sobolev norm ∥ · ∥Wk,p(Σ) of T as

∥T∥W 0,p(Σ) := ∥T∥Lp(Σ), ∥T∥Wk,p(Σ) := ∥T∥Lp(Σ) + σΣ∥∇T∥Wk−1,p(Σ),

for every k ∈ N and p ∈ [1,∞].

Remark 2.2.9. In the light of this definition, equation (2.24) takes the form ∥f∥W 2,∞ ≤
cσ

1
2
−δ.

We furthermore notice that the definition above is coherent with the Simon-Sobolev in-
equality when the mean curvature of the surface is comparable with that of a Euclidean
sphere.

2.2.3 Some useful nearly umbilical-type results in literature

We will also need two further results on nearly umbilical surfaces. The first result we state
has been proved by Nerz [Ner15, Prop. 4.1] and relies on the Stampacchia’s iteration. It has
a different fashion from the other (Euclidean) results presented in this Section, since it shows
that, in a Riemannian 3-manifold with some asymptotic decay assumptions on the curvatures,
surfaces with small traceless second fundamental form (in L2) must satisfy higher-regularity
estimates.

The second result, proved by Perez [Per11], is a supercritical version of the De Lellis-Müller
theorem, and it will play an important role in the next Chapters.

Nerz’s bootstrap. The (bootstrapping) regularity theory developed by Nerz (see [Ner15])

implies that a control on the smallness of the L2-norm of
◦
A and a decay on the the curvatures

and the norm ∥H −h∥W 1,p(Σ), with p > 2, imply that also
◦
A and ∇

◦
A have a controlled decay

in L2-norm. The result presented in [Ner15, Prop. 4.1] is very general, and we adapt its
statement to our particular case.

Lemma 2.2.10 (Nerz’s bootstrap, [Ner15]). Suppose that (M, g) is a 3-dimensional C2
1
2
+δ

-
asymptotically flat Riemannian manifold, and let (Σ, g) ↪→ (M, g) be a closed surface. Suppose
that there exist c1, c2 > 0, p > 2. such that

∥H − h∥W 1,p(Σ) ≤
c1

σ
3
2
+δ− 2

p

Σ

,

∣∣∣∣h− 2

σΣ

∣∣∣∣ ≤ c2

σ
3
2
+δ

Σ

,

where σΣ is the area radius. Suppose finally that on Σ it holds the inequality

∥ψ∥L2(Σ) ≤
cs

σΣ
∥ψ∥W 1,1(Σ), ∀ψ ∈W 1,1(Σ) (2.26)

for some cs > 0. Then, there exist constants σ0(c1, c2, cs, p, δ) and c(c2, cs, p, δ) such that, if
σ ≥ σ0,

∥
◦
A∥L2(Σ) ≤

2

9cs
=⇒ ∥

◦
A∥L∞(Σ) + σ−1

Σ ∥
◦
A∥H1(Σ) ≤

c1c

σ
3
2
+δ

Σ

. (2.27)
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p-supercritical regularity (à la De Lellis-Müller). Finally, the following result is a
generalization of DeLellis-Müller’s result, proved by Perez in his Ph.D. thesis [Per11]. This
is a bit different from the results proposed until now in this Section. It implies that, if the
a surface is round in Lp-sense (with p > n), then the oscillation of the mean curvature are
controlled. This would be a fundamental step in the definition of our roundness class.

Theorem 2.2.11 (Thm. 1.1, [Per11]). Let n ≥ 2, p ∈ (n,∞) and c0 > 0. There exists
cPer = cPer(n, p, c0) > 0 such that if Σn ↪→ Rn+1 is a smooth, closed and connected surface
with induced metric ge and such that

(i) Volge(Σ) = 1;

(ii) ∥A∥Lp(Σ,µe) ≤ c0;
then

min
λ∈R
∥Ae − λge∥Lp(Σ,µe) ≤ cPer∥

◦
A

e

∥Lp(Σ,µe).

This estimate looks implicit, if written in the current form. In fact, it essentially gives a
bound on ∥Ae−λΣge∥Lp(Σ,µe), for some λΣ ∈ R for which the minimum is achieved. However,
λΣ strictly depends on Σ, and so it is not a universal value. We replace this specific real
number with geometric quantities, which obviously depend on the geometry of the surface,
but in an explicit (extrinsic) way.

In the case n = 2, by the Cauchy-Schwarz inequality we have |Ae−λΣge|2 ≥ 1

2

(
He − 2λΣ

)2.
This implies that

∥He − 2λΣ∥Lp(Σ,µe) ≤
√
2cPer∥

◦
A

e

∥Lp(Σ,µe)

Since
∥He − he∥Lp(Σ,µe) ≤ ∥He − 2λΣ∥Lp(Σ,µe) + ∥he − 2λΣ∥Lp(Σ,µe)

and using the definition of integral mean and the Hölder’s inequality, we have

≤ ∥He − 2λΣ∥Lp(Σ,µe) + |he − 2λΣ||Σ|
1
p
e ≤ ∥He − 2λΣ∥Lp(Σ,µe) + |Σ|

1
p
−1

e

ˆ
Σ
|He − 2λΣ| dµe

≤ ∥He − 2λΣ∥Lp(Σ,µe) + |Σ|
1
p
−1

e |Σ|
1− 1

p
e ∥He − 2λΣ∥Lp(Σ,µe) ≤ 2∥He − 2λΣ∥Lp(Σ,µe).

Finally we get

∥He − he∥Lp(Σ,µe) ≤ 2
√
2cPer∥

◦
A

e

∥Lp(Σ,µe). (2.28)

Therefore we re-write Theorem 2.2.11 in an asymptotically flat version, at the light of the
estimates on |H −He| and |A−Ae|.
Theorem 2.2.12. Let (M, g) be a C2

1
2
+δ

-asymptotically flat manifold and consider a surface

Σ ↪→ M , with induced metric g. Suppose that there exists σ > 1 such that |A| ≤ 10
σ and

rΣ ≥ σ
10 . Then there exist σ0(c, δ) > 0 and cp(c, δ, p) > 0 such that if σ > σ0 then

∥H − h∥pLp(Σ) ≤ cp∥
◦
A∥pLp(Σ) + cpσ

−p−δp
Σ .

If (M, g) = (R3, δeucl), the second addend would not appear. Its presence is due to the
asymptotically flatness of the ambient manifold.

2.3 Round surfaces

We give the definition of round surface. As we can see comparing with [HY96], [Hua10],
[Met07], [Ner15], there are some similarities between our definition of roundness and the ones
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proposed in literature up to this point. While the class of round surfaces in [HY96] is defined
in terms of pointwise properties, our definition includes assumptions which involve integral
norms of the curvature. The integral form is more suitable to study the invariance properties
under the volume preserving mean curvature flow under our weaker hypotheses on the ambient
space.

Definition 2.3.1. Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold and let ι : Σ ↪→M be
a surface, with induced metric g := ι∗g.

For a given radius σ > 1 and parameters η,B1, B2 > 0 we say that (Σ, g) is a round
surface in (M, g), and we write quantitatively Σ ∈ Wη

σ(B1, B2) if the following inequalities are
satisfied

(7/2)πσ2 < |Σ|g < 5πσ2, |A| <
√

5

2σ2Σ
, (2.29)

3

4
<
rΣ
σ
≤ RΣ

σ
<

5

4
, (2.30)

∥
◦
A∥L4(Σ,µ) < B1σ

−1−δ, (2.31)

ησ−4∥H − h∥4L4(Σ) + ∥∇H∥
4
L4(Σ) < B2σ

−8−4δ. (2.32)

For a given radius σ > 1 and η,B1, B2, Bcen > 0, we moreover say that (Σ, g) is a well-
centered round surface, and we write Σ ∈ Bησ(B1, B2, Bcen) if it satisfies the above properties
and in addition

|z⃗Σ| < Bcenσ
1−δ. (2.33)

Finally, we write Wη
σ(B1, B2) or Bησ(B1, B2, Bcen) when (Σ, g) satisfies the bounds above

with at least one < replaced by ≤.

Throughout the Thesis, when deriving estimates on geometric quantities on a surface Σ, we
denote by C,C1, C2, . . . constants which only depend on properties of the ambient manifold,
such as c̄, δ in (1.11) or the mass EADM and by c, c1, c2, . . . constants which in addition depend
on the constants B1, B2, Bcen in the previous conditions. We say that a constant is universal
if it is independent on any other parameter of our problem. As usual, the letters c or C will
often denote constants which may change from one line to the other, but each time depending
on the same parameters.

Remark 2.3.2. Property (2.29) implies that the Euclidean radius and the area radius are
comparable. Because of the asymptotic flatness of (M, g), we obtain the following bound on
the Riemannian tensor

|Rm|g ≤ Cσ−
5
2
−δ on Σ. (2.34)

Remark 2.3.3. In the following, the constant η will be fixed in an explicit way, see Lemma
4.1.11 below, depending only on the ambient manifold. For this reason, even if in the following
computations some quantities will depend on η, we will omit these dependencies, considering
in a certain sense η as already fixed.

Remark 2.3.4. The decay rates in conditions (2.31)-(2.32) are modelled on the ones of the
Euclidean coordinate spheres. In fact, by Lemma 2.1.7, it is easy to check that if B1, B2 are
large enough, depending on c̄ in (1.11), then Sr(0) belongs to Bησ(B1, B2, Bcen) for r large
enough and r/σ enough close to 1. Conversely, we will see in Lemma 2.3.5(iv) that a round
surface is close to a sphere in Euclidean coordinates.

We briefly recall the Michael-Simon inequality in Euclidean space which, together with
the curvature bound in (4.11) and Lemma 2.1.7, implies the existence of a universal Sobolev
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constant cS > 0 such that

∥ψ∥L2(Σ) ≤
cs

σ
∥ψ∥W 1,1(Σ), ∀ ψ ∈W 1,1(Σ), (2.35)

provided σ ≥ σ0 = σ0(c, δ) > 0. From this, the other Sobolev inequalities can be deduced. In
particular (see e.g. Lemma 12 in [CS21] and the references therein) we have, for every p > 2,

∥ψ∥L∞(Σ) ≤ 2
2(p−1)
p−2 csσ

− 2
p ∥ψ∥W 1,p(Σ), ∀ψ ∈W 1,p(Σ), (2.36)

and also
∥ψ∥L∞(Σ) ≤ 32c2sσ

−1∥ψ∥H2(Σ), ∀ψ ∈ H2(Σ). (2.37)

We now state and prove a Lemma which lists various properties of a round surface, from
different points of view. The results summarized by this Lemma are easy consequence of
known results, but we give detail for sake of completeness.

Lemma 2.3.5. Let (M, g) be a C2
1
2
+δ

-asymptotically flat manifold. Let ι : Σ → M be a
surface, and let g := ι∗g be the induced metric. Fix a weight η > 0 and B1 > 0, B2 > 0.
There exists σ0 = σ0(B1, B2, c, δ, η) > 0 such that whenever σ > σ0, if (Σ, g) ∈ Wη

σ(B1, B2),
then the following conclusions hold:

(i) There exists cs > 0 such that it holds

∥ψ∥L2 ≤
cs

σ
∥ψ∥W 1,1(Σ) ∀ ψ ∈W 1,1(Σ), (2.38)

and, for every p > 2,

∥ψ∥L∞ ≤ 2
2(p−1)
p−2 csσ

− 2
p ∥ψ∥W 1,p ∀ψ ∈W 1,p(Σ). (2.39)

Moreover, there exists a constant c(B2, η) > 0 such that

∥H − h∥L∞ ≤ c(B2, η)σ
− 3

2
−δ. (2.40)

(ii) It holds the estimate ∣∣∣∣h− 2

σΣ

∣∣∣∣ ≤ c(B1, B2, c)σ
− 3

2
−δ, (2.41)

and the principal curvatures κ1, κ2 satisfy

1

2σΣ
< κi <

√
5

2σΣ
(2.42)

for i ∈ {1, 2}.

(iii) There exists a constant B∞ = B∞(B1, B2, η, cs, δ, c) such that ∥
◦
A∥L∞(Σ) ≤ B∞σ

− 3
2
−δ.

(iv) There exists c = c(δ, c, B1, B2, η), c0 = c(B1, c, δ), z⃗0 ∈ R3, and f : SσΣ(z⃗0) → R such
that

Σe = graph(f), ∥f∥W 2,∞ ≤ cσ
1
2
−δ, |z⃗0 − z⃗Σ| ≤ c0σ

1
2
−δ. (2.43)

(v) There exists cs > 0, a Sobolev constant, such that the following inequality holds
ˆ
Σ
(ψ − ψ)4 dµg ≤ csσ

4

ˆ
Σ
|∇ψ|4 dµg, ∀ ψ ∈W 1,4(Σ), (2.44)
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where ψ :=

 
Σ
ψ dµg.

(vi) It holds ∥A∥L4(Σ) ≤ 4
1
4

√
5/2π

1
4σ−

1
2 and thus there exists a constant cPer = cPer(δ, c)

such that
∥H − h∥L4(Σ) ≤ cPer∥

◦
A∥L4(Σ) + cPerσ

−1−δ.

Remark 2.3.6. Point (iv) explicitly says that each point of Σe := x⃗(Σ) can be written as

x⃗(ι(x)) = z⃗0 + σΣν
e(x) + f(x)νe(x), ∀x ∈ Σ.

Thanks to (2.43), modulo modifying f , we can also write, without loss of generality,

x⃗(ι(x)) = z⃗Σ + σΣν
e(x) + f̂(x)νe(x), ∀x ∈ Σ. (2.45)

Since by the asymptotic flatness we also have |z⃗Σ − z⃗Σe | ≤ Cσ
1
2
−δ, we can give a completely

Euclidean description of Σe as

x⃗(ι(x)) = z⃗Σe + σΣν
e(x) + f̂(x)νe(x), ∀x ∈ Σ.

However, we will mainly use identity (2.45).

Remark 2.3.7. It follows from the elliptic regularity theory and the Simons’ identity that
f ∈ C2(Sσ(z⃗0)), and so, in the W 2,∞-norm, the two derivatives have to be meant as classical
derivatives. This result is a consequence of |∂l∂kgij | ≤ c|x|−

5
2
−δ (see [Ner16, pg. 8, footnote]),

since in this case it holds f ∈ W 3,p(Sσ(z⃗0)), where p > 2 is such that we have a control on
∥H − h∥W 1,p . However, [Ner16, Prop. 2.4] shows that f ∈ C2 also if we only assume the
decay of the Ricci tensor, see [Ner16, Prop. 2.4.].

Proof. (i) It is well known that there exists ces > 0 such that(ˆ
Σe

ψ2 dµe
) 1

2

≤ ces

ˆ
Σe

|∇eψ|+He|ψ| dµe,

if Σe ↪→ R3 and ψ ∈ W 1,1(Σe). Thanks to the asymptotics of (M, g, x⃗), this is also
true omitting the apex e, possibly enlarging the constant ces . Thanks to the estimate
|H| ≤

√
5
σ we have the thesis. The general case for p > 2 follows from [CS21, Lemma

12]. Moreover, p = 4 in (2.39), and ψ := H − h, we obtain

∥H − h∥L∞(Σ) ≤ 23csσ
− 1

2
Σ ∥H − h∥W 1,4(Σ) ≤ 23csσ

− 1
2

Σ

(
η

1
4B2 +B

1
4
2

)
σ−1−δ,

which implies the conclusion.

(ii) Observing that σ
σΣ

is positive, bounded and bounded away from zero, proceeding as in
[Ner15, Prop. 4.1] we find

2
√
πσΣ

∣∣∣∣he − 2

σΣ

∣∣∣∣ ≤ √2∥∥∥∥he2 ge − He

2
ge
∥∥∥∥
L2(Σe)

+
√
2

∥∥∥∥He

2
ge −Ae

∥∥∥∥
L2(Σe)

+
√
2cDM

∥∥∥∥ ◦
A

e
∥∥∥∥
L2(Σe)

.

(2.46)
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By Lemma 2.1.7, the hypothesis |A| ≤
√

5
2σ

−1, and ∥H − h∥L2(Σ) ≤ c(B2, η)σ
− 1

2
−δ, we

conclude that ∣∣∣∣h− 2

σΣ

∣∣∣∣ ≤ c(B1, B2, η, c)σ
− 3

2
−δ,

using also that ∥
◦
A∥L4(Σ) ≤ B1σ

−1−δ. Finally, since |H − h| ≤ c(B2, η)σ
− 3

2
−δ, it follows

that ∣∣∣∣H − 2

σΣ

∣∣∣∣ ≤ c(B1, B2, η, c)σ
− 3

2
−δ. (2.47)

(iii) We apply Nerz’s bootstrap (see Lemma 2.2.10) to Σ, with the area radius σΣ, p = 4,

c1 = c(B2, η), c2 = c(B1, B2, η, c) as in equation (2.47). It follows that, if ∥
◦
A∥L2 is

sufficiently small with respect to 2
9c

−1
s , i.e. σ is sufficiently large, then

∥
◦
A∥L∞ ≤ c(B2)c(δ,B1, B2, η, c, cS)σ

− 3
2
−δ

Σ ≤ B∞σ
− 3

2
−δ,

choosing B∞ = B∞(δ,B1, B2, η, c, cS). Since H = κ1 + κ2, |
◦
A| = 2−

1
2 |κ1 − κ2| ≤

B∞σ
− 3

2
−δ, we find that for σ very large (depending on B1, B2, η and c),

κi ≃ σ−1
Σ , H ≃ 2σ−1

Σ ,

using again (2.47). In particular we can choose σ so large that |A| <
√
5√
2σ

.

(iv) By [Ner15, Cor. E.1], or Corollary 2.2.4, since B∞ and c(B2, η) control the L∞-norm

of |
◦
A| and H − h, respectively, by the point (i)-(iii), the Euclidean image of Σ, i.e.

Σe, is a graph on the sphere SσΣ(z⃗0), for some vector z⃗0 ∈ R3. By Theorem 2.2.1, see
[DLM05], applied on Σe, there exists a (conformal) parametrization of Σe, say Ψ, such

that σ−1
Σe ∥Ψ− Id∥H2(Σ) ≤ c(c, δ)σΣe∥

◦
A

e

∥L2(Σ) ≤ c(c, δ, B1)σ
1
2
−δ

Σe , and using the Sobolev
inequality it follows

|z⃗Σ − z⃗0| ≤
 
Σ
|Ψ− Id| dµe ≤ c0σ

1
2
−δ

Σe ≤ c0σ
1
2
−δ.

(v) Since from the Euclidean point of view Σ is a graph on the sphere SσΣ(z⃗0), Lemma 2.2.7
implies equation (2.44).

(vi) This follows from the inequalities of the previous points applied to Theorem 2.2.11. See
also inequality (2.28).
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Chapter 3

Spectral Theory

In [Ner15] and [CS21], a deep study of the stability operator was carried out in the field of
asymptotically flat manifolds and initial data sets. The invertibility of the stability operator
LΣ around a CMC surface Σ is at the basis of the continuation method employed in [Ner15]
and [CS21]. In particular, in [Ner15, Prop. 4.7], Nerz characterizes, in a Fredholm-alternative
fashioned statement, the eigenvalues of the stability operator of a CMC-surface. This result
then implies that the leaves of the CMC-foliation constructed in his paper [Ner15] are stable
or unstable according to the sign of the ADM-energy of the system. In the case of initial data
sets, the result is generalized by [CS21, Prop. 2].

In this Chapter, we generalize this analysis to round surfaces where we only assume that
H has a small oscillation as in (2.32). We will see that the positivity property of LΣ when
EADM > 0 is no longer true, but that the error terms can be estimated in a way that will be
enough for our purposes.

3.1 Hawking energy and stability operator

3.1.1 The Hawking energy

Since our aim is to mostly investigate the extrinsic geometry of surfaces, we start defining a
notion of mass which gives a "weight" to surfaces immersed in 3-manifolds. It heuristically
and physically measures the bending of the rays which crosses the surface enclosing the mass
orthogonally. We start with a formal definition.

Definition 3.1.1. Let (M, g) be a 3-dimensional manifold, and ι : Σ ↪→M be a surface. Let
g := ι∗g be the induced metric. The Hawking energy of Σ is defined as

mH(Σ) :=

√
|Σ|g
16π

(
1− 1

16π

ˆ
Σ
H2 dµ

)
. (3.1)

Remark 3.1.2. We use the notation mH(Σ) to represent the Hawking energy of Σ because
of the interchangeability of the terms mass and energy. Moreover, to be more precise, the
quantity in (3.1) takes the name of Geroch mass. The exact definition for the Hawking energy
is given by

EH(Σ) :=

√
|Σ|g
16π

(
1− 1

16π

ˆ
Σ
H2 dµ

)
.

However, if (M, g,K) is an initial data set, and Σ satisfies hypothesis (2.14), Lemma 2.1.3,
since q ≥ 2, implies that there exists a constant c̃ = c̃(c) > 0 such that

|mH(Σ)− EH(Σ)| ≤ c̃σ−2δ.

Because of this estimate, the two notion are interchangeable for our purposes.
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Lemma 3.1.3. Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold which satisfies the mass

condition. Let ι : Σ → M be a surface such that (Σ, g) ∈ Wσ(B1, B2) for some B1, B2 > 0.
Then there exist c̃ = c̃(B1, B2, c) and σ0 = σ0(B1, B2, c, δ) such that, for σ > σ0,

(i) ∣∣∣∣mH(Σ) +
σΣ
8π

ˆ
Σ

G(ν, ν) dµ

∣∣∣∣ ≤ c̃σ−2δ; (3.2)

(ii) ∣∣∣∣EADM +
σΣ
8π

ˆ
Σ

G(ν, ν) dµ

∣∣∣∣ ≤ c̃σ−δ. (3.3)

Proof. (i). Using the Gauss equation we find
ˆ
Σ

(
S
2
− Ric(ν, ν)

)
dµ =

ˆ
Σ

(
Sg

2
− κ1κ2

)
dµ. (3.4)

Since Σ is homeomorphic to a sphere (via De Lellis-Müller Theorem), the definitions of σΣ
and mH(Σ), together with the Gauss-Bonnet theorem imply∣∣∣∣mH(Σ)−

σΣ
8π

ˆ
Σ

(
S
2
− Ric(ν, ν)

)
dµ

∣∣∣∣ = σΣ
16π

∣∣∣∣ˆ
Σ
(κ1 − κ2)2 dµ

∣∣∣∣ .
The conclusion follows from the estimate on ∥

◦
A∥L∞(Σ) in Lemma 2.3.5.

(ii). By the roundness hypothesis, we have that rΣ ≥ 3
4σ ≥

3
2
√
5
σΣ. Moreover, by Lemma

2.3.5, we have that dx⃗(νe) = σ−1
Σ (x⃗− z⃗0 − p⃗), for some p⃗ such that |p⃗| = O(σ

1
2
−δ). Thus

G(σΣν, ν) = σΣG(νe, ν) + σΣG(ν − νe, ν) = σΣG(νe, ν) + O(σ−2−2δ)

= G(dx⃗−1(x⃗)− dx⃗−1(z⃗0)− dx⃗−1(p⃗), ν) + O(σ−2−2δ).

This implies that∣∣∣∣ˆ
Σ

G(σΣν, ν) dµ−
ˆ
Σ

G(dx⃗−1(x⃗), ν) dµ

∣∣∣∣ ≤ ∣∣∣∣ˆ
Σ

G(dx⃗−1(z⃗0), ν) dµ

∣∣∣∣+ O(σ−2δ),

using the estimate on |p⃗|. If it also holds that∣∣∣∣ˆ
Σ

G(dx⃗−1(z⃗0), ν) dµ

∣∣∣∣ = O(σ−2δ), (3.5)

then, in order to have the thesis, it is sufficient to prove∣∣∣∣EADM +
1

8π

ˆ
Σ

G(dx⃗−1(x⃗(x)), ν) dµ

∣∣∣∣ = O(σ−δ) (3.6)

Proof of (3.5). Decomposing dx⃗−1(z⃗0) = z⃗α0 ∂α, since |z⃗α0 | ≤ 2RΣ+σΣ ≤
(
3
2 +

√
5
2

)
σ, it turns

out that it is sufficient to prove∣∣∣∣ˆ
Σ

Gx⃗(∂α, ν) dµ

∣∣∣∣ = O(σ−1−δ).

Consider the Euclidean sphere x⃗−1
(
SR(⃗0)

)
such that R is so large that Σ is contained in
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x⃗−1
(
BR(⃗0)

)
. Define UR to be the volume enclosed between these two boundaries. Then,

using the divergence theorem,∣∣∣∣∣
ˆ
x⃗−1(SR (⃗0))

Gx⃗(ν, ∂α) dµR −
ˆ
Σ

Gx⃗(ν, ∂α) dµ

∣∣∣∣∣ =
∣∣∣∣ˆ

UR

Gx ·
(
∇x∂α

)
dx
∣∣∣∣ ,

and since UR ⊆ x⃗−1
(
BR(⃗0)

)
\ x⃗−1

(
B 3

2
√
5
σΣ

(⃗0)

)
and using polar coordinates we get

≤ c̃(c)
ˆ R

3
2
√
5
σΣ

ˆ
x⃗−1(Sr (⃗0))

r−4−2δ dµr dr,

where we also used that |∇∂α
∂β| =

∣∣∣∑γ Γ
γ
αβ∂γ

∣∣∣ = O(σ−
3
2
−δ). We conclude computing the

1-dimensional integral and letting R→∞.
Proof of (3.6). Choosing R and UR as above, since ∇x⃗x⃗ = Id as a bilinear form and thus
G · ∇x⃗x⃗ = S, using the divergence theorem we get∣∣∣∣∣

ˆ
x⃗−1(SR (⃗0))

G(dx⃗−1(x⃗(x)), ν) dµ−
ˆ
Σ

G(dx⃗−1(x⃗(x)), ν) dµ

∣∣∣∣∣ =
∣∣∣∣ˆ

UR

S dx
∣∣∣∣ = O(σ−δ),

where the order of the integral of the scalar curvature has been computed as in the previous
point. Letting R→∞ we have the thesis.

