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1 Introduction

Quantum Field Theory is an extremely successful framework for the physical models building. Its
particular realization, known as the Standard Model, agrees perfectly with almost all experiments
which are not affected by gravity available for the moment [1]. In particular, the electromagnetic
sector of it, Quantum Electrodynamics, is often called the most precisely tested physical theory.
Another notable example of the QFT triumph is the experimental discovery of the Higgs boson in
2012 [2] which was theoretically predicted at least 40 years before that [3]. Almost all modification
of the Standard Model being considered (except ones including the gravity which will discuss later)
also lie in the QFT framework.

One of the crucial concepts in QFT is locality. Basically, it means that all interactions happen
locally and the “action at a distance is always mediated by local interaction with “force-carrying”
particles (or fields). In relativistic physics, combined with the prohibition of faster than light par-
ticles, the locality forbids the spacelike-separated regions to interact in any way. It follows that
observables measurable in such regions should commute. This restriction plays a crucial role in the
axiomatisation of QFT [4, 5, 6]. This property is also sometimes called causality because it allows
formulating theory in such a way that the cause always precedes the effect. In the physical com-
munity by locality one often understand restriction to the ”local interactions”, i.e. the requirement
that the interaction term in Lagrangian density at a point in spacetime is a function of the fields
and finitely many of their derivatives at that point (depending on the particular formulation of QFT
the Lagrangian density may be replaced by the Hamiltonian density or the right hand side of the
equations of motion). Then, on the level of perturbation theory, the näıve idea of all processes being
series of local ones is realised in the Feynman diagrams (see e.g. [8]). Locality of interactions leads
to casuality (in the above sense) at least perturbatively [7]. The converse statement is difficult to
formulate precisely, because one can always make the Lagrangian non-local without affecting the
theory. But informally speaking, it is very unlikely that a fixed non-local Lagrangian defines a local
QFT.

On the negative side, local QFTs (with a very few exceptions) are divergent. This happens be-
cause the quantum fields are not functions, but only distributions on the spacetime. In perturbation
theory (see Section 3) the ill-defined pointwise products of quantum fields among themselves and
with other distributions appear. In practice it leads to the scattering sections and the observable
particle masses formally presented as divergent integrals. These divergences are called ultra-violet
(UV) because in the Feynman diagrams formalism they appear as divergences in the region of infi-
nite momenta of virtual particles. To make the observable quantities finite, that divergences should
be cancelled one way or another. This can be done through the so-called renormalisation. More de-
tailed description of this procedure together with the further references are porstponed until Section
3, but we note that there are different methods of renormalization leading to the same final result.
This happens essentially because the locality significantly narrows the choice of ways to cancel the
divergences.

In general, the renormalization in all orders of perturbation theory requires infinitely many
parameters (interaction constants and masses) to describe the resulting theory. To make any pre-
dictions using any theory one would need to find its parameters from experiments, which in the case
of infinitely many parameters would require an infinite amount of data. This is why as fundamental
models one usually considers only the renormalizable QFTs, a special class of theories described by
finitely many parameters after the renormalization. Locality and renormalizability combined leave
only finitely many allowed interactions (for a fixed set of quantum fields). In practice, physicists write
down the most general local renormalizable Lagrangian with a fixed set of quantum fields, obeying
the prescribed symmetries. The unknown parameters then can be found by matching the compu-
tation results to the measurements. This is how the Standard Model was built and experimentally
proven.

As was mentioned in the very beginning, QFT describes successfully all the interactions except
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the gravity. QFT can be as well formulated on a curved manifold [9], which in physics corresponds
to quantum field theory in a background classical gravitational field. The Hawking radiation [10] of
the black holes is one of the most notable non-trivial effects of gravity on quantum fields predicted.
The backreaction of the quantum fields on the gravity was studied in the semi-classical approxima-
tion with applications to cosmology and to Hawking radiation corrections [11]. The self-consistent
description of the world including quantum fields and gravity (which inevitably leads to quantization
of the gravity itself) is still missing, though necessity of such a theory was pointed out already in in
1916 by Einstein [12] (later he changed his mind and became sceptic to the quantum physics).

In one of the first works1 on Quantum Electrodynamics [13] Pauli and Heisenberg suggested
that the gravity “carried out without any new difficulties” using the same method as they did.
For linearized gravity this idea was first realized by Rosenfeld [14] in 1930 and six years later by
Bronstein [15]2. The latter author was the first to note that in the non-linear regime of quantum
gravity the localization of particles and events is limited. If the localization is too sharp, the
energy and momentum uncertainty will be very high due to the Heisenberg relation. But in general
relativity high energy or momentum localized in small volume leads to the black hole creation. Since
particles and events under the event horizon are not accessible for the external observer, such sharp
localisations have no operational limit. The characteristic length of the maximal localization is of
the order of the Planck length lP suggested by Planck as a natural unit [18]. After this analysis,
Bronstein expressed serious doubts that the gravity can be quantized without “profound change of
the classical notions”. In particular, he supposed that the spacetime manifold should be replaced
by “some deeper and non-evident concepts” taking into account that no measurement localized at
a point can be fulfilled. Bronstein’s ideas got almost no response in the physicists’ community
and were forgotten for a long time. But with development of quantum gravity, the limitation of
localization (the so-called “minimal length” of quantum gravity) appeared many times in different
ways playing an important role [20].

If there are no spacetime points, then locality of interactions makes no sense. We note that
locality understood as casuality is also not applicable to quantum gravity because the casual relation
between spacetime regions is quantized there. So, one could expect that the UV-problems typical for
local theories are naturally cured by the quantum gravity at high energies. This was noted by Deser
(inspired by ideas of Klein) in [19]3. It was argued that in quantum gravity the vacuum average of
tensor square of a quantum φ

< 0|φ(x)φ(y)|0 >

is finite on the diagonal x→ y. Such a limit does not exist without gravity due to the distributional
nature of the quantum fields. One could expect that other divergences would also disappear when
gravity is taken into account.

Quite the opposite was found then the quantum gravity was studied beyond the linear order.
It was shown that it not only UV-divergent but non-renormalizable [21]. It means that gravity
can not be quantised along the same ideas as electrodynamics was and some cardinally new ideas
are required4. At the same time, there are still no reliable experimental data in the regime where
the quantum gravity effects would matter. For this reason, plenty of different competitive ways to
construct quantum gravity appeared and are developing now [22]. In this situation as a complement

1We follow the historical review of first decades of quantum gravity [17] to which we refer for further details
2See also [16] for review of Matvei Bronstein’s work in the historical perspective and the tragic story of his life.
3The idea of minimal length (or equivalently maximal energy) curing the UV divergences was discussed right after

that divergences were first found but without any reference to gravity. The details can be found in [20].
4We note that in non-renormalisability is a problem only if we want to construct the theory to all orders of pertur-

bation theory. In each order of perturbation theory only finitely many parameters matter even in non-renormalizable
theories. The Effective Field Theory formalism [23] deals with QFTs valid only up to some finite order of perturbation
theory ans hence treats non-renormalisable theories without any problem. For example, the leading order quantum
corrections to the Newton potential were found in the effective field theory framework without any problem [24].
But, to take into account higher order of perturbation theory, one would need not only to perform mathematical
computations, but also to get new experimental data.
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to this work, it makes sense to concentrate on properties which are shared by all (or almost all) such
approaches. From the above it seems that the minimal length should be one of those properties.

In the string theory the locality of interactions is broken by replacing the point-like particles
with the one-dimensional objects (the strings). Due to the quantum fluctuations, strings can not be
contained in too small volume. Thus it is impossible to resolve such small volumes. In [25] this was
quantitatively accounted in the form of the so-called generalized uncertainty relation

∆X∆P ≥ 1 + lsE. (1.1)

Here ∆X and ∆P are the coordinate and momentum uncertainties respectively, E is the energy
and ls is the dimensional parameter of the string theory with the physical sense of the characteristic
string length5. This length is proportional to the Planck scale. In [26] it was argued that (1.1) may
be not valid beyond the perturbation theory and the space-time uncertainty relation

∆X∆T ≥ l2s (1.2)

was proposed instead. Here ∆X and ls are as before and ∆T is the time uncertainty.
The loop quantum gravity, one of the most elaborated approaches to the gravity quantization

(together with the string theory), does not introduce any non-locality by hand. Instead, it is based on
choosing for quantization a suitable basis of observables, known as the loop observables, generalizing
the Wilson loop of gauge theories. These observables are labelled by loops in the space and the
generic state of the quantum space is labelled by a graph [52]. The ”minimal length” arises here as
discreteness of spectra of the area and volume operators [28] acting on that states.

The asymptotic safety program treats the quantum gravity as a usual quantum field theory with
an infinite number of parameters (to make renormalization possible). A generic theory then can be
pictured as a curve (due to non-uniqueness of the renormalization, see Remark 3.3) in the parametric
space. Then one selects only trajectories which behave nice enough at high energy scales (see Remark
3.5). If such trajectories exist and span a finite-dimensional hypersurface, this requirement allows
to reduce the number of parameters to a finite one. Even in this, rather conservative approach the
presence of a minimal length was shown [29].

The model-independent estimations of the minimal length also continued to appear. The ana-
logue of string theory generalized uncertainty principle (1.1)

∆X∆P ≥ 1 + lPE. (1.3)

was proven in linearized quantum gravity [30, 31]. In [32] it is argued that any trans-Planckian
(i.e. with characteristic energy above the Planck scale) scattering is dominated by soft graviton
radiation. Due to decoherence, such scatterings can not be used to probe the spacetime structure.
In [33] it was shown that such processes are dominated by creation of black holes6 which also
brakes sharp localization of the interactions. In [35] the processes at the scale of Planck length
(or smaller) were addressed by functional integration. It was argued that the integral over all
geometries is dominated by the so-called ”space-time foam” spacetimes, i.e. geometries containing
approximately one gravitational instanton (topologically non-trivial fluctuation) per Planck volume.
So, the topology of the spacetime is predicted to become much more complicated at the Planck
scale.

In [38] the spacetime uncertainty relations (STUR)

∆x0∆x1 + ∆x0∆x2 + ∆x3∆x1 > l2P , (1.4)

∆x1∆x2 + ∆x2∆x3 + ∆x3∆x1 > l2P .

5Here and everywhere we use a system of units in which ~ = 1, c = 1, but we keep the Planck length lP .
6Accordance between these two results is addressed in [34].
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with ∆xα staying for the αth coordinates uncertainty were derived. From now on we call them the
DFR spacetime uncertainty relation (STUR) by the names of their authors Doplicher, Fredenhagen
and Roberts. This idea reproduces the original Bronstein suggestion and was used by some other
researchers (e.g. [36]), but before Doplicher, Fredenhagen and Roberts the area of localization
was always assumed to be spherical. Most of the other approaches listed above also implicitly or
explicitly assumed spherical symmetry. So, the relations (1.4) provide the first estimation of the
shape of a non-spherically localized event. These relations were later supported by the work [40]
not relying on the linearized gravity, but assuming the hoop conjecture [39] (in an appropriately
adjusted formulation). For the spherically symmetric case similar relations were proven by solving
the exact non-linear Einstein equations in [41]. Generalization of the DFR STUR to cosmological
backgrounds was discussed in [42].

To sum the above short review up, the “minimal length” appears in quantum gravity from very
different arguments and in diverse approaches to gravity quantization, so it seems to be an inherent
property of the quantum gravity. Thus, it makes no sense to treat the spacetime as a smooth
manifold. This is similar to the situation in the early years of quantum mechanics when Heisenberg
decided that since coordinate and momentum of a particle can never be measured simultaneously in
any experiment, then the exact values of that quantities should not be used to describe a state of
that particle.

The simplest way to implement the minimal length would be to replace the smooth manifold by its
discreet approximation (e.g. [43]). The immediate consequence would be the non-Lorentz invariant
dispersion relation modification. Surprisingly, current astronomical observations are enough to rule
out lattices with one characteristic scale even if that scale is close to the Planck length [44]. The
Lorentz invariance violation at high energies also brings theoretical concerns [45], because it would
require a very precise tuning of the interaction constants to preserve a Lorentz-invariant theory at
low energies when quantum corrections are taken into account.

Another realisation of the minimal length follows from the fact that (1.1-1.4) look very similar to
the Heisenberg uncertainty relations. Then it is natural to assume that they follow from non-trivial
commutation relations between the coordinates. In particular, one can assume that the spacetime
coordinate do not commute with each other.

The non-commutative coordinates can naturally appear in non-commutative geometry [46]. The
key idea of this branch of mathematics is to extend the Gelfand-Naimark theorem, basically stating
that the topology of a Hausdorff space is encoded in the C*-algebra of complex-valued continuous
functions on it, to non-commutative C*-algebras. The non-commuting coordinates then, in general,
are unbounded operators affiliated with that C*-algebra.

Despite being a thriving area of mathematics, the non-commutative geometry naturally arises
in different areas of physics. For example, it naturally appears in description of quantum charged
particles in a strong magnetic field and can be applied to the quantum Hall effect [47]. More
relevant for us is that the non-commutative geometries emerge in the string field theory [48], in
the low-energy limit of the string theory on a background with non-zero B-field [49], in the stack
of D-branes description [51], in the compactifications of M-theory [50] and other (super)string- and
M-theory related studies [55]. In loop quantum gravity the non-commutative geometric description
of the graphs states of quantum spacetime (see above) providing a natural definition of the distance
operator was suggested [53]. Another approach to loop quantum gravity based on non-commutative
geometry is reviewed in [54]. Non-commutative geometry also arises in 2+1-dimensional quantum
gravity7 [56].

A remarkable realization of the Standard Model (in the Euclidean signature) in terms of the
non-commutative Riemmanian geometry was suggested in [57] and of one of the Grand Unification
Theory candidates in [60]. Intriguingly, the restriction on the gauge group and the particle content
are much more strong in the non-commutative approach [59] than in the usual field theoretical one,

7Gravity in 2+1 dimensions is a very special case, because the gravitational waves are absent. So, these results
can not be directly applied to the 3+1 dimensional case which is implicitly assumed everywhere in this thesis.
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so a physical theory based on the former would be more predictive. The gravity can be naturally
embedded into that description [58]. More recent progress in this framework can be found in [61].
In particular, realization of the minimal length (or rather minimal volume) in this framework is
discussed there. Transition to the Lorentz signature is still an open problem, although proposals for
non-commutative pseudo-Riemannian geometry with Lorentz signature were made in [62, 63].

We see that the non-commutative geometry is a natural realization of the non-locality of quantum
physical theories. Although in the examples above the scale of that non-locality is not necessarily
directly related to the Planck or string length, they still motivate the study of models of non-
commutative spacetimes realising the minimal length estimations we mentioned. One can hope
that such models would catch at least some properties of the quantum spacetime in the ”right”
quantum gravity theory, whatever it will be. One of the earliest attempts is due to Snyder [64]
later developed in [65]. The commutators of the coordinates are assumed to be proportional to the
Lorentz transformation generator Mµν ,

[qµ, qν ] = il2Mµν

with some characteristic length (as usual proportional to the Planck scale). Since both the left hand
side and the right hand side transform like a tensor under Lorentz transform, the Lorentz symmetry
is preserved (as well as the translation symmetry with siutably deformed action on the coordinates).
It was shown that such commutation relations produce the uncertainty relations (1.3) if the scale l
is chosen appropriately.

Another, simpler, way is to set the commutator of coordinates to some constant,

[qµ, qν ] = iθµν (1.5)

with θµν being an antisymmetric matrix of real numbers. Such commutation relation lead to
Heisenberg-like uncertainty relations similar to (1.2). The Lorentz symmetry is broken by the pres-
ence of a fixed tensor θ. Instead, a quantum symmetry group can be introduced [66]. This idea is
quite popular around the string theory community. It was conjectured that the symmetry group of
deformation can cure the UV/IR mixing problem of QFT on non-commutative spacetime (which is
discussed below) and may deform particle Bose- and Fermi- statics. The latter fact means that the
Pauli exclusion principle could be violated at high energies, which is considered as a possible quali-
tative experimental consequence of the spacetime non-commutativity [67]8. Building an interacting
theory in this setup is however problematic if possible at all as it was pointed out in [68, 69].

The original, not twisted Lorentz symmetry of the non-commutative spacetime defined by (1.5)
can be preserved if the constant matrix θ is replaced by a matrix of central (with respect to the
algebra generated by the coordinates qµ) operators transforming under the Lorentz group as a tensor.
This was suggested by Doplicher, Fredenhagen and Robets in the already mentioned paper [38]. The
joint spectrum of θµν must be Lorentz-invariant. The minimal choice is a single Lorentz orbit. In
[38] such an orbit was chosen in such a way that the DFR STUR (1.4) follow. This spacetime
(see Subsection 2.1 for a more rigorous definition) will be called the Doplicher-Fredenhagen-Roberts
Quantum Spacetime (DFR QST). The generalization with non-central commutators was suggested
in [70], while in [42] generalization to cosmological backgrounds is discussed.

The DFR QST, being a simple Lorent-invariant model of the quantum spacetime (unlike the
Snyder’s model which is rather a deformation of the quantum phase space) is at least a natural toy
model to develop main notions and tools for physics in such an environment. For this thesis a study
of adiabatic properties of a particular model (see below) of QFT in the DFR QST was the main
original goal, although the results are applicable to much more general class of non-local QFTs.

Having the quantum spacetime chosen one should define QFT on it. Unfortunately, in the
absence of the locality restriction, this step is very ambiguous. There are several approaches to

8Current experiments rule out the twisted statistics which could be induced by non-commutativity up to energy
scales of order of 250 · 1016 − 1018GeV depending on the invariants of θ [67], which means that the non-locality scale
is below 20lP .
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perturbative QFT construction as shortly reviewed in Section 3. Being applied to local theories
they all lead to equivalent results. It is no longer the case when the non-locality is present. QFT on
a non-commutative spacetime is even less definite notion because for that one should also explain
how exactly non-commutativity induce non-locality. The simplest choice is to replace point-wise
products of quantum fields in interaction terms (of the Hamiltonian, the Lagrangian or the equation
of motion, depending on the approach to quantization chosen) by the non-commutative product.
This is, for example, the approach usually adopted by the string theory community [55]. However,
as it is explained later, this choice is not always the best one.

Furthermore, there is no common agreement on the desired properties of QFT on quantum
spacetime. For example, from the review above one could expect that (at least in the quantum
gravity context) the non-commutativity-induced non-locality should eliminate the UV divergences.
This is however not the case in the already mentioned string-theory-inspired non-commutative QFT.
Instead, some of the graphs (the so-called planar graphs, i.e. graphs which can be embedded into a
plane) are not affected by the non-commutativity at all. If the divergent subgraph is non-planar, the
UV divergence is regularized but a new IR divergence (see for a discussion IR divergences below)
appears. This phenomenon, known under the name of the UV/IR mixing, in the string theory
community is considered as a manifestation of the deep interplay between UV and IR regimes of
the string theory [55], while from the mathematical point of view it is an obstruction on the way to
rigorous formulation of such a theory which should be avoided in some way.

We will work with the so-called Hamiltonian approach to the non-local quantum field theories
quantization (introduced in [71] and reviewed in 3.1.2) and take the ”quantum diagonal map” (in-
troduced in [72] and reviewed in 2.3) on the DFR quantum spacetime as a sample of a non-local
interaction kernel (the results will be applicable for more general kernels). This setup was thoroughly
considered in [73]. In particular, the UV-finiteness was shown and the Feynman rules were derived.
However, a problem with the adiabatic limit was observed.

The adiabatic limit is one more point which generalizes non-trivially to the case of quantum
spacetime. According to the Haag theorem [4] the interaction representation, which is crucial for
most of practical calculations in QFT can not exist in any interacting theory in a uniform spacetime.
The usual trick to bypass this obstacle is to break spacetime uniformity by introducing an adiabatic
cut-off, i.e. assuming that the interaction vanishes in the distant past and future and is constant
somewhere in the middle9. The physical amplitudes can be achieved by considering a limit of the
interaction parameter going to a constant. However, there are different possibilities to choose a stage
when this limit should be taken.

One way is to find the adiabatic limit of the time-ordered correlators (called the weak adiabatic
limit) and then reconstruct the scattering amplitudes using a variant of the LSZ reduction. The
main virtue of this approach is that the weak adiabatic limit is known to be less sensitive to the
normalization. The price we pay for that is the necessity to use the LSZ reduction based on not
trivial to prove assumptions. Finiteness of the weak adiabatic limit in local QFT was shown in [7].

Another way, the so-called ”strong adiabatic limit”, is to keep the adiabatic cut-off until the
very end of the computation and evaluate the adiabatic limit of the scattering operator. While the
adiabatic cut-off is imposed the scattering operator can be defined rigorously, hence no LSZ reduction
is needed. But the existence of the strong adiabatic limit is more tricky. In [74] ordinary QFT with
only one massive specie of particles was shown to exist if and only if the in(out)coming fields are
renormalized, so that the self-energy corrections vanish on-shell together with their derivatives (with
respect to frequencies).

It is worth noting that the existence of an adiabatic limit is not just a technicality, because its
absence can be manifestation of the infrared divergences present in the theory. For example, in the
presence of the already mentioned UV/IR mixing the amplitudes are finite until the adiabatic limit

9In general one requires that the adiabatic switching parameter must be compactly supported. But for the theories
we consider in the main body of the thesis the adiabatic cut-off only in time is sufficient (Pro position 3.13) as was
first noticed in [73, 72].
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is considered.
There is also a third option, the algebraic adiabatic limit, i.e. the adiabatic limit of the net of

algebras of local observables reviewed in [5] which allows to define the adiabatic limit for theories
on general (commutative) spacetime. This concept is, however, not directly applicable to the non-
commutative case due to the absence of locality. Generalization of those ideas to quantum spacetime
could be an interesting and perspective problem but is beyond the scope of this thesis.

From the above, it is clear that the renormalization is crucial for the strong adiabatic limit
discussion. Moreover, to renormalize a theory so that the dispersion relation correction vanishes we
should be able to compute that correction. This is why the renormalization and the computation
of the propagator corrections are considered in this thesis alongside with the adiabatic limits. The
corrected propagator is also important to decode the scattering amplitudes from the weak adiabatic
limit with the LSZ reduction.

The dispersion relation correction was already computed at lowest orders in [75] through time-
independent perturbation theory. One should note that a completely different description of the
adiabatic cut-off is needed to use the time-independent perturbation theory, which could be conve-
nient in the stationary states energies calculation. This method was designed to calculate corrections
to the free stationary states and hence requires a time-independent Hamiltonian. Thus the Haag
theorem should be bypassed by introducing a spatial cut-off instead of a temporal one. So, it is an
interesting side result that our energy corrections do coincide with the ones found in [75].

The main topic of this thesis is the study of peculiarities of adiabatic limits and the renormaliza-
tion in the case of non-local QFT. This thesis is organised as follows. In Second Section we introduce
the DFR QST and discuss how free quantum fields and interaction terms can be defined. In Third
Section we describe main methods of perturbative QFT and discuss their applicability to the non-
local case. In Fourth Section we present several formulation of Feynman rules which are convenient
for our purposes, and in Fifth section we discuss how they can be related to more conventional
Lagrangian formulation. In Sixth Section we compute the quantum corrections to the propagator.
In Seventh we prove existence of the weak adiaibatic limit and suggest necessary conditions for the
strong one. The ambiguity of the renormalisation is discussed in Eighth Section. After that we
summarise main results with a small disucssion and outline of further possible steps.
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2 Doplicher-Fredenhagen-Roberts Quantum Spacetime

2.1 Construction and basic facts

Let us begin with reviewing the basic setup of the DFR QST following [37, 38].
As was stated in the introduction, the DFR QST is a realizaion of the space-time uncertainty

relations (1.4) through quantum (i.e. non-commuative) geometry of the spacetime preserving the
undeformed Poincare symmetries.

The algebra of functions on that spacetime is generated by the four self-adjoint operators qµ

subject to the commutation relations

[qµ, qν ] = il2PQ
µν , (2.1)

where lP is a constant (the Planck scale) and Qµν are central operators. We assume that the full
proper Poincare group P (see Appendix A for conventions) acts on that generators in the usual way,
i.e.

(M,a) y qµ = Mµ
νq
ν + aµ. (2.2)

Then from (2.1) the centrals Qµν automatically transofrm as a tensor. The joint spectrum of
center then should be then Lorentz-invariant and a minimal choice is a single Lorentz group orbit,
guarantying the relations (1.4). Such an orbit can be always fixed by specifying the invariants of
tensor Qµν . As it was shown in [38] the most natural choice is the hypersurface Σ defined by the
”quantum conditions”

QµνQµν = 0, (2.3)

(
1

8
εαβµνQ

αβQµν

)2

= 1. (2.4)

A useful reparametrization of this hypersurface is given by two three-dimensional vectors ~e, ~m
defined as

Q0i = ~ei, Qij = εijk ~m
k. (2.5)

Then (2.3-2.4) take the form

(~e · ~m)2 = 1, ~e2 = ~m2. (2.6)

The hypersurface Σ clearly consists of two diffeomorphic connected pieces Σ± with ~e~m = ±1. Each
of those pieces is diffeomorphic to the tangent bundle of the 2-sphere TS2 (see Appendix B of [38]).

No bounded operator can satisfy (2.1) with central non-vanishing Qµν , hence the coordinates qµ

can not be embedded into any C*-algebra. Moreover, from the experience of quantum mechanics
and quantum field theory we know that the relations (2.1) also admit pathological realizations. In
particular, the uncertainty relations can be violated (see e.g. [76]( subsection 12.2 and example
14.5). To avoid that we restrict our attention to the regular realizations, i.e. such that the formally
exponentiated form of (2.1) holds:

eikµq
µ

eipµq
µ

= eipµq
µ

eikµq
µ

e−kµpνQ
µν

.

In [37, 38] it was shown that such realizations are in one-to-one correspondence with non-
degenerate representations of C*-algebra E = C0(Σ,K) of continuous vanishing at infinity functions
on Σ valued in the algebra of compact operators K = K(H) on a fixed separable Hilbert space. The
unbounded operators qµ then are affiliated with E and the symmetry action (2.2) induces an action
of P on E by automorphisms. We refer to [38] (Section 4 and appendix A) for the proof and the
exact formulation of this fact.
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2.2 Quantum fields on the DFR QST and the role of Qµν

According to the introduction, the quantum spacetime effects should play an important role in the
interacting quantum field theory, but it is quite a difficult an ambiguous subject. We start by
discussing the quantum field on the quantum spacetime definition, considering mostly the free fields
and some general ideas. Discussion of particular approaches to perturbation theory is postponed
until the next section. Except for the theories with modified statistics10 the free quantum fields are
usually assumed to be not changed by the spacetime quantisation.

In ordinary quantum field theories the quantum field is an operator-valued distribution D. For
simplicity let us consider a scalar quantum field φ. In particular, the mass m free real scalar quantum
field is defined as (E.9)

φ0(x) =

∫
d3~p√

(2π)32ωm~p

(
a~pe
−ipx + a+

~p e
ipx
)
,

where a+
~p and a~p are creation and annihilation operator-valued distributions11 and the 4-vector p is

of the form (ωm~p , ~p), ω
m
~p =

√
~p2 +m212.

The simplest generatlisation to the quantum spacetime case is to formally substitute x with the
quantum coordinate q,

φ0(q) =

∫
d3~p

1

(2π)
3
2

√
2ω~p

(
a~p ⊗ e−ipq + a+

~p ⊗ e
ipq
)
.

The distributional nature of φ0 can be restored if we view it as an operator-valued functional defined
on a particular subset of S(E), the statespace of E ,

φ0[ω] =

∫
d3~p

1

(2π)
3
2

√
2ω~p

(
a~pω(e−ipq) + a+

~p ω(eipq)
)
. (2.7)

Remark 2.1. Since any bounded functional on E is a linear combination of states [87], we can also
say that a quantum field is a functional on a particular subset of the dual space E∗. We should
note, however, that in general E∗ may be to large as a test-functions space. For example, in case
of commutative E the dual space E∗ would contain point-localised pure states which are clearly not
admissible for evaluation of the quantum field.

Remark 2.2. In most of the approaches to QFT on quantum spacetimes, the non-commutativity
of the underlying geometry affects only the interaction terms which become non-local. In all further
steps (quantisation, perturbation theory, etc.) the theory is treated as a non-local QFT in the usual
commutative spacetime. This method should lead to at least an effective theory description of QFT
on QST valid when the QST effects are not too strong and catching its main peculiar properties.
We will also proceed in such a way.

In DFR QST, unlike most of the other approaches listed in the introduction, as a byproduct of
the Lorentz-invariance, there is an additional manifold Σ13. Although the free quantum field (2.7)
does no vary along it, the interactions most likely will. For example, in string theory-inspired non-
commutative QFT one uses the non-commutative product φ(q)n instead of the pointwise product
φ(x)n. This interaction was adopted to DFR QST (see [73, 68] and Example 3.17) unavoidably

10See the introduction.
11See Appendix E for details and normalisation agreements.
12In this thesis we will be also interested in generic dispersion relations, because interactions, breaking the Lorentz

symmetry will be considered. But in this subsection we consider bare (i.e. non-renormalised) free field, which is
assumed to be Lorentz-invariant.

13This is not a unique situation in generalizations of QFT, see Remark 2.6 and references wherein.
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leading to dependence of the interaction term on Q. There are different ways to treat the auxiliary
space Σ in the interacting theories. One natural idea is to average over it. Unfortunately it does
not admit a Lorentz-invariant finite measure, so the Lorentz invariance is inevitably broken, but
rotational one can be preserved. The averaging can be done inside the Lagrangian (or Hamiltonian)
or for the resulting amplitudes in the very end. We refer to [73] for a comparison of these approaches.
A different approach, in which the interaction term is not dependent on Q at all is discussed in the
next subsection.

2.2.1 More general quantum fields in DFR QST

In the rest of this subsection we sketch how things can change if one treats the quantum spacetime E
seriously. This discussion will not be directly related with most of the thesis, but provides interesting
directions of further development of the results we achieve. This should not be considered as a
complete classification, because the optimal restriction definition of the quantum field (see Remarks
2.1 and 2.12).

The field (2.7) is not the most general free scalar field in the DFR QST. This form follows from
our experience in the ordinary quantum field theory which tells us that the quantum fields live in a
four-dimensional world, so the extra coordinates describing position on Σ should be ignored.

As discussed in Appendix E, the most general form of a covariant bosonic free quantum field in
the Minkowski spacetime is given by (E.10)

φi0(~x, t) =
∑
σ

∫
d3~p√

(2π)32ωm~p

(
a~p,σe

−i(ωm~p t−~p~x) + a+
~p,σe

i(ωm~p t−~p~x)
)

Ψi,σ(p),

where the polarisation vectors are constructed by (C.5)

Ψi,σ(p) =
∑
j

Lji(R(p)−1)Ψ
(0)
j,σ

from the rest frame polarisations, satisfying (C.6)∑
j

Lji(O)Ψ
(0)
j,σ =

∑
σ′

Ds
σ,σ′(O)Ψ

(0)
i,σ′ , ∀O ∈ SO(3).

for some representation L of SO(1, 3)↑. Ds is the spin-s representation of SO(3). Here we assumed
that s ∈ N and L is real, so we replaced SL(2) with SO(1, 3)↑ and SU(2) with SO(3) in (C.4-C.6).
Finally, R(p) is a boost from the rest reference frame to one where the particle has the momentum
p. This form generalises the well-known electro-magnetic and Dirac fields of QED ensuring the
covariance and locality. The details can be found in Appendices C and D.

The key observation is that in DFR QST a field, and thus the polarisations can depend on the
central charges Qµν ,

φ0(q) =
∑
σ

∫
d3~p√

(2π)32ωm~p

(
a~p,σe

−ipq + a+
~p,σe

ipq
)

Ψσ(p,Q).

