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Abstract

This is a new demonstration of functorial resolution of singularities of complex
analytic spaces following the new method introduced in [MM19]. In particular there
are no hypothesis of compactness, or even relative compactness.
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Preface

i Introduction

The object of this manuscript is the resolution of complex analytic singularities, i.e. we
prove the existence of a resolution functor in the holomorphic case, ii.b, cf. theorem
[MM19, I.a], albeit in the 2-category of complex analytic (Deligne-Mumford) champs.
As we will clarify in the prologue, §ii, a fully functorial procedure for the resolution
of singularities in characteristic zero is impossible, i.e. there cannot exist a smooth
centre determined by purely local data blowing up in which must improve some
discrete measure of how far the singularity is from being smooth.

The present work may perfectly well be seen as a corollary of the existence of a
resolution functor for excellent Deligne-Mumford champ of characteristic zero (every
complex analytic ring is excellent), cf. [MM19], however, the actual contribution
we provide is to present a series of simplifications due to the absence of many
technicalities which, on the contrary, naturally appears in the excellent case. We
adopt the new method of [MM19], hence there is a significant non-empty intersection
with this work and op.cit. , i.e. §I - §IV, where the invariant is constructed and
its useful properties, e.g. III.c, pointed out. Nevertheless in the holomorphic case
we can simplify a few thorny issues such as the convergence of the weighted centre,
i.e. whether such weighted centre defining ρ is well-defined in A, rather than only
in its completion, Â. In particular we provide an easier proof, ii.f, of convergence
wherein any intervention of champs is just a categorical tool which allows us to work
with quotient singularities while doing linear algebra. In second place, to go from
convergence to ii.b one needs the upper semi-continuity of the invariant which is
just a consequence, V.d, of its definition and the properties peculiar to the analytic
topology, which makes life even easier than in the geometric case. Lastly, in the
final assembly, V.m & V.q, we work without any compactness assumption For the
convenience of the reader and with opportune modifications we reproduce the preface
of [MM19] in the following chapter.
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Introduction v

ii Prologue

It is a known fact that resolution of singularities, already in characteristic zero,
cannot be achieved in a way that is both étale local and independent of the resolution
process itself while blowing up in smooth centres. More precisely one would like in
the category of complex analytic spaces (all locally ringed spaces which are locally
isomorphic to an open subset of the vanishing locus of a finite set of holomorphic
functions or in general of reduced excellent algebraic spaces, [MM19]) a modification
functor

U M(U)

and an invariant inv(U) ∈ Γ>0 in a (preferably discrete) ordered group such that
(M.1) M(U) U is a blow up in a smooth centre.
(M.2) U = M(U) iff U is smooth.
(M.3) M commutes with étale base change U ′ U, i.e. M(U ′) = M(U) ×U U ′
whenever U, U ′ are connected and inv(U ′) = inv(U).
(M.4) For any U ′ U étale, inv(U ′) ≤ inv(U).
(M.5) inv

(
M(U)

)
< inv(U) whenever inv(U) > 0.

The impossibility of this is shown by the example, cf. [Kol07, pg. 142],
ii.a Example. Let K be any field of characteristic 0, and consider

U : x2 + y2 + (zt)2 = 0 A4
K , (2.1)

wherein the singular locus is the union of the two lines,

L1 : x = y = z = 0 & L2 : x = y = t = 0.

On the other hand if M(U) U were to exist then by (M.1), (M.2) & (M.3)
it must be a blow up in a smooth centre contained in the singular locus, so the
only possibilities are L1, L2 or their intersection, i.e. the origin. Now the latter
operation leaves (2.1) unchanged where the proper transform of either line meets the
exceptional divisor, while a choice amongst L1, L2 is inadmissible because the process
must respect, (M.3), the symmetry z ←→ t, and that’s without even addressing the
issue that (2.1) might only be valid after completion, so that globally the Li could
be branches of the same curve.

The traditional get out from this difficulty is to change the problem, e.g. the argument
of the modification functor becomes not just varieties but varieties with marked
divisor, so, in particular, blowing up (2.1) in the origin creates a marked divisor and
amongst the new singular lines one of them is marked.

However, we change the traditional paradigm, (M.1)-(M.5), to one which adapts the
modification to the problem, so that (M.1) is replaced by,

(M.1’)M(U) U is a smoothed weighted blow up in a regular centre, [MP13, I.iv.3].

The paradigm shift works and the existence of a resolution functor for varieties and
spaces over C is provided by,
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Introduction vi

ii.b Theorem. [cf. V.q] In the 2-category of analytic champ there is a modification
functor U M(U), V.p, satisfying (M.1’), (M.2), (M.3), (M.4), (M.5), albeit
inv takes values in Q∞>0 = lim−→QN

>0. Nevertheless, the invariant has self-bounding
denominators, II.a.

Obviously the goal of the construction of inv is that it should go down under an
appropriate weighted blow up (cf. III.c), so taking values in Q>0 may be a little
disconcerting. The invariant has, however, self-bounding denominators, which is a
certain technical condition, II.a, which has all the effects, II.b, of defining the invariant
in Z>0 while allowing us to define the invariant and perform various construction,
e.g. II.m, where they naturally occur, i.e. Q>0. Specifically for I an ideal of a
m-dimensional regular local ring, A, of characteristic zero, with maximal ideal m we
construct an invariant, §II, invA(I) with self bounding denominators in Q2m

>0 ordered
lexicographically.

Better there is a yoga for constructing inv that makes the resolution process more
widely applicable to more difficult problems such as vector field singularities, which,
essentially views the resolution process as a diagram chase, and manifest itself as
follows,

(Y.1) Generically most thing are smooth, a.k.a. I = O, so the invariant is 0 and
there is nothing to do.

(Y.2) If (Y.1) didn’t happen then generically most things have an isolated singularity
at the closed point, and after a single blow up in the same the multiplicity will
decrease,

(Y.3) If (Y.2) didn’t happen then there is proper sub-space of the tangent space
where the multiplicity did not decrease and its annihilator in m/m2 gives us the start
of a filtration of A which depends only on I.

(Y.4) Construct inductively, II.f - II.g, a sequence of filtrations, F •s (I), according to
the dichotomy,
ii.c Case(A). Something generic happens, case (A), II.p, then s 7−→ s+ 1;
ii.d Case(B). Nothing generic happens, case (B), II.q, then at worst, F •s (I) converges
m-adically.

Proceeding in this way leads to the key,
ii.e Fact. [cf. V.b] There is an invariant, invA(I) ∈ Q2m

>0 , of regular m- dimensional
characteristic zero local rings and their ideals with self bounding denominators such
that if U is the completion of its spectrum at the closed point, then there is a
smoothed weighted blow up ρ : Ũ −→ U such that at every closed point of U the
invariant strictly decreases provided I 6= A.

At this point the only remaining issue is whether the weighted centre defining ρ is
well defined in A, rather than only in its completion, Â.
ii.f Proposition. [cf. V.i] If the centre in ii.e is of dimension 0 or, A is the local
ring of holomorphic functions of a polydisc V , then, V.j, the (canonically defined)
smoothed weighted blow up of V.b is the completion in the exceptional divisor of
a smoothed weighted blow up of V . Similarly if A is the ring of functions of a
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complex analytic space V , U the completion in the closed point, and ρ : Ũ U the
modification of ii.e obtained after a choice of an embedding of U in a smooth formal
scheme, V.n, then there is a smoothed weighted blow up, V.p, of V whose completion
in the exceptional divisor is ρ.

Convergence of ii.e, while true more generally for excellent rings cf. [MM19, VII.d],
is much easier when we were to work in the holomorphic world, V.g & V.h, and
whence this manuscript offers an attractive alternative even to the pure geometric
case, [MM19][VI.i & VII.f].

The manuscript is organised as follow,

§I. This contains some linear algebra about weighted projective spaces (technically
champs because we want them to be smooth) which describes the manifestation of
item (Y.3) above in the generality necessary for the distinctions between generic and
non-generic phenomena in item (Y.4).

§II. This is the inductive definition of the invariant as outlined in (Y.1)-(Y.4). The
key step is the sub-induction II.m whose illustration by way of its Newton polyhedron,
figure 1 of page 13, should facilitate its understanding.

§III. Calculates the invariant for ideals on weighted projective champs. It is the
proof that the invariant goes down on blowing up in its weighted centre.

§IV. This begins to address the aforesaid convergence issues, and related questions
such as upper semi-continuity of the invariant by calculating it in a suitably general,
IV.a, relative setting.

§V. Is the final assembly of the preceeding into a modification functor. First we
prove the following weak principalisation statement,
ii.g Theorem. [V.m] There is a modification functor from the 2-category whose
objects, (U, I), are ideals on complex analytic (Deligne-Mumford) champs whose
value

M(U,I) = (Ũ , Ĩ) (2.2)

is the proper (rather than total) transform Ĩ on a smoothed weighted blow up Ũ → U ,
satisfying (in the obvious change of notation) (M.1’), (M.3), (M.4), (M.5), while
(M.2) becomes, M(U,I) = 0 iff I = OU , and, again, inv takes values in Q∞>0 = lim−→QN

>0

with self-bounding denominators.

After which we remove the condition of the embedding of singular variety in a
smooth one, implicit in ii.g, to obtain V.q. En passant, we provide a new proof of the
convergence of the centre and remove any conditions of (quasi) compactness and/or
Noetherianity.
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Resolution of Singularities
for Complex Analytic Spaces

I Weighted Projective Champs

I.a Set Up/Definition. Throughout this section, k is a ring of characteristic 0,
and Ak := AN+1

k \ {0}. For n 6 N , let a = (a0, a1, ..., an) ∈ ZN+1
>0 with each

ai =
(
ai, ..., ai

)
∈ Zci>0, ci > 1 and N + 1 = c0 + ...+ cn. We denote the coordinates

of AN+1
k by xij for 0 6 i 6 n and 1 6 j 6 ci, and we will call the set of variables

with the same weight ai, i.e. {xi 1, ..., xi ci}, a block, or a block of weight ai, and often
abbreviate it by Xi, similarly, consistent with this decomposition, we will abbreviate
monomials

∏
x
eij
ij by XEi

i , where |Ei| =
∑

j eij (i.e. the degree of the monomial in
the relevant block); while Xi = 0 means xij = 0, ∀ 1 6 j 6 ci.
I.b Definition. The weighted projective champ Pk(a) := P(a0, a1, ..., an) is defined
to be the classifying champ [Ak/Gm] of the action

Gm × Ak Ak, (λa0X0, ..., λ
anXn) (X0, ..., Xn) (X0, ..., Xn)

λ

id

idλ (1.1)

on which the tautological bundle OPk(a)(1) corresponds to the character:

Gm Gm : λ λ−1. (1.2)

In particular, functions on AN+1
k are naturally graded by the action (1.1) and we

denote the grading by wt, i.e.

wt(Xi) = ai, wt(XEi
i ) = ai|Ei|. (1.3)

and by S the graded algebra of Gm-homogeneous equivariant functions on AN+1
k

whose graded pieces, Se = {f ∈ S
∣∣ wt(f) = e}, e ∈ Z>0 are, by [McQ17, I.c.3],

canonically isomorphic (so without loss of generality we may suppose equal) to the
global sections of OPk(a)(e), to wit:

Se ∼= H0
(
Pk(a),OPk(a)(e)

)
. (1.4)

Similarly, derivations of S, Der(S), are naturally graded by the action of Gm and we
consider the graded sub-algebra of Gm-equivariant homogeneous derivations on S of

1



Weighted Projective Champs 2

strictly negative weight,

Der<0(S) :=
∐
−e∈Z<0

Der(S)−e =
∐
−e∈Z<0

{
∂ ∈ Der(S)

∣∣ ∂λ = λ−e∂
}
. (1.5)

Finally if r =
(
r0, ..., rn

)
∈ QN+1

>0 , ri := (ri, ..., ri) ∈ Qci
>0, and a ∈ ZN+1

>0 is the unique
integer tuple parallel to r without common factors we define,

Pk(r) := Pk(a) (1.6)

to which we add the hypothesis specific to our situation i.e.
I.c Hypothesis. Suppose a0 < a1 < ... < an and let Vd be a k-submodule of
H0
(
Pk(a),OPk(a)(d)

)
= Sd, d > 0, such that if Pk(a′) = Pk(a1, ..., an) is the sub-

weighted projective champ defined by the block of variables X0 = 0 of weight a0, S ′
the associated graded algebra, and V ′d is the image of Vd in S ′d = H0

(
Pk(a′),OPk(a′)(d)

)
then for all quotients k k′, −b < 0 and negative weighted derivations ∂ ∈
Der<0(S)(−b),

∂(f ′) = 0, ∀ f ′ ∈ V ′d ⊗k k′ ⇐⇒ ∂ = 0. (1.7)

In the presence of such a supposition we have,
I.d Lemma. Let be everything as in I.a-I.c, and for −b < 0 a strictly negative
integer define

L−b(Vd) :=
{
∂ ∈ Der<0(S)(−b)

∣∣ ∂(Vd) = 0
}

(1.8)

the sub-module of negative weighted derivations of weight −b which vanish on Vd.
Then If b 6= a0, L−b(Vd) = 0, otherwise there is a natural injective map,

L−a0(Vd)
(
S⊕c0a0

)∨
:= H0

(
Pk(a),OPk(a)(a0)⊕c0

)∨
, (1.9)

Better still if for every quotient k k′,

L−a0 ⊗k k′ =
{
∂ ∈ Der<0(S ′)(−a0)

∣∣ ∂(Vd ⊗k k′) = 0
}
, (1.10)

then (1.9) remains an injection on tensoring with k′.