3.1.2 The stability operator

We now introduce the stability operator, which occurs as the second variation of the area
functional.

Definition 3.1.4. Let (M, g) be a C2
1
2
+δ

-asymptotically flat 3-manifold. Given a surface

ι : Σ ↪→M and a smooth function f ∈ H2(Σ), we define the stability operator associated to Σ,
LΣ : H2(Σ)→ L2(Σ), as

LΣf := −∆f− (|A|2 + Ric(ν, ν))f.

We simply write L instead of LΣ whenever the role of the surface Σ is not ambiguous.

Consider a surface Σ and a normal variation F̂ : Σ× I →M , with 0 ∈ I, satisfying{
∂tF̂ (x, t) = η(x, t)ν(x, t)

F̂ (Σ, 0) = Σ
(3.7)

A routine computation shows that the mean curvature locally represent the first variation of
the area functional, that is

d
dt
|Σ̂t| =

ˆ
Σ
Hη dµ, (3.8)

where Σ̂t := F̂t(Σ). It turns out that if the variation is volume preserving, i.e.
´
Σ η dµ = 0,

then a CMC-surface Σ, i.e. t = 0, is a critical point of the area functional t 7→ |Σ̂t|.
Moreover, if Σ is a CMC-surface, the second variation of the area functional is given by

d2

dt2
|Σ̂t| =

ˆ
Σ

(
|∇η|2 −

(
|A|2 + Ric(ν, ν)

)
η2
)
dµ =

ˆ
Σ

(
LΣη

)
η dµ. (3.9)
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If the variation was not volume preserving, in (3.9) there would be a term involving the second
derivative of the volume enclosed by Σ̂t.

Since the "differential part" of the stability operator is totally given by the Laplace-
Beltrami operator, in order to understand the properties of L we are interested in we have
to briefly review the spectral theory for the operator −∆. The following Lemma is taken
from [CS21, Lemma 2]. Observe that, together with adapting the notations of the Lemma
with our definition of roundness class, we remove the hypothesis of having a CMC-surface. In
fact, reading the proof of [CS21, Lemma 2] with attention, one can observe that the CMC-
hypothesis is just needed in order to compare the area radius with the curvature radius used
in [Ner15] and [CS21].

Remark 3.1.5. At the light of Lemma 2.3.5, i.e. of the De Lellis-Müller theorem [DLM05,
Thm. 1.1], scalar functions on a round surface Σ can be also meant as functions on the
approximating sphere SσΣ. With an abuse of notation, we identify such kind of functions.

We first recall some properties of the Laplace-Beltrami operator on a round sphere Sσ (⃗0) ⊂
R3 with the Euclidean metric. On a general closed surface, the eigenvalues of ∆ are all positive,
except the first one which is zero, with eigenspace given by the constant functions. For the
Euclidean sphere, the first nonzero eigenvalue has multiplicity three and is given by

λeα =
2

σ2
, α = 1, 2, 3. (3.10)

An orthonormal basis for the eigenspace is given by the normalized coordinate functions

feα(x⃗) =

√
3

4πσ4Σ
x⃗α, α = 1, 2, 3, (3.11)

restricted on Sσ (⃗0). The remaining eigenvalues satisfy the bound

λei ≥ λe4 =
6

σ2
, ∀ i ≥ 4. (3.12)

Moreover, we have

◦
Hess (feα) = 0, ⟨∇efeα,∇efeβ⟩ −

3δαβ
4πσ4Σ

+
feαf

e
β

σ2Σ
= 0. (3.13)

We recall the statement of Lemma 2 of [CS21], which measures how much the first eigenvalues
and the corresponding eigenfunctions of the Laplace-Beltrami operator on a round surface in
the physical metric differ from the ones of the approximating sphere in the Euclidean metric.

Lemma 3.1.6. Let (M, g) be a C2
1
2
+δ

-asymptotically flat manifold and let ι : Σ ↪→ M be a

surface. Suppose that Σ is in Wσ(B1, B2) for some B1, B2 > 0. Then there exist a constant
c = c(B1, B2, c) > 0 and a radius σ0 = σ0(B1, B2, c, δ) > 1, such that, if σ > σ0, there is a
complete orthonormal system in L2(Σ) consisting of the eigenfunctions {fα}∞α=0 such that

−∆fα = λαfα, with 0 = λ0 < λ1 ≤ λ2 ≤ ...

Set SσΣ to be the round sphere approximating Σ in the sense of Lemma 2.3.5. Then there
exists an orthonormal triple {fe1 , fe2 , fe3} of eigenfunctions of −∆SσΣ such that, for α = 1, 2, 3,∣∣∣∣λα − 2

σ2Σ

∣∣∣∣ ≤ cσ− 5
2
−δ, ∥fα − feα∥W 2,2(Σ) ≤ cσ−

1
2
−δ. (3.14)
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Moreover∥∥∥∥ ◦
Hess(fα)

∥∥∥∥
L2(Σ)

≤ cσ−
5
2
−δ,

ˆ
Σ

∣∣∣∣⟨∇fα,∇fβ⟩ − 3δαβ
σ2Σ|Σ|g

+
fαfβ
σ2Σ

∣∣∣∣ dµg ≤ cσ− 5
2
−δ. (3.15)

On the other hand, for α > 3 we have

λα >
5

σ2Σ
. (3.16)

Remark 3.1.7. The following proof is mainly based on [CS21, Lemma 2], but we rewrite it
for reader’s convenience. As a byproduct of the following proof, it is important to keep in
mind that such a orthonormal system also satisfies the inequality ∥fα∥H2(Σ) ≤ C.

Observe moreover that [CS21, Lemma 2] is stated with the additional hypothesis of constant
mean curvature. However, reading the proof of this Lemma, one can see that this hypothe-
sis is only used in order to replace the area radius (compatible with our "roundness" radius
introduced in Definition 2.3.1) with the curvature radius of [CS21, Lemma 2].

Proof. We have already seen that, thanks to the result of DeLellis-Müller [DLM05], the Eu-
clidean image of Σ is a graph of a function on the Euclidean sphere SσΣ ≡ SσΣ(z⃗Σ). We
consider a family {fα}∞α=0 of eigenfunctions of the Laplace-Beltrami operator −∆ on Σ as-
sociated to the eigenvalues {λα}∞α=0. We choose three orthonormal eigenfunctions f1, f2, f3
corresponding to the three eigenvalues λ1, λ2, λ3, respectively. By the Rayleigh quotient, it is
easy to see that

∣∣∣λα − 2
σ2
Σ

∣∣∣ = O(σ−
5
2
−δ). In the Euclidean case, each rotation of the triple in

(3.11) is a good choice of eigenfunctions for the Laplace-Beltrami operator. For our purposes,
we want to choose one of these triples of Euclidean eigenfunctions in a way such that the
second inequality in (3.14) holds. We proceed as follows.

We remark that ˆ
Σ
fα dµ =

ˆ
Σ

1

λα
(−∆fα) dµ = 0. (3.17)

We choose feα = fα − vα, where vα is a solution of the following equation

−∆SσΣvα − λeαvα = −∆SσΣfα − λeαfα. (3.18)

A solution to this equation exists since the right hand side is orthogonal in L2(SσΣ) to the
kernel of the operator −∆SσΣ −λeα of the left hand side1, by the Fredholm alternative. More-
over, since the kernel of the operator on the left hand side (LHS) of (3.18) is not trivial, the
solutions to (3.18) form an affine space, with associated vector space Ker(−∆SσΣ − λeα). The
canonical choice of a solution to the equation (3.18) is given by the one which is orthogonal
to Ker(−∆SσΣ − λeα).

Lemma 13 in [CS21], combined with (3.17), implies

∥fα∥H2 =

∥∥∥∥fα −  
Σ
fα dµ

∥∥∥∥
H2

≤ Cσ2∥∆fα∥L2 ≤ C (3.20)

since ∥∆fα∥2 = λα = O(σ−2). This is enough to deduce that

∥ −∆SσΣvα − λeαvα∥L2 ≤ Cσ−
5
2
−δ. (3.21)

1This is true since if w satisfies −∆SσΣw = λe
αw, then by the self-adjointness of ∆SσΣ ,

⟨−∆SσΣ fα − λe
αfα, w⟩L2(SσΣ

) = λe
α⟨fα, w⟩L2(SσΣ

) − λe
α⟨fα, w⟩L2(SσΣ

) = 0. (3.19)



30 Chapter 3. Spectral Theory

The elliptic theory reviewed in [Bes07, Thm. 27, Appendix H] implies that ∥vα∥H2 = ∥fα −
feα∥H2 ≤ Cσ−

1
2
−δ.

By ⟨fα, fβ⟩L2(Σ) = δαβ and the bound above, it follows that |⟨feα, feβ⟩L2(SσΣ )| = O(σ−
1
2
−δ)

for α ̸= β, while ∥feα∥2 ≃ 1. Using the Gram-Schmidt algorithm, we can modify the triple
{fe1 , fe2 , fe3} so that ⟨feα, feβ⟩L2(SσΣ ) = 0, while the estimate on ∥fα − feα∥H2 continues to be
true, as one can see writing down the difference between the new and the old basis in the
Gram-Schmidt algorithm and derivating these expressions, together with the estimates on
⟨feα, feβ⟩L2(SσΣ ). Thus we can assume that {fe1 , fe2 , fe3} is an orthonormal system in L2(SσΣ) of
eigenfunctions of the Laplace operator on the round sphere SσΣ . This implies that there exists
a triple of orthonormal vectors of R3, say {v⃗1, v⃗2, v⃗3}, such that feα =

√
3

4πσ4
Σ
(x⃗− z⃗) · v⃗α. In

particular, modulo a rotation and in view of (3.13), the estimate on the traceless Hessian of
fα in the statement of the Lemma and (3.15) are satisfied.

This description of the spectrum of the Laplace-Beltrami operator allows to define a
decomposition of L2(Σ) in terms of the eigenfunctions of −∆.

Definition 3.1.8. Let Σ be a surface and consider the Hilbert space L2(Σ) equipped with the
standard scalar product. Consider the orthonormal system constructed in Lemma 3.1.6. Then
for every w ∈ L2(Σ) we define

w0 := ⟨w, f0⟩2f0 =
 
Σ

w dµg, wt :=

3∑
α=1

⟨w, fα⟩2fα.

We call w0 the mean part of w, and wt the translational part of w. Finally, we set

wd := w− wt (3.22)

the so called difference part, which obviously also contains the information about w0.

Before starting to study the properties of the stability operator, we give a more general
version of [Ner15, Lemma 4.5], which holds for round surfaces which are not necessarily CMC.
Observe that, with respect to the results of [Ner15], we get some additional terms of order
O(σ−

5
2
−δ), which can not be absorbed by the right hand side. These terms are the crucial

differences with the CMC-case of the spectral theory.

Proposition 3.1.9. Let (M, g) be a C2
1
2
+δ

-asymptotically flat manifold and let ι : Σ ↪→M be

a surface. Suppose that Σ is in Wσ(B1, B2) for some B1, B2 > 0. Then there exist a constant
c = c(B1, B2, c) > 0 and a radius σ0 = σ0(B1, B2, c, δ) > 1, such that, if σ > σ0, for every
α ̸= β, α, β ∈ {1, 2, 3}, it holds∣∣∣∣ˆ

Σ

(
Ric(ν, ν)− H2 − h2

4

)
fαfβ dµ

∣∣∣∣ ≤ cσ−3−δ.

Moreover, for every i ∈ {1, 2, 3}, we have∣∣∣∣λα − h2

2
− 6mH(Σ)

σ3Σ
−
ˆ
Σ

(
Ric(ν, ν)− H2 − h2

4

)
f2α dµ

∣∣∣∣ ≤ cσ−3−δ.

Proof. Using the Bochner’s formula as in [CS21, Lemma 3], we get the estimate∣∣∣∣λ2αδαβ − ˆ
Σ
RΣ⟨∇fα,∇fβ⟩ dµ

∣∣∣∣ ≤ Cσ−5−δ. (3.23)
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By the Gauss formula and the estimate |
◦
A| = O(σ−

3
2
−δ), (3.23) implies∣∣∣∣λ2αδαβ − ˆ

Σ

(
S− 2Ric(ν, ν) +

H2

2

)
⟨∇fα,∇fβ⟩ dµ

∣∣∣∣ ≤ Cσ−5−δ. (3.24)

Using thatH2 = h2+(H2−h2) and the variational formulation for the equation−∆fα = λαfα,
we get∣∣∣∣(λ2α − λαh22

)
δαβ −

ˆ
Σ

(
S− 2Ric(ν, ν) +

H2 − h2

2

)
⟨∇fα,∇fβ⟩ dµ

∣∣∣∣ ≤ Cσ−5−δ. (3.25)

Since H2 − h2 = O(σ−
5
2
−δ) by Lemma 2.3.5, using (3.15) we get

ˆ
Σ

H2 − h2

2
⟨∇fα,∇fβ⟩ dµ =

ˆ
Σ

H2 − h2

2

(
3δαβ
σ2Σ|Σ|g

−
fαfβ
σ2Σ

)
dµ+ O(σ−5−2δ)

= −
ˆ
Σ

H2 − h2

2

(
fαfβ
σ2Σ

)
dµ+ O(σ−5−2δ).

(3.26)

Moreover, in [Ner15] and [CS21], it has been shown that the remaining terms in (3.25) satisfy(
λ2α − λα

h2

2

)
δαβ −

ˆ
Σ

(
S− 2Ric(ν, ν)

)
⟨∇fα,∇fβ⟩ dµ

=
2

σ2Σ

(
λα −

h2

2

)
δαβ −

12mH(Σ)

σ5Σ
δαβ −

2

σ2Σ

ˆ
Σ

Ric(ν, ν)fαfβ dµ+ O(σ−5−δ).

(3.27)

Combining (3.25), (3.26), (3.27) and dividing by 2
σ2
Σ

we get the thesis.

The previous Lemma leads to the following.

Proposition 3.1.10. Let (M, g) be a C2
1
2
+δ

-asymptotically flat manifold and let ι : Σ ↪→M be

a surface. Suppose that Σ is in Wσ(B1, B2) for some B1, B2 > 0. Then there exist a constant
c = c(B1, B2, c) > 0 and a radius σ0 = σ0(B1, B2, c, δ) > 1, such that, if σ > σ0, for every
f ∈ span{f1, f2, f3} and φ ∈ span{fα : α ≥ 4} the following inequalities hold∣∣∣∣⟨Lf, f⟩2 − 6mH(Σ)

σ3Σ
∥f∥22 +

3h

2

ˆ
Σ
(H − h)f2 dµ

∣∣∣∣ ≤ cσ−3−2δ∥f∥22, (3.28)

|⟨Lf, φ⟩2| ≤ cσ−
5
2
−δ∥f∥2∥φ∥2, ⟨Lφ,φ⟩2 >

2

σ2Σ
∥φ∥22. (3.29)

Proof. Let f ∈ span{f1, f2, f3}, f =
∑3

α=1⟨f, fα⟩2fα. By definition and using both inequali-
ties of Proposition 3.1.9 we get

⟨Lf, f⟩2 =
6mH(Σ)

σ3Σ
∥f∥22 −

ˆ
Σ

3(H2 − h2)
4

f2 dµ+ O(σ−3−2δ)∥f∥22,

where we also used that ∥
◦
A∥2L∞(Σ) = O(σ−3−2δ) thanks to Lemma 2.3.5. Using that H2−h2 =

2h(H − h) + O(σ−3−2δ), we find

⟨Lf, f⟩2 =
6mH(Σ)

σ3Σ
∥f∥22 −

3h

2

ˆ
Σ
(H − h)f2 dµ+ O(σ−3−2δ)∥f∥22.
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Suppose now that φ ∈ span{fα : α ≥ 4}. Then

⟨Lφ,φ⟩2 ≥
(
λ4 − sup

Σ

∣∣|A|2 + Ric(ν, ν)
∣∣)ˆ

Σ
φ2 dµ,

using the characterization of λ4. Thus, since λ4 ≥ 5
σ2
Σ

by Lemma 3.1.6 and since, by the

roundness hypothesis
∣∣|A|2 + Ric(ν, ν)

∣∣ ≤ 11
4σ2

Σ
, we get the second part of equation (3.29). On

the other hand

⟨Lf, φ⟩2 =
ˆ
Σ

(
−|A|2 − Ric(ν, ν)

)
fφ dµ =

ˆ
Σ

(
−|A|2 − Ric(ν, ν) +

h2

2

)
fφ dµ

concludes the proof, together with |A|2 − h2

2 = |
◦
A|2 + H2−h2

2 and, by Lemma 2.3.5, ∥H2 −
h2∥L∞(Σ) = O(σ−

5
2
−δ).

We conclude with an auxiliary estimate that will be needed in the following.

Corollary 3.1.11. Let (M, g) a C2
1
2
+δ

-asymptotically flat manifold such that |EADM| ̸= 0.

Let ι : Σ ↪→M be a surface in Wσ(B1, B2) for some B1, B2 > 0. Then there exist a constant
c = c(B1, B2, c) > 0 and a radius σ0 = σ0(B1, B2, c, δ, |EADM|) > 1, such that, if σ > σ0 then,
for every v, w ∈ span{f1, f2, f3}, it holds∣∣∣∣ˆ

Σ
(Lv)w dµ

∣∣∣∣ ≤ cσ−
5
2
−δ∥v∥2∥w∥2.

Proof. It follows from the identity,
ˆ
Σ
(Lfα)fβ dµ =

(
λα −

h2

2

)
δαβ +

ˆ
Σ

h2 −H2

2
fαfβ dµ+ O(σ−

5
2
−δ),

for every α, β ∈ {1, 2, 3}. This, combined with Proposition 3.1.9 and |mH(Σ)| ≤ 2EADM for
σ large (in view of Lemma 3.1.3), leads to the thesis.

In the next Chapter, we will investigate the role of the stability operator in the evolution
of round surfaces (maintaining the volume constant and decreasing the area). In order to do
this, we estimate here some stability operator-related functions.

Lemma 3.1.12. Let (M, g) a C2
1
2
+δ

-asymptotically flat manifold such that |EADM| ≠ 0. Let

ι : Σ ↪→ M be a surface in Wσ(B1, B2) for some B1, B2 > 0 and consider the setting of
Lemma 3.1.6, with {v⃗1, v⃗2, v⃗3} as in its proof. Then there exist a constant c = c(B1, B2, c) > 0
and a radius σ0 = σ0(B1, B2, c, δ, |EADM|) > 1, such that, if σ > σ0, then for α ∈ {1, 2, 3}∣∣∣∣∣∣

〈
L(H − h),

√
4π

3
fα −

ν · v⃗α
σΣ

〉
L2(Σ)

∣∣∣∣∣∣ ≤ cσ−3−2δ.

Proof. First of all, observe that the roundness of Σ implies that ∥H − h∥H1(Σ) ≤ cσ−
1
2
−δ for

some c = c(B1, B2) > 0. Moreover, Lemma 3.1.6 implies that ∥fα − feα∥W 2,2(Σ) ≤ cσ−
1
2
−δ,

where feα =
√

3
4πσ4

Σ
(x⃗ · v⃗α), restricted to Σ and with the abuse of notation of x⃗ ≃ Id. This,

multiplied by
√
4πσΣ√
3

, also equals the projection νSσΣ · v⃗α, where νSσΣ is the normal to the

round sphere. In view of Lemma 2.3.5, it also holds ∥νe − νSσΣ∥W 1,∞ = O(σ−
1
2
−δ), where νe
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is the Euclidean normal of Σ. Thus it follows that∥∥∥∥∥
√

4π

3
feα −

νe · v⃗α
σΣ

∥∥∥∥∥
W 1,∞

= O(σ−
3
2
−δ). (3.30)

Using Lemma 2.1.6 and the estimate for ∥feα − fα∥H2(Σ) in Lemma 3.1.6, we conclude that∥∥∥∥∥
√

4π

3
fα −

ν · v⃗α
σΣ

∥∥∥∥∥
H1(Σ)

≤ cσ−
1
2
−δ.

Thus, for α ∈ {1, 2, 3}, we obtain∣∣∣∣∣∣
〈
L(H − h), ν · v⃗α

σΣ
−
√

4π

3
fα

〉
L2(Σ)

∣∣∣∣∣∣ =
=

∣∣∣∣∣
ˆ
Σ

(
−∆(H − h)− (|A|2 + Ric(ν, ν))(H − h)

)(ν · v⃗α
σΣ

−
√

4π

3
fα

)
dµ

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ
Σ
∇(H − h) · ∇

(
ν · v⃗α
σΣ

−
√

4π

3
fα

)
dµ

∣∣∣∣∣
+

ˆ
Σ

(
|A|2 + |Ric(ν, ν)|

)
|H − h|

∣∣∣∣∣ν · v⃗ασΣ
−
√

4π

3
fα

∣∣∣∣∣ dµ
and we conclude using Hölder’s inequality.

Corollary 3.1.13. Let (M, g) a C2
1
2
+δ

-asymptotically flat manifold such that |EADM| ̸= 0.

Let ι : Σ ↪→M be a surface in Wσ(B1, B2) for some B1, B2 > 0. Then there exist a constant
c = c(B1, B2, c) > 0 and a radius σ0 = σ0(B1, B2, c, δ, |EADM|) > 1, such that, if σ > σ0, then∣∣∣∣〈L(H − h), νασ 〉L2(Σ)

∣∣∣∣ ≤ cσ−3−2δ. (3.31)

Proof. It is convenient to do the computation with fα. Since the stability operator is self-
adjoint in L2(Σ), we have

⟨L(H − h), fα⟩L2(Σ) = ⟨(H − h)t, Lfα⟩L2(Σ) + ⟨(H − h)d, Lfα⟩L2(Σ).

Using Corollary 3.1.11 and Proposition 3.1.10, together with ∥(H − h)t∥22 + ∥(H − h)d∥22 =
∥H − h∥22 ≤ Cσ−1−2δ, we get

∣∣⟨L(H − h), fα⟩L2(Σ)

∣∣ = O(σ−3−2δ) and thus we conclude by
Lemma 3.1.12, the orthonormality of {v⃗1, v⃗2, v⃗3} and the boundedness of σΣ

σ .

3.1.3 The translational part of the mean curvature

We analyze now an important property of the translational part of a function, which we have
introduced in Definition 3.1.8.

Remark 3.1.14. Note that, by Remark 3.1.7, ∥fα∥H2(Σ) is bounded, uniformly in σ. They, by
Sobolev’s embedding H2 ↪→ L∞, we have that ∥(H − h)t∥L∞(Σ) ≤ Cσ−

3
2
−δ, where C depends

on the roundness class to which Σ belongs. Since by definition (H−h)d := (H−h)−(H−h)t,
we also have ∥(H − h)d∥L∞(Σ) ≤ Cσ−

3
2
−δ, using also Lemma 2.3.5.
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We compute the error that we commit in a specific integral when replacing Σ with its
approximating Euclidean sphere.

Lemma 3.1.15. Let (M, g) a C2
1
2
+δ

-asymptotically flat manifold. Let ι : Σ ↪→M be a surface

in Wσ(B1, B2) for some B1, B2 > 0. Then there exist a constant c = c(B1, B2, c) > 0 and a
radius σ0 = σ0(B1, B2, c, δ) > 1, such that, if σ > σ0,∣∣∣∣∣h

ˆ
Σ
(H − h)((H − h)t)2 dµ− h

ˆ
SσΣ

(H − h)((H − h)t)2 dµSΣ
∣∣∣∣∣ ≤ cσ−3−2δ∥(H − h)t∥22.

(3.32)

Proof. By Lemma 2.3.5, scalar functions on Σ can be also meant as function on the Euclidean
sphere SσΣ , and moreover |dµ − dµSσΣ | = O(σ−

1
2
−δ)dµ. Thus the left hand side of (3.32) is

bounded by

≤ cσ−
3
2
−δ∥H − h∥L∞(Σ)

ˆ
Σ
((H − h)t)2 dµ ≤ cσ−3−2δ

ˆ
Σ
((H − h)t)2 dµ.

Roughly speaking, equation (3.32) says that we can replace, modulo an error, the integral
over Σ with the same integral over the sphere SσΣ . Thus, we now consider the case in which the
integral is computed on a Euclidean round sphere. In this case, for any u ∈ span{fe1 , fe2 , fe3},
we find, because of symmetry reasons,

ˆ
Sσ
u2k+1 dµSσ = 0 (3.33)

for every k ∈ N. This allows to obtain a strong bound on the corresponding integral when we
consider a round surface in an asymptotically flat space. We focus here on the case of a third
power, which is the one that we need in the sequel.