The Lorentz group of the DFR QST transforms Q as a tensor, so for covariance of φi0(~x, t) we require
an analogue of (C.5)14

Ψσ(p,Q) = Ψ(0)
σ

(
R(p)−1 y Q

)
; (2.8)

and of (C.6):

Ψ(0)
σ (O−1 y Q) =

∑
σ′

Ds
σ,σ′(O)Ψ

(0)
σ′ , ∀O ∈ SO(3). (2.9)

14the symbol y denotes the action of symmetries as explained in Appendix A.
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Example 2.3. Let s = 0. Then (2.9) requires rotational invariance of the polarisations. In the
parametrisation (2.5), taking into account the quantum conditions (2.6), we have two rotational
invariants, ~e2 and ~e · ~m = ±1. For simplicity let us disregard the latter as non-invariant with respect
to the inversions. Then the rest-frame polarisation is of the form

Ψ(0)(Q) = ζ(~e2).

In the rest frame p = (m,~0) we have

QµηQηνpµp
ν = −m2~e2

and hence by (2.8) we have

Ψ(Q) = ζ

(
− 1

m2
QµηQηνpµp

ν

)
.

Example 2.4. Let s = 1, and let D1 be chosen as the defining representation of SO(3), so that the
polarization index σ which in this runs through {x, y, z}. Then (2.9) states that Ψ(0) transforms as
a vector. We have two choices

~Ψ(0)(~e, ~m) = ~eζ(~e2, ~e · ~m)

and
~Ψ(0)(~e, ~m) = ~mζ(~e2, ~e · ~m),

where ~Ψ(0) symbolically denotes all three polarisations

(Ψ(0)
x ,Ψ(0)

y ,Ψ(0)
z ).

Example 2.5. For a generic integer spin s the representationDs can be understood as the symmetric
of the sth tensor power of D1 [80]. Then as rest-frame polarization one should take any completely
symmetric tensor formed from ~e and ~m multiplied by an arbitrary function of the invariants ~e2 and
~e · ~m.

Remark 2.6. From the examples above we see, that, unlike the commutative case, in the DFR
QST the presence of additional manifold Σ allows to define a scalar quantum field of any integer
spin. In principle a single scalar quantum field can create particles of several, or even infitely many
spins.

This is similar to the string theory with compactified dimensions [88] where the modes prop-
agating in the compact dimensions (unobservable directly) are reinterpreted as different fields in
the 4-dimensional spacetime, and in some sense dual to the Non-Commutative Standard Model
[57], where the fields on commutative spacetime are modes on a compact (and even finite) non-
commutative auxiliary space. Here instead the spacetime is non-commutative and the auxiliary
space is a smooth manifold. The main difference of our situation from both the aforementioned
cases is that our auxiliary space Σ fails to be compact. Because of that there is no a priori reason
to assume that the spectrum of modes on it is discrete.

Finally, we note that non-compactified string theories also have an infinite tower of modes of
different angular momenta. For other similarities between string theories and quantum field theories
on the DFR QST we refer to [70].

We restricted ourselves to one-component quantum fields on the DFR QST because they are
enough for any integer spin. Of course, multi-component fields are also possible The relevant trans-
formation law for the rest frame polarisations is a combination of (C.6) with (2.9):∑

j

Lji(O
−1)Ψ

(0)
j,σ(O−1 y Q) =

∑
i,σ′

Ds
σ,σ′(O)Ψ

(0)
σ′ (Q), ∀O ∈ SO(3). (2.10)
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Example 2.7. Let L be the defining representation of SO(1, 3)↑, and s = 1. Then the most general
form is15

Ψ
(0)
0σ (Q) = ~eσζ0e(~e

2, ~e · ~m) + ~mσζ0m(~e2, ~e · ~m) + [~e× ~m]σζ0×(~e2, ~e · ~m)

Ψ
(0)
jσ (Q) = δj,σζδ(~e

2, ~e·~m)+~ej~eσζee(~e
2, ~e·~m)+~mj ~mσζmm(~e2, ~e·~m)+~ej ~mσζem(~e2, ~e·~m)+~mj~eσζme(~e

2, ~e·~m)+

[~e× ~m]j [~e× ~m]σζ××(~e2, ~e · ~m) + [~e× ~m]j~eσζ×e(~e
2, ~e · ~m)+

[~e× ~m]j × ~mσζ×m(~e2, ~e · ~m) + ~ej [~e× ~m]σζe×(~e2, ~e · ~m) + ~mj [~e× ~m]σζm×(~e2, ~e · ~m).

If only ζδ is non-zero, we are left with the “conventional” spin-1 4-vector field up to an additional
ζ factor, while other cases are specific DFR QST realisations of the spin-1 field.

Example 2.8. Continuing the previous example, assume that

ζ0e(~e
2, ~e · ~m) = ±(1 + ~e2)ζee(~e

2, ~e · ~m),

ζem(~e2, ~e · ~m) = ~e · ~mζee(~e2, ~e · ~m),

ζ×e(~e
2, ~e · ~m) = ∓ζee(~e2, ~e · ~m)

and all other ζs vanish. Then, taking into account (2.5) and (2.6) we have

Q ν
0 Ψ(0)

σ (Q) =
∑
j

~ejΨ
(0)
jσ (Q) = (1 + ~e2)ζee(~e

2, ~e · ~m) = ±Ψ
(0)
0σ (Q),

Q ν
j Ψ(0)

νσ (Q) = −
∑
j

~ejΨj(0)
σ (Q) = ~ejΨ

(0)
0σ (Q) + [~m× ~Ψ(0)

σ (Q)]j =

~ej(ζ0e(~e
2, ~e · ~m) + ~e2ζ×e(~e

2, ~e · ~m))− [~e× ~m]jζee(~e
2, ~e · ~m))− ~mj , ~e · ~mζ×e(~e2, ~e · ~m)) = ±Ψ

(0)
jσ (Q).

Here we used ~Ψ
(0)
σ (Q) = (Ψ

(0)
1σ (Q),Ψ

(0)
2σ (Q),Ψ

(0)
3σ (Q)). Summing up, we have

Q ν
µ Ψ(0)

νσ (Q) = ±Ψ(0)
µσ (Q).

By covariance this equality holds after the action of L(R(p)−1)T , so we have

Q ν
µ Ψνσ(p,Q) = ±Ψµσ(p,Q),

i.e. Ψνσ(p,Q) (and hence the quantum field constructed from it) belongs to the eigenspace of (mixed
components of) Q, which is one-dimensional16. So, in this case the quantum field describing a spin-1
particle is again essentially one-component.

In general, given a representation L one can find real17, covariant projection, i.e.

P : Σ→ CdimL, P (Q)2 = 1, P (Q) = P (Q) (2.11)

L∗(M)P (M−1 y Q)L∗(M)−1 = P (Q)∀M ∈ SO(1, 3)↑.

Furthermore, there are always such projections with one-dimensional image.

15We note that Ψ transforms under the action of the Lorentz group with the representation dual to the defining,
i.e. as a covector. So, usage of the lower indices is in accordance with Appendix A.

16This fact is easy to check for a particular choice ~e = ~m = (0, 0, 1). It is also easy to see that the dimnsions of the
eigenspaces of Q is Lorentz-invariant

17Note that orthogonality is not required and actually not defined due to absence of a preferred metric in represen-
tations of L.
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Example 2.9. For L being the defining representation,

P±(Q) =
±Q̂+ Q̂2 ± Q̂3 + Q̂4

4
,

where Q̂ ∈M4(C) is a matrix formed by the mixed components of Q, i.e.18

Q̂ ν
µ = Q ν

µ .

This matrix is clearly covariant. By direct calculation it is a projection for ~e = ~m = (1, 0, 0), where
~ez is the zth basis vector and hence at any other poin of Σ by covariance.

Then we can define the reduced rest frame polarisations (2.10) .

Ψ
(0,red)
i,σ (Q) =

∑
j

P (Q)i,jΨ
(0)
j,σ(Q),

which will automatically satisfy (2.10), so they can serve as rest frame polarisations19. The full
quantum field in this setting is

φ0,i(q) =
∑
σ

∫
d3~p√

(2π)32ωm~p

(
a~p,σe

−ipq + a+
~p,σe

ipq
)

Ψ
(red)
i,σ (p,Q),

∑
j

Lij(R(p))Ψ
(0)
j,σ

(
R(p)−1 y Q

)
.

By construction it satisfies ∑
j

Pij(Q)φ0,j(q,Q) = φ0,j(q,Q),

so it is essentially one-component. But in general it can not be replaced by a scalar field because
the vector bundle

{(Q, v)|Q ∈ Σ, v ∈ CdimL, P (Q)v = v}

can be non-trivial. In particular, applying the projection of Example 2.9 to the polarisations of
Example 2.7 we arrive to Example 2.8.

Remark 2.10. The observation above is in accordance with general idea that if the spacetime
topology is non-trivial (in our case due to the auxiliary space Σ), the fields should be sections of the
bundles over that spacetime20. Natural generalization for the non-commutative case is to seek for
the quantum fields as elements of the modules over the corresponding C∗-algebra [89]. In our case
such a module is

PE⊕ dimE .

We note however that the bundles and modules we consider do not posses any natural hermitian
product because they all come from representations of SO(1, 3)↑.

Remark 2.11. Since generic irreducible representation of SO(1, 3)↑ is nth symmetric tenor power
of the fundamental one [77], all these arguments directly generalized to the case of arbitrary finite-
dimensional L.

18Following the common tradition we use the same symbol for the original antisymmetric tensor Qµν and all three
possible results of lowering one or two indices of it. In contract to that Q̂ denotes a fixed matrix and Q̂n denotes the
nth power of that matrix in M4(C).

19If they do not vanish; otherwise take 1− P .
20More precisely, the classical fields are smooth sections of a vector bundle. Quantum fields are not functions at

all, but we may expect that their averages at some special class of states are also smooth sections of that bundle.
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Finally, we can consider spinor fields in the same way, starting from a generic representation L
of SL(2). Then we should just replace SO(1, 3)↑ by SL(2) and SO(3) by SU(2) everywhere. In
particular, the observation about the projection and bundles holds. Of course, if we want the field
to be approximately local in any sense, we have to use fermionic fermionic Fock space instead of the
bosonic one.

Remark 2.12. In all the examples above we never stated the class of the function ζ. It depends
on the particular definition of the quantum field on the non-commutative spacetime, namely on the
choice of subset of ”test” functionals in E∗ and its topology (see Remark 2.1). We can consider ones
of the form

ωf (A) =

∫
Σ

τ

(∫
f(k,Q)e−ikQd4kA(Q)

)
dµΣ(Q)

where τ is the trace and f ∈ S(R10) (as a function of 4 components of k and 10 components of an
anti-symmetric tensor Q treated as independent) and require that the quantum field is an operator-
valued distribution in the ordinary sense as a functional of f . Then any ζ ∈ S ′(R) would do. At
the same such quantum fields may be to singular, because the UV-divergences may reappear in
pointwise products.

2.3 Optimally localised states and the quantum diagonal map

Since the DFR quantum spacetime is designed so that it realizes the STUR (1.4), it is worth to
construct the optimally localised states of the algebra E which saturate these limitations. Unfortu-
nately, there is no Lorentz invariant way to estimate the localisation. So we fix a reference frame
and look for a minimum of

4∑
µ=0

(∆ωq
µ)

2
, (2.12)

where the uncertainties are defined by

∆ωf
2 = ω

(
(f − ω(f))

2
)
.

For the (2.12) to be well-defined we restrict ourselves to the states in the domain of qµ and (qµ)
2

as
explained in [38].

A generic state minimising (2.12) has the form

ωa,µ(F ) =

∫
d4αdµ(σ)f(σ, α)eiαµa

µ− 1
2

∑
µ α

2
µ ,

where

E 3 F (σ) =

∫
f(σ, α)eiα

µqµ (2.13)

and µ is a measure on Σ supported on Σ′ ⊂ Σ defined by ~e = ±~m. Since the operators of the
form (2.13) span E densely, ωα,µ has a unique continuation to the whole E . The localisation map
ηa : E → C0Σ′ defined by extending of

ηa(F )(σ) =

∫
d4αf(σ, α)eiαµa

µ− 1
2

∑
µ α

2
µ

encodes all the states localised at a in the sense that

ωa,µ = ωµ ◦ ηa,

where

ωµ(f) =

∫
f(σ)dµ(σ)
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is the state of Cb(Σ
′) associated with the measure σ. The states ωaµ play the role of the points of

the DFR QST.
In the quantum field theory context it is more important to discuss localisation of events relative

to each other. This problem was addressed in [72]. To deal with coordinates of n events a new
algebra

En = E⊗Zn = E ⊗Z E ⊗Z · · · ⊗Z E

was introduced. Here the right hand side contains n multipliers, and ⊗Z denotes the tensor product
over the centre Z(E). Geometrically it means that we are looking at the events happened at exactly
the same point of Σ.

Introduce
qµj = 1⊗Z · · · 1⊗Z qµ ⊗Z 1⊗Z · · · 1,

with qµ staying on the jth position. We have

[qµj , q
µ
k ] = il2P δijQ

µν .

To deal with localisation of the events relative to each other, it is natural to separate the mean
coordinate

qµ =
1

n

n∑
j=1

qµj

and the relative coordinates
qµjk = qµj − q

µ
k .

Thanks to the identification of Qµν for all the events, the commutation relations for the new
generators are very simple,

[qµjk, q
ν ] = 0,

[qµ, qν ] =
i

n
l2PQ

µν ,

[qµjk, q
ν
lr] = l2PQ

µν(δjl + δkr − δjr − δkl),

i.e. the mean coordinate satisfies the same commutation relations, as the coordinates of individual
events up to a rescaling, and they factorise from the algebra generated by the relative coordinates.
More precisely, as it is explained in [72], there is a *-homeomorphism β(n) from En to M(En+1), the
multiplier algebra of En+1, induced by the maps21

qµj 7→ q̃µn+1 +
1

n

n∑
k=1

qµkj ,

where q̃µn+1 = 1√
n
qµn+1. In particular, for g ∈ C0(Σ), f ∈ C0(R4n) the operator

g(Q)f(q1, . . . , qn) = g(Q)

∫
d4k1 · · · d4knf̃(k1, . . . , kn)eik1q1 · · · eiknqn ∈ En, (2.14)

with f̃ being a Fourier transform of f , is mapped to

β(n)(g(Q)f(q1, . . . , qn)) = g(Q)f(q1 + q̄, . . . , qn + q̄)

with the right hand side defined analogously to (2.14). We see that in the context of the *-
homeomorphism β(n) the q̃j of En+1 with j ≤ n can be understood as displacements of the events

21For the sake of notation shortness we use the same symbols for operators affiliated with En and with En+1. Also
our notation differs from [72] by a permutation of factors in En+1
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with respect to the mean position q̄. It is then natural to apply the localisation map centred at the
origin η0 to the first n factors as a realisation of the limit of n events brought the same point.

We define the quantum diagonal map

En : En → E ′

,
En = η0 ⊗Z · · · ⊗Z η0 ⊗Z γ,

where E ′ is C0(Σ′,K) extended to a C*-algebra and γ : E → E ′ is the restriction to Σ′ needed for En
to be well-defined on the tensor product with respect to the centre. The explicit action of En is

En(f(q1, . . . , qn)) =

∫
dk1 · · · dknf̃(k1, . . . , kn)rn(k1, . . . , kn)ei

∑n
j=1 kj q̃ = (2.15)

fE(q̃),

fE(x) = cn

∫
da1 · · · danr̃n(a1, . . . , an)f(x+ a1) · · · f(x+ an),

with

rn(k1, . . . , kn) = exp

−1

2

 n∑
j=1

|kj |2E −
1

n

n∑
j,l=1

(kj · kl)E

 , (2.16)

r̃n(a1, . . . , an) = δ

 1

n

n∑
j=1

aj

 exp

−1

2

n∑
j=1

|aj |2
 (2.17)

and
cn = n2(2π)−8(n−1).

Here | · |E = || · || and (·, ·)E denote the Euclidean norm and Euclidean scalar product respectively.
En is a non-commutative version of the diagonal map

E(0)
n : Cb(R4n)→ Cb(R4),

E(0)
n (f)(x) = f(x1, . . . , xn)

taking into account the quantum spacetime properties and hence is called the quantum diagonal map.
Unlike the usual diagonal map, the action of En can be safely extended to the distributions because
of the smooth kernel r̃n. In particular, it allows to define the ”pointwise” product of quantum fields
on the DFR QST yielding a well-defined operator-valued distribution which is a candidate for the
interaction term in the DFR quantum spacetime. For example, one can consider self-interaction of
a real scalar field

φnQ = E(n)(φ⊗Zn).

Alternatively, one can consider the quantum Wick product, which combines the diagonal map with
the usual Wick product (see Appendix F). For example, the nth Wick power of the free22 real scalar
quantum field is

: φ0(q)n :Q=: E(n)(φ⊗Zn) : (q) = (2.18)

n∑
n+=0

(
n

k

)
×

∫ n∏
j=1

dkj√
2ω~p

rn(k1, . . . , kn)

n+∏
j=1

a+
kj

n∏
j=n++1

akje
i
(∑n+

j=1 kj−
∑n
j=n++1 kj

)
q
.

22It may look a bit strange that we define the Wick power for a free field only, while, for example, in the Hamiltonian
the full interacting quantum field appears. This will be clear after 3
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Remark 2.13. Unlike ordinary QFT, φnQ(q) is a well-defined quantum field in the sense of Subsection
2.2 (and also a well-defined quantum field in the sense of Appendix D if q is replaced by a commutative
variable x by double Fourier transform as in Example 3.16), so the Wick product is not as necessary
as in ordinary QFT (see Section 3). But it is important for the adiabatic limit existence (see Remark
3.14),

The problem of the adiabatic limit existence for a theory with such an interaction originally
inspired the work reported in this thesis.
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3 Perturbation theory for QFT and its non-local generaliza-
tion

Except a few examples of exactly solvable models, the interacting quantum field theories are con-
structed perturbatively, i.e. by perturbing a free quantum field theory with an interaction

There are also more general non-perturbative methods mostly based on the functional integration
which as we will see in the section is not directly applicable to the non-local in time case. There
are also a lot of works devoted to the non-perturbative non-commutative QFT in the Euclidean
signature, e.g. [96], but unlike ordinary QFT, their significance for the physical Lorentz signature is
unclear. In this section we will shortly consider some of the approaches to perturbative quantum field
theory and their non-local generalisations (when available). We will group them into three groups,
according to where the perturbation is added. For simplicity we assume that all the observables are
generated by one real scalar quantum field.

Before proceeding let us fix some notions. We assume that the parameters of the theory depend
on a parameter g which we will call the interaction constant. All our consideration can be generalised
to the case of several interaction constants g1, g2, . . ., but we will ignore this possibility in most of
the cases. In perturbation theory we deal with formal power series of the form

X(g) =

∞∑
n=0

Xng
n,

there depending on particular case Xn can be numbers, functions, operators, or, generally elements of
any linear space. We do not discuss their convergence23, but use formal addition and multiplication
on them defined in the obvious way. We often drop the argument g and write X instead of X(g).

Although X is no function of g, it will be convenient to say that X vanishes at g = 0 (or vanishes
at the origin) if X0 = 0. We will also use notation for the truncated formal series

[X]N =

N∑
n=0

Xng
n,

which can be understood as either a g-dependent finite sum or as a formal power series with only
finite number of non-vanishing terms. We say that X has some properties in any finite order (e.g.
is a polynomial of some other parameter), meaning [X]N has these properties for any N ∈ N.

The virtue to consider sequences Xn as power series is that we can define appropriate operations
on them. As we agreed that Xn are at least members of a vector space, we define a sum of the
formal series as

∞∑
n=0

Xng
n +

∞∑
n=0

Yng
n =

∞∑
n=0

(Xn + Yn)gn.

If in addition to that we have power series X(g) and Y (g), such that the product24 XnYm is well
defined for any n,m ∈ N, then it is natural to define

XY (g) =

∞∑
n=0

(
n∑
k=0

XkY n− k

)
gn.

23In fact it is known that in ordinary QFT perturbation theory leads to divergent series [90] and there is no reason
to expect that the non-locality will cure it. There are however prescriptions how to get physically relevant results
from finitely many terms of such series [91].

24Depending on the particular nature of the members of the power series, the product can be understood as a
product of numbers, tensor product of distributions, multiplication of a distribution by a smooth function, action of
an unbounded operator on a vector from its domain etc. In other words, it is any operation we agreed to denote as a
multiplication.
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Clearly, sums and product behave well with truncations, i.e. [X + Y ]N = [X]N [Y ]N , [XY ]N =
[[X]N [Y ]N ]N .

Our main goal will be to find the so-called scattering matrix S. We expect that it is a unitary
operator (because roughly speaking it is an operator, describing unitary evolution of a system from
the far past to the far future), but since it will be a formal series with respect to the interaction
constant we require

S(g)+S(g) = 1

in terms of formal power series only. Moreover, finite sums [S]N are unbounded operators, so we
actually assume that the equation above holds on their common domain only. We say that such an
operator S is formally unitary.

3.1 Hamiltonian perturbation theory

3.1.1 Ordinary QFT

Let us start from a Poincare-covariant local quantum field theory. In particular, it is covariant with
respect to the time translation. Then we have25

∂tφ(x) = −i[H,φ(x)], (3.1)

where φ(x) is the quantum field and H is the time translation generator. We also introduce the
conjugated momentum π(x) which can be understood as another quantum field in the sense defined
in Appendix D, covariant with respect to the rotations and translation, and

[φ(t, ~x), π(t, ~x′)] = δ(~x− ~x′). (3.2)

The momentum π(x) satisfies similar evolution equation

∂tπ(x) = −i[H,π(x)], (3.3)

We assume that
H = H0(t) +Hint(t), (3.4)

where

H0(t) =
1

2

∫
d~k :

(
π̃(~k, t)π̃(−~k, t) + ω2

~k
φ̃(~k, t)φ̃(−~k, t)

)
:. (3.5)

Here φ̃ and π̃ are the partial (namely, in spatial directions only) Fourier transforms of φ and π (see
D.2), and

Hint(t)

is a fixed functional of φ and π. To build a local theory, one usually assumes that Hint is a local
functional of φ and π evaluated at a fixed time hypersurface, namely

Hint(t) =

∫
d3~x : hint(~x, t) :, (3.6)

where hint(~x, t) is a formal series of the interaction constant g vanishing at the origin26, such that
at any finite order it is a polynomial function of the field φ, momentum π and finitely many of their
spatial27 derivatives all evaluated at a point (~x, t) and : · · · : is the Wick product (see Appendix F).

25Here we implicitly assume that the unbounded operator H and the quantum field (see Appendix D) φ(x) are
defined on the same domain, which they map to itself.

26The simplest case is hint being proportional to the first power of g. However, in the effective QFT [23] the
interaction part of the Hamiltonian (or the Lagrangian) is itself found iteratively as formal power series in terms
of the interaction constant. We will see that theories which we consider in this thesis in details are more naturally
treated by the EFT framework.

27The locality would not be broken if the Hamiltonian also contains derivatives with respect to the time. The
standard perturbation theory, however, would, as we will see later in this subsection.
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Remark 3.1. The Wick product gives rise to a well-defined quantum field. At the same time,
formally the Wick product can be rewritten as a combination of pointwise products with divergent
integrals as coefficients and as so it can be considered as a first step of renormalization in the sense
of Remark 3.4.

Remark 3.2. One can object that even with the Wick product regularization (3.6) does not make
sense because it is not a symbolic integral of the form (B.3). We can however treat Hint as a
distribution on R, then the only problem remains is the absence of the fast decay of the ”test
function” of spatial coordinates (which is identity), but it will be also cured by the adiabatic cut-off
below.

To preserve translational symmetries, one assumes that the coefficients of hint do not depend on
t and ~x. Then although both H0(t) and Hint(t) are functions of time t, they sum is not since28

∂tH = −i[H,H] = 0.

The free quantum field (E.9) and its conjugated momentum

π0 = ∂tφ0

satisfy (3.1) and (3.3) with Hint = 0. To avoid possible confusions, we introduce a separate denom-
ination for the free Hamiltonian as a functional of the free field and its momentum:

H(0)(t) =
1

2

∫
d~k :

(
π̃0(~k, t)π̃0(−~k, t) + ω2

~k
φ̃0(~k, t)φ̃0(−~k, t)

)
:,

∂tφ0(x) = −i[H(0), φ0(x)], ∂tπ0(x) = −i[H(0), π0(x)].

The key ingredient of perturbation theory is the so-called interaction representation, which is
just a unitary equivalence between an interacting theory and a free one given by an operator U ,
such that

φ̃(~k, t) = U(t)−1φ̃0(~k, t)U(t), (3.7)

π̃(~k, t) = U(t)−1π̃0(~k, t)U(t). (3.8)

Then (3.1) and (3.3) are satisfied if

∂tU(t) = −iHI(t)U(t), (3.9)

where
HI(t) = U(t)H(t)U(t)−1 −H(0) = U(t)Hint(t)U(t)−1

is the interaction representation of Hint. We assumed that Hint is a polynomial functional of φ and
π evaluated at the fixed time t, thus by reversing (3.7-3.8) we get that HI is just Hint with φ and π
replaced with φ0 and π0 respectively. It is convenient to introduce also hI(x) = U(t)hint(x)U(t)−1.
So, solving (3.1) and (3.3) is equivalent to solving the linear equation (3.9).

However, Haag theorem [92] establishes that a Poincare-invariant theory unitary equivalent to
the free one is also free. So, such U can not exist. To bypass this contradiction one can break the
Poincare covariance down by replacing (3.6) with

Hint(t) =

∫
d3~xλ(x) : hint(~x, t) :

28This observation is quite formal in the light of Remark 3.2. But it will not be important for us, so we leave it as
is.
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with λ ∈ S(R4) and for simplicity we assume that its support in the variable t is compact, λ(~x, t) = 0
for |t| > T for some large enough T . We will call λ the adiabatic switching or adiabatic cut-off29.
Then we may fix the initial conditions for (3.9) as

U(t) = 1, t < −T.

Then we have

U(t) = 1 +

∫ t

−∞
HI(t

′)U(t′)dt′.

The formal power series in terms of g solving this equation can be achieved iteratively. We have

U(t) = U(t,−∞),

U(t′, t) =
∑
n

(−i)n
∫
t′>tn>···>t2>t1>t0>t

dt1 · · · dtnHI(tn) · · ·HI(t1) = (3.10)

T{e−i
∫
t<τ<t′ HI(τ)dτ},

where T is the time-ordering, ordering the time-dependent operators inside it according to the time
stamps. The above can be understood as a rigorous definition of T. We note that the operator
U(t, t′) is not well-defined, because the summand contains a product of two distributions,

HI(tn) · · ·HI(t1)

and
θ(t′ − tn)θ(tn − tn−1) · · · θ(t2 − t1)θ(t− t1)

which does not exist. In practice one uses the Wick theorem (Theorem F.4 and Remark F.2) to
formally rewrite U(t, t′) as a sum of the well-defined Wick products with numerical coefficients (more
precisely, numerically-valued distributions) represented as divergent integrals. These divergences can
be cancelled out by the so-called renormalisation. Let us replace (3.4) with

H = H0(t) +Hint(t) +Hcounter(t), (3.11)

where Hcounter(t) is a sum of the so-called counterterms, which are also local functionals of φ and
π in the same sense as H0(t) and Hint(t), but with coefficients tending to infinity is such a way that
U(t, t′) remains finite30. In this thesis we will deal with UV-finite theories which do not have this
problem. We refer to [93] for rigorous realisation of this procedure. However, two remarks important
for the present discussion can be made even at this formal level.

Remark 3.3. Since separation of an integral into a finite and a divergent parts is not unique,
Hcounter is not uniquely defined by the requirement of U(t, t′) finiteness. To fix the counterterms
one imposes the so-called renormalisation conditions. These additional restrictions are arbitrary
and the result depends on them. However, any change of the renormalisation conditions can be
compensated by an appropriate change of the coefficients in H0 and Hint. Formally it can be seen
from the fact that the separation of H into the finite and divergent parts is arbitrary and there is
always a possibility to move some finite terms from one part to another.

We should note however, that above the adiabatic limit λ→ 1 is implicitly assumed. As discussed
below there are several definitions of such a limit. One of them, the strong adiabatic limit exists
only if H0 describes free particles close enough to the actual particle spectrum of the theory (see
Subsection 7.2 for details). This can be always achieved by (partial) fixing of the renormalisation

29Often λ is combined with the interaction constant g. But for the sake of clarity we keep them separated.
30Of course, to make it work one needs to regularise the divergent integrals so that the pure infinities are replaced

by functions of some regularisation parameter, blowing in the limit corresponding to unregularized integrals.
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conditions. In UV-finite theories, which we will consider, there is no need in infinite counterterms,
but we still need to do finite renormalisation to make the strong adiabatic limit existing. This
renormalisation is nothing but a change in separation of the full Hamiltonian into a free and an
interacting parts, because when all counterterms are finite, Hint and Hcounter are treated on abso-
lutely the same footing. We will keep calling this procedure renormalisation only to preserve the
common terminology of ordinary QFT.

Remark 3.4. There are actually two ways to view at the renormalisation. One, explained above,
is to start from a Hamiltonian with finite coefficents

Hfintite = H0 +Hint

and then replace it by
H = Hfinite +Hcounter (3.12)

to cure the divergences.
Instead one can start from the full Hamiltonian in the form

H = H
(bare)
0 +H

(bare)
int ,

where H
(bare)
int is the most generic local renormalizable covariant (and may be preserving other

symmetries of theory) interaction with unknown coefficient. Then to get finite results one should
allow these coefficients to be infinite (which are called “bare” coefficients opposed to the renormalized
coefficients of Hfinite). Then (3.12) can be understood as a convenient separation of the original
Hamiltonian H into finite and infinite parts.

In ordinary QFT these approaches are equivalent, and one can safely switch from one to another
and back (as we implicitly did in the previous Remark), because anyway the acceptable terms in
all parts of the Hamiltonian are restricted by the same symmetry, locality and renormalisability
requirements. We will see in Section 8 that in more general setup this equivalence may disappear.

Remark 3.5. There is also one more case when it is instructive to renormalize the theory (in addition
to the aforementioned infinite renormalization to make the scattering operator finite and the finite
one to make the strong adiabatic limit finite). In practical calculations one chooses renormalization
conditions so, that the quantum corrections are small. This choice depends on the characteristic
energy scale of the process under consideration. This leads to the notion of ”running constants”
depending on the energy scale and of the ”renormalization group equations” allowing to find the
dependency of the interaction constants on the energy scale. Both these concepts play an important
role in physics, allowing to compute non-trivial logarithmic corrections to the näıve perturbation
theory. We refer to standard textbooks on QFT [86, 80] for details.

In non-local case the renormalization group analysis also may help to compute the amplitudes
more precisely. Especially, it is necessary if we want match a non-local QFT with, say, Standard
Model at low energies and when see how the non-locality modifies physics at higher energies. Clearly,
it should be renormalization, that does not change the physical result.

Identification of the interacting quantum field with a free one allows to understand the statespace
as a Fock space. Since it describes the system in the past, it can be understood as a Fock space
of incoming particles, which (far enough in the past) are so distant one from another that the
interaction can be ignored and the free field approximation is reasonable. For this reason we may
also call that free field the incoming field and denote it as φin(x)

φin(x) = φ0(x),

φ(x) = φin(x), t < −T.

25



In the distant enough future, t > T , the interaction vanishes again so the quantum field is free, but in
general it is a different representation of the free quantum field theory, generated by the outcoming
field φout(x),

φ(x) = φout(x), t > T.