Proof. Without loss of generality dimPk(a) > 0, so if we consider derivations on S
of the form ∂ij := ∂

∂xij
for 0 6 i 6 n, 1 6 j 6 ci, then, plainly, ∂ij ∈ Der<0(S)(−ai),

as the action of λ on ∂ij is by way of the character λ−ai , and, in particular, they
afford a Gm equivariant isomorphism of k-modules,

∐n
i=0 Sai−b

(
:= S⊕ciai−b

)
Der<0(S)(−b) : XE

i

∑ci
j=1X

Ej

i
∂

∂xij
;∼ (1.11)

where each XE
i :=

(
XE1
i , ..., X

Eci
i

)
∈ S⊕ciai−b. Therefore if we suppose b 6= 0 and

Sa0−b 6= 0, then a0 > b > 0 which is equivalent to a0 > a0 − b > 0. However, for any
e > 0,

Se =
∐

|E0|a0+...+|En|an=e

k ·XE0
0 · · ·XEn

n (1.12)

2



Weighted Projective Champs 3

thus Se 6= 0 implies e = |E0|a0 + ... + |En|an > a0 hence Sa0−b = 0 for a0 > b > 0.
Finally, by (1.4) Se = H0

(
Pk(a),OPk(a)(e)

)
, so by (1.11) both items in I.d will follow

from the more general,
I.e Claim. Let b > 0 (so b = a0 is allowed) and pr the projection,

Sa0−b = H0
(
Pk(a),OPk(a)(a0 − b)

)
Der<0(S)(−b)pr

afforded by (1.11), then the submodule L0
−b := {∂ ∈ L−b | pr(∂) = 0} ⊂ L−b consists

only of the null derivation.

Proof. In order to emphasise their role say, by way of notation, that {y1, ..., yc0} is
the (since any other is obtained via the action of GLk(c0)) block Y := X0 of weight
a0, and {xi•}, i > 0, are blocks Xi of weight ai > a0. Then ∂ ∈ Der<0(S)(−b) can
be written as

∂ =
∑

I
Y I∂I , with wt(∂I) = −b− |I|a0 < 0. (1.13)

where by hypothesis ∂ 0 in Sa0−b = H0
(
Pk(a),OPk(a)(a0 − b)

)
, thus by (1.11) we

have,
∂ ∈

∐
i>1

Sai−b where Sai−b = H0
(
Pk(a),OPk(a)(ai − b)

)
where Sai−b = H0

(
Pk(a),OPk(a)(ai − b)

)
, and each ∂I may be naturally identified to

an element of Der<0(S ′)(−b− |I|a0), cf. I.c, via the Gm-equivariance, being S ′ the
graded algebra as in I.c. Now, suppose 0 6= ∂ ∈ L0

−b and let

i0 = min{ |I| | ∂I 6= 0 for some |I| as in (1.13) }.

Similarly, we can (again, wholly canonically because of the Gm-equivariance) write
each f ∈ Vd as

f = f ′ +
∑

|J |>0
fJY

J , wt(f ′) = wt(fJY
J) = a0|J |+ wt(fJ) = d, (1.14)

where f ′ and fJ are non-zero Gm-homogeneous polynomials in the variablesX1, ..., Xn

(f ′ may be identified with its image in V ′d ⊆ S ′d = H0
(
Pk(a′),OPk(a′)(d)

)
) so, by

hypothesis, ∂(f) = 0 and on the other hand

∂(f) =
∑

|I|=i0

(
Y I∂I(f

′) +
∑

J
Y I+J∂I(fJ)

)
, (1.15)

where Y I+J∂I(fJ) consists of monomials where Y is of degree > i0, therefore ∂(f) = 0
only if

∑
|I|=i0 Y

I∂I(f
′) = 0. However, on identifying (as ever via the Gm- equivari-

ance) V ′d with a subspace of Vd, ∂I(f ′) depends only on the blocks X>1, so ∂I(f ′) = 0
for all |I| = i0, which, by I.c, implies the absurdity ∂I = 0.

This certainly implies I.d when b 6= a0, while for b = a0 we have

Der<0(S)(−a0) H0
(
Pk(a),O(a0 − a0)

)
H0
(
Pk(a),O(a0)

)∨pr ∼

3



Weighted Projective Champs 4

so in this case the claim is exactly (1.9). Better since by construction the hypothesis
I.c is stable under base change to an arbitrary quotient of k, our initial conclusions
are too, so (1.9) is an injection on tensoring as soon as the definition of L−a0 enjoys
the stability under base change in (1.10).

To profit from the lemma, let us introduce,
I.f Notation/Definition. Let W := W0q ...qWn be a k-module with a Gm-action
such that Gm acts on Wi by the character λbi , bi ∈ Z, for 0 6 i 6 n, then for q ∈ Z,
Symq(W ) is the subspace of the symmetric algebra Sym(W ) where Gm acts by the
character λq. Similarly, given blocks Xi, n > i > 0, as in I.a, with a slight abuse of
notation, we define

Symq
(
X0 q ...qXn

)
:=

∐
a0|E0|+...+an|En|=e

k ·XE0
0 · · ·XEn

n

which is, by [McQ17][I.c.3], (canonically) isomorphic to Se = H0
(
Pk(a),OPk(a)(e)

)
= Syme(X0 q ...qXn). Finally, as in (1.6), if the weights r0, ..., rn ∈ Q>0 were any
rationals and (a0, ..., an) = D(r0, ..., rn) the unique parallel tuple of positive integers
without common factors, we define for q ∈ Q>0

Symq
(
X0 q ...qXn

)
:=

∐
a0|E0|+...an|En|=Dq

k ·XE0
0 · · ·XEn

n . (1.16)

In any case to apply the lemma, observe that, the sub k-module of negative weighted
derivations of S which vanich on Vd is just

L :=
∐

b>0
L−b = L−a0 (1.17)

moreover, it is plainly a Lie algebra wherein by (1.9) the bracket is even trivial; thus
I.g Corollary. Again let everything be as in I.a-I.c and suppose further that (1.9)
is an isomorphism onto a trivial (i.e. admitting a basis) free k-module. As such there
is a block Z associated to the annihilator of L, i.e.⋂

∂∈L
ker(∂) ⊂ Sa0 = H0

(
Pk(a),OPk(a)(a0)

)
, and, (1.18)

(i) there are blocks, i.e. weighted projective coordinates X1, ..., Xn, of weight
a1, ..., an, generating a space of functions, X, such that

Vd ⊂ Symd
(
X q Z

)
:= Symd

(
X0 q ...qXn q Z

)
.

(ii) If X̃i, 1 6 i 6 n is a system of coordinates with wt(X̃i) = ai, which generates a
space of functions X̃, and Z̃ ⊆ Sa0 = H0

(
Pk(a),OPk(a)(a0)

)
such that (i) holds i.e.

Vd ⊂ Symd
(
X̃ q Z̃

)
, then the k-module generated by Z̃ contains Z.

(iii) If X̃i, 1 6 i 6 n, Z is any other system of coordinate such that I.g.(i) holds,
then X̃i = X̃i(X,Z), 1 6 i 6 n, i.e. unused coordinates are not involved.

4



Weighted Projective Champs 5

Proof. Item I.g.(i) is trivial if L−a0 = 0, so suppose the image of (1.9) is non-zero, and
profit from the fact that the the image is a trivial k-module to choose 0 6= ∂ ∈ L−a0
along with coordinates Z, y1 where the former is a basis of

ker ∂ ⊂ Sa0 = H0
(
Pk(a),OPk(a)(a0)

)
(thus empty if c0 and the dimension of L−a0 are 1), and ∂y1 = 1. Again, let Xi, for
1 6 i 6 n, be the blocks of weight strictly greater than a0; so Z, {y1}, Xi = {xi•},
1 6 i 6 n is a basis for everything and in these of coordinates ∂ takes the form

∂ =
∂

∂y1

+
n∑
i=1

( ci∑
j=1

λij
∂

∂xij

)
, wt(xij) = ai > a0, (1.19)

where wt(λij)−wt(xij) = −a0, so wt(λij) = wt(xij)− a0 < wt(xij), thus

λij = λij(Z, y1, X<i), where wt(X<i) < ai, (1.20)

i.e. λij only depends on variables of weight strictly less than ai. To simplify the
notation we’ll write ∂y1 , resp. ∂xij , for

∂
∂y1

, resp. ∂
∂xij

, and employ the summation
convention so that (1.19) becomes:

∂ = ∂y1 + λij ∂xij . (1.21)

By increasing induction on wt(Xi) we will eliminate everything from (1.21), except
∂y1 , by way of a global change of weighted projective coordinates. The starting
point is ai−1 = a0 which is a minor abuse of notation, but it is certainly true, so by
induction we have

∂ = ∂y1 + λhj ∂xhj , wt(xhj) > ai. (1.22)

Thus in weight ai we aim for a global change of coordinates of the form

xij 7→ xij +Gij(Z, y1, X<i), wt(X<i) < ai = wt(Gij) (1.23)

and otherwise do nothing for weights strictly greater than ai. Consequently we need
to solve ∂

(
xij +Gij

)
= 0, i.e.

∂
(
xij +Gij

)
= λij + ∂y1 Gij = 0, (1.24)

which is trivially solvable on any ring of characteristic 0 by (1.20) with,

wt(Gij) = wt(λij)−wt(∂y1) = ai.

As such for our given ∂ we have a system of coordinates {Z, y1, Xi } such that ∂ = ∂y1
and, of course, any other D ∈ L−a0 can be expressed in this basis as

D = ν ∂Z + µ ∂y1 + λi ∂Xi
, (1.25)

with µ, ν,∈ k but not λi if λi 6= 0, where λi∂Xi
:=
∑ci

j=1 λij∂xij . By (1.9) if D is

5



Weighted Projective Champs 6

linearly independent of ∂y1 , replacing D by D − µ ∂y1 , µ = 0 and some ν ∂Z 6= 0.
Further, from [∂,D] = 0, D is canonically a derivation of the algebra k[Z,X1, ..., Xn],
which in turn inherits a Gm−action. Consequently we may repeat the first step for
D and kerD to get coordinates y1, y2, Xi, n > i > 0, and Z, which, now, is a block
of coordinates of ker ∂ ∩ kerD, in which

∂ = ∂y1 , D = ∂y2 . (1.26)

and whence, by induction we arrive at a Gm-equivariant system of coordinates Z,
Y = {y1, ..., y`}, Xi, n > i > 0 with the properties

(1) ∂Y = {∂y1 , ..., ∂y`} is a basis of L−a0 , Y = {y1, ..., y`} its dual basis;
(2) Z is a basis of ann(L) in Sa0 = H0

(
Pk(a),OPk(a)(a0)

)
, cf. (1.18);

(3) Xi, 1 6 i 6 n, are the other coordinates;
(4) Vd is a submodule of weight da0 of the Gm-algebra k[Z,X>1];

(1.27)

which complete the proof of part I.g.(i).