Lemma 3.1.16. Let (M, g) a C2
1
2
+δ

-asymptotically flat manifold. Let ι : Σ ↪→M be a surface

in Wσ(B1, B2) for some B1, B2 > 0. Then there exist a constant c = c(B1, B2, c) > 0 and a
radius σ0 = σ0(B1, B2, c, δ) > 1, such that, if σ > σ0,∣∣∣∣hˆ

Σ
((H − h)t)3 dµ

∣∣∣∣ ≤ cσ−3−2δ∥(H − h)t∥2L2(Σ).

Remark 3.1.17. Observe that this Lemma is more accurate then the one we would obtain
simply estimating |(H − h)t| with ∥H − h∥L∞(Σ).

Proof. Define the following auxiliary function on the sphere SσΣ ,

HT :=

3∑
α=1

⟨H − h, fα⟩L2(Σ)f
e
α.

Since HT is an odd function on SσΣ ≡ SσΣ(z⃗0), we have that
ˆ
SσΣ

H3
T dµSσΣ = 0. (3.34)
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Moreover, using equation (3.14) (combined with the immersion H2 ↪→ L∞) and the Cauchy-
Schwarz inequality for sums, we have

∥(H − h)t −HT ∥L∞(Σ) ≤ Cσ−
3
2
−δ

(
3∑

α=1

⟨H − h, fα⟩22

) 1
2

= Cσ−
3
2
−δ∥(H − h)t∥2 = O(σ−2−2δ).

(3.35)
Considering (H − h)t as a function on SσΣ , equation (3.34) implies that∣∣∣∣∣

ˆ
SσΣ

((H − h)t)3 dµSσΣ
∣∣∣∣∣

≤ ∥(H−h)t−HT ∥L∞(Σ)

(ˆ
SσΣ

((H − h)t)2 dµSσΣ +

ˆ
SσΣ

H2
T dµSσΣ + 2

ˆ
SσΣ

((H − h)t)HT dµSσΣ

)
.

Since (3.35) implies that
∣∣∥(H − h)t∥2 − ∥HT ∥2

∣∣ ≤ Cσ− 1
2
−δ∥(H−h)t∥2, replacing dµSσΣ with

dµ through Lemma 3.1.15, we get

h

∣∣∣∣∣
ˆ
SσΣ

((H − h)t)3 dµSσΣ
∣∣∣∣∣ ≤ Cσ−3−2δ

ˆ
Σ
((H − h)t)2 dµ,

and thus we conclude again with Lemma 3.1.15.

Lemma 3.1.18. Let (M, g) be a C2
1
2
+δ

-asymptotically flat manifold and consider a surface

ι : Σ ↪→M in Wσ(B1, B2) for some B1, B2 > 0 such that
ˆ
Σ

(
(H − h)d)

)2
dµ ≤

ˆ
Σ

(
(H − h)t

)2
dµ. (3.36)

Set moreover

Π :=

3∑
α=1

〈
H − h, να

σ

〉2
L2(Σ)

.

Then there exist a constant c = c(B1, B2, c) > 0 and a radius σ0 = σ0(B1, B2, c, δ) > 1 such
that, if σ > σ0, ∣∣∣∣Π− 4π

3

ˆ
Σ

(
(H − h)t

)2
dµ

∣∣∣∣ ≤ cσ− 1
2
−δ∥H − h∥2L2(Σ).

Proof. Thanks to hypothesis (3.36) we have that ∥H−h∥2L2(Σ) ≤ 2
´
Σ

(
(H − h)t

)2
dµ. More-

over ∣∣∣∣Π− 4π

3

ˆ
Σ

(
(H − h)t

)2
dµ

∣∣∣∣
≤

3∑
α=1

∣∣∣∣∣∣
〈
H − h, να

σ

〉2
L2(Σ)

−

〈
H − h,

√
4π

3
fα

〉2

L2(Σ)

∣∣∣∣∣∣
=

3∑
α=1

∣∣∣∣∣∣
〈
H − h, να

σ
+

√
4π

3
fα

〉
L2(Σ)

∣∣∣∣∣∣
∣∣∣∣∣∣
〈
H − h, να

σ
−
√

4π

3
fα

〉
L2(Σ)

∣∣∣∣∣∣
≤ c

3∑
i=1

∥H − h∥L2(Σ)

∥∥∥∥∥
√

4π

3
fα −

να
σ

∥∥∥∥∥
L∞(Σ)

ˆ
Σ
|H − h| dµ ≤ cσ−

1
2
−δ∥H − h∥2L2(Σ).
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where in the latter estimate we used equation (3.30). This ends the proof.

3.1.4 Regge-Teitelboim conditions

In Section 2.0.2 we have defined the strong Regge-Teitelboim conditions, which, in view of
Lemma 2.0.7, allows us to prove the existence of the ADM-center of mass. A weaker version
of these conditions has been introduced in [Ner15]. Under these weaker hypotheses, Nerz
proved that, if the ADM-center of mass exists, it coincides with another notion of center of
mass, called CMC-center of mass. Nerz proved that the geometric structure at the basis of
this definition always exists: a C2

1
2
+δ

-asymptotically flat manifold admits a CMC-foliation.
The CMC-center of mass is the limit of the barycenters of the leaves of this foliation, if it
exists.

We conclude the section by observing that the translational part of the mean curvature of
a coordinate sphere satisfies an improved estimate if our ambient manifold satisfies the weak
Regge-Teitelboim conditions.

Definition 3.1.19 (C1
1+δ-Regge-Teitelboim conditions). Let (M, g, x⃗) be a C2

1
2
+δ

-asymptotically

flat manifold. We say that this manifold satisfies the C2
1+δ-Regge-Teitelboim conditions if there

exists c > 0 such that∣∣gij(x)− gij(−x)
∣∣+ |x| ∣∣∣Γk

ij(x) + Γ
k
ij(−x)

∣∣∣ ≤ c

|x|1+δ
, (3.37)

for every x ∈M \ C.

First of all, we remark that this conditions imply that

|νΣx + νΣ−x| = O(σ−1−δ), |HΣ
x −HΣ

−x| = O(σ−2−δ), (3.38)

for Σ = x⃗
(
Sσ (⃗0)

)
. The first decay in (3.38) is a consequence of the fact that the metric is

asymptotically even. The second one follows from the definition of shape operator and the
decay of the Christoffel symbols in (3.37).

The next Lemma shows that (3.38) implies that the translational part of H − h is suffi-
ciently small. It is essentially inspired by the results in [Hua10].

Lemma 3.1.20. Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat 3-manifold that satisfies the C2
1+δ-

Regge-Teitelboim conditions. Consider the immersion Sσ (⃗0) ↪→ M , i.e. Σ := x⃗
(
Sσ (⃗0)

)
, for

σ > 1 fixed but large. Then there exists a constant C = C(c) > 0 such that

3∑
α=1

〈
H − h, να

σ

〉2
L2(Σ)

≤ Cσ−2−2δ.

Proof. We define ψ, the reflection with respect to 0⃗, i.e. ψ : x 7→ x⃗−1 (−x⃗(x)), defined on
M \ x⃗

(
Bdiam(C)/2(⃗0)

)
. With an abuse of notation, we now identify Sσ (⃗0) with its image

through x⃗, and we decompose Sσ (⃗0) = S+σ (⃗0) ∪ S−σ (⃗0), such that ψ
(
S−σ (⃗0)

)
= S+σ (⃗0), σ >



3.2. Spectral theory in initial data sets 37

diam(C)
2 . Then, also using that dµx − dµ−x = O(σ−1−δ) thanks to the hypothesis (3.37),
ˆ
Sσ (⃗0)

ν dµ =

ˆ
S+σ (⃗0)

νx dµx +

ˆ
S−σ (⃗0)

νx dµx =

=

ˆ
S+σ (⃗0)

νx dµx −
ˆ
S−σ (⃗0)

ν−x dµx +

ˆ
S−σ (⃗0)

(νx + ν−x) dµx =

=

ˆ
S+σ (⃗0)

νx dµx −
ˆ
S−σ (⃗0)

ν−x dµ−x −
ˆ
S−σ (⃗0)

ν−x (dµx − dµ−x) + O(σ1−δ)

and changing the variable x 7→ −x we get

=

ˆ
S+σ (⃗0)

νx dµx −
ˆ
S+σ (⃗0)

νx dµx + O(σ1−δ) = O(σ1−δ).

This implies that ˆ
Sσ (⃗0)

(H − h)ν dµ =

ˆ
Sσ (⃗0)

Hν dµ+ O(σ−δ), (3.39)

and using moreover (3.38), we find
ˆ
Sσ (⃗0)

Hν dµ = O(σ−δ), (3.40)

that implies the thesis.

3.2 Spectral theory in initial data sets

In this Section we consider closed surfaces Σ belonging to a roundness class Wη
σ(B1, B2) for

fixed parameters η, B1, B2 and a general large σ. Moreover, we will suppose that EADM > 0
and that Σ is almost CMC.

Definition 3.2.1. Let (M, g) a C2
1
2
+δ

-asymptotically flat manifold with energy EADM > 0.

Fix σ > 1 and cin > 0. We say that Σ ↪→ M is (σ, cin)-almost-CMC if (Σ, g) ∈ Wη
σ(B1, B2)

for some B1, B2 > 0, and
∥H − h∥L2(Σ) ≤ cinσ

−1−δ. (3.41)

We sometimes simply say that Σ is cin-almost CMC if Σ is (cin, σΣ)-almost CMC. Thus,
we will tacitly mean that the constants c and σ0 which appear in the statements below only
depend on η,B1, B2, on the constants cin, c, δ and possibly on the energy EADM. We remark
that assumption (3.41) is stronger than the L2-estimate satisfied by H − h on Euclidean
spheres.

Throughout these Lemmas, the setting will be the same of Lemma 3.1.6. Remember
moreover that ℏ := |Σ|−1

´
ΣH dµ.

Lemma 3.2.2. There exist c > 0 and σ0 > 1 such that, if Σ ∈ Wη
σ(B1, B2) and it also is

(cin, σ)-almost CMC with σ ≥ σ0, the complete orthonormal system in L2(Σ) given by Lemma
3.1.6 is such that∣∣∣∣λα − ℏ2

2
− 6mH(Σ)

σ3Σ
−
ˆ
Σ

Ric(ν, ν)f2α dµg

∣∣∣∣ ≤ cσ−3−δ, α ∈ {1, 2, 3}, (3.42)

and the corresponding eigenfunctions f1, f2, f3 satisfy∣∣∣∣ˆ
Σ

Ric(ν, ν)fαfβ

∣∣∣∣ ≤ cσ−3−δ, α ̸= β, α, β ∈ {1, 2, 3}. (3.43)
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Sketch of the proof. The proof is analogous to the one of [CS21, Lemma 3]. We remark that,

using that |
◦
A| = O(σ−

3
2
−δ), we can write the Gauss equation as

SΣ = S− 2Ric(ν, ν)− |
◦
A|2 + H2

2

= S− 2Ric(ν, ν) +
ℏ2

2
+

(H− ℏ)2

2
+ ℏ(H− ℏ) + O(σ−3−δ).

(3.44)

since, using Lemma 2.1.3 and the roundness, we find H −H = O(σ−2−2δ) and H = O(σ−1).
We thus set R := (H−ℏ)2

2 + ℏ(H − ℏ) + O(σ−3−δ) and, analogously to the proof of Lemma
3.1.9, we get ∣∣∣∣λ2αδαβ − ˆ

Σ
SΣ⟨∇fα,∇fβ⟩ dµg

∣∣∣∣
=

∣∣∣∣λ2αδαβ − ˆ
Σ

((
S− 2Ric(ν, ν)

)
+

(
ℏ2

2
+R

))
⟨∇fα,∇fβ⟩ dµg

∣∣∣∣ . (3.45)

Since the spacelike case corresponds to R ≡ 0, in the spacetime case we just have to estimate∣∣∣∣ˆ
Σ
R⟨∇fα,∇fβ⟩ dµ

∣∣∣∣ = ∣∣∣∣ˆ
Σ

(
(H− ℏ)2

2
+ ℏ(H− ℏ) + O(σ−3−δ)

)
⟨∇fα,∇fβ⟩ dµ

∣∣∣∣ . (3.46)

Remember, comparing this proof with the one of Lemma 3.1.9, that the aim is to show that
this remainder is of order O(σ−5−δ). Since ∥fα∥H2(Σ) = O(1), and thus ∥∇fα∥L2(Σ) ≤ C

σ ,

notice that
∣∣∣∣ˆ

Σ
⟨∇fα,∇fβ⟩ dµ

∣∣∣∣ ≤ Cσ−2, which bounds the latter term in (3.46). The other

two terms can be bounded, using Young’s inequality, equation (3.41) and H−H = O(σ−2−2δ),
by

Cσ−1∥H − ℏ∥L2∥∇fα∥L4∥∇fβ∥L4 ≤ Cσ−5−2δ (3.47)

using that ∥fα∥W 1,4 ≤ Cσ−
1
2 ∥fα∥H2 , and so ∥∇fi∥4 ≤ Cσ−

3
2 . Thus we obtain∣∣∣∣(λ2α − ℏ2

2
λα

)
δαβ −

ˆ
Σ

(
S− 2Ric(ν, ν)

)( 3δαβ
σ2|Σ|g

−
fαfβ
σ2

)
dµg

∣∣∣∣ ≤ Cσ−5−δ, (3.48)

which is analogous to (3.27).

Remark 3.2.3. Observe that equation (3.42) gives the following bound. Since δ ∈ (0, 12 ],
|mH(Σ)| ≤ 2|EADM|, Ricx⃗ = O(|x⃗|−

5
2
−δ) and ∥fα∥2 = 1, then∣∣∣∣λα − ℏ2

2

∣∣∣∣ = O(σ−
5
2
−δ),

with a constant possibly depending on |EADM|.

The proof of the following Lemma is similar to [CS21, Prop. 2].

Lemma 3.2.4. There exist c > 0 and σ0 > 1 such that, if Σ ∈ Wη
σ(B1, B2) with σ ≥ σ0, for

every w, v ∈ H2(Σ) it holds∣∣∣∣ˆ
Σ
(Lwt)vt dµ− 6mH(Σ)

σ3Σ

ˆ
Σ

wtvt dµ
∣∣∣∣ ≤ c∥w∥L2(Σ)∥v∥L2(Σ)

σ3+δ
.

This leads to the following
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Lemma 3.2.5. There exist c > 0 and σ0 > 1 such that, if Σ belongs to Wη
σ(B1, B2) and it is

(cin, σ)-almost CMC with σ ≥ σ0, for every w ∈ H2(Σ) such that w0 = 0 we find

(i) The translational part, in view of Lemma 3.2.4, satisfies
ˆ
Σ
(Lwt)wt dµ ≥ 6mH(Σ)

σ3Σ
∥wt∥22 − cσ−3−δ∥w∥22;

(ii) The remaining part satisfies
ˆ
Σ
(Lwd)(wd) dµ ≥ 7

4σ2Σ

ˆ
Σ
(wd)2 dµ.

Proof. Point (ii) follows from
ˆ
Σ
(Lwd)(wd) dµ =

ˆ
Σ

wd(−∆wd) dµ−
ˆ
Σ

(
ℏ2

2
+

(H− ℏ)2

2
+ ℏ(H− ℏ) + O(σ−

5
2
−δ)

)
(wd)2 dµ.

Combining this with ℏ = 2
σΣ

+O(σ−
3
2
−δ), together also with Lemma 2.3.5, i.e. ∥H−ℏ∥L∞(Σ) ≤

Cσ−
3
2
−δ, and equation (3.16), we get
ˆ
Σ
(Lwd)(wd) dµ ≥

(
5

σ2Σ
− 2

σ2Σ
+ O(σ−

5
2
−δ)

)ˆ
Σ
(wd)2 dµ ≥ 7

4σ2Σ

ˆ
Σ
(wd)2 dµ,

where we also used the equivalence of the radii σ and σΣ for surfaces in the class.

Lemma 3.2.6. There exist c > 0 and σ0 > 1 such that, if Σ ∈ Wη
σ(B1, B2) with σ ≥ σ0, for

every w ∈ H2(Σ) it holds
∥Lwt∥22 ≤ cσ−5−2δ∥w∥22.

Proof. We estimate

∥Lwt∥2 ≤ ∥ −∆wt − ℏ2

2
wt∥2 +

∥∥∥∥(H− ℏ)2

2
wt + ℏ(H− ℏ)wt

∥∥∥∥
2

+ O(σ−
5
2
−δ)∥w∥2.

Using the definition of wt, and, by Remark 3.2.3, |λi − ℏ2
2 |

2 = O(σ−5−2δ), we have∥∥∥∥−∆wt − ℏ2

2
wt

∥∥∥∥2
2

≤ Cσ−5−2δ∥w∥22.

Moreover, we conclude with the estimate∥∥∥∥(H− ℏ)2

2
wt + ℏ(H− ℏ)wt

∥∥∥∥
2

≤ 10σ−1∥(H− ℏ)wt∥2 ≤ Cσ−
5
2
−δ∥w∥2,

using again Lemma 2.3.5.

The previous Lemmas lead to the following conclusion.

Proposition 3.2.7. There exist c > 0 and σ0 > 1 such that, if Σ belongs to Wη
σ(B1, B2) and

it is (cin, σ)-almost CMC with σ ≥ σ0,

inf

{ˆ
Σ
(Lw)w dµ : ∥w∥L2(Σ) = 1,

ˆ
Σ

w dµ = 0

}
≥ 2EADM

σ3Σ
.
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Proof. Decomposing the operator L as follows
ˆ
Σ
(Lw)w dµ =

ˆ
Σ
(Lwt)wt dµ+ 2

ˆ
Σ
(Lwt)wd dµ+

ˆ
Σ
(Lwd)wd dµ,

and using Lemma 3.2.5, together with the parametric Young’s inequality with ε−1 = (4σ2Σ)
−1

for the intermediate term, we get
ˆ
Σ
(Lw)w dµ ≥ 6mH(Σ)

σ3Σ
∥wt∥22 − cσ−3−δ∥w∥22 +

7

4σ2Σ

ˆ
Σ
(wd)2 dµ

− 4σ2Σ∥Lwt∥22 −
∥wd∥22
4σ2Σ

.

Using (3.2) and choosing σ large we have mH(Σ) ≥ EADM
2 , and also Lemma 3.2.6, we have

ˆ
Σ
(Lw)w dµ ≥ 3EADM

σ3Σ
∥wt∥22 − cσ−3−δ∥w∥22 +

3

2σ2Σ
∥wd∥22.

We conclude using ∥w∥2L2(Σ) = ∥w
t∥2L2(Σ)+∥w

d∥2L2(Σ) choosing σ so large that
3

2σ2Σ
≥ 3EADM

σ3Σ
.
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Chapter 4

Volume preserving mean curvature
flow

4.1 Definition of the flow and evolution equations

4.1.1 Definition of the flow

Definition 4.1.1. Let (M, g) be a 3-dimensional manifold, and let ι : Σ ↪→ M be a closed
surface. A time dependent family of immersions Ft : Σ ↪→ M , with t ∈ [0, T ) for some
0 < T ≤ +∞, which satisfies{

∂
∂tFt(·) = −(H(·, t)− h(t))ν(·, t)
F0 = ι

(4.1)

is called a solution to the volume preserving mean curvature flow, with initial value ι.

It is well-known that this flow is parabolic and it has a smooth solution at least locally in
time.

Remark 4.1.2. In general, short-time existence and uniqueness of solutions to a general
system {

∂
∂tFt(·) = −f(κ1, ..., κn, t)ν(·, t)
F0 = ι

(4.2)

where κ1, ...κn are the principal curvatures of Σ, are guaranteed provided that the speed satisfies

∂f
∂κi

> 0, i ∈ {1, 2}.

This is proved, for example, in [Ger06, Chapter 2]. It is well-known that the uniform bounded-
ness of |A| is sufficient to assure that also the derivatives of each order of the curvatures of the
flow remain bounded, see Section 4.3. This argument allows to deduce that if sup

Σ×[0,T )
|A| <∞

for some T > 0, then the flow can be extended past T .

In the following, we always assume that the ambient manifold (M, g) is C2
1
2
+δ

-asymptotically
flat. We write Σt := Ft(Σ) to denote the immersed surface at time t, and we call for simplicity
Σt the “solution of the flow” (4.1) without mentioning explicitly the immersions Ft. We call
g(t) the induced metric on Σ at time t and by dµt the corresponding measure.

4.1.2 Evolution equations

We now recall the evolution equations satisfied by the main geometric quantities on Σt. We
choose at each fixed time a frame e⃗α on the ambient manifold M such that e⃗1, e⃗2 are tangent
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vectors on Σ and e⃗3 = ν. Then the main geometric quantities on Σt satisfy the following
equations along the flow, see e.g. [HP99].

Lemma 4.1.3 (Evolution of g(t), dµt and curvatures). Let (M, g) be a 3-dimensional man-
ifold, and let ι : Σ ↪→ M be a closed surface. Suppose that {Ft}t∈[0,T ) is a solution to the
equation (5.2), with initial datum Σ. Then we have

(i) ∂gij
∂t = −2(H − h)hij;

(ii) ∂gij

∂t = 2(H − h)hij;

(iii) ∂
∂t(dµt) = −(H − h)Hdµt;

(iv) ∂
∂tν = ∇H;

(v) ∂
∂thij = ∇i∇jH + (H − h)

(
−hikhkj + Rmi3j3

)
;

(vi) ∂H
∂t = ∆H + (H − h)(|A|2 + Ric(ν, ν)).

As an immediate consequence of the above equations we also have

d
dt
|Σt| = −∥H − h∥2L2(Σt)

, (4.3)

d
dt
∥H − h∥2L2(Σt)

= −2⟨L(H − h), H − h⟩ −
ˆ
Σ
H(H − h)3dµt. (4.4)

We can rewrite the term ∇i∇jH in the right-hand side of (iv) by means of the Simons identity,
as in Metzger [Met07], see Lemma 2.0.1. Thus, we obtain

Lemma 4.1.4. Along a solution of the volume preserving mean curvature flow we have

∂

∂t
|
◦
A|2 = ∆|

◦
A|2 − 2|∇

◦
A|2 + 2h

H
{|A|4 −Htr(A3)}+ 2|A|2

(
H − h
H

)
|
◦
A|2

+2(H − h)
◦
hijRmkiljν

kνl − 2
(
hliRmkjkl + hlkRmlijk

)
hij (4.5)

−2
(
∇j

(
Riciενε

)
+∇l

(
Rmεijlν

ε
)) ◦
hij .

∂

∂t
|∇H|2 = ∆|∇H|2 − 2|∇2H|2 + 2(H − h)hij∇iH∇jH

+2(|A|2 + Ric(ν, ν))|∇H|2 − 2RicΣ(∇H,∇H) (4.6)
+2(H − h)⟨∇|A|2,∇H⟩+ 2(H − h)⟨∇

(
Ric(ν, ν)

)
,∇H⟩,

where RicΣ is the Ricci tensor on Σ and ⟨·, ·⟩ = ⟨·, ·⟩g.

For sake of completeness, we sketch a proof of these equations.

Proof. (i) Using Lemma 5.0.2 and Simons’ identity, we obtain

∂

∂t
hij = ∆hij −Hhlihlj + |A|2hij + (H − h)

(
−hikhkj + Rmi3j3

)
− hliRmkjkl − hlkRmlijk −∇j

(
Riciωνω

)
−∇l

(
Rmωijlν

ω
)
.

(4.7)
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By the definition of |A|2, we obtain

∂

∂t
|A|2 = 4(H − h)himhmjhij + 2∆hijhij − 2Hhilhljhij + 2|A|4+

− 2(H − h)hikhkjhij + 2(H − h)Rmi3j3hij+

− 2
(
hliRmkjkl + hlkRmlijk

)
hij − 2

(
∇j

(
Riciωνω

)
+∇l

(
Rmωijlν

ω
))
hij .

Observe that, by definition, himhmjhij = tr(A3). Moreover,

∆|A|2 = ∆⟨A,A⟩ = 2∆hijhij + 2|∇A|2,

and thus
∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 − 2htr(A3)

+ 2(H − h)Rmi3j3hij − 2
(
hliRmkjkl + hlkRmlijk

)
hij

− 2
(
∇j

(
Riciωνω

)
+∇l

(
Rmωijlν

ω
))
hij .

Moreover, the mean curvature has a similar, but simpler, evolution. In fact

∂

∂t

(
H2

2

)
= ∆

(
H2

2

)
− |∇H|2 +H(H − h)(|A|2 + Ric(ν, ν)). (4.8)

It follows that

∂

∂t
|
◦
A|2 = ∂

∂t

(
|A|2 − H2

2

)
=

= ∆|
◦
A|2 − 2|∇

◦
A|2 + 2|A|4 − 2htr(A3)−H|A|2(H − h)

−H(H − h)Ric(ν, ν) + 2(H − h)Rmi3j3hij − 2
(
hliRmkjkl + hlkRmlijk

)
hij

− 2
(
∇j

(
Riciωνω

)
+∇l

(
Rmωijlν

ω
))
hij .

