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non posso esimermi dal ringraziare le tante persone che mi hanno accompagnato

durante questi anni, sia dal punto di vista professionale sia da quello affettivo.

Un sentito ringraziamento al Dott. Paolo Roselli, colui che mi ha seguito in questo

percorso, dedicando tempo ed impegno alla mia formazione come ricercatore.

Con lui inoltre abbiamo avviato una collaborazione scientifica che spero possa

proseguire anche per il futuro, considerando il profondo rispetto che nutro nei

suoi confronti come persona e come professionista.

Un ringraziamento anche al Prof. Daniele Guido, un riferimento già durante
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Chapter 1

Introduction

In the last years, the development of the so called Artificial Intelligence (AI), and

the need to optimize computer processes, got the attention of many Information

Technology (IT) researchers, engineers and mathematicians on “gesture recogni-

tion” techniques. As in this work we address to an audience that is not necessarily

introduced to advanced mathematical notions (such as, for instance, tensor prod-

ucts, ideals of rings, etc.), we try to use a mathematical formalism as accessible

as possible, trying to approach the problem through tools as elementary as possible.

A few years ago, during the study of Clifford algebras, already used by other IT

applications (see [4]), a research team from the Université catholique de Lou-

vain (UCL), born from a collaboration between P. Roselli and J. Vanderdonck,

has seen as possible the application of Clifford Algebras to the field of “gesture

recognition”, which investigates efficient algorithms to make an AI device able to

evaluate similarity between two different motions (that is, gestures).

Until now, most of the recognition algorithms rescale and move the input gestures

in a predetermined position before starting the effective computations. Such data

preprocessing is time consuming. So, the study of suitable similarity recognizers

implies that their algorithms should be invariant with respect to almost1 all

transformations that preserve similarity, like translations, rotations, or scaling.

Clifford algebra can solve this problem. As a matter of fact, it allowed us to

initially write an algorithm for the 2 dimensional case, the !FTL algorithm, where

this preliminary data processing is not needed, thanks to the intrinsic invariance

properties of our notion of “shape” given through a ratio in a Clifford algebra.

In mathematical terms, the foregoing research team implemented an opera-

1We point out that, in this work, we don’t consider some similarities as, for example,
reflections.
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CHAPTER 1. INTRODUCTION 2

tor, the shape distance DSpf, gq, where f, g are the input motions, such that

DSpf, gq � DSpf, T pgqq and T is a transformation that preserves similarity.

More informations about !FTL2 can be found in [16]; however, those results are

just a starting point to approach the recognition problem and an interested reader

can see possible future development in the chapter dedicated to our conclusions.

Despite the important improvements, there are some topics that need a deeper

mathematical investigation. My work started here.

As a matter of fact, in [16] any reference concerning the use of geometric algebra

has been intentionally bypassed, avoiding excessive information about Clifford

algebras not requested by a public mainly interested to IT algorithms.

However, if this has been possible for the particular development of !FTL, any

extension of it to other contexts cannot be separated from the use of Clifford

algebra.

Here, we can use a more general formalism than that used in [16], and we can go

deeper in mathematical details to move on, beyond !FTL algorithm. This work

can be divided into four main parts.

1) A particular axiomatics for the Clifford algebra, mathematically equivalent

to the non-degenerate case, (one can refer to [3]); however our approach can

profit readers having just some basic knowledge about complex numbers

and elementary linear algebra.

2) A mathematical definition of “shape” of a 2D planar gesture followed by a

proper definition of the !FTL, the proof of its convergence, an improved ver-

sion (!WFTL) and, as a consequence, a well defined operator that measures

the “dissimilarity” of two gestures (also called “gesture recognizer”).

3) The extension of the two-dimensional results obtained in part 2) to “2.5D

spaces”, i.e. the recognition of gestures located no longer on a Euclidean

plane but on any regular surface.

4) One of the possible generalizations of all previous definitions and results

seen in 2D to higher dimensions, and the reason why we chose to go toward

this specific direction.

We point out that, in this work, our main original contributions are: Theo-

rem 3.1.9, Theorem 3.1.10, Corollary 3.1.11, Definition 3.1.12, Theorem 3.1.14,

2FTL stands for “Faster Than Light”. Such an acronym, was chosen by one of the authors
of [16] for his amazement facing the first astonishing speed results. To compensate for this
exuberance, the others authors chose to use the negation mark “!” as a prefix.
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Proposition 4.1.5, Lemma 4.1.6, Section 4.1.3, Section 4.2 and Chapter 5.

As we have already explained, Section 2.1 and, as a consequence, the appendix

A, are our slightly original approaches to Clifford algebras, necessary for the

development of the aforementioned results.

Besides, all these results open up to other possible researches. We postpone this

discussion to our conclusions in Chapter 6.



Chapter 2

Clifford Algebras

Clifford algebras have been defined and generalized in several different ways (see

for instance [3],[4],[8],[13]).

The varieties of approaches depends on the different applications of those algebras.

This multiplicity of approaches and definitions, besides witnessing the richness and

adaptability of Clifford Algebras, has also produced some problems concerning

conflicting notations and deductions of results. In order to avoid such problems

and to keep this work self-contained as much as possible, we explicit here our

particular approach to Clifford Algebras. This is mainly suited for the results

presented in this work and it is addressed to the particular audience those results

were presented to.

2.1 Our Axiomatics for Clifford Algebras

Definition 2.1.1. Let S be a set. An algebra generated by S, is an associative al-

gebra A where every element can be expressed as a polynomial in the elements of S.

Definition 2.1.2. Let V be a n-dimensional vector space on the field K, whose

characteristic is not equal to 2.

An algebra generated by V is an unitary associative algebra A over K generated

by V . Let r : V Ñ A be the linear monomorphism (an injective homomorphism)

corresponding to the injection of V as a linear subspace of A.

Remark 2.1.1. If s : K Ñ A is a linear function such that spαq � α1, the unit

element 1 in A then s is an algebra monomorphism.

Remark 2.1.2. With abuse of notation we will ignore the r, s when we will talk

about spKq and rpV q within A, referring to these simply as K (scalars) and V

(vectors).
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CHAPTER 2. CLIFFORD ALGEBRAS 5

Definition 2.1.3. Let V be a n-dimensional vector space on K, with a non-

degenerate quadratic form Q. Then the Clifford algebra (or geometric algebra)

over V , ClQpV q, is an algebra generated by V satisfying these two axioms:

(C) @ v P V, v2 � Qpvq (Clifford or contraction axiom)

(G) @ e1, � � � , ej mutually orthogonal (i. e. @m �� n, em K en
1) and linearly

independent, e1 � � � ej R K (Grassmann2 or extension axiom)

Remark 2.1.3.

� In (G), if Q is positive definite and e1, � � � , ej are mutually orthogonal, then

e1, � � � , ej are necessarily l.i. (linearly independent), too. So, in this case,

we may just require in (G) the orthogonality condition. (This is still true if

Q is negative definite too.)

� We can however not require the quadratic form Q at the beginning. In this

case, one can replace the (C) with

@ v P V, v2 P K ,

and then observe that the map v Ñ v2 induces a quadratic form.

Remark 2.1.4.

� We must demonstrate the existence and uniqueness of ClQpV q. Evidence of

this will be provided later.

� As every single vector v P V verifies (G),this implies that KX V � t0u.

� @α P K, v P V vα � αv pvα � vpα1qq
Example 1. The axiom (G) is very interesting. Not only because it is a useful tool

to prove some of the main features of the algebra, but also because it is needed to

avoid degenerate examples like the following one:

K can be an algebra generated by K itself, but it cannot be a Clifford algebra

thanks to (G), unless V is trivial, that is V � t0u (This makes sense only if K is

not trivial).

Remark 2.1.5. If we consider the bilinear form xx, yy associated to Q, we have

that:

2xx, yy � Qpx�yq�pQpxq�Qpyqq � pin ClQpV qq � px�yq2�px2�y2q � xy�yx,

@x, y P V .
1With respect to the bilinear x , y form induced by Q, hence with u K v we mean that

xu, vy � 0.
2This axiom is related to Grassmann, because of definition 52, at pag. 29 in [7].
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Notation. We will use the following notations:

� α, β, γ � � � for scalars ;

� a, b, c, � � � , u, v, w, x, y, z, � � � for vectors ;

� A,B,C, � � � for elements of ClQpV q, also named multivectors ;

� AB (juxtaposition) for the algebra product that we call Clifford (or geomet-

ric) product ;

� xx, yy or x �y for the unique symmetric bilinear form such that xx, xy � Qpxq.

Remark 2.1.6. It is useful to remark that x � y � 0 ô xy � �yx.

Definition 2.1.4. If x1, � � � , xk P V , we define the completely antisymmetric

product of k ordered vectors x1, � � � , xk as

rx1, � � � , xks � 1

k!

¸
σPSk

signpσqxσp1q � � � �xσpkq,

where Sk is the symmetric group, i.e. the space of all the permutations of k

elements and signpσq is the sign of σ P Sn (Sometimes, to facilitate the reading,

we denote the sign of σ with |σ|).

Remark 2.1.7.

� rx, ys � xy�yx
2

� rx, xs � 0

� rx, ys � �ry, xs

� αrx, ys � rαx, ys � rx, αys

� rx� z, ys � rx, ys � rz, ys

We can extend the foregoing results to any dimension.

Proposition 2.1.5. For each x1, � � � xh, y P V, @α P R , we have that

(i) rxτp1q, � � � , xτphqs � p�1q|τ |rx1, � � � , xhs @τ P Sh

(ii) rx1, � � � , xhs � 0 if xi � xj for some 1 ¤ i   j ¤ h

(iii) The completely antisymmetric product is multilinear in its components.

(iv) e1, � � � , eh mutually orthogonal, then re1, � � � , ehs � e1 � � � eh.
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Proof. (i) The function f : Sh Ñ Sh such that σ Ñ τ � σ is a bijection. Then it

follows from: p�1q|τ�σ| � p�1q|τ |p�1q|σ|.

(ii) As a transposition, that is a permutation τ that changes only iÑ j, is an

odd permutation; then (ii) follows easily from (i).

(iii) This is due to distributivity of the geometric product..

(iv) eiej � �ejei, then eσp1q � � � eσphq � p�1q|σ|e1 � � � eh.

Corollary 2.1.6.

x1, � � � , xh P V are linear independent ðñ rx1, � � � , xhs �� 0

Proof. (ð) It follows from the previous proposition.

(ñ) The previous proposition implies that D e1, . . . , eh mutually orthogonal such

that spantx1, . . . , xhu � spante1, . . . , ehu, and

rx1, . . . , xhs � αre1, . . . , ehs � α e1 � � � eh, with α � det

����
χ1,1 � � � χ1,h

...
...