These two representations are unitary equivalent,

φout(x) = U(∞)−1φin(x)U(∞),

so the outcoming field also generates a Fock representation. The corresponding Fock basis can be
understood as a basis of outcoming fields. The unitary operator U(∞) (note that U(t) is constant
for t > T , so U(∞) is just a convenient notation for that constant) maps incoming states to the
outcoming ones, so we interpret it as the scattering matrix. Hence, we have

S = T
{
e−i

∫+∞
−∞ HI(t)dt

}
= T

{
e−i

∫
λ(x):hI(x):d4x

}
. (3.13)

This S-matrix is a functional of a smooth function λ(x). To get scattering amplitudes of a Poincare-
invariant theory one needs to consider a limit of λ going to a constant. This limit is known under the
name of an adiabatic limit. The adiabatic limit of S itself is called the strong adiabatic limit which
in general does not exist (See Subsection 7.2) and references therein for details). Alternatively, one
can first calculate the Green n-point function, i.e. the time-ordered vacuum expectation value

Gn(x1, . . . , xn) =< Ω|T{φ(x1) · · ·φ(xn)}|Ω > .

Here |Ω > is the true vacuum (i.e. the unique translationally-invariant state) of the translationally-
invariant theory. In the following we will also need the following identity (originally due to Gell-Man
and Low [95]):

Gn(x1, . . . , xn) = lim
λ→1

< 0|T
{
φ0(x1) · · ·φ0(xn)e−i

∫
λ(x):hI(x):d4x

}
|0 >

< 0|T
{
e−i

∫
λ(x):hI(x):d4x

}
|0 >

. (3.14)

Assuming that t1 > t2 > . . . > tn, from (3.7) we have

T{φ(x1) · · ·φ(xn)} = U(t1)−1T
{
φ0(x1) · · ·φ0(xn)e−i

∫ t1
−∞HI(t)

}
,

so the only non-trivial ingredient in (3.14) is that the true vacuum |Ω > can be approximated by
the incoming vacuum |0 > as well as by U(+∞,−∞)−1|0 > up to a normalisation constant which
was argued by Gell-Man and Low. Whenever the limit of the right hand side of (3.14), the so-called
weak adiabatic limit, exists, it serves a definition of the left hand side. The weak adiabatic limit
always exists in local theories [74]. The scattering amplitudes can be reconstructed from the Green
functions via the LSZ reduction (see Subsection 3.4 and references wherein).

3.1.2 Non-local case: fixing HI

An approach to perturbative construction of non-local quantum field theories was suggested in [37]
and further developed in [71, 72, 73]. The following exposition repeats results from that works
important in this thesis. But, because we will work in a more general setup, we present them with
proofs. We also change the flow of the proofs to emphasise that the theories appearing in this way
are actually local in time, because this fact plays a major role in our analysis.

Assume that we are given the Hamiltonian in the interaction picture HI as a non-local functional
of the free quantum field φ0(x). Then (3.13-3.14) still hold with U(t, t′) again defined by (3.10).
If the non-local functional is smooth enough, the UV-divergences do not appear and the operator
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U(t, t′) is well-defined with no need of the infinite renormalisation. But, since φ0 is a free field
obeying a second order differential equation, any such functional can be presented as a functional of
the field and its conjugated momentum at a Cauchy hypersurface. Let us now formulate these ideas
more precisely.

Proposition 3.6. Let Y α1,... αn ∈ S(R3n) be a family of Schwartz functions enumerated by a number
n ∈ N and n signs αi = ± with only finite number of non-vanishing members. Then∑

n

∑
αi=±

∫ n∏
j=1

1

n!
d3~pjY

α1...αn(~p1, . . . , ~pn)φ̃0α1
(~p1, t) · · · φ̃0αn(~pn, t)

is a well-defined unbounded operator defined on DS . It is symmetric whenever

Y α1...αn(~p1, . . . , ~pn) = Y −αn,...,−α1(−~pn, . . . ,−~p1). (3.15)

Proof. First statement follows from Remark E.4, stating that the free quantum field evaluated at
fixed time is a well-defined distribution of the remaining three arguments. Then (3.15) is nothing
but evaluation of a sum of tensor product of operator-valued distributions (see Appendix B) on test
functions.

The second statement follows from straightforward computations.

We will encounter a lot of expressions like (3.15) containing sums over the signs αi = ±. To
simplify notation, we extend the “Einstein summation rule” also to this kind of indices. Due to the
reason which will be clear from Remark 4.6 we call this index the time-orientation.

Proposition 3.7. Let Y α1...αn(t; ~p1, . . . , ~pn) be a family of formal power series in terms of the
coupling constant g vanishing at the origin. The members of the family are enumerated by enumerated
by an integer n and time-orientations αi. Assume that at each finite order there is only a finite
number of non-vanishing members. Assume also that [Y α1...αn ]N ∈ S(R3n+1) for any n,N ∈ N and
any choice of time-orientations αi. Let

HI(t) =
∑
n

1

n!

∫ n∏
j=1

d3~pjY
α1...αn(t; ~p1, . . . , ~pn)φ̃0α1

(~p1, t) · · · φ̃0αn(~pn, t). (3.16)

Then

U(t′, t′′) = T{e−i
∫ t′
t′′ HI(t)}

is well-defined formal series in terms of g. It is formally unitary if

Y α1...αn(t; ~p1, . . . , ~pn) = Y −αn,...,−α1(t;−~pn, . . . ,−~p1)

Proof. First we note that by Proposition 3.6 [HI(t)]N is a well-defined unbounded operator defined
o DS for any t ∈ R and N ∈ N, so (3.16) makes sense. Now,

U(t′, t′′) =

∞∑
n=0

∫ n∏
j=1

dtj

lj∏
k=1

d3~pj,kθ(t
′ − tn)θ(t1 − t′′)

n−1∏
j=1

θ(tj+1 − tj)×

∑
l1,...,lm

n∏
j=1

1

lj !
Y αj,1,...,αj,lj (tj ; ~pj,1, . . . , ~pj,lj )×

φ̃0α1,1
(~p1,1, t1) · · · φ̃0α1,l1

(~p1,l1 , t1) . . . φ̃0αn,ln
(~pn,ln , tn).

It is a sum of evaluations of well-defined (according to Remark E.4) products of distributions on
test-functions and hence is well-defined.

The unitarity can be proven analogously to [73].
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From the above, taking into account that

φ̃0±(~p, t) =
1

2

(
φ̃0(~p, t)± i

ω~p
∂tφ̃0(~p, t)

)
=

1

2

(
φ̃0(~p, t)± i

ω~p
π̃0(~p, t)

)
, (3.17)

we see that the Hamiltonian perturbation theory easily generalises to the case of HI being a spatially-
non-local functional of the field and its first derivative with respect to time (or, more naturally in
the Hamiltonian formalism, the conjugated momentum). But if we now define

HI(t) =
∑
n

1

n!

∫ n∏
j=1

d3~pjdtjK
α1...αn(t; ~p1, t1; . . . ; ~pn, tn)φ̃0α1

(~p1, t1) · · · φ̃0αn(~pn, tn) = (3.18)

∑
n

1

n!

∫ n∏
j=1

d3~pjdtje
−iαjω~pj (tj−t)Kα1...αn(t; ~p1, t1; . . . ; ~pn, tn)φ̃0α1

(~p1, t) · · · φ̃0αn(~pn, t).

We see, that formally HI can be represented in the form (3.16) whenever∫ n∏
j=1

dtje
−iαjω~pj (tj−t)Kα1...αn(t; ~p1, t1; . . . ; ~pn, tn)

is a Schwartz function of the rest of the variables in any order of perturbation theory. This calculation
is however too formal in general and may include subtle operations with distributions which would
require additional work to define. We will restrict our attention to the following case for which HI

is well-defined according to Remark E.4:

Definition 3.8. We say that a family of formal power series vanishing at the origin Kα1...αn , is an
admissible interaction kernel, if for any N ∈ N:

•
[Kα1...αn ]N ∈ S ′(R4n+1);

• Only finite number of [Kα1...αn ]N does not vanish;

•

[Kα1...αn ]N (t; ~p1, t1; . . . ; ~pn, tn) =
∑
j

[K̂α1...αn
j (t; ~p1, t1; . . . ; ~pn, tn)Aj(t− t1, . . . , t− tn)]N ,

where K̂α1...αn
j is a family of formal power series, consisting of the Schwartz functions and A is

a family of formal power series consisting of distributions. The auxiliary index j has at most
countable range and to any finite order N only finite number of values of j contribute.

•
Kα1...αn(t; ~p1, t1; . . . ; ~pn, tn) = K−αn,...,−α1(t;−~pn, tn; . . . ;−~p1, t1). (3.19)

Proposition 3.9. If Kα1...αn is an admissible interaction kernel, then HI given by (3.18) is a
well-defined unbounded operator on DS that can be represented in a time-local form (3.16). The
corresponding operator U(t′, t′′) is unitary.

Proof. Existence of HI follows from Remark E.4. The local form is given by the second part of
(3.18), we need only to prove that after integration over the timestamps tj we end up with a
Schwartz function of the rest of the arguments. Instead for further use we prove Lemma 3.10 below,
from which the desired statement follows directly, taking into account that ω~p ∈ ΘM (R3) as agreed
in Remark E.2 (see Appendix B for definition of the multiplicator ΘM ), thus the possible polynomial
on ω~p factor would not spoil the decay properties.

Finally, (3.19) is exactly the unitarity condition from Proposition 3.7 expressed through the
interaction kernel according to (3.18).
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Lemma 3.10. Assume that Kα1...αn is an admissible interaction kernel. Let

K̃α1...αn(t; ~p1, ω1; . . . ; ~pn, ωn) =

∫ n∏
j=1

dtje
iωjtjKα1...αn(t; ~p1, t1; . . . ; ~pn, tn)

be its partial Fourier transform. Then K̃α1...αn ∈ C∞(R4n+1). Moreover, there is N ∈ N such that
for any M ∈ N

|K̃α1...αn(t; ~p1, ω1; . . . ; ~pn, ωn)| ≤ CM

1 +

n∑
j=1

ω2
j

N 1 +

n∑
j=1

~p2
j + |t|2

−M .

Analogous bounds (may be with different CM and N) hold also for any partial derivative of any order
of K̃α1...αn(t; ~p1, ω1; . . . ; ~pn, ωn).

Proof. Let us fix some n and some time-orientations αi. Clearly, it is enough to prove the statement
for

Kα1...αn(t; ~p1, t1; . . . ; ~pn, tn) = K̂(t; ~p1, t1; . . . ; ~pn, tn)A(t− t1, . . . , t− tn),

K̂ ∈ S(R4n+1), A ∈ S ′(Rn), since in general at any finite order Kα1...αn is a linear combination of
such terms.

To prove that K̃α1...αn(t; ~p1, ω1; . . . ; ~pn, ωn) is a smooth function let us fix f ∈ S(Rn) which does
not vanish anywhere. Consider

(fK̃α1...αn)(t; ~p1, ω1; . . . ; ~pn, ωn) =

∫ n∏
j=1

dtje
iωjtjf(ω1, . . . , ωn)K̂(t; ~p1, t1; . . . ; ~pn, tn)A(t− t1, . . . , t− tn).

For the product

X(t; ~p1, t1, ω1; . . . ; ~pn, tn, ωn) =

n∏
j=1

eiωjtjf(ω1, . . . , ωn)K̂(t; ~p1, t1; . . . ; ~pn, tn)

we have X ∈ S(R5n+1) and hence fK̃α1...αn ∈ S(R4n+1) by Theorem B.2. Then

K̃α1...αnK̃α1...αn(t; ~p1, ω1; . . . ; ~pn, ωn) =
(fK̃α1...αnK̃α1...αn)(t; ~p1, ω1; . . . ; ~pn, ωn)

f(ω1, . . . , ωn)

due to f 6= 0.
To prove the bound, assume that∫

A(τ1, . . . , τn)g(τ1, . . . , τ(n))

n∏
j=1

dτj ≤ c max
|α|<M

||g||M ′;α, (3.20)

where || · ||M ;α is the Schwartz seminorm (B.1) and |α| is the total order of the differential operator
∂α with α being a multiindex (see Appendix B for details of the notation). Such M , M ′ and c have
to exist for A to be a tempered distribution. Since K̂ ∈ S(R4n+1), we may assume

|K̂(t; ~p1, t1; . . . ; ~pn, tn)| < c′

1 +

n∑
j=1

~p2
j + |t|2

−M 1 +
∑
j=1

t2j

−M
′

.
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We can also assume the same bound for all its derivatives with respect to t1, . . . , tn of total order
not exceeding N . Then applying (3.20) to

g = K̂(t; ~p1, t1; . . . ; ~pn, tn)

n∏
j=1

eiωjtj .

we get the desired bound. The proof for the derivatives of the Fourier transform goes along exactly
the same lines.

An important class of interactions is given by integration of the Hamiltonian density over the
space like it was in the local case. So, similarly to the previous subsection we define

HI(t) =

∫
x0=t

λ(x)hI(x)d3~x, (3.21)

hI(x) =

∞∑
n=0

1

n!

∫
d4x1 · · · d4xnκn(x1 − x, . . . , xn − x) : φ0(x1) · · ·φ0(xn) :. (3.22)

Analogously to Definition 3.8 we introduce:

Definition 3.11. We say that a family of formal power series vanishing at the origin κn, is an
admissible interaction kernel density, if for any N ∈ N:

•
[κm]N ∈ S ′(R4n);

• Only finite number of [κm]N does not vanish;

•
[κn]N (x1, . . . , xn) =

∑
j

[κ̂n,j(x1, . . . , xn)Aj(x
0
1, . . . , x

0
n)Bj(~x1 + . . .+ ~xn)]N , (3.23)

where κ̂n,j is a family of formal power series, consisting of the Schwartz functions, while A and
B are families of formal power series consisting of distributions. The auxiliary index j has at
most countable range and to any finite order N only finite number of values of j contribute.

• κn is real.

• κn = 0 for n ≤ 2.

Proposition 3.12. Let κ be an admissible interaction kernel density and λ ∈ S(R4). Then at any
order (3.22) defines an operator-valued distribution and (3.21) defines an interaction Hamiltonian
corresponding to an admissible interaction kernel with non-zero components given by

K+1...+k−k+1...−n(t; ~p1, t1; . . . ; ~pn, tn) = (3.24)(
n

k

)∫
d3~x

k∏
j=1

d3~xje
−i~pj~xj

n∏
j=k+1

d3~xje
i~pj~xjλ(x)κ(x1 − x, . . . , xn − x).

Here we adopt a convention x = (t, ~x) and xj = (tj , ~xj). In the left hand side K has first k
time-orientations ”+” and the rest n− k are ”-”.
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Proof. First we prove that [: hI :]N is an operator-valued distribution. For that we use the decom-
position (3.23). The distribution

φ0(x1) · · ·φ0(xn)

can be safely multiplied by a time-dependent distribution

Aj(t1 − t, . . . , tn − t)

due to Remark E.4. The additional variable t here is treated as a parameter. Multiplication by

Bj(~x1 + . . .+ ~xn − n~x)

due to Remark B.6 gives a well-defined operator-valued distribution on R4n+3, there the additional
three dimensions correspond to the new variable ~x. Multiplication by a Schwartz function κ̂j and
summation over j, of course, brings no problem, so [: hI :]N is well-defined.

Substitution of (D.2) and (E.12) into (3.21-3.22) gives exactly (3.18) with interaction kernel
(3.24). We took into account that after the normal ordering only terms with all plus on the left
to all minuses survive and the combinatoric factor

(
n
k

)
appears because the same ordered term can

arise from several different original ones.
To see that (3.24) is admissible we use (3.23) once again. We see that the spatial distributions Bj

disappear after integration over ~x. Integration over ~xj is a Fourier transform of a Schwartz function
which is Schwartz again. The temporal distributions Aj do not interfere with any of these operations
and are allowed by Definition 3.8. The reality of κ guarantees (3.19).

The form (3.21) allows to consider the adiabatic limit λ→ 1 in which the translational invariance
is restored. We do it in two steps. First we consider the limit of λ going to a function depending on
the time only, which we symbolically denote with λ(x) → λ(t). The limit λ(t) → 1 we consider in
Section 7.

Proposition 3.13. Let κ be an admissible interaction kernel density. Then the operator S =
U(∞,−∞) remains finite after a formal substitution λ(x)→ λ(t), where λ(t) is compactly supported.

Proof. Following [73, 72] first formally represent S with such a formal substitution this limit in the
normal-ordered form by means of the Second Wick Theorem F.4,

S = 1 +
∑
n,n′

∫ n∏
i=1

d3~pi

n′∏
i=1

d3~p′iSn′,n(~p′1, . . . , ~p
′
n′ ; ~p1, . . . , ~pn)× (3.25)

n′∏
i=1

a+(~p′i)√
2ω~p′i(2π)

3
2

n∏
i=1

a(~pi)√
2ω~pi(2π)

3
2

.

The coefficients Sn′,n(~p′1, . . . , ~p
′
n′ ; ~p1, . . . , ~pn), symmetric in (~p1, . . . , ~pn) and in (~p′1, . . . , ~p

′
n′), can be

found through computing matrix elements of the both sides of (3.25),

Sn′,n(~p′1, . . . , ~p
′
n′ ; ~p1, . . . , ~pn) =< ~p′1, . . . , ~p

′
n′ |S|~p1, . . . , ~pn >

′,

where prime means that we ignore direct contractions between the incoming and the outcoming
fields which are exactly the amplitudes computed by Feynman Rules presented in Section 4 31. By
Lemma 4.10 these scattering amplitudes have the form

Sn,n′ =
∑

Γ

WΓ(~p′1, . . . , ~p
′
n′ ; ~p1, . . . , ~pn)CΓ(~p′1, . . . , ~p

′
n′ ; ~p1, . . . , ~pn),

31More precisely, we substitute the definition (E.4) and then compute the vacuum matrix element according to the
Wick Theorem (Theorem F.1 and Remark F.2), ignoring contraction between operators used to create |~p1, . . . , ~pn >′

and < ~p′1, . . . , ~p
′
n′ |. Such contractions are also ignored in the scattering amplitudes.

We also note that in Section 4 the notation introduced in Remark 3.19 is used.
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where the sum goes all graphs Γ, WΓ ∈ S(R3(n+n′)) and C ∈ S ′(R3(n+n′)) is a distribution a
accumulating all momentum conservation laws32. Then we immediately see that S is defined as a
quadratic form on DS .

Moreover, for any Ψ ∈ DS ,

Ψ =
∑
n

∫
Ψ(~p1, . . . , ~pn)|~p1, . . . , ~pn >

n∏
i=1

d3~pi
(2π)32ω~p′i

we can compute

SΨ =
∑

n,n′,n′′

cn,n′,n′′

∫ n∏
i=1

d3~pi
(2π)32ω~p′i

n′∏
i=1

d3~p′i
(2π)32ω~p′i

n′′∏
i=1

d3~p′′i
(2π)32ω~p′i

×

Sn′,n(~p′1, . . . , ~p
′
n′ ; ~p1, . . . , ~pn)Ψ(~p1, . . . , ~pn, ~p

′′
1 , . . . , ~p

′′
n′′)|~p′1, . . . , ~p′n′ , ~p′′1 , . . . , ~p′′n′′ > .

Here cn,n′,n′′ is a combinatoric coefficient irrelevant for us, and we assumed that Ψ is symmetric,
which is, of course, natural choice. Since all conservation laws contain both incoming and outcoming
particles33, CΓ can be considered as a distribution in R3n depending on ~p′i and after integration over
~pi it gives a Schwartz function of the rest of the variables. So, SΨ ∈ DS is well-defined for any
Ψ ∈ DS .

Remark 3.14. The Wick product is essential in the above, because otherwise vacuum corrections
(and tadpoles in massless case) may appear, which are adiabatically divergent already at this step
[73]. In the proof above it is hidden in the Feynaman rules of Section 4.

Remark 3.15. One can actually do more and prove that

Sl[λ(x)]Ψ→ Sl[λ
′(t)]Ψ,∀Ψ ∈ DS , (3.26)

where Sl[λ(x)] is the l-order contibution to the operator S computed assuming the full adiabatic
cut-off λ, Sl[λ

′(t)] is formally constructed in Proposition 3.13 with only temporal adiabatic cutoff
λ′(t) (here for the sake of clearness we will use different leters to denote them). We will not present
here the full proof, but let us show the key steps. For simplicity consider a sequence of the adiabatic
switchings

λn(x, t) =

∫
d3~kλ̃n(~k, t)ei

~k~x,

there λ̃(~k, t) is a smooth function vanishing outside of a fixed (in particular, independent of n)
compact set K ∈ K and that

an = sup
t
|λn(0, t)− λ′(t)| = sup

t

∣∣∣∣∫ λ̃n(~k, t)d3~k − λ′(t)
∣∣∣∣ −→ 0,

bn = sup
t

∫
|λ̃n(~k, t)||~k|d3~k −→ 0,

For example, one can take
λn(~x, t) = λ(εn~x, t),

λ̃n(~k, t) = ε−3
n λ̃(ε−3

n
~k),

where λ̃n(~k, t) is compactly supported and smooth, and εn → 0.

32For example, if Γ is a connected (in topological sense) graph, CΓ(~p′1, . . . , ~p
′
n′ ; ~p1, . . . , ~pn) = δ(~p′1 + · · ·+ ~p′

n′ − ~p1−
· · · − ~pn). In general case it is a product of such delta-functions of all connected pieces.

33Here we use that the theory is massive, m > 0.
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Since at any order S is a polylinear functional of λ, we may write

Sl[λn]Ψ(~p1, . . . , ~pm) =

∫
Φ(l)
m (~p1, . . . , ~pm;~k1, t1, . . . ,~kl, tl)

l∏
i=1

λ̃n(~ki, ti)

l∏
i=1

d3~kidti, (3.27)

where, by Remark 4.11 and considerations similar to the ones used in the proof of Proposition 3.13,

Φ
(l)
m (~p1, . . . , ~pm;~k1, t1, . . . ,~kn, tn) is a smooth function which Schwartz seminorms with respect to

the momenta ~pi are bounded uniformly in all ~ki and ti on the support of λ̃, and the same holds for
any its derivatives. In particular, we have

∣∣∣Φ(l)
m (~p1, . . . , ~pm;~k1, t1, . . . ,~kn, tn)

∣∣∣ ≤ Cm,l(1 +

m∑
i=1

~p2
i

)−3m

,

∣∣∣∣∣ ∂∂~kj Φ(l)
m (~p1, . . . , ~pm;~k1, t1, . . . ,~kn, tn)

∣∣∣∣∣ ≤ Cm,l
(

1 +

m∑
i=1

~p2
i

)−3m

,

for (~ki, t) ∈ K. Moreover (again, see Remark 4.11),

Sl[λ
′]Ψ(~p1, . . . , ~pm) =

∫
Φ(l)
m (~p1, . . . , ~pm; 0, t1, . . . , 0, tl)

l∏
i=1

λ′(ti)

l∏
i=1

dti.

Then by a straightforward application of Cauchy mean value theorem we get

|Sl[λn]Ψ(~p1, . . . , ~pm)− Sl[λ′]Ψ(~p1, . . . , ~pm)| ≤∣∣∣∣∣
∫

Φ
(n)
m,l(~p1, . . . , ~pm; 0, t1, . . . , 0, tl)

l∏
i=1

(λ′(ti)− λn(ti, 0))

l∏
i=1

dti

∣∣∣∣∣+∣∣∣∣∣
∫ (

Φ
(n)
m,l(~p1, . . . , ~pm; 0, t1, . . . , 0, tl)− Φ

(n)
m,l(~p1, . . . , ~pm;~k1, t1, . . . ,~kl, tl)

) l∏
i=1

λ̃(~ki, ti)

l∏
i=1

dtid
3~ki

∣∣∣∣∣ ≤
C ′m,la

m
n (an + bn)

(
1 +

m∑
i=1

~p2
i

)−3m

.

which goes to zero in the norm of L2. Since for fixed l and fixed Ψ ∈ DS only a finite number of
Sl[λn]Ψ(~p1, . . . , ~pm) does not vanish, we get that (3.26) holds.

So, the spatial adiabatic limit (unlike the temporal one, see 7.2) always exists in the strong sense.

Example 3.16. Let us consider

hI(x) =
1

n!
: φ0(x)n :Q,

where : · :Q is the Quantum Wick Product defined by (2.18)34. It is an admissible interaction kernel
density with κ = r̃ with r̃ defined by (2.17).

Example 3.17. Let hI(q) = φ0(q)n be the ”star-product” interaction, i.e. the ordinary interaction
term with the pointwise product replaced by the ordinary one. Then (see Appendix C of [38])

hI(x) =
1

n!

∫
C(x1 − x, . . . , xn − x)φ0(x1) · · ·φ0(xn)d4x1 · · · d4xn,

34The quantum Wick product is defined as a functional on E∗ and hence can not be evaluated at a point in general.
However we can formally substitute q with x in Fourier representation of φ0.
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where
C(x1, . . . , xn) = cne

iQn[x1,...,xn],

where Qn is a quadratic form of the coordinates with real coefficients. Clearly, this function is not
decaying at all with growth of xi, so it does not define a nice enough interaction. In practice such
interactions are known to cause serious problems. Only a special class of non-planar diagrams is
UV-finite. Even some diagrams which are finite in presence of the adiabatic cut-off may become
divergent in the adiabatic limit [73]. The properties of the theory can be made a bit better by means
of integration over Q with some measure. For example the case of rotationally-invariant measure
localized on Σ1 was studied in [73]. The mixing effect however persists [105].

Remark 3.18. We note that the the fields defined in 2.2.1 have additional momentum-dependent
factor ζ. If ζ decays fast enough, it can provide additional regularization to the star-product inter-
action of the example above. However, numerical calculations have shown that it is difficult to find
such a ζ, that hI has reasonable behaviour at low energies. So, we will not develop this approach
here.

Remark 3.19. Let κ be an admissible interaction density. Let us find the localised form of the
corresponding operator HI in the limit λ(x)→ λ(t). We have:

Y α1...αn(t; ~p1, . . . , ~pn) = λ(t)1:α1,...αn:(2π)3δ

 n∑
j=1

αj~pj

 1

α−!α+!

∑
ρ∈Sn

Fαρ1 ...αρn (~pρ1 , . . . , ~pρn),

(3.28)

Fα1...αn(~p1, . . . , ~pn) =

∫ n∏
j=1

d4xje
iαjpjxjκ(x1 − x, . . . , xn − x), (3.29)

where pj = (ω~pj , ~pj), x = (t, ~x) and ~x is arbitrary due to the presence of the momentum-conservation
δ-function. The summation in (3.28) goes over the group Sn of permutations of n elements, 1:α1,...αn:

is equal to one if all pluses precede all minuses in (α1, . . . , αn) and is zero otherwise, and finally α−
and α+ are the number of minuses and pluses in α respectively. For simplicity we assume that F is
symmetric, then we may replace

1

α−!α+!

∑
ρ∈Sn

→
(
n

α+

)
This is the form we use.

For further reference, let us some up the key results of this exposition in the following:

Remark 3.20. The “Hamiltonian approach” [71, 73] allows to quantise the non-local quantum field
theories with quite general interaction kernel in the presence of an adiabatic cut-off. Moreover, the
spatial adiabatic cut-off can be weared off resulting in a theory invariant with respect to the spatial
translations. However, it is worth noting, that although the interaction kernel K, or the interaction
kernel κ are allowed to be non-local also in time, this is a notational issue only. Such interaction can
be always replaced by an equivalent one, which is non-local only in space. This happens because HI

is a functional of the free quantum field which evolution in time is completely determined by the free
wave equation. In 3.1.3 we will discuss perturbative construction of a quantum field theory which
is really non-local in time by taking non-linear corrections to the free evolution into account. As
a byproduct the interacting kernel (3.28-3.29) depends in a non-trivial way on the bare frequency.
Recall that in ordinary QFT the choice of the bare frequency is rather arbitrary (except for the
strong adiabatic limit) and its change can be always compensated by a quadratic interaction term.
This is not the case anymore.
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3.1.3 Hamiltonian approach: fixing Hint

As we have seen, the non-local Hamiltonian perturbation theory goes the same way as the local one
(except that we should not care about the UV divergences anymore) whenever we are provided HI

as a functional of the free fields. It would be more natural to start from an interaction part of the
Hamiltonian Hint given as a non-local functional of the physical quantum fields:

Hint(t) =

∑
n

1

n!

∫ n∏
i=1

d4xiRn(t;x1, . . . , xn)

n∏
i=1

φ(xi). (3.30)

We still can define the interaction representation by (3.7). Then35

HI(t) = U(t)Hint(t)U(t)−1 =

∑
n

1

n!

∫ n∏
i=1

d4xiRn(t;x1, . . . , xn)U(t)

(
n∏
i=1

(
U(ti)

−1φ0(xi)U(ti)
))

U(t)−1

or

HI(t) =
∑
n

1

n!

∫ n∏
i=1

d4xiRn(t;x1, . . . , xn)U(t, t1)φ0(x1)U(t1, t2)φ0(x2) · · ·U(tn−1, tn)φ0(xn)U(tn, t).

(3.31)
Here

U(t, t′) = U(t)U(t′)−1.

If t′ < t it coincides with U(t, t′) defined above,

U(t, t′) = Te−i
∫ t
t′ HI(t′′)dt′′ .

For t > t′ we have
U(t, t′)−1 = U(t′, t) = Te−i

∫ t
t′ HI(t′′)dt′′ ,

U(t, t′) = T̄ei
∫ t
t′ HI(t′′)dt′′ ,

where T̄ is anti-timeordering (i.e. ordering which brings the operators with later timestamp to the
right). Both cases can be symbolically united by

U(t, t′) = Pei(t−t
′)
∫ 1
0
HI(t(1−s)+t′s)ds =

∞∑
n=0

(i(t− t′))n

n!

∫
0<s1<s2<...<sn<1

HI(t(1− sn) + t′sn) · · ·HI(t(1− s1) + t′s1)ds1 · · · dsn,

where P stands for the ordering along the integration path (i.e. multipliers corresponding to bigger
values of s are moved to the left). By construction

U(t1, t2)U(t2, t3) = U(t1, t3).

and
U(t, t′) = U(t′, t)−1.

35From now and until the end of the subsection we adopt the convention xj = (tj , ~xj).
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Proposition 3.21. Let R be an admissible interaction kernel in the sense of Definition 3.8. Then
(3.31) uniquely defines HI(t) as a formal power series vanishing at the origin of the form

HI(t) =
∑
n

1

n!

∫
Y α1...αn(t;~k1, . . . ,~kn)×

φ̃0α1(α1
~k1, t) · · · φ̃0αn(αn~kn, t)

n∏
i=1

d3~ki.

where Yα1,...,αn(t;~k1, . . . ,~km) is a family of power series of Schwartz functions vanishing at the
origin, and in any order only a finite number of Yα1...αn is non-zero.

Proof. Clearly, [HI ]0 = 0 is of the desired form. Now assume that for some N

[HI ]N (t) =
∑
n

1

n!

∫
[Yα1,...,αn(t;~k1, . . . ,~kn)]N×

φ̃0α1
(α1

~k1, t) · · · φ̃0αn(αn~kn, t)
n∏
i=1

d3~ki

for some [Y α1...αn(t;~k1, . . . ,~km)]N ∈ S(R3n+1). From (3.31) we have

[HI(t)]N+1 =
∑
n

1

n!

∫ n∏
i=1

d4xi
[
Rn(t;x1, . . . , xn)× (3.32)

[U(t, t1)]Nφ0(x1)[U(t1, t2)]Nφ0(x2) · · · [U(tn−1, tn)]Nφ0(xn)U(tn, t)
]
N+1

.

Here we used that Rn is a power series vanishing at the origin, so only lower orders of U(t′, t′′)
contribute to [HI(t)]N+1. We note, that

[U(t′, t′′)]N =

[ ∞∑
n=0

(i(t′ − t′′))n

n!