In regard to part I.g.(ii), under the hypothesis of op.cit. , L contains a subspace of
fields, M , whose annihilator under the natural map of (1.9) is generated by Z̃, while
the annihilator of L is generated by Z, so from M ⊆ L we get Z is contained in the
k-module generated by Z̃.

Finally as to part (iii), by definition the X̃i’s and the Xi’s, 1 6 i 6 n, modulo Sa0
= H0

(
Pk(a),OPk(a)(a0)

)
, are systems of weighted projective coordinates of the sub-

weighted projective champ Pk(a′) = P(a1, ..., an), cf. I.c, so without loss of generality
(i.e. after replacing say the Xi’s by a weighted automorphism of themselves) with
Y, Z as in (1.27)

X̃i = Xi mod (Y, Z). (1.28)

and we have:

X̃i = Xi + X̃i(Z,X6i) +
∑

|E|=αi

Y EλE(Z,X6i) +
(
higher order in Y ′s

)
, (1.29)

where wt(Y EλE) = |E|a0 + wt(λE) = ai, and by definition αi is of minimal weight
amongst the monomials in Y . As such, we may, in light of our goal, I.g.(iii),
without loss of generality replace Xi + X̃i(Z,X6i) by Xi (which is an automorphism
because it is so modulo Z) so that for β = mini{αi} (1.29) is

X̃i = Xi +
∑

|Ei|=β
Y EiλEi

(Z,X) +
(
order > β + 1 in Y ′s

)
=: Xi + ηi, (1.30)

and by hypothesis every f = f(Z,X) ∈ Vd can be written as ϕf(Z, X̃), where
X := (X1, ..., Xn) and X̃ = X + η, (1.30). However from

ϕf (Z,X + η) = f(Z,X) (1.31)
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we must have ϕf = f and whence

f(Z,X) = f(Z,X + η)

= f(Z,X) + ηi(∂Xi
f)(Z,X) +

(
order > β + 1 in Y ′

)
= f(Z,X) +

∑
|Ei|=β

Y EiλEi
(∂Xi

f) +
(
order > β + 1 in Y ′

) (1.32)

Thus for every Ei with |Ei| = β the term
∑

i λEi
(∂Xi

f) must be equal to 0 and, as
we have said, |Ei|a0 + wt(λEi

) = wt(Xi), so the operator λEi
∂Xi

has weight

wt(λEi
∂Xi

) = wt(λEi
) + wt(∂Xi

) = ai − |Ei|a0 − ai = −|Ei|a0 < 0 (1.33)

and it vanishes on all of Vd, so it belongs to L−a0 . Therefore by lemma I.d its image
under (1.9) in H(Pk(a),OPk(a)(a0))∨ is non-zero, which is nonsense since λEi

∂Xi
has

value 0 on both the Y ’s and the Z’s.

7
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II The Invariant on Local Rings

We are going to define an invariant of rings and their ideals which is most naturally
expressed in an appropriate number of copies of Q>0 with the lexicographic ordering.
On the other hand this is not a discrete group, so to avoid fastidious statements
about denominators we introduce,
II.a Definition. Let N ∈ Z>0; QN+1 ordered lexicographically; and pri, resp. pr6i,
the projection onto the ith factor, resp. first i factors, 1 6 i 6 N , then a function
f : E QN+1

>0 is said to have self bounding denominators if,

(i) f ∗pr1 : E Q>0 takes values in Z>0.

(ii) If N > 1, then for all 1 6 i 6 N there are increasing (in the lexicographic order)
functions Di : Qi

>0 Z>0 such that,(
f ∗pr∗6iDi

)
f ∗pri+1 ∈ Z>0. (2.1)

The utility of the definition results from,
II.b Fact. Let everything be as in II.a with f : E QN+1

>0 a function enjoying self
bounding denominators, and define a function F : E ZN+1

>0 whose first projection
is that of f while its (i + 1)th projection is (2.1) for 1 6 i 6 N , then in the
lexicographic order,

f(x) 6 f(y) ⇐==⇒ F (x) 6 F (y).

Proof. Manifestly II.b is true if N = 0, so suppose N > 1 and f(x) < f(y),
then without loss of generality, pr6Nf(x) = pr6Nf(y) but prN+1f(x) < prN+1f(y).
Consequently,

(
f ∗pr∗6NDN

)
is the same at x and y, so: prN+1f(x) 6 prN+1f(y) iff

prN+1F (x) 6 prN+1F (y).

II.c Set Up/Notation. A is a regular local ring of dimension m, with residue field
k of characteristic 0, and m its maximal ideal. We will employ,
II.d Definition. A regular weighted filtration (or simply a weighted filtration or
even just filtration if there is no danger of confusion) on a ring A, is the filtration,
F •, associated to a system of coordinates (i.e. modulo m2 affords a basis of m/m2)
{x1 , ..., xm } and non-negative numbers, r1, ..., rm, by the ideals,

F pA = {xe11 · ... · xemm
∣∣ r1 e1 + ...+ rm em > p }, p ∈ Q>0. (2.2)

In addition, since in the string of rationals (r1, ..., rm) ∈ Qm
>0, repetitions are allowed,

we define
II.e Definition. A block of coordinates, X, is a set which may be extended to a
system of coordinates and, which is maximal amongst such sets with the same weight.
In particular any weighted filtration can always be expressed in terms of a system of
blocks X0, ..., Xs, s < m, where each Xi has the same weight and X0 q ...qXs is a
system of coordinates of A.

8
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For I an ideal of A we will define inductively a weighted filtration F •(I) which only
depends on the pairs (A, I) together with

inv(I) = invA(I) ∈ Q2m
>0 (2.3)

where Q2m
>0 is endowed with the lexicographic ordering. At each step s > 0 of the

induction we will, actually, define two successive entries of inv(I), (gs, `s), beginning
with
II.f Start of the Induction. Let A be as in II.c, and I C A an ideal, then the
multiplicity of I, is

mult(I) :=

{
max{α ∈ Q>0

∣∣ I ⊆ mα}, I 6= 0

∞ , I = 0

As such if mult(I) = d ∈ Z>0,

Vd := I mod
(
md+1

)
Symd

(
m/m2

)
,

and we apply lemma I.d to

Vd H0
(
P(m/m2), OP(m/m2)(d)

)
(2.4)

with `0(I) := dim L−1(Vd), in notation of (1.8). Then by corollary I.g.(i) there is a
unique minimal subsapce Z = Z(I) ⊆ m/m2 of dimension c0 := m − `0 such that
Vd ⊆ Symd(Z ). We therefore start the induction by way of:

(S.0) The first two entries of inv(I) are equal to
(
mult(I), `0(I)

)
.

(S.1) If either of these entries of the invariant are zero, then so are all the subsequent
ones, and the process terminates.

(S.2) The weighted filtration F •0 (I) is the weighted filtration in which each xi has
weight 1, i.e. the powers of the maximal ideal m•.

(S.3) Under the hypothesis of (S.1), the definition of F •(I) also terminates, F •(I) =
F •0 (I).

(S.4) The first block, X0, of cardinality c0 is a choice of basis of Z.
II.g Inductive Hypothesis. For s > 1, there is a (weighted) filtration F •s−1(I)
depending only on I (and for this reason we will write just F •s−1 if there is no
danger of confusion) defined by blocks of coordinates X0

s−1, ..., X
s−1
s−1 , respectively Y

of cardinality c0, c1, ..., cs−1, respectively `s−1, where, for 0 6 i < s− 1,

`i := m− (c0 + ...+ ci) or equivalently `i+1 := `i − ci+1, (2.5)

and rationals weights g0
s−1 > g1

s−1 > ... > gs−1
s−1 ∈ Qs

>0, g
i
s−1 > 1 such that:

(F.0) If Y is any block completing X0
s−1, ..., X

s−1
s−1 to a system of coordinates then

1 = wt(Y ) 6 gs−1
s−1.

9
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(F.1) I ⊆ F
dg0s−1

s−1 .

(F.2) For V da0s−1

s−1 := I mod F
>da0s−1

s−1 , V
da0s−1

s−1 ⊆ Symda0s−1
(
X0
s−1 q ...qXs−1

s−1

)
, cf. I.f.

(F.3) There are no derivations of strictly negative weight on the Pk(g), cf. (1.6),
associated to the graded algebra

grs−1A =
∐

q>0
F q
s−1

/
F q+1
s−1

(2.6)

leaving V da0s−1

s−1 invariant.

(F.4) There are strictly positive integers dti, 0 6 i 6 t 6 s− 1, d0
0 = d as in II.f, such

that the weights git are derived from gt ∈ Q>0 according to the following rules: if
given gt, we define git = gi+1...gt, g

t
t = 1, then

g0
0 = g0 = 1

g0
1d

0
0 − (g0

1d
1
0) = d1

1

g0
2d

0
0 − (g0

2d
2
0 + g1

2d
2
1) = d2

2

...
...

g0
s−1d

0
0 −

(
g0
s−1d

s−1
0 + g1

s−1d
s−1
1 + ...+ gs−2

s−1d
s−1
s−2

)
= ds−1

s−1,

(2.7)

and, g0
t d

t+1
0 + g1

t d
t+1
1 + ...+ gt−1

t dt+1
t−1 + dt+1

t + dt+1
t+1 > g0

t d
0
0,

for every 0 6 t 6 s− 2 .
(2.8)

Notice that by (2.7) & (2.8), gt > 1 for every 1 6 t 6 s− 1.

(F.5) The function g = (d, g1, ..., gs−1) of rings and their ideals has self bounding
denominators, II.a.
II.h Induction Defining F •s from F •s−1. The induction is divided as follows:
II.i Step. If c0 + ...+ cs−1 = m, or equivalently, by 2.5, if `s−1 = 0, then stop and
define F p(I) := F p

s−1(I), together with the invariant:

inv(I) :=

{
( d, `0, 0 ) , s = 1;

( d, `0, g1, `1, ..., gs−1, `s−1 = 0, 0 ) , s > 2,
(2.9)

wherein `s−1 and the last 2(m− s) entries are equal to 0.
II.j Step. Otherwise m− (c0 + ...+ cs−1) = `s−1 > 0, and define for H ∈ Q>1 a set
ΛH := {(α0, ..., αs−1, β)} ⊆ Zs+1

>0 by the rules:

(R.1) H ·
(
g0
s−1 α0 + ...+ gs−1

s−1 αs−1

)
+ β > H ·

(
g0
s−1 d

)
;

(R.2) g0
s−1 α0 + ...+ gs−1

s−1 αs−1 < g0
s−1 d.

Now observe that by (R.2) the possibilities for (αi) are finite, so if (R.1) is an actual
equality for some H then the denominator of H is bounded. It therefore makes sense
to introduce

10
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II.k Fact/Definition. The discrete set of sub-inductive parameters Θs−1(I, A),
contained in Q>1, is the subset of H ∈ Q>1 where equality occurs in (R.1) for some
tuple of integers satisfying (R.2), and its predecessor h = h(H) is the minimum of
Θs−1 ∩Q<H or 1 if H is already the minimum of Θs−1.

Better still, observe,
II.l Fact. Let g = g(I, A) be as in II.g.(F.5), and hs = hs(I, A) any function taking
values in the set Θs−1(I, A) of sub-inductive parameters in II.k, then g × hs is a
function of rings and their ideals with self bounding denominators.