χh,1 � � � χh,h

���
,

where xi �
°h
j�1 χi,jej.

Then, by hypothesis, α �� 0.

The thesis then follows, using axiom (G).

Remark 2.1.8. The proof points out that, if we are in the Euclidean space, for

every couple of l.i. vectors u, v, ru, vs � sin θe1e2, where e1, e2 is an orthogonal

basis for the two-dimensional linear space spantu, vu and θ is the angle between

u and v, oriented by the ordered basis te1, e2u.
Remark 2.1.9. Hence, every non-degenerate completely antisymmetric product

can be expressed as the Clifford product of n mutually orthogonal vectors, and

vice versa.

Definition 2.1.7. We call k-blade the geometric product of k mutually or-

thogonal and linearly independent vectors. Thus, a k-blade coincides with the

non-degenerate completely antisymmetric product of its factors.

Notation. If g1, � � � gn is an ordered basis for V and A � t1, ..., nu, we will denote

with gA :�±
iPA gi, where indexes in A are taken, in the product, in their natural

order.

If A � H, then gA :� 1.
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Remark 2.1.10. By the anticommutative property of the orthogonal vectors, we

have that:

spantgAuA�t1,...,nu � ClpV q

Furthermore, if we call ClkpV q :� spantk-bladesu the space of k-multivectors, we

obtain the following result.

Notation. In ClpV q, dimK � dimCldimV pV q � 1, but we have just shown that

1 and e1 � � � edimV represent different elements in the space (they are linearly

independent). So, we call pseudo-scalar an element in CldimV pV q.
If te1, ..., enu is an orthonormal basis of V (an orthogonal basis such that e2

i � �1

in the relative Clifford algebra), then we call pseudo-unit the element e1 � � � en P
CldimV pV q � ClpV q. (also called orientation of V ).

We can observe that I is invertible.

Theorem 2.1.8. If e1, .., en is an orthonormal basis of a non-degenerate quadratic

space V , then

i) teAuA � t1, ..., nu
#A � k

is a basis for ClkpV q.

ii) teAuA�t1,...nu is a basis for ClpV q.

iii) ClpV q can be decomposed as follows,

ClpV q �Àn
k�0Cl

kpV q.
Thus, dimClpV q � 2dimV .

The proof of this theorem is left in the appendix.

2.1.1 A Classical Way to Define the non-Degenerate Clif-

ford Algebra

In this subsection, we will refer to ClQpV q with G. We do that because in this

subsection we want to observe that, if we work with non-degenerate quadratic

forms, our definition of Clifford algebra is equivalent to the following one, that is

the usual way to define it (See [13] or [3] for example).

Moreover, in this chapter we take for granted some properties of tensor algebras.

For more details see [9].

Definition 2.1.9. Let V be a n-dimensional vector space over the field K and Q

a quadratic form on V . The Clifford algebra ClQpV q associated with pV,Qq is the

associative algebra with unit, defined by

ClQpV q :� V b{IpV,Qq
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where V b � `i¥0V
bi is the tensor algebra of V and IpV,Qq the two-sided ideal

generated by all the elements of the form xb x�Qpxq1, for x P V .

We don’t choose to use this definition because it requires a more depth knowledge

about astract algebra like tensor product and universal properties (as we can

see right now). So, in order to prove the equivalence we need to show a result,

respecting the classic definition.

Remark 2.1.11. There is a natural map i : V Ñ ClQpV q obtained by considering

the natural embedding j : V ãÑ V b, followed by the projection π : V b Ñ ClQpV q.
Viewing V as a subset of ClQpV q in that way, the algebra ClQpV q is generated by

V (and the unit 1), subject to the relations

v � v � Qpv, vq1.

Remark 2.1.12. V b the tensor algebra with the inclusion j : V Ñ V b is the

essentially unique3 pair that verifies the following universal property:

for any other associative algebra with unit A, and any linear map f : V Ñ A,

there exists a unique K-algebra homomorphism

f̂ : V b Ñ A

satisfying

f̂ � j � f.

Also the Clifford algebra checks its own universal property.

Proposition 2.1.10. Let A be an associative algebra with unit and f : V Ñ A a

linear map such that for all v P V

fpvq2 � Qpvq1A. (2.1)

Then there exists a unique K-algebra homomorphism

f̃ : ClQpV q Ñ A

satisfying

f̃ � i � f

Furthermore, if C is an associative K-algebra with unit carrying a linear map

i1 : V Ñ C satisfying i1pvq2 � Qpvq1C, with the property above, then C is isomorphic

to ClQpV q.
3Up to isomorphisms of algebras that commute with inclusions.
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Proof. To prove this proposition we refer back to the universal property of the

tensor algebra.

V A

V b ClpV q

f

j
f̂

π

f̃

If ras P ClpV q (a, element of tensor algebra, is a representative of the equivalence

class ras, element of the Clifford algebra),

f̃prasq :� f̂paq,

where f̂ is the unique homomorphism granted by the universal property of tensor

algebra. By Proposition 2.1, f̃ is well defined. Moreover,

f̃pipvqq � f̃prjpvqsq � f̂pjpvqq � v.

For construction we have that this homomorphism is unique (It follows from the

uniqueness in the universal property of tensor algebra).

In the end, if we have C and i1 as in the hypothesis, then we obtain ĩ1 : ClpV q Ñ C
and ĩ : C Ñ ClpV q that commute with i and i1. Hence they are the inverse of each

other, and this implies that ClpV q and C are isomorphic.

V C

ClpV q

i1

i
ĩ

ĩ1

With this result we can show the equivalence.

Proposition 2.1.11. If G is the geometric algebra, and ClQpV q is the Clifford

algebra defined above, then

G � ClQpV q.

Proof. It is directly implied by Theorem 2.1.8.

In fact, according to the last proposition, we only need to show that there is a

unique algebra homomorphism f̃ : G Ñ A such that f̃ � i � f , where i is the

canonical inclusion of V in G and f : V Ñ A is a linear map with fpvq2 � qpv, vq1A.

But this is trivial, when we know that teBuB�t1,...nu is a basis for G, because if

A � °
B αBeB is an its generic element, f̃ can only be
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f̃pAq :�
¸
B
αBf̃peBq

where f̃peBq :� fpei1q � ... � fpeikq.

Notation. Hence, for the rest of the paper we will refer to a generic Clifford

Algebra with ClpV q or GV without any difference.

2.2 Basic Results on Clifford Algebras

In this section we will show useful results for the development of our results, that

a reader can also find in [12] or in [8].

2.2.1 Basic Operators on Clifford algebras

Thanks to the last result we will identify the Clifford Algebra with ClpV q or GV

without any difference.

In this section we want to introduce the most common structures used in the

geometric algebra and some of the results associated to them.

Remark 2.2.1. For every x, y P V , we have that px � yq2 � xx � y, x � yy �
xx, xy � xy, yy � 2xx, yy, but px� yq2 � x2 � y2 � xy � xx, xy � xy, yy � xy � yx,

then we obtain
xy � yx

2
� xx, yy

Now, we can show one of the main and famous identities in the geometric algebra,

Proposition 2.2.1. For every x, y P V ,

xy � xx, yy � rx, ys (2.2)

Proof. xy � xy�yx
2

� xy�yx
2

.

Now we want to get an insight into (2.2).

First, we need to analyze the rx, ys part. We want to consider it as a binary

(bilinear) operation, to focus the algebraic aspect over the geometric one. To do

that we need to define two new operators.

Notation. A P ClpV q, then we call xAyk the k-grade component of A.

In other words, xAyk is the projection of A P ClpV q onto ClkpV q.
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Definition 2.2.2. For every pair of elements A,B : A P CljpV q; B P ClkpV q,

� (outer product) A^B � xAByj�k

� (inner product) A �B � xAByk�j (only if k ¥ j ; 0 otherwise.q

Of course we can extend the definition by linearity to all elements of ClpV q.

Remark 2.2.2. If a, b P V the inner product is the well known scalar product.

Proposition 2.2.3. The outer product is associative.

Proof. Consider first a j-vector A, a k-vector B and a l-vector C:

pA^Bq ^ C � xAByj�k ^ C � xxAByj�kCyj�k�l � xABCyj�k�l

Last equality holds because only xAByj�k can contribute to xABCyj�k�l.
a similar calculation shows the same for A^ pB ^ Cq.

The next proposition answers our previous problem, letting us to consider rx, ys
as a binary operation.

Proposition 2.2.4. @x1, ...xk P V ,

rx1, ... , xks � x1 ^ ...^ xk.

In particular, if a, b P V ,

ab � a � b� a^ b. (fundamental identity)

Proof. We will use the induction on j.

The base is trivial (rxs � x).

Now we want to show that rx1, ...xm�1s ^ xm � rx1, ..., xms.
If rx1, ..., xm�1s � 0 it is true.

Otherwise, there exists an orthogonal base te1, ..., emu such that

rx1, ..., xm�1s � kpe1 � � � em�1q with k P K �� 0.

Now, xm � °m
i�1 αiei, hence,

xrx1, ..., xm�1sxmym � αmk e1 � � � em � rx1, ..., xms.
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Notation. Now we want to give a geometric meaning to our algebraic blades.

So, we will consider the spantb1, ..., bku � V the space associated to the blade

B � b1 � � � bk.

Remark 2.2.3. Sometimes, with abuse of notation, we will call the blade and its

space associated with the same name.

Proposition 2.2.5. For every a P K, A,B,C P ClpV q, we have

(i) paAq �B � A � paBq � apA �Bq

(ii) A � pB � Cq � A �B � A � C; pB � Cq � A � B � A� C � A

(iii) paAq ^B � A^ paBq � apA^Bq

(iv) A^ pB � Cq � A^B � A^ C; pB � Cq ^ A � B ^ A� C ^ A.

(v)

A � pB � Cq � pA^Bq � C (2.3)

Proof. i) and iii) Those are trivial from the definition.

ii) We suppose that A is a j-vector and B and C are k-vectors.

A�pB�Cq � xApB�Cqyk�j � xAB�ACyk�j � xAByk�j�xACyk�j � A�B�A�C .

If they are arbitrary multivectors, we have

A � pB � Cq �
¸
j

xAyj
¸
k

xB � Cyk �

�
¸
j,k

xAyj � pxByk � xCykq �

�
¸
j,k

xAyj � xByk � xAyj � xCyk �

� A �B � A � C .

We use a similar argument for the other equality and for the iv).

v) Both the terms are equal to xABCyl�k�j if A is a j-vector, B is a k-vector and

C is a l-vector. Then, like in ii), we can extend it to arbitrary multivectors.

We denote with I the pseudo-unit in ClpV q w.r.t. to an orientation given by a

basis of the space.