(4.9)

Observe that equation (4.9) can be rewritten as

∆|
◦
A|2 − 2|∇

◦
A|2 + 2|A|4 − 2htr(A3)−H|A|2(H − h)

= ∆|
◦
A|2 − 2|∇

◦
A|2 + 2h

H
|A|4 − 2htr(A3) + 2|A|2

(
1− h

H

)
|
◦
A|2,

while it also holds

−H(H − h)Ric(ν, ν) + 2(H − h)Rmi3j3hij = 2
◦
hij(H − h)Rm3i3j .

We finally observe that

−2
(
∇j

(
Riciωνω

)
+∇l

(
Rmωijlν

ω
))
hij = −2

(
∇j

(
Riciωνω

)
+∇l

(
Rmωijlν

ω
)) ◦
hij ,

using the symmetries of the Riemannian tensor.
(ii) Deriving the evolution ∂tH, taking into account also the derivative of the metric, and
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using the Bochner formula, we get

∂

∂t
|∇H|2 = ∆|∇H|2 − 2|∇2H|2 + 2(H − h)hij∇iH∇jH

+ 2(|A|2 + Ric(ν, ν))|∇H|2 − 2RicΣ(∇H,∇H)

+ 2(H − h)⟨∇|A|2,∇H⟩+ 2(H − h)⟨∇
(
Ric(ν, ν)

)
,∇H⟩.

(4.10)

4.1.3 Evolution of integral quantities

In this subsection we study the evolution of the integral quantities which appear in the
definition of round surfaces, with the aim of showing that this roundness is preserved.

Hypotheses of the Chapter. For the rest of the Chapter, we will suppose that (M, g, x⃗)
is a C2

1
2
+δ

-asymptotically flat manifold, ι : Σ ↪→ M is an embedded surface and (Σ, Ft) is a
solution to the volume preserving mean curvature flow system (4.1) with initial datum F0 = ι
on the time interval [0, T ], for some T > 0. We fix here, once for all, σ := σΣ, the area radius
at the initial time t = 0. We suppose moreover that there exist B∞ > 0 and c∞ > 0 such
that the flow satisfies the following hypotheses:

(i) For every t ∈ [0, T ], it holds

|A(t)| ≤
√

5

2
σ−1, κi(t) ≥

1

2σ
, (4.11)

where κi, i ∈ {1, 2} are the principal curvatures of Σt;

(ii) For every t ∈ [0, T ] it holds

∥H − h∥L∞(Σt) ≤ c∞σ
− 3

2
−δ,

∥∥∥∥ ◦
A(t)

∥∥∥∥
L∞(Σ)

≤ B∞σ
− 3

2
−δ; (4.12)

(iii) For every t ∈ [0, T ], it holds

σΣt

rΣ(t)
≤ 3, (7/2)πσ2 ≤ |Σt| ≡ 4πσ2Σt

≤ 5πσ2. (4.13)

We remark that, even if we are now assuming these inequalities for the Section, our approach
will be that of showing that none of the above inequalities can become false first.

Remark 4.1.5. In the following Lemmas and Propositions we will need sometimes weaker
hypotheses. We will specify these cases along the statements.

Proposition 4.1.6. Let (Σ, Ft), t ∈ [0, T ], such that (4.11), (4.13) and

∥H − h∥L∞(Σt) ≤
1

20σ
, ∀t ∈ [0, T ] (4.14)

hold. Then there exist a constant C = C(c, δ) > 0 and a radius σ0 = σ0(δ, c) > 0 such that if
σ > σ0 then

d
dt

ˆ
Σ
|
◦
A|4 dµt ≤ −2

ˆ
Σ
|
◦
A|2|∇

◦
A|2 dµt −

1

2σ2

ˆ
Σ
|
◦
A|4 dµt + Cσ−6−4δ. (4.15)
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As a consequence, if
ˆ
Σ
|
◦
A|4 dµ0 < B1σ

−4−4δ and B1 > 2C, then
ˆ
Σ
|
◦
A|4 dµt < B1σ

−4−4δ for

every t ∈ [0, T ].

Proof. Integrating (4.5) and using integration by parts,

d
dt

ˆ
Σ
|
◦
A|4 dµt = 2

ˆ
Σ
|
◦
A|2

(
∂

∂t
|
◦
A|2
)
dµt +

ˆ
Σ
|
◦
A|4H(h−H) dµt

=− 2

ˆ
Σ
|∇|

◦
A|2|2 dµt − 4

ˆ
Σ
|
◦
A|2|∇

◦
A|2 dµt

+ 4

ˆ
Σ
|
◦
A|2 h

H

(
|A|4 −Htr(A3)

)
dµt + 4

ˆ
Σ
|A|2

(
1− h

H

)
|
◦
A|4 dµt

+ 4

ˆ
Σ
(H − h)|

◦
A|2

◦
hijRmkiljν

kνl dµt − 8

ˆ
Σ

Rm1212|
◦
A|4 dµt

− 4

ˆ
Σ

(
∇j

(
Riciωνω

)
+∇l

(
Rmωijlν

ω
)) ◦
hij |

◦
A|2 dµt +

ˆ
Σ
|
◦
A|4H(h−H) dµt

(4.16)
where we used that the symmetries of the Riemannian tensor imply

−2
(
hliRmkjkl + hlkRmlijk

)
hij = −2

(
hjihliRmlkjk − hklhjiRmkjli

)
= −4|

◦
A|2Rm1212.

(4.17)
In order to estimate (4.16), we note that (4.11) and (4.12) imply

1

σ
≤ H ≤

√
5

σ
,

∣∣∣∣1− h

H

∣∣∣∣ ≤ 1

20
, H|h−H| ≤ 1

4σ2
. (4.18)

Using (4.11) and the well-known identity

|A|4 −Htr(A3) = −2κ1κ2|
◦
A|2 (4.19)

we find, using the estimate (4.14),

4

ˆ
Σ
|
◦
A|2 h

H

(
|A|4 −Htr(A3)

)
dµt + 4

ˆ
Σ
|A|2

(
1− h

H

)
|
◦
A|4 dµt +

ˆ
Σ
|
◦
A|4H(h−H) dµt

≤
(
1

4
− 19

10
+

1

2

)
1

σ2

ˆ
Σ
|
◦
A|4 dµt ≤

1

σ2

ˆ
Σ
|
◦
A|4 dµt. (4.20)

We now consider the terms

4

ˆ
Σ
(H − h)|

◦
A|2

◦
hijRmkiljν

kνl dµt − 8

ˆ
Σ

Rm1212|
◦
A|4 dµt

≤ C

ˆ
Σ
σ−

7
2
−δ|

◦
A|3 dµt + C

ˆ
Σ
σ−

5
2
−δ|

◦
A|4 dµt

≤ C

ˆ
Σ

(
3εσ−2

4
|
◦
A|4 + Cε4

−1
(
σ−2−δ

)4)
dµt + C

ˆ
Σ
σ−

5
2
−δ|

◦
A|4 dµt

(4.21)
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where we used the parametric Young’s inequality.
Estimating the remaining term we have

− 4

ˆ
Σ

(
∇j

(
Riciωνω

)
+∇l

(
Rmωijlν

ω
)) ◦
hij |

◦
A|2 dµt

= 4

ˆ
Σ

Riciωνω∇j

(
◦
hij |

◦
A|2
)
+ Rmωijlν

ω∇l

(
◦
hij |

◦
A|2
)
dµt

≤ C

ˆ
Σ
|Rm||∇

◦
A||

◦
A|2 dµt ≤ Cσ−

5
2
−δ

ˆ
Σ
|∇

◦
A||

◦
A|2 dµt,

also using the inequality |∇|
◦
A|| ≤ |∇

◦
A|. The latter term can be estimated as

Cσ−
5
2
−δ

ˆ
Σ
|∇

◦
A||

◦
A|2 dµt ≤

ε

2

ˆ
Σ
|∇

◦
A|2|

◦
A|2 dµt + C(ε)C2σ−5−2δ

ˆ
Σ
|
◦
A|2 dµt.

Proceeding as above, we get a term εσ−2∥
◦
A∥44 and a reminder Cεσ

−6−4δ.
We conclude by choosing ε suitably small and σ large, depending on c and δ. In particular,

we have
d
dt
∥
◦
A∥4L4(Σ,µt)

≤ −2
ˆ
Σ
|
◦
A|2|∇

◦
A|2 dµt −

1

2σ2
∥
◦
A∥4L4(Σ,µt)

+ Cσ−6−4δ. (4.22)

Finally, suppose that
´
Σ |

◦
A|4 dµt < B1σ

−4−4δ is not true for every t ∈ [0, T ]. Then, there

exists t0 > 0 a first time such that
´
Σ |

◦
A|4 dµt0 = B1σ

−4−4δ and so D = σ4+4δ
´
Σ |

◦
A|4 dµt0 =

B1 >
´
Σ |

◦
A|4 dµ0σ4+4δ. Since for every t ∈ [0, t0) we had

´
Σ |

◦
A|4 dµt < B1σ

−4−4δ, then

0 ≤ d
dt

∣∣∣∣
t=t0

ˆ
Σ
|
◦
A|4 dµt ≤ −2

ˆ
Σ
|
◦
A|2|∇

◦
A|2 dµt0 −

1

2σ2

ˆ
Σ
|
◦
A|4 dµt0 + Cσ−6−4δ.

It follows that D ≤ 2C < B1, which is a contradiction.

Lemma 4.1.7 (Rate of change of h(t)). Suppose that (Σ, Ft), t ∈ [0, T ], satisfies (4.11),
(4.12) and (4.13). Then there exists a constant c = c(c∞, c) > 0 and σ0 = σ0(c∞, B∞, c) > 1
such that, if σ > σ0,

|ḣ(t)| ≤ cσ−4−2δ. (4.23)

Proof. By definition of h we get

|Σt|ḣ(t) =
ˆ
Σ

∂H

∂t
dµt +

ˆ
Σ
H2(h−H) dµt + h

ˆ
Σ
(H − h)2 dµt

=

ˆ
Σ
(H − h)

(
|
◦
A|2 + Ric(ν, ν)

)
dµt −

ˆ
Σ
(H − h)

(
H2

2
−Hh+ h2

)
dµt

=

ˆ
Σ
(H − h)

(
|
◦
A|2 + Ric(ν, ν)

)
dµt −

1

2

ˆ
Σ
(H − h)3 dµt,

using that
ˆ
Σ
(H − h) dµt = 0. In absolute value, we estimate

|Σt||ḣ(t)| ≤ |Σt|
(
c∞σ

− 3
2
−δ
)
(B2

∞σ
−3−2δ + cσ−

5
2
−δ) +

|Σt|
2

(
c3∞σ

− 9
2
−3δ
)
.

The thesis follows dividing by |Σt| and choosing σ large depending on c∞, B∞ and c.

The previous preliminary Lemma leads to the following
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Lemma 4.1.8 (Evolution of the oscillation). Suppose that (Σ, Ft), t ∈ [0, T ], satisfies (4.11),
(4.12) and (4.13). Then there exist a constant C = C(c) > 0, a constant c = c(c∞, c) > 0
and a radius σ0 = σ0(B∞, c∞, c, δ) > 1 such that, if σ > σ0,

d
dt

ˆ
Σ
(H − h)4 dµt ≤ −12

ˆ
Σ
(H − h)2|∇H|2 dµt + Cσ−2

ˆ
Σ
(H − h)4 dµt + cσ−

13
2
−5δ

Proof. We consider the evolution

d
dt

ˆ
Σ
(H − h)4 dµt = 4

ˆ
Σ

(
∂H

∂t
− ḣ
)
(H − h)3dµt −

ˆ
Σ
H(H − h)5 dµt.

By Lemma 5.0.2 and integration by parts, we get

d
dt

ˆ
Σ
(H − h)4 dµt =− 12

ˆ
Σ
(H − h)2|∇H|2 dµt + 4

ˆ
Σ
(H − h)4(|A|2 + Ric(ν, ν)) dµt

− 4ḣ

ˆ
Σ
(H − h)3 dµt −

ˆ
Σ
H(H − h)5 dµt.

By the hypothesis, since r−1
Σ (t) ≤ 3σ−1

Σ and |Ricx| ≤ c|x|−
5
2
−δ, we find

∣∣|A|2 + Ric(ν, ν)
∣∣ ≤

Cσ−2. Combining this with the following consequence of Lemma 4.1.7∣∣∣∣ḣˆ
Σ
(H − h)3 dµt

∣∣∣∣ ≤ c(c∞, c)σ− 13
2
−5δ, (4.24)

we get the Thesis, also observing that, for σ large depending on c∞, |H(H − h)| ≤
√
5σ−2 in

view of hypothesis (ii).

We now estimate the evolution of |∇H|. In the proof below, observe that we do not use
Hypothesis (ii).

Lemma 4.1.9. Suppose that (Σ, Ft), t ∈ [0, T ], satisfies (4.11), (4.12) and (4.13). Then there
exist a constant C = C(c) > 0 and radius σ0 = σ0(c, δ) such that if σ > σ0 then

d
dt

ˆ
Σ
|∇H|4 dµt ≤ −3

ˆ
Σ
|∇2H||∇H|2 dµt + Cσ−6

ˆ
Σ
(H − h)4 dµt + Cσ−2

ˆ
Σ
|∇H|4 dµt.

Proof. Integrating by parts (4.6) we get

d
dt

ˆ
Σ
|∇H|4 dµt =

ˆ
Σ

∂

∂t

((
|∇H|2

)2)
dµt +

ˆ
Σ
|∇H|4H(h−H) dµt

=− 4

ˆ
Σ
|∇|∇H|2|2 dµt − 4

ˆ
Σ
|∇2H|2|∇H|2 dµt

+ 4

ˆ
Σ
(H − h)hij∇iH∇jH|∇H|2 dµt

− 4

ˆ
Σ
(H − h)

(
|A|2 + Ric(ν, ν)

)
∇ ·
(
|∇H|2∇H

)
dµt

− 4

ˆ
Σ

RicΣt(∇H,∇H)|∇H|2 dµt +
ˆ
Σ
|∇H|4H(h−H) dµt

(4.25)
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By (4.11), H, |H − h| and |A| are all bounded by Cσ−1. On the other hand, the asymptotic
flatness implies that |RicΣt | ≤ Cσ−2 and |A|2 + Ric(ν, ν)| ≤ Cσ−2. Then, for every ε > 0,

d
dt

ˆ
Σ
|∇H|4 dµt ≤− 4

ˆ
Σ
|∇2H||∇H|2 dµt + Cσ−2

ˆ
Σ
|∇H|4 dµt

+ Cσ−2

ˆ
Σ
|H − h||∇H|2|∇2H| dµt

≤
(
εC

2
− 4

) ˆ
Σ
|∇2H|2|∇H|2 dµt + Cσ−2

ˆ
Σ
|∇H|4 dµt

+
C

2ε
σ−4

ˆ
Σ
|H − h|2|∇H|2 dµt.

(4.26)

We conclude choosing ε = 2
C and using Young’s inequality in the following way

σ−4

ˆ
Σ
|H − h|2|∇H|2 dµt ≤ σ−6

ˆ
Σ
(H − h)4 dµt + σ−2

ˆ
Σ
|∇H|4 dµt. (4.27)

At this point, we prove the the following flow independent-inequality.

Lemma 4.1.10. Let Σ ↪→M be a surface. Then we have, for every ε > 0 and σ > 1,

−σ−4

ˆ
Σ
(H − h)2|∇H|2 dµ ≤ − ε

2σ2

ˆ
Σ
|∇H|4 dµ+ ε2

ˆ
Σ
|∇2H|2|∇H|2 dµ.

Proof. Since h is constant,

σ−2

ˆ
Σ
|∇H|4 dµ = σ−2

ˆ
Σ
⟨∇(H − h),∇H⟩|∇H|2 dµ

= − σ−2

ˆ
Σ
(H − h)(∆H)gkl∇kH∇lH dµ− 2σ−2

ˆ
Σ
(H − h)gij∇jHg

kl∇i∇kH∇lH dµ

≤
√
2 + 2

σ2

ˆ
Σ
|H − h||∇2H||∇H|2 dµ ≤ 2

ˆ
Σ

(
(H − h)2

εσ4
+ ε|∇2H|2

)
|∇H|2 dµ,

using also the (parametric) Young’s inequality.

Lemma 4.1.11. Let (Σ, Ft), t ∈ [0, T ], be as above. For η > 0, let us set

ak(t) := kσ−4∥H − h∥4L4(Σ,µt)
+ ∥∇H∥4L4(Σ,µt)

. (4.28)

Then there exist a constant ηw = η(c) > 0, a constant c = c(B1, δ, c) and a radius σ0 =
σ0(B∞, B1, c∞, δ, c) > 1 such that, for k = ηw, B2 > c(B1, δ, c) and σ > σ0, we have the
implication

aηw(0) < B2σ
−8−4δ =⇒ aηw(t) < B2σ

−8−4δ for every t ∈ [0, T ]. (4.29)

Proof. Combining the previous Lemmas, we have that

ȧk(t) :=
d
dt

(ˆ
Σ
|∇H|4 dµt + kσ−4

ˆ
Σ
(H − h)4 dµt

)
≤ − 3

ˆ
Σ
|∇2H||∇H|2 dµt + Cσ−6

ˆ
Σ
(H − h)4 dµt + Cσ−2

ˆ
Σ
|∇H|4 dµt

− 12kσ−4

ˆ
Σ
(H − h)2|∇H|2 dµt + Ckσ−6

ˆ
Σ
(H − h)4 dµt + kc(c∞, c)σ

− 21
2
−5δ,
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where C = C(c) > 0 is the constant introduced in the statement of Lemma 4.1.8 and Lemma
4.1.9, while c(c∞, c) > 0 have been introduced in Lemma 4.1.8. By Lemma 4.1.10 multiplied
by 12k,

−12k

σ4

ˆ
Σ
(H − h)2|∇H|2 dµ ≤ −6kε

σ2

ˆ
Σ
|∇H|4dµ+ 12kε2

ˆ
Σ
|∇2H|2|∇H|2 dµ,

and Sobolev inequality, we rewrite ȧk(t) as

d
dt

(ˆ
Σ
|∇H|4 dµt + kσ−4

ˆ
Σ
(H − h)4 dµt

)
≤ (C − 6kε)σ−2

ˆ
Σ
|∇H|4 dµt +

(
12kε2 − 3

) ˆ
Σ
|∇2H|2|∇H|2 dµt

+ Ckσ−6

ˆ
Σ
(H − h)4 dµt + kc(c∞, c)σ

− 21
2
−5δ.

(4.30)

We thus solve the system {
C − 6kε = −C
12kε2 = 1

that is k = 4
3C

2 and ε = 1
4C . With this choice, we get

d
dt

(ˆ
Σ
|∇H|4 dµt +

4

3
C2σ−4

ˆ
Σ
(H − h)4 dµt

)
≤ − Cσ−2

ˆ
Σ
|∇H|4 − 2

ˆ
Σ
|∇2H|2|∇H|2

+
4

3
C3σ−6

ˆ
Σ
(H − h)4 dµt +

4

3
C2c(c∞, c)σ

− 21
2
−5δ.

(4.31)

So we choose ηw := 4
3C

2. Then point (iv) of Lemma 2.3.5 implies that
ˆ
Σ
(H − h)4 dµt ≤ c4Per

(
∥
◦
A∥4L4(Σ,µt)

+ σ−4−4δ

)
≤ c4Per(B

4
1 + 1)σ−4−4δ. (4.32)

Observe moreover that

c(c∞, c)σ
− 21

2
−5δ =

(
c(c∞, c)σ

− 1
2
−δ
)
σ−10−4δ ≤ σ−10−4δ,

if σ
1
2
+δ ≥ σ0(B∞, c∞, c), and σ ≥ σ0. This implies that

d
dt

(ˆ
Σ
|∇H|4 dµt + ηwσ

−4

ˆ
Σ
(H − h)4 dµt

)
≤ −Cσ−2

ˆ
Σ
|∇H|4 + 4

3
C3c4Per(B

4
1 + 1)σ−10−4δ +

4

3
C2σ−10−4δ. (4.33)

This implies
ȧη(t) ≤ −Cσ−2aη(t) + cσ−10−4δ, (4.34)

with c = c(B1, cPer, c), using again (4.32). The thesis follows.

From now on, when considering the roundness class Wη
σ(B1, B2), we fix the parameter η

equal to the value ηw given by the previous Lemma, and we will no longer need to specify the
dependence on η of the constants in the estimates. Moreover, we will simply writeWσ(B1, B2)
and Bσ(B1, B2, Bcen). See also Remark 2.3.3.
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4.1.4 Evolution of the barycenter and convergence

In this Subsection, we obtain a first result which is an important block in the proof of Theorem
1.1.2. In particular, we show that by an appropriate choice of the parameters of the class
Bησ(B1, B2, Bcen) and under suitable conditions on the initial surface, the solution of the flow
remains inside the class for arbitrary times. However, in order to control the possible drift of
the barycenter, we will need an additional smallness requirement on the L2-norm of the mean
curvature of Σ: in terms of Definition 3.2.1, we prove that the flow exists for every t > 0 if
the initial surface is almost CMC.

An important assumption in the previous results was the uniform comparability between
rΣt and σ in (2.29), which shows that Σt stays enough far from the coordinate origin to ensure
the desired decay of the ambient curvature. To justify this assumption, we study now the
evolution of the barycenter under the flow.

Proposition 4.1.12. Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold with ADM-energy
EADM > 0 and let ι : Σ ↪→M be a surface. Let (Σ, Ft) be a solution to the volume preserving
mean curvature flow system (4.1) with initial datum F0 = ι. Suppose that the flow exists
on a compact interval of time [0, T ], with T > 0, and that (Σ, g(t)) ∈ Wσ(B1, B2) for some
B1, B2 > 0. Then there exists σ0 = σ0(B1, B2, c, δ, EADM) such that, for every σ > σ0 and
every t ∈ [0, T ],

d
dt
∥H − h∥2L2(Σt)

≤ −4EADM

σ3Σt

∥(H − h)t∥2L2(Σt)
− 2

σ2Σt

∥(H − h)d∥2L2(Σt)
.

Proof. In the following, c will be a positive constant that can change from line to line and
that depends on the roundness constants. Combining the inequalities obtained in Proposition
3.1.10, since (H − h)d ∈ span{fk : k ≥ 4}, we get

⟨L(H − h), H − h⟩2 ≥

≥ 6mH(Σt)

σ3Σt

∥(H − h)t∥22 −
3h

2

ˆ
Σ
(H − h)((H − h)t)2 dµ− cσ−3−2δ∥(H − h)t∥22

+
2

σ2Σt

∥(H − h)d∥22 − cσ−
5
2
−δ∥(H − h)t∥2∥(H − h)d∥2 ≥

≥ 5mH(Σt)

σ3Σt

∥(H − h)t∥22 −
3h

2

ˆ
Σ

(
(H − h)t + (H − h)d

)
((H − h)t)2 dµ+

3

2σ2Σt

∥(H − h)d∥22,

for σ large enough. Keep in mind that, moreover, for σ sufficiently large, mH(Σ) ≥ EADM
2 > 0.

From a dynamical point of view we find
d
dt
∥H − h∥22 = −2⟨L(H − h), H − h⟩2 −

ˆ
Σ
H(H − h)3 dµ

≤ − 5EADM

σ3Σt

∥(H − h)t∥22 + 3h

ˆ
Σ
((H − h)t + (H − h)d)((H − h)t)2 dµ

− 3

σ2Σt

∥(H − h)d∥22 − h
ˆ
Σ
(H − h)3 dµ+ cσ−3−2δ

ˆ
Σ
(H − h)2 dµ,

where c = c(c∞) > 0. Thus, we have to study the integrals

h

ˆ
Σ
((H −h)t)3 dµ, h

ˆ
Σ
(H −h)d((H −h)t)2 dµ, h

ˆ
Σ
((H −h)t +(H −h)d)3 dµ. (4.35)
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The first integral in (4.35) is estimated by Lemma 3.1.16. The second integral can be estimated
combining ∥(H − h)t∥L∞(Σ) = O(σ−

3
2
−δ), ∥fα∥L∞(Σ) = O(σ−1) and∣∣∣∣hˆ

Σ
(H − h)d((H − h)t)2 dµ

∣∣∣∣ ≤ cσ− 5
2
−δ

ˆ
Σ
|(H − h)d||(H − h)t| dµ

≤ cσ−2

2

ˆ
Σ

(
σ−δ((H − h)d)2 + σ−1−δ((H − h)t)2

)
dµ.

By the formula of the cube of a binomial, it only remains to estimate∣∣∣∣hˆ
Σ
((H − h)d)3 dµ+ 3h

ˆ
Σ
(H − h)t((H − h)d)2 dµ

∣∣∣∣
≤ ∥h(H − h)d + 3h(H − h)t∥∞

ˆ
Σ
((H − h)d)2 dµ ≤ cσ−

5
2
−δ

ˆ
Σ
((H − h)d)2 dµ,

since also ∥(H − h)d∥L∞(Σ) ≡ ∥(H − h) − (H − h)t∥L∞(Σ) = O(σ−
3
2
−δ). Putting the pieces

together, we get

d
dt
∥H − h∥22 ≤ −

4EADM

σ3Σt

∥(H − h)t∥22 −
2

σ2Σt

∥(H − h)d∥22.

Remark 4.1.13. An immediate consequence, if σ is sufficiently large depending on EADM,
i.e. 2

σ2
Σt

≥ 4EADM
σ3
Σt

, is that

d
dt
∥H − h∥22 ≤ −

4EADM

σ3Σt

∥H − h∥22.