Proof. By the definition of hs there are non-negative integers αi and a positive
integer β such that II.j.(R.1) is an equality. In addition there are Di : Qi

>0 Z>0,
0 6 i 6 s− 1 self bounding the denominators of g in the sense of II.a. Consequently
we must have, (

D0 · · ·Ds−1

)
(g)β = hsN

where N ∈ Z>0 is an integer no greater than

dg0
s−1

(
D0 · · ·Ds−1

)
(g) (2.10)

so Ds the factorial of (2.10) will do.

Having cleared any scruples about denominators, consider the following,
II.m Sub-Induction (H ∈ Θs−1). For h = h(H) the predecessor of H, and
his−1 = h · gis−1, 0 6 i 6 s − 1, there is a weighted filtration F •s−1(h) depending
only on I, in which all of II.g.(F.0)-(F.3) hold but with his−1 instead of gis−1.

Plainly the sub-induction II.m begins with F •s−1(1) = F •s−1, while by corollary I.g.(iii)
each block X i

s−1, 0 6 i 6 s− 1, is (up to a weighted projective transformation in the

X t
s−1, 0 6 t < i 6 s− 1) well defined modulo F his−1

s−1 (h). As such if X̃ i
s−1 and X̂ i

s−1

are any two liftings of the i-th block to A, then

X̃ i
s−1 = X̂ i

s−1 mod F
>his−1

s−1 (h) (2.11)

and we assert that for H as in II.m,
II.n Lemma. If X̃ i

s−1, 0 6 i 6 s− 1, is a lifting of the blocks from gr
(h)
s−1A (cf. 2.6),

and X̃s
s−1 some choice of completing this to a system of coordinates, then the new

filtration, F •s−1(H) say, defined by the weights

wtH(X̃ i
s−1) = H · gis−1, for 0 6 i 6 s− 1,

wtH(X̃s
s−1) = 1 ,

(2.12)

does not depend on the aforesaid choices.

Proof. To this end, by (2.11), it is sufficient to prove

II.o Claim. f ∈ F>hgis−1

s−1 (h) =⇒ wtH(f) > H · gis−1, i.e. f ∈ F
Hgis−1

s−1 (H).

Proof. By hypothesis f is contained in the ideal, F>hgis−1

s−1 (h), generated by monomials
with total degrees αi, resp. β, for the blocks X i

s−1, 0 6 i 6 s− 1, resp. Xs
s−1, such

11
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that:
h ·
(
g0
s−1 α0 + ...+ gs−1

s−1 αs−1

)
+ β > h · gis−1; (2.13)

while from the definition of the integers dii, II.g-(F.4),

g0
i d

i
0 + g1

i d
i
1 + ...+ gi−1

i dii−1 + (dii − 1) = g0
i d

0
0 − 1 (2.14)

so multiplying this by gis−1 we get

g0
s−1 d

i
0 + g1

s−1 d
i
1 + ...+ gi−1

s−1 d
i
i−1 + gis−1 (dii − 1) = g0

s−1 d
0
0 − gis−1 (2.15)

then multiplying (2.15) by h and adding it to (2.13) gives:

h ·
(
g0
s−1 (α0 + di0) + ...+ gi−1

s−1 (αi−1 + dii−1) + gis−1 (αi + dii − 1) +

gi+1
s−1 αi+1 + ...+ gs−1

s−1 αs−1

)
+ β > h · g0

s−1 d
0
0

(2.16)

so from the definition of h = h(H), II.k,

H ·
(
g0
s−1 (α0 + di0) + ...+ gi−1

s−1 (αi−1 + dii−1) + gis−1 (αi + dii − 1)+

gi+1
s−1 αi+1 + ...+ gs−1

s−1 αs−1

)
+ β > H · g0

s−1 d
0
0.

(2.17)

Now multiply (2.15) by H and subtract from 2.17 to get

H · g0
s−1 α0 + ...+H · gs−1

s−1 αs−1 + β > H · gis−1 , (2.18)

wherein the left hand side is the monomial’s weight in the new H-filtration.

Which in turn complete the poof of II.n .

Now in the new filtration F •(s−1)(H), i.e. the filtration obtained from F •(s−1)(h) of
(2.12) (and unambiguously by II.n), define

V d
s−1(H) := I mod F

>Hg0s−1 d

s−1 (H), (2.19)

then one of the following must occur,
II.p Case(A). L

(
V d
s−1(H)

)
(cf. I.d) does not have maximal dimension, i.e.

dim L
(
V d
s−1(H)

)
= `s < ms := m− (c0 + ...+ cs−1).

Then by corollary I.g applied to Pk

(
Ha0

s−1, ..., Ha
s−1
s−1, 1

)
, (1.6), there is a filtration

satisfying (F.1)-(F.4) of II.g but with blocks X i
s, 0 6 i < s, respectively Xs

s , liftings
of the blocks Xi, respectively Z, i.e. the annihilator of L

(
V d
s−1(H)

)
in corollary I.g,

and cs = ms − `s while gs+1 = H in II.g.(F.4), i.e. gis = H · gis−1 with gss = 1.
II.q Case(B). L

(
V d
s−1(H)

)
has maximal dimension, so its annihilator in corollary

I.g, Z, is the empty set. Nevertheless, op.cit. still applies to give new liftings,
X i
s, 0 6 i 6 s − 1, of the blocks Xi (of op.cit. applied to Pk(Ha

0
s−1, ..., Ha

s−1
s−1, 1)),

such that the sub-inductive hypothesis II.m is valid for the successor of H in Θs−1.

12
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ΛH

Y

X=
(
X0, ..., Xs−1

)

1 h(H) H

Start of the induction:
g0
s−1α0 + ...+ gs−1

s−1αs−1 + β > d0
0g

0
s−1

The previous stage in
the sub-induction II.m

If no weighted change of
coordinates removes the
edge e(H), II.p, stop,
and otherwise, II.q,
continue

Upper limit,
g0
s−1α0 + . . .+
gs−1
s−1αs−1 = d0

0g
0
s−1

e(H)

Figure 1: Newton Polyhedron for Sub-Induction II.m.

II.r Partial Finish. In case (A) ,II.p, the sub-induction II.m has terminated, and
we have found our new filtration F •s , to wit F •s−1(H), so that the induction now
continues in s.

Otherwise in case (B), II.q, we either eventually fall into case (A), II.p, and, again,
terminate the sub-induction, II.m, or we repeat case (B), II.q, ad infinitum. Suppose,
therefore,
II.s Hypothesis. Case II.q occurs ad infinitum.

Such repetition is indexed by the possible h in Θs−1 of II.k and we continue to denote
by H its successor. Our aim is to calculate the coordinates X i

s−1(H) of I.g.(i) (whose
liftings will be, again, the blocks X i

s−1(H)) and, because we are in case (B), II.q, the
relationship with the old coordinates X i

s−1(h) is given by:

X i
s−1(H)−X i

s−1(h) ∈ Symhgis−1
(
X(h)q H0

(
Pk(a), OPk(a)(1)

))
, (2.20)

where X(h) is the space of function generated by X i
s−1(h), for every 0 6 i 6 s−1, and

Pk(a) = Pk

(
hg0

s−1
, ..., hgs−1

s−1
, 1
)
, cf. (1.6) & (1.16). Now without loss of generality we

have equality modulo H0
(
Pk(a), OPk(a)(1)

)
, i.e. the projection of X i

s−1(H)−X i
s−1(h)

onto Sym•
(
X(h)

)
is always zero, thus, X i

s−1(H) − X i
s−1(h) is a combination of

monomials
X(h)E · Y Q , (2.21)

where X(h)E =
∏

iXi(h)Ei , respectively Y Q = Y q1
1 ...Y

qcs
cs , coming from X(h) alone,

respectively H0
(
Pk(a), OPk(a)(1)

)
alone, and by construction

h gis−1 = hwt(E) +Q, (2.22)

where wt(E) = g0
s−1|E0| + ... + gs−1

s−1|Es−1|, Q = q1 + ... + q`s−1 . Therefore, Q =

13
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h (gis−1−wt(E)) while e := minE{gis−1−wt(E) > 0} is attained since the weights of
the F •s−1 filtration are a discrete set. Thus Q > h e and the right hand side of (2.22)
tends to infinity. Consequently the X i

s−1(h) are a Cauchy sequence in the m-adic
topology, so if II.s were to occur,
II.t Fact/Proposition. The filtrations F •s−1(h), h ∈ Θs−1 converges m-adically as
h→∞ to a filtration F •(I) determined uniquely by I consisting of blocks X i

s−1 of
weights wt(X i

s−1) = gis−1 and cardinality ci, where ms = m− (c0 + ...+ cs−1) > 0.
II.u Conclusion. Should the sub-induction, II.m, eventually not terminate. i.e. ,
II.s, then we arrive to a filtration F •(I) of the completion Â of A in m (depending only
on I) with blocks X i

s−1 of cardinality c0, ..., cs−1 together with weights g0 > ... > gs−1,
satisfying (F.1)-(F.4) of II.g and we define:

inv(I) =
(
d, `0, g1, `1, ..., gs−1, `s−1, 0

)
∈ Q2m

>0 (2.23)

wherein the last block 0 has length 2(m− s). Otherwise, case (A), II.p, applies for
all s and the invariant is eventually defined by (2.9).

Finally it is appropriate to explicitly observe the behaviour under regular maps
beginning with,
II.v Fact. The formation of the invariant is étale local, in fact better for Â the
completion of our regular local ring A of II.c, and Î := I ⊗A Â we have,

(i) invA(I ) = invÂ(Î );

(ii) If F •(I), resp. F •(Î), is the filtration whether of A or Â resulting whether
from the termination of the induction, II.h, or the sub-induction, II.m, running ad
infinitum, II.s, then

F •(Î) =

{
F •(I) , should II.s occur,

F •(I)⊗A Â , otherwise.
(2.24)

Proof. In the situation of the inductive hypothesis II.g,

mN ⊂ FN
s−1 and F p

s−1 ⊂ mp/g0s−1 ,

so if II.s never occurs everything is determined modulo a sufficiently large power of
the maximal ideal, and both items (i) & (ii) are trivial. Otherwise if II.s occurs then
the conclusion II.u and the reasons for it (2.21)-(2.22) are m-adic by definition, so
this is trivial too.

In the same vein we may prepare for replacing étale by regular via,
II.w Lemma. Suppose B = AJz1, ..., zεK is a formal power series ring over A; J the
pull-back of I to A with Â, B̂, Î, Ĵ their completions in the maximal ideal of A, then:

(i) The odd entries of invB(J) and invA(I) agree.

(ii) Even entries where the invariant is zero agree, and otherwise the difference
invB(J)− invA(I) at an even entry is ε.

(iii) The filtrations (2.24) are related by, F •(Ĵ) = F •(Â)⊗Â B̂.

14
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Proof. By induction in the parameter s, we assert that the relation between the
graded rings grs−1A, grs−1B of (2.6) is,

grs−1B = grs−1A⊗k k[z1, ..., zε] (2.25)

while in the sub-induction II.m, the maximal contact spaces LB
(
V d
s−1(H)

)
, resp.

LA
(
V d
s−1(H)

)
are related by,

LB
(
V d
s−1(H)

)
= LA

(
V d
s−1(H)

)
q k ⊗A DerA(B)

= LA
(
V d
s−1(H)

) ∐
16j6ε

k
∂

∂zj

(2.26)

Indeed for s = 1, (2.25) is obvious, while for any s > 1, (2.25) =⇒ (2.26) since the ∂
∂zj

always vanish on generators of I so the right hand side of (2.26) is always contained
in the left, while modulo the ∂

∂zj
they are plainly equal. Consequently in case A of the

sub-induction, II.p, (2.26) implies (2.25) for s, while in case B, II.q, the convergence
is actually modulo the pull-back of the maximal ideal of A, equivalently the filtration
is pulled back from Â.