Definition 2.2.6. If A P ClpV q we call A� :� A{I � AI�1 its dual4. (with

respect to the orientation).

4It makes sense because I is always invertible.
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Proposition 2.2.7. If n � dimV ,

(i) paAq� � aA�

(ii) pA�Bq� � A� �B�

(iii) A�� � �A, and A�� � p�1qnpn�1q
2 A if Q is a positive definite quadratic

form.

(iv) if A is a k-vector then A� is a pn� kq-vector

(v) if A is a k-blade then A� is a pn� kq-blade

(vi) if U is the space associated to a blade B, then the space associated to B�

will be UK

Proof. i) and ii) are true for the linearity of the Clifford product.

iii) If Q is a positive definite quadratic form it immediately follows from

I2 � p�1qnpn�1q
2 , otherwise I2 is anyway equal to �1 or 1, in accord to the signature

of the form.

iv) follows from v). v and vi) Let A � a1 � � � aj, the product of members of an

orthogonal invertible basis for U. Let taj�1, � � � , anu be an orthonormal basis for

UK . Then,

I � � a1

|a1| � � �
aj
|aj| � aj�1 � � � an.

Hence A� � �|a1| � � � |aj| � aj�1 � � � an.

We can immediately see an interesting result using the dual operator.

Proposition 2.2.8. If dimV � n, every A P Cln�1pV q is a pn� 1q-blade

Proof. If A P Cln�1pV q, from the proposition above, we have that A� is a vector,

in particularly it is a 1-blade. Then, A�� is a pn� 1q-blade.

But A � �A��, hence we got the thesis.

Example 2. It is useful to remark that the last statement it is not true for any

arbitrary m ¤ n. In fact in ClpR4q, the 2-multivector e1e2 � e3e4 it is not a

2-blade.

Now we want to endow our Clifford algebra with a norm or something similar. To

do that we need to introduce the “reversion” first,

Definition 2.2.9. If A is a j-vector, the reversion Ã :� p�1q jpj�1q
2 A and we extend

it for linearity to all GV .
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Remark 2.2.4. If A :� a1 ^ a2 � � � ^ ak, we have that Ã � ak ^ ak�1 ^ � � � ^ a1.

Definition 2.2.10. A P GV ,

||A||2 � xAÃy0

Remark 2.2.5. We can observe that if A � °
J aJeJ w.r.t. to an o.n. basis of GV ,

then

||A||2 :�
¸
J

|aJ |2||eJ ||2.

Then we can also see that it can be negative despite what it might seem. Only if

Q is a positive definite form, we have that this map is a norm in all respects.

Moreover, if B is a blade, ||B|| �� 0 ô B is invertible.

Proposition 2.2.11. If A,B P GV ,

(i) �A^B � B̃ ^ Ã

(ii) ||A�|| � ||A||

(iii) pA^Bq� � A �B�, pA �Bq� � A^B�

(iv) �AB � B̃Ã

Proof. i) It follows from Remark 2.2.4.

ii) It is another consequence of the proof of Proposition 2.2.7,(v). iii) If A is a

j-vector and B a k-vector,

A �B� � xApBI�1qypn�kq�j � xApBI�1qyn�pj�kq � xAByj�kI�1 � pA^Bq�.
We can extend it to the general case through the linearity of the involved operators.

We can use a similar argument for the other equality.

iv) For linearity, if we decompose both A and B with respect to an o.n. basis

teIuI , it suffices proving the thesis for eIeJ .

First of all, we start to prove that �e0eI � ẽIe0.

If 0 R I this is trivial; otherwise, if |I| � k, we have that,

�e0eI � p�1q pk�1qpk�2q
2 e0eI � p�1q pk�1qpk�2q

2 p�1qn�1eIe0 � p�1q pk�1qpkq
2 eIe0 � ẽIe0.

Now we can finally prove the thesis by induction on |J | simply observing the

following chain of equalities, (calling ef the “last” element of eJ : eJ{tfuef � eJ)

ẽJ ẽI � �eJ{tfuef ẽI � ẽf ˜eJ{tfuẽI � ef �eIeJ{tfu � �eIeJ{tfuef � �eIeJ .
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Remark 2.2.6. In GR3 we can recognize the well known cross product defining it

as u� v :� pu^ vq�.
Infact, we can observe that choosing an o.n. basis of the space.

Theorem 2.2.12. A,B P GV . If A or B is a blade, then

||AB|| � ||A|| ||B||.

Proof. We observe that if B is a blade we have that BB̃ � xBB̃y0. Then,

||AB||2 � xAB�ABy0 � xABB̃Ãy0 � ||B||2xAÃy0 � ||B||2||A||2.

Example 3. In general this is not true: pe1e2 � e3e4qpe1e3 � e2e4q � 0.

Now we can extend the fundamental identity,

Lemma 2.2.13. Let B � b1 � � � bk a k-blade, a|| P B and aK K B. Then,

a) a|| �B � a||B and a|| ^B � 0,

a|| �B is a pk � 1q-blade in B (unless a|| � 0)

b) aK ^B � aKB and aK �B � 0,

aK ^B is a pk � 1q-blade representing spantaK, Bu (unless aK � 0)

Proof. Since a|| P B, it is a linear combination of tb1, � � � , bku. Then it is easy to

see that a||B is a combination of pk � 1q-vectors in B. Thus,

a|| �B � xa||Byk�1 � a||B a|| ^B � xa||Byk�1 � 0.

Moreover, if a|| �� 0, a||B is a combination of pk � 1q-vectors, and so from

Proposition 2.2.8 is a pk � 1q-blade.

Since aK K B, aKB is a pk � 1q-blade. Hence as we did above, we obtain the

thesis.

Proposition 2.2.14 ((Extended fundamental identity)). Let a P V and B P GV .

Then

aB � a �B � a^B

.
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Proof. If we prove that only for blades, the thesis will follow from the linearity of

all the operators (the thesis holds by definition if B is a scalar, then we will not

consider this trivial case in the proof).

We decompose a � a|| � aK. From the lemma,

aB � pa|| � aKqB � a|| �B � aK ^B � a �B � a^B.

Remark 2.2.7. Moreover a left vector product split every k-blade in a sum of

pk � 1q and pk � 1q-blades.

Remark 2.2.8. We cannot extend anymore, because

AB �� A �B � A^B.

(example: e1e2 and e2e3 in R3)

We want to end listing some other properties of these operators.

Proposition 2.2.15. Let A,B be two blades in GV . Then, according to the abuse

of notation announced in the Remark 2.2.3, we have that

(i) A �B � B (Provided A �B is a blade, or 0)

(ii) A � B ñ A �B � AB

(iii) a P Añ a K A �B

(iv) ||A||2 � ||A � A||

(v) A^B � spantA,Bu if AXB � t0u, otherwise it is 0

(vi) B ^ A � p�1qdimA�dimBA^B

Proof. i) Let A be a j-blade and B a k-blade. Express A � a1a2 � � � aj�1aj, a

product of orthogonal vectors. We will start with aj �B, then paj�1ajq �B, and so

on, showing that each is a blade (or 0). According to the extended fundamental

identity, aj � B is a pj � lq-blade in B (or 0). Next, paj�1ajq � B � xaj�1ajByk�2.

Now, only the blade xaj �Byk�1 from ajB can contribute to pxaj�1ajByk�2.

Now, apply the extended fundamental identity twice to see that the right side is a

pk � 2q-blade in B (or 0). Hence,

xaj�1ajByk�2 � aj�1 � xajByk�1 � aj�1 � paj �Bq.
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Continuing in this way, A �B is a blade in B (or 0).

ii) It is trivial because in this case AB is a pk � jq-blade.

iii) a � pA �Bq � pa^ Aq �B � 0 �B � 0.

iv) Let A � a1a2 � � � aj, a product of orthogonal vectors. Then both ||A||2 and

||A � A|| are equal to |a1|2|a2|2 � � � |aj|2.

v) Consider first the case A X B �� t0u. Choose c P A X B. Extend tcu to an

orthogonal basis ta1, � � � , aj�1, cu for A. If A �� a1 � � � aj�1c, then make it so by

multiplying at by a nonzero scalar. Similarly. B � cb1 � � � bk�1. Then

A^B � xAByj � k � |c|2xa1 � � � aj�1b1 � � � bk�1yj � k � 0.

Now consider the case AXB � t0u. Express A � a1 � � � aj , a product of orthogonal

vectors. We will build up A ^ B starting with aj ^ B, then paj�1ajq ^ B, and

so on. Since aj R B, aj ^ B is a pk � lq-blade representing spanpaj, Bq. Next,

analogously to i),

paj�1ajq ^B � aj�1 ^ paj ^Bq.

Since aj�1 R spanpaj, Bq, it follows that paj�1ajq^B is a pk�2q-blade representing

spanpaj�1, aj, Bq � spanpaj�1aj, Bq. Continuing in this way, A^B is a pk � jq-
blade representing spanpA,Bq. vi) For the anticommutative property of the outer

product, if A � a1 � � � aj and B � b1 � � � bk, we have that

B ^A � b1 ^ � � � ^ bk ^ a1 ^ � � � ^ aj � p�1qjb1 ^ � � � ^ bk�1 ^ a1 ^ � � � ^ aj ^ bk �

� p�1qj�ka1 ^ � � � ^ aj ^ b1 ^ � � � ^ bk � A^B

2.2.2 Projection, Rotation, Reflection

A first impressive Clifford algebra result can be observed through the following new

ways to define the most common geometric transformations: projection, rotation

and reflection.

Proposition 2.2.16. a P V and B an invertible blade. Then we can decompose

a � a|| � aK. Hence,

a|| � a�B{B (projection)

aK � a^B{B (rejection)
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Proof. From the propositions above, a||B � a �B and aKB � a^B.

Definition 2.2.17. v P V, B blade, then

� the distance between v and B is dpv,Bq :� |vK|

� the projection of v on B is PBpvq :� v||

Remark 2.2.9. If B is invertible,

� dpv,Bq � ||v^B||
||B||

� PBpvq � v�B{B

Definition 2.2.18. M P GV , B invertible, then

PBpMq :� pM �Bq{B .

Remark 2.2.10.

� PB is linear. (PBpαM � βNq � αPBpMq � βPBpNq)

� Recalling the Remark 2.2.3, A � B ñ PBpAq � A (see (2.3))

Proposition 2.2.19.

PBpM ^Nq � PBpMq ^ PBpNq.

Proof. We have to show for blades, and for linearity we have the thesis.