The next result, which is similar to Proposition 3.4 in [HY96], gives a bound on the
possible change of area of the surface along the flow as long as it remains round.

Lemma 4.1.14. Given B1, B2, there exist constants c > 0 and σ0 > 1 such that, if σ > σ0
and Σt is a solution of the flow (5.2) for t ∈ [0, T ] with Σt ∈ Wη

σ(B1, B2) for all t ∈ [0, T ]
then

0 ≤ σΣ0 − σΣt ≤ cσ
1
2
−δ

for every t ∈ [0, T ].

Proof. Suppose that σ > 2diam (C) and consider the sphere Sσ
2
(⃗0). Since the flow is volume

preserving, we have that the volume enclosed between Σt and Sσ
2
(⃗0) remains the same for

every t ∈ [0, T ]. We call this region Ωt, while Λt is the Euclidean volume of the region enclosed
by Σt. Since Σt belongs to the roundness class for every t ∈ [0, T ], we find that

|Volg(Ωt)−Volge(Ωt)| ≤ Cσ
5
2
−δ, (4.36)∣∣∣∣∣Volge(Λt)−

4πσ3Σt

3

∣∣∣∣∣ = ∣∣∣Volge(Λt)−Volge(SσΣt
(z⃗Σt))

∣∣∣ ≤ C|Σt|∥f(·, t)∥L∞ ≤ cσ
5
2
−δ, (4.37)

for every t ∈ [0, T ]. Combining the identity Volge(Ωt) = Volge(Λt) − πσ3

6 with (4.36) and
(4.37), we get∣∣∣∣∣Volg(Ωt)−

(
4πσ3Σt

3
− πσ3

3

)∣∣∣∣∣ ≤ Cσ 5
2
−δ +

∣∣∣∣∣Volge(Λt)−
4πσ3Σt

3

∣∣∣∣∣ ≤ cσ 5
2
−δ. (4.38)
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We conclude noticing that Volg(Ωt) = Volg(Ω0), and thus
4πσ3

Σt
3 − πσ3

3 , up to an error of order
σ

5
2
−δ, is constant in [0, T ]. This implies the thesis.

We are now ready to prove that, by an appropriate choice of the parameters of roundness
class, a well-centered almost CMC round surface remains inside the class for arbitrary times.
We remember that the definition of roundness class has been given in Definition 2.3.1.

Lemma 4.1.15. Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold with EADM > 0. Let
ι : Σ ↪→ M be surface and set σ = σΣ. Fix Q > 1 and cin > 0. There exists C =
C(Q, cin, EADM) > 0 such that if B1 is chosen as in Lemma 4.1.6 and η and B2 as in Lemma
4.1.11, and Bcen > C, then the following statement holds. Let (Σ, Ft) be a solution to the
volume preserving mean curvature flow with initial datum F0 = ι. Suppose that the flow
exists on a compact interval of time [0, T ], with T > 0, and that the following conditions hold

(i) (Σ, F0) ∈ Bσ(B1, B2, Bcen);

(ii) (Σ, F0) is (σ, cin)-almost-CMC, in the sense of Definition 3.2.1.

(iii) (Σ, Ft) ∈ Bσ(B1, B2, QBcen) for every t ∈ [0, T ].

Then there exists σ0 = σ0(c, δ, B1, B2, Bcen, EADM, Q) such that, if σ > σ0, then (Σ, g(t)) ∈
Bσ(B1, B2, QBcen) for every t ∈ [0, T ].

Proof. In this proof, for the reader’s convenience, we set E ≡ EADM. Moreover, for sake of
brevity, we will indicate with z⃗(t) the barycenter z⃗Σt . We have to show that no equality in the
definition of Bσ(B1, B2, QBcen) can occur. If we start in Bσ(B1, B2, Bcen), then there exists
a maximal time t0 ∈ (0, T ] such that (Σ, g(t)) ∈ Bσ(B1, B2, QBcen) for every t ∈ [0, t0) and
(Σ, g(t0)) ∈ Bσ(B1, B2, QBcen). This means that, at t = t0, at least one of the inequalities
in Definition 2.3.1 is an equality, with Bcen replaced by QBcen. We note that the conditions
(2.29) are preserved: Lemma 2.3.5 says that, for σ sufficiently large, a surface in Wσ(B1, B2)

satisfies the strict bounds (2.42) on κi, and thus |A| <
√
5/2σ2Σ must hold; moreover, thanks

to the choice of σ, Lemma 4.1.14 implies that the area radius σΣt is controlled for every
t ∈ [0, T ] in the sense of (2.29), if σ is large. Thus, it is enough to prove the strict inequalities
in (2.31) and (2.32).

In a first step, we suppose that |z⃗Σt | ≤ QBcenσ
1−δ for every t ∈ [0, t0] and we show that

the other inequalities are strict. In a second moment we will show that also this condition
holds strictly. Observe that, thanks to Lemma 2.3.5, if σ is suitably large∣∣∣∣ x⃗(Ft(x))

σΣt

∣∣∣∣ = ∣∣∣∣ z⃗Σt

σΣt

+ νet (x) +
f(x, t)

σΣt

νet (x)

∣∣∣∣ ≥ 1− cσ−δ >
1

3
, (4.39)

from which we get σΣt
rΣ(t)

< 3. Combining this with the results of Lemma 2.3.5, we see that
we are in the hypothesis of the Lemmas of Section 4.1.3 and of Proposition 4.1.12. Thus,

choosing B1 as in Lemma 4.1.6, we have that ∥
◦
A∥L4(Σt) can never reach the bound B1σ

−1−δ.
In the same way, choosing B2 as in Lemma 4.1.11, depending only on B1, and B∞ and
c∞ = c∞(B2, η) as in Lemma 2.3.5, we also have that the left hand side of (2.32) remains
strictly below B2σ

−8−4δ, if σ is sufficiently large, depending on B1, B2 and the universal
constants.

We now suppose that there exists t0 ∈ (0, T ], such that |z⃗Σt0
| = QBcenσ

1−δ. Also in this
case, for every t ∈ [0, t0] we continue to be in the hypothesis of Proposition 4.1.12, and this
implies that ˆ

Σ
(H − h)2 dµt ≤

(ˆ
Σ
(H − h)2 dµ0

)
e−

5Et
2σ3 ,
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also using the bounds on the area radius, for every t ∈ [0, t0], where dµ0 = dµ(Σ,g). By the
hypothesis on the (cin, σ)-almost-CMC of Σ, we find

∥H − h∥L2(Σt) ≤ cinσ
−1−δe−

5Et
2σ3 , ∀t ∈ [0, t0]. (4.40)

In the following, we indicate with z⃗0(t) the center of the Euclidean sphere of radius σΣ
approximating Σ, defined as in Lemma 2.3.5. This Lemma also implies that |z⃗0(t) − z⃗(t)| ≤
c0(B1, c, δ)σ

1
2
−δ, uniformly in t. A straightforward computation shows that the barycenter

evolves according to

∂tz⃗(t) ≡ ∂tz⃗Σt =

´
Σ(h−H) [ν +H (Ft(x)− z⃗(t))] dµt

|Σt|
. (4.41)

See for example [CW08, Remark 3.1]. Since z⃗0(t) = x⃗(Ft(x))− σΣtνσΣt
− ftνσΣt

, where ft is
defined in Lemma 2.3.5 and νσΣt

is the Euclidean normal of the sphere SσΣt
(z⃗0(t)), we find

that, for σ large (depending on the roundness constants), z⃗(t) is bounded by O(σ), uniformly
with respect to the roundness constant, since maxx |x⃗(Ft(x))| is the Euclidean radius of Σe

t ,
i.e. RΣ(t). Thus

|∂tz⃗(t)| ≤
c

|Σt|

ˆ
Σ
|H − h| dµt ≤

c

|Σt|
1
2

∥H − h∥L2(Σt) ≤ c(cin)σ
−2−δe−

5Et
2σ3 .

Integrating this expression in [0, t0], we get

|z⃗(t0)− z⃗(0)| ≤
ˆ t0

0
|∂tz⃗| dt ≤ c(cin)σ

−2−δ

(
2σ3

5E

)(
1− e−

5Et0
2σ3

)
≤ Cσ1−δ,

where C = C(cin, E) > 0. Using now hypothesis (i), we conclude that

|z⃗Σt0
| ≤ Bcenσ

1−δ + Cσ1−δ < QBcenσ
1−δ,

if Bcen is sufficiently large depending on C and Q > 1, and thus we have a contradiction with
the definition of t0. This implies the thesis.

Theorem 4.1.16 (Existence of the flow - Part I). Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically
flat manifold with EADM > 0. Let ι : Σ ↪→ M be a surface and set σ := σΣ. Fix Q > 1
and cin > 0. Set B1, B2, Bcen and σ0 as in Lemma 4.1.15, and suppose that σ > σ0, (Σ, F0)
belongs to Bσ(B1, B2, Bcen) and that it is (σ, cin)-almost-CMC. Let (Σ, Ft) be a solution to the
volume preserving mean curvature flow with initial datum F0 = ι. Then, this solution exists
for every t ∈ [0,∞) and (Σ, Ft) belongs to Bσ(B1, B2, QBcen) for every t ∈ [0,∞).

Proof. Since (Σ, F0) belongs to Bσ(B1, B2, Bcen), for t small we have that (Σ, Ft) belongs to
Bσ(B1, B2, QBcen). Define Tmax as

sup
{
T : (Σ, Ft) exists in [0, T ) and it belongs to Bσ(B1, B2, QBcen) for every t ∈ [0, T )

}
.

(4.42)
Of course Tmax > 0. Suppose that Tmax <∞. Then, we can consider the limit (ΣTmax , gTmax) :=
lim

t↗Tmax
(Σ, g(t)), which is a smooth surface, since we are considering the limit of a sequence of

surfaces whose second fundamental form is uniformly bounded, together with its derivative
of each order, see Section 4.3. Thus, [0, Tmax) ∋ t 7→ g(t) is smoothly extended to [0, Tmax].
We have that (Σ, g(t))t∈[0,Tmax] is a (smooth) solution to the flow which belongs, for every
t, to Bσ(B1, B2, QBcen) and which at t = 0 belongs to Bσ(B1, B2, Bcen) and is almost-CMC.
Choosing σ0 as in Lemma 4.1.15 with T = Tmax (observing that the choice of σ0 does not
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depends on T ) and σ > σ0, we have that (Σ, g(t)) ∈ Bσ(B1, B2, QBcen) for every t ∈ [0, Tmax].
Thanks again to the computations in Section 4.3, see also Remark 4.1.2, we can smoothly ex-
tend the solution past Tmax, that is, there exists τ > 0 such that the solution can be extended
to [0, Tmax + τ). Since (Σ, g(Tmax)) belongs to Bσ(B1, B2, QBcen), possibly choosing τ > 0
smaller we have that (Σ, g(t)) belongs to Bσ(B1, B2, QBcen) for every t ∈ [0, Tmax + τ). But
this contradicts the definition of Tmax unless Tmax =∞.

4.2 Proof of Theorem 1.1.2

4.2.1 Evolution of Euclidean spheres

We conclude by considering the explicit example of a Euclidean coordinate sphere Sr(0) as
initial surface for our flow. To ensure that condition (ii) of Theorem 4.1.15 is satisfied (for
an initial time which is possibly non-zero), we have to strengthen the assumptions on our
ambient manifold by requiring the C1

1+δ-Regge-Teitelboim conditions in Definition 3.1.19.
Even if under this condition the existence of the ADM-center of mass is not guaranteed,
at the end we will prove the existence of an abstract center of mass, i.e. a CMC-foliation
constructed via volume preserving mean curvature flow.

We consider the immersion F0 = ι : x⃗−1
(
Sr (⃗0)

)
↪→ M , and we set, as usual, σ := σSr (⃗0),

the area radius of the Euclidean sphere. First of all, we remember that Lemma 3.1.20 implies
the following result.

Lemma 4.2.1. Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat 3-manifold that satisfies the C2
1+δ-

Regge-Teitelboim conditions. Consider the immersion x⃗−1
(
Sr (⃗0)

)
↪→M and set σ as above.

Then there exist two universal constants Ctot > 0 and Ctrasl > 0 such that the family of
Euclidean spheres satisfies

∥H − h∥L2(Sr (⃗0)) ≤ Ctotσ
− 1

2
−δ,

∣∣∣∣∣
3∑

α=1

〈
H − h, να

σ

〉2
L2(Sr (⃗0))

∣∣∣∣∣ ≤ Ctraslσ
−2−2δ, (4.43)

for every r sufficiently large, where, with an abuse of notation, we identified x⃗−1
(
Sr (⃗0)

)
and

Sr (⃗0).

We study the evolution of the quantity in (4.43).

Lemma 4.2.2. Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold with EADM > 0. Let

ι : Σ ↪→ M be a surface and set σ := σΣ. Let (Σ, Ft) be a solution to the volume preserving
mean curvature flow with initial datum F0 = ι. Suppose that the flow exists on a compact
interval of time [0, T ], with T > 0, and that (Σ, g(t)) ∈ Wσ(B1, B2) for every t ∈ [0, T ]
and some B1, B2 > 0. Then there exist a constant c = c(B1, B2, c, δ) > 0 and a radius
σ = σ0(B1, B2, c, δ) > 1 such that if σ > σ0 then∣∣∣∣ d

dt

〈
H − h, ν

σ

〉
L2(Σt)

∣∣∣∣ ≤ cσ−3−2δ,

for every t ∈ [0, T ].

Proof. By the definition of scalar product in L2(Σt) we find

d
dt

〈
H − h, να

σ

〉
L2(Σt)

=
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=
1

σ

(ˆ
Σ

(
∂H

∂t
− ḣ
)
να dµt +

ˆ
Σ
(H − h)

(
∂να
∂t

)
dµt −

ˆ
Σ
(H − h)2Hνα dµt

)
=

ˆ
Σ
(−L(H − h))να

σ
dµ+

{
− 1

σ

ˆ
Σ
ḣνα dµ+

1

σ

ˆ
Σ
(H − h)

(
∂να
∂t

)
dµ+ O(σ−3−2δ)

}
,

using also Lemma 5.0.2. This also implies∣∣∣∣ 1σ
ˆ
Σ
(H − h)

(
∂να
∂t

)
dµ

∣∣∣∣ ≤ σ−1∥H − h∥2∥∇H∥2 ≤ cσ−3−2δ, (4.44)

where we used that σ∥∇H∥2 + ∥H − h∥2 ≤ cσ−
1
2
−δ. Then inequality (4.44), Lemma 4.1.7

and equation (3.31) imply the thesis.

We finally conclude the proof of Theorem 1.1.2.

Proposition 4.2.3 (Existence of the flow - Part II). Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically

flat manifold with EADM > 0 that satisfies the C1
1+δ-Regge-Teitelboim conditions, i.e. (3.37)

holds. There exists r0 = r0(c, δ) > 1 such that for every r > r0 the solution (Σ, Ft) to the
volume preserving mean curvature flow with initial datum F0 = ι : x⃗−1

(
Sr (⃗0)

)
↪→ M exists

for every t ∈ [0,∞).

Remark 4.2.4. The weak Regge-Teitelboim assumption in the hypothesis of the statement
above could be replaced with assuming directly that the initial family of surfaces satisfy in-
equality (4.43).

Proof. In the following, r and σ := σSr (⃗0) will be arbitrary but fixed. In particular, we will
require σ to be large, which translates into a requirement on the largeness of r, in view of the

asymptotic flatness. Set cin := max

{√
2(Ctrasl+1)

π , Ctot

}
and Q = 4

3 , and choose B1, B2 and

Bcen as in Theorem 4.1.16, and σ0 to be the maximum of the σ0s obtained by Lemma 4.1.15
considering in the statement both the class Bσ(B1, B2, Bcen) and Bσ(B1, B2, 3Bcen). Suppose
moreover that B1, B2 and Bcen are such that x⃗−1

(
Sr (⃗0)

)
belongs to Bσ(B1, B2, Bcen). Set

Π(t) :=
3∑

α=1

〈
H − h, να

σ

〉2
L2(Σt)

.

Lemma 4.2.1 says that |Π(0)| ≤ Ctraslσ
−2−2δ. Consider the solution Ft starting from Σ and

define

Tmax := sup

{
T :

Ft exists in [0, T ) and Π(t) < (Ctrasl + 1)σ−2−2δ for every t ∈ [0, T ),
(Σ, g(t)) ∈ Bσ(B1, B2, 2Bcen) for every t ∈ [0, T )

}
.

If Tmax = ∞ then the Theorem is proved. Suppose then that Tmax < ∞. Thus, Tmax is the
first time such that

Π(Tmax) = (Ctrasl + 1)σ−2−2δ or (Σ, g(Tmax)) ∈ Bσ(B1, B2, 2Bcen). (4.45)

Since we have chosen B1 and B2 as in Lemma 4.1.15, which does not require the almost-
CMCness in its hypotheses, then for σ large the second case only occurs when |z⃗ΣTmax

| =
2Bcenσ

1−δ.

Claim. We show the following claim: if (4.45) occurs, then there exists a time t0 ≤ Tmax
such that (Σ, g(t0)) ∈ Bσ(B1, B2, 3Bcen) and ∥H − h∥L2(Σt0 )

≤ cinσ
−1−δ.
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In a second step, Theorem 4.1.16, with Q = 4
3 and Bcen of the statement of Theorem

4.1.16 replaced by 3Bcen, implies that (Σ, g(t)) exists for every t ∈ [0,∞) and (Σ, g(t)) ∈
Bσ(B1, B2, 4Bcen), thanks to the choice of B1, B2 and Bcen and for σ is suitably large.

Proof of the claim. At first, suppose that Tmax is the first time such that Π(Tmax) =
(Ctrasl + 1)σ−2−2δ and that moreover it holds (Σ, g(Tmax)) ∈ Bσ(B1, B2, 2Bcen).

(i) If there exists t0 ∈ [0, Tmax] such that
ˆ
Σ

(
(H − h)d)

)2
dµt0 ≤

ˆ
Σ

(
(H − h)t

)2
dµt0 , (4.46)

then ∥H − h∥2L2(Σt0 )
≤ 2

´
Σ

(
(H − h)t

)2
dµt0 , and moreover, thanks to Lemma 3.1.18,

with Π = Π(t0), we get∣∣∣∣Π(t0)− 4π

3

ˆ
Σ

(
(H − h)t

)2
dµt0

∣∣∣∣ ≤ cσ− 1
2
−δ∥H − h∥2L2(Σt0 )

,

where in the latter inequality we combined the proof of Lemma 3.1.18 with the estimate
on |σ − σΣt | given by Lemma 4.1.14.
Since Π(t0) ≤ (Ctransl+1)σ−2−2δ, (4.46) implies that ∥H−h∥2L2(Σt0 )

≤ 2(Ctransl+1)
π σ−2−2δ,

for σ large. Moreover, (Σ, g(t0)) ∈ Bσ(B1, B2, 2Bcen) and thus we have the claim thanks
to the definition of cin.

(ii) Suppose now that for every t ∈ [0, Tmax] it holds
ˆ
Σ

(
(H − h)d)

)2
dµt >

ˆ
Σ

(
(H − h)t

)2
dµt. (4.47)

Thus Lemma 4.1.12 implies that

d
dt
∥H − h∥22 ≤ −

2

σ2Σ
∥(H − h)d∥22 ≤ −

1

σ2Σ
∥(H − h)t∥22 −

1

σ2Σ
∥(H − h)d∥22,

that is
∥H − h∥2L2(Σt)

≤ ∥H − h∥2L2(Σ0)
e−

4t
5πσ2 ≤ Ctotσ

−1−2δe−
4t

5πσ2 (4.48)

for every t ∈ [0, Tmax]. On the other hand, Lemma 4.2.2, combined with
√
Π(t) ≤√

Ctrasl + 1σ−1−δ for every t ∈ [0, Tmax], implies that

d
dt

〈
H − h, να

σ

〉2
L2(Σt)

≤ cσ−4−3δ,

for every t ∈ [0, Tmax], with c depending on B1, B2, c, δ and also on Ctrasl. This means
that, integrating and computing in t = Tmax,

(Ctrasl+1)σ−2−2δ (4.45)
=

∑
α

〈
H − h, να

σ

〉2
L2(ΣTmax )

≤
∑
α

〈
H − h, να

σ

〉2
L2(Σ0)

+cσ−4−3δTmax.

Since the L2-product at the initial time is smaller than Ctraslσ
−2−2δ, the inequality leads

to Tmax ≥ 1
cσ

2+δ. Computing (4.48) in Tmax we get

∥H − h∥2L2(ΣTmax )
≤ Ctotσ

−1−2δe−
4Tmax
5πσ2 ≤ Ctotσ

−1−2δe−
4σδ

5πc ≤ Ctotσ
−2−2δ, (4.49)
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for σ large. We get the claim choosing t0 = Tmax, thanks to the definition of cin,
observing also that (Σ, g(t0)) ∈ Bσ(B1, B2, 2Bcen).

To conclude with the remaining case, suppose secondly that Tmax is the first time such that
|z⃗ΣTmax

| = 2Bcenσ
1−δ and Π(t) ≤ (Ctrasl + 1)σ−2−2δ for every t ∈ [0, Tmax]. As above, we

consider two cases.

• If Tmax > σ2+δ, we conclude as above, distinguishing again the two cases: the case (i)
is identical to the one exposed above; in the case (ii) we skip from inequality (4.48) to
(4.49) and we conclude setting t0 := Tmax as above.

• Otherwise, Tmax ≤ σ2+δ. Since Π(t) ≤ (Ctrasl + 1)σ−2−2δ for every t ∈ [0, Tmax], it
follows that | ⟨H − h, ν⟩L2(Σt)

| ≤ c(Ctrasl)σ
−δ. Thus the evolution (4.41) implies that

|∂tz⃗| ≤ |Σt|−1
∣∣⟨h−H, ν⟩L2(Σt)

∣∣+ |Σt|−1

∣∣∣∣ˆ
Σ
(H − h)2(Ft(x)− z⃗) dµt

∣∣∣∣
+ |Σt|−1

∣∣∣∣hˆ
Σ
(h−H)(Ft(x)− z⃗) dµt

∣∣∣∣ . (4.50)

Since, by Lemma 2.3.5 Ft(x)− z⃗(t) = σΣtνt +O(σ
1
2
−δ), it follows the inequality |∂tz⃗| ≤

c(Ctrasl, B1, B2)σ
−2−δ for every t ∈ [0, Tmax] and for σ sufficiently large. Notice, in fact,

that the second and (the second addend of the) third addend in (4.50) decay with the
right order. It follows that

∣∣z⃗ΣTmax
− z⃗(0)

∣∣ ≤ ˆ Tmax

0
|∂tz⃗| dt ≤ Tmaxc(Ctrasl, B1, B2)σ

−2−δ ≤ c(Ctrasl, B1, B2).

Since by the asymptotic flatness of the manifold, |z⃗(0)| ≡ |z⃗Sσ (⃗0)| ≤ C(c)σ
1
2
−δ, we find

that |z⃗ΣTmax
| ≤ C(c)σ

1
2
−δ for σ large, and thus the equality

∣∣z⃗ΣTmax

∣∣ = 2Bcenσ
1−δ cannot

hold, for σ large depending on Bcen and c. Thus, this second scenario cannot happen.

4.3 Conclusions

In Section 4.2 we proved long time existence of solutions to the volume preserving mean
curvature flow starting from Euclidean spheres. In this Section we review some technical
details concerning the regularization of the second fundamental form, and its derivatives,
along the flow. We also conclude that the flow converges, as t→∞, to a CMC-surface.

It is well-known that, if

Cm ≡ Cσ
m := max

0≤l≤m
sup
Aσ

∣∣∣∇lRm
∣∣∣ , ∀m ∈ N ∪ {0}. (4.51)

the derivatives of the second fundamental form of Σt evolving by volume preserving mean
curvature flow satisfy

∂

∂t
|∇mA|2 ≤ ∆|∇mA|2 − 2|∇m+1A|2 +

∑
i+j+k=m

∇mA ∗ ∇iA ∗ ∇jA ∗ ∇kA

+ (h−H)
∑

i+j=m

∇m ∗ ∇iA ∗ ∇jA+ Cm

∑
i≤m

∇iA ∗ ∇A+ Cm+1|∇mA|.
(4.52)
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See in example [CRM07], [Hui87]. Since we are assuming that our flow lives in the roundness
class Bσ(B1, B2, Bcen) for σ = σΣ0 and suitably B1, B2 and Bcen, and thus

|A(t)| <
√

5

2
σ−1, (4.53)

for every t ∈ [0,∞), the following (classical) Lemma says that also the derivatives of A(t) are
uniformly bounded.

Lemma 4.3.1. Let (M, g, x⃗) be a C2
1
2
+δ

-asymptotically flat manifold. Let (Σ, g(t)) be the

volume preserving mean curvature flow of Section 4.2 in a time interval [0, T ]. Then the
second fundamental form and its derivatives remains bounded uniformly in [0, T ].

Corollary 4.3.2. Let (M, g, x⃗) be a C2
1/2+δ-asymptotically flat manifold. Let (Σ, g(t)) be a

surface of M evolving by volume preserving mean curvature flow of Section 4.2. Then there
exists a constant c > 0, depending on σ, such that

|∇H(t)|2 ≤ c, |∇2H(t)|2 ≤ c ∀t ∈ [0,∞). (4.54)

Proof. This follows immediately from Lemma 4.3.1, |∇H(t)|2 ≤ 2|∇A(t)|2 and |∇2H(t)|2 ≤
2|∇2A(t)|2.