∑
l1,...,ln

∫
0<sj<1

n∏
j=1

dsj lj∏
i=1

dxj,i

 n−1∏
j=1

θ(sj − sj+1)×

n∏
j=1

1

lj !
Y αj,1...αj,lj (t′(1− sj) + t′′sj ;~kj,1, . . . ,~kj,lj )

lj∏
i=1

φ̃0αj,i(αj,i
~kj,i, t

′(1− sj) + t′′sj)

]
N

=

[ ∞∑
n=0

(i(t′ − t′′))n

n!

∑
l1,...,ln

∫
0<sj<1

n∏
j=1

dsj

kj∏
i=1

d~xj,i

n−1∏
j=1

θ(sj − sj+1)×

n∏
j=1

1

lj !
Y αj,1...αj,lj (t′(1− sj) + t′′sj ;~kj,1, . . . ,~kj,lj )

lj∏
i=1

e
iαj,iω~kj,i

((t′(1−sj)+t′′sj)−t)
φ̃0αj,i(

~kj,i, t)

]
N

.

We now consider integration over the variables sj . We see that it is an evaluation of the distribution

θ(sn)θ(1− s1)

n−1∏
j=1

θ(sj − sj+1)

on a Schwartz function of a larger number of variables. It is well-defined and yields a Schwartz
function of the rest of the variables according to Theorem B.2, so

[U(t′, t′′)]N =
∑
n

∫
[uα1...αn(t, t′, t′′;~k1, . . . ,~kn)]N

n∏
i=1

φ̃0αi(
~ki, t)

n∏
i=1

d3~ki, (3.33)
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uα1...αn ∈ S(R3n+3) Then (3.32) gives

[HI(t)]N+1 =
∑
n

1

n!

∫ n∏
i=1

d4xid~pi
[
Rn(t;x1, . . . , xn)×

[U(t, t1)]N φ̃0,β1
(~p1, t)[U(t1, t2)]N φ̃0β2

(~p2, t) · · · [U(tn−1, tn)]Nφ0βn(~kn, t)U(tn, t)
]
N+1
×

ei
∑n
i=1(βiω~pi (ti−t)−~pi~xi) =∑

n

1

n!(2π)n

∑
β1,...,βn=±

∫ n∏
i=1

d~pidωidti
[
R̃n(t; ~p1, ω1; . . . ; ~pn, ωn)×

[U(t, t1)]N φ̃0,β1
(~p1, t)[U(t1, t2)]N φ̃0β2

(~p2, t) · · · [U(tn−1, tn)]Nφ0βn(~kn, t)U(tn, t)
]
N+1
×

e−i
∑n
i=1 βiω~pi tei

∑n
i=1(βiω~pi ti−~pi~xi+ωiti).

Here R̃ is the partial Fourier Transform defined in the same way as K̃ of Lemma 3.10. Substituting
(3.33), evaluating integral over ti (which is just a Fourier transform of Schwartz functions u form
(3.33))36.Applying Lemma 3.10 and taking into account that possible polynomial growth of R̃ as a
function of frequencies is always overruled by fast decaying Fourier transforms of u, we get that the
integrand (aside from the fields product) is a Schwartz function of all its arguments, thus [HI ]N+1

has the desired form. Then the theorem is proven by induction.

Remark 3.22. Unlike the free field, the interacting field in general is not defined at a point, so
there is no analogue of Remark E.4 to justify the operator Hint with admissible interaction kernel
R. However, the theorem above provides a way of perturbative construction of its interaction
representation HI .

Remark 3.23. In this formalism an interaction invariant with respect to the spatial translations
analogous to (3.21) with λ(x) → λ(t) can also be considered. We claim that such a limit is well-
defined and that HI can be again represented as in Remark 3.19 up to some infinite vacuum energy
and tadpoles renormalisation (which appear, because we cannot impose Wick product on general
interaction fields), but we leave the details to be considered elsewhere.

So, we see that the non-local theories considered in the previous subsection, although being
quite unnatural to begin with, can be considered as an effective theory arising from very reasonable
interaction (3.30).

Remark 3.24. We note that the theory with fixed HI can always be achieved in this formalism if
we allow Hint depend on the canonical momentum together with the field. For that we should take

Hint(t) =
∑
n

∑
αj=±

1

n!

∫ n∏
j=1

d3~pjY
t;α1...αn(~p1, . . . , ~pn)

n∏
j=1

φ̃(~pj , t) +
iαj
ω~pj

π̃(~pj , t)

2
. (3.34)

Here we used (3.6), (3.7-3.8). It is worth noting that, although in (3.6) one can use either the
canonical momentum π̃0 or the “velocity” ∂tφ̃0, only for the former there is a simple relation between
the original and the interaction pictures. We note that Proposition 3.21 generalises easily to such
interactions.

36There is actually one exception, namely zeroth order of U(ti, tj) = 1. In this case the Fourier transform is a
delta-function δ(ωi + βω~pi ). In this case one should use the same argument as in Proposition 3.9.
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3.2 Lagrangian perturbation theories

Again, we star from a local theory. Let it also be Poincare-invariant, then we expect that (in the
adiabatic limit) the S-matrix is covariant. It is quite difficult to see that from (3.13). Indeed, in
(3.13) the covariance seems to be broken in two ways. Firstly, S depends on the Hamiltonian which
is not Lorentz-invariant (it is a zero-component of a four-vector, but in (3.13) it appears alone).
Secondly, (3.13) contains a time-ordered product, which is defined in a fixed reference frame. At
the first sight it is not a problem in a local theory, because for time- or light-like separated events
the time-ordering is invariant, while for space-like separated ones it does not matter. The problem
appears for coinciding points. Unfortunately, they often bring singularities, so they can not be
disregarded as a zero-measure set.

In more details, assuming that the dispersion relation is covariant, ω~p = ωm~p from (F.5), we have

< 0|T{φ0(x)φ0(x′)}|0 >=

∫
d4p

(2π)4

i

p2 −m2 + i0
,

which is covariant. Hence, by the Second Wick Theorem (Theorem F.4 and Remark F.5) time-
ordered product containing only the field, but not its derivatives is covariant. We note that if no
derivatives appear in the interaction term we have

hI(x) = −LI(x),

where LI is the interacting part of the Lagrangian, which is a Lorentz-scalar and (3.13) is Lorentz-
covariant (in the adiabatic limit). In presence of the derivatives from (F.7) we see that

< 0|T{∂xµφ0(x)φ0(x′)}|0 >= ∂xµ < 0|T{φ0(x)φ0(x′)}|0 >

also is covariant. But, from (F.8), when two derivatives appear,

< 0|T{∂xµφ0(x){∂x′νφ0(x′)}|0 >= ∂xµ∂x′ν < 0|T{φ0(x)φ0(x′)}|0 > +iδµ,0δν,0δ(x− x′),

only the first part is covariant. At the same time, connection between the Lagrangian and the
Hamiltonian is also more involved in presence of the derivatives. In [8] it was shown that these two
issues compensate each other in the scalar electrodynamics, so one has

S = T̂
{
e−i

∫
Lint(x)λ(x)

}
, (3.35)

Gn(x1, . . . , xn) = lim
λ→const

< 0|T̂
{
φ0(x1) · · ·φ0(xn)ei

∫
g(x):Lint(x):d4x

}
|0 >

< 0|T̂
{
ei
∫
g(x):Lint(x):d4x

}
|0 >

. (3.36)

there T̂ is the covariant time-ordering defined by

T̂{φ(x)φ(y)} = T{φ(x)φ(y)}

T̂{∂xµφ(x)φ(y)} = ∂xµT{φ(x)φ(y)} = T{∂xµφ(x)φ(y)},

T̂{∂xµφ(x)∂yνφ(y)} = ∂xµ∂yνT{φ(x)φ(y)} = T{∂xµφ(x)∂yνφ(y)} − iδµ,0δν,0δ(x− y)1,
(3.37)

and so on. In Section 5 we will see that this result generalises to arbitrary QFT with first-order
derivatives in the interaction, but the classical connection between the Lagrangian and the Hamil-
tonian may be corrected by quantum effects.
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The form (3.35) is preferable in physics, because there the Lagrangian, rather than the Hamil-
tonian is the usual starting point. Besides already mentioned Lorentz invariance, which is manifest
in (3.35) unlike (3.13), the field strength renormalisation is much simpler in this picture (technical
difficulties arising in the Hamiltonian approach are discussed in Subsection 8.2). For this reason, it
is preferable to express the perturbation theory in such a way that it leads to (3.35) directly. There
are at least two such approaches.

A mathematically rigorous approach was developed by Stuckelberg, Bogolubov, Epstein and
Glaser. We will follow a pedagogical exposition of [97] and will present only the general scheme
without going into any details. Motivated by the Hamiltonian perturbation theory we consider a
theory with adiabatic cut-off of all the interactions. Then we expect to have two representations of
the free QFT, the incoming and outcoming ones, unitary equivalent via the unitary operator S(λ)
being a functional of the adiabatic switching λ(x). As always, we expect that the operator S is a
formal power series in terms of g. But we also assume that in any finite order it is a polynomial
function of λ as it was in the Hamiltonian perturbation theory,

S(λ) =
∑
n

∫
Sn(x1, . . . , xn)λ(x1) · · ·λ(xn)d4x1 · · · d4xn

with Sn being the operator-valued distributions which may be always assumed to be symmetric
and S0 the identity operator. We also require that S(g) is unitary, covariant (in the sense of (D.1)
naturally generalized to distribution on R4n) and casual in the sense that

S(λ+ µ1 + µ2) = S(λ+ µ1)S(λ)−1S(λ+ µ2) (3.38)

whenever the support of µ2 is in the casual past of the support of µ1. Then it is easy to see that if
we restrict Sn to some closed region O ⊂ R4n such that

xi 6= xj , ∀i, j = 1, . . . , n, ∀(x1, . . . , xn) ∈ O,

then

Sn(x1, . . . , xn) = T(S1(x1) . . . Sn(xn)),

where T is the time-ordered product as in the precious subsection. In general one has

Sn(x1, . . . , xn) = T̂r(S1(x1) . . . Sn(xn)),

where T̂r differs from the näıve time-ordering by distribution localised at hypersurfaces xi = xj . As
we have already seen in (3.37), such local corrections are enough to make it covariant. In [7] it was
shown that there is a recurrent construction of such time-ordered product that is also free of the
UV-divergences. Based on the correspondence principle one may argue that S1(x) = iLI(x), so we

arrive to (3.35) with T̂ replaced by its renormalised version T̂r. (3.36) can also be proven in this

formalism. The freedom mentioned in Remark 3.3 reappears as non-uniqueness of T̂r satisfying the
requirements. Change of this definition again turns out to be equivalent to a suitably chosen finite
shift of the parameters.

Another approach is the so-called functional integration [97, 80]. It is based on a formal equation

Gn(x1, . . . , xn) =

∫
φ(x1) · · ·φ(xn)eiS[φ]d[φ]∫

eiS[φ]d[φ]
, (3.39)

where the formal integration in the right hand side goes over all functions φ : R4 → R. This integral
is not defined in any rigorous sense (although it can be approximated by finite-dimensional integrals,
see [77]), but if the action is quadratic, the integral is Gaussian (or, more precisely, Fresnel) and can
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be formally computed by the Iserlsiss theorem [98]. Because of formal similarity of the Wick and
Iserlsiss’s theorems, (3.39) understood in this sense holds for a free theory,

< 0|T{φ0(x1) · · ·φn(xn)}|0 >=

∫
φ(x1) · · ·φ(xn)eiS0[φ]d[φ]∫

eiS0[φ]d[φ]
, (3.40)

where the free action

S0 = −1

2

∫
d4x

(
∂µφ(x)∂µφ(x) +m2φ(x)2

)
Then, taking S = S0 +

∫
λ(x)Lint(x)d4x one can compute the integral in the right hand side

of (3.39) perturbatively, again formally using the Iserlsiss’s theorem. Because of (3.40) it coincides
exactly with (3.36). In this approach the UV divergences appear in local theories and should be
treated similarly to what we have in the Hamiltonian approach.

In non-local theories the casuality requirement (3.38) fails to hold, so the Epstein-Glaser method
can not be used at all. The functional integration can be formally used leading to (3.36), but the
corresponding S-matrix (3.35) may be not unitary [55]. Because of these problems in the string
theory community, there the functional integration approach is popular, it is commonly believed
that the non-local in time theories (and in particular non-commutative theories with non-central
time) should be excluded from consideration [55]. This restriction seems to be neither natural nor
covariant.

Although from the connection of locality with casuality one could expect that it is the space-like
non-locality which would bring new problems (since it inevitably allows interaction between space-
like separated regions) we see that it is the time-like non-locality which breaks perturbation theory.
In fact, the main ambiguity is the definition of the time-ordered product which plays a crucial role
in both Hamiltonian and Lagrangian approaches.

The main problem of the functional integration method is that for the integral each occurrence
of the free field in Lint is treated separately. As a result, the time-ordering induced by it treats
each free field as a separate operator with its own time stamp. For example, in the first order of
(3.36) the time-ordered Lagrangian would appear which is not Hermitian, so the unitarity is broken
already at that level.

In the Hamiltonian approach instead we have the time-ordering of the operators HI(ti) instead
with respect to the time-stamps ti (the ”Interaction Point Time-Ordering Prescription”, see [106]).

Other approaches to generalization of the Lagrangian perturbation theory to the non-local case
modify the time-ordered product one way or another so, that the fields are again ordered in blocks.
For example, in [107] the unpleasant reorderings were forbidden just by hands. The resulting time-
ordered product is just T, so, although formulated in terms of the action, it is actually the Hamil-
tonian approach of 3.1.2. It is not clear, how the ”Interaction Point Time-Ordering Prescription”
can be made compatible with the covariance.

A more natural approach for the interaction terms which are local functionals of fields, convoluted
with smooth kernels (in particular, the interaction based on the Quantum Wick Product of 2.3 can
be presented in this way) was suggested in [108].

We also note that in 3.1.2 any admissible interaction can be represented in the form (3.16), which
is local in time. Even more, it depends on the field and its conjugated momentum (but not on higher
order derivatives with respect to time) only, as the Hamiltonian should. As such it corresponds to
some Lagrangian, also non-local in space. In Section 5 we will see that (3.35-3.36) coincides with the
results of the Hamiltonian approach, if quantum corrections to the Legendre transform are taken into
account. It could be interesting problem to generalise this correspondence to the case of properly
non-local in time theories.
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3.3 Yang-Feldman quantizaion

Finally, one can start from the equations of motion in the form

(� +m2
0)φ(x) = F [φ](x), (3.41)

where F [φ] is a functional of the field proportional to the interaction constant. The free quantum
field solves that equation for F = 0, so if the interaction is appropriately switched off in the past,
we can impose the initial conditions

φ(x) = φ0(x), x0 < −T

for large enough T as before. Then (3.41) is equivalent to an integral equation (the Yang-Feldman
equation)

φ(x) = φ0(x) + ERF [φ](x), (3.42)

where ER is the retarded Green function of the Poisson equation. (3.42) can be solved iteratively
to get a formal power series in the interaction constant.

The covariant time-ordered product construction of Epstein and Glaser in fact relies on iterative
solving of (3.42) derived from the extremal action principle, so whenever F is a local functional,
the Lagrangian approach of previous subsection is by construction equivalent to the Yang-Feldman
equation approach. In the non-local case, when the Lagrangian approach is not applicable, the
Yang-Feldman equation can be considered and gives rise to a unitary theory extensively considered
in [68] (for the case of star-product interaction).

We note that in [109] a perturbative construction of the Hamiltonian from equations of motion
in accordance with the Yang-Feldman approach was suggested.

3.4 LSZ reduction

Let us repeat the main steps of the LSZ analizis of [99] (see also [4]) in order to verify that it does
not actually require neither locality (eee however Remark 3.27) nor Lorentz-invariance.

The crucial idea is the assumption that in states, relevant for the scattering theory, in both
distant past and future the particles are far away from each other and hence are essentially free.
Therefore, their statespaces can be considered as Fock spaces of some free quantum fields, which we
call incoming and outcoming fields. This is formalised in the following way:

Assumption 3.25. Assume that besides a real scalar quantum field φ(x) acting on the dense domain
D ⊂ Hphys there are two general free quantum fields (E.11) with renormalisation and a dispersion

function ωQ~p , φin, φout, called respectively the incoming and the outcoming quantum fields, acting on
the same domain DHphys,

φ(ex) =

∫
d3~p

√
Z(~p)

(2π)
3
2

√
2ωQ~p

(
a(ex),~pe

−ipq + a+
(ex),~pe

ipq)
)
,

with ”ex” standing for either ”in” or ”out”, such, that

1. The span of images of the vector-valued distributions

|~p1, · · · , ~pn >= a+
(ex)(~p1) · · · a+

(ex)(~pn)Ω

is dense in Hphys;

2. ∫
(Ψ1, a

+(~p, t+ T )Ψ2)f(t)d3~pdt −→
T→+∞

∫
(Ψ1, a

+
(out)(~p)Ψ2)f(~p, t)d3~pdt,
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∫
(Ψ1, a

+(~p, t+ T )Ψ2)f(t)d3~pdt −→
T→−∞

∫
(Ψ1, a

+
(in)(~p)Ψ2)f(~p, t)d3~pdt

for any Ψ1,Ψ2 ∈ D and f ∈ S(R4 and

a+(~p, t) = −e−iω
Q
~p
t

√√√√ (2π)
3
2

2ωQ~p Z(~p)

(
i∂tφ̃(~p, t)− ωQ~p φ̃(~p, t)

)
.

We note that Assumption 3.25 holds for free fields with φin = φout = φ and for interacting fields
in presence of the adiabatic cut-off with φin and φout as in the previous subsections.

Lemma 3.26 (LSZ reduction formula). Consider the distribution

Sn,n′,l(~p1, . . . , ~pn; ~p′1, . . . , ~p
′
n;~k1, . . . ,~kl; t1, . . . , tl) =

out < ~p′1, . . . , ~p
′
n′ |T{φ̃(t1, ~k1) · · · φ̃(tl, ~kl)}|~p1, . . . , ~pn >in

restricted to a region O in which ~pi 6= ~p′j for any i, j and considered only on functions with compact

support in the variables ti. Then 37

Sn,n′,l(~p1, . . . , ~pn; ~p′1, . . . , ~p
′
n′ ;
~k1, . . . ,~kl; t1, . . . , tl) = (3.43)

lim
T→∞

∫
dtHT (t)

e−iω
Q
~pn
t

(
∂2
t −

(
ωQ~pn

)2
)

(2π)3√
Z(~pn)

×

Sn−1,n′,l+1(~p1, . . . , ~pn−1; ~p′1, . . . , ~p
′
n′ ;
~k1, . . . ,~kl, ~pn; t1, . . . , tl, t)

and
Sn,n′,l(~p1, . . . , ~pn; ~p′1, . . . , ~p

′
n′ ;
~k1, . . . ,~kl; t1, . . . , tl) = (3.44)

lim
T→∞

∫
dtHT (t)

e
iωQ
~p′
n′
t
(
∂2
t −

(
ωQ~pn′

)2
)

(2π)3√
Z(~pn)

×

Sn,n′−1,l+1(~p1, . . . , ~pn; ~p′1, . . . , ~p
′
n′−1;~k1, . . . ,~kl,−~p′n′ ; t1, . . . , tl, t),

where

HT,ω~p(t) =

∫ t

−∞
(h(t′ + T )− h(t′ − T ))dt′,

h ∈ C∞c (R),
∫∞
−∞ h(t)dt = 1.

Proof. First note that HT ∈ C∞c (R), so it is an admittable test-function. Now note, that

a+(~p, t+ T )− a+(~p, t− T ) = −
∫
dta+(t)(h(t+ T )− h(t− T )) =

∫
dta+(t)∂tHT (t) =

−
∫
dtHT (t)∂ta

+(t) =

−
∫
dte−iω

Q
~p
tHT (t)

(
∂t − iωQ~p

)
(i∂t − ω~p)

√
(2π)

3
2

2ω~p
φ(t) =

37As always one should integrate over all free arguments of the distributions with a test function and all limits
are in the weak sense. For shortness we consider integration over the only variable we deal with. We also implicitly
assume that the time-ordered product of the quantum fields is a well-defined tempered distribution.
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−i

√
(2π)

3
2

2ω~p

∫
dte−iω

Q
~p
tHT (t)

(
∂2
t −

(
ωQ~p

)2
)
φ(t).

Then we have

out < ~p′1, . . . , ~p
′
n′ |T{φ̃(t1, ~k1) · · · φ̃(tl, ~kl)}|~p1, . . . , ~pn >in=

(2π)
3
2

√
2ωQ~pn

(
out < ~p′1, . . . , ~p

′
n′ |T{φ̃(t1, ~k1) · · · φ̃(tl, ~kl)}a+

in(~pn)|~p1, . . . , ~pn−1 >in −

out < ~p′1, . . . , ~p
′
n′ |T{a+

out(~pn)φ̃(t1, ~k1) · · · φ̃(tl, ~kl)}a+
in(~pn)|~p1, . . . , ~pn−1 >in

)
=

lim
T→∞

∫ e−iω
Q
~p
t

(
∂2
t −

(
ωQ~pn

)2
)

(2π)3√
Z( ~pn)

×

out < ~p′1, . . . , ~p
′
n′ |T{φ̃(~pn, t)φ̃(t1, ~k1) · · · φ̃(tl, ~kl)}|~p1, . . . , ~pn−1 >in dt.

This gives (3.43). Proof of (3.44) is completely the same.

We note that pointwise HT (t) converges to the identity at large T , so the expression under the
limit in (3.43-3.44) is nothing but a regularisation of the Fourier transform at of a distribution at a
point. So, informally (3.43) can be interpreted as∫

eiωt(2π)3√
Z(~p)

Sn,n′−1,l+1(~p1, . . . , ~pn; ~p′1, . . . , ~p
′
n′−1;~k1, . . . ,~kl, ~pn′ ; t1, . . . , tl, t) ≈

1

ω2 −
(
ω~pQn

)2Sn,n′,l(~p1, . . . , ~pn; ~p′1, . . . , ~p
′
n′ ;
~k1, . . . ,~kl; t1, . . . , tl), ω → ω~pQn

and similarly for (3.44).
Sequentially applying (3.43-3.44) we get38

G(~p′1, ω
′
1; · · · ; ~p′n′ , ωn′ ;−~p1,−ω1; · · · ;−~pn,−ωn) ∼ (3.45)

n′∏
i=1

i
√
ZF (~p′i)

(2π)42ωQ~p′i
(ω′i − ω

Q
~p′i

+ i0)

n∏
i=1

i
√
ZF (~pi)

(2π)42ωQ~pi(ωi − ω
Q
~pi
− i0)

·

out < ~p′1, · · · , ~p′n′ |~p1, · · · , ~pn >in,
where G is the Fourier transform of the time-ordered vacuum correlators defined by

G(x1, . . . , xn) =

∫
d~p1 · · · d~pndω1 · · · dωnG(~p1, ω

′
1; · · · ; ~pn)

n∏
i=1

e−i(ωiti−~pi~xi)

with xi = (ti, ~xi) and the sign ∼ means that we leave only the most singular part in the limit

ωi → ωQ~pi . We see that the physical spectrum of the theory is encoded in the poles of the correlators
. The residues of that poles contain information about the scattering amplitudes. Finally, although
the proof above is not applicable for coinciding incoming and outcoming momenta, one still can
prove following the same lines that

G(~p, ω; ~p′, ω′) ∼

−iδ(~p− ~p′)δ(ω − ω′) ZF (~p)

ω2 −
(
ωQ~p

)2 ,

which allows to get the renormalisation coefficient also from the correlators.

38We give the informal statement only for the sake of shortness. The rigorous one would contain a subsequent limit
of n+ n′ regularisations wearing off. We refer to [77] for a more elegant rigorous version.
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Remark 3.27. We note that, although in our proof we never assumed the fields to be local, the
very idea of the LSZ analysis requires the particles to be free when they are far away from each
other. Otherwise there is no reason to expect that Assumption 3.25 holds.
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4 Feynman rules for non-local Hamiltonian Perturbation the-
ory

In this section we develop the Feynman rules for calculation of the S-matrix and of the correlators
for the non-local theories quantised in the Hamiltonian approach of 3.1.2 with HI provided in the
form (3.16) and assuming the invariance under spatial translations (3.28), so

HI(t) = λ(t)
∑
n

(2π)3 1

n!

∫
d~k1 · · · d~knδ(~k1 + · · ·+ ~kn) (4.1)

: φ̃0α1
(~k1, t) · · · φ̃0αn−1

(~kn−1, t)φ̃αn(~kn, t) : Fα1···αn(~k1, . . . ,~kn).

Here F are Schwartz functions proportional to the coupling constant g, or, more generally, form
a family of power series consisting of the Schwartz functions and vanishing at the origin. Due to
symmetry of the Wick product, we can always assume that F is symmetric, and we do from now
on. We also introduce Fourier transform of the adiabatic switching

λ̃(∆) =
1

2π

∫
dtλ(t)e−i∆t.

The Feynman rules for the scattering amplitudes in adiabatic limit were already presented in [73].
But, for our purposes we will need several different formulations and we also prefer to keep the
temporal adiabatic switching explicit.

We will work in the partial Fourier Transform (D.2) for both free and interacting fields. For
convenience we introduce decomposition of the interacting field analogous to (E.12)

φ̃(~p, t) = φ̃+(~p, t) + φ̃−(~p, t).

φ̃α(~p, t) = U(t, t0)−1φ̃0α(~p, t)U(t, t0).

We note, that, unlike the free field case, φ̃± in general does not have sense of creation and annihilation
parts. This decomposition is introduced for convenience only and depends on the renormalisation.

We introduce the decomposed partial Fourier transform of the correlators

Gn(x1, . . . , xn) =
∑

α1,...,αn

∫
d~p1 · · · d~pn−1d ~pnG̃α1,··· ,αn(~p1, x

0
1; . . . ; ~pn, x

0
n)ei

∑n
j=1 ~xj~pj ,

G̃α1,...,αn(~p1, x
0
1; . . . ; ~pn, x

0
n) =< Ω|T{φ̃α1(~p1, x

0
1) · · · φ̃αn(~pn, x

0
n)}|Ω >, (4.2)

as well as the complete Fourier transform

G̃α1,...,αn(~p1, t1; . . . ; ~pn, tn) = (4.3)

∫
dω1 · · · dωnGα1,··· ,αn(~p1, ω1; · · · ; ~pn, ωn)e−i

∑n
k=1 ωktk .

Instead of (3.14) we then have

G̃α1,...,αn(~p1, t1; . . . ; ~pn, tn)

〈
0

∣∣∣∣T{exp

(
−i
∫
dtHI(t)

)}∣∣∣∣ 0〉 = (4.4)

〈
0

∣∣∣∣T{φ̃0α1(~p1, t1) · · · φ̃0αn(~pn, tn) exp

(
−i
∫
dtHI(t)

)}∣∣∣∣ 0〉 .
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In addition to the “Einstein summation rule” for the time-orientations we introduce the following
definition:

Aα = A−α, α = ±.

Note, that
AαBα = A+B+ +A−B− = A+B− +A−B+ = AαB

α,

so one can raise and lower indices in any Einstein sum as usual. The free propagator in this
convention will have the diagonal form:

G(0)α
β(~p, ω) = δα,β

iα

2ω~p(2π)4(ω − α(ω~p − i0))
. (4.5)

Now we are ready to apply the Second Wick Theorem (Theorem F.4 and Remark F.5) to (3.13)
and (4.4). The main difference from the ordinary QFT is the separation of quantum field in two
parts, so the Feynman rules look like the Feynman rules for two species (or one specie with additional
internal quantum number) with the propagator (F.2-F.3) mixing these species (changing the internal
number). So, in addition to usual labeling of lines by corresponding momenta, we need to label each
end of each line by corresponding time-orientation α.

Proposition 4.1 (“Time-momentum” space Feynman rules for correlators). The correlator G̃α1,...,αE (~p1, t1, . . . , ~pE , tE)
can be found using the following Feynman rules:

1. Draw all Feynman graphs with E external lines corresponding to E triples (αi, ~pi, ti) without
self-contractions and vacuum energy corrections;

2. Assign to each internal line a 3-momentum flow ~p ∈ R3 and to each end of each line a time
orientation α = ± . The external ones will be always assumed to bring the assigned momentum
from the free end to the non-free one for convenience;

3. To each vertex assign a time stamp τ .

4. For a line, transporting a 3-momentum ~p from an end with a time-orientation β and a
time stamp τ to an end with a time-orientation γ and a time stamp τ ′ multiply by a fac-
tor δβ,−γθ(β(τ − τ ′)) 1

2ω~p(2π)3 .

5. For a vertex of order m multiply by a factor

−i(2π)4F β1,...,βm(±~k1, · · · ,±~km)λ(τ)δ(3)(±~k1 + . . .± ~km)e
i(β1ω~k1

+···+βmω~km )τ
(4.6)

where ~ki are the momenta flowing along the lines incident to the vertex, sign ± are determined
by the direction of this flow, namely sign ”+” corresponds to incoming flow and sign ”-” to
the outgoing, βi are the time-orientations assigned to the incidences of the corresponding lines
with the vertex, and τ is the time-stamp of the vertex;

6. Integrate over all 3-momenta flowing along internal lines and the timestamps of all the vertices
and sum over all free time orientations;

7. Multiply by a usual symmetry factor.

Note that we moved the oscillating part of the propagator G̃0
αβ(~p, t) to the vertex factor.

Proposition 4.2 (“Energy-momentum” space Feynman rules for correlators). The correlator Gα1,...,αn(~p1, ω1; . . . ; ~pE , ωE)
can be found using the following Feynman rules:

1. Draw all Feynman graphs with E external lines corresponding to E triples (αi, ~pi, ωi) without
self-contractions and vacuum energy corrections;
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2. Assign to each internal line a 4-momentum flow (ω, ~p) ∈ R4 and to each end of each line
a time orientation α = ± . The external ones will be always assumed to bring the assigned
momentum from the free end to the non-free one for convenience;

3. For a line, transporting the 4-momentum (ω, ~p) from an end with time-orientation β to an end
with time-orientation γ multiply by a factor G0

βγ(~p, ω);

4. For a vertex of order m multiply by a factor

−i(2π)4F β1,...,βm(±~k1, . . . ,±~km)λ̃(±ω′1 + · · ·+±ω′n)δ(3)(±~k1 + · · · ± ~km),

where ~ki and ω′i are the momenta flowing along the lines incident to the vertex, sign ± are
determined by the direction of this flow, namely sign ”+” corresponds to incoming flow and
sign ”-” to the outgoing, and βi are the time-orientations assigned to the incidences of the
corresponding lines with the vertex.

5. Integrate over all 4-momenta flowing along internal lines and sum over all free time orienta-
tions;

6. Multiply by a usual symmetry factor

The first rather unconventional mixed (part momentum part position space) formulation will be
useful to prove the weak adiabatic limit existence in Subsection 7.1.1), while the second one will be
used in the rest of the thesis.

The Feynman rules for scattering amplitudes follow from the Second Wick Theorem together
with the definition of the Fock vector-valued distibutions (E.4). We also present them in two forms.

Proposition 4.3 (“Time-momentum” space Feynman rules for scattering amplitudes). The scat-
tering amplitude out < ~p′1, · · · , ~p′n′ |~p1, . . . , ~pn >in can be found using the following Feynman rules:

1. Draw all Feynman graphs with n + n′ external lines, namely n incoming lines, corresponding
to n momenta ~pi and n′ outgoing lines corresponding to n′ momenta ~pi without tadpoles and
vacuum energy corrections.

2. Assign to each internal line a 3-momentum flow ~p ∈ R3 and to each end of each line a time
orientation α = ±. An incoming (respectively outgoing) line with momentum ~p is assumed
to bring this momentum towards the diagram (respectively from the diagram) and its non-free
end is assumed to have time-orientation ”-” (respectively ”+”);

3. Assign to each vertex a time-stamp τ ;

4. For an internal line, transporting a 3-momentum ~p from an end with a time-orientation β and
a time stamp τ to an end with a time-orientation γ and a time stamp τ ′ multiply by a factor
δβ,−γθ(β(τ − τ ′)) 1

2ω~p(2π)3 .