First, PBpa^ bq � PBpa||^ bq �PBpaK^ bq. The second term is zero, hence doing

the same for b we obtain that:

PBpa^ bq � PBpa|| ^ b||q � a|| ^ b|| � PBpaq ^ PBpbq

. Hence, for blades A � a1 ^ � � � ^ ai and C � c1 ^ � � � ^ cj we have that

PBpA^ Cq � PBpa1 ^ � � � ^ ai ^ c1 ^ � � � ^ cjq �
� PBpa1q ^ � � � ^ PBpaiq ^ PBpc1q ^ � � � ^ PBpcjq �
� PBpAq ^ PBpCq.

Now we can speak about another fundamental geometric transformation: the

rotation.

We will analyze it within euclidean spaces
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Notation. If A is a blade such that A2 � �1 and λ is a scalar, we can write

eAλ :� cosλ� A sinλ. For this reason, in this context, we often use the letter I

to call such a blade A.

Definition 2.2.20. The rotation in the plane of blade I with the angle θ is

denoted by RIθ.

Remark 2.2.11. Thanks to Remark 2.1.8 we can see that, in euclidean spaces,

if u, v are two l.i. vectors, then uv � |u||v|pcos θ � sin θIq with I the 2-blade

representing the plane of u, v, and θ the angle between them.

Then in our new notation, uv � |u||v|eIθ.
Moreover if we want to rotate u in a plane I of an angle θ, obtaining the new

vector v (with the same norm of u), we have that u2v � u|u||v|eIθ, and because

|u||u| � |u||v| � u2 we obtain that v � ueIθ.

Now we want to consider a general rotation of angle θ in the plane I: this time u

is not necessarily lying in the plane I. We will denote it RIθpuq.

Lemma 2.2.21. If a is a vector and A is a j-blade such that a P A (it makes

sense since Remark 2.2.3), then

aA � p�1qj�1Aa.

Proof. We need to decompose a in the orthogonal basis of the blade A (obviously

we can because a P A). Then every vector of the basis anticommutes with every

element of A, except with itself (where it trivially commutates).

Proposition 2.2.22. With the notation above,

RIθpuq � e�
Iθ
2 ue

Iθ
2 .

Proof. We decompose u with respect to the plane of I, so u � u|| � uK. Then,

we have that RIθpuq � u||e
Iθ � uK (Indeed RIθpuKq � uK). Thus, thanks to the

foregoing lemma,

RIθpuq � u||e
Iθ
2 e

Iθ
2 � uKe

� Iθ
2 e

Iθ
2 �

� e�
Iθ
2 u||e

Iθ
2 � e�

Iθ
2 uKe

Iθ
2 �

� e�
Iθ
2 ue

Iθ
2 .
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For completeness, using the last result, we extend the operator R also to the

generic elements of the Clifford algebra, even if it will not be necessary for the

results of our work.

Definition 2.2.23. If M P GV ,

RIθpMq :� e�
Iθ
2 Me

Iθ
2 .

Remark 2.2.12.

� RIθ is linear.

� RIθpMNq � RIθpMqRIθpNq @M,N P GV .

Lemma 2.2.24. Let A and B be multivectors. Then xABy0 � xBAy0.

Proof. Let aE (a a scalar, E a 1-norm blade) be a term in the expansion of A

with respect to a standard basis B. Similarly, let bF be in the expansion of B. In

AB each aE is multiplied by each bF : paEqpbF q � abEF . Inspection of B shows

that xEF y0 �� 0 only if E � F . Then xpaEqpbF qy0 � abE2 (or 0), where E2 � �1.

Similarly xpbF qpaEqy0 � baE2. The scalar parts are equal.

From the lemma, xpABqCy0 � xCpABqy0, this implies a cyclic reordering property:

xABCy0 � xCABy0.

Proposition 2.2.25.

RIθpM ^Nq � RIθpMq ^RIθpNq,

RIθpM �Nq � RIθpMq �RIθpNq.

Moreover, the rotation preserves the grade.

Proof. We already know that the rotation operator transforms vectors in vectors.

Moreover, by the previous lemma,

RIθpuq �RIθpvq � xe� Iθ
2 uve

Iθ
2 y0 � xe� Iθ

2 e
Iθ
2 uvy0 � xuvy0 � u � v.

Then the rotation preserves the orthogonality.

For construction, we have that, for every j-blade u1 � � �uj,

RIθpu1 � � �ujq � RIθpu1q � � �RIθpujq
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. Since the rotation preserves the orthogonality, the right side is a j-blade again.

Then we have proved that rotation preserves the grade too.

Now, suppose first that M is a j-blade and N a k-blade. Applying what we have

just observed,

RIθpM ^Nq � RIθxMNyj�k
� xRIθpMNqyj�k
� xRIθpMqRIθpNqyj�k
� RIθpMq ^RIθpNq.

Thanks to the linearity of the involved operators, we can easily generalize this

result to general multivectors. A similar argument can be used to prove the inner

product part.

Now it is time to analyze the reflection, another well known transformation.

Proposition 2.2.26. Let a be a vector and A a j-blade. Then,

a � A � 1

2
paA� p�1qjAaq,

a^ A � 1

2
paA� p�1qjAaq.

Proof. a � a|| � aK w.r.t to A. Hence we know that aKA � p�1qjAaK.

And for Lemma 2.2.21, a||A � p�1qj�1Aa||. Thus,

aA� p�1qjAa � pa|| � aKqA� p�1qjApa|| � aKq �
� pa|| � aKqA� p�a|| � aKqA � 2a||A � 2a � A.

In the same way we can prove the second expression.

Definition 2.2.27. Let a be a vector and B an invertible k-blade. Then if

a � a||� aK is the well known decomposition then the reflection of a through B is

FBpaq :� a|| � aK.

Proposition 2.2.28. With the notation above,

FBpaq � p�1qk�1BaB�1.

Proof.

FBpaq � a||�aK � pa �B�a^BqB�1 � (previous prop.) � p�1qk�1BaB�1.
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Moreover if we are working with hyperplanes we can simplify the formula.

Proposition 2.2.29. If a is a vector, and B is an invertible hyperplane, with

b :� B� its dual vector, then

FBpaq � �bab�1.

Proof. Observing that a|| K b and aK ‖ b,

�bab�1 � �bpa|| � aKqb�1 � a||bb
�1 � aKbb

�1 � a|| � aK � FBpaq.

Definition 2.2.30. As we did for rotation and projection, we can extend the

definition of reflection to multivectors, then if A is a multivector whose grade is j,

FBpAq :� p�1qjpk�1qBAB�1.

Proposition 2.2.31. FB is linear, preserves grade. Moreover,

FBpM ^Nq � FBpMq ^ FBpNq,

FBpM �Nq � FBpMq � FBpNq.

Proof. The proof is similar to that at Proposition (2.2.25).

Remark 2.2.13. Summarizing,

� (projection) PBpAq � pA �BqB�1

� (rotation) RIθpAq � e�
Iθ
2 Ae

Iθ
2

� (reflection) FBpAq � p�1qjpk�1qBABp�1q

Now, we can rewrite the rotation in a more useful way, using a classical theorem5

of geometry: the Cartan-Dieudonne theorem.

Theorem 2.2.32 (Cartan-Dieudonne). Let f be an orthogonal transformation in

a n-dimensional symmetric bilinear space, then f is a composition of at most n

reflections.

With the notation and the results above we can rearrange the theorem in a “new”

algebraic form for our context.

5See details in [6]
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Theorem 2.2.33. Let f be an orthogonal transformation in a n-dimensional

non-degenerate quadratic space, then there exists a V � v1 � � � vr with r ¤ n such

that,

fpvq � p�1qrV vV �1.

Notation. If a, b are two vectors, we denote with ǎb the angle between them.

Remark 2.2.14. Let us to show an example: the rotation in the plane represented

by the 2-blade i (i2 � �1), RIθpvq � e�
Iθ
2 ve

Iθ
2 .

If we find two unit vectors a, b P I such that ǎb � θ{2, we have that ab � e
Iθ
2 then

we obtain the statement above, hence RIθpvq � b�1a�1vab.



Chapter 3

Shape Distance in 2D

In this chapter, our purpose is to find a reasonable way to describe a “similarity

distance” between two smooth curves. In particular, we will find a pseudo-distance

between smooth curves that can measure how much similar are two curves.

We consider two smooth curves as similar if we can obtain one composing the

other one with a direct homothety (a scaled rototranslation), while we exclude

inverse homothety (An interested reader may also see [11]).

We want to stress that we work with such invariances only in dimension 2, as we

will choose other similarity criteria to compare gestures in higher dimensions, in

Chapter 5.

3.1 Gestures and Shapes

In this section V will be a two-dimensional Euclidean space, that we shortly

denote by E2. We start to define similarity between two ordered couples of vectors,

and then a similarity distance.

Lemma 3.1.1. a, b, c are coplanar in a Euclidean space, if and only if

abc � cba.

Proof. As abc � axb, cy � apb^ cq, using Lemma 2.2.21, we obtain

abc � axb, cy � pb^ cqa � xc, bya� pc^ bqa � cba.

Proposition 3.1.2. Let pa, b, cq be an ordered triple of elements P E2. Then if

a, b are l.i., we have that d � ba�1c is the “vector fourth proportional” to the triple

25
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pa, b, cq, that is the unique vector such that:

�

|a|
|b|
� |c|

|d|
. (scalar)

� the angle ǎb � čd. (directional)

Proof. Since we Let c1 � Ra^b ǎbpcq that we denote, with abuse of notation, Rǎbpcq.
For Remark (2.2.14), we have that

Rǎbpcq �
â� b̂

|â� b̂| âcâ
â� b̂

|â� b̂| ,

where x̂ � x
|x|

. Now we got the thesis iif d � |b|
|a|
c1. Then,

|b|
|a|c

1 � |b|
|a|

â� b̂

|â� b̂| âcâ
â� b̂

|â� b̂| � pby Lemma (3.1.1))

� |b|
|a|

â� b̂

|â� b̂| â
â� b̂

|â� b̂| âc � pbecause a�1 � a

|a|2 q

� |b|
|a|

â� b̂

|â� b̂|a
â� b̂

|â� b̂|a
�1c � |b| â� b̂

|â� b̂| â
â� b̂

|â� b̂|a
�1c �

� |b| F â�b̂

|â�b̂|

pâq a�1c � |b|b̂a�1c � ba�1c � d.

We recall that FBpxq is the reflection of x through the blade B.

As F â�b̂

|â�b̂|

pâq � b̂, we can reformulate this proposition in a “geometrical” way, to

better focus our point of view.

Notation. If three consecutive vectors a, b, c trace a triangle in the plane (so that

a� b� c � 0), we denote that triangle by
4
abc, as a geometric figure.

This definition does not depend on the translations (only vectors are involved in

this construction); consequently, it describe the triangle as an object unrelated to

the origin.