15
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III The Invariant on Weighted Projective Champ

III.a Set Up. Let Pk(a) = P(a0, ..., as) be a (m−1)-dimensional weighted projective
champ, with blocks of coordinates X0, ..., Xs of weights a0 > ... > as and cardinality
c0, ..., cs over a field k of characteristic zero. Suppose further that d ∈ Z>0 and
V ⊂ H0

(
Pk(a),OPk(a)(da

0)
)

=: Sda0 is a space of sections such that:
III.b Hypothesis. If for every s > i > 0, Pi ↪→ Pk(a) is the weighted projective
sub-champ defined by Xi = ... = Xs = 0, and Si the associated Gm-equivariant
graded algebra of homogeneous functions, as in (I.c), with for convenience of notation
Ps+1 = Pk(a) & Ss+1 := S , then

Li(V ) :=
∐
−b<0

{
∂ ∈ Der<0(Si)(−b)

∣∣∣ ∂(Vi) = 0
}

= 0 (3.1)

where Vi is the image of V in Sida0 = H0(Pi,OPi
(da0)).

Now for consistency with II.k and II.g.(F.4), define gi := ai−1/ai, 1 6 i 6 s, and
`i = m− (c0 + ...+ ci) then we assert,
III.c Proposition. If I is the sheaf of ideals generated by V , under the non-
degeneracy condition III.b, then for every geometric point p of Pk(a) the value of
the invariant invPk(a)(I)(p) at the stalk Ip is strictly less than(

d, `0, g1, `1, ..., gs, `s, 0
)
. (3.2)

More precisely, if invPk(a)(I)(p) =
(
multI(p), `0(p), g0(p), ..., `s, 0

)
with `i(p) = m−

(c0(p) + ...+ ci(p)) and 0 6 σ 6 s is maximal such that Xσ(p) 6= 0, (i.e. there is some
1 6 i 6 cσ, for which xσi(p) 6= 0) then:

(i) If σ = 0 the multiplicity of I at p is strictly less than d, unless d = 0.

(ii) If σ > 0 with, for immediate notational convenience, g0 = d and all of gi(p) > gi,
ci(p) 6 ci, for any 0 6 i 6 σ − 2 then gi(p) = gi and ci(p) = ci for all 0 6 i 6 σ − 2.

(iii) If (ii) holds and gσ−1(p) > gσ−1, cσ−1(p) 6 cσ−1, then gσ−1(p) = gσ−1, cσ−1(p) =
cσ−1, cσ > 2, and gσ(p) < gσ; so in particular if cσ = 1 then gσ−1(p) < gσ−1,
i.e. gσ−1(p) goes down.

Observe that we can immediately reduce to σ = s since,
III.d Lemma. Let Q be a sub-champ of Pk(a) containing the geometric point p
and such that III.c.(i) holds, for I

∣∣
Q, while denoting by a superscript Q the values

of the blocks associated to the invariant of I
∣∣
Q calculated at p, items (ii) & (iii) of

op.cit. hold, albeit, in the modified form:

(ii-bis) If σ > 0, gi(p) > gi, cQi (p) 6 ci, for any 0 6 i 6 σ − 2, then gi(p) = gi,
cQi (p) = ci, for any 0 6 i 6 σ − 2.

(iii-bis) If (ii-bis) holds and gσ−1(p) > gσ−1, cQσ−1(p) 6 cσ−1, then gσ−1(p) = gσ−1,
cQσ−1(p) = cσ−1, cσ > 2, and gσ(p) < gσ; so in particular if cσ = 1 then gσ−1(p) < gσ−1.

16



The Invariant on Weighted Projective Champ 17

Proof. For the multiplicity d = g0 this is clear, while c0 is the minimum number
of coordinates required to describe the ideal modulo md+1(p), so its ambient value
c0(p) is always at least that, cQ0 (p), of a subspace whenever the multiplicity of the
intersection coincides. Consequently if

c0 > c0(p) and
(
c0 > cQ0 (p) =⇒ cQ0 (p) = c0

)
then c0(p) = c0. (3.3)

Similarly the presence of a non-zero gradient gr, 1 6 r 6 σ reflects the necessity, or
otherwise, I.g, of a new block of coordinates to describe the leading monomials in
generators of the ideal, so if one needs a block after intersecting with a sub-widget
one certainly needed it before hand, and should this occur cQi (p) = ci will imply
ci(p) = ci exactly as in (3.3).

In particular, therefore, after III.d, and the definition of σ it is sufficient to prove
III.c on the subspace Xσ+1 = ... = Xs = 0, so without loss of generality σ = s.

Proof of Proposition III.c. We proceed by induction on the number of blocks, s,
starting from s = σ = 0. In this case by the action of PGLc0 we may, without loss of
generality suppose p is the point [1 : 0 : ... : 0] ∈ Pm−1

k , in some basis {x1, ..., xm}.
Consequently if the multiplicity does not go down Z of I.g is contained in the subspace
generated by x2, ..., xm which contradicts the definition of `0 (i.e. 0 under the present
hypothesis) in II.f unless d were already 0.

Supposing, therefore, that σ = s > 0 let us adjust the notation accordingly by
denoting the final block Xs as Y which in turn is a basis of H0(Pk(a),OPk(a)(a

s)),
which we write as Y = {y} ∪ Z where

y(p) = 1, z(p) = 0, ∀ z ∈ Z. (3.4)

In particular, therefore, we have an étale neighbourhood U of p obtained by slicing
the groupoid R := Gm × Am \ {0} Am \ {0} along the transversal y = 1, and
we write the coordinate functions on U afforded by the elements of the blocks Xi as
xij + pij, 0 6 i 6 s− 1, 1 6 j 6 ci, i.e.

U 3 p =
s−1∏
i=0

pt × 1× 0, where pt = pt1 × ...× ptct . (3.5)

In this notation the correspondence between a global section, f(X0, ..., Xs−1, Y )

in Symda0
(
X0 q ...Xs−1 q Y

)
= H0

(
Pk(a),OPk(a)(da

0)
)

= Sda0 and the associated
function is simply

f 7−→ f(xij + pij, 1, z) ∈ Γ(U,OPk(a)), for 0 6 i 6 s− 1 and 1 6 j 6 ci. (3.6)

Furthermore, and needless to say, U is an affine space with origin p via,( s−1∏
i=0

cs−1∏
j=1

xij

)
× z = U Am−1. (3.7)

17



The Invariant on Weighted Projective Champ 18

so it makes perfect sense to talk about the maximal degree in the blocks of functions
xt := {xti

∣∣ 1 6 i 6 ct}, 0 6 t 6 s− 1. With this in mind we assert,
III.e Claim. The initial 2s-part of the invariant (g0, `0, g1, `1, ..., gs−1, `s−1) cannot
increase.

Proof. By induction in s. The starting point of the multiplicity d = g0 is particular.
Modulo the local functions xij, i > 1, z, at p we have an affine space Ac0 on which
the multiplicity is at most the degree in the block of functions x0 which is at most the
degree in global block X0, i.e. d. Furthermore were this bound to be achieved on U
then the restriction I to Ac0 at p is, under the isomorphism afforded by: X•j x•j,
exactly the ideal generated under,

Γ(Am \ {0}) = Γ(Am) Γ(Ac0), i > 1
mod Xi (3.8)

at the origin, so c0(p) > c0.

Now we put ourselves in the scenario of the inductive hypothesis II.f.(F.0)-(F.4),
albeit with an inductive parameter 0 6 t 6 s− 1, rather than s− 1 of op.cit. , and
we add to the hypothesis:

(F.4 bis) The ith-block, 0 6 i 6 t, is defined by the block of functions xi and has
weight ai/at = git (in notation of II.g.(F.4) .

Quite possibly we arrive in case (A), II.p, for a value of H < at/at+1, but, plainly
should this occur then the invariant strictly decreases. If, however, we were to
continue in case (B), II.q, for every H < at/at+1 by way of changes of coordinates in
the blocks xi, 0 6 i 6 t, then this in no way changes monomials of the form

xD0
0 · · ·x

Dt+1

t+1 , a0|D0|+ ...+ at+1|Dt+1| = a0d (3.9)

since the weight of the perturbation in xi will be

H ·
(
ai /at

)
< ai /at+1 . (3.10)

Consequently were we to eliminate all H < at/at+1, modulo xi, i > t+ 1 we would
find that, mod xi, i > t+ 1, the ideal at p is exactly that generated at the origin
by the image of V in the origin obtained via the isomorphism

Γ(Am \ {0}) = Γ(Am) Γ(Ac0+...+ct+1), i > t+ 1;
mod Xi

∼ (3.11)

so the claim follows from I.g, as employed in the definition of the invariant in case
(A), II.p .

Suppose therefore that the extremal situation of III.e is attained (i.e. the invariant
did not decrease), then from our original blocks of coordinates, xi, 0 6 i 6 s− 1, z

18



The Invariant on Weighted Projective Champ 19

we will have performed a change of coordinates to blocks of the form

ξ
0

= x0 + ε0(x1, ..., xs−1, z),

ξ
1

= x1 + ε1(x2, ..., xs−1, z), wtx(εi) < ai,

...
... for wt(xi) = ai;

ξ
s−1

= xs−1 + εs−1(z);

(3.12)

resulting in a filtration F •ξ around p in which the blocks ξ
i
, 0 6 i 6 s − 1 have

weights ai/as, z has weight 1, and around p the ideal generated by V belongs to
F
a0d/as

ξ . In particular
III.f Warning. We allow the possibility that the sub-induction II.h may still not
have terminated in case II.p and whence the invariant might even go up.

To analyse this situation we replace the coordinates xij around p by the restriction
to U of the Gm-equivariant global coordinate functions Xij , 0 6 i 6 s− 1, 1 6 j 6 ci
in the various block, so that (3.12) becomes,

ξ
0

=
(
X0 − ε0(X1, ..., Xs−1, Z)

) ∣∣
U
,

ξ
1

=
(
X1 − ε1(X2, ..., Xs−1, Z)

) ∣∣
U
,

...
...

ξ
s−1

=
(
Xs−1 − εs−1(Z)

) ∣∣
U

;

wtX(εi) < ai, (3.13)

and we assert
III.g Claim. In the above notation and under the hypothesis (cf. claim III.e) that
the first 2s terms in the invariant at p are at least

(
d, `0, g1, `1, ..., gs−1, `s−1

)
the

coordinate change (3.13) is global, i.e. there are homogeneous functions Gi on Am−1
k

of weight ai such that,

εi(Xi+1, ..., Xs+1, Z)
∣∣
U

= Gi(Xi+1, ..., Xs+1, Z). (3.14)

Proof. We have filtrations in which the blocks Xi, 0 6 i 6 s − 1, Xs = {Z, Y },
respectively ξ

i
, z, with weights ai, 0 6 i 6 s− 1, as, may a priori be different and

so we will employ the notation wtX , resp. wtξ, to avoid ambiguity. In any case for
f ∈ Vd, we have from (3.13):

f
∣∣
U

= f(X0, ..., Xs−1, 1, Z)
∣∣
U

= f
(
ξ

0
+ ε0, ..., ξs−1

+ εs−1, 1, z
)

=

f
(
ξ

0
, ..., ξ

s−1
, 1, z

)
+

s−1∑
i=0

( ∂f
∂Xi

εi

)(
ξ

0
, ..., ξ

s−1
, 1, z

)
+ stuff,

(3.15)

wherein ∂f
∂Xi

εi =
∑ci

j=1
∂f
∂xij

εij and stuff has smaller weight in the ξ-filtration than
the expected top weight in(

s−1∑
i=0

∂f

∂Xi

εtop
i

)(
ξ

0
, ..., ξ

s−1
, 1, z

)
(3.16)
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The Invariant on Weighted Projective Champ 20

to wit: (da0)−min06i6s−1

{
ai −wtξ

(
εtop
i

)}
, where εtop

i are the monomials in ξ, z in
εi which have maximal ξ-weight,

εtop
i :=

∑
D

λD ξD0

0
· · · ξDs−1

s−1
zDs + stuff, (3.17)

where, again, stuff is monomials with lower ξ-weight. Let us therefore define homoge-
nous functions on the ambient space, Am−1

k by way of the formula:

∆i :=
∑

Di

λDi
XD0

0 · · ·X
Ds−1

s−1 ZDs , (3.18)

and a homogeneous vector field,

D =
s−1∑
i=0

∆i
∂

∂Xi

of wtX(D) = − min
06i6s−1

{ ai −wtξ(ε
top
i ) }. (3.19)

So that by construction and (3.13), (3.16) vanishes if and only if the top weight
term in the grading of Γ(OU ) which assigns toXi

∣∣
U
weight ai, 0 6 i 6 s− 1, and to

Z
∣∣
U
weight as of every D(f)

∣∣
U
vanishes for every f ∈ Vd. Thus, a fortiori, on the

weighted projective hypersurface Q, defined by the function Y = 0,

D(f) = 0 mod Y, ∀ f ∈ Vd. (3.20)

As such there are two cases: either Z 6= ∅, then since D acts trivially on H0
(
Q,OQ(as)

)
by (3.19), D = 0 mod Y by III.b and I.g.(ii); or Z = ∅ and D = 0 mod Y by the
non-degeneracy hypothesis III.b and I.g.(ii). In either case D = 0 mod Y , and
whence all the ∆i ≡ 0 by virtue of their definition (3.18), which in turn is nonsense
(unless claim III.g is true with εi = Gi = 0). Thus the top weight term in (3.16) is
not zero for some f ∈ Vd. However for such a f , according to our hypothesis that
the invariant does not decrease, the top ξ−weight term in (3.16) must cancel with
the top ξ−weight of

f
(
ξ

0
, ..., ξ

s−1
, 1, z

)
mod F a0 d

ξ , (3.21)

which in turn has weight, a0d− asn, for some integer n. We therefore conclude,

a0 d− as n = a0 d− min
06i6s−1

{ ai −wtX(∆i) }, (3.22)

i.e. for 0 6 i 6 s− 1 where the minimum in (3.22) is attained,

ai = wtX(∆i) + as n . (3.23)

Now consider the change of variables on P(a0, ..., as) defined by,

Xi,new := X i + Y n∆i(X>i+1, Z), 0 6 i 6 s− 1, (3.24)

then in the new coordinates the invariant, min06i6s−1{ ai − wtξ(ε
top
t ) }, of the co-

ordinate change (3.13) has increased and since it is an integer which is at most a0
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(cf. II.k), this process eventually terminates establishing the claim.

The practical upshot of III.g is when we come to compute the invariant at p we can
suppose not only that all the pij are zero for 0 6 i 6 s− 1, but that the filtration
defined by wt

(
Xij

∣∣
U

)
= ai/as, wt(Z

∣∣
U

) = 1 is exactly that defined by the inductive
procedure II.h, albeit for the moment we remain in the situation III.f. However by
claim III.g we can now just read the invariant at p from the newton polyhedron,
cf. figure 1 pg. 13, calculated in the coordinatesXij

∣∣
U
, Z
∣∣
U
. As such if Z = ∅ then

at worst gs−1 goes down, whereas if Z 6= ∅ at worst gs must go down.
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IV The Relative Invariant

We proceed to construct the invariant relatively in a generality which is adequate for
applications but only coincides with §II for complete local rings, to wit:
IV.a Set Up/Notation. Let π : U = Spf A B = Spec k be a map from an affine
formal scheme to a Noetherian affine scheme, and suppose that the trace of U is
a regurarly embedded section σ of π of co-dimension m. Furthermore if M is the
ideal of σ, suppose M/M2 is trivial, i.e. M = (x1, ..., xm) is the ideal of σ (so
A kJx1, ..., xmK)∼ and let I be an other ideal of U (so M -adically separated by
definition), while for objects, over B, denote by a subscript in b the fibre (as a formal
scheme, i.e.M -adically complete tensor product) over b ∈ B.

Plainly we begin with the multiplicity, i.e.
IV.b Fact. For b ∈ B, define db(I) ∈ Z>0 ∪ {∞} by,

db(I) := sup
{
α ∈ Z>0

∣∣Mα
b ⊃ Ib

}
;

then b 7−→ db(I) is upper semi-continuous (often abbreviated to u.s.c. ).

Proof. Since I is M -adically separated, it is either zero and db(I) is identically ∞,
or there is a smallest e ∈ Z>0 such that I ⊂M e. The former case is trivial, while in
the latter case we have a non-trivial quotient of a free module, i.e.

I M e /M e+1 Q 0 (4.1)

and the condition db(I) > e+ 1 is equally the non-trivial closed condition,

dimk(b) Qb > rank
(
M e /M e+1

)
(4.2)

so we conclude by Noetherian induction.

Next we proceed to the maximal contact space by way of
IV.c Fact. Suppose the multiplicity db is identically d ∈ Z>0 and define the sub-
module V in Md/Md+1 to be I modulo Md+1, then the following is u.s.c. ,

b λ0(b) :=

{
dimk(b)

{
∂ ∈

(
M /M2 ⊗ k(b)

)∨ ∣∣ ∂(Vb) = 0
}
, d > 0,

0 , d = 0,
(4.3)

Proof. Plainly, without loss of generality d > 0, while the action of (M/M2)
∨ by

derivations affords a pairing,

V ⊗k
(
Md−1 /Md

)∨
M /M2 F ⊗ ϕ {∂ 7→ ϕ(∂F )}: (4.4)

whose image is a k-submodule,

Λ′ M /M2 (4.5)
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such that the k(b)-vector spaces (4.3) are the annihilators of the image of Λ′b, so
equivalently,

λ0(b) = dimk(b) Λ′′ (4.6)

where Λ′′ is the quotient of (4.5).

Prior to the inductive definition of the relative invariant let us make a,
IV.d Warning. In practice one wishes to take U to be the completion in the diagonal
of the product of B with itself whenever the latter is smooth over a field. In such a
scenario if b ∈ B, then m in the sense of §II for the local ring Bb will be its dimension,
m(b), which will only coincide with the ambient dimension m in the sense of IV.a if
b is closed.

In any case if in addition b λ0(b) is constant on B then generalising II.e,
IV.e Fact/Definition. In the situation of the setup IV.a, a block of (relative, should
there be danger of confusion) coordinates is a subset X ⊂M of regular parameters
whose image modulo M2 is a subset of a k-basis. In particular whenever b λ0(b)
is constant we have, possibly at the price of shrinking B to ensure that the implied
free k-module is trivial, cf. hypothesis in I.g, a block X0 consisting of the lifting of
(4.5), and of course, modulo the warning IV.d,

λ0(b) := m− c0. (4.7)

IV.f Inductive Hypothesis. Exactly as in II.g, with exactly the same notation up
to the following minor observations consistent with IV.d,

(MO.1) I is to be understood in the sense of IV.a.

(MO.2) The definition, cf. (4.7), of λi, 0 6 i 6 s− 1 is exactly as for the `i in (2.5)
but in light of the warning IV.d we will change the notation.

(MO.3) By the definition of a relative block the graded algebra of the filtration
has graded pieces free k-modules, and after clearing denominators to integers a0 >
... > as−1 > as, without common factors, defines a family, in the notation of (1.6),
Pk(g, 1) := Pk(a) of relative weighted projective champs.

(MO.4) The starting point/initial block is X0 of IV.e under the hypothesis that
the functions d(b) and λ0(b) of II.g.(F.1)-(F.2) are identically constant and B is
sufficiently small to guarantee the triviality of Λ′′ in IV.b

To which we must again adjoin,
IV.g Sub-Induction. Define the set of sub-inductive parameters Θs−1 exactly as
in II.k, and for H ∈ Θs−1 we suppose the sub-inductive hypothesis II.m under which
we will say that gs(b) > H, ∀ b ∈ B.

With this in mind, we have
IV.h Observation/Definition. We have a filtration F •s−1(H) defined as in (2.11)
which for exactly the same reason, II.n, is independent of any choices and V d

s−1(H)
is defined exactly as in (2.19). Finally by way of notation let ∆ be the global vector
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fields on the associated weighted projective champ, Pk(a), of IV.f.(MO.3) i.e.

∆ :=
∐
−n<0

Der<0(S)(−n), (4.8)

which in turn is a free k-module by the generalisation, [McQ17, I.c.3], of Serre’s
explicit calculation.

At this juncture IV.c easily generalises to,
IV.i Fact. Let everything be as in the sub-induction IV.g so in particular ms :=
m− (c0 + ...+ cs−1) > 0, then the following function is u.s.c. ,

b λHs (b) := dimk(b)

{
∂ ∈ ∆b

∣∣ ∂(V d
s−1(H)⊗ k(b)

)
= 0
}

(4.9)

Proof. As in the proof of IV.c, derivation gives a pairing,

V ⊗k
∐
−n<0

H0
(
Pk(a),OPk(a)(da

0 − n)
)∨ → ∆∨ : F ⊗ ϕ 7→ {∂ 7→ ϕ(∂F )}, (4.10)

whose image Λ′ affords a short exact sequence of k-modules,

Λ′ ∆∨ Λ′′ 0 (4.11)

such that the k(b)-vector spaces in (4.9) are the annihilators of the image of Λ′, while
the fibre dimensions,

λHs (b) = dimk(b) Λ′′ ⊗ k(b). (4.12)

are plainly u.s.c. .

From which we have the corollary,
IV.j Corollary. Under the sub-inductive hypothesis IV.g, let H ′ ∈ Θs−1 be the
successor of H and define, gs(b) > H to mean gs(b) > H ′ and gs(b) = H its
complement then,

(i) the conditions gs(b) = H, resp. gs(b) > H, are open, resp. closed.

(ii) On the open set of b ∈ B such that gs(b) = H the function λHs is u.s.c.

Equally we have the relative version of the termination of the sub-induction, i.e.
IV.k Case(A) (Relative, cf. II.p). At b ∈ B, gs(b) = H (say B′, by way of notation,
for the open in IV.j.(ii)) then we define a function gs to take the value H at b,
and define, λs(b) to be λHs (b) of (4.9). Now replace B′ by the constructible subset
of b ∈ B′ on which gs(b) = H, and λs(b) takes the constant value ms − cs < ms;
form the fibre of π, IV.a, over (the new) B′; apply I.g to get blocks X0, ..., Xs of
cardinality c0, ..., cs (thus around every b ∈ B we replace B′ by a sufficiently small
Zariski neighbourhood); and continue the induction IV.f in s.
IV.l Case(B) (Relative, cf. II.q). The complimentary closed set B′′, i.e. gs > H,
is non-empty, then at b ∈ B′′ apply I.g to get a Zariski neighbourhood of b, in B′′,
on which there are blocks X0, ..., Xs−1 such that after taking the fibre of π over this
open the sub-inductive hypothesis IV.g holds at the successor of H.
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In so much as this procedure now involves multiple base changes to the initial set
up IV.a, we can usefully observe that if case (B), IV.l, does not occur at b ∈ B
ad infinitum then a posteriori we can simply replace B in IV.a by a Zariski open
neighbourhood of b and drop the precision of restricting to an open neighbourhood
of b in case (A), IV.k. Necessarily we also want to be able to do this should case (B),
IV.l, occur ad infinitum, and this requires a little more care, to wit:
IV.m Fact. Suppose the hypothesis of the sub-induction IV.g and let B• B be
the set of parameters where gs > H for all H ∈ Θs−1 then

(i) B• is closed.

(ii) Every b ∈ B• admits a Zariski open neighbourhood B ⊃ Vb 3 b such that on
replacing B by Vb in IV.a the precision of shrinking to an open neighbourhood of b
at every instance of case (B), IV.l, as H varies in Θs−1, may be omitted.

(iii) After base change of π to the constructible set B∩Vb 3 b the blocks X0, ..., Xs−1

converge in the M -adic topology.