5. For an external line with momentum ~p multiply by a factor 1√
2ω~p(2π)3

;

6. For a vertex of order m multiply by a factor

−i(2π)4F β1,...,βm(±~k1, · · · ,±~km)λ(τ)δ(3)(±~k1 + . . .± ~km)e
i(β1ω~k1

+···+βmω~km )τ

where ~ki are the momenta flowing along the lines incident to the vertex, sign ± are determined
by the direction of this flow, namely sign ”+” corresponds to incoming flow and sign ”-” to
the outgoing, βi are the time-orientations assigned to the incidences of the corresponding lines
with the vertex, and τ is the time-stamp of the vertex;
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7. Integrate over all 3-momenta flowing along internal lines and the timestamps of all the vertices
and sum over all free time orientations;

Proposition 4.4 (“Energy-momentum” space Feynman rules for scattering amplitudes). The scat-
tering amplitude out < ~p′1, · · · , ~p′n′ |~p1, . . . , ~pn >in can be found using the following Feynman rules:

1. Draw all Feynman graphs with n + n′ external lines, namely n incoming lines, corresponding
to n momenta ~pi and n′ outgoing lines corresponding to n′ momenta ~pi without tadpoles and
vacuum energy corrections.

2. Assign to each internal line a 4-momentum flow (ω, ~p) ∈ R4 and to each end of each line a time
orientation α = ±. An incoming (respectively outgoing) line with momentum ~p is assumed to
bring this momentum towards the diagram (respectively from the diagram) and its non-free end
is assumed to have time-orientation ”-” (respectively ”+”);

3. For an internal line, transporting the 4-momentum (ω, ~p) from an end with time-orientation
β to an end with time-orientation γ multiply by a factor G0

βγ(~p, ω);

4. For an external line with momentum ~p multiply by a factor 1√
2ω~p(2π)3

;

5. For a vertex of order m multiply by a factor

−i(2π)4F β1,...,βm(±~k1, . . . ,±~km)λ̃(±ω′1 + · · ·+±ω′n)δ(3)(±~k1 + · · · ± ~km),

where ~ki and ω′i are the momenta flowing along the lines incident to the vertex, sign ± are
determined by the direction of this flow, namely sign ”+” corresponds to incoming flow and
sign ”-” to the outgoing, and βi are the time-orientations assigned to the incidences of the
corresponding lines with the vertex;

6. Integrate over all 4-momenta flowing along internal lines and sum over all free time orienta-
tions;

7. Multiply by a usual symmetry factor.

The following examples and remarks will help to understand the terminology used, and illustrate
the relations of the Feynman rules above with the Feynman rules of [73] and ordinary Feynman
rules.

Remark 4.5. In the “time-momentum” formulations of the Feynman rules a product of Heaviside
functions of the same argument (or of the opposite arguments) may appear, which is not well-defined
in S(R). These products should be understood in the näıve sense

θ(t)2 = θ(t), θ(t)θ(−t) = 0. (4.7)

It is worth emphasising that the above is not an artificial regularisation, but just a definition, since
the timeordered product T in the right hand side (4.4) does not produce any singular products as
we have seen in Subsection 3.1.2. The definition (4.7) brings no problem, because no derivatives
with respect to the time, and no products with more singular distributions (like δ-functions) ever
appear, so behaviour at one point t = 0 is irrelevant.

Remark 4.6. Since the propagator (with two lower indices) is anti-diagonal, only diagrams with all
lines having time-orientation ”+” at one end and ”-” at another contribute. So, instead of summing
over all graphs and all time-orientations of each incidence we can just sum over all directed graphs,
orienting each line from it ”+” to its ”-” end39. In fact, this direction is the direction of time, which
is clear from the ”time-momentum” formulation of Proposition 4.1. We however prefer to keep the
summation over time-orientations, although it may seem artificially overcomplicated at the moment.

39This direction should not be confused with the direction of the momentum flow along the internal lines which is
completely arbitrary in our formulation
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Figure 4.1: Fish-type diagram with energy-momentum flows and time-orientations assigned.

Remark 4.7. The Feynman rules of Proposition 4.4 do not coincide with the momentum space
Feynman rules in [73]. To get the latter one has to evaluate the integral over the time stamps of the
interaction vertices explicitly, assuming all vertices to be explicitly time-ordered (and sum over all
possible orderings in the end).

Example 4.8. Consider a fish-type diagram for the quartic interaction shown on the Fig. 4.1
According to the Feynman rules we have:

GΓ;α1,α2,α3,α4
(~p1, ω1; ~p2, ω2; ~p3, ω3; ~p4, ω4) =

1

2

∑
βi∈{+,−},i=1,··· ,8

∫
d~kdωG0

α1,β1
(~p1, ω1)G0

α2,β2
(~p2, ω2)(2π)4F β1,β2,β3,β4(~p1, ~p2,−~k,−~p1 − ~p2 + ~k)×

G0
β3,β5

(~k, ω)G0
β4,β6

(~p1 + ~p2 − ~k, ω1 + ω2 − ω)(2π)4F β5,β6,β7,β8(~k, ~p1 − ~p2 − ~k, ~p3, ~p4)×

G0
α3,β7

(~p3, ω3)G0
α4,β8

(~p4, ω4)δ(3)(~p1 + ~p2 + ~p3 + ~p4)δ(ω1 + ω2 + ω3 + ω4).

Now, one can see that the integrand decays as 1
ω2 then ω goes to infinity, so the the integration

contour can be closed in both upper or lower half-planes. Let us close it in the upper half-plane if
β3 = − and in the lower otherwise, so that the pole at ω = −β3(ω~k − i0) never contributes. Then
the second pole at ω = ω1 + ω2 + β4(ω~p1+~p2−~k − i0) contributes only if β4 = β3:

GΓ;α1,α2,α3,α4(~p1, ω1; ~p2, ω2; ~p3, ω3; ~p4, ω4) =

1

2

−iα1

2ω~p1(2π)4(ω1 + α1(ω~p1 − i0))

−iα2

2ω~p2(2π)4(ω2 + α2(ω~p2 − i0))
×

−iα3

2ω~p3(2π)4(ω3 + α3(ω~p3 − i0))

−iα4

2ω~p4(2π)4(ω4 + α4(ω~p3 − i0))
×∫

d~k
∑

β3∈{+,−}

(2π)4F−α1,−α2,β3,β3(~p1, ~p2,−~k,−~p1 − ~p2 + ~k)×

1

2ω~k(2π)4

1

2ω~p1+~p2−~k(2π)4

−2πi

(β3ω1 + β3ω2 + ω~k + ω~p1+~p2−~k − i0)
×

(2π)4F−β3,−β4,−α3,−α4(~k, ~p1 − ~p2 − ~k, ~p3, ~p4)δ(3)(~p1 + ~p2 + ~p3 + ~p4)δ(ω1 + ω2 + ω3 + ω4)
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Figure 4.2: Schematic illustration of the two possible time-orderings of the fish-type diagram in a
theory with quartic interaction.

Similarly, the corresponding contribution to a scattering amplitude of a process

~p1, ~p2 → ~p′1, ~p
′
2

is
1

2

1

(2π)6
√

2ω~p12ω~p22ω~p′12ω~p′2∫
d~k

∑
β3∈{+,−}

(2π)4F−α1,−α2,β3,β3(~p1, ~p2,−~k,−~p1 − ~p2 + ~k)×

1

2ω~k(2π)4

1

2ω~p1+~p2−~k(2π)4

−2πi

(β3ω1 + β3ω2 + ω~k + ω~p1+~p2−~k − i0)
×

(2π)4F−β3,−β4,−α3,−α4(~k, ~p1 − ~p2 − ~k,−~p′1,−~p′2)δ(3)(~p1 + ~p2 − ~p′1 − ~p′2)δ(ω~p1 + ω~p2 − ω~p′1 − ω~p′2)

This result coincides with one that can be achieved by the momentum space Feynman rules of [73].
As expected, the summation over two possible time-orientations of the internal lines corresponds to
the summation over the time-orderings of [73] as show on the Fig. 4.2.

Remark 4.9. If we apply this approach to an ordinary QFT without derivatives with respect to time
in the interaction, the vertex factors will not depend on the time-orientations. The free propagator
(F.4) will appear only summed over both its indices, which is just the Feynman propagator,

G(0)
F (~p, ω) =

∑
αβ

G(0)
αβ (~p, ω) =

i

(2π)4(ω2 − ω2
~p + i0)

.

So, the Feynman rules introduced here will coincide with the usual ones.
A local quantum field theory can also contain a finite number of derivatives with respect to time

in the interaction. This case is considered in Section 5.

In the end of the section let us present some results we used in Proposition 3.13 and Remark
3.15.
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Lemma 4.10. Let Γ be a Feynman graph contributing to out < ~p′1, · · · , ~p′n′ |~p1, . . . , ~pn >in in the
sense of Propositions 4.3-4.4. Then the corresponding contribution has the form

WΓ(~p′1, . . . , ~p
′
n′ ; ~p1, . . . , ~pn)CΓ(~p′1, . . . , ~p

′
n′ ; ~p1, . . . , ~pn),

where WΓ ∈ S(R3(n+n′)), and CΓ is a product of the over-all three-momentum conservation delta-
functions of all connected components.

Proof. Let us use the formulation of Proposition 4.3. Assume that the graph Γ consists of one
connected component. Then integration over all internal momenta leaves of the delta-functions in
the vertex factors only the over-all 3-momentum conservation law (see also [72, 73]) which is exactly
CΓ.

The rest of the integrand is a product of continuous functions (F , λ and the oscillating expo-
nents from the vertex factors and 1

ω~p
from propagators) and theta-functions from the propagators.

The latter is always a well-defined distributions, while the former is a Schwartz function of the
timestamps, internal and external momenta (for that note that each internal or external momentum
appears at least once in the vertex factors F and each timestamp appears in the adiabatic switching
λ; finally 1

ω~p
∈ θM (R3), see Remark E.2). So, by Theorem B.2 it is a Schwartz function of all the

external momenta.
Finally, contribution of a generic graph is a product of contributions of its connected components,

which finishes the proof.

Remark 4.11. It is not difficult to reformulate the Feynman rules discussed here, and in particular
the ones of Proposition 4.3 to allow the full adiabatic cut-off λ(x). The main difference then will be
that in the vertex factors instead of

λ(τ)δ(3)(±~k1 + . . .± ~km)

we will have

1

(2π)3

∫
λ(τ, ~x)ei(±

~k1+...±~km)~xd3~x = δ(3)(±~k1 + . . .± ~km + κ)λ̃(τ, κ)

with the partial Fourier transform λ̃ defined as in Remark 3.15. Now if we fix a graph with V vertices
and postpone integration over τj and κj with a weight λ̃(τj , κj), where j enumerates the vertices, we
can compute the corresponding contribution to the amplitudes as a function of (τ1, κ1, . . . , τV , κV ).
Then, one can prove that the decomposition similar to observed in Lemma 4.10 is possible, but the
conservation laws in CΓ will be corrected by sums of κj over vertices belonging to corresponding
subgraphs and WΓ will be replaced by

W ′Γ(~p′1, . . . , ~p
′
n′ ; ~p1, . . . , ~pn;~κ1, τ1, . . . , ~κV , τV ),

W ′Γ ∈ C∞(R3(n+n′)+4V ). For fixed (τ1, ~κ1, . . . , τV , ~κV ) W ′Γ is fast decaying with respect to the rest
variables. If in addition the variation of κj is restricted to a compact set (this is necessary, since κj
shift the dependence of the vertex factors on the external momenta), the corresponding Schwartz
seminorms are bounded uniformly in all κj and τj .

The spatial adiabatic limit can be reconstracting by substituting ~κ = 0 and integrating over all
τi with a weight λ(τj).
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5 Lagrangian reformulation of the Hamiltonian Feynman rules

In Subsection 3.2 we stated that if a theory is non-local in time, then it can not be quantised by
means of the standard Lagrangian methods, because the Epstein-Glaser approach makes no sense,
and the functional integration violates the unitarity. However, the non-local theories considered in
3.1.2 are actually non-local only in space and hence one could expect that they have an equivalent
Lagrangian description. In this section we will see that it exists and the Lagrangian is the Legendre
transform of the Hamiltonian (3.34) plus some quantum loop corrections. We will need several
steps to reformulate the Feynman rules in the “Lagrangian-like” form. We will work with the
correlators in the adiabatic limit (its existence is shown in Subsection 7.1.1) and we will use the
“energy-momentum” formulation of the Feynman rules as in Proposition 4.2.

Our goal is to replace the time-ordered product T by its covariant version T̂. As we have seen
in Subsection 3.2, T̂ commutes with the derivatives with respect to the time. In the “energy-
momentum” formulation it means that each time a derivative of the quantum field appears inside
the propagator, it is multiplied by the off-shell frequency ω. If a derivative appears inside the
näıve time-ordering T, an on-shell frequency αω~p appears instead. This is formally summed in the
following:

Lemma 5.1. The free propagator (F.4) satisfies:∑
α,β

G(0)α
β(ω, ~p) = G(0)

F (ω, ~p) (5.1)

∑
α,β

αω~pG(0)α
β(ω, ~p) = ωG(0)

F (ω, ~p), (5.2)

∑
α,β

αβω2
~pG

(0)α
β(ω, ~p) = ω2G(0)

F (ω, ~p)− i

(2π)4
. (5.3)

Combining this lemma with the following simple identity

δαβ =
1 + αβ

2
=

1

2

1∑
s=0

αsβs, α, β = ±1,

we get

G(0)α
β(ω, ~p) =

1

4

1∑
s=0

1∑
s′=0

∑
α′,β′

αsα′sβs
′
β′s
′
G(0)α′

β′(ω, ~p) =

fαS (~p, ω)fSβ(−~p,−ω)G(0)
S (ω, ~p) + fαD(~p, ω)fDβ(−~p,−ω)G(0)

D (ω, ~p),

where

fαS (~p, ω) =
1 + α ω

ω~p

2
, fαD(~p, ω) =

α

2ω~p
,

G(0)
S (~p, ω) = G(0)

F (~p, ω),G(0)
D (~p, ω) =

i

(2π)4
.

The letters S and D stand for “solid” and “dashed”, revealing that we will graphically represent
the two terms in the propagator above by solid and dashed lines. For shortness we will also call
the terms themselves the “solid” and the “dashed” propagator. Although this separation seems to
be an unnecessary complication, due to nice factorization of both solid and dashed propagators we
can get rid of sum over time orderings. The result is summarized in the Proposition below, the
proof is straightforward. For the sake of simplicity we will find only the correlator summed over
time-orientations of external lines, although the generalization is not too difficult.

52



Proposition 5.2. The (weak adiabatic limit of the) correlator∑
α1...αn

Gα1...αE (~p1, ω1; . . . ~pE , ωE)

can be found using the following Feynman rules:

1. Draw all ordinary connected Feynman graphs with E external solid lines corresponding to E
pairs (~pi, ωi) and two possible types of internal lines (solid and dashed) without self-contractions
and vacuum energy corrections;

2. Assign to each internal line the 4-momentum flow (ω, ~p);

3. For a solid internal or external line transporting the 4-momentum (ω, ~p) multiply by the prop-

agator G(0)
S (~p, ω)

4. For a dashed internal line transporting the 4-momentum (ω, ~p) multiply by a propagator G(0)
D (~p, ω);

5. For a vertex of order m add multiply by factor

−i(2π)4F̃ s1...sm(±~k1, . . . ,±~km)δ(±ω1 + · · ·+±ωm)δ(3)(±~k1 + · · · ± ~km),

where ~ki and ωi are the momenta flowing along the lines incident to the vertex, sign ± are
determined by the direction of this flow, namely sign ”+” corresponds to incoming flow and
sign ”-” to the outgoing, and si ∈ {S,D} determines whether the ith line is solid or dashed.
Finally,

F̃ s1···sn(~k1, · · · ,~kn) =∑
α1...αE

n∏
i=1

fαisi (~pi, ωi)F
α1···αn(~k1, ω1; , · · · ,~kn, ωn)δ(ω1 + · · ·+ ωn).

6. Integrate over all free (i.e. not eliminated by the momentum conservation and except the
arguments of the correlator) 4-momenta;

7. Multiply by a usual symmetry factor.

Remark 5.3. The only frequency-dependent factors in the Feynman rules above are the solid
propagators, decreasing as ω−2 at high frequencies and fαS (∼ ω), which increases at high frequencies
as ω. Clearly, there are exactly two fS factors for each solid propagator, so the integral over the
loop frequencies is most likely divergent. However, if we first sum over all diagrams with the same
topology, and only then integrate over the loop energies, we get back to the well-defined rules
formulated in Proposition 4.2, so all the divergences must cancel. We postpone further discussion of
this issue until Remark 5.7. In the meantime we implicitly assume that all the frequency integrals
are regularised in UV in such a way that the mentioned cancellation is preserved.

The next step is to note that the dashed propagator is regular in the energy space (in fact, it
is a constant). So, two vertices connected by such a propagator can be also considered as just one
vertex. We can continue in this way until all vertices connected by dash lines are absorbed into
new grouped vertices. Then the only propagator left is the usual Feynman propagator. We should
be careful with the “no self-contractions” rule, because the new vertices are composed from the old
ones, so some of pairs of their lines (namely, lines which were incident to different vertices before
regrouping of the vertices) can be self-contracted and some (namely, ones incident to the same vertex
before regrouping) can not. Our main idea here is to show that the new vertices can be interpreted
as vertices of a Lagrangian QFT with Lagrangian related to the Hamiltonian (3.34) by Legendre
transformation up to some quantum loop corrections. Since self-contractions are by definition loop
diagrams, they are part of the mentioned corrections and thus they will not be too important for
us. These ideas lead to the following:
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Proposition 5.4. The correlator Gα1...αn(~p1, ω1; . . . ~pn, ωn) can be found using the ordinary Feyn-
man rules (i.e. with only one propagator equal to the Feynman propagator)40 with the interaction part
of the Lagrangian Lint which itself is given by summing of the diagrams according to the following
rules:

1. Draw all connected graphs with n external lines. To fix terminology we will call vertices of
such graph the original vertices (because the corresponding factor can be directly read from the
Hamiltonian).

2. Assign to ith external line the corresponding momentum (~pi, ωi) and the time-orientation αi
flowing from its free end to another one. Assign to each internal line a free momentum flow.

3. For each internal line multiply by a propagator

G(0)
D =

i

(2π)4
;

4. For an external line with a momentum flow ~p and time-orientation α multiply by a factor

φ̃(~p, t) + iα
ω~p
∂tφ̃(~p, t)

2
;

5. For a vertex of order m with l incident external lines (which we for simplicity assume to be
enumerated by first l numbers) multiply by a factor

−i(2π)4F̃α1...αl;sl+1sm(±~k1, . . . ,±~km)δ(±ω1 + · · ·+±ωn)δ(3)(±~k1 + · · · ± ~km),

where ~ki and ωi are the momenta flowing along the lines incident to the vertex, sign ± are
determined by the direction of this flow, namely sign ”+” corresponds to incoming flow and
sign ”-” to the outgoing, si = S for an external line and si = D for an internal line. Finally,

F̃α1...αl;sl+1sn(~k1, ω1; . . . ;~kn, ωn) =∑
αl+1...αm

m∏
i=1

fαiD (~pi, ωi)F
α1...αn(~k1, . . . ,~kn)δ(ω1 + · · ·+ ωn).

6. Integrate over all free energies and momenta;

7. Multiply by a usual symmetry factor;

8. Multiply by

− i

(2π)4
;

9. Impose Wick product on each group of the fields coming from external lines incident to the
same original vertex.

.

Proof. The statement follows from Proposition 5.2 through grouping of vertices connected by the
dashed lines as explained above, we need only to comment a few issue. The external lines factor
is chosen exactly so, that it produces fαS in the Lagrangian Feynman rules. Overall factor takes
into account that in the Lagrangian Feynman rules the vertex factor contains i(2π)4. Finally, we
impose the normal ordering is imposed in such a way that it forbids self-contractions of the original
vertices.

40In the standard terminology these are exactly the modified Feynman rules for a spatially non-local QFT. However,
in context of this thesis we call them ordinary as opposed to ones of Section 4 with the matrix propagator.
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Theorem 5.5. At the tree level the effective Lagranfian of Proposition 5.4 is related to the Hamil-
tonian (3.34) via the Legendre transform,

L0(t) + Lint(t) =

∫
π̃(~p, t)∂tφ̃(−~p, t)d3~p−H0(t) (5.4)

with π̃(~p, t) substituted by a solution of

∂tφ̃(~p, t) =
δ(H0(t) +Hint(t))

δπ̃(~p, t)
, (5.5)

and

L0(t) =
1

2

∫
d3~p

(
∂tφ̃(~p, t)∂tφ̃(−~p, t)− ω2

~k
φ̃(~p, t)φ̃(−~p, t)

)
By H0(t) we still mean (3.5), but, since we are dealing with the tree level (i.e. we ignore the

quantum effects), field and its canonical momentum are treated as functions, and the normal ordering
is ignored.

This result is a special case of the well-known fact in QFT that the Legendre transform counts
the tree diagrams. Originally it was discovered in [103]. In physical literature it is usually explained
through functional integration [80]. We follow the modern pure combinatoric proof of [104]. Due
to difference in conventions and necessity of generalisation from functions to functionals, it is easier
tor reproduce the main steps then to explain how the result of [104] can be applied.

Proof. Since we work with tree diagrams, for which V = I + 1, where V is number of vertices and I
is the number of the internal lines, all i and (2π)4 factors from vertices, propagators and the overall
factors cancel each other leaving only the overall minus sign. Thus, in this proof we will ignore these
factors.

Let us introduce

η(~p, t) =
δLint(t)

δ∂tφ(~p, t)
. (5.6)

Diagrammatically, η is equal sum over all graphs with one marked external line with momentum
flow ~p contracted with and the external line factor replaced by

∂

∂(∂)tφ(~p, t))

φ̃(~p, t) + iα
ω~p
∂tφ̃(~pj , t)

2
= fαD(~p, t).

Alternatively, we can first sum over all kinds of vertices, incident to the marked line. Then each of
the rest of the lines going out of such a vertex is either the external one, or the beginning of a new
tree graph with a marked external line. Taking into account that the vertices are generated by Hint

and the overall minus sign, we get

η(~p, t) = −δHint(t)

δπ̃(~p, t)

∣∣∣∣∣
π̃(~k,t)=∂tφ̃(~k,t)+η(~k,t)

= 0.

Thus,
π̃(~k, t) = ∂tφ̃(~k, t) + η(~k, t)

is the unique solution41 of (5.5).

Finally, we put π̃(~k, t) = ∂tφ̃(~k, t) + η(~k, t) into the right hand side of (5.4). We have∫
d3~p

(
(∂tφ̃(~p, t) + η(~p, t))∂tφ̃(−~p, t)− 1

2

(
∂tφ̃(~p, t) + η(~p, t)

)(
∂tφ̃(−~p, t) + η(−~p, t)

)
41Recall, that both Hint and Lint are formal power series vanishing at the origin. Then it is easy to see that (5.5)

has a unique solution in formal power series.
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−1

2
ω2
~pφ̃(~p, t)φ̃(−~p, t)

)
−Hint(t)

∣∣
π̃(~k,t)=∂tφ̃(~k,t)+η(~k,t)

=

L0(t)− 1

2

∫
d3~pη(~p, t)η(−~p, t)−Hint(t)

∣∣
π̃(~k,t)=∂tφ̃(~k,t)+η(~k,t)

.

We have to prove that the second and the third terms above sum to Lint. For that we note that
the second term can be interpreted as a sum over all diagrams contributing to Lint with a marked
internal line (indeed, we then need to sum over all diagrams to the left and to the right of that line,
both sums can be expressed through η; factor 1

2 due to the symmetry) with a minus sign, while the
third one is sum over all diagrams with a marked vertex (the vertex factors are generated by Hint,
each line coming from the marked vertex is either external or a root of a tree graph with marked
external line, which, as we already saw, correspond to substitution π̃(~k, t) = ∂tφ̃(~k, t) + η(~k, t)).
Hence, each diagram with I internal lines and V vertices appears with the coefficients −I and +V in
the second and the third terms respectively. Using V = I + 1 once again, we get the statement.

Remark 5.6. Following [104], we note, that the Legendre transform (5.4-5.5) is well-defined and
invertible in formal series sense, without any additional restrictions42.

Remark 5.7. In the higher orders the loop corrections should be added to Lint, which can be
interpreted as quantum corrections to the Legendre transform. This corrections are strongly diver-
gent, since the integrand does not depend on the loop frequencies at all. At the same time, the
Lagrangian Feynman rules in the presence of derivatives with respect to the time in the interaction
are divergent themselves due to the δ-function in the vacuum correlator (F.8). These two kinds of
divergences cancel each other according to Remark 5.3. So, a Hamiltonian theory with an admissible
interaction is equivalent to a Lagrangian theory with an action given by the Legendre transform and
with specific counterterms given by quantum corrections to it. A local QFT containing first order
derivatives with respect to the time in the interaction can also be considered in either Hamiltonian
or Lagrangian formalism. Again, at the tree level they are equivalent, while the loop corrections are
divergent and local. Due to locality, they can be canceled exactly by local counterterms. Note, that
in both cases there is no freedom in the counterterms choice, so the renormalisability of the theory
is not affected.

42Recall that the usual analytic Legendre transform exists for convex functions only.
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6 Corrected propagator

This section can be considered as both an example of usage of the Feynman rules described above
and as a preparation to discussion of adiabatic limits and renormalization. We will compute the
corrected propagator, i.e. the correlator Gαβ(~p, ω; ~p′, ω′) in terms of the one-particle irreducible (1PI)
corrections. All calculations are done in the (weak) adiabatic limit assuming its existence (which is
proven in the next section independently of the results of this one).

Remark 6.1. As it was already noted, all correlators and amplitudes computed by means of the
perturbation theory usually are divergent series and recovering physically meaningful information
from them requires some additional work.

The corrected propagator is a result of formal resummation of that power series. Namely, we
can regroup order of summation so, that the contributions of all diagrams can be then found as a
geometric series of one-particle irreducible ones. This re-summation will be treated as a formal trick
and we will not discuss actual convergence of the aforementioned geometric series.

Sum over all one-particle irreducible contributions is most likely divergent by itself and will be
again treated as a formal series. To get a reasonable approximation of corrected energy one needs
to truncate it at some finite order.

It is important to note that this re-summation has deep sense only if we are specially interested in
details of the singularities structure of the correlators. Sometimes such re-summation is just a useful
book-keeping tool, allowing to express sum over all corrections in terms of one-particle irreducible
ones only. In that case the re-summed expression should be understood just a short way to write
down the power series.

Alternatively, to avoid this ad hoc re-summation procedure one can require that the one-particle
irreducible contribution vanishes on-shell, so that the pole is not shifted. This can be in principle
achieved by remormalization procedure discussed in Section 8. This is one of the necessary conditions
for the strong adiabatic limit to exist as will be discussed in Subsection 7.2.

To find the quantum corrections to the propagator let us consider the following formal equation:

1PI
,

where 1PI stand for the 1-particle-irreducible graphs.
Clearly, it is equivalent to summation of the geometric progression but is somehow simpler in

our case.
We have:

Gαβ(~p, ω; ~p′, ω′) = Gαβ(~p, ω)(2π)4δ(~p+ ~p′)δ(ω + ω′),

Gαβ(~p, ω) = G(0)
αβ (~p, ω)− i(2π)4Gαγ(~p, ω)Mγδ(~p, ω)G(0)

δβ (~p, ω), (6.1)

there −i(2π)4Mγδ(~p, ω) is an expression corresponding to the amputated 1PI graph without the
overall energy-momentum conservation delta-function. Under our assumption on the symmetry of
the theory we have

M(~p, ω) = M+
+(~p, ω) = M− −(~p,−ω) (6.2)

and
N(~p, ω) = M+

−(~p, ω) = M− +(~p, ω) = N(~p,−ω). (6.3)

From now on we will say that a 1PI self-energy correction is of type M (respectively of type N) if it
contributes to M (respectively to N). Then we have the following:

Proposition 6.2. The solution of (6.1) is

Gα α(~p, ω) = iα
1

(2π)42ω~p

(
ω + α

(
ω~p +

1

2ω~p
M(~p,−αω)

))
· (6.4)
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[(
ω −

(
ω~p +

1

2ω~p
M(~p, ω)

)
+ i0

)(
ω +

(
ω~p +

1

2ω~p
M(~p,−ω)

)
− i0

)
+

(
1

2ω~p
N(~p, ω)

)2
]−1

.

Gα −α(~p, ω) = −i 1

(2π)32ω~p

1

2ω~p
N(~p, ω) (6.5)[(

ω −
(
ω~p +

1

2ω~p
M(ω, ~p)

)
+ i0

)(
ω +

(
ω~p +

1

2ω~p
M(~p,−ω)

)
− i0

)
+

(
1

2ω~p
N(~p, ω)

)2
]−1

.

Remark 6.3. Recall that the time-orientation index α in terms of the Feynman rules of [73] de-
termines whether the corresponding external line goes from the future to the past or from the past

to the future. This manifests itself in the free propagator (F.4). In fact, G(0)+
+ = G(0)

−+ has pole

at positive frequency, corresponding to future-directed propagation, when G(0)−
− = G(0)

+− at the
negative one. The off-diagonal components vanish, because the line can not be future- (or past-)
directed at both ends.

In contrast to that the corrected propagator (6.4-6.5) in general does not have any of these
properties. This is not surprising, since vertices insertion can convert future-directed lines to past-
directed ones and vice versa.

Remark 6.4. There are two cases when (6.4-6.5) simplifies and looks more like the ordinary prop-
agator. First is the first order of perturbation theory, when we can assume M and N to be small.
Then the off-diagonal terms are always negligible in comparison with the diagonal ones, and each
diagonal component has exactly one pole at ±ωQ~p

ωQ~p = ω~p +
1

2ω~p
M(~p, ω). (6.6)

Another case is an ordinary QFT. First note, that in ordinary QFT amplitudes do not depend
on the time-ordering, so M(±ω, ~p) = N(ω, ~p) and the denominator is just

ω2 − ω2
~p −M(ω, ~p). (6.7)

The numerators are still quite complicated. However, in this case only the Feynman propagator

GF (~p, ω) =
∑
αβ

Gαβ(~p, ω) =
i

(2π)4(ω2 − ω2
~p +M(~p, ω))

(6.8)

matters. It coincides with the corrected porpagator of the ordinary QFT.

Example 6.5. It is interesting to compare the dispersion relation following form poles of (6.4-6.5)
and the 1-loop correction to the on-shell energy in λφ3-theory in the DFR space with interaction
term regularized by the quantum Wick product time found in [75] using the time-independent
perturbation theory (and hence spatial adiabatic cut-off instead of temporal one we use here). In
that case [73]:

Fα1···αn(~p1 · · · ~pn) = exp

(
−
l2p
2

(
n∑
i=1

(~pi − ~̄p)2 +

n∑
i=1

(αiω~pi + ω̄)2

))
with

~̄p =
1

n

n∑
i=1

~pi, ω̄ =
1

n

n∑
i=1

αiω~pi

and lp standing for the Planck length. We will assume that lp = 1 for simplicity. In particular,

F±(~p,−~k,−~p+ ~k) = F±++(~p,−~k,−~p+ ~k) =
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exp

(
−1

2

(
~p2 + ~k2 + (~p− ~k)2 + (±ω~p − ω±)2 + (ω~k − ω±)2 + (ω~p−~k − ω±)2

))
,

ω± =
1

3
(±ω~p + ω~k + ω~p−~k)

Then, from (6.6) we have the following 1-loop correction to the on-shell energy

δω~p =
λ2

2

1

2ω~p

∫
d3~k

(2π)32ω~k2ω~p−~k
e−~p

2−~k2−(~p−~k)2 ·

(
e−(ω~p−ω+)2−(ω~k−ω+)2−(ω

~p−~k−ω+)2

ω~k + ω~p−~k + ω~p
+
e−(−ω~p−ω−)2−(ω~k−ω−)2−(ω

~p−~k−ω−)2

ω~k + ω~p−~k − ω~p

)
,

which coincides with the result of [75].