Corollary 3.1.3. Let T1 and T2 be two triangles in the plane such that T1 :� 4
x1x2x3

and T2 :� 4
y1y2y3. Then,

T1 � T2(direct similarity) ðñ D a, b, c, d P t1; 2; 3u such that xax
�1
b � ycy

�1
d .

Definition 3.1.4. Let S :� tpa, bq | a, b P R2, b �� 0u.
Then, pa, bq � pc, dq ðñ ab�1 � cd�1.

Remark 3.1.1. We can see that if we consider b consecutive to a and d to c,

pa, bq � pc, dq ùñ
4

abpa� bq �
4

cdpc� dq, but not the reverse!
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For example,
4

e1e2p�e1 � e2q �
4

�e1pe1 � e2qp�e2q, but e1e
�1
2 �� �e1pe1 � e2q�1.

Now we can introduce the objects we will use in this section,

Definition 3.1.5.

� A curve f : I � r0, 1s Ñ R2 is a plane gesture if it is regular

(that is C2r0, 1s such that f 1 �� 0),

� A pn� 1q-sample of a gesture is tf0, . . . , fnu � fpIq.

This definition is useful both to mathematicians and to IT engineers. As a matter

of fact, we can interpret the samples as the input data of a basic gesture in the

plane, but we can still look at them as the points associated to a generic partition

of the curve.

Definition 3.1.6. A basic gesture in R2 is an ordered couple of not null vectors

pv1, v2q commonly considered as a particular 2-sample of a plane gesture tracing a

triangle.
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This definition is the result of what we had shown in the last corollary, namely

that the basic gesture can be interpreted as a “triangle with ordered sides”.

Definition 3.1.7. The shape of a basic gesture pv1, v2q is the Clifford number
v1{v2 .

From Corollary 3.1.3, the shape of a basic gestures is invariant through direct

similarity transformations. Then it induces us to consider the follow “measurer”

function,

Definition 3.1.8. The Local Shape Distance between two basic gestures

pu1, u2q and pv1, v2q is the non-negative real number

LSD
�pu1, u2q, pv1, v2q

� � ������ u1{u2 � v1{v2

������
Thus, the Local Shape Distance is simply a proper distance between the elements

representing the shapes of two basic gestures, (according to [10]), hence a measure

of how much the two “ordered triangles” are far from being directly similar.

Finally, we define our operator to evaluate a shape pseudo-distance for plane

gestures too.

Theorem 3.1.9.

I � r0, 1s f, g : I Ñ R2 P C3pIq : f 1ptq, g1ptq �� 0 @t P I.

Let Pn be a partition of I :�  
tk,n :� k

n

�� k � 0, � � � , n( and

fk,n :� fptk,nq

gk,n :� gptk,nq

Then:

lim
nÑ�8

n�1̧

k�1

�������� pfk,n�fk�1,nq{pfk�1,n�fk,nq �
pgk,n�gk�1,nq{pgk�1,n�gk,nq

�������� �
�
»
I

�������� f2ptq{f 1ptq � g2ptq{g1ptq
�������� dt (3.1)

To prove this theorem we need to show some other results.
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Remark 3.1.2. If we consider the even subalgebra Cl0pE2q ` Cl2pE2q� ClpE2q we

can observe that,

C � Cl0pE2q ` Cl2pE2q
x� iy

jÝÑ x� e2e1y
(3.2)

Now C � E2 as vectorial space (with its quadratic form), then if u, v P E2 pu �
xe1 � ye2q, we can obviously consider both as elements of C pu � x� iyq.
And we can finally observe that

u{v � jpuq{jpvq � j
�u

v

	
The last equality follows from the foregoing definition of isomorphism j. We point

out that in the even subalgebra, the product is commutative, and that we can

swap indifferently between the two spaces C and Cl0pE2q ` Cl2pE2q.
Then, thanks to this isomorphism we can consider the shape of a gesture or any

element of the even subalgebra as fraction of complex numbers too. More in

details,

� (complex) shapepu, vq � u
v
P C

� (complex) LSDppu1, u2q, pv1, v2qq �
���u1

u2
� v1

v2

���
C
¥ 0

Remark 3.1.3. It is better to specify that LSD is a pseudometric in the space of

basic gestures tpu, vq | 0 �� u, v P R2u, while we are talking about it as “distance”.

This is perfectly fine, because it is a distance in the space of shapes (C or the

even subalgebra, depending on the point of view).

Hence, Theorem 3.1.9 is equivalent to the following one,

Theorem 3.1.10. I � r0, 1s f, g : I Ñ R2 P C2pIq : f 1ptq, g1ptq �� 0 @t P I.

Let Pn be a partition of I :�  
tk,n :� k

n

�� k � 0, � � � , n( and

fk,n :� fptk,nq

gk,n :� gptk,nq

Then:

lim
nÑ�8

n�1̧

i�1

����pfk,n � fk�1,nq
pfk�1,n � fk,nq �

pgk,n � gk�1,nq
pgk�1,n � gk,nq

����
C
�

�
»
I

���� f2ptqpf 1ptqq �
g2ptq
pg1ptqq

����
C
dt (3.3)
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Proof of both Theorem 3.1.9 and Theorem 3.1.10.

By hypothesis, the Riemann integral

» 1

0

����f2ptqf 1ptq �
g2ptq
g1ptq

����
C
dt exists; this implies

that for every ε ¡ 0 there exists Nε P N such that����� ņ
k�1

����f2pξkqf 1pξkq �
g2pξkq
g1pξkq

����
C

1

n
�
» 1

0

����f2ptqf 1ptq �
g2ptq
g1ptq

����
C
dt

�����   ε ,

provided n ¡ Nε, and ξk P
�
k�1
n
, k
n

�
, with k � 1, . . . , n.

Notice that, to evaluate each shape
∆gk

∆gk�1

:� gk,n � gk�1,n

gk�1,n � gk,n
, the extremities of

two adjacent intervals are needed. In particular, we can write

2m�1¸
k�1

∆gk
∆gk�1

�
m̧

h�1

∆g2h�1

∆g2h

�
m�1̧

h�1

∆g2h

∆g2h�1

, (3.4)

when n is even. A similar expression holds when n is odd. Thus, to estimate

the difference between shapes and terms of a Riemann sum, we have to consider

the latter on couples of adjacent intervals. In order to simplify notations, we will

consider only the case n � 2m (n even). However, our arguments can be applied

similarly to the case: n odd. If n ¡ 2Nε, then the integral can be estimated both

by

� ����� m̧
h�1

����f2pξehqf 1pξehq
� g2pξehq
g1pξehq

����
C

1

n
� 1

2

» 1

0

����f2ptqf 1ptq �
g2ptq
g1ptq

����
C
dt

�����   ε

2
,

where ξeh P
�

2ph�1q
n

, 2h
n

�
, with h � 1, . . . ,m, and

� �����m�1̧

h�1

����f2pξohqf 1pξohq
� g2pξohq
g1pξohq

����
C

1

n
� 1

2

» 1

0

����f2ptqf 1ptq �
g2ptq
g1ptq

����
C
dt

�����   ε

2
,

where ξoh P
�

2h�1
n
, 2h�1

n

�
, with h � 1, . . . ,m.

Then, to obtain the thesis, it suffices to see how to estimate the following quantity,���� ∆f2h

∆f2h�1

� ∆g2h

∆g2h�1

�
�
g2pξohq
g1pξohq

� f2pξohq
f 1pξohq



1

n

����
C
�

�
����� ∆f2h

∆f2h�1

� 1� f2pξohq
f 1pξohq

1

n



�
�

1� ∆g2h

∆g2h�1

� g2pξohq
g1pξohq

1

n


����
C
,
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for each h � 1, . . . ,m. In particular, we can observe that, assuming δ � 1
n
, then

1� ∆g2h

∆g2h�1

� 1� gpt2hq � gpt2h � δq
gpt2h � δq � gpt2hq �

gpt2h � δq � 2gpt2hq � gpt2h � δq
gpt2h � δq � gpt2hq �

�
gpt2h�δq�2gpt2hq�gpt2h�δq

δ2

gpt2h�δq�gpt2hq
δ

δ .

By hypothesis, the function g is twice differentiable and g1 � 0, thus we have that,

for every t P r0, 1s
lim
δÑ0

gpt�δq�2gptq�gpt�δq
δ2

gpt�δq�gptq
δ

� g2ptq
g1ptq ,

as the limit of a quotient is the quotient of the limits, provided the limit of the

denominator is not zero. So, we have that, for every ε ¡ 0 there exists δε, such

that if δ   δε, then����1� ∆g2h

∆g2h�1

� g2pξohq
g1pξohq

δ

����
C
�
����� gpt2h�δq�2gpt2hq�gpt2h�δq

δ2

gpt2h�δq�gpt2hq
δ

� g2pξohq
g1pξohq

�����
C

δ   εδ ,

and provided δ   mintδε, 1
2Nε

u, observing that a similar argument can be also

applied for the function f , this prove the thesis.

The foregoing proof can also be used to prove other results, such as the following

one1.

Corollary 3.1.11. With the same notations of the previous theorem, given a plane

gesture g, then, if Pn be a partition of I, gk,n :� gptk,nq, and ∆gk :� gk,n � gk�1,n,

lim
nÑ8

n�1̧

k�1

∆gk
∆gk�1

� 2�
» 1

0

g2ptq
g1ptq dt P C.

That is why it is reasonable to give the following definitions.

Definition 3.1.12.

� The shape of a plane gesture g, is the following function

Spgptqq � 1� 1

2

g2ptq{g1ptq
1A more general proof of it will be given with Theorem 3.1.14.
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� The distance between the shape of two gestures f, g is the following operator

DSpf, gq �
»
I

����Spfptqq � Spgptqq���� dt �
� 1

2

»
I

�������� f2ptq{pf 1ptqq � g2ptq{pg1ptqq
�������� dt.

Example 4. fptq � px0, tq; gptq � px1 � r cosp2πt � φq, y1 � r sinp2πt � φqq with

t P r0, 1s and r ¡ 0, φ, x1, y1 P R.

� Spfptqq � 1

� Spgptqq � 1� π e1e2

� DSpf, gq � π.

Remark 3.1.4.

� We choose to use the Clifford product (instead of the product between

complex numbers) to keep continuity with the first definitions.

� We decided to scale in half so that the shape of a rectilinear gesture would

be 1, regardless of whether it is considered as “basic” or not. Indeed,

Definition 3.1.12 is scaled in a half also to compensate a kind of double

counting of intervals used in the sum in (3.1)2.

� Despite the previous arguments, we preferred to avoid to scale in half the

(3.1). This, in continuity with the subsequent original definition of !FTL

(See Section 3.2).