Proof. We have already proved in IV.j that for any given H, gs > H is a closed
condition so not only is B• closed, it is equal to gs > h for h sufficiently large. As
such by base change we may suppose, without loss of generality, that B• = B and
case (A), IV.k, never occurs. Now the reason why we may have to restrict to an
open neighbourhood of b is, in the notation of IV.i that the rank ms k-modules,

D(H) :=
{
∂ ∈ ∆

∣∣ ∂(V d
s−1(H)

)
= 0
}
⊂ ∆ (4.13)

may not be trivial. On the other hand for any H we have a surjection,

M /M2 F 1
s−1(H)

/
F>1
s−1(H) (4.14)

whose kernel (generated by the blocks Xi, 0 6 i 6 s− 1) is by construction, (2.11),
independent of H. Consequently the quotient (4.14) is a vector bundle independent
of H, but by the better still in I.d, D(H) is naturally isomorphic to its dual should
case (A), IV.k, never occur, so we get IV.m.(ii) by I.g. Once this is established, (iii)
is exactly as in the absolute case (2.21) - (2.22).
IV.n Definition/Fact. In the set up of IV.a define the relative invariant,

invU/B(I) : B Q2m
>0 (4.15)

starting from the rules (S.0) & (S.1) of II.f albeit with db, λ0(b) as defined in IV.b &
IV.c. Subsequently if at b ∈ B in the inductive procedure in s, every sub-induction
terminates at a finite H (i.e. case (A), IV.k), then define

invU/B(I)(b) :=
(
d(b), λ0(b), ..., λs−1(b), gs(b), 0

)
∈ Q2m

>0 ; (4.16)

where s is minimal for the property λs(b) = 0. Finally if case (B), IV.l, occurs ad
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infinitum at some s > 1 put,

invU/B(I)(b) :=
(
d(b), λ0(b), ..., gs−1(b), λs−1(b), 0

)
∈ Q2m

>0 . (4.17)

Consequently for m(b) as in IV.d, ε = m−mb, and
(
g0 = d, `0, ..., `t, gt, 0

)
the

value of the invariant, invBb
(Ib) of §II, with t minimal amongst even entries `2i such

that `2i = 0, is

invU/B(I)(b) :=


(
g0, `0 + ε, ..., gt, `t + ε, 0

)
, if gt 6= 0 ,(

g0, `0 + ε, ..., `t−1 + ε, 0
)
, if gt = 0, t > 1 ,

0 if t = 0, and g0 = 0.

(4.18)

We have already encountered a similar difference in II.w.(ii) and whence the difference
merits a specific notation, to wit:

diff(ε) :=



(
0, ε, ..., 0, ε︸︷︷︸

tth-place

, 0
)
, if gt 6= 0, t > 1,(

0, ε, ..., 0, ε︸︷︷︸
(t−1)th-place

, 0
)
, if gt = 0, t > 1,(

0, ..., 0, 0
)
, if t = 0, gt = 0,

(4.19)

Plainly the difference, (4.19), between the invariants is minimal, but it is the relative
invariant that has the good properties one would expect, for example:
IV.o Fact. Let invU/B : B Q2m

>0 be as per IV.n, then

(i) As a function of formal neighbourhoods U, ideals on the same, and points on the
base, invU/B has self bounding denominators in the sense of II.a.

(ii) The function invU/B is upper semi-continuous in the Zariski topology.

(iii) Let β : B′ B be a map of schemes, and π : U′ B′ the base change of π,
IV.a, qua formal scheme with I ′ the pull-back of I then,

invU′/B′ = β∗invU/B

The proof will require some topological trivialities, to wit:
IV.p Lemma. Let X be a topological space,

F := F1 × F2 : X Zn1
>0 × Zn2

>0

a function and equip each Zni
>0, respectively the aforesaid product, with the the

lexicographic order then for f := f1 × f2 ∈ Zn1
>0 × Zn2

>0, the set X>f , of those x ∈ X
such that F (x) > f , is closed if the followings hold:

(i) F1 is upper semi-continuous on Y0 := X;

(ii) Y ′1 :=
{
x ∈ Y1

∣∣ F 2(x) ≥ f
2

}
is closed in the constructible set Y1 := {x ∈

Y0

∣∣F1(x) = f1}.
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Proof. By item (i) Y1 is an open subset of Y := {x ∈ X
∣∣F1(x) ≥ f1}, so Y1 is

constructible. Now, by construction

X>f = Y ′1 ∪
{
x ∈ X

∣∣F1(x) > f1

}
= Y ′1 ∪

(
Y \ Y1

)
⊆ Y, (4.20)

where the latter is closed in X, so it is sufficient to prove that Y ′1 ∪
(
Y \ Y1

)
is closed

in Y . However its closure in Y is

Y ′1 ∪
(
Y \ Y1

)
=
(
Y ′1 ∩ Y1

)
∪
(
Y \ Y1

)
= Y ′1 ∪

(
Y \ Y1

)
, (4.21)

where
(
Y ′1 ∩ Y1

)
= Y ′1 by item (ii), and we conclude.

We will apply this in the form:
IV.q Corollary. LetX be a topological space, Fi : X −→ Zni

>0 functions, respectively
fi ∈ Zni

>0, for ni ∈ Z>0, 1 6 i 6 N , such that if N > r > 0, with Yr := {x ∈
X
∣∣ Fi(x) = fi, 1 6 i 6 r}, Y0 := X, and for all 0 6 t 6 r the function Ft+1 is

u.s.c. on the set Yt, then Yr is constructible while

F r+1 := (F1, ..., Fr+1) : X Z
n1+...+nr+1

>0 is u.s.c.

Proof. By induction on r ∈ Z>0, with the case r = 0 being trivial. As such let r > 1,
and suppose the proposition for r − 1, then we may apply IV.p to

F r × Fr+1 : X Zn1+...+nr
>0 × Znr+1

>0 . (4.22)

to conclude by induction.

Proof of IV.o. The difference between inv and inv is given by (4.18), so in particular
their difference is integer valued, thus self bounding denominators for inv, II.l, implies
self bounding denominators for inv while the pre-requisites for deducing the u.s.c. by
way of IV.q have already been done in IV.b, IV.c, IV.i and IV.j. Finally, as to itemn
(iii), by way of notation let M ′ be the pull-back of M , then the condition I ⊂ M e

plainly implies I ′ ⊂ (M ′)e. At which point we just need to check that the conditions
that the dimension of the modules (since the odd entries of inv are determined by
whether this is maximal or not) (4.6) & (4.12) are stable under base change which is
indeed the case since tensor products are right exact.
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V Analytic Principalisation

To begin with let us make
V.a Observation/Definition. Let U be an analytic champ, and I a sheaf of ideals
on U then for x a closed point the invariant invU(I )(x) is defined to be invOU,x(Ix)
where Ix is the stalk of I in the strictly Henselian ring OU ,x. In particular therefore
by II.v if,

SpecK V

U
x

is any factorisation through an étale neighbourhood, with y the image on V then,

invU(I )(x) = invOV,y
(Iy), (5.1)

and we will vary this construction in the obvious way for the variants inv!, resp. inv].
With this in mind we have the key,
V.b Fact. Let U = SpfA be the formal spectrum of a complete regular ring of
characteristic zero, I an ideal of A, F •(I) as in II.v and ρ : Ũ U the smoothed
weighted blow up [MP13, I.iv.3] associated to the aforesaid weighted filtration, then
for Ĩ the proper transform of I, at every closed geometric point x of Ũ,

invŨ(Ĩ)(x) < invU(I).

Proof. Upon clearing denominators the blocks of the filtration have weights ai, and
we have a

(
A /F>0

)
-module,

Ī := I mod F>da0

such that if I is the resulting sheaf of ideals on the associated weighted projective
champ, equivalently the exceptional divisor E Ũ, then,

Ĩ
∣∣
E

= I .

Consequently we can conclude by III.c provided that

invE

(
Ĩ
∣∣
E

)
(x) ≥ invŨ

(
Ĩ
)
(x)

at closed geometric points x. As far as the odd entries of the invariant are concerned,
cf. the proof of III.c, this is clear. There is, however, need for caution at the even
entries which is provided by items (ii-bis) & (iii-bis) of III.d, which are satisfied
for the inclusion E U, i.e. replace Q by E in op.cit. and the values of ci on the
ambient space by their value on U.

Plainly, therefore, the convergence or otherwise of the filtration F • of Â of II.v
should II.s occurs is the only obstruction to constructing an analytic resolution of
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singularities from the invariant, and to address this problem we will relate varieties
over C to spectra of complete local analytic rings by way of a particular instance of
the relative invariant, to wit:
V.c Construction. Let V be a complex polydisc of dimension m and let Pn

V be
the sheaf of n-jets defined as in [EGAIV.4, 16.7] mutatis mutandis, on replacing
scheme by complex analytic space, then, for any map τ : T V from an other
complex space, T , of dimension m′, we have a formal analytic space equipped with a
projection,

V PT := Spf

(
lim
←−

n

τ ∗Pn
V

)

T

pr

π
σ

(5.2)

whose trace is a regularly embedded section σ - in fact PT is the completion of the
graph of τ .

In light of IV.o, we therefore make,
V.d Fact/Definition. Let everything be as in V.c, then for τ : T V a map from
a complex space T , we define,

inv!
T (I) : T Q2m

>0 : t invPT /T (pr∗I)(t) (5.3)

so by IV.o inv!
T (I) is u.s.c. (in the Zariski topology of T).

Furthermore, if T = V and I is an ideal on V then, exactly as in IV.n,

inv!
V (I) = invΓ(V )x(Ix) + diff(ε), where ε = dim V − dim OV,x. (5.4)

Notice also,
V.e Corollary/Tautology. Let V be a complex polydisc, A its local ring of holo-
morphic functions around a point x ∈ V, and I an ideal of A. If IZ ⊂ A is the ideal
of

Z := {p ∈ V
∣∣ inv!

A(I)(p) > inv!
A(I)(x)} (5.5)

and p ∈ Spec Â such that p ⊃ IZ then, for y a generic closed point of the sub-variety
defined by A ∩ p,

invAp(Ip) + diff(ε) = invA(I)(y). (5.6)

V.f Remark. We can replace inequality by equality in (5.5) and invA(I)(y) by
invA(I)(x) in 5.6, on shrinking V as necessary in order to have Z closed in V (rather
then just locally closed).
V.g Fact. Let A be the local ring of holomorphic functions of a polydisc V around
a point x ∈ V, Â its completion in the maximal ideal. If q is the prime ideal,
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(X0 = ... = Xs = 0), of Â defined by the blocks of the filtration F • of Â of II.v, then

inv!
Â

(Î)(q) > invA(I)(x), (5.7)

In particular by V.f & V.e

inv!
Â

(Î)(q) = invA(I)(x), (5.8)

Proof. The in particular, (5.8), is clear, while by II.g.(F.1), I ⊆ F da0(I), thus the
value of the inv! at q is at least that of inv at x, (5.7).
V.h Fact. Let everything be as in V.g If, moreover, X0, ..., Xs are the blocks defining
the filtration F •(Î) of Â afforded by Î = Â⊗AI, cf. II.v, then the (formal) sub-variety
of Spec Â, X0 = ... = Xs = 0, is a component of the locus, Ẑ, where the invariant is
maximal.

Proof. By V.e, the sub-scheme Ẑ :=
{
p ∈ W

∣∣ inv!
W (I)(p) = inv!

V (I)(x)
}
is the pre-

image of Z, cf. (5.5), under W V so, if IẐ is the ideal of Ẑ, and IZ the ideal of
(5.5) then,

IẐ = IZ ⊗A Â.

Now, let Ẑ = Ẑ1 ∪ ... ∪ Ẑr be a decomposition of Ẑ into irreducible (formal)
sub-varieties and pi, 1 6 i 6 r, the associated prime ideal in Spec Â, then the
value of the invariant is given by V.e, to wit invÂpi

(Ipi) = invA(I)(x) − diff(ε),
i.e. the value of inv!(I) calculated in the ideals, pi, 1 6 i 6 r. Therefore, by (5.4),
dim Âpi > c0 + ...+ cs which implies,

dim(Ẑi) 6 m− (c0 + ...+ cs) = dim V(q),

so, although Ẑ is not of pure dimension each component Ẑi has at most dimension
m− (c0 + ...+ cs) thus V(q) is actually an irreducible component of Ẑ. However the
irreducible components of Ẑ are the completions of the irreducible components of
Z.