We now prove that the speed of the flow goes to zero in L2, for large times. Note that,
integrating d

dt |Σt| on [0, t0] we get

ˆ t0

0

ˆ
Σ
(H − h)2 dµt dt ≤ 10πσ2. (4.55)

This implies that ∥H−h∥L2(Σ,µt) → 0 as t→∞, since d
dt

´
Σ(H−h)

2 dµt is bounded uniformly
in t. Moreover, also the L∞ norm of H − h goes to zero, as the following Lemma shows.

Lemma 4.3.3. Let (M, g, x⃗) be a C2
1/2+δ-asymptotically flat manifold. Let (Σ, g(t)) be a

surface of M evolving by volume preserving mean curvature flow of Section 4.2. Then there
exists a constant c > 0, depending on σ, such that

∥H − h∥L∞(Σ,µt) ≤ c∥H − h∥L2(Σ,µt), ∀t ∈ [0,∞). (4.56)

Proof. Using now the interpolation result of [Aub98, Thm. 3.69 ], with p = q = r = 2 = n, it
follows that

∥∇H∥2L2(Σ,µt)
≤
√
2∥H − h∥L2(Σ,µt)∥∇

2H∥L2(Σ,µt). (4.57)

On the other hand, on Σt it holds the Sobolev inequality (see Corollary 2.3.5), with a constant
c uniformly in t (since we are in the class of roundness) and thus

∥H − h∥L∞ ≤ cσ−
1
2 ∥H − h∥W 1,4 = cσ−

1
2 (∥H − h∥4 + σ∥∇H∥4) . (4.58)

Since moreover H − h has zero mean, the Poincaré inequality implies that ∥H − h∥4 ≤
cσ∥∇H∥4, and thus

∥H − h∥L∞ ≤ c∥∇H∥4 ≤ c∥∇H∥
1
2
2 ∥∇H∥

1
2∞, (4.59)

when we let c to absorb the radius σ. We also used the Holder’s interpolation inequality.
Thus, using Corollary 4.3.2, we obtain

∥H − h∥L∞(Σ,µt) ≤ c∥H − h∥L2(Σ,µt). (4.60)
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Conclusions. At this point, Proposition 4.1.12 implies that also ∥H−h∥L∞(Σ,µt) converges
exponentially to zero. Thus, for every t > t0,

|F (x, t)− F (x, t0)| =
∣∣∣∣ˆ t

t0

∂F

∂τ
dτ

∣∣∣∣ ≤ ˆ t

t0

|H − h| dτ ≤ cσ
ˆ t

t0

e−
EADM

σ3 (τ−t0) dτ, (4.61)

for some cσ > 0. Thus, F (·, t) is bounded uniformly in t. Since the flow lives in Bσ(B1, B2, Bcen),
also h(t) is uniformly bounded in t. Thus, by standard arguments, see for example [Hui84] or
the reference therein [Ham82, Lemma 14.2], the limit of Ft is a smooth immersion. Also h(t)
has a limit, since this is true along a sequence of times by the boundedness and also d

dth(t) is
uniformly bounded in t. Finally, the fact that H − h→ 0 implies that the mean curvature of
the limit of Ft equals the limit of h(t). Since σ has been fixed at the beginning of the Section,
we call Σσ this CMC-limit and F σ(t, ·) the immersion at time t. This concludes the proof of
Theorem 1.1.2.

4.3.1 CMC-foliation

In the previous Section, we constructed, for every σ > σ0 a constant mean curvature surface
on (M, g), say (Σσ, gσ), where gσ the pullback of g through ισ(·) := lim

t→∞
F σ(t, ·). By the

definition of roundness class, we have that there exists C > 0, independent of σ, such that

|z⃗Σσ | ≤ Cσ1−δ, ∥
◦
A∥L∞(Σσ) ≤ B∞σ

− 3
2
−δ, |Σσ| ≤ Cσ2, σ

rΣσ

≤ C, (4.62)

|hσ| ≤
∣∣∣∣hσ − 2

σ

∣∣∣∣+ 2σ−1 ≤ Cσ−
3
2
−δ + 2σ−1 σ→∞−→ 0. (4.63)

Since, moreover, by Lemma 2.3.5 and Lemma 4.1.14, Σσ is a graph on the Euclidean sphere
Sσ(z⃗Σσ), for every σ ≥ σ0 there exists a bijective map F σ : S1(⃗0) → Σσ. Proceeding as in
[Hua12, Section 5.3], using also (the spacelike version of) [CS21, Lemma 9] in order to show
that the family {Σσ}σ≥σ0 does not self intersect, we obtain a CMC-foliation of the asymptotic
flat space (M, g). Moreover, thanks to the following remark, this foliation coincide with the one
constructed by Nerz (because of the CMC-uniqueness in Nerz’s roundness class, see [Ner15,
Thm. 5.3] and [CS21, Thm. 4]).

CMC-surfaces are round in Nerz’s sense. We end this Section showing that our fo-
liation coincides with Nerz’s foliation (and thus it is unique). We also recall the following
definition from [Ner15].

Definition 4.3.4 (Nerz’s class of roundness). Fix c0 ∈ [0, 1), c1 ≥ 0 and η̂ ∈ (0, 1]. We say
that Σ ↪→M is asymptotically centered, Σ ∈ Aδ,η̂(c0, c1) if, setting g := genus(Σ), then

|z⃗Σ| ≤ c0σΣ + c1σ
1−η̂
Σ , σ2+η̂

Σ ≤ r
5
2
+δ

Σ ,

ˆ
Σ
H2 dµ− 16π(1− g) ≤ c1r−η̂

Σ . (4.64)

Equations (4.62) and (4.63) imply that (4.64) holds with c0 = 0, c1 = C and η̂ = δ.
Moreover

σ2+δ

r
5
2
+δ

Σ

=

(
σ

rΣ

) 5
2
+δ

σ−
1
2 ≤ Cσ−

1
2 , (4.65)
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for σ0 = σ0(C, δ) large. Since genus(Σσ) = 0,
ˆ
Σσ

H2 dµ− 16π =

ˆ
Σσ

H2 dµ− 2

ˆ
Σσ

Sg dµ =

= 2

ˆ
Σσ

|
◦
A|2 dµ+ 4

ˆ
Σσ

(
Ric(ν, ν)− S

2

)
dµ ≤ Cσ−

1
2
−δ

(4.66)

possibly enlarging C. Thus Σσ ∈ Aδ,δ(0, C). Replacing the variable σ with s := 2
hΣσ

, and
using (4.63), [Ner15, Thm. 5.3] implies that our foliation coincides with the one constructed
in [Ner15, Thm. 5.1].

4.3.2 The case of negative ADM-energy

We end this Chapter analyzing what happens to the flow when the mass of the system is
negative. This scenario is interesting since the method employed by Nerz [Ner15] allows to
prove the existence of a foliation also in this case of a negative ADM-mass. However, in
Lemma 4.1.15 we observed that there is a technical obstruction in order to use the flow with
the aim of constructing a foliation in the negative mass case, see equation (4.40). We remark
now how this obstruction is not just technical but also substantial.

We start considering the case of negative ADM-mass when (M, g) is a Schwarzschild metric
of mass m < 0. That is,

gmS :=
(
1 +

m

2r

)4
ge,

where r = r(x⃗) = |x⃗| for every x⃗ ∈ R3 and ge is the Euclidean metric on R3 \{⃗0}. We consider
the Euclidean sphere Sσ (⃗0), which is a CMC. For sake of simplicity, we write Sσ = Sσ (⃗0). In
particular, the family of immersions ισ : Sσ ↪→ M , for σ ≥ 1, generates a CMC-foliation of
the Schwarzschild manifold. Since the Euclidean spheres have constant mean curvature, Sσ
is a critical point of each volume preserving variation starting at Sσ.

Following the classical approach (see for example [Hua12]), it can be proved that the
stability indicator of L : H2(Sσ)→ L2(Sσ), i.e.

µ0(L) := inf

{ˆ
Sσ

(Lη) η dµ :

ˆ
Sσ
η dµ = 0, ∥η∥2 = 1

}
,

satisfies
µ0(L) ≤ −

6|m|
σ3

+ O(σ−4). (4.67)

In particular, the right hand side of (4.67) is obtained choosing η as a coordinate translation
in R3, restricted to Sσ. We thus modify this translation into a volume preserving (normal)
deformation setting {

∂F̂t
∂τ = −(η − η̂)ν
F0(·) = ισ

(4.68)

with ν = ν(x, τ) the normal of F̂τ (Sσ), η = η(x) as above and

η̂ ≡ η̂(τ) := 1

|F̂τ (Sσ)|

ˆ
Sσ
η dµ̂τ ,

where dµ̂τ is the volume form on Sσ induced by the immersion F̂τ . Note that η̂(0) = 0, since
η is a coordinate translation and dµ̂0 is the standard round metric on the Euclidean sphere
Sσ. On the other hand, (4.68) is volume preserving for every τ for which it is defined, by
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construction. Thus, the latter formula in [Hua12, Pg. 9] implies that

d2

dτ2

∣∣∣∣
τ=0

|F̂τ (Sσ)| =
ˆ
Sσ

(η − η̂) |τ=0L(η − η̂)|τ=0 dµ < 0, (4.69)

since (η − η̂) (0) = η, volume is constant (in order to let the additional term in (4.69) vanish)
and (4.67). Thus, τ = 0 is a point of local maximum for τ 7→ |F̂τ (Sσ)|, for τ in a small
interval of time. In particular, F̂τ (Sσ) perturbs the Euclidean sphere as a "volume preserving
translation", at least at the first non-zero order. Thus there exists, arbitrarily near to Sσ in
the C∞-topology, a round surface Σ = F̂τ (Sσ), for τ fixed but depending on how we want Σ
to be near to Sσ. In particular |Σ| < |Sσ|. Thus if we consider the volume preserving mean
curvature flow starting at Σ, i.e. Σt = Ft(Σ), we find that this flow cannot converge to the
Euclidean sphere Sσ, since the flow is an area-non-increasing flow.

Observe moreover that Sσ is almost-CMC, in the sense of Definition 3.2.1, and thus The-
orem 4.1.16 implies that this situation does not happen when the mass is positive.

Conclusions and open problems. In the case of a asymptotically Schwarzschildean mani-
fold, Huisken-Yau proved in [HY96] that, in points of the surface where the Euclidean distance
achieves its maximum, the (vector) speed of the flow, i.e. −(H−h)ν, points toward the inside
of the surface (respectively the outside) if the mass is positive (respectively negative). See
[HY96, Prop. 2.2] and the dynamical approach of [HY96, Prop. 3.5]. This suggests that in
the negative mass case an initially off-centered surface evolves drifting away.

If we show that, in the negative mass case, for each direction there exists a volume pre-
serving translation of a sphere which drifts away in that direction along the volume preserving
mean curvature flow, then we can conjecture the existence of a round surface that does not drift
away, as in the positive case. In the general case of a C2

1
2
+δ

-asymptotically flat manifold the
situation could be more delicate, due to the presence of some additional terms when comput-
ing the stability operator on an Euclidean sphere, see Proposition 3.1.10. However, we think
that this argument can be applied at least to the case of an asymptotically Schwarzschildean
manifold in the sense of [HY96], providing a flow-proof of the existence of the foliation also
in the negative mass case.
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Chapter 5

Volume preserving spacetime mean
curvature flow in initial data sets

In this Chapter we study a modification of the volume preserving mean curvature flow. Let us
describe our setting in more detail. We consider an initial data set (M, g,K) which is C2

1
2
+δ

-

asymptotically flat and constrained by the densities (µ, J). The volume preserving spacetime
mean curvature flow (VPSTMCF) is a family of time dependent immersions F : Σ× [0, T ]→
M , with Σ a closed 2-surface, which evolves according to

∂F

∂t
(t, ·) = − [H(t, ·)− ℏ(t)] ν(t, ·), (5.1)

where ℏ(t) is the integral average of H(t, ·), see Definition 2.1.2. Observe that, for q = 2,
H is the spacetime mean curvature defined in [CS21]. As initial data for the flow (5.1), we
consider a well-centered (in the sense of Nerz [Ner15]) CMC-surface. As in [HY96] and in the
previous Chapter, the evolution is parametrized by a non-physical time parameter and takes
place in a fixed spacelike slice, but now it has a speed that takes into account the spacetime
texture of the initial data set. We aim to prove long-time existence of this flow, together with
a convergence result. See the statement of Theorem 1.1.4 for details.

5.0.1 Definition of the flow and evolution equations

Definition 5.0.1. Let (M, g,K) be an initial data set and let ι : Σ ↪→M be a closed surface.
A time dependent family of immersions Ft : Σ ↪→ M , with t ∈ [0, T ) for some 0 < T ≤ ∞,
which satisfies {

∂
∂tFt(·) = − (H(·, t)− ℏ(t)) ν(·, t)
F0 = ι

(5.2)

is called a solution to the volume preserving spacetime mean curvature flow, with initial value
ι.

We highlight that the function H is an increasing function of the mean curvature H. The
function P = gijKij in H = q

√
Hq − |P |q depends on the metric induced on Σt, which only

involves first order derivatives of the immersion. Thus, without the volume preserving term,
the equation is parabolic. However, this term only depends on time, and thus it does not
affect the parabolicity and local existence of solutions and uniqueness are ensured.

In the following, we will assume that the ambient initial data set is C2
1
2
+δ

-asymptotically
flat. We write Σt := Ft(Σ) to denote the solution of the flow at time t and we call g(t) the
induced metric and denote by dµt the induced 2-dimensional measure.

We recall the evolution equations satisfied by the main geometric quantities on Σt. At
each fixed t, we choose a frame {e⃗α(t)}3α=1 on (M, g) such that {e⃗1(t), e⃗2(t)} are tangent
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vectors on Σt and e⃗3(t) := νt. The following Lemma collects the equations satisfied by the
main geometric quantities on Σt, see [HP99].

Lemma 5.0.2. Let {Ft}t∈[0,T ) be a solution to the flow (5.2). Then we have

(i) ∂gij
∂t = −2 (H− ℏ)hij;

(ii) ∂
∂t(dµt) = − (H− ℏ)Hdµt;

(iii) ∂
∂tν = ∇H;

(iv) ∂
∂thij = ∇i∇jH+ (H− ℏ)

(
−hikhkj + Rmikjlν

kνl
)
;

(v) ∂H
∂t = ∆H+ (H− ℏ) (|A|2 + Ric(ν, ν)).

Notation for the rest of the Section. In the following, it is convenient to set Φ =
Φ(s, γ) := q

√
sq − |γ|q, so that H = Φ(H,P ). We denote by Υ the derivative of Φ com-

puted with respect to the variable s, i.e. Υ := ∂sΦ
∣∣
(s,γ)=(H,P )

. On the other hand, we
will denote by Ψ the derivative of Φ in time, due to the dependence on P = P (t), i.e.
Ψ := ∂t (Φ(ρ, P (t)))

∣∣
ρ=H

. Thus,

∂t (Φ(H,P )) = Υ∂tH +Ψ. (5.3)

This notation is particularly useful since we will mainly take trace of the term Υ. In the
following, we will have

Υ =

(
1−

(
|P |
H

)q) 1
q
−1

, ∇Υ = (q − 1)

(
H

H

)q−2(
− |P |q

H2Hq−1
∇H+

1

H
|P |q−2P

Hq−1
∇P

)
,

(5.4)

|Ψ| =
∣∣∣∣∂Φ(s, P )∂t

∣∣∣∣
s=H

∣∣∣∣ = ∣∣∣∣−qΦ(H,P )(Φ(H,P ))q
(∂tP )P

|P |2−q

∣∣∣∣ ≤ Cσq−1|P |q−1|∂tP | ≤ Cσ
1
2
− 1

2
q−δq+δ|∂tP |,

(5.5)
where the latter inequality holds assuming (2.14), because of Lemma 2.1.3. Hypothesis (2.14)
is natural in our setting since we will work solely on round surfaces. Note also that (5.4)
implies

|Υ− 1| ≤ C
∣∣∣∣PH
∣∣∣∣q = O(σ−

1
2
q−qδ), Υ− 1 ≥ cσq|P |q. (5.6)

Lemma 5.0.3. There exists C > 0 and σ0 > 0 such that, if Σt satisfies |A(t)| ≤
√

5
2σ

−1 and
(2.14) for every t ∈ [0, T ], and σ > σ0,

|∂tP | ≤ Cσ−
5
2
−δ|H − ℏ|+ Cσ−

3
2
−δ|∇H|. (5.7)

Proof. We choose normal coordinates on a point x∗ of Σt∗ , for an arbitrary t∗ ∈ [0, T ], say
{x1, x2}, and normal coordinates {y1, y2, y3} on y∗ := Ft∗(x

∗) in M . Thus, if { ∂F∂xi
}2i=1 is the

frame induced by the immersion, we notice that

gij = (F ∗g)ij = g
(
∂F

∂xi
,
∂F

∂xj

)
, Kij =

(
F ∗K

)
ij
= K

(
∂F

∂xi
,
∂F

∂xj

)
. (5.8)

Thus in particular

δαβ
∂Fα

∂xi

∂F β

∂xj
= g

(
∂F

∂xi
,
∂F

∂xj

) ∣∣∣∣
(x∗,t∗)

= gij
∣∣
(x∗,t∗)

= δij . (5.9)
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By direct computation, using the symmetry of K we find that

∂tP = ∂t
(
gijKij

)
= 2(H− ℏ)hijKij +∇γKij

∂F γ

∂t
+ 2gijK

(
∂

∂t

(
∂F

∂xi

)
,
∂F

∂xj

)
= 2(H− ℏ)hijKij +∇γKij(ℏ−H)νγ + 2gijK

(
∂

∂t

(
∂F

∂xi

)
,
∂F

∂xj

)
.

(5.10)

Since
∂

∂t

(
∂F

∂xi

)
=

∂

∂xi

(
∂F

∂t

)
=

∂

∂xi
((ℏ−H)ν) = −∂H

∂xi
ν + (ℏ−H) ∂ν

∂xi
, (5.11)

we rewrite (5.10) as

∂tP = 2(H− ℏ)hijKij +∇γKij(ℏ−H)νγ − 2gijKαβν
α ∂H
∂xi

∂F β

∂xj
+ 2(ℏ−H)gijKαβ

∂να

∂xi

∂F β

∂xj
.

(5.12)
Note that, in normal coordinates, the Weingarten equation takes the form

∂να

∂xi

∣∣∣∣
(x∗,t∗)

= hji (x
∗, t∗)

∂Fα

∂xi

∣∣∣∣
(x∗,t∗)

, (5.13)

see [HP99, Pg. 63]. Thus, computing (5.12) in the point (x∗, t∗), and estimating, we get

|∂tP | ≤ C|H − ℏ||A||K|+ |∇ K||H − ℏ|+ C|K||∇H|, (5.14)

where we used (5.13) combined with (5.9) in order to estimate the latter term in (5.12). We
conclude using that, thanks to the assumption on |A(t)| and (2.14), Lemma 2.1.3 implies that
|K| ≤ Cσ−

3
2
−δ and |A||K|+ |∇ K| ≤ Cσ−

5
2
−δ.

The Φ-notation, together with helping us avoiding huge formulas in the following, high-
lights that existence and convergence of the flow could be studied in the case of more general
speed functions. However, we just focus our attention on the spacetime flow. We also define
α : (0, 1)→ R to be α(ρ) := q

√
1− ρq, so that Φ(s, γ) = sα

(
|γ|
s

)
.

Lemma 5.0.4. Along a solution of the volume preserving spacetime mean curvature flow we
have

∂

∂t
|
◦
A|2 = ∆|

◦
A|2 − 2|∇

◦
A|2 + 2ℏ

H

{
|A|4 −Htr(A3)

}
+ 2|A|2

(
H − ℏ
H

)
|
◦
A|2

+ 2(H− ℏ)
◦
hijRmkiljν

kνl − 2
(
hliRmkjkl + hlkRmlijk

)
hij

− 2
(
∇j

(
Riciενε

)
+∇l

(
Rmεijlν

ε
)) ◦
hij + 2|A|2

(
H2 −HH

2

)
+ 2(H−H)tr(A3) + ⟨T ,

◦
A⟩;

(5.15)

∂

∂t
|∇H|2 = ∆|∇H|2 − 2|∇2H|2 + 2(H− ℏ)hij∇iH∇jH+ 2(|A|2 + Ric(ν, ν))|∇H|2

− 2RicΣ(∇H,∇H) + 2(H− ℏ)⟨∇|A|2,∇H⟩+ 2(H− ℏ)⟨∇
(
Ric(ν, ν)

)
,∇H⟩

+ 2gij∇i

(
(Υ− 1)

(
∆H+ (H− ℏ)(|A|2 + Ric(ν, ν))

))
∇jH+ 2gij∇iH∇jH

(5.16)
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where RicΣ is the Ricci tensor of Σ, β := α− 1 and T := (Tij) is the tensor defined by

Tij := (∇i∇jH)β

(
|P |
H

)
+∇jHβ

′
(
|P |
H

)
∇i

(
|P |
H

)
+∇iHβ

′
(
|P |
H

)
∇j

(
|P |
H

)
+Hβ′′

(
|P |
H

)
∇i

(
|P |
H

)
∇j

(
|P |
H

)
+Hβ′

(
|P |
H

)
∇i∇j

(
|P |
H

)
.

(5.17)

The proof is standard, and it mainly relies on the computations in [Hui87] and [HP99].
See moreover Lemma 4.1.4. Observe that the tensor T is the remainder of the Hessian of the
function Φ, which, due to the introduction of the auxiliary functions α and β, is given by
Hess(H) plus the tensor T . Finally, an easy computation shows that, since q ≥ 2,

|β(ρ)| ≤ cqρ2, |β′(ρ)| ≤ cqρ, |β′′(ρ)| ≤ cq, (5.18)

for ρ << 1, which is the case we are interested in, since ρ ∼ |P |
H which is small on a round

surface.

Proof. Using Lemma 5.0.2, we get

∂

∂t
hij = ∇i∇j (Φ(H,P )) + (Φ(H,P )− ℏ)

(
−hikhkj + Riemi3j3

)
. (5.19)

By Φ(H,P ) = Hα
(
|P |
H

)
, we have

∇i∇j (Φ(H, ·)) = (∇i∇jH)α

(
|P |
H

)
+∇jHα

′
(
|P |
H

)
∇i

(
|P |
H

)
+∇iHα

′
(
|P |
H

)
∇j

(
|P |
H

)
+Hα′′

(
|P |
H

)
∇i

(
|P |
H

)
∇j

(
|P |
H

)
+Hα′

(
|P |
H

)
∇i∇j

(
|P |
H

)
(5.20)

We moreover define β as above, obtaining β′ = α′ and β′′ = α′′. We thus get

∇i∇j (Φ(H,P )) = ∇i∇jH + Tij . (5.21)

Then (5.19) becomes

∂

∂t
hij = ∇i∇jH + (Φ(H, ·)− ℏ)

(
−hikhkj + Riemi3j3

)
+ Tij

= ∆hij −Hhlihlj + |A|2hij + (Φ(H, ·)− ℏ)
(
−hikhkj + Riemi3j3

)
− hliRmkjkl − hlkRmlijk −∇j

(
Riciενε

)
−∇l

(
Rmεijlν

ε
)
+ Tij

(5.22)

The conclusion follows remarking that

∆|
◦
A|2 − 2|∇

◦
A|2 + 2|A|2

(
|A|2 − HΦ(H,P )

2

)
− 2ℏtr(A3) +H|A|2ℏ

+ 2(Φ(H,P )−H)tr(A3) +
2ℏ
H
|A|4 − 2ℏ

H
|A|4

= ∆|
◦
A|2 − 2|∇

◦
A|2 + 2ℏ

H
|A|4 − 2ℏtr(A3) + 2|A|2

(
1− ℏ

H

)(
|A|2 − H2

2

)
+ 2|A|2

(
H2

2
− HΦ(H,P )

2

)
+ 2(Φ(H,P )−H)tr(A3)

(5.23)
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and proceeding as in Lemma 4.1.4.
Finally, equation (5.16) follows from Lemma 5.0.2 and the Bochner formula.

5.0.2 Evolution of integral quantities

We now study the evolution of some integral quantities along the flow. Throughout the
subsection, Ft : Σ ↪→M will be a solution to the volume preserving spacetime mean curvature
flow (5.2), in a constrained initial data set (M, g,K), with t ∈ [0, T ] for some T > 0. We will
assume that the surfaces Σt satisfy properties (2.29) and (2.30) of round surfaces for some
given suitably large radius σ. In some results, we further assume

∥H − h∥L∞(Σt) ≤ B∞σ
− 3

2
−δ,

∥∥∥∥ ◦
A(t)

∥∥∥∥
L∞(Σ)

≤ B∞σ
− 3

2
−δ, (5.24)

which are properties satisfied by round surfaces, see Lemma 2.3.5, and also

∥H − ℏ∥H1(Σt) ≤ cinσ
− q

2
−qδ. (5.25)

We do not assume apriori that Σt satisfy properties (2.31) and (2.32). We want to analyze
the invariance of these properties along the flow. We start estimating the L4 norm of the
traceless second fundamental form of Σt. In this result, we replace hypothesis (5.24) by a
milder assumption.