2That double counting is clearly visible in the proof of the theorem, where we needed to
divide the intervals in even and odd
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With the next example we want to show that the shape of two gestures can

differ considerably, although their images may appear close to each other, or even

be the same. We can also notice that, for every planar gesture f , sometimes

its shape can be considered as a gesture too. In fact, applying the bijection

α � β pe1 ^ e2q Ø pα, βq, we obtain a parametrized curve which, if regular, repre-

sents a new gesture.

Thus in the next figures we will show both the imagine of the gesture and its

shape together (we have chosen gestures whose shapes are regular).

Example 5. We will consider three gestures:

� b : tÑ pt, t2q, a quadratic function.

� r : tÑ pt, t3q, a cubic function, “visually close” to the previous quadratic3.

� g : tÑ �
sinpπt

2
q, sinpπt

2
q2�, a gesture which has the same image of b (gpr0, 1s �

bpr0, 1sq) but, as a gesture, different.

To avoid the overlap of gesture graphics, instead of the canonical shape, we choose

to consider 1� Spfq � 1
2

f2

{f 1 for any gesture f involved in this example.

Figure 3.1: (Top) bptq � pt, t2q
(Bottom) 1� Spbptqq

3Obviously, this is a subjective parameter: a reader might consider these as very different
functions, also in terms of appearance.
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Figure 3.2: (Top) rptq � pt, t3q
(Bottom) 1� Sprptqq

Figure 3.3: (Top) gptq � �
sinpπt

2
q, sinpπt

2
q2�

(Bottom) 1� Spgptqq
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Figure 3.4: b, r, g all together with their shapes

As you can see, the graphs of the three shapes differ greatly, although with the

images of three curves are close to each other, and two of them even coincide!

We have noticed that, for some planar gestures, their shapes can be considered as

a gestures too.

Now we consider the generic gesture fptq � pxptq, yptqq � xptqe1 � yptqe2 in R2.

Hence we have that its shape is

Spfptqq � 1� 1

2

f2ptq{f 1ptq � 1� 1

2

�
x2x1 � y2y1

px1q2 � py1q2 �
x2y1 � y2x1

px1q2 � py1q2 e1 ^ e2



Therefore, if sptq � 1� 1

2
pσ1ptq, σ2ptqq is a given shape, one can ask to solve the

following ODE system Spfptqq � sptq, that is:#
x2x1�y2y1

px1q2�py1q2
� σ1ptq

x2y1�y2x1

px1q2�py1q2
� σ2ptq

In particular, one can ask to look for any gesture that coincides with its shape,

that is Spfptqq � fptq, or #
x2x1�y2y1

px1q2�py1q2
� x

x2y1�y2x1

px1q2�py1q2
� y

As we are considering only regular gestures (those for which |f 1| �� 0), we can also
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write #
x2x1 � y2y1 � xppx1q2 � py1q2q
x2y1 � y2x1 � yppx1q2 � py1q2q

Putting u � x1 and v � y1, we have that,$''''&''''%
u � x1

v � y1

u1u� v1v � xpu2 � v2q
u1v � v1u � ypu2 � v2q

Manipulating the two last relations, we can obtain the following equivalent ODE,#
v1 � xv � yu

u1 � xu� yv
ÝÑ

#
x2 � xx1 � yy1

y2 � xy1 � yx1

Of course, setting x1 � x, x2 � y, x3 � x1, x4 � y1, the system can be reduced to a

system of first order:

X � px1, x2, x3, x4q; X 1 � F pXq

where,

F : R4 Ñ R4 : F px1, x2, x3, x4q � px3, x4, x1x3 � x2x4, x1x4 � x2x3q.

As F is C8pR4q, the initial value problem has always a unique local solution.

More interesting is the existence of bounded periodic solutions.

Theorem 3.1.9 requires some specific samples of the gestures to work. In fact we

used only Pn :�  
tk,n :� k

n

�� k � 0, � � � , n( as associated partitions.

We refer to this situation as the isochronous one, a model for input data in the

case of the difference in scan time between two subsequent samples is always the

same4.

Before continuing we want to focus on a topic:

Remark 3.1.5. The shape of a gesture (or the distance between two shapes) is

strongly dependent on its parametrization, and we want that, because it patterns

the speed in making a motion.

Indeed, if one wants to study only the supports of the curves one should use other

4I.e. we have uniformly spaced timestamps.
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instruments from Differential Geometry. In that case, one refers to curves (in the

IT environment) as strokes, instead of gestures.

For this reason, if we have a n-sample for a gesture, we can’t simply rescale

it to obtain an isochronous parametrization.

However, most of sampling devices are multitasking; this implies that the Central

Processing Unit is not always sampling points, so the time interval between two

consecutive sampled points is not constant. Thus, it is too restrictive to require

the isochronous condition, and then we need to extend Theorem 3.1.9 to more

general partitions.

Fortunately, we can do it (in the next subsection), keeping a central role for

Definition 3.1.12.

3.1.1 The non-Isochronous Case

Lemma 3.1.13. Given a plane gesture gptq then, for each t P p0, 1q, we have that

lim
τ0Ñt

τ1Ñt

τ2Ñt

τ0�τ1 , τ1�τ2 , τ2�τ0

�
1� τ2 � τ1

τ1 � τ0

gpτ1q � gpτ0q
gpτ2q � gpτ1q



1

τ2 � τ0

� 1

2

g2ptq
g1ptq

Proof.

�
1� τ2 � τ1

τ1 � τ0

gpτ1q � gpτ0q
gpτ2q � gpτ1q



1

τ2 � τ0

�
gpτ2q�gpτ1q
τ2�τ1

� gpτ1q�gpτ0q
τ1�τ0

τ2 � τ0

1
gpτ2q�gpτ1q
τ2�τ1

(3.5)

we notice that
gpτ2q�gpτ1q
τ2�τ1

� gpτ1q�gpτ0q
τ1�τ0

τ2 � τ0

(3.6)

is the second divided difference5 of the complex valued function g at points τ0, τ1

and τ2. Being the function twice continously differentiable, it is sufficient to apply

the Mean Value Theorem for divided differences6 to real and imaginary parts of g,

5See [5] at page 123.
6See Theorem 2.10 in [14], at page 60.
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to obtain that

lim
τ0Ñt

τ1Ñt

τ2Ñt

τ0 τ1 τ2

gpτ2q�gpτ1q
τ2�τ1

� gpτ1q�gpτ0q
τ1�τ0

τ2 � τ0

� g2ptq
2

.

Notice that we can always assume condition τ0   τ1   τ2; as a matter of fact, the

second divided difference p3.6q is symmetric with respect points τ0, τ1 and τ2. As

the limit of quotient p3.5q is the quotient of the limits, provided the limit of the

denominator is not zero, one obtains the thesis.

Theorem 3.1.14. Given a plane gesture gptq � pxptq, yptqq P R2 with the notation

above, then

lim
δÑ0�

n�1̧

k�1

tk�1 � tk
tk � tk�1

�������� ∆fk{∆fk�1
� ∆gk{∆gk�1

�������� �
�
»
I

�������� f2ptq{pf 1ptqq � g2ptq{pg1ptqq
�������� dt � 2DSpf, gq (3.7)

where 0 � t0   � � �   tk�1   tk   � � �   tn � 1, and δ � max
1¤k¤n

ttk � tk�1u.

Proof. As we have already done before, we can reduce all the proof to show that,

lim
δÑ0�

n�1̧

k�1

tk�1 � tk
tk � tk�1

∆gk
∆gk�1

� 2�
» 1

0

g2ptq
g1ptq dt P C ,

By hypothesis, the complex valued Riemann integral

» 1

0

g2ptq
g1ptq dt exists; this

implies that for every ε ¡ 0 there exists δε ¡ 0 such that�����
» 1

0

g2ptq
g1ptq dt�

ņ

k�1

g2pξkq
g1pξkq ptk � tk�1q

�����
C

  ε ,

provided the partition

0 � t0   � � �   tk�1   tk   � � �   tn � 1

is such that tk � tk�1   δε, and ξk P rtk�1, tks for each k � 1 . . . , n.

Notice that, to evaluate each shape
∆gk

∆gk�1

, the extremities of two adjacent intervals
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are needed. This implies that

2m�1¸
k�1

tk�1 � tk
tk � tk�1

∆gk
∆gk�1

�
m̧

h�1

t2h � t2h�1

t2h�1 � t2ph�1q

∆g2h�1

∆g2h

�
m�1̧

h�1

t2h�1 � t2h
t2h � t2h�1

∆g2h

∆g2h�1

,

(3.8)

when n is even. A similar expression old when n is odd. Thus, to estimate the

difference between shapes and Riemann sums, we need to consider the latter on

couples of adjacent intervals; one with even-indexed extremities, the other with

odd-indexed extremities. In order to simplify notations, we will consider in the

following only partitions of r0, 1s having an even number of points (n � 2m), that

is

0 � t0   � � �   tk�1   tk   � � �   t2m � 1 . (3.9)

However, our arguments can be applied similarly to partitions of r0, 1s having an

odd number of points. If partition p3.9q is such that

max

"
max

1¤h¤m
pt2h � t2ph�1qq , max

1¤h¤m
pt2h�1 � t2h�1q

*
  δε ,

then we can estimate the Riemann sum both

� on “even indexed” intervals�����
» 1

0

g2ptq
g1ptq dt�

m̧

h�1

g2pξehq
g1pξehq

pt2h � t2ph�1qq
�����   ε ,

whatever are ξeh P rt2ph�1q, t2hs when h � 1, . . . ,m, and

� on “odd indexed” intervals, where a similar estimate is possible�����
» 1

0

g2ptq
g1ptq dt�

g2pξo0q
g1pξo0q

pt1 � t0q � g2pξomq
g1pξomq

pt2m � t2m�1q �
m�1̧

h�1

g2pξohq
g1pξohq

pt2h�1 � t2h�1q
�����   ε ,

whatever are ξoh P rt2h�1, t2h�1s, with h � 1, . . . ,m � 1, ξo0 P rt0, t1s, and

ξom P rt2m�1, t2ms.

Now, let us focus on the first term of the right expression in p3.8q; in order to get

the thesis, we need to estimate each term

t2h � t2h�1

t2h�1 � t2ph�1q

∆g2h�1

∆g2h

� pt2h � t2ph�1qq � 1

2

g2pξehq
g1pξehq

pt2h � t2ph�1qq �

�
�

t2h � t2h�1

t2h�1 � t2ph�1q

∆g2h�1

∆g2h

1

t2h � t2ph�1q

� 1� 1

2

g2pξehq
g1pξehq



pt2h � t2ph�1qq .
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If one considers Lemma 3.1.13 with τ0 � t2ph�1q, τ1 � t2h�1, and τ2 � t2h, we have

then, thanks to the uniform continuity of
g2

g1
, the estimate

���� t2h � t2h�1

t2h�1 � t2ph�1q

∆g2h�1

∆g2h

1

t2h � t2ph�1q

� 1� 1

2

g2pξehq
g1pξehq

����   ε

2
,

which is independent from index h. By applying the same lemma for the odd

terms involving ξoh, the thesis follows.