To end the consideration of the propagator, let us present it in somewhat different form. At first
sight (6.4-6.5) describe propagator of two different modes propagating in each of the time direction.
To see that this is not the case let us diagonalize the propagator.

Proposition 6.6. The propagator (6.4-6.5) can be written as

Gα β(~p, ω) =
i

(2π)42ω~p
Oαγ(~p, ω)D δ

γ (~p, ω)Oδβ(~p, ω), (6.9)

where43

Oαβ(~p, ω) = Oβα(~p, ω) =

cos
(
θ(~p,ω)

2

)
− sin

(
θ(~p,ω)

2

)
sin
(
θ(~p,ω)

2

)
cos( θ(~p,ω)

2 )


αβ

, (6.10)

D β
α (~p, ω) =

(
1

A(~p,ω)−B(~p,ω)+i0 0

0 − 1
A(~p,ω)+B(~p,ω)+i0

)
αβ

,

A(~p, ω) sin(θ(~p, ω)) =
1

2ω~p
N(~p, ω), (6.11)

A(~p, ω) cos(θ(~p, ω)) = ω − 1

4ω~p
(M(~p, ω)−M(~p,−ω)) , (6.12)

B(~p, ω) =
1

4ω~p
(M(~p, ω) +M(~p,−ω)) + ω~p. (6.13)

A(~p, ω)2 =

(
ω − 1

4ω~p
(M(~p, ω)−M(~p,−ω))

)2

+

(
1

2ω~p
N(ω, ~p)

)2

(6.14)

θ(~p,−ω) = −θ(~p, ω), A(~p,−ω) = −A(~p, ω), B(~p, ω) = B(~p,−ω).

From the diagonalized form (6.9) it is clear that as in free propagator (4.5) we have one mode

with positive frequency ωQ~p and another one with negative frequency −ωQ~p determined by44

A(~p,±ωQ~p ) = ±B(~p,±ωQ~p ), (6.15)

43in the matrix notation we as usual assume that the first index enumerates rows and the second one columns. We
assume that first raw/column corresponds to ”+” and the second one to ”-”.

44we implicitly assume here that the interaction is small enough, so that the equation (6.15) always has exactly one

solution. The fact that the same ωQ
~p

always solves (6.15) for both signs clearly follows from A being odd and B being
even
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but they are now mixed by the matrix O. Note that the case of ordinary QFT N(~p, ω) = M(~p,−ω) =
M(~p, ω) produces no special restriction on the angle θ, so the mixing survives in absence of non-
locality.

For the discussion of renormalization and scattering amplitudes reconstruction in the next sec-
tions let us find the behavior of (6.9) when ω → ±ωQ~p :

Gα β(~p, ω) ∼ ±iZ(~p)

(2π)42ωQ~p (ω ∓ (ωQ~p − i0))
O±,α(~p,±ωQ~p )O±,β(~p,±ωQ~p ), (6.16)

where

Z(~p) =
ωQ~p

ω~p

(
∂A(~p,ω)
∂ω − ∂B(~p,ω)

∂ω

)
ω=ωQ

~p

. (6.17)

One can note tat O+,α(ω, ~p) = O−,−α(−ω, ~p) and hence

Gα β(~p, ω) ∼ ±iZ(~p)

(2π)42ωQ~p (ω ∓ (ωQ~p − i0))
O+,±α(~p, ωQ~p )O+,±β(~p, ωQ~p ). (6.18)

The Feynman propagator will have the form

GF (~p, ω) =
∑
α,β

Gα β(~p, ω) ∼ ±iZF (~p)

(2π)42ωQ~p (ω ∓ (ωQ~p − i0))
(6.19)

with

ZF (~p) = Z(~p)

(
cos

(
θ(~p, ω)

2

)
− sin

(
θ(~p, ω)

2

))2

= (6.20)

= Z(~p) (1− sin(θ(~p, ω))) .

Remark 6.7. In the case of ordinary QFT

ZF (~p) =

(
∂(ω2−(ωQ

~p
)2)

∂ω

)
ω=ωQ

~p(
∂(ω2−ω2

~p
−M(~p,ω))
∂ω

)
ω=ωQ

~p

(6.21)

which is exactly the usual field strength renormalization factor for the Feynman propagator.
If moreover the dispersion relation correction vanishes, i.e. ωQ~p = ω~p (and hence A(ω, ω~p) =

B(ω, ω~p)) we also have45

θ(~p, ω~p) = 0,

i.e. the corrected propagator is diagonal on-shell.

45As always we choose the branch that behaves appropriately in the vanishing interaction limit.
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7 Adiabatic limit

7.1 Weak adiabatic limit and the LSZ reduction

7.1.1 Existence of the weak adiabatic limit

In this subsection we prove that the weak adiabatic limit exists in a massive theory with fast enough
decreasing vertex factor.

We start by introducing some notation and terminology. The argument of λ̃ in a factor corre-
sponding to the vertex by item 4 of Proposition 4.2 measures how much the energy is not conserved
at that vertex due to the adiabatic switching. We will call it the energy defect. An individual
contribution of a Feynman graph Γ with V vertices is a homogeneous (of power V ) functional of λ̃,
so we can write

Gα1,...,αn(~p1, ω1; . . . ; ~pn, ωn) = (7.1)∑
Γ

∫
d∆1 · · · d∆V GΓ;α1,...,αn(~p1, ω1; . . . ; ~pn, ωn; ∆1, . . . ,∆V )λ̃(∆1) · · · λ̃(∆V ),

where ∆i is energy defect of the ith vertex and the distribution GΓ;α1,...,αn(~p1, ω1; · · · ; ~pn, ωn; ∆1, . . . ,∆V )
can be deduced from Proposition 4.2. The (weak) adiabatic limit then is appropriately defined val-
ued of that distribution at ∆1 = · · · = ∆n = 0. In an ordinary QFT, as was shown in [74] in
absence massless particles the (contribution of a fixed graph to) correlators are smooth functions of
the energy defects ∆i in an appropriately chosen neighborhood of the origin, provided that the UV
divergences were taken care of by (infinite) renormalization, so the adiabatic limit is well-defined.
We want to prove that the same holds in the class of non-local theories we consider without any
need of infinite renormalization.

Theorem 7.1. Assume that the dispersion function has a mass gap,

ω~p ≥M > 0, ∀~p ∈ R3,

and the twisting function decays faster than any polynomial of its arguments at infinity in any
direction.

Let Γ be a Feynman graph with E external lines and V vertices. Take a family of Schwartz
functions fα1...αE (~p1, ω1; . . . ; ~pE , ωE) and define a distribution GfΓ ∈ D′(RV ):

GfΓ[g] =

∫
d~p1 · · · d~pEdω1 · · · dωEd∆1 · · · d∆V ·

GΓ;α1,...,αV (~p1, ω1; . . . ; ~pE , ωE ; ∆1, . . . ,∆V )·

g(∆1, . . . ,∆V )fα1...αE (~p1, ω1; . . . ; ~pE , ωE).

Then GfΓ ∈ C∞(RV ).

Before proceeding to the proof let us introduce the “time-momentum” counterpart of (7.1):

G̃α1,...,αE (~p1, t1, . . . , ~pE , tE) =∑
Γ

∫
dτ1 · · · dτV G̃Γ;α1,...,αE (~p1, t1, . . . , ~pE , tE ; τ1, . . . , τV )λ̃(τ1) · · · λ̃(τV ).

Now for a collection of Schwartz functions f̃α1...αE (~p1, t1; · · · ; ~pE , tE) we define G̃f̃Γ ∈ D′(RV ) as

G̃f̃Γ[g̃] =

∫
d~p1 · · · d~pEdt1 · · · dtEdτ1 · · · dτV ·
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G̃Γ;α1,...,αn(~p1, t1; · · · ; ~pE , tE ; τ1, · · · , τV )·

g̃(τ1, . . . , τV )f̃α1...αE (~p1, t1; · · · ; ~pE , tE).

If we assume that f̃ and f are related by the partial Fourier transform,

f̃α1...αE (~p1, t1; . . . ; ~pE , tE) =

1

(2π)E

∫
fα1...αE (~p1, ω1; . . . ; ~pE , ωE)e−i(ω1t1+···+ωEtE)dω1 · · · dωE

then G̃f̃Γ is nothing but the Fourier transform of GfΓ.

Proof. Let us compute the wave front set of GfΓ. For that we fix a compactly supported smooth

function χ ∈ C∞0 (R) and compute the Fourier transform of GfΓ[χ⊗V ] which, according to the con-
sideration above, is just

ξ 7→ G̃ f̃Γ[χ̃⊗Vξ ]

with
χ̃⊗Vξ (τ1, . . . , τV ) = χ̃(τ1 + ξ1) · · · χ̃(τV + ξV ),

χ̃(τ) =
1

(2π)

∫
d∆χ(∆)e−i∆τ .

Let us look closer to the integrals over the variables τi and ti in G̃ f̃Γ[χ̃⊗Vξ ]. We can subdivide

the integration domain46 into a finite number of subregions Oπ,σ enumerated by the permutations
σ ∈ SE and π ∈ SV of the form

Oπ,σ =
{

(τ1, . . . , τV ; t1, . . . , tE) ∈ RV+E
∣∣τπ1

< τπ2
< · · · < τπV ,

tσ1
< tσ2

< . . . < tσE
}
.

Let us fix such a subregion. It is enough to consider only the region corresponding to the identity
permutations,

OId,Id =
{

(τ1, . . . , τV ; t1, . . . , tE) ∈ RV+E
∣∣τ1 < τ2 < . . . < τV ,

t1 < t2 < . . . < tE
}
,

because integration over any other Oπ,σ can be rewritten as integration over OId,Id by renumeration
of the vertices and the external lines. Now we subdivide this region to even smaller subregions

Rs =
{

(τ1, . . . , τV ; t1, . . . , tE) ∈ OId,Id|1 ≤ i < j ≤ E =⇒ ti < tj , (7.2)

1 ≤ i < j ≤ V =⇒ τi < τj ,

i < sj =⇒ τi < tj . i ≥ sj =⇒ τi > tj},

where {sj}Ej=1 is a non-decreasing sequence47. We restrict our attention to one such subregion.
In the region Rs only one of the choices of all time-orientation contributes and in this contribution

all Heaviside functions are equal to identity, so, besides the test-functions all dependence on τi and
ti comes from time-dependent exponents in vertex factors.

46Recall that the most singular objects in the Feynman rules of Proposition 4.2 are the Heaviside functions, so
we can treat all integrals as ones of the discontinuous functions. In particular, we can divide the integration regions
safely.

47Simpler form of (7.2) is
Rs =

{
(τ1, . . . , τV ; t1, . . . , tE) ∈ RV+E

∣∣
τ1 < τ2 < · · · < τs1−1 < t1 < τs1 < τs1+1 < · · · < τs2−1 < t2 < τs2 < · · · < τV

}
,

but the later form is ambiguous in degenerate cases like s1 = 0.
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To begin with we examine the integrals over τ1, τ2, . . . , τs1−1 appearing in G̃ f̃Γ[χ̃⊗Vξ ] according to
Proposition 4.1 with the integration region restricted to Rs:∫

τ1<τ2<···<τs1−1<t1

e−i(Ω1τ1+Ω2τ2+···Ωs1−1τs1−1)χ̃(τ1 + ξ1) · · · χ̃(τs1−1 + ξs1−1)dτ1 · · · dτs1−1 =

1

(−2πi)s1−1

∫
e−it1(Ω1+∆1+···+Ωs1−1+∆s1−1)

s1−1∏
j=1

−ie−iξj∆jχ(∆j)∑
k≤j(Ωk + ∆k) + i0

d∆1 · · · d∆s1−1.

Here we kept only the factors depending on the variables τ1, τ2, . . . , τs1−1 and −Ωj is a sum of
the on-shell frequencies with appropriate signs from (4.6). We note that Ω1 > M , because only
time-orientation ”-” is allowed by the Heaviside functions for incidences with the earliest vertex.
Ωj , 1 < j < s1 can contain negative terms, since there can be lines starting at earlier vertices and
ending at the jth one with ”+” orientation at the latter. But such a term should also appear with
positive sign in Ωk, k < j. Hence if we consider

∑
k≤j Ωk (k < s1) all negative terms will cancel,

thus48 ∑
k≤j

Ωk > M, ∀j < s1. (7.3)

Then we can always restrict the support of χ (say, |∆j | < M/2V ) so that the denominators are
bounded from below. The integral over the earliest s1 − 1 interaction timestamps then takes the
form ∫

e−i(ξ1∆1+···+ξs1−1∆s1−1)e−it1(Ω1+∆1+···+Ωs1−1+∆s1−1)

X(∆1, . . . ,∆s1−1; Ω1, . . . ,Ωs1−1)d∆1 · · · d∆s1−1 =

e−it1(Ω1+···+Ωs1−1)X̃(ξ1 + t1, . . . , ξs1−1 + t1; Ω1, . . . ,Ωs1−1),

where X ∈ C∞(R2(s1−1)) X̃ is its Fourier transform with respect to its first s1 − 1 variables. X is
bounded together with all its derivatives with respect to ∆j uniformly in Ωk (in the range of Ωk ad

functions of the internal momenta bounded by ) and therefore X̃ is rapidly decreasing in its first
s1 − 1 arguments uniformly on the rest.

The latest V −sE +1 interaction vertices can be treated in the same way, contributing the factor

e−itE(ΩsE+···+ΩV )Ỹ (ξsE + tE , . . . , ξV + tE ; ΩsE , . . . ,ΩV )

where Ỹ is fast-decreasing function of the first half of its arguments uniformly on the others. At last
we consider the integral over the remaining τj and ti. We have

I =

∣∣∣∣ ∫
t1<τs1<τs1+1<···<τsE−1<tE

dτs1 · · · dτsE−1dt1 · · · dtE

e−it1(Ω1+···+Ωs1−1)X̃(ξ1 + t1, . . . , ξs1−1 + t1; Ω1, . . . ,Ωs1−1)

eitE(ΩsE+···+ΩV )Ỹ (ξsE + tE , . . . , ξV + tE ; ΩsE , . . . ,ΩV )

f̃α1...αE (~p1, t1; · · · ; ~pE , tE)

sE−1∏
j=s1

χ̃(τj + ξj)

∣∣∣∣ ≤∫
t1<τs1<τs1+1<···<τsE−1<tE

dτs1 · · · dτsE−1dt1 · · · dtE

48The situation when all contributions are cancelled is not possible since we do not consider the vacuum energy
corrections.
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|f̃α1...αE (~p1, t1; · · · ; ~pE , tE)||X̃(ξ1 + t1, . . . , ξs1−1 + t1; Ω1, . . . ,Ωs1−1)|

|Ỹ (ξsE + tE , . . . , ξV + tE ; ΩsE+1, . . . ,ΩV )|

∣∣∣∣∣∣
sE−1∏
j=s1

χ̃(τj + ξj)

∣∣∣∣∣∣ .
Introduce new variables

ζj = ξj + t1, j < s1,

ζj = ξj + tE , j ≥ sE .

Clearly the change of variables

(t1, . . . , tE ; ξ1, . . . , ξs1−1; ξsE , . . . , ξV )→ (t1, . . . , tE ; ζ1, . . . , ζs1−1; ζsE , . . . , ζV )

is invertible and f̃ X̃Ỹ is a fast decaying function of the latter variables. Hence, it decays fast as a
function of the former. In particular, for any N, we can estimate

|f̃α1...αE (~p1, t1; · · · ; ~pE , tE)X̃(ξ1 + t1, . . . , ξs1−1 + t1; Ω1, . . . ,Ωs1−1)× (7.4)

Ỹ (ξsE + tE , . . . , ξV + tE ; ΩsE+1, . . . ,ΩV )| ≤ CN (1 + t21 + · · ·+ t2E)−E

(1 + τ2
s1 + · · ·+ τ2

sE−1 + ξ2
1 + · · ·+ ξ2

s1−1 + ξ2
sE+1 + · · ·+ ξ2

V )−N .

Here we took into account that inside the integration region |τj | < max(|t1|, |tE |). Now we can
safely expand the integration to the whole space RE+sE−s1 . We have

I ≤
∫
J(ξ1, . . . , ξs1 − 1; ξsE , . . . , ξV ; τs1 , . . .τsE−1

)

sE−1∏
j=s1

dτj |χ̃(τj + ξj)|,

where J is the result of integration over t1, . . . , tE which is a fast-decaying function of its arguments
by (7.4). Again, we introduce new variables

ζi = ξi + τi, s1 ≤i< sE .

note that the transform (ξ, τ) → (ζ, τ) is invertible, and the integrand is a fast decaying function
of ζ, τ . Hence it is also fast-decaying as a function of the original variables and integration over τ
leaves a fast-decaying function of ξi. It means that

WF (GfΓ) = ∅

for an appropriately chosen neighborhood of the origin W , hence that distribution is equivalent to
some smooth function whenever restricted to W .

Note the the proof above fails if the vertex factor regularizes the loop integral by making it
rapidly oscillating rather than decreasing in UV region. So, it can not be applied to the theories
with star product interaction.

7.1.2 Feynman rules from LSZ reduction

Now, as we know that the correlators are well-defined in the adiabatic limit, we can use LSZ reduction
reviewed in Subsection 3.4 to reconstruct the scattering amplitudes. Combining it with Proposition
4.2, we can get the Feynman rules for the scattering amplitudes, replacing Proposition 4.4 in the
weak adiabatic limit. For that note, that any correlator can be written in the form

Gα1···αn(~p1, ω1; · · · ; ~pn, ωn) =

n∏
i=1

Gαi βi(~pi, ωi)M
β1···βn(~p1, ω1; · · · ; ~pn, ωn) (7.5)
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whereMβ1···βn(~p1, ω1; · · · ; ~pn, ωn) stands for an ”amputated” correlator, i.e. the correlator com-
puted according to the Feynman rules of Proposition 4.2, but without the external propagators and
their 1-particle reducible correction, which are all summed in the corrected propagators Gαi βi(~pi, ωi).
Now, comparing (6.17-6.19) we get:

∑
α

Gα β(~p, ω) ∼
±i
√
ZF (~p)

(2π)42ωQ~p (ω ∓ (ωQ~p − i0))
Z̃(~p)O+,±β(~p, ωQ~p ), ω → ±ωQ~p ,

where

Z̃(~p) =
Z(~p)

∑
αO+,α(~p)√
ZF (~p)

=
√
Z(p).

Then (3.45) takes the form ∑
αi,α′i

n′∏
i=1

u
(−)
α′i

(~p′i)

n∏
i=1

u(+)
αi (~pi)· (7.6)

Mα′1···α
′
n′α1···αn(~p′1, ω

Q
~p′1

; · · · ; ~p′n′ , ω
Q
~p′
n′

;−~p1,−ωQ~p1 ; · · · ;−~pn,−ωQ~pn) =

out < ~p′1, · · · , ~p′n′ |~p1, · · · , ~pn >in,

where u
(±)
α (~p) = Z̃(~p)O+,∓α(~p, ωQ~p ).

7.2 Strong adiabatic limit

Let us very schematically see how the external line corrections make the strong adiabatic limit ill-
defined. We are not aiming to find out the exact renormalization conditions guaranteeing the strong
adiabatic limit existence, instead we just formulate the conditions with which one can hope that it
is possible to make sense of that limit.49

Consider a contribution to the scattering amplitude of a graph Γ containing an external line
correction. For simplicity we consider a graph with one 1PI insertion to one of the external lines
only. For simplicity we start with ordinary QFT. Then such a correction will lead to a singularity
in the amplitude

S(~k,∆) = M(ω~k,
~k)

i

(2π)42ω~k

1

∆ + i0
S ′(∆ + ω~k,

~k),

where ~k is the momentum flowing along the corrected external line, M is the factor corresponding to
the external line correction and S ′ is the amputated amplitude and ∆ is the adiabatic regularizator.
For shortness we have omitted all irrelevant arguments and convolutions with the incoming state.
We also kept the leading order in the adiabatic limit only.

To avoid this singularity we must assume that M(ω~k,
~k) = 0, i.e. that the self-energy corrections

vanish on-shell. This is however not enough. To see that we need to take into account that the
first argument of M in the expression above is not exactly the on-shell frequency ω~k because of the
adiabatic cut-off. Instead we have something like50

S(~k,∆1,∆2) = M(ω~k + ∆1,~k)
i

(2π)42ω~k

1

∆1 + ∆2 + i0
S ′(∆1 + ∆2 + ω~k,

~k),

where ∆1 is the energy defect of the vertex incident to the external line and ∆2 is the sum of the
energy defects of all other vertices in the external line corrections.

49The reason for such a vague formulation is clarified in Remark 7.2.
50In reality the situation is even more complicated because the expression depends on each energy defect of each

vertex in the 1PI external line correction independently but we ignore that to see the key problem
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Clearly, S(~k,∆1,∆2) still is not a smooth function in any neighborhood of ∆1 = ∆2 = 0. We need
however something weaker, namely existence and independence on a compactly-supported function
f , f(0, 0) 6= 0,

∫
f(∆1,∆2)d∆1d∆2 = 1 of a limit

lim
ε→+0

ε−2

∫
f(ε−1∆1, ε

−1∆2)S(~k,∆1,∆2)d∆1d∆2. (7.7)

In our case the limit exists (at least for some f) if M(ω~k,
~k) = 0, but is dependent on f . The only

way out of this situation is to require that M vanishes on-shell together with its derivative. Then
the leading order will be proportional to

∆2
1

∆1 + ∆2 + i0
,

which still has no limit at ∆1,∆2 → 0, but the limit (7.7) vanishes independently of f .

Remark 7.2. The cancellation discussed above is more sensitive than it may look like, because
we need it to hold (or almost hold) not only on the dispersion relation shell, but also slightly off-
shell. For example, we ignored dependencies on all the other ∆i. But in general it will spoil the
cancellation . Moreover, we should ask for cancellation in each order in terms of λ separately. In
[74] it was shown that in a very special approach to renormalization it is possible to make sense of
the strong adiabatic limit of ordinary massive QFT.

In non-local case it is absolutely not clear how to do that.

Summing up, the strong adiabatic limit can exist only if the self-energy correction vanishes
together with its first derivative on-shell. If this is the case, the external line corrections do not
contribute to the scattering operator at all. The fact that the strong adiabatic limit does exist in
the local, Lorentz-invariant QFT with one spinless massive specie of particles was proven in [74].

In the theories considered in this thesis there are two kinds of one-particle self-energy corrections.
The one of type N is followed by the propagator with ”wrong” time-orientation which is regular on
the dispersion shell. But two such corrections in a row will be followed again by a singular propagator.
The same happens if we have some corrections of type M between two of type N. Let us resumm all
propagator corrections which may appear between two singular propagator, but contain only regular
ones inside:

Msing(~p, ω) = M(~p, ω) +N(~p, ω)2 −1

2ω~p(ω + ω~p)

∞∑
n=0

(
M(~p,−ω)

−1

2ω~p(ω + ω~p)

)n
=

M(~p, ω)− N(~p, ω)2

M(~p,−ω) + 2ω~p(ω + ω~p)
=

2ω~p

(
(ω − ω~p)−

A(~p, ω)2 −B(~p, ω)2

A(~p, ω) cos (θ(~p, ω)) +B(~p, ω)

)
Msing plays the role of ”resummed” 1PI corrections. The full correction can be achieved by summing
over number of insertions of Msing as usual. The natural renormalization conditions then are

Msing(~p, ω~p) = 0,(
∂

∂ω
Msing(~p, ω)

)
ω=ω~p

= 0.

First one leads to51

A(~p, ω~p) = B(~p, ω~p),

51We consider only this possibility (ignoring that we can also have A(~p, ω~p) = −B(~p, ω~p)) and the possibility for
the denominator to be zero or infinite) because only this condition holds automatically in a free theory. Since we are
working in the frame of the perturbation theory, only such branch can be considered.
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which according to discussion in 6 means that the dispersion function remains uncorrected by
the interaction. The second one simplifies drastically when we take the dispersion relation non-
renormalization into account and reads as

Z(~p) cos

(
θ(~p, ω~p)

2

)2

= 1.

Comparing it with Proposition 6.6, we see that the renormalization conditions mean that the sin-
gular parts of the components G+

+(~p, ω) and G− −(~p, ω) remain uncorrected. But the off-diagonal
components G+

−(~p, ω) do admit quantum corrections in general. This happens because contribu-
tions of one correction of type N alone or followed by arbitrarily many corrections of type M does
not bring any new singularities and hence does not must vanish on-shell. Due to the same reason
in contrast to ordinary QFT we have regular and not vanishing external line corrections. Summing
up these corrections we get the corrected external line factor

N(~p, ω)
−1

2ω~p(ω + ω~p)

∞∑
n=0

(
M(~p,−ω)

−1

2ω~p(ω + ω~p)

)n
=

− N(~p, ω)

M(~p,−ω) + 2ω~p(ω + ω~p)
=

A=B
− tan

(
θ(~p, ω~p)

2

)
followed by amputated amplitude with a ”wrong” time-orientation of an external line. So, we can
formulate the following:

Conjecture 7.3. The (appropriately defined) strong adiabatic limit of a massive theory exists if

A(~p, ω~p) = B(~p, ω~p)

and Z(~p) = cos
(
θ(~p,ω~p

2

)−2

(may be, together with other conditions). If this is the case, then it is

given by

out < ~p′1, . . . , ~p
′
n′ |~p1, . . . , ~pn >

(strong)
in = u

(−)
α′1

(~p′1) · · ·u(−)
α′
n′

(~p′n′)u
(+)
α1

(~p1) · · ·u(+)
αn (~pn)

Mα′1...α
′
n′α1...αn(~p′1, ω~p′1 ; . . . ; ~p′n′ , ω~p′n′ ;−~p1,−ωQ~p1 ; . . . ;−~pn,−ω~pn),

where
u

(+)(strong)
− (~p) = u

(−)(strong)
+ (~p) = 1,

u
(+)(strong)
+ (~p) = u

(−)(strong)
− (~p) = − tan

(
θ(~p, ω~p)

2

)
.

We note that (7.6) gives exaclty the same scattering amplitudes if the renormalization conditions

are satisfied. We also note that due to Remark 6.7 u
(+)
+ (~p) = u

(−)
− (~p) = 0 for an ordinary QFT.
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8 Renormalization

In ordinary QFT the correlators do not depend on the renormalization in adiabatic limit (up to
fields rescaling), and hence scattering amplitudes reconstructed from the weak adiabatic limit is
independent of the renormalization. On the other hand, the strong adiabatic limit exists only if
renormalization was chosen appropriately.

As we will see, in non-local QFT even correlators are affected by renormalization. Before going
to that we will first define another ”formal” renormalization procedure, artificially constructed so
that the correlators are preserved by it. It will be defined only diagrammatically, so it is not clear
if a formally renormalized QFT is a quantum field theory in any reasonable sense at all. We note
also that the ”formal” renormalization may be useful for the renormalization group methods.

We postpone discussion of the results achieved here until the last section.

8.1 Formal renormalization

In this subsection we will deal with ”formal” quantum field theories defined by the corresponding
Feynman rules.

Let us begin with a formal definition of this notion:

Definition 8.1. A formal non-local quantum field theory A is defined by a dispersion function Aω~p
and a collection of vertex factors AFα1,··· ,αn(~p1, ω1; · · · ; ~pn, ωn) which are non-zero only for a finite
number of values of n. Both dispersion function and the vertex factors are assumed to be continuous

By a free propagator of A we will mean

AG(0)α
β(~p, ω) = i

δαβ (~p)

(2π)42Aω~p(ω − α(Aω~p − i0))

and by a correlator in A we will mean the correlation function

AGα1,··· ,αn(~p1, ω1; · · · , ~pn, ωn)

formally calculated according to the Feynman rules of the Prop. 4.2 with free propagator AG(0)

and vertex factors AF instead of G(0) and F respectively, substituting into AF the frequencies ωi
assigned to the corresponding lines, taking into account the sign52.

We say that formal quantum field theories A and B are equivalent if there is an invertible
momentum-dependent matrix A,BZ(~pi) (which will call the equivalence matrix) such that

AGα1,...,αn(~p1, ω1; . . . , ~pn, ωn) =

n∏
i=1

A,BZ(~pi)
βi

αi (~p1)BGβ,...,βn(~p1, ω1; . . . , ~pn, ωn) (8.1)

We will call such theories ”formal” because in fact we do not construct a non-local Hamiltonian
from which its vertex factors follow.

For simplicity we do do not discuss invariance of the formal quantum field theories with respect
to rotations and inversions, so the analog of (6.2-6.3) may be violated.

For a given formal QFT we can formally apply the LSZ formula to get the scattering amplitudes.
If two formal theories are equivalent, the corresponding scattering amplitudes will coincide as well
as the physical spectra. The converse is not true in general.

52This possible (in fact polynomial) dependence of the factors AF on the off-shell frequencies is necessary to treat
the counterterms which will appear in the ”formal” renormalization. Note that the non-locality lead to dependence
on the on-shell frequency, so such counterterms can never be induced by any Hamiltonian correction. We should note
that the off-shell frequency can traded for the on-shell one as it is shown in Section 5.
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Section 6 applies to the formal theories without any change. We get an analog of (6.1) which we
prefer to write in the following functional form:

AGα β(~p, ω) =
i

(2π)4
R
((
AMγ

δ(~p, ω)
)
γ,δ=± , ω,

Aω~p

)
, (8.2)

where AMγ
δ(~p, ω) is a sum of one-particle irreducible self-energy corrections and we introduced a

matrix-valued function

R(M,ω, ω′) = (2ω (ω − σzω′)−M)−1, M ∈M2(C),

σz =

(
1 0
0 −1

)
.

We are now ready to formulate the main theorem of the subsection. It is nothing but the standard
renormalization independence of the correlators stated in a purely diagrammatic form.

Theorem 8.2. Let A and B be two formal non-local quantum field theories such, that

BFα1,...,αn(~p1, ω1, . . . , ~pn, ωn) =

n∏
i=1

A,BZ αi
βi

(~pi)
AF β1,...,βn(~p1, ω1; . . . , ~pn, ωn), (8.3)

n 6= 2;

BFα1α2(~p1, ω1; ~p2, ω2) =

2∏
i=1

A,BZ αi
βi

(~pi) · AF β1β2(~p1, ω1; ~p2, ω2)+ (8.4)

δMα1α2(~p1, ω1)

for some invertible 2× 2 matrix A,BZ(~p) and δMα1α2 being such that

R
((
Mα

β

)
α,β=± , ω,

Aω~p

)
(8.5)

= R
((
A,BZ α

γ · A,BZδ β(−~p)Mγ
δ + δMα

β(~p, ω)
)
α,β=± , ω,

Bω~p

)
for any matrix Mα

β.

Then the theories are equivalent with the equivalence matrix A,BZ.

Before providing the proof let us make a simple observation on the combinatorics of the Feynman
graphs. This result is standard but we reproduce it here for the sake of clarity.

Lemma 8.3. We say that a full subgraph of a Feynman graph is a self-energy correction if it is 1PI
and has exactly two external lines (we treat internal lines of the full Feynman graphs which connect
the subgraph with other parts of the graph as external lines of the subgraph). We say that a graph is
non-corrected if it contains no self-energy corrections.

Then the Feynman rules of Proposition 4.2 can be modified in the following way:

• Sum over all graphs is replaced by sum over all non-corrected graphs

• Free propagator is replaced by the corrected propagator.