Proposition 5.0.5. Let {Ft}t∈[0,T ] be a solution to the flow satisfying (2.29) and (2.30).
Suppose in addition

∥H − h∥L∞(Σt) ≤
1

20σ
; (5.26)

Then there exist a constant C = C(c, δ) > 0 and a radius σ0 = σ0(δ, c) > 0 such that if σ > σ0
then

d
dt

ˆ
Σ
|
◦
A|4 dµt ≤ −2

ˆ
Σ
|
◦
A|2|∇

◦
A|2 dµt −

1

2σ2

ˆ
Σ
|
◦
A|4 dµt + Cσ−6−4δ. (5.27)

As a consequence, if
ˆ
Σ
|
◦
A|4 dµ0 < B1σ

−4−4δ and B1 > 2C, then
ˆ
Σ
|
◦
A|4 dµt < B1σ

−4−4δ for

every t ∈ [0, T ].

Proof. The proof is an adaptation of the proof of Lemma 4.1.6 combined with Lemma 2.1.3,
Lemma 5.0.4 and the fact that there exists C such that, for every fixed ε > 0 and σ0 suitably
large it holds∣∣∣∣ˆ

Σ
⟨T ,

◦
A⟩|

◦
A|2 dµ

∣∣∣∣ ≤ ε

σ2

ˆ
Σ
|
◦
A|4 dµ+ ε

ˆ
Σ
|
◦
A|2|∇

◦
A|2 dµ+ Cσ−6−4δ. (5.28)

We thus prove (5.28).

Multiplying equation (5.17) by
◦
hij |

◦
A|2 and integrating we get

ˆ
Σ
Tij

◦
hij |

◦
A|2 dµ =

ˆ
Σ

{
∇i∇jHβ

(
|P |
H

)
+∇jHβ

′
(
|P |
H

)
∇i

(
|P |
H

)
+∇iHβ

′
(
|P |
H

)
∇j

(
|P |
H

)
+Hβ′′

(
|P |
H

)
∇i

(
|P |
H

)
∇j

(
|P |
H

)
+Hβ′

(
|P |
H

)
∇i∇j

(
|P |
H

)}
◦
hij |

◦
A|2 dµ.
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Integration by parts, Lemma 2.1.3 and ∇i

(
◦
hij |

◦
A|2
)

= ∇i

◦
hij |

◦
A|2 + 2

◦
hij |

◦
A|∇i|

◦
A| imply

∣∣∣∣ˆ
Σ
(∇i∇jH)β

(
P

H

)
◦
hij |

◦
A|2 dµ

∣∣∣∣ ≤ Cσ−
1
2
−δ

ˆ
Σ
∇jH

∣∣∣∣(∇iP )H − P∇iH

H2

∣∣∣∣ | ◦A|3 dµ
+ Cσ−1−2δ

ˆ
Σ
|∇H||

◦
A|2|∇

◦
A| dµ.

(5.29)

Using again Lemma 2.1.3, the parametric Young’s inequality, |∇H|2 ≤ C|∇
◦
A|2+C|Ric|2 (see

[Hui86]) and (1.11) we get∣∣∣∣ˆ
Σ
(∇i∇jH)β

(
P

H

)
◦
hij |

◦
A|2 dµ

∣∣∣∣ ≤ ε

σ2

ˆ
Σ
|
◦
A|4 dµ+ ε

ˆ
Σ
|
◦
A|2|∇

◦
A|2 dµ+ Cσ−6−4δ (5.30)

Moreover, we estimate∣∣∣∣ˆ
Σ
(∇iH)β′

(
P

H

)
∇j

(
P

H

)
◦
hij |

◦
A|2 dµ

∣∣∣∣ ≤ Cσ−2−2δ

ˆ
Σ

(
|∇H||

◦
A|
)
|
◦
A|2 dµ

+ Cσ−2δ

ˆ
Σ
|∇H|2|

◦
A|3 dµ,

The second addend can be estimated as in (5.30), while the first addend, using Young’s
inequality, is bounded by

Cσ−2−2δ

ˆ
Σ

 |∇H|2
2

+
|
◦
A|2

2

 | ◦A|2 dµ. (5.31)

Again, the first addend of (5.31) can be treated as in (5.30), for σ large.
We can also bound the term∣∣∣∣ˆ

Σ
Hβ′′

(
P

H

)
∇i

(
P

H

)
∇j

(
P

H

)
◦
hij |

◦
A|2 dµ

∣∣∣∣ ≤ Cσ−2δ

ˆ
Σ
|∇H|2|

◦
A|2|

◦
A| dµ

+ Cσ−4−2δ

ˆ
Σ
|
◦
A|3 dµ

+ 2

ˆ
Σ

|P ||∇H||∇P |
H2

|
◦
A|3 dµ.

We conclude as in (5.30), also using |
◦
A| ≤ Cσ−

1
2 , for σ large and Young’s inequality.

Finally, integrating by parts and using the decay of β we get∣∣∣∣ˆ
Σ
Hβ′

(
P

H

)
∇i∇j

(
P

H

)
◦
hij |

◦
A|2 dµ

∣∣∣∣ ≤ Cσ−
1
2
−δ

ˆ
Σ
|∇H|

∣∣∣∣(∇P )H − (∇H)P

H2

∣∣∣∣ | ◦A|3 dµ
+ C

ˆ
Σ
H

∣∣∣∣(∇P )H − (∇H)P

H2

∣∣∣∣2 | ◦A|3 dµ
+ Cσ−

1
2
−δ

ˆ
Σ
H

∣∣∣∣(∇P )H − (∇H)P

H2

∣∣∣∣ ∣∣∣∣∇| ◦A|∣∣∣∣ | ◦A|2 dµ.
(5.32)
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The first addend can be dealt with as (5.30), while the second as in (5.31). The third addend
in (5.32) is bounded by

Cσ−
1
2
−δ

ˆ
Σ
|∇P |

∣∣∣∣∇| ◦A|∣∣∣∣ | ◦A|2 dµ+ Cσ−1−2δ

ˆ
Σ
|∇H|

∣∣∣∣∇| ◦A|∣∣∣∣ | ◦A|2 dµ,
and we conclude by Young’s inequality, combined with the estimate |∇H|2 ≤ C|∇

◦
A|2 +

C|Ric|2.

We next estimate the rate of change of the volume preserving term ℏ(t) and of the L4

norm of H−ℏ. In particular the following Lemma employs some techniques learned in [Li09].

Lemma 5.0.6. Let (Σ, Ft) be a solution to the volume preserving spacetime mean curvature
flow for t ∈ [0, T ], satisfying properties (2.29), (2.30), (5.24) and (5.25). Then, there exist
C = C(c) > 0 and σ0 = σ0(c) > 1, such that, if σ > σ0,

d
dt

ˆ
Σ
(H− ℏ)2 dµt ≤ −

1

2

ˆ
Σ
|∇H|2 dµt + Cσ−2

ˆ
Σ
(H− ℏ)2 dµt. (5.33)

Moreover, there exists a constant c = c(cin, c) > 0 and a universal constant C = C(c) > 0
such that

|ℏ̇(t)| ≤ cσ−
7
2
− 1

2
q−δ−δq, (5.34)

d
dt

ˆ
Σ
(H−ℏ)4 dµt ≤ −12

ˆ
Σ
(H−ℏ)2|∇H|2 dµt+Cσ−2

ˆ
Σ
(H−ℏ)4 dµt+ cB∞σ

−5− 3
2
q−2δ−3δq,

provided σ ≥ σ0, for a suitably σ0 = σ0(B∞, cin, c, δ).

Proof. We first prove (5.34). By definition of ℏ, we get

|Σt|ℏ̇(t) =
ˆ
Σ

(
∂H

∂t
+ (Υ− 1)

∂H

∂t
+Ψ

)
dµt +

ˆ
Σ
HH(ℏ−H) dµt − ℏ

ˆ
Σ
H(ℏ−H) dµt

=

ˆ
Σ
(H− ℏ)

(
|
◦
A|2 + Ric(ν, ν)

)
dµt +

ˆ
Σ

(
H2

2
−HH

)
(H− ℏ) dµt

− ℏ
ˆ
Σ
H(ℏ−H) dµt +

ˆ
Σ

(
(Υ− 1)

∂H

∂t
+Ψ

)
dµt

=

ˆ
Σ
(H− ℏ)

(
|
◦
A|2 + Ric(ν, ν)

)
dµt −

ˆ
Σ

H2

2
(H− ℏ) dµt

−
ˆ
Σ
(H−H)H(H− ℏ) dµt − ℏ

ˆ
Σ
H(ℏ−H) dµt +

ˆ
Σ

(
(Υ− 1)

∂H

∂t
+Ψ

)
dµt

=

ˆ
Σ
(H− ℏ)

(
|
◦
A|2 + Ric(ν, ν)

)
dµt −

ˆ
Σ

H2

2
(H− ℏ) dµt

+

ˆ
Σ

(
H2 −H2

2

)
(H− ℏ) dµt −

ˆ
Σ
(H−H)H(H− ℏ) dµt − ℏ

ˆ
Σ
H(ℏ−H) dµt

+

ˆ
Σ

(
(Υ− 1)

∂H

∂t
+Ψ

)
dµt

To estimate the above terms, we first note that∣∣∣∣ˆ
Σ
(H− ℏ)

(
|
◦
A|2 + Ric(ν, ν)

)
dµt

∣∣∣∣ ≤ cσ− 3
2
− q

2
−qδ, (5.35)
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and that, in addition, the following identity holds

−
ˆ
Σ

H2

2
(H− ℏ) dµt − ℏ

ˆ
Σ
H(ℏ−H) dµt

=−
ˆ
Σ

H2

2
(H− ℏ) dµt + ℏ

ˆ
Σ
(H− ℏ)2 dµt − ℏ

ˆ
Σ
{(H − h)− (H− ℏ)} (ℏ−H) dµt

=− 1

2

ˆ
Σ
(H− ℏ)3 dµt − ℏ

ˆ
Σ
{(H − h)− (H− ℏ)} (ℏ−H) dµt,

(5.36)

using also
ˆ
Σ
(H− ℏ) dµt = 0, where, thanks to Lemma 2.1.3,

∣∣∣∣ℏˆ
Σ
{(H − h)− (H− ℏ)} (ℏ−H) dµt

∣∣∣∣ ≤ cσ−1−q−2qδ. (5.37)

Since the remaining addend can be estimated in a similar way to (5.37), we get

|Σt||ℏ̇(t)| ≤
∣∣∣∣12

ˆ
Σ
(H− ℏ)3 dµt

∣∣∣∣+ cσ−
3
2
− q

2
−qδ +

∣∣∣∣ˆ
Σ

(
(Υ− 1)

∂H

∂t
+Ψ

)
dµt

∣∣∣∣ (5.38)

Observe that the term
ˆ
Σ
(H−ℏ)3 dµt can be easily bounded using (5.24) and (5.25). Finally,

we estimateˆ
Σ

(
(Υ− 1)

∂H

∂t
+Ψ

)
dµt

= −
ˆ
Σ
∇Υ · ∇H dµt +

ˆ
Σ
(Υ− 1)

(
|A|2 + Ric(ν, ν)

)
(H− ℏ) dµt +

ˆ
Σ
Ψ dµt.

To estimate this term, we observe that equation (5.4), together with the inequalities∣∣∣∣ P p

H2Hp−1

∣∣∣∣ ≤ cqσ1− 1
2
q−qδ,

∣∣∣∣ 1H |P |q−2P

Hq−1

∣∣∣∣ ≤ cqσ 3
2
− 1

2
q−δ(q−1),

imply ∣∣∣∣ˆ
Σ
∇Υ · ∇H dµt

∣∣∣∣ ≤ cσ− 3
2
− q

2
−δq−δ.

Similarly, we also have∣∣∣∣ˆ
Σ
(Υ− 1)

(
|A|2 + Ric(ν, ν)

)
(H− ℏ) dµt

∣∣∣∣ ≤ cσ−1−q−qδ. (5.39)

We conclude combining (5.5), (5.7) and assumption (5.25), in order to get
ˆ
Σ
|Ψ| dµt ≤ cσ−1− 1

2
q−δq∥H − ℏ∥L2(Σt) + cσ−

1
2
q−δq∥∇H∥L2(Σt) ≤ cσ

−1−q−2δq. (5.40)

Equation (5.34) follows dividing by |Σt| ≥ (7/2)πσ2.
We now prove (5.33). We compute the evolution of ∥H − ℏ∥2L2(Σ,µt)

, obtaining

d
dt

ˆ
Σ
(H− ℏ)2 dµt = 2

ˆ
Σ
(H− ℏ)

(
∆H+ (H− ℏ)(|A|2 + Ric(ν, ν))

)
dµt
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+2

ˆ
Σ
(H− ℏ)(Υ− 1)

(
∆H+ (H− ℏ)(|A|2 + Ric(ν, ν))

)
dµt

+2

ˆ
Σ
Ψ(H− ℏ) dµt −

ˆ
Σ
H(H− ℏ)3 dµt.

Using integration by parts, the estimate H + |H − h|+ |A| ≤ Cσ−1, and the inequality∣∣∣∣ˆ
Σ
(H− ℏ)(Υ− 1)∆H dµt

∣∣∣∣ = ∣∣∣∣−ˆ
Σ
(Υ− 1)|∇H|2 dµt −

ˆ
Σ
(H− ℏ)∇Υ∇H dµt

∣∣∣∣
≤ ε

ˆ
Σ
|∇H|2 dµt + C

ˆ
Σ
σ−

1
2
q+1−qδ|H − ℏ||∇H|2 dµt

+ C

ˆ
Σ
σ−

1
2
q−1−qδ|H − ℏ||∇H| dµt

(5.41)

and Young’s inequality we get

d
dt

ˆ
Σ
(H− ℏ)2 dµt ≤ −(2− 2ε)

ˆ
Σ
|∇H|2 dµt + Cσ−2

ˆ
Σ
(H− ℏ)2 dµt, (5.42)

where we estimated
ˆ
Σ
Ψ(H− ℏ) dµt combining (5.5) and (5.7), i.e.

∣∣∣∣ˆ
Σ
(H− ℏ)Ψ dµt

∣∣∣∣ ≤ C (σ−2− 1
2
q−δq

ˆ
Σ
(H− ℏ)2 dµ+ σ−1− 1

2
q−δq

ˆ
Σ
|H − ℏ||∇H| dµ

)
≤ Cσ−2

ˆ
Σ
(H− ℏ)2 dµ+ ε

ˆ
Σ
|∇H|2 dµ.

(5.43)
We conclude choosing ε suitably small.

We finally compute, using Lemma 5.0.2, the evolution

d
dt

ˆ
Σ
(H− ℏ)4 dµt = 4

ˆ
Σ
(H− ℏ)3

(
∆H+ (H− ℏ)(|A|2 + Ric(ν, ν))− ℏ̇

)
dµt

+ 4

ˆ
Σ
(H− ℏ)3(Υ− 1)(∆H+ (H− ℏ)(|A|2 + Ric(ν, ν))) dµt

−
ˆ
Σ
H(H− ℏ)5 dµ+

ˆ
Σ
Ψ(H− ℏ)3 dµt.

We obtain the desired inequality (5.0.6) using integration by parts for the term
ˆ
Σ
(H− ℏ)3∆H dµt (5.44)

as in Lemma 4.1.8, together with the estimate

|ℏ̇|
ˆ
Σ
|H − ℏ|3 ≤ cσ−

7
2
− 1

2
q−δ−δq

(
B∞σ

− 3
2
−δ
)
∥H − ℏ∥22 ≤ cB∞σ

−5− 3
2
q−2δ−3δq,

and∣∣∣∣ˆ
Σ
(H− ℏ)3(Υ− 1)∆H dµ

∣∣∣∣
≤ cσ−

1
2
q−qδ

ˆ
Σ
(H− ℏ)2|∇H|2 dµ+

∣∣∣∣−ˆ
Σ
(H− ℏ)3∇Υ∇H dµ

∣∣∣∣
≤ cσ−

1
2
q−qδ

ˆ
Σ
(H− ℏ)2|∇H|2 dµ+ c

ˆ
Σ
σ−

q
2
−1−qδ|∇H||H − ℏ|3 dµ.
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Finally, we conclude combining (5.5) and (5.7), and thus estimating∣∣∣∣ˆ
Σ
Ψ(H− ℏ)3 dµt

∣∣∣∣ ≤ Cσ 1
2
− 1

2
q−δq+δ

ˆ
Σ
σ−

5
2
−δ|H − ℏ|4 + σ−

3
2
−δ|H − ℏ|3|∇H| dµt

≤ Cσ−2

ˆ
Σ
(H− ℏ)4 dµt + Cσ−1− 1

2
q−δq

ˆ
Σ
(H− ℏ)2|H − ℏ||∇H| dµt

≤ Cσ−2

ˆ
Σ
(H− ℏ)4 dµt + Cσ−q−2δq

ˆ
Σ
(H− ℏ)2|∇H|2 dµt,

(5.45)
where we used Young’s inequality in the latter estimate. The conclusion holds for σ suitably
large.

A similar estimate, but independent of the evolution of ℏ, can be also given for ∇H. The

hypothesis on
◦
A and the H1-norm of H − ℏ are not needed in order to prove the following

Lemma.

Lemma 5.0.7. Let (Σ, Ft), t ∈ [0, T ], such that (2.29) and (2.30) hold for every t ∈ [0, T ].
Then there exists a constant C = C(c) > 0 such that

d
dt

ˆ
Σ
|∇H|2 dµt ≤ −

1

2

ˆ
Σ
|∇2H|2 dµt +Cσ−2

ˆ
Σ
|∇H|2 dµt +Cσ−4

ˆ
Σ
(H− ℏ)2 dµt, (5.46)

and

d
dt

ˆ
Σ
|∇H|4 dµt ≤ −

ˆ
Σ
|∇2H|2|∇H|2 dµt + Cσ−2

ˆ
Σ
|∇H|4 dµt + Cσ−6

ˆ
Σ
(H− ℏ)4 dµt.

(5.47)

Proof. We start proving inequality (5.46). From Lemma 5.0.4, after integration we get

d
dt

ˆ
Σ
|∇H|2 dµt = 2

ˆ
Σ
⟨∇
(
∆H+ (H− ℏ)(|A|2 + Ric(ν, ν)

)
,∇H⟩ dµt

+ 2

ˆ
Σ
⟨∇
(
(Υ− 1)

(
∆H+ (H− ℏ)(|A|2 + Ric(ν, ν))

))
,∇H⟩ dµt

+

ˆ
Σ
|∇H|2H(ℏ−H) dµt + 2

ˆ
Σ
(H− ℏ)|∇H|2hij∇iH∇jH dµt

+ 2

ˆ
Σ
⟨∇Ψ,∇H⟩dµt.

Since H, |H − ℏ| are bounded by Cσ−1 and
∣∣|A|2 + Ric(ν, ν)

∣∣ ≤ Cσ−2 and |RicΣ| ≤ Cσ−2,
using Bochner’s identity and integration by part we get

d
dt

ˆ
Σ
|∇H|2 dµt ≤ Cσ−2

ˆ
Σ
|∇H|2 dµt + Cσ−4

ˆ
Σ
(H− ℏ)2 dµt −

ˆ
Σ
|∇2H|2 dµt

+ 2

∣∣∣∣ˆ
Σ
(Υ− 1)

(
∆H+ (H− ℏ)(|A|2 + Ric(ν, ν))

)
∆H dµt

∣∣∣∣
+ 2

∣∣∣∣ˆ
Σ
Ψ∆H dµt

∣∣∣∣ .
(5.48)
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Note that, combining (5.5) and (5.7), we get∣∣∣∣ˆ
Σ
Ψ∆H dµt

∣∣∣∣ ≤ Cσ
1
2
− 1

2
q−δq+δ

ˆ
Σ

(
σ−

5
2
−δ|H − ℏ|+ σ−

3
2
−δ|∇H|

)
|∇2H| dµt

≤ Cσ−4

ˆ
Σ
(H− ℏ)2 dµt + Cσ−2

ˆ
Σ
|∇H|2 dµt + Cσ−q−2δq

ˆ
Σ
|∇2H|2 dµt.

(5.49)
Since |Υ− 1| = O(σ−

1
2
q−qδ) and using Young’s inequality, we conclude, for σ large,

d
dt

ˆ
Σ
|∇H|2 dµt ≤ Cσ−2

ˆ
Σ
|∇H|2 dµt + Cσ−4

ˆ
Σ
(H− ℏ)2 dµt −

ˆ
Σ
|∇2H|2 dµt

+ Cσ−
1
2
q−qδ

ˆ
Σ
|∇2H|2 dµt + Cσ−2− 1

2
q−qδ

ˆ
Σ
|H − ℏ||∇2H| dµt

+ Cσ−q−2qδ

ˆ
Σ
|∇2H|2 dµt

≤ Cσ−2

ˆ
Σ
|∇H|2 dµt + Cσ−4

ˆ
Σ
(H− ℏ)2 dµt −

1

2

ˆ
Σ
|∇2H|2 dµt.

(5.50)

We now prove (5.47). From (5.16) we get, after integrating by parts,

d
dt

ˆ
Σ
|∇H|4 dµt = 4

ˆ
Σ
(H− ℏ)|∇H|2hij∇iH∇jH (5.51)

+ 4

ˆ
Σ
⟨∇
(
∆H+ (H− ℏ)(|A|2 + Ric(ν, ν)

)
,∇H⟩ dµt +

ˆ
Σ
|∇H|4H(ℏ−H) dµt

− 4

ˆ
Σ
(Υ− 1)

(
∆H+ (H− ℏ)(|A|2 + Ric(ν, ν)

)
∆H|∇H|2 dµt + 4

ˆ
Σ
⟨∇Ψ,∇H⟩ dµt.

To estimates the terms above, note that, if σ0 is so large that |Υ− 1| ≤ ε (see (5.6)), then∣∣∣∣4ˆ
Σ
(Υ− 1)

(
∆H+ (H− ℏ)(|A|2 + Ric(ν, ν)

)
∆H|∇H|2 dµt

∣∣∣∣
≤ ε

ˆ
Σ
|∇2H|2|∇H|2 dµt + Cσ−2

ˆ
Σ
|H − ℏ||∇2H||∇H|2 dµt.

Moreover, using again integration by parts on ⟨∇Ψ,∇H⟩ = ∇ · (Ψ∇H)−Ψ∆H, we estimate∣∣∣∣ˆ
Σ
⟨∇Ψ,∇H⟩|∇H|2 dµt

∣∣∣∣ ≤ Cσ−1− 1
2
q−δq

(
σ−1

ˆ
Σ
|H − ℏ||∇2H||∇H|2 dµt +

ˆ
Σ
|∇2H||∇H|3 dµt

)
where we also used (5.5) combined with (5.7). We conclude using Bochner’s formula, the
inequality H + |H − h|+ |A| ≤ Cσ−1 and that |RicΣ| ≤ Cσ−2, obtaining

d
dt

ˆ
Σ
|∇H|4 dµt ≤− 4

ˆ
Σ
|∇2H|2|∇H|2 + Cσ−2

ˆ
Σ
|∇H|4 dµ+ Cσ−2

ˆ
Σ
|H − ℏ||∇2H||∇H|2 dµt

+ ε

ˆ
Σ
|∇2H|2|∇H|2 dµt + Cσ−1

ˆ
Σ
|∇2H||∇H|3 dµt.

(5.52)
The desired inequality appears when using Young’s inequality

Cσ−2

ˆ
Σ
|H − ℏ||∇2H||∇H|2 dµt + Cσ−1

ˆ
Σ
|∇2H||∇H|3 dµt

≤ ε
ˆ
Σ
|∇2H|2|∇H|2 dµt + Cσ−6

ˆ
Σ
(H− ℏ)4 dµt + Cσ−2

ˆ
Σ
|∇H|4 dµt



74 Chapter 5. Volume preserving spacetime mean curvature flow in initial data sets

and choosing ε suitably small.

The next simple inequality will be useful in the following Lemma. The proof is analogous
to the one of Lemma 4.1.10.

Lemma 5.0.8. Let Σ ↪→M be a surface. Then we have, for every ε > 0 and σ > 1,

−σ−4

ˆ
Σ
(H− ℏ)2|∇H|2 dµ ≤ − ε

2σ2

ˆ
Σ
|∇H|4 dµ+ ε2

ˆ
Σ
|∇2H|2|∇H|2 dµ.

This leads to the following Lemma.

Lemma 5.0.9. Let (Σ, Ft), t ∈ [0, T ], such that (2.29), (2.30), (5.24), (5.25) and ∥
◦
A∥L4(Σt) ≤

B1σ
−1−δ for every t ∈ [0, T ]. For η > 0, let us set

aη(t) := ησ−4∥H − ℏ∥4L4(Σt)
+ ∥∇H∥4L4(Σt)

. (5.53)

Then there exist a universal constant ηw > 0 and a radius σ0 = σ0(B1, cin, c, δ) > 1 such that
if η = ηw and σ > σ0 the following statements hold.

(i) There exists a constant c = c(B1, ηw, c) such that if B2 > c we have the implication

aηw(0) < B2σ
−8−4δ =⇒ aηw(t) < B2σ

−8−4δ for every t ∈ [0, T ].