An interesting question may arise to the reader.

Why did we introduce the Clifford algebra if we can bypass it using complex

numbers? Essentially for two reasons.

1) We used two isomorphisms to link C to the geometrical algebra. Firstly,

through the canonical R2 � C; and, another time, when we used the j in

Remark 3.1.2. That helped us in the computation simplifying the calculus,

but we cannot consider vectors and shapes as the same objects.

Clifford algebra help us to differentiate them: vectors are vectors, shapes

are elements of the even subalgebra, hence a scalar plus a bivector.

Moreover in this way we can do algebraic operations together. (For example,

a vector times a shape is equal to another vector.)

2) The even subalgebra is isomorphic to the complex algebra. But this happens

only for R2. This imply that we cannot extend this procedure to higher

dimensions or out of this context.

3.2 Algorithms for Planar Gestures

In this subsection we will show how to “translate” all the previous results in a

new algorithm for gesture recognition.

More details can be found in [16].

3.2.1 !FTL

Purpose of the algorithm:

Given the n-samples of two plane gestures f and g, we want to give a measure of

their dissimilarity through an algorithm with an intrinsic invariance with respect

to translation, dilation, and rotation.
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Algorithm. !FTL7 is the “solution” recently developed (2018).

INPUT= tf0, . . . , fn, g0, . . . , gnu
(the samples for two gestures f, g)

(If f � �
rptq, sptq�, we denote with f � rptq � i sptq.)

!FTLpf0, . . . , fn , g0, . . . , gnq �
n�1̧

k�1

LSD
�p∆fk,∆fk�1q, p∆gk,∆gk�1q

�
�

n�1̧

k�1

���� ∆fk
∆fk�1

� ∆gk
∆gk�1

����
C
.

3.2.2 !WFTL

Algorithm. For more accurate results we can extend the !FTL to the non-

isochronous case, obtaining the new !WFTL (Weighted !FTL).

INPUT= tf0, . . . , fn, g0, . . . , gn, t0, . . . , tnu
(the samples and the timestamps)

(If f � �
rptq, sptq�, we denote with f � rptq � i sptq.)

!WFTLpf0, . . . , fn , g0, . . . , gnq �
n�1̧

k�1

tk�1 � tk
tk � tk�1

LSD
�p∆fk,∆fk�1q, p∆gk,∆gk�1q

�
�

n�1̧

k�1

tk�1 � tk
tk � tk�1

���� ∆fk
∆fk�1

� ∆gk
∆gk�1

����
C
.

Remark 3.2.1. At first impression it may seem incongruent to ignore the multi-

plicative factor 1
2
, especially after all previous considerations.

But this is only meant to be consistent with the initial development of the !FTL

done in [16]. This is the reason because we are leaving unchanged the original

algorithm, whereas we accorded the definition of the various shapes.

7As we have seen in the Introduction in Chapter 1, FTL is the acronym of “Faster than
light”.



Chapter 4

Shape Distance on Regular

Surfaces

The next step is to expand our results on surfaces1.

The purpose is similar to the previous section, in fact we want to understand

when 2 curves (or gestures) are “similar” on any immersed regular surface.

To do that, we have to recall some useful facts about differential geometry, and

after that, we need to improve that results through the Clifford Algebra tools.

4.1 Gestures on Regular Surfaces

4.1.1 Basic Results of Differential Geometry

Hereafter follows the list of some features about regular surfaces in R3.

All the following basic differential geometry notions can be found with more details

in [1] or [15].

Remark 4.1.1. If S is a regular surface (i. e. a surface S in R3 that admits a smooth

atlas tϕαu) let ϕ be a local parametrization: U Ñ S such that ϕpx1, x2q � s P S
and centered in p P S (that is ϕp0q � p).

If we define B
Bxj |p

� Bϕ
Bxj
pOq pj � 1, 2; O is the origin), we obtain that t B

Bx1 |p
, B
Bx2 |p

u
is the associated basis for the tangent space TpS (The set of all tangent vectors to

the surface in the point p).

This basis depends on the local parametrization.

Notation. For brevity sometimes we will use Bj or Bj|p to denote B
Bxj |p

.

1Results on surfaces can have applications to gesture recognition on devices with foldable
and curved input surfaces.

42
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Remark 4.1.2. We denote the metric coefficients associated to ϕ with

Epxq � B1|ϕpxq �B1|ϕpxq, F pxq � B1|ϕpxq �B2|ϕpxq, Gpxq � B2|ϕpxq �B2|ϕpxq @ x P U.

or simplifying, with abuse of notation,

E � B1 � B1, F � B1 � B2, G � B2 � B2 @ x P U.

Moreover we use the canonical notation for the Christoffel symbols Γrij , using their

classical definition on surfaces:

B2ϕ

BxiBxj � Γ1
ijB1 � Γ2

ijB2 � cijN,

where tB1, B2, Nu is a basis of R3 such that N :� B1�B2
||B1�B2||

(“�” is the cross product).

Remark 4.1.3. We want to express these coefficients in a different way, then doing

some calculations we obtain that$&% EΓ1
11 � FΓ2

11 �
A
B2ϕ
Bx21
, B1

E
� 1

2
B
Bx1
xB1, B1y � 1

2
BE
Bx1

FΓ1
11 �GΓ2

11 �
A
B2ϕ
Bx21
, B2

E
� B

Bx1
xB1, B2y �

A
B1,

B2ϕ
Bx1Bx2

E
� BF

Bx1
� 1

2
BE
Bx2

;

Similarly, #
EΓ1

12 � FΓ2
12 � 1

2
BE
Bx2

FΓ1
12 �GΓ2

12 � 1
2
BG
Bx1

;

#
EΓ1

22 � FΓ2
22 � BF

Bx2
� 1

2
BG
Bx1

FΓ1
22 �GΓ2

22 � 1
2
BG
Bx2

.

Definition 4.1.1. Let F : S1 Ñ S2 a C8 map between two regular surfaces and

p P S1. The differential of F on p is dFp : TpS1 Ñ TpS2 such that

dFppvq � pF � σq1p0q where σ is a curve on S1: σp0q � p, σ1p0q � v.

Remark 4.1.4. R2 is a surface too, with TppR2q � R2

(just “translate the atlas” if necessary). In these terms, if γ : S Ñ R2, dγppvq P
R2 @v P TpS, and if v � v1B1|p � v2B2|p we have that dγppvq � pv1, v2q.
Remark 4.1.5. Now we have to recall some other definitions.

� A smooth vector field along a smooth curve σ : I Ñ S, is a C8 map

X : I Ñ R3 such that Xptq P TσptqS @t P I.
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� The covariant derivative for a vector field X along a smooth curve σ on

the surface S is the vector field DX along σ such that

DXptq :� πσptq
�
BX
Bt
ptq�, where πσptq : R3 Ñ TσptqpSq is the orthogonal

projection on the tangent plane TσptqpSq.

� A vector field X on a smooth curve σ is parallel, if DX � 0.

� The parallel transport P pσqsp : TppSq Ñ TspSq, along a smooth curve

σ : r0, 1s Ñ S such that σp0q � p and σp1q � s, is the map that moves any

vector v from p to s along σ in a “parallel way”,

that is P pσqsppvq � Xp1q where X is the unique parallel vector field on σ

such that Xp0q � v.

Remark 4.1.6. The required parallel field involved in the last definition is the only

solution of the following Cauchy’s problem,#
DXptq � 0 @t P p0, 1q;
Xp0q � v.

Hence the parallel transport is well defined.

Remark 4.1.7. Now we want express DX in local coordinates to show how the

notion of covariant derivative depends only on metric coefficients.

If φ : U Ñ S a local parametrization whose image contains the support of a curve

σ : I Ñ S. If X ‘is a vector field along σ, we can write σptq � φpσ1ptq, σ2ptqq and

Xptq � X1ptqB1 �X2ptqB2 @ t P I.

Then,
dX

dt
� d

dt

�
X1

Bφ
Bx1

� σ


�
�
X2

Bφ
Bx2

� σ


�

�
2̧

k�1

dXk

dt
�Xk

�
σ11

B2φ

Bx1Bxk � σ � σ12
B2φ

Bx2Bxk � σ


.

And finally we obtain that,

DX �
2̧

k�1

�
dXk

dt
�

2̧

i,j�1

pΓki,j � σqσ1iXj

�
Bk . (4.1)

Now we recall another main notion that it will help us for our purposes.

Definition 4.1.2. A local parametrization ϕ for a surface S is isothermal if its
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metric coefficients satisfy the following equalities

E � G, F � 0.

Remark 4.1.8. With an isothermal parametrization the Christoffel symbols can

be expressed in a very compact way,#
Γ1

11 � Γ2
12 � �Γ1

22 � 1
2E

BE
Bx1

Γ2
11 � �Γ1

12 � Γ2
22 � 1

2E
BE
Bx2

Theorem 4.1.3. Every regular surface admits an isothermal local parametrization.

The proof of this theorem is delicate and will not be taken up here. The interested

reader may consult [2].

4.1.2 Isometries between Clifford Algebras

Now it is the time to apply our informations about the isometries between vector

spaces on the relative Clifford algebras.

Remark 4.1.9. V a vector space endowed with the scalar product x�, �y. Let GV

be its geometric algebra.

||A�B||2 � ||A�B||2 � 2||A||2 � 2||B||2 @A,B P GV ñ
ñ || � || induces a scalar product on GV .

And it is the following one:

xA,By �
ņ

k�0

p�1q kpk�1q
2 pAk �Bkq

Lemma 4.1.4. U, V vector spaces. H : U Ñ V a linear map.

Then, D Ĥ a linear map: GU Ñ GV such that Ĥ|U � H (Ĥ is an extension of H).

Moreover:

� @A,B P GU , ĤpABq � ĤpAqĤpBq and Ĥ is the only extension with this

property.

� If H is an isometry ñ Ĥ is an isometry.

Proof. A P GU , A � °
k Ak.

Ak �
°
I αIeI , so ĤpAkq :� °

I αIĤpeIq where Ĥpei1 � � � eikq :� Hpei1q � � �Hpeikq.
We define Ĥ : ĤpAq :� °

k ĤpAkq. This Ĥ proves the thesis.
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Now if H is an isometry and Ak �
°
I αIeI , H transforms any orthonormal

base in an orthonormal base, then:

xĤpAkq, ĤpAkqy � x
¸
I

αIeHpIq,
¸
I

αIeHpIqy �
¸
I,J

αIαJxeHpIq, eHpJqy �

�
¸
I,J

αIαJδI,J �
¸
I

α2
IxeI , eJy � xAk, Aky

Then Ĥ is an isometry.