Of course, the statement above should be understood in the sense of formal power series. Namely,
we always compute the correlator up to some fixed order in the interaction constant and we need to
truncate the corrected propagator at the same order.
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Proof. To any Feynman graph corresponds a unique non-corrected Feynman graph which can be
achieved by cutting out all self-energy corrections and sawing back the broken links into the internal
line53. Summation over all ways to insert arbitrarily many self-energy corrections to an internal line
gives exactly the corrected propagator.

Proof of Theorem 8.2. 1. Observe that we need the equivalence on the level of corrected propa-
gators only, i.e.

AGα1α2(~p1, ω1; ~p2, ω2) =

2∏
i=1

A,BZ(~pi)
βi

αi · BGβ1β2(~p1, ω1; ~p2, ω2). (8.6)

In fact, a graph clearly can not contain a quadratic vertex anywhere except inside the corrected
propagator. Then combining (8.3) with (8.6) by Lemma 8.3 all other correlators also satisfy
(8.1).

2. Note that from (8.2) and (8.5) the equivalence on the corrected propagators level (8.6) holds
whenever

BMα1α2(~p1, ω1; ~p2, ω2) =

2∏
i=1

A,BZ αi
βi

(~pi) · AMβ1β2(~p1, ω1; ~p2, ω2) + δMα1α2(~p1, ω1). (8.7)

3. By a slight modification of the proof of Lemma 8.3 we can show that the 1PI corrections
AMβ1β2(~p1, ω1; ~p2, ω2) and BMβ1β2(~p1, ω1; ~p2, ω2) can also be found as a sum over all non-
corrected graphs with propagators replaced with the corrected ones. From (8.4) we see that
the theory B in comparison with A has one extra quadratic vertex (corresponding to the vertex
factor δMα1α2(~p1, ω1)) and hence one extra non-corrected graph, consisting of that point only
(this is the only connected non-corrected graph containing quadratic vertices). So, we have

BMα1α2(~p1, ω1; ~p2, ω2) = BM ′α1α2(~p1, ω1; ~p2, ω2) + δMα1α2(~p1, ω1),

where BM ′ is the contribution of all other graphs and (8.7) becomes

BM ′α1α2(~p1, ω1; ~p2, ω2) =

2∏
i=1

A,BZ αi
βi

(~pi) · AMβ1β2(~p1, ω1; ~p2, ω2). (8.8)

4. Since AM and BM ′ are sums over the same set of graphs and the vertex factors contributing
to them coincide up to contraction with A,BZ, (8.8), and thus (8.7) holds whenever (8.6) does.

5. We have shown that (8.6) yields (8.8), and, conversely, (8.8) yields (8.6). To finish the proof we
note, that both BM ′ and AM computed according to Lemma 8.3 depends only on lower orders
of the corrected propagator (since they always contain at least one vertex factor bringing at
least ne power of the interaction constant). So, if (8.6) holds up to Nth order, then (8.8) holds
for N + 1th order and thus (8.6) also holds up to N + 1th order. Moreover, in zeroth order
both M and M ′ vanish, so (8.8) is trivial. Therefore, by induction (8.8), and thence (8.6)
holds for all orders. But we established that this implies the statement.

The extra vertex δM plays the role of counterterm. Let us examine what counterterms should
we add to realize the dispersion relation and field strength strength renormalization.

53This is close to the concept of a skeleton graph. But we separate only the propagator corrections, which makes
the result unique and independent of the order in which we cut out corrections
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Example 8.4 (Dispersion relation renormalization). Let A be a physical theory with Aω~p = ω~p and
Ω be a formal theory with Ωω~p = Ω~p and there are no field strength renormalization, A,BZ β

α = δβα.
Then the counterterm is

ΩδMα
β = 2δαβ (Ω~p − ω~p) (αω − (ω~p + Ω~p)) .

Example 8.5 (Field strength renormalization (general)). Again we let A be physical theory and
B = Z be a formal one with the same dispersion relation, but this time A,ZZ β

α (~p) = Z β
α (~p).

Then the counterterm is

ZδMα
β = −2ω~p((ω~p − i0)Xα

β (~p)− ωY αβ (~p))

with
Xα
β (~p) = δαβ −Z α

γ (~p)Zγ β(~p)

Y αβ (~p) = δαββ −
∑
γ

γZ α
γ (~p)Zγ β(~p).

Example 8.6 (Usual field strength renormalization). The usual field strength renormalization is

Z α
β (~p) = δαβ

√
Z ′F

leading to
ZδMα

β = −2ω~p((ω~p − i0)− βω)(1− Z ′F )δαβ .

Example 8.7 (”Unmixing” field strength renormalization). In this example we assume that the
relations (6.2-6.3) hold. Let us consider the following generalized renormalization:

Z +
+ (~p) = Z −

− (~p) =
√
Z(~p) cos

(
θ(~p, ωQ~p )

2

)
,

Z +
− (~p) = Z −

+ (~p) = −
√
Z(~p) sin

(
θ(~p, ωQ~p )

2

)
.

In this renormalization the corrected propagator coincides with the free one on the (corrected)
dispesion relation shell.

Of course, it is possible to write down the general counterterm incorporating both field strength
renormalization and dispersion relation renormalization.

8.2 The physical renormalization

In this subsection we will consider more traditional view to the renormalization, based on the
ambiguity of the separation of the Hamiltonian into free and interacting parts.

In this framework the (physical) renormalization is given by considering

renH0 = H0 + δH.

Moving to the interaction representation we get

δHI(t) = U(t)δHU(t)−1.

As it is clear from Subsection 3.1, we should be very careful with non-locality in time and even
with the derivative with respect to time in δH, which is the case for the field strength renormalization.
In particular, the interaction representation of the derivative (with respect to time) of an interacting
field is not equal to the derivative of the corresponding free field.

Instead we present δH as a local (in time) functional of the field and its canonical momentum.
Then δHI can be achieved through (3.8-3.7).
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8.2.1 Dispersion relation renormalisation

We again start from the dispersion relation renormalisation. We define

ΩH0 = H0 +
1

2

∫
d~k : φ̃(~k, t)φ̃(−~k, t) : (Ω2

~k
− ω2

~k
) =

1

2

∫
d~k :

(
∂tφ̃

(0)(~k, t)φ̃(0)(−~k, t) + Ω2
~k
φ̃(0)(~k, t)φ̃(0)(−~k, t)

)
:.

The counterterm, compensating passing from H0 to ΩH0, its interaction representation and the
corresponding vertex factor then are:

ΩδH = −1

2

∫
d~k : φ̃(~k, t)φ̃(−~k, t) : (Ω2

~k
− ω2

~k
),

ΩδHI = −1

2

∫
d~k : φ̃0(~k, t)φ̃0(−~k, t) : (Ω2

~k
− ω2

~k
),

ΩδMαβ(~k, ω) = −(Ω2
~k
− ω2

~k
).

This is exactly the counterterm of the ordinary QFT (despite the fact that we allow now general
dispersion relation, so the counterterm is in general nor Lorentz-invariant, neither spatially local).
It can never (except the trivial case ω~p = Ω~p) coincide with ΩδMα

β of Example 8.4. Moreover,
the physical renormalization of the dispersion relation not only produces a counterterm but also
changes all the vertex factors. Indeed, to find the vertex factors F defined by (3.29) depend not
only on the interaction kernel density κ, but also on the bare dispersion relation ω~k. It is in
principle possible, that for some very special interaction the effect of the counterterm and of the
dispersion relation change could somehow compensate each other, but it would be a very special
restriction on the vertex factors. Hence in general such renormalization does not preserve any of
the correlators Gα1,...,αn(~p1, ω1; . . . ; ~pn, ωn). One may hope that this issue will be resolved in the
theories introuduced in 3.1.3.

Remark 8.8. However, by slightly modifying the proof of Theorem 8.2, one can show that if the
vertex factors do not depend on the time-orientations (i.e. we are considering a local QFT without
derivatives with respect to the time in the interaction) this renormalization preserves the physical
(i.e. summed over all time-orientations of external particles) correlators G(~p1, ω1; · · · ; ~pn, ωn).

8.2.2 Field strength renormalization

The field strength renormalization is passing from φ̃(~k, t) to Z φ̃(~k, t) = 1√
Z(~k)

φ̃(~k, t). To preserve

the canonical quantization relations (3.2) we need to renormalize the canonical momentum in the

opposite way: Z π̃(~k, t) =
√
Z(~k)π̃(~k, t)54.

The Hamiltonian should be rewritten via the renormalized fields. In particular, for the free
quantum field we will get

H0 =
1

2

∫
d~k :

(
1

Z(~k)

Z π̃(~k, t)Z π̃(−~k, t) + Z(~k)ω2
~k
Z φ̃(~k, t)Z φ̃(−~k, t)

)
: =

1

2

∫
d~k :

(
Z π̃(~k, t)Z π̃(−~k, t) + ω2

~k
Z φ̃(~k, t)Z φ̃(−~k, t)

)
:

54Alternatively one could start from the Lagrangian with renormalized field substituted and define Z π̃(~k, t) as the
canonical momentum conjugated to the renormalized field. The result will be the same.
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−1

2

∫
d~k :

((
1− 1

Z(~k)

)
Z π̃(~k, t)Z π̃(−~k, t) + (1− Z(~k))ω2

~k
Z φ̃(~k, t)Z φ̃(−~k, t)

)
: =

ZH0 − ZδH

where
ZH0 =

1

2

∫
d~k :

(
Z π̃(~k, t)Z π̃(−~k, t) + ω2

~k
Z φ̃(~k, t)Z φ̃(−~k, t)

)
:

is the free Hamiltonian for the ”renormalized” quantum fields.The counterterm is

ZδH =
1

2

∫
d~k :

((
1− 1

Z(~k)

)
Z π̃(~k, t)Z π̃(−~k, t) +

(
1− Z(~k)

)
ω2
~k
Z φ̃(~k, t)Z φ̃(−~k, t)

)
:,

ZδHI =
1

2

∫
d~k :

((
1− 1

Z(~k)

)
Z ˙̃
φ0(~k, t)Z

˙̃
φ0(−~k, t) + (1− Z(~k))ω2

~k
Z φ̃0(~k, t)Z φ̃0(−~k, t)

)
:

and for the counterterm

ZδFαβ(~p,−~p) = −ω2
~p

((
1− 1

Z(~p)

)
(−αβ) + (1− Z(~p))

)
= (8.9)

−ω2
~p

(
1

Z(~p)
αβ + 1

)
(1− Z(~p)),

or
ZδM(~p) = ZδM+−(~p,−~p) = ZδM−+(~p,−~p) = ω2

~p

(Z(~p)− 1)2

Z(~p)
, (8.10)

ZδN(~p) = ZδM++(~p,−~p) = ZδM−−(~p,−~p) = ω2
~p

Z(~p)2 − 1

Z(~p)
. (8.11)

Clearly, it has nothing to do with Example 8.6, so in general this renormalization also does not
preserve the correlators and the scattering amplitudes reconstructed from LSZ.

In this case it is not that straightforward to compare (8.10-8.11) with the usual counterterm.
To do that we would nee to use the framework of Section 5. Again, one can show that such
renormalization leaves the ”physical” correlators unchanged provided that the vertex factors do not
depend on time-orientations.

8.3 Conluding remarks on renormalisation

Clearly, the “formal” renormalisation can not be used to regularise the strong adiabatic limit, since
it replaces the non-local QFT by a set of formal Feynman rules. However, it can be used as a
starting step to build an analogue of the renormalisation group, which is necessary to compute
the logarithmic corrections (see Remark 3.5). Of course, it will be very different from the usual
renormalisation group, not only because of its completely formal diagrammatic nature, but also
because the interactions are not preserved by locality anymore, so they are not defined by a finite
number of constants. This analysis, however, seems to be neccessary if we want to understand how
the corrections due to the non-locality vary in large energy range, from the low energies we live in
to the Planck energies, where we expect the QST effects to be important.

The “physical” renormalisation can be used to at least fulfill the necessary conditions for the
strong adiabatic limit to exist we conjectured. One however has to keep in mind that it is not
renormalisation in the sense of Remark 3.4, i.e. it can not be considered as a shift of the parameters
and for this reason is quite artificial. This is not a surprise, since we did not actually start from the
full Hamiltonian in the form

H = H0 +Hint,
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but we took predefined interaction representation HI . As we have seen in Subsection 3.1.3, the
relation between HI and Hint is highly non-linear in the non-local case, so we can not just add to
HI the counterterms of the local theory. We note also, that the “physical” renormalisation can not
be used to construct a renormalisation group in any sense, since it changes the physical content of
the theory.

There are other possible approaches from which we mention the following two.
First one can give up invariance of the theory under renormalisation and keeping the full quadratic

part of the Lagrangian Lorentz-invariant. Instead, one starts from a free Hamiltonian with predefined
dispersion relation which is assumed to coincide with the physical one. The counterterms then can
be chosen order-by-order so, that they cancel all quantum corrections exactly. In particular, one can
require the Lorentz-invariant physical dispersion relations to be preserved. The main disadvantage
of this approach is that if we allow such renormalisation, there is no reason to stop at quadratic
counterterms. But if we allow also higher counterterms, in absence of the locality55, we can use this
additional freedom to get absolutely any scattering operator. So, such a theory has no predictive
power.

The second one is to consider the theory as time-local theory (see Remark 3.20), forgetting
about the original time-nonlocal interaction kernel density. Then it can be renormalised in the
usual way. It is natural to expect that this approach will be a Hamiltonian formulation of the
“formal” renormalisation, because in the time-local theories renormalisation should not change the
weak adiabatic limit. Physically such an approach is still not natural, because the vertex factor will
depend on the bare unrenormalised dispersion relation.

There is a hope that the framework of Subsection 3.1.3 can reconcile the “physical” and “formal”
approaches as it starts from Hint rather than from HI .

55We note, that to cancel the propagator corrections we have to allow absoulutely arbitrary counterterm. In
particular, they are not local, and if we start from some prescribed form of the interaction, like Example 3.16, there
is no reason in general for the counterterm to be also presentable in this form.
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9 Conclusions

9.1 Summary of the main results

• The results of [73] on non-local QFT in the Hamiltonian approach were generalised to more
generic interactions. In particular, it was shown that it is enough to assume that the in-
teraction kernel is a smooth function of smooth coordinates only, being sharp-localised in
time. Moreover, we saw that any reasonable interaction treated by means of the Hamiltonian
approach [37, 71] can be represented in this form. Under reasonable assumptions on the in-
teraction kernel, we have proved that such theories are free from UV divergences and that the
spatial adiabatic cut-off can be safely weared off leaving the perturbative scattering operator
well-defined on its natural domain of definition;

• A new (in fact several versions of) version of the Feynman rules, more convenient for usual
combinatoric manipulation was presented;

• Corrections to propagator were computed. The quantum dispersion relation and field strength
normalisation factor were extracted from the corrected propagator. We have seen that the
corrected dispersion relation are in accordance with the results of [75]. This is especially
interesting because the mentioned work is based on the time-independent perturbation theory,
so instead of keeping only adiabatic switching only in time it inevitably assumes only the
spatial adiabatic cut-off.

• Existence of the weak adiabatic limit was shown for a quite general class of non-local Quantum
Field Theories;

• Conditions of the strong adiabatic limit existence were discussed;

• A relation with the Lagrangian Feynman rules of an equivalent time-local theory was presented.
In particular we have proven, that at the tree level the Lagrangian is the usual Legendre
transform of time-localised form of the Hamiltonian;

• Issues of the renormalisation were discussed. More precisely, we have introduced two ap-
proaches to renormalisation, one preserving the correlators in weak adiabatic limit and another,
mimicking the usual renormalisation counterterms rewritten in the Hamiltonian formalism. We
have seen that the choice of approach to renormalisation is vague in absence of locality;

9.2 Outline of further directions

In this thesis we have seen several problems and ambiguities, mostly caused by us trying to treat a
theory which is non-local only in space as a space-time non-local theory. A possible way out of this
was presented in Subsection 3.1.3, where we perturbatively used the equations of motion so that the
truly spacetime non-local theory is presented as a time-local effective one.

Another issue is Lorentz-invariance. One source of the problem is the absence of reasonable
Lorentz-invariant non-local kernels. Some hint for a possible way out of this was presented in
Subsection 2.2.1. Another problem is that the Hamiltonian density is not a scalar and it is difficult
to build it so that it will be a component of the 4-vector in the end. In ordinary QFT it is resolved
by the Legendre transform, but it is directly applicable to the theories which Lagrangian depends
on at most the first-order derivative of the field. There are generalisations to higher orders of
derivative and even time-non-local Lagrangians known as the Ostrogradski transform [110], so it
may be interesting to see if they can be incorporated in the framework of Subsection 3.1.3.

It is worth noting, that even the truly non-local theories of 3.1.3 according to Section 5 can be
(perturbatively in each order) described by an equivalent Lagrangian, not containing higher-order
derivatives with respect to the time. In Effective Field Theory there is a known method of getting
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rid of the higher derivatives by means of the field redefinition [111], which is often interpreted as
usage of the equations of motion. It is interesting to understand if this approach is anyhow related
to ideologically similar method of Subsection 3.1.3.

Finally, it is instructive to compute the non-locality corrections to the scattering amplitudes and
the dispersion relations, taking into account the renormalisation. In particular, it is interesting to
see if the lack of the Lorentz invariance will doom the higher loop corrections even at low energies
as it is expected in local theories [45].
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A Minkowski spacetime, 4-vectors and symmetry groups

We deal with the standard 4-dimensional Minkowski spacetime with the signature (+,−,−,−). We
use upper Greek indices µ, ν, ....56 to denote the components of four-vectors and coordinates of the
spacetime points and the lower indices to denote the same components after contraction with the
metric tensor. We follow the standard Einstein summation rule

AµB
µ =

3∑
µ=0

AµB
µ.

Then no confusion is possible (mostly in the plane waves phases) we drop the indices at all, writing px
instead of pµx

µ and p2 instead of pµpµ. The spatial coordinates and spatial part of the 4-vectors are
denoted with the vector sign. For 3-vectors the scalar product is defined with the usual Euclidean
signature. The norm || · || always denotes the positively-definite norm with Euclidean signature
independently on dimensionality of the space.

The Lorentz group O(1,3) acts on the Minkowski space as

M : xµ 7→Mµ
νx

ν (A.1)

for M ∈ O(1, 3), i.e.
Mµ

ηM
η

ν = δµν

which we will abbreviate with just
x 7→Mx.

In all expressions like above the components with upper indices are assumed. Among the connected
components of O(1,3) we will encounter only the proper ortochronous Lorentz group SO↑(1, 3)
defined by

det(M) = 1, M0
0 > 0.

The Poincare group is denoted by
P = R4 o SO(1, 3)

with the semi-direct product with respect to (A.1), and the proper orthochronous Poincare group is

P↑+ = R4 o SO(1, 3)↑.

We denote the universal cover of the proper ortochronous Poincare group with

P↑+ = R4 o SO(1, 3)↑ = R4 o SL(2)

and the covering map
SL(2)→ SO(1, 3)↑

with Π.
We use notation (a,M) with a ∈ R4, M ∈ SO(1, 3) to denote a generic element of P, as well as

(a, σ) with a ∈ R4, σ ∈ SL(2) for an element of P↑+.
We will also use the symbol Ay B to denote action of the transofrm A on the value B, assuming

that SL(2) and SU(2) act on tensors and vectors via P〉, e.g.

(αy p)µ = (Π(α) y p)µ = Π(α)µ νp
ν .

56We reserve indices from the beginning of the Greek alphabet, α, β, γ, δ, ..., for the time-orientation indices intro-
duced in the main text.
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B Numerical, vector- and operator-valued distributions

For the sake of completeness and to fix the notation we list here main definitions and standard
results of the distributions theory starting from the usual numerical definitions and then going to
less common vector- and operator-valued distributions. All details can be found in [77, 81, 82].

Recall that a (numerical) distribution is a continuous map from a Frechet space of test functions
to the complex numbers. In particular, one usually considers the space of compactly supported
smooth functions D(Rn) = C∞c (Rn) with a family of seminorms

||f ||α = sup
x∈Rn

|∂αf(x)|, (B.1)

where α is a multindex, leading to the theory of distributions (without any additional adjective) on
X D′(X) and the space of Schwartz functions

S(Rn) =
{
f ∈ C∞(Rn)

∣∣||f ||l;α <∞}
with a system of the seminorms

||f ||l;α = sup
x∈Rn

∣∣(1 + ||x||2)l∂αf(x)
∣∣

leading to the space of tempered distributions S ′(Rn).

Remark B.1. Without any additional difficulties arise one can always replace S(Rn) by a direct
sum

⊕
r S(Rn) and get the space of multi-component distributions57

(⊕
r

S(Rn)

)′
=
⊕
r

S ′(Rn) (B.2)

(and the same for compactly supported functions), so we can equally consider such a distribution F
as a collection of r usual distributions Fi or as a whole distribution F .

In the following, we will use T to denote either S or D. We will also drop Rn in cases then the
number of dimensions is not important. Note, that we have D ⊂ S and thus S ′ ⊂ D′.

We use a lot the formal notation

F : f 7→ F [f ] =

∫
f(x)F (x)dnx, F ∈ T ′, f ∈ T , (B.3)

or for multi-component distributions

F : f 7→ F [f ] =

k∑
i=1

Fi[fi] =

n∑
i=1

∫
fi(x)Fi(x)dnx, F ∈

⊕
k

T ′, f ∈
⊕
n

T (B.4)

where the right hand side should be understood completely symbolically. All expressions containing
distributions evaluated at a point, like F (x), should be always understood as shorten versions of that
expressions integrated with an arbitrary test function. In particular, we will use some operations on
distributions defined by formal manipulations with (B.3)

(λF + µG)[f ] = λF [f ] + µG[f ], ∀F,G ∈ T ′,∀f ∈ T ,∀λ, µ ∈ C;

(fF )[g] = F [fg], ∀F ∈ T ′,∀f ∈ ΘM ,∀g ∈ T ;

57We could call them vector-valued distributions, but we preserve this name for much more special space of distri-
butions with values in an infinite-dimensional Hilbert space.
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and with (B.4)

(λF + µG)[f ] = λF [f ] + µG[f ], ∀F,G ∈
⊕
k

T ′,∀f ∈
⊕
k

T ,∀λ, µ ∈Mn(C);

(fF )[g] = F [fT g], ∀F ∈ T ′(Rn),∀g ∈ T (Rn), f ∈ ΘM (Rk,Mk(C)).

Here
ΘM (Rn) =

{
C∞(Rn)|∀α∃cα > 0, pα ∈ N,∀xRn : |∂αf(x)| < cα(1 + ||x||2)pα

}
(B.5)

ΘM (Rn,Mk(C)) ={
C∞(Rn,Mk(C)|∀α∃cα > 0, pα ∈ N,∀xRn : ||∂αf(x)|| < cα(1 + ||x||2)pα

}
are the functions of polynomially limited growth which are defined so that ΘMT ⊂ T . For an affine
function Rn → Rn

φ : τ 7→ Ax+ b

with b ∈ Rn, A ∈ GL(n) we also define58

(F ◦ τ)[f ] = F
[
|detA|−1f ◦ τ−1

]
,∀F ∈ T ′,∀f ∈ T .

We also use the standard notation for derivatives of the distribution based on formal integration
by parts59,

∂xiF [f ] = −F [∂xif ].

There is a natural embedding T → T ′ defined by (B.3) with F (x) being an actual function. In this
case we will identify the function F (x) with the corresponding functional and write F ∈ T ⊂ T ′.

We say that distributions F and G coincide in an open region O if for any test-function f
vanishing outside of O we have F [f ] = G[f ]. The complement of the maximal set on which F
vanishes, i.e. coincides with the zero functional, we call the support of F .

The tempered distributions are of great use because we can define the Fourier transform on
them. To avoid conventional confusions, we will always write the Fourier transform as a functional
integral, for example, for F ∈ S ′(R):

F̃ (k) =

∫
dxeikxF (x) (B.6)

which should be interpreted as

F̃ [u] = F [ũ], ∀u ∈ S(R), (B.7)

where

ũ(x) =

∫
dku(k)eikx. (B.8)

Here we implicitly used the fact that the Fourier transform is a continuous map from S(R) to itself.
The definition is chosen so that when restricted to S(R) ⊂ S ′(R) (B.6) holds in the usual sense.
Generalization to arbitrary number of dimensions is straightforward. We will often use the partial
Fourier transform, i.e. Fourier transform only in part of the arguments.

We also have the following:

Theorem B.2 (Theorem 2.1.3 of [81]60). Let F ∈ T ′(Rm) with T being either D or S. When F
defines a continuous map

T (Rn+m)→ T (Rm)

F [f ](y) = F [f(·, y)].
58This definition can be of course extended to a more general class of τ , but we will not need it.
59Alternatively, it can be interpreted as a usual definition, see 2.2B of [77].
60In [81] it is actually proven for T = D(Rn), but generalization to T = S(Rn) is straightforward
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By f(·, y) we mean f as a function of its first n arguments with the last m fixed to y ∈ Rm.

Theorem B.3 (Theorem 2.5 of [77] and V.12 of [82]). A continuous in each argument functional
on S(Rn) × S(Rm) is jointly continuous. Moreover, it extends uniquely to a continuous functional
on S(Rn+m).

Theorem B.4 (Subsection 2.4B of [77]). Let F ∈ T ′(Rn), G ∈ T ′(Rm). Then there is a unique
distribution F ⊗G ∈ T ′(Rn+m) such that

(F ⊗G)(f ⊗ g) = F (f)G(g).

Theorem B.5 (2.4B of [77]). Let F ∈ T ′(Rn), G ∈ T ′(Rm). Then there is a unique distribution
F ⊗G ∈ T ′(Rn+m) such that

(F ⊗G)(f ⊗ g) = F (f)G(g).

Symbolically we will write F (x)G(y) instead of F ⊗G.

Remark B.6. By combining linear non-degenerate transformation of coordinates with tensor prod-
ucts we can define products of distributions with linearly independent variables.

Vector-valued distributions61 are analogously defined as continuous maps from S to a Hilbert
space62 H. In this case it is enough to require that Ψ : S → H is a linear map and the scalar
product (ψ,Ψ) ∈ S ′. This allows to use all the operations we have defined for the numerical
distributions. It can be also shown that for a bounded operator A, AΨ defined as a composition of
maps Ψ and A is also a vector-valued distribution. We keep using the symbolic integral notation

Ψ[f ] =

∫
dnxf(x)Ψ(x).

The scalar product of two vector-valued distribution can be defined as a numerical distribution.
More precisely, if Ψ and Ψ are vector-valued distributions o Rn and Rm respectively, then there is
a unique distribution (Ψ,Ψ′) ∈ T ′(Rn+m) such that

(Ψ,Ψ′)[f ⊗ g] = (Ψ[f ],Ψ′[g]).

Finally, in QFT an important role is played by the operator-valued distributions. Even worse, we
need distributions with values in the the unbounded operators which are unpleasant by themselves.
In particular, we can not say that the distributions are continuous in the operator-norm topology.
Instead we require the following:

Definition B.7. Let D be a dense subspace of the Hilbert space H and let A map uS(Rn) to
unbounded operators defined on D. Then A is called an operator-valued distribution if either of the
following (equivalent)63 requirements holds:

• f 7→ A[f ]ψ is a vector-valued tempered distribution for any ψ ∈ D.

• f 7→ (ψ,A[f ]ψ′) is a tempered distribution for any ψ,ψ′ ∈ D.

Again, all the operations (except for the tensor product) can be extended to the operator-
valued ones. The tensor product in general can be not defined because product of two densely-
defined unbounded operators can have non-dense domain. We will deal only with such operator-
valued distributions that A[S]D ⊂ D (we say that A leaves the domain D invariant). Assume that

61For all proofs concerning vector- and operator-valued distributions we refer[77].
62We limit ourselves to Hilbert spaces because this is the case important in QFT.
63as proved in [77]
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A1, . . . , Ak are operator-valued distributions leaving invariant their common domain D. Then there
is a unique operator-valued distribution on the same domain A1 ⊗ · · · ⊗Ak such that

A1 ⊗ · · · ⊗Ak[f1 ⊗ · · · ⊗ fk] = A1[f1] · · ·Ak[fk].

The key step in the proof of this fact is to note that

||A1(f1)⊗ · · · ⊗Ak(fk)Ψ||2

is a jointly continuous functional of f1, . . . , fn for any fixed Ψ ∈ D, by application of Theorem B.3.
Then it can be uniquely extended to a vector-valued distribution, making

A1 ⊗ · · · ⊗Ak[f ]Ψ

defined for any Ψ ∈ D, and any test-function f on the product space. As always, we refer to [77]
for any further details. As with the numerical distributions, we will write

A1(x1) · · ·Ak(xk)

instead of
A1 ⊗ · · · ⊗Ak(x1, . . . , xk).

We will say that an operator-valued distribution F with the domain of definition D vanishes in an
open region O if whenever evaluated on a test-function outside of O we have

F [f ]Ψ = 0, ∀Ψ ∈ D.

For a numerical distribution one can also clearly define its complex conjugate via

F [f ] = F [f ].

Definition of a quantum field requires a generalization of this operation to the operator-valued
distributions. For that we require that the operators A(u)∗ are defined on D. Then one can show
that

A∗[f ] = A[f ]∗

defines an operator-valued distribution. Outside of this subsection we deal only with operator-valued
distributions, such that A(u)∗ is defined on D for any u, so we will assume that this is a part of the
definition.

In the end of this exposition we turn back to the numerical distributions. Sometimes it is
important to have a criteria determining if a distribution is actually a smooth function. For this let
us, following [84], introduce couple of notions:

Definition B.8. Let F ∈ D′(Rn). Then (x, ξ) ∈ Rn × (Rn \ {0}) is called a regular directed point
if there is f ∈ D(Rn), f(x) = 1 and a conical neighborhood V ⊂ Rn of u such that the Fourier

transform F̂ u restricted to V is decreasing faster than any polynomial.

Here by a conical neighborhood of u we mean a cone in Rn containing an open neighborhood of
u and the convention for the Fourier transform is

F̂ (k) =

∫
e−ikxF (k)dnk.

The (pseudo)scalar product kx can be chosen arbitrarily. The product of compactly supported
function with a Schwartz function is always compactly-supported, so Fu ∈ S(Rn) and the Fourier
transform is well-defined. Let us denote the set of regular points of F with R(F ). Then

WF (F ) = (Rn × (Rn \ {0})) \R(F )

is called the wavefront set of F . If F is a smooth function, then F̂ u is a Fourier transform of a
smooth compactly supported function which is smooth and fast-decaying, WF (F ) = ∅. Conversely,
we also have:
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Theorem B.9 (Theorem 11 in [84]). A compactly-supported distribution with fast-decaying Fourier
transform is smooth.

It means that for a compact K, if we have

WF (F ) ∩ (K × (Rn \ {0})) = ∅,

then F is smooth on K (i.e. it coincides with a smooth function).
More generally, the wavefronts set of a distribution answers the question how exactly singular the

distribution is. Besides other uses, it allows to determine whenever singularities of two distributions
are aligned is such a way that one can make sense of their product.

Theorem B.10 (Theorem 8.2.10 of [81]). Let U, V ∈ D′(Rn) and assume that there is no x, ξ ∈ Rn,
such that

(x, ξ) ∈WF (U), (x,−ξ) ∈WF (V ).

Then the product UV is well-defined and

WF (UV ) ⊂ {(x, ξ + η|(x, ξ) ∈WF (U), (x, η) ∈WF (U)}.