All of which can be combined to establish
V.i Corollary. Let everything be as in V.g, I an ideal of A then, in the situation of
V.f, V(q) is convergent. Better still the filtration F̂ •(I) of II.v is convergent, i.e. there
exists a filtration F •(I) of A such that F̂ •(I) = F •(I)⊗A Â.

Proof. The convergence of V(q) is just the outcome of V.g & V.h. While, for the
convergence of F̂ •(I), by V.g it remains to find the blocks themselves rather than
just the centre, V(q) of V.h, on which they are supported. To do this it is sufficient
to do II.t q-adically rather than m(x)-adically. By the implicit function theorem in
the analytic topology we can choose a projection π and a section σ,

V V(q)π

σ
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such that σ is the embedding of V(q) V,σ so q-adic convergence of the blocks
follows from IV.m.(iii).

The discussion also reveals that we can make numerous improvements to V.b to wit:
V.j Fact/Definition. Shrinking V as necessary in order to guarantee the conver-
gence of V(q), V.f, we obtain a convergent regular weighted filtration F •(I), as
guaranteed by V.i, and whence an associated smoothed weighted blow, cf. [MP13,
I.iv.3],

ρ : V V, (5.9)

whose completion would be Ũ of V.b. Consequently the smoothed weighted blow up
is unique.
V.k Corollary. Let everything be as in V.e I an ideal of A, F •(I) the filtration
of V.i, ρ : V V the associated smoothed weighted blow up V.j, so inter alia its
moduli |V| is a complex space, then:

(i) For all p ∈ V,
inv!

V(I)(p) 6 inv!
V(I)(x).

(ii) If Ĩ is the proper transform of I, and I 6= A, on V then for all geometric point v
of V ,

inv!
V(Ĩ)(v) < inv!

V(I)(x).

(iii) If X0, ..., Xs are the blocks defining the filtration F •(I) then the closed analytic
sub-variety X0 = ... = Xs = 0 is exactly

Ẑ =
{
p ∈ V

∣∣ inv!
V(I)(p) = inv!

V (I)(x)
}

(5.10)

Proof. Since A is a local ring, V.k.(i) is just the u.s.c. of inv! in V.d. Similarly we
already know V.k.(ii) after completing in the exceptional divisor E V by V.b and
since inv!

V(Ĩ) is also u.s.c. in the Zariski topology of the moduli by V.d, we have it
everywhere since ρ is proper. Consequently if in V.k.(iii) Ẑ were not contained in
X0 = ... = Xs = 0, then by the u.s.c. of V.d we would have the absurdity that the
invariant would not go down. Conversely the inclusion of X0 = ... = Xs = 0 in Ẑ is
V.h.
V.l Fact/Definition. Let V be a complex polydisc of dimension m and A := OV,x,
with x ∈ V, as in V.e; I an ideal on V; i ∈ Q2m

>0 the maximum value of inv!
V(I) over

V; V V the smoothed weighted blow up (whose existence respectively uniqueness
is guaranteed by V.g, respectibvely by V.j and II.v) associated to the canonical
filtration F •(I); while for q ∈ Q2m

>0 define a modification functor

MI,q(V) :=

{
V , if i = q,

V, otherwise;
(5.11)

31



Analytic Principalisation 32

and extend MI,q to a disjoint union of germs of polydiscs
∐

α Vα by way of,

MI,q(V) :=
∐
α

MI,q(Vα). (5.12)

Then by II.v the modification functor MI,q is étale local, i.e. if V′ V is étale and
I ′ the pull-back of I to V then there is a fibre square,

MI,q(V) MI′,q(V
′)

V V′

(5.13)

In particular if X is a regular (Deligne-Mumford) analytic champ, I a sheaf of ideals
on the same and q the maximum at geometric points of inv!

X (I ), (5.1) et seq., then
for V X an étale atlas and R = V ×X V Vt

s the implied groupoid,

MIR,q(R) MIV,q(V)

R V

s

t

s

t

(5.14)

is a map of groupoids in which MIR,q(R) (which we may abusively consider unique
since it’s a modification) is equally the fibre of the rightmost vertical arrow over
either s or t by (5.13), i.e. the MIV,q patch to a smoothed weighted blow up,

MI (X ) X (5.15)

depending only on I . We therefore get our first global results, to wit:
V.m Construction. (Resolution via Exhaustion by Relative Compacts) Let X
be a complex space and

∐
i>0X

(i) an exhaustion by relative compact open sub-
spaces X(i) X, i > 0, I a (coherent analytic) sheaf of ideals on X, denote by
I (i) := I |Vi its restriction to the sub-space X(i), and, finally, define inductively a
sequence of smoothed weighted blow ups in convergent weighted centres of X(i) by(

X
(i)
0 ,I (i)

0

)
:=
(
X(i),I (i)

)
and

(
X

(i)
r+1,I

(i)
r+1

)
:=
(
M

I
(i)
r
X(i)
r , Ĩ (i)

r

)
, r > 0

(5.16)
where Ĩ (i)

r is the proper transform of I (i)
r , then for r = r(i) � 0, I (i)

r is trivial.
Moreover if we define,

Xi := X
(i)
r(i) X(i), (5.17)
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then by (5.12), for i > j we have a fibre square,

Xj Xi

X(j) X(i)

(5.18)

so that for X := lim−→Xi X,
ρ the proper transform of I along ρ is trivial.

This of course affords a resolution of singularities of anything admitting an embedding
in something smooth, but this is not a very satisfactory hypothesis so we improve it
by way of
V.n Construction. Let Y be a connected germ of a complex space of dimension n,
y ∈ Y a closed point, A := OY,y the local ring of holomorphic functions around the
point y. Then, for e the embedding dimension, i.e. by definition,

e := eY (y) = dimC m(y)
/
m2(y) (5.19)

we can choose a presentation,

0 Iy A := C{z1, ..., ze} OY,y 0 (5.20)

and observe that any 2 such presentations are related by a commutative diagram of
exact sequences,

0 Iy A := C{z1, ..., ze} OY,y 0

0 I0 C{w1, ..., we} OY,y 0 .

∼ (5.21)

As such invY (y) := invA(Iy) is well defined, and for m the maximum over all
embedding dimensions we correct this to

inv!
Y (y) :=

(
invY (y) + diff(m− eY (y))

)
× 0 ∈ Q2m (5.22)

with an implies block of zeroes whenever eY (y) < m. At the same time in the local
ring OY,y, we introduce

dY (y) := min
q

dim
OY,y

q

where the minimum is taken over all the minimal primes in OY,y, which in turn
affords the invariant,

inv]Y (y) :=
(
δY (y) := eY (y)− dY (y)

)
× inv!

Y (y) ∈ Q2m+1
>0 (5.23)
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together with a unique, by V.j & (5.21), smoothed weighted blow up,

Yy Y, (5.24)

obtained by taking the proper transform of Y along V V after choosing, as in
(5.20), an embedding Y V in a polydisc. Now observe that the leading term δY
in inv]Y is just,

dimC ΩY ⊗ k(y)−min
Y0

dimY0 (5.25)

where the minimum is taken over components Y0 3 y on a small neighbourhood of y.
Consequently δY is the difference of an upper semi-continuous function and a lower
semi-continuous one so δY is u.s.c. .

To conclude from here that inv]Y is u.s.c. we require by IV.p to establish that inv!
Y

is u.s.c. where δY is constant. To this end say δY (x) = δY (z), then we may as well
say that we’re on a neighbourhood Y ′ of a closed set Z where ΩY has constant rank
and around Z we have an embedding Y ′ M into a smooth C-variety of fixed
dimension e = eY (x), independently of x ∈ Z. Consequently,

inv!
Y (x) = inv!

M(IY ′) + diff(m− dimM) (5.26)

so it’s upper semi continuous by V.d.

Notice that en passant we have established,
V.o Fact. Let everything be as in V.n and take Y 3 y sufficiently small such that
the set of points,

Z =
{
z ∈ Y

∣∣ inv]Y (z) = inv]Y (y)
}

is closed, then (possibly after shrinking Y ) for all z ∈ Z, the modifications Yz Y
of (5.24) can be identified with the modification Yy Y

Proof. Exactly as prior to (5.26) we have (shrinking Y as necessary) an embedding
Y V in a polydisc of dimension the embedding dimension e = eY (y) = eY (z), for
z ∈ Z, so that by (5.21) the modifications

Yz Y

are the proper transform of Y along the smoothed weighted blow up V V associ-
ated to the ideal of Y on V.

We can put all of this together to conclude,
V.p Summary/Definition. Let Y be the germ of a complex space, i(Y ) ∈ Q2m+1

>0

the maximum value of inv]Y then,

(E.1) By V.o every point y ∈ Y has an open neighbourhood Ny admitting the
smoothed weighted blow up Ny Ny (5.24).

(E.2) These patch to a smoothed weighted blow up Y Y. Indeed, again by V.o, if
x ∈ Ny, and inv]Y (x) = inv]Y (y), then the formal fibre of Ny at x is that of y.
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(E.3) Better still if for i(Y ) 6 q in Q2m+1
>0 and Y connected we define

Mq(Y ) :=

{
Y , if i(Y ) = q

Y, if i(Y ) < q
(5.27)

and extend to direct sums of connected components as in (5.12), then (since it is
enough to check the formal fibres) the smoothed weighted blow up Mq(Y ) commutes
with analytic étale maps, i.e. if Y ′ Y is étale or even just smooth then, by
V.p.(E.2) we have a fibre square

Mq(Y ) Mq(Y
′)

Y Y ′

. (5.28)

In particular therefore, cf. (5.14)-(5.15), if Y is an analytic reduced (Deligne-
Mumford) champ then there is a smoothed weighted blow up,

Mq(Y) Y (5.29)

supported in the singular locus whose fibre over an étale atlas is the blow up functor
(5.27), and which itself commutes with étale maps, i.e. replace Y −→ Y ′ by an étale
map of champ Y ′ Y in (5.28). Finally for inv]Y defined as in (5.23), let i(Y) be
the maximum value of inv]Y and M(Y) := Mi(Y)(Y) then by construction,

i(Y) = 0 ⇐⇒ Y is smooth. ⇐⇒ M(Y) = Y .

All of which is easily assembled into a resolution algorithm, to wit:
V.q Proposition. For Y a connected germ of complex space and

∐
i>0 Y

(i) an
exhaustion by relative compact opens of the same, define a sequence of smoothed
weighted blow ups for every Y (i), i > 0 by,

Y(i)
0 = Y (i), Y(i)

r+1 = M(Y(i)
r ), r > 0 (5.30)

and let N = N(i) > 0 be the smallest integer such that Y(i)
N+1 Y(i)

N is the identity
then the chain of smoothed weighted blow ups,

Y(i) = Y(i)
0 Y(i)

1 · · · Y(i)
N−1 Y(i)

N (5.31)

is a resolution of singularities in the 2-category of Deligne-Mumford champs enjoying
the functorial resolution properties (E.1)-(E.3) of V.p, for germs of complex spaces.
Moreover if we define,

Ỹi := Y(i)
N(i) Y (i), (5.32)

35



Analytic Principalisation 36

then by (5.12), for i > j we have a fibre square,

Ỹj Ỹi

Y (j) Y (i)

(5.33)

so the resolution of singularities (5.32) glue to a resolution Y := lim−→Yi Y.
ρ

Proof. From the definition (5.23) and IV.o.(i) inv]Y has self bounding denominators,
II.a, so it suffices to check,

i(MY) < i(Y )

Plainly, however, the embedding dimension cannot increase under a smoothed
weighted blow up and since (5.24) is the formal fibre around any point, this is
immediate from the corresponding proposition, V.k.(ii), for inv!.
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