(ii) If in addition we suppose (5.24), there exists a constant c = c(cin, B∞) such that if we
choose Bin > c(cin, B∞) we have the implication

aη(0) < Binσ
−7− 3

2
q−2δ−3δq =⇒ aη(t) < Binσ

−7− 3
2
q−2δ−3δq for every t ∈ [0, T ].

Proof. Combining Lemma 5.0.6, Lemma 5.0.7 and Lemma 5.0.8, we get

ȧη(t) ≤ −Cσ−2aη(t) + C̃σ−6

ˆ
Σ
(H− ℏ)4 dµt + c̃B∞σ

−9− 3
2
q−2δ−3δq, (5.54)

for some C̃ universal constant and c̃ = c̃(cin, c). We will use inequality (5.54) in order to prove
two different conclusions.

(i) Since q ≥ 2, choosing σ suitably large depending on B∞ so that c̃B∞σ
−9− 3

2
q−2δ−3δq ≤

σ−10−4δ we have

ȧη(t) ≤ −Cσ−2aη(t) + C̃σ−6

ˆ
Σ
(H− ℏ)4 dµt + σ−10−4δ. (5.55)

Moreover, Lemma 2.3.5 implies that
ˆ
Σ
(H − h)4 dµt ≤ c4Per

(
∥
◦
A∥4L4(Σ,µt)

+ σ−4−4δ

)
≤ c4Per(B

4
1 + 1)σ−4−4δ.

and thus (5.55) becomes

ȧη(t) ≤ −Cσ−2aη(t) + cσ−10−4δ (5.56)

with c = c(B1, c, cPer). Thus, if B2 > c/C, we get the thesis.

(ii) Since we are assuming (5.25) for every t ∈ [0, T ], the Sobolev’s immersion (see [CS21,
Lemma 12]) implies that

∥H − ℏ∥L4(Σt) ≤ c̃σ
− 1

2
− q

2
−qδ for every t ∈ [0, T ],
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where c̃ = c̃(cin, c). Thus (5.54) becomes

ȧη(t) ≤− Cσ−2aη(t) + c̃σ−8−2q−4qδ + c̃B∞σ
−9− 3

2
q−2δ−3δq

≤− Cσ−2aη(t) + 2c̃B∞σ
−9− 3

2
q−2δ−3δq

(5.57)

for σ large, since q ≥ 2 and δ ∈ (0, 12 ]. Choosing Bin > 2c̃B∞/C we have the thesis.

From now on, when considering the roundness class Wη
σ(B1, B2), we fix the parameter η

equal to the value ηw given by the previous Lemma, and we will no longer need to specify the
dependence on η of the constants in the estimates.

5.0.3 Evolution of ∥H − ℏ∥L2(Σt) and convergence

An important assumption in the previous results was the comparability between rΣ and σ
in (2.30) which assures that on Σt the ambient curvature decays with the right order, as
highlighted in Remark 2.3.2. To justify this assumption, we study now the evolution of L2-
norm of H− ℏ, which relies on the spectral analysis of Section 3. The following Lemma is an
improvement of inequality (5.33). Under an additional hypothesis, this inequality shows that
the negative term in the evolution of ∥H − ℏ∥2L2(Σt)

is dominant.

Lemma 5.0.10. Let (Σ, Ft), t ∈ [0, T ], be such that (2.29), (2.30), (5.24), (5.25) hold for
every t ∈ [0, T ]. For every Ω > 0 there exists σ0(c,Ω) > 1 such that if

∥H − ℏ∥L∞(Σt) ≤ Ωσ−
5
4
− 3

8
q− δ

2
− 3δq

4 , ∀t ∈ [0, T ] (5.58)

and σ > σ0, then
d
dt

ˆ
Σ
(H− ℏ)2 dµt ≤ −

EADM

σ3

ˆ
Σ
(H− ℏ)2dµt,

for every t ∈ [0, T ].

Proof. We easily compute the evolution

d
dt

ˆ
Σ
(H− ℏ)2 dµt =− 2

ˆ
Σ
(H− ℏ)L (H− ℏ) dµt

+ 2

ˆ
Σ
(H− ℏ)(Υ− 1)

(
∆H+ (H− ℏ)(|A|2 + Ric(ν, ν))

)
dµt

+

ˆ
Σ
Ψ(H− ℏ) dµt −

ˆ
Σ
H(H− ℏ)3 dµt.

(5.59)

Combining (5.5) and (5.7) we get

|Ψ| ≤ C(σ|P |)q−1
(
σ−

5
2
−δ|H − ℏ|+ σ−

3
2
−δ|∇H|

)
, (5.60)

which implies, using that σ|P | ≤ Cσ−
1
2
−δ,∣∣∣∣ˆ

Σ
(H− ℏ)Ψ dµt

∣∣∣∣ ≤ C (σ−2− 1
2
q−δq

ˆ
Σ
(H− ℏ)2 dµt + σ−

3
2
−δ

ˆ
Σ
(σ|P |)q−1|H − ℏ||∇H| dµt

)
≤ εEADM

σ3

ˆ
Σ
(H− ℏ)2 dµt + ε

ˆ
Σ
(σ|P |)2q−2|∇H|2 dµt.

where in the latter inequality we used parametric Young’s inequality and we have chosen σ
suitably large.



76 Chapter 5. Volume preserving spacetime mean curvature flow in initial data sets

We now estimate, using integration by parts and formula (5.4) for ∇Υ, together with the
fact that

∣∣H
H
∣∣ ≤ C and H ∼ H ∼ 2

σ ,ˆ
Σ
(H− ℏ)(Υ− 1)∆H dµt

≤ −
ˆ
Σ
(Υ−1)|∇H|2 dµt+

ˆ
Σ

(
σq+1|P |q|∇H|+ σq|P |q−1|∇P |

)
|H−ℏ||∇H| dµt. (5.61)

Since |H − ℏ| ≤ ϵσ−1 for σ suitably large, and |∇P | ≤ σ−
5
2
−δ because of Lemma 2.1.3,(

σq+1|P |q|∇H|+ σq|P |q−1|∇P |
)
|H − ℏ||∇H|

≤ ϵσq|P |q|∇H|2 + σq−
5
2
−δ|P |q−1|H − ℏ||∇H|

≤ ϵ(σ|P |)q|∇H|2 + σ−
3
2
−δ(σ|P |)q−1|H − ℏ||∇H|

≤ ϵ(σ|P |)q|∇H|2 + Cσ−3−2δ|H − ℏ|2 + ϵ(σ|P |)2q−2|∇H|2
(5.62)

where in the latter inequality we used parametric Young’s inequality. Since (σ|P |)2q−2 =
(σ|P |)q−2 (σ|P |)q ≤ C(σ|P |)q, combining (5.61) and (5.62) we getˆ
Σ
(H− ℏ)(Υ− 1)∆H dµt

≤ −
ˆ
Σ
(Υ− 1)||∇H|2 dµt + Cσ−3−2δ

ˆ
Σ
(H− ℏ)2 dµt + ϵC

ˆ
Σ
(σ|P |)q|∇H|2 dµt, (5.63)

Note furthermore that (5.58) implies∣∣∣∣ˆ
Σ
H(H− ℏ)3 dµt

∣∣∣∣ ≤ Ωσ−
9
4
− 3

8
q− 3qδ

4
− δ

2

ˆ
Σ
(H− ℏ)2 dµt ≤

εE

σ3

ˆ
Σ
(H− ℏ)2 dµt,

if σ > σ0, for some σ0 = σ0(Ω).
We conclude from (5.59), using Proposition 3.2.7, together with |Υ−1||A|2 ≤ Cσ−2− q

2
−qδ ≤

εEADMσ
−3 and Υ− 1 ≥ cσq|P |q because of (5.6), obtaining

d
dt

ˆ
Σ
(H− ℏ)2 dµt ≤ −

2EADM

σ3

ˆ
Σ
(H− ℏ)2 dµt +

εEADM

σ3

ˆ
Σ
(H− ℏ)2 dµt

+ (ϵC − c)
ˆ
Σ
(σ|P |)q |∇H|2 dµt + Cσ−3−2δ

ˆ
Σ
(H− ℏ)2 dµt

≤ −EADM

σ3

ˆ
Σ
(H− ℏ)2 dµt

(5.64)

for ϵ small with respect to c, ε < 1 and σ suitably large.

The next result, which is similar to Proposition 3.4 in [HY96], gives a bound on the
possible change of area of the surface along the flow as long as it remains round. The proof
is analogous to that of Lemma 4.1.14.

Lemma 5.0.11. Given B1, B2, there exist constants c > 0 and σ0 > 1 such that, if σ > σ0
and Σt is a solution of the flow (5.2) for t ∈ [0, T ] with Σt ∈ Wη

σ(B1, B2) for all t then

|σΣ0 − σΣt | ≤ cσ
1
2
−δ

for every t ∈ [0, T ].

We are now ready to prove that, by an appropriate choice of the parameters of roundness
class, a well-centered round surface remains inside the class for arbitrary times. Remember
that hypotheses (1.16) are in particular satisfied by Nerz’s foliation.
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Remark 5.0.12. The decay rates in conditions (1.16) are modelled on the properties of the
leaves of the CMC-foliation constructed by Nerz in [Ner15]. In particular, in his Theorem
5.1, Nerz proved the existence of an exhaustive family of constant mean curvature surfaces
which foliate an asymptotically flat manifold with non-zero ADM-energy. We remark that
such foliation has been constructed via volume preserving mean curvature flow in Chapter 4,
under the additional (weak) Regge-Teitelboim conditions and the hypothesis EADM > 0. See
also Section 4.3.1.

We denote by {Σs}s≥s0, for a certain s0 > 1, the CMC-foliation (constructed as in [Ner15]
or as in Chapter 4). Note that we use a different letter in order to parametrize the foliation
with respect to [Ner15]. This CMC-foliation satisfies

HΣs
=

2

s
, ∥

◦
A∥H1(Σs) ≤ CNerzs

− 3
2
−δ, |z⃗Σs | ≤ CNerzs

1−δ, (5.65)

for some CNerz > 0. Moreover, [Ner15, Prop. 4.4] proves that |s − σs| ≤ Cσ
1
2
−δ

s , where
σs := σΣs. Note also that [Ner15, Prop. 4.4], combined with (5.65), implies

σΣs − Cσ1−δ
Σs ≤ |x⃗| = |z⃗s + σΣsνs + fsνs| ≤ σΣs + Cσ1−δ

Σs , (5.66)

that is |rΣs − σΣs | ≤ Cσ1−δ
Σs . Then

rΣs

σs
≥ 1− Cσ−δ

s . (5.67)

Thus, for s large, this foliation satisfies (1.16) with σ = σs. Finally observe that, by Lemma
2.1.3, the leaves Σs also satisfy

∥H − ℏ∥W 1,2(Σs) ≤ cinσ
− q

2
−qδ,

for some cin = cin(c) > 0. For this reason, we will use a fixed leaf of Nerz’s foliation as the
initial datum of our flow.

Remark 5.0.13. We remark that, using the fundamental result of DeLellis-Müller [DLM05],
the assumptions in (1.16) imply that σ

rΣ
is also bounded away from zero. In fact, combining

Lemma 2.1.10 with the latter assumption in (1.16), and using the DeLellis-Müller’s Theorem,
Point (iv) of Lemma 2.3.5, combined with the second assumption in (1.16), implies that σ

rΣ
≥

1− C−1
0 , provided that σ is suitably large.

The following Theorem is the key step in the proof of Theorem 1.1.4.

Theorem 5.0.14. Let (M, g,K) be a C2
1
2
+δ

-asymptotically flat initial data set, with EADM >

0. Choose B1 as in Lemma 5.0.5 and B2 and η as in Lemma 5.0.9. For every C0 > 0
there exist B = B(C0) and σ0 = σ0(c, δ, EADM, B1, B2, C0) such that the following holds. Let
(Σ, Ft) be a solution to the volume preserving spacetime mean curvature flow for t ∈ [0, T ]
such that Σ0 (i) belongs to Bσ(B1, B2, Bcen) with σ = σΣ0, (ii) is a CMC-surface and (iii)
|z⃗Σ0 | ≤ C0σ

1−δ. Then, if Bcen ≥ B and σ ≥ σ0, Σt belongs to Bσ(B1, B2, Bcen) for every
t ∈ [0, T ].

Remark 5.0.15. Note that the following proof also works when Σ is almost CMC and not
exactly CMC.

Proof. Note that, since Σ0 = Σ belongs to Bσ(B1, B2, Bcen), then it satisfies

1

2
≤ rΣ

σ
≤ 2, 1 ≤ σH ≤

√
5.
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Thus Lemma 2.1.3 implies that the initial (CMC) surface satisfies

∥H − ℏ∥H1(Σ0) ≤ C1σ
− 1

2
q−qδ (5.68)

for some C1 = C1(c) > 0. Thus, we define the maximal time

Tmax := sup

{
T ≤ T :

Ft exists in [0, T ], ∥H − ℏ∥L2(Σt) < (C1 + 1)σ−
1
2
q−qδ and

Σt belongs to Bσ(B1, B2, Bcen) for every t ∈ [0, T ]

}
> 0.

(5.69)
Thus, ΣTmax belongs to Bσ(B1, B2, Bcen) ⊂ Wσ(B1, B2). By Lemma 2.3.5, Lemma 5.0.11
and Definition 2.3.1, the conditions (2.29) and (2.30) hold for every t ∈ [0, Tmax]. See again
Remark 5.0.12 for a direct estimate of the Euclidean radius.

Claim: There exists cin = cin(c) > 0 such that (5.25) holds for every t ∈ [0, Tmax].
Proof of the Claim. Combining together (5.33) and (5.46), if C is the maximum between the
two constants involved, we find that

d
dt

(ˆ
Σ
|∇H|2 dµt + 4Cσ−2

ˆ
Σ
(H− ℏ)2 dµt

)
≤− 1

2

ˆ
Σ
|∇2H|2 dµt − Cσ−2

ˆ
Σ
|∇H|2 dµt

+ (4C2 + C)σ−4

ˆ
Σ
(H− ℏ)2 dµt.

(5.70)
Setting a(t) := ∥∇H∥2L2(Σt)

+ 4Cσ−2∥H − ℏ∥2L2(Σt)
, since by definition of Tmax it holds ∥H −

ℏ∥L2(Σt) < (C1 + 1)σ−
1
2
q−qδ for every t ∈ [0, Tmax],

ȧ(t) ≤ −Cσ−2a(t) + (8C2 + C)σ−4

ˆ
Σ
(H− ℏ)2 dµt

≤ −Cσ−2a(t) + 2(8C2 + C)(C1 + 1)2σ−4−q−2qδ

(5.71)

Since, by (5.68), a(0) ≤ (1 + 4C)C1σ
−2−q−2δq, (5.71) implies that a(t) ≤ C(c, C1)σ

−2−q−2δq

for every t ∈ [0, Tmax]. Since also C1 = C1(c), this proves that there exists cin = cin(c) such
that the claim holds.

Now, (2.29), (2.30), (5.24) and (5.25) imply that we are in the hypotheses of Proposition
5.0.5 and of point (i) of Lemma 5.0.9. Thus, the choices of B1 and B2 imply that ΣTmax be-
longs to Wσ(B1, B2) for σ large. Moreover, (5.24) holds for some B∞ = B∞(B1, B2), thanks
again to Lemma 2.3.5.

We conclude showing that, if also Bcen is chosen suitably large, then Σt ∈ Bσ(B1, B2, Bcen)
for every t ∈ [0, Tmax]. Since Σ0 is a CMC-surface, it is easy to verify that aηw(0) <

Binσ
−7− 3

2
q−2δ−3δq for a constant Bin suitably large. We remember that the function aη has

been defined in Lemma 5.0.9. Moreover, Lemma 5.0.9, point (ii), implies that if Bin is chosen
suitably large, depending on cin and B∞, then ∥H − ℏ∥L∞(Σt) ≤ Binσ

− 5
4
− 3

8
q− δ

2
− 3δq

4 holds for
every t ∈ [0, Tmax]. Thus Lemma 5.0.10, with Ω := Bin, combined with Gronwall’s Lemma,
implies that

∥H − ℏ∥L2(Σt) ≤ ∥H − ℏ∥L2(Σ0)e
−EADMt

2σ3 < (C1 + 1)σ−
1
2
q−qδe−

EADMt

2σ3 , (5.72)
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for every t ∈ [0, Tmax]. Setting, z⃗(t) = z⃗Σt , we show that the behavior of the barycenter is
controlled. Analogously to [CW08], we have the evolution

∂t (|Σt|z⃗(t)) =
ˆ
Σ
(ℏ−H)ν dµt +

ˆ
Σ
Ft(x)H(ℏ−H) dµt. (5.73)

Combining this with the estimates H ≤ 5
σ , |Ft(x)| ≤ RΣ(t) ≤ 3σ and (5.72), we obtain

∂t (|Σt||z⃗(t)|) ≤ Cσ∥H − ℏ∥L2(Σ,µt) < C(C1 + 1)σ1−
q
2
−qδe−

EADMt

2σ3 . (5.74)

Integrating (5.74) over [0, Tmax], we get

|ΣTmax ||z⃗(Tmax)| − |Σ0||z⃗(0)| ≤ C(C1 + 1)σ1−
q
2
−qδ

(
2σ3

EADM

)(
1− e−

EADMTmax
2σ3

)
.

By the hypotheses |z⃗Σ0 | ≤ C0σ
1−δ, we find

|z⃗(Tmax)| ≤
2

7π

(
5π(C0σ

1−δ) +
2C(C1 + 1)

EADM
σ2−

q
2
−qδ

)
< Bcenσ

1−δ (5.75)

if Bcen suitably large, depending on C0, C, C1 and EADM. Thus ΣTmax belongs to the class
Bσ(B1, B2, Bcen), and combining this with (5.72) we obtain that necessarily Tmax = T .

Local regularity of the flow. We now review the regularity theory of the non-linear flow
we are considering. Since in a local interval of existence [0, t0) the principal curvatures are
uniformly bounded (by the preservation of the roundness), it follows that Σt can be locally
written as a graph. Suppose in particular that Σt∩Bϵ(x0) = {(x1, x2, u(t, x1, x2)) : (x1, x2) ∈
A}, with A ⊂ R2 open. Since the metric, the unit normal vector, and the mean curvature of
Σt are locally given by

gij = δij +DiuDju, ν =
(−D1u,−D2u, 1)√

1 + |Du|2
,

H =
1√

1 + |Du|2

(
δij − DiuDju

1 + |Du|2

)
D2

iju,

(5.76)

the equation (5.1), written in a tangential fashion, translates into an equation for u

∂tu =
√
1 + |Du|2

(
Φ

(
1√

1 + |Du|2

(
δij − DiuDju

1 + |Du|2

)
D2

iju, P

)
− ℏ

)
, (5.77)

where P = gijKij is a smooth function and Φ(s, γ) = q
√
sq − |γ|q. We rewrite equation (5.77)

as
∂tu = F(D2u,Du, x, t). (5.78)

Note that

Ḟ ij :=
∂F
∂D2

iju
=

(
δij − DiuDju

1 + |Du|2

)
∂sΦ (5.79)

and ∂sΦ = q−1 (sq − |γ|q)
1
q
−1

(qsq−1) > 0. Thus, as a matrix,

|w|2
(
inf
A
∂sΦ

)(
1− sup |Du|2

1 + sup |Du|2

)
≤ Ḟ ijwiwj =

(
|w|2 − (Du · w)2

1 + |Du|2

)
∂sΦ ≤ |w|2

(
sup
A
∂sΦ

)
.

(5.80)
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Finally note that if Ḟ ijMij = 0 then
(
δij − DiuDju

1+|Du|2

)
Mij = 0. Thus, computing F̈ ij,kl :=

∂2F
∂D2

iju∂D
2
klu

, it follows that this implies that F̈ ij,klMijMkl = 0.

This means that we are in the hypothesis of Theorem 6 in [And04], which let us obtain
a C2,α estimate on u, for some α ∈ (0, 1). By standard arguments, this means that the
coefficients of the linearization of the non-linear equation are C0,α-Hölder, and thus the stan-
dard theory (see for example [LSU68]) implies uniform bounds on all higher derivatives of u.
Covering Σt with graphs over balls of the same radius, we obtain Hölder estimates on the
curvature and its derivatives.

Proof of Theorem 1.1.4. Consider a CMC surface Σ such that, setting σ = σΣ,

∥
◦
A∥L4(Σ) ≤ C0σ

−1−δ, |z⃗Σ| ≤ C0σ
1−δ,

σ

rΣ
≤ 1 + C−1

0 , (5.81)

for some C0 > 3. Notice that, forB1, B2 andBcen suitably large Σ belongs to Bσ(B1, B2, Bcen).
See also Remark 5.0.12. As in the proof of Theorem 4.1.16, suppose that the maximal time
of existence of the flow, say Tmax, is finite. Then, by Theorem 5.0.14 we find that also ΣTmax

belongs to Bσ(B1, B2, Bcen) and thus, by the regularity theory, we can extend the flow past
Tmax, which contradicts the maximality. Thus Tmax =∞.

Convergence. From Lemma 5.0.10 we see that ∥H − h∥L2(Σt) decays exponentially as t→
+∞. Since the derivatives of any order of H are uniformly bounded, interpolation estimates
imply that they also decay exponentially. Then Sobolev immersion implies that ∥H−h∥L∞(Σt)

decays exponentially as well. By the bootstrapping argument described in the paragraph
above, the boundedness of the curvatures and [Hui84, Lemma 8.2] show that F (·, t) converges
to a smooth immersion F∞(·). In particular, since H−ℏ→ 0, the limit surface Σ∞ := F∞(Σ)
satisfies H ≡ ℏ. Finally, Theorem 5.0.14 also shows that the requirements in the definition of
Bσ(B1, B2, Bcen) still hold as strict inequalities on Σ∞.

5.0.4 CSTMC foliation and centers of mass

In conclusion, we remark that the computation carried out in the above Lemmas also have
some consequences on the center of mass of the foliation we constructed. In this Section, we
suppose that the initial datum of our flow is a leaf of Nerz’s foliation, as recalled in Remark
5.0.12. In particular, we assume that there exists the CMC-center of mass of Nerz’s foliation,
i.e. the limit as s→∞ of the Euclidean barycenters of the foliation {Σs}s≥s0

constructed by
Nerz (see [Ner15]). In the following, we will suppose the change of variable s ←→ σ, with
σ(s) := σΣs . Thus, we have

Corollary 5.0.16. Let (M, g,K) be a C2
1
2
+δ

-asymptotically flat initial data set which is con-

strained and with positive ADM-energy EADM > 0. Let ισ : Σσ ↪→M \ C the inclusion of the
family {Σσ}σ≥σ0

of CMC-surfaces as above and suppose that there exists the CMC-center of
mass of Σσ, i.e.

C⃗CMC := lim
σ→∞

 
Σσ

x⃗ dµσ, (5.82)

where dµσ is the 2-dimensional measure induced by g on ΣΣ. Consider the CSTMC foliation
constructed above, and let z⃗Σσ

st
be the barycenter of Σσ

st := lim
t→∞

Ft(Σ
σ).

(i) If q > 2
1
2
+δ

then

lim
σ→∞

z⃗Σσ
st
= C⃗CMC. (5.83)
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(ii) If 2 ≤ q ≤ 2
1
2
+δ

, then there exists C > 0 such that

|z⃗Σσ
st
− z⃗Σσ | ≤ Cσ2−

q
2
−qδ. (5.84)

Proof. Integrating (5.73) in [0, t] we get

||z⃗(t)| − |z⃗(0)|| ≤ C
ˆ t

0
|Σt|−1∥H − ℏ∥L1(Σt) dt ≤ Cσ

2− q
2
−qδ

(
1− e−

EADMt

σ3

)
. (5.85)

Since, by construction, z⃗(0) = z⃗Σσ and z⃗Σσ
st

:= limt→∞ z⃗(t), which exists since the flow
converges, letting t→∞ in (5.85) we get

|z⃗Σσ
st
− z⃗Σσ | ≤ Cσ2−

q
2
−qδ.

Remark 5.0.17. (i) Since 1
2 + δ ∈

(
1
2 , 1
]
, we have that

2 ≤ 2
1
2 + δ

< 4. (5.86)

Thus, if q ≥ 4, the volume preserving spacetime mean curvature flow recovers the center
of mass C⃗CMC for every δ ∈ (0, 12 ].

(ii) For q = 2, we recover the foliation constructed in [CS21]. In this case, the right hand
side of equation (5.84) is divergent, and the theory developed by Cederbaum and Sakovich
in [CS21] let us to conclude that {z⃗Σσ

st
}σ≥σ0 converges if and only if the correction term

converges

lim
r→∞

ˆ
S2r

xi
(∑

k,l πklx
kxl
)2

r3
dµe, (5.87)

under the additional hypothesis that |K| ≤ c|x⃗|−2.

(iii) Finally, also in the case q ∈
(
2, 2

1
2
+δ

]
equation (5.84) holds with a positive exponent, and

thus, in a case in which the CMC-barycenter does not converge, this does not necessarily
imply the non convergence of the CSTMC-barycenter. However, differently from point
(ii), where the convergence of the limit (5.87) allows to deduce a relation between the two
barycenters, for a general q we do not know if a similar correction term can be found.
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