For compactly supported distributions the product above can be defined by first defining its
Fourier transform as a convolution of Fourier transforms of U and V , and it is enough to define
value of UV on any function in D(Rn). This product can be also shown to be associative and
behave well with the derivatives. We will need only the existence criteria of the theorem above, so
we do not provide any further details.
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C Action of symmetries on the statespace

Let us fix a Hilbert space Hphys of (pure) states of the quantum field theory. By Wigner’s argument
(see [4, 78] for references and proofs) we assume that the symmetry group acts on Hphys via a
projective unitary representation64. As a symmetry group we take at most65 the proper Poincare
group P↑+ introduced in the previous subsection. For this group any projective unitary representation

is equivalent (in projective sense) to an ordinary unitary representation of its universal cover P↑ [79]
(see also [80] for a more general treatment) which we will denote with U .

We assume that there is a unique one-dimensional subspace (the vacuum subspace), such that
U restricted to that subspace is trivial. A normed vector Ω (which we also sometimes denote in
physical notation with |Ω > or |0 > for the free field) from that subspace we call the vacuum.

We require that the time-translations generator has a non-negative spectrum.
We assume that Hphys contains a subspace H1 of one-particle states which is invariant under the

action of the symmetry group and the restriction of U to H1 (which we will denote with the same
letter) is irreducible according to [79]66. The unitary irreducible representations of P were classified
(again, by Wigner [79]). We restrict our attention to ones which are acceptable as statespace of a sole

massive particle. They are labelled by a real number m > 0 and either integer or half-integer s ∈ N+

2
called mass and spin respectively. This names appear by correspondence principle with quantum
mechanincs, where the generators of translations and rotations play the role of the momentum and
the angular momentum respectively. Then m2 = p2 is the mass and s(s+ 1) is the squared angular
momentum in the reference frame (see beolw and in [4, 77]).

By Theorem 7.3 of [77] these representations may be constructed as

H(m,s)
1 = L2(Γ+

m)⊕(2s+1) (C.1)

with
Γ+
m = {p ∈ R4|pµµ = m2, p0 > 0}

being the mass hyperboloid. The scalar product on H(m,s)
1 is defined by

(ψ,ψ′) =

∫
Γ+
m

ψ(p)ψ(p′)dµm(p),

where

dµm(p) =
d~p

(2π)32p0
.

The action of P is given by

(U(a, α)ψ)σ (p) = e−ipa
∑
σ′

Ds
σ,σ′(V (α, p))ψσ′(Π(α)−1p). (C.2)

Here the index Ds : SU(2) → U(2s + 1) is a 2s + 1-dimensional (spin-s) unitary irreducible repre-
sentation of SU(2) and the index σ enumerates direct summands in (C.1).

Remark C.1. In the following we assume that we have fixed some canonical representations Ds

acting on the vector spaces
W s ∼= C2s+1,

but we do not specify particular basis and particular realisation. Moreover, we do not specify
explicitly the range of the index σ, assuming only that it may take 2s + 1 values. We refer, for
example, to [77, 80, 86] for possible natural choices.

64For simplicity we ignore the discrete symmetries for which the antiunitary representations would arise instead
65More precisely, we start from a Poincare symmetric field theory, but the interactions may break some of the

symmetries.
66Here we actually assumed that there is only one kind of particles. In general one such subspace corresponds to

each particle specie.
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Finally,
V (α, p) = R(p)−1αR(Π(α)−1p),

R(p) =

√
pασα

m
∈ SL(2), (C.3)

with σα ∈ M2(C) being the Pauli matrices. We not also that Π(R(p)), which we identify with
R(p) when no confusion is possible, is a Lorentz boost that transforms a particle with momentum
(m,~0) into a particle with momentum p.

The description of H(m,s)
1 above is not always convenient, because it is not completely covariant.

This happens because the spin states are transformed by the so-called little group SU(2) rather
than by the full symmetry group SL(2). In particular, it makes the transformation law (C.2) rather
complicated. To bypass that one introduces the covariant wave-functions [77]. This trick is standard
for QFT, but to make discussion of 2.2.1 we will formulate it here in a slightly more general form,
than one usually needs.

Definition C.2. Let L : SL(2)→ GL(dimL) be a representation of SL(2). Let We say, that

Ψ : Γ+
m → Cr ⊗ C2s+1

is a spin-s polarisations basis in L if

1. ∑
j

Lji(α)Ψj,σ(p) =
∑
σ′

Ds
σ,σ′(V (α, p))Ψi,σ′(Π(α)−1p), ∀α ∈ SL(2); (C.4)

2. rank (Ψ(p)) = 2s+ 1, ∀p ∈ Γ+
m

Taking α = R(p) in (C.4) we get

Ψi,σ(p) =
∑
j

Lji(R(p)−1)Ψ
(0)
j,σ, (C.5)

where Ψ
(0)
i,σ is evaluation of the polarisations basis at p = (m,~0) which we call the rest frame

polarisations basis. From (C.4) we have∑
j

Lji(α)Ψ
(0)
j,σ =

∑
σ′

Ds
σ,σ′(α)Ψ

(0)
i,σ′ , ∀α ∈ SU(2). (C.6)

It is easy to see that any rank-(2s+1) r×(2s+1) matrix, satisfying (C.6) is a rest frame polarisations
basis, i.e. it defines a unique polarisation basis via (C.5). One can also note that (C.6) just says
that Ψ(0) intertwines representations of L|SU(2) with Ds. Since any representations of SU(2) can be
embedded into siutable representation of SL(2), there are plenty of examples of polarisation basisses
for any spin.

The name comes from the fact that for a fixed σ Ψi,σ plays the role of polarisation vector or
spinor (depending on the field) in QED.

This formal notion allows to realise the one-particle statespace in a more covariant form.

Lemma C.3. Let L : SL(2)→ GL(r) be a representation of SL(2) and Ψ be a spin-s polarisations
basis in L. Let

XΨ,m =
⊕
r

S(R4)

be a space with a non-negative sesquilinear product

(f, f ′)Ψ,m =
∑
i,j,σ

∫
Γ+
m

dµ(p)fj(p)Ψj,σ(p)Ψi,σ(p)f ′i(p). (C.7)
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Then the mass-m spin-s one-particle statespace can be constructed from X by taking the quotient
with respect to the zero-norm vectors and completing the result,

H(s,m) =
XΨ,m

{f ∈ XΨ,m|(f, f)Ψ,m = 0}
(C.8)

with a unitary mapping ρΨ,m : XΨ,m → H(s,m)

ρΨ,m[f ]σ(p) =
∑
i

Ψi,σ(p)fi(p). (C.9)

Furthermore, define the representation TΨ,m of P
↑
+ on XΨ,m

(TΨ,m(α, a)f)(p) = e−ipaL(α)f(Π(α)−1p) (C.10)

then ρΨ,m intertwines U with TΨ,m.

Proof. First note that the image of ρΨ,m is dense (recall that rank of ψ(p) is always 2s+ 1) and

(ρΨ,m[f ], ρΨ,m[f ′]) = (f, f ′)Ψ,m,

in particular
ker ρΨ,m = {f ∈ XΨ,m|(f, f)Ψ,m = 0}.

so (C.8) holds. By substituting (C.9) into (C.10) we get

(U(a, α)ρΨ,m[f ])σ(p) =
∑
σ′

e−ipaDs
σ,σ′(V (α, p))ρψ,m[f ]σ′(Π(α)−1p) =

∑
σ′,j

e−ipaDs
σ,σ′(V (α, p))Ψj,σ′(Π(α)−1p)fj(Π(α)−1p) =

∑
j,k

e−ipaL(α)j,kΨk,σ(Π(α)−1p)fj(Π(α)−1p) =

∑
j,k

e−ipaΨk,σ(Π(α)−1p)L(α)kjfj(Π(α)−1p) =

(U(a, α)ρΨ,m[TΨ,m(α, a)f ])σ(p)

which is the intertwining property.

Remark C.4. The map ρΨ,m is a vector-valued distribution in the sense of Appendix B, so we may
symbolically write

ρΨ,m[f ] =

r∑
i=1

∫
d4pρiΨ,m(p)fi(p).

We also have
U(α, a)ρΨ,m(p) = e−ipaL(α)T ρΨ,m(Π(α)p),

Proof. R(p) grows as a square root of p and all representations of SL(2) are of polynomial growth
[77], so we may assume that ||L(R(p))|| < C(1 + ||~p||2)n. Then for f ∈ X , such that |f(p)| <
C ′(1 + ||~p||2)−n−2 we have

(ψ,ψ)Ψ,m < C ′′
∫

Γm

dµ(p)(1 + ||~p||2)−4 <∞,
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which proves that ρ is continuous in the Schwartz norm.
To prove the transformation law take f ∈ XL,Y,m and consider

U(α, a)ρΨ,m[ψ](p) = ρΨ,m[TΨ,mψ](p).

Then the desired statement follows from (C.10) and definition of operations on the distributions
from (B).

Remark C.5. The functions ψ ∈ K coincide with the covariant wave-functions in the terminology
of [77] up to different notation and restriction to the cases when Y is an isometry. There it was
shown, that the construction in the Lemma above is essentially the only way to realize the spin-s
mass-m irreducible representation as a completion of a quotient (C.8) of a space of covariant (i.e.
transforming according to (C.10)) smooth functions.

Remark C.6. In the interacting theories we deal with in this thesis only the translational invariance
is preserved (we also assume some discrete symmetries in Sections 6 and 8 for convenience, but this
restriction can be easily removed). In that case the projective representation of the symmetry group
is just an ordinary unitary representation of R4 (up to projective equivalence) and almost nothing
of the above (except for the vacuum existence and the energy positivity) applies. We however will
treat one-particles state-spaces as perturbed ones of the Lorentz-invariant theories.
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D General quantum fields

Most generally, we define a quantum field as an operator-valued distribution67 with the test-function
space

⊕
r S(R4) (see Remark B.1) and the domain D ⊂ Hphys in the physical statespace, which

leaves D invariant. If r = 1 we will say that φ is scalar. There can be also several quantum fields
with a common domain, but we will consider only one.

We say that a quantum field is real if

φ[f ] = φ[f ]∗
∣∣
D
.

We say that the quantum field φ is covariant with respect to the group G acting on the spacetime,
if there is a unitary representation U of G acting on Hphys such that

L(g)φ(g−1(x)) = U(g)−1φ(x)U(g). (D.1)

Here L : G → GL(r) is an r-dimensional representation of G which we assume to be trivial on
translations.

For the interacting theories considered in the main body of this thesis, G = R4 and the definition
of such quantum field theory stops here. But for use in 2.2.1 we also briefly discuss the Poincare-

covariant (i.e. G = P↑+, see Appendix C) local quantum fields.
We say that φ is a local bosonic quantum field, if68

φ(x)φ(y)− φ(y)φ(x)

vanishes in any open region O such that

(x− y)2 < 0,∀x, y ∈ O.

If instead in all such regions
φ(x)φ(y) + φ(y)φ(x)

vanishes, we will say that φ is a local fermionic quantum field.
The locality and covariance, together with the definition of the operator-valued distributions and

positivity of the energy69 together are known under the name of the Whightman(-Garding) axioms
[85]. We refer to [77, 4] for important results concerning such fields.

In the absence of locality and Lorentz-invariance the position-dependent quantum field is not
very convenient to work with. Instead we use the partial Fourier transform

φ(~x, t) =

∫
d3~pφ̃(~p, t)ei~p~x. (D.2)

67See the previous subsection
68The product of operator-valued distributions below should be understood as the tensor products introduced in

Appendix B. The same applies to the notion of a distribution vanishing in an open region.
69More precisely, one requires that the generator of time-translations has positive spectrum
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E Fock space and the free quantum fields

We start from an one-particle statespace H1 carrying an irreducible representation of the Poincare
group as explained in Appendix C. Then the standard way to construct a bosonic Fock space (see
e.g. [83]) is to consider

Hbos = CΩ⊕
∞⊕
n=1

Hn, (E.1)

where
Hn = H⊗Symn1 = SnH⊗n1

stands for the symmetric nth power of H1 and the symmetrisation operator Sn defined as

Sn =
1

n!

∑
s∈Sn

ρn(s)

with summation going over the permutation group Sn and ρn being its representation acting on
H⊗n by the permutation of factors. In the presence of at least translational symmetries the vector
Ω is identified with the vacuum introduced in Appendix C.

Let DF ⊂ Hbos be a subspace formed by vectors which have finitely many non-zero components
in the decomposition (E.1).

For any vector ψ ∈ H1 we can define the annihilation

b−[ψ] : H⊗n → H⊗(n−1)

b−[ψ]ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn =
√
n(ψ,ψ1)⊗ ψ2 ⊗ · · · ⊗ ψn

and creation
b+[ψ] : H⊗n → H⊗(n+1)

b+[ψ]ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn = Sn+1

√
n+ 1ψ ⊗ ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn

operators70. One can verify that the symmetric part of the tensor product is invariant under their
action. Hence they induce unbounded operators on Hbos defined on DFwhich they leave invariant.

Now, let us assume that we are dealing with a fully Poincare covariant quantum field theory and
H1 carries a mass-m spin-s irreducible representation of P (see C). Then from (C.1) and from the fact
that the Schwartz functions are continuously embedded into L2 we may consider the operator-values
distributions with test-functions space

⊕
2s+1 S(R3)

a[f ] = b−

~p 7→ 1√
(2π)32ωm~p

f(~p)

 (E.2)

and

a+[f ] = b+

~p 7→ 1√
(2π)32ωm~p

f(~p)

 . (E.3)

where ωm~p =
√
m2 + ~p2. In the first line the complex conjugation was added because of anti-linearity

of b, and the scaling factor was introduced to achieve the standard commutational relations71

[aσ(~p), a+
σ′(~p

′)] = δ(~p− ~p′)δσ,σ′ .

70In these definitions we treat the vacuum space CΩ as a zeroth tensor power of H1
71The commuatators should be understood in the sense of a tensor product of operator valued distributions as

defined in B and the equality of course holds only on the domain of definition of that distributions.
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These operators are adjoints of one another as quadratic forms on DF . From B we can define
vector-valued distributions

|~p1, σ1; · · · ; ~pn, σn >= (2π)
3n
2

(
n∏
i=1

√
ωm2~pi

)
aσ1(~p1)+ · · · a+

σn(~pn)|Ω > . (E.4)

with scalar product

< ~p′1, σ
′
1; · · · ; ~p′n′ , σ

′
n′ |~p1, σ1; · · · ; ~pn, σn >= δn,n′

∑
s∈Sn

n∏
i=1

(2π)32ωm~piδ(~pi − ~p
′
si)δσi,σ′si

To define a covariant quantum field, we use the covariant wavefunctions introduced in Lemma
C.3 and Remarks C.5-C.4. In particular, from the latter for a fixed r-dimensional representation L
of GL(2), its dual L∗,

L∗(α) = L(α−1)T

and a spin-s polarisations basis we have a vector-valued field

ρΨ,m :
⊕
r

S(R4)→ H1.

Let

Φ(x) =

∫
d4peipxρΨ,m(p) (E.5)

be its Fourier transform. From Remark C.4, we have

L(g)Φ(Π(α−1(x− a)) = U(a, α)−1Φ(x)

Then the free creation field defined as

φ0+ = b+ ◦ Φ (E.6)

is a covariant quantum field. The free annihilation field can be defined as its adjoint restricted
to DF

φ0− = φ0+. (E.7)

This field is also covariant, but it transforms according to the complex-conjugated representation
L, L(α) = L(α). Neither of these fields is local (for all direct computations of the commutators
showing locality or non-locality of the free fields we refer to [80]). For a scalar spinless field, r = 1,
s = 0 the representations L are both trivial and hence identical, so we can form a sum

φ0(x) = φ0+ + φ0− (E.8)

which is a real local bosonic quantum field. Equarions (E.5-E.8) with (C.9) and (E.2-E.3) together
give the standard form

φ0(~x, t) =

∫
d3~p√

(2π)32ωm~p

(
a~pe
−i(ωm~p t−~p~x) + a+

~p e
i(ωm~p t−~p~x)

)
. (E.9)

The same idea works for L being a representation of SO(1, 3) (rather than its cover), then all matrices
L(α) are real in a suitable basis, so L ∼= L and (E.8) can be combined into

φi0(~x, t) =
∑
σ

∫
d3~p√

(2π)32ωm~p

(
a~p,σe

−i(ωm~p t−~p~x) + a+
~p,σe

i(ωm~p t−~p~x)
)

Ψi,σ(p). (E.10)
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Here we also used that for such L spin is always integer and matrices Y can be assumed to be real.
Such fields are also automatically local bosonic.

For half-integer spin fields locality is possible only in the fermionic case, according to the famous
spin-statistics theorem [4] (in the free case we discuss here it can be also proven directly, [80]).
Free fermionic space and free fermionic fields can be constructed along the same lines, replacing the
symmetrisation operator with one of alteration. We refer to [77, 83] for the details. To make a local
field one still will need to sum creation and annihilation operators. To make it possible, we assume
that L ∼= L. Since this is not the case for a generic representation of SL(2), we may need to replace
L→ L.

Remark E.1. Usually the polarisation vectors are also restricted by a convenient normalisation
condition. In our discussion it will not play any role.

Remark E.2. The interacting quantum fields we are discussing in this thesis are neither local nor
Lorentz-invariant. As a result after the renormalisation the free fields can also loose that properties.
But, as it was already mentioned in Remark C.6, we consider only the fields which are perturbations
of the usual one. So, as a generic real scalar quantum field we take (E.9) with broken Lorentz
symmetry,

φ0(~x, t) =

∫
d3~p
√
Z(~p)√

(2π)32ω~p

(
a~pe
−i(ω~pt−~p~x) + a+

~p e
i(ω~pt−~p~x)

)
, (E.11)

where ω~p is a generic dispersion relation function and Z(~p) is an arbitrary renormalization factor.
We require that Z(~p), ω~p, ω

−1
~p ∈ ΘM (R3) (see Appendix B).

We will also often use the notation

φ̃0(~p, t) = φ̃0+(−~p, t) + φ̃0−(~p, t), (E.12)

where the partial Fourier transform φ̃0(~p, t) is defined by (D.2), while

φ̃0+(~p, t) =

√
Z(~p)√

(2π)32ω~p
a+
~p e
−iω~pt = φ̃0+(~p, 0)e−iω~pt (E.13)

and

φ̃0−(~p, t) =

√
Z(~p)√

(2π)32ω~p
a~pe
−iω~pt = φ̃0−(~p, 0)e+iω~pt (E.14)

are its creation and annihilation parts respectively.

Remark E.3. We have constructed the quantum fields and the creation and annihilation operator-
valued distributions acting on the domain DF of states with finite number of particles. In practice it
is more convenient to work with the domain DS of states with finite number of particles and wave-
functions of Schwartz class, that is the subspace spanned by image of vector-valued distributions

|~p1, σ1; . . . ; ~pn, σn >,

since they are more regular. Outside of this appendix we always assume the all operator-valued
distributions are considered on DS . Clearly, if ψ ∈ H1 ∩DS , then b±[ψ] leaves S invariant. Since
only such ψ appear in (E.2- E.3), all operator-valued distributions we defined leave DS .

Remark E.4. It is well-known72 that unlike general quantum fields, the free fields are well-defined
at fixed moments of time. This is especially clear in the “partial” Fourier transform form. In

72A standard treatment of this matter can be found, for example, in [83]. It is however not appropriate for our
discussion.
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fact formally substituting t = 0 into (E.13-E.14), we see that φ̃0−(~p, 0) are well-defined operator
distributions (as they are the products of well defined distributions a~p and a+

~p with a function in

ΘM (R3)) on R3. Moreover, extending the distributions φ̃0+(~p, 0) φ̃0−(~p, 0) to R4 we can define

φ̃′0+(~p, t) = φ̃0+(~p, 0)e−iω~pt (E.15)

and
φ̃′0−(~p, t) = φ̃0−(~p, 0)e+iω~pt. (E.16)

Moreover, by evaluating φ̃′0± on an arbitrary test-function one immediately gets that φ̃′0± = φ̃0±
Similarly, using the definition of a tensor product of operator-valued distributions (see Appendix B)
and its uniqueness one can prove that

φ̃α1(~p1, t1) · · · φ̃αn(~pn, tn) = e−i
∑n
j=1 αjω~pj (tj−t)φ̃α1(~p1, t) · · · φ̃αn(~pn, t) (E.17)

with αj = ±. Again, here the fields φ̃αi(~pi, t) in the right hand side should be understood
as distributions on R3. This allows to define a product of the distribution above and a generic
distribution A ∈ S ′(Rn) depending on time stamps as

A(t1, . . . , tn)φ̃α1
(~p1, t1) · · · φ̃αn(~pn, tn) = (E.18)

e−i
∑n
j=1 αjω~pj (tj−t)(A(t1, . . . , tn)φ̃α1

(~p1, t) · · · φ̃αn(~pn, t)
)
,

where the product in the brackets is the tensor product of two distributions, while the one outside
of the brackets is multiplication of a distribution by a function from ΘM (R4n).

In the above we have shown that the distribution in the right hand sides (E.18) is well-defined,
but it may be enough to convince one that it is a natural interpretation of left hand side. The same
definition can be also motivated in one more way. If we fix two vectors Ψ,Ψ′ ∈ DS (or DF ), then
by (E.17) we get

(Ψ, φ̃α1(~p1, t1) · · · φ̃αn(~pn, tn)Ψ′) = e−i
∑n
j=1 αjω~pj (tj−t)(Ψ, φ̃α1(~p1, t) · · · φ̃αn(~pn, t)Ψ

′). (E.19)

Applying Theorem B.10 twice (first to compute the wavefronts set of (E.17) and when to prove
existence of the product) we get that the product

A(t1, . . . , tn)(Ψ, φ̃α1(~p1, t1) · · · φ̃αn(~pn, tn)Ψ′)

is a well-defined distribution. At the same time, assuming the definition (E.18), we see that73

(Ψ, A(t1, . . . , tn)φ̃α1
(~p1, t1) · · · φ̃αn(~pn, tn)Ψ′) =

e−i
∑n
j=1 αjω~pj (tj−t)(Ψ, A(t1, . . . , tn)φ̃α1(~p1, t1) · · · φ̃αn(~pn, tn)Ψ′) =

e−i
∑n
j=1 αjω~pj (tj−t)A(t1, . . . , tn)(Ψ, φ̃α1

(~p1, t) · · · φ̃αn(~pn, t)Ψ
′).

So, (E.18) defines the product

A(t1, . . . , tn)φ̃α1(~p1, t1) · · · φ̃αn(~pn, tn)

such, that it agrees with the standard product of numerical distributions on the level of the quadratic
forms,

(Ψ, A(t1, . . . , tn)φ̃α1(~p1, t1) · · · φ̃αn(~pn, tn)Ψ′) = A(t1, . . . , tn)(Ψ, φ̃α1(~p1, t1) · · · φ̃αn(~pn, tn)Ψ′).
(E.20)

73The last line is straightforward if integrated with a factorised Schwartz function of the form
f(t1, . . . , tn)g(~p1, . . . , ~pn), f ∈ S(Rn), g ∈ S(R3n) and then using the definition and uniqueness of the tensor product
of operator-valued distributions (see Appendix B).
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Finally, by evaluating this matrix element on a test-function f and using the Wick Theorem (The-
orem F.1) we get∫

e−i
∑n
j=1 αjω~pj (tj−t)A(t1, . . . , tn)(Ψ, φ̃α1(~p1, t) · · · φ̃αn(~pn, t)Ψ

′)f(t1, . . . , tn, ~p1, . . . , ~pn)

n∏
i=1

dtid~pi =

n∑
r=0

n∑
s=0

∫
(Ψ,

r∏
j=1

a+
~kj

s∏
j=1

a~kjΨ
′)f ′r,s(

~k′1, . . . ,
~k′r;

~k1, . . . ,~ks)

r∏
i=1

d~k′i

s∏
i=1

d~ki,

where f ′r,s are results of evaluation of the product of the distribution A and all commutators appear-
ing in the normal ordering according to the Wick theorem74 on f . By Theorem B.2 f ′r,s is Schwartz.
But then by theorem X.44 of [83] the operator, agreeing with∫

e−i
∑n
j=1 αjω~pj (tj−t)A(t1, . . . , tn)φ̃α1

(~p1, t) · · · φ̃αn(~pn, t)f(t1, . . . , tn, ~p1, . . . , ~pn)

n∏
i=1

dtid~pi

is unique, and thus (E.20) fixes the product in its left hand side uniquely.
The argument above can be generalised to arbitrary spin straightforwardly.

74This product is clearly well-defined, as all distributions are in different variavles
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F Wick ordering, Wick theorems and propagators

Let us start from very generic setting. Suppose that there is a family of unbounded operators Ai
acting on the same dense domain D ∈ H which they leave invariant, let Ω ∈ D be a vector of norm
one, and assume that each operator Ai can be decomposed into a “creation part” Ai,+ and Ai,i,

Ai = Ai,+ +Ai,−,

Ai,−Ω = 0, A∗i,+Ω = 0.

Here creation, annihilation parts and their adjoints are assumed to be defined on the same domain
D. Finally, we assume that all creation operators and all annihilation operators commute among
their classes, while commutator between creation and annihilation operators is proportional to the
identity75

[Ai,+, Aj,+] = [Ai,−, Ai,−]

[Ai,+, Aj,−] = Cij1H, Cij ∈ C.

Then we define the Wick product, or the normal oredered product : A1 · · ·An : as ordinary product
of the operators A1 . . . An in with all creation operators moved to the left by hands,

: A1 · · ·An :=
∑

I⊂{1,2,...,N}

∏
i∈I

Ai,+
∏

i∈{1,2,...,n}\I

Ai,−.

By construction,
(Ω, : A1 · · ·An : Ω) = 0.

The following statement, despite being very simple, plays a fundamental role in QFT

Theorem F.1 (Wick theorem [94]). Let operators A1, . . . , An be as above. Then

A1 · · ·An =
∑

{1,...,n}=Jt
⊔k
j=1{ij,1,ij2}

ij,1<ij2

k∏
j=1

Cij,1ij,2 :
∏
l∈J

Al : . (F.1)

Here the sum goes over all “pairngs”, i.e. all possible ways to select k (with summation over k)
k non-intersecting pairs among the operators A1, . . . An and J denotes the set of all operators that
did not appear in any of the pairs.

An obvious consequence is that

(Ω, A1 · · ·AnΩ) =
∑

{1,...,n}=
⊔
j{ij,1,ij2}

ij,1<ij2

∏
j

Cij,1ij,2 =

∑
{1,...,n}

⊔
j{ij,1,ij2}

ij,1<ij2

∏
j

(Ω, Aij,1Aij,2Ω),

i.e. vacuum expectation vale of a product of such operators is products of expectation value of pairs
of that operators, summed over all possible pairings.

75For this subsection all relations should be understood as holding on the domain D.
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Remark F.2. A natural example of operators Ai is provided by the free quantum fields (see
Appendix E) evaluated on the test-functions decomposed as in (E.12). Then using the uniqueness
of a tensor product of the operator-valued distributions (Appendix B) one gets a well-defined notion
of normal-ordered (tensor) product of the free quantum fields themselves. So, Theorem F.1 holds
for Ai = φ̃(~pi, ti) and

Cij = [φ̃0+(~pi, ti), φ̃0−(~pj , tj)] = (Ω, φ̃0+(~pi, ti)φ̃0−(~pj , tj)Ω).

By reverse partial Fourier transform we can get a similar expression for Ai = φ(xi).

Remark F.3. The Wick product of quantum fields is important, because in the decomposition of
the tensor product

φ(x1) · · ·φ(xn)

according to the Wick theorem all singularities in the limit of coinciding points xi → x are absorbed
in the commutators, while the normal-ordered product has a well-defined limit [100]

: φ(x)n : .

Theorem F.1 can be also formulated for the time-ordered product (with straightforward gener-

alization to anyhow ordered product, including the covariant time-ordered product T̂ of 3.2 and the
integrated-path-ordered product P introduced in 3.1.3):

Theorem F.4 (Second Wick theorem [94]). Let operators A1, . . . , An be as above. Then

T{A1(t1) · · ·An(tn)}

=
∑

{1,...,n}=Jt
⊔k
j=1{ij,1,ij2}

ij,1<ij2

k∏
j=1

(
Ω,T

{
Aij,1(tij,1)Aij,2(tij,2)

}
Ω
)

:
∏
l∈J

Al : .

Here we formulated the theorem for operators depending on t, but we use its generalization to
the case of operator-valued distributions along the same lines as explained above for Theorem F.1.

Again, Theorem F.4 allows one to calculate the vacuum expectation values of time-ordered
products easily.

Remark F.5. As in Remark F.2, Theorem F.4 can be applied to timeordered product of the
quantum fields. In particular, we need it for Ai = φ̃0αi(~pi, ti). Then

< 0|T
{
φ̃0αi(~pi, ti)φ̃0αj (~pj , tj)

}
|0 >= G̃0

αiαj (~pi, ti − tj)δ(~pi + ~p′j),

where

G̃0
αβ(~p, t) = δα,−βθ(−αt)

1

2ω~p(2π)3
e−iω~p|t| (F.2)

is the so-called propagator.

It is convenient to introduce also the propagator in 4-momentum space (rather than the mixed
“time-momentum” space in which (F.2) is written)

G̃0
αβ(~p, t) =

∫
dωG0

αβ(~p, ω)e−iωt, (F.3)

with

G0
αβ(~p, ω) = δα,−β

−iα
2ω~p(2π)4(ω + α(ω~p − i0))

. (F.4)

94



In ordinary QFT a crucial role is played by the Feynman propagator

< 0|T {φ(x)φ(x′)} |0 > .

Substituting (D.2) and (E.12) we have

< 0|T {φ(x)φ(x′)} |0 >=

∫
d3~pdωe−i(ωt+~p~x)G0

F (~p, ω), (F.5)

G(0)
F (~p, ω) =

∑
αβ

G(0)
αβ (~p, ω) =

i

(2π)4(ω2 − ω2
~p + i0)

. (F.6)

We also need the vacuum correlators, including the first derivatives of the fields. Clearly for j, k ∈
{1, 2, 3},

< 0|T {∂xjφ(x)φ(x′)} |0 >= ∂xj < 0|T {φ(x)φ(x′)} |0 >

and

< 0|T {∂xjφ(x)φ(x′)} |0 >= ∂xj ,x′k < 0|T {φ(x)∂x′kφ(x′)} |0 > .

From
∂tφ̃0(~p, t) = iω~p(φ̃0+(~p, t)− φ̃0−(~p, t))

it follows

< 0|T {∂x0φ(x)φ(x′)} |0 >= iω~p

∫
d3~pdω − ~pje−i(ωt+~p~x)

∑
αβ

αG0
αβ(~p, ω).

But

ω~p
∑
αβ

αG(0)
αβ (~p, ω) = − iω

(2π)4(ω2 − ω2
~p + i0)

.

for all values of µ ∈ {0, 1, 2, 3}. Similarly, we have

< 0|T {∂x0φ(x)∂x′jφ(x′)} |0 >= ∂x0x′j < 0|T {φ(x)φ(x′)} |0 > .

Finally, for the correlator of two derivatives with respect to the time we have:

< 0|T {∂x0φ(x)∂x′0φ(x′)} |0 >=

−ω2
~p

∫
d3~pdω~pje−i(ωt+~p~x)

∑
αβ

αβG0
αβ(~p, ω) = ω2

~p

∫
d3~pdω~pje−i(ωt+~p~x)G0

F (~p, ω) =

∫
d3~pdω~pjω2e−i(ωt+~p~x)G0

F (~p, ω)−
∫
d3~pdω~pj(ω2 − ω2

~pe
−i(ωt+~p~x)G0

F (~p, ω) =

∂x0∂x′0 < 0|T {φ(x)φ(x′)} |0 > +iδ(x− x′).

Summing up,

< 0|T {∂xµφ(x)φ(x′)} |0 >= ∂xµ < 0|T {φ(x)φ(x′)} |0 > (F.7)

< 0|T {∂xµφ(x)∂x′νφ(x′)} |0 >= ∂xµ∂x′ν < 0|T {φ(x)φ(x′)} |0 > +iδ(x− x′)δµ,0δν,0
(F.8)
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