Remark 4.1.10. It could be useful to recognize that if H,L : U Ñ V are two linear

maps with H, an isometry such that L � λH pλ P Rq, then it is not always true

that L̂ � λĤ.

For example, if L � 2H, L̂pe1q � 2Ĥpe1q and L̂pe1e2q � 4Ĥpe1e2q.
Remark 4.1.11. Then if H is nonsingular ñ Ĥ|ClkpUq � ClkpV q.
Remark 4.1.12. If U

H1ÝÑ V
H2ÝÑ W and H :� H2 �H1, then Ĥ � Ĥ2 � Ĥ1

Now we will work with S surface � R3. Let x, y P S.

Let Pσ : TxpSq Ñ TypSq be the parallel transport along σ, a smooth curve: xÑ y.

Then, Pσ is an isometry.

Notation. Let Ĥ : GU Ñ GV be a nonsingular map. Then, H̆ :� Ĥ|Cl0pUq�Cl2pUq.

Proposition 4.1.5. Let Pσ defined as above, and x, y P S.

P̆σ � P̆ϕ @σ, ϕ : xÑ y ðñ S is orientable

Proof. (ñ)

x P S. Let N be a vector field defined in the following way:

Npsq :� P̆xÑs

� B
Bu |x ^

B
Bv |x


�

N is well defined by hypothesis. Then,

Npsq
|Npsq| is a normal unit vector field on S ñ S is orientable.

(ð)

S is orientable. First, we want to show that

det Pσ � 1 with the bases

" B
Bu |x,

B
Bv |x, Nx

*
Ñ

" B
Bu |y,

B
Bv |y, Ny

*
.
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Then, let pUk, γkqk be the charts that cover Imσ (in a finite number n, because

Imσ is a compact space.)

We prove by induction on n:

(n � 1)
δ
Bu

is a local vector field on U1 so, Pσ

�
B
Bu |σp0q

	
� B

Bu |σp1q
. Same for B

Bv
. It implies

that det Pσ � 1.

(inductive step)

σ � σk � σ̃ , where detPσk � 1 and Pσ � Pσk � Pσ̃ with Im σ̃ � Uk�1.

By induction, det Pσk � det Pσ̃ � 1 and det Pσ � det Pσk � |M | � det Pσ̃ where

M is the changing base matrix between

" B
Bu |k,

B
Bv |k, Nk

*
Ñ

" B
Bu |k�1

,
B
Bv |k�1

, Nk�1

*
.

But S is orientable, so |M | � 1 ñ det Pσ � 1.

Hence, H :� Pσ � P�1
ϕ is an isometry: detH � 1 @σ, ϕ regular paths: x Ñ y.

Therefore Ĥpab�1q � Hpaq{Hpbq � a{b, and then we obtain that

P̂σpab�1q � P̂ϕpab�1q @a, b P TxS.
Finally, because spanxab�1 | a, b P TxSy � Cl0pTxSq � Cl2pTxSq,
we have that P̆σ � P̆ϕ .

Let S be an orientable surface � R3.

We will work with ϕ, an isothermal parametrization of S and γ :� ϕ�1 (locally)

the coordinate map.

We call αpxq :�a
Epγpxqq �aB1|x � B1|x (α : S Ñ R�), and H :� α dγ.

Remark 4.1.13. @p P S ñ Hppq : TpS Ñ TγppqR2 is an isometry.

We denote it with Hp. So, |Hppvq| � |v| @v P TpS, @p P S
Lemma 4.1.6. Let Bp :� Cl0pTpSq � Cl2pTpSq @p P S.
Let PxÑy be a generic parallel transport and Hp defined as above.

If we denote with Gx :� GTxS, then, @p P S, we have:

H̆y � P̆|Gx � H̆x|Gx

Proof. b P Bp,

b � c� λ
B
Bx1 |x

B
Bx2 |x

� c� λα2pxq B̂Bx1 |x

B̂
Bx2 |x
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Hence,

H̆ypP̆ pbqq � c� λH̆y

�
α2pxqP̆

�
B̂
Bx1 |x

B̂
Bx2 |x

��

� c� λα2pxqH̆y

�
B̂
Bx1 |y

B̂
Bx2 |y

�
� c� λα2pxqe1e2

� H̆x

�
c� λα2pxq B̂Bx1 |x

B̂
Bx2 |x

�
� H̆xpbq

Remark 4.1.14. H̆xpbq P Cl0pTγpxqR2q � Cl2pTγpxqR2q while

HypP̆ pbqq P Cl0pTγpyqR2q �Cl2pTγpyqR2q, then they belong to two different spaces.

But TzR2 � R2 @z P R2, so with abuse of notation we have omitted the compo-

sition through the two canonical isomorphisms.

4.1.3 Shape Distance on Regular Surfaces

We keep on working with our orientable surface S immersed in R3 with own isother-

mal parametrization ϕ and its local inverse map γ that makes S a 2-dimensional

manifold.

We consider f : I Ñ S a regular smooth curve on S, which means I � ra, bs � R
and f 1ptq P TfptqS such that f 1ptq �� 0 @ P I.

f 1ptq is a vector field on f , f 1 � f 1u
B
Bu |fptq

� f 1v
B
Bv |fptq

, and we locally define

f̆ 1ptq :� dγpf 1ptqq � pf 1uptq, f 1vptqq @t P I.

We denote with D the covariant derivative, so by (4.1) and by Remark 4.1.8 we

have:

Df pf 1qptq �
�
δ

δt
f 1u �

1

α

��Bα
Bu pfptqq



f 1u �

�Bα
Bv pfptqq



f 1v



f 1u �

� 1

α

��
�BαBu pfptqq



f 1v �

�Bα
Bv pfptqq



f 1u



f 1v

� B
Bu �

�
�
δ

δt
f 1v �

1

α

��
�BαBv pfptqq



f 1u �

�Bα
Bu pfptqq



f 1v



f 1u �

� 1

α

��Bα
Bu pfptqq



f 1u �

�Bα
Bv pfptqq



f 1v



f 1v

� B
Bv

Now before continuing we observe some properties:
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Remark 4.1.15.

piq B
Buf

1
u �

B
Bvf

1
v � x∇α, f̃ 1y

�
∇α :�

�Bα
Bu ,

Bα
Bv




piiq

� B
Buf

1
v �

B
Bvf

1
u



e1e2 � ∇α ^ f̃ 1

piiiq p∇α ^ f̃ 1qf̃ 1 �
�� B

Buf
1
v �

B
Bvf

1
u



f 1v ,

�
� B
Buf

1
v �

B
Bvf

1
u



f 1u




Finally we can simply the formula, obtaining that

dγpDf pf 1qq � f̃2 � 1

α
x∇α, f̃ 1yf̃ 1 � 1

α
p∇α ^ f̃ 1qf̃ 1 �

� f̃2 � f̃ 1∇αf̃ 1

α
.

Hence, we have proved the following lemma,

Lemma 4.1.7. Let S be an immersed orientable surface with the isothermal

coordinate map γ and α :� ?
E. If f : I Ñ S is a regular smooth curve,

dγfptqpDfptqpf 1ptqqq � pγpfptqq2 � γpfptqq1 p∇αq γpfptqq1
α

@t P I
The following remark will be useful later.

Remark 4.1.16.

H̃fptqp Df
1
{f 1 q � �dγfptq p Df 1{f 1 q �

� dγfptq pDf 1q � pγpfq1q�1 �

� γpfq2{γpfq1 �
1

α
γpfq1∇α

Finally we can define our “distance”:

Definition 4.1.8. Let f, g : I Ñ S be two regular smooth curves on S an

orientable immersed surface in R3.

DSpf, gq :� 1

2

»
I

��������P̃fptqÑgptqp Dff
1
{f 1 q � Dgg

1
{g1

�������� dt
Remark 4.1.17. If S � R2 ñ DSpf, gq �

³
I

���� f2

{f 1 � g2{g1
���� dt.

We can recognize the “distance” defined on the plane.

Remark 4.1.18. As we wanted, we can easily notice that if f, g are two geodesics,

DSpf, gq � 0.
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Remark 4.1.19. As in the 2D case, this “distance” is a pseudometric too.

To prove that, we need to write it in a little different way: next theorem will help

us in this regard.

Theorem 4.1.9. With the same hypothesis of the previous lemma, if γ is the

isothermal coordinate map of S with its own α, then

Dpf, gq � 1

2

»
I

��������� γpfq2{γpfq1 � γpgq2{γpgq1


�
�
γpfq1∇αpfptqq

αpfptqq � γpgq1∇αpgptqq
αpgptqq


�������� dt
Proof. Using Lemma 4.1.6, Lemma 4.1.7 and Remark 4.1.16,

DSpf, gq � 1

2

»
I

��������P̃ p Dff 1{f 1 q � Dgg
1
{g1

�������� dt �
� 1

2

»
I

��������H̃g

�
P̃ p Dff

1
{f 1 q � Dgg

1
{g1


�������� dt �
� 1

2

»
I

��������H̃f p Dff
1
{f 1 q � H̃gp Dgg

1
{g1 q

�������� dt �
� 1

2

»
I

��������� γpfq2{γpfq1 � γpgq2{γpgq1


�
�
γpfq1∇αpfptqq

αpfptqq � γpgq1∇αpgptqq
αpgptqq


�������� dt
Remark 4.1.20. The foregoing result makes easier to see the pseudometric proper-

ties of DS.

4.2 Algorithms for 2.5D Gestures

In computer science, sometimes the recognition algorithms for a surface are re-

ferred as “2.5D algorithms”. We adopt such terminology here.

Theorem 4.1.9 can move our focus on other scenarios; as a matter of fact, we have

expressed our distance D without using the parallel transport.

Moreover we can work with this formula to not involve the Clifford operators too,

founding a nice implementable algorithm to compute this “distance”.

Remark 4.2.1. If we choose the same partition used in the bidimensional case (and

the same notation), thanks to Theorem 4.1.9 we have that, for the isochronous

case,
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DSpf, gq �
� lim

Pn

�������� pf̃i�1�f̃iq{pf̃i�f̃i�1q �
pg̃i�1�g̃iq{pg̃i�g̃i�1q �

� pti�1 � ti�1q
�
pf̃i�1 � f̃i�1q∇αpfiq

αpfiq � pg̃i�1 � g̃i�1q∇αpgiq
αpgiq


��������
As we have done for the 2D case, we can still extend the algorithm to the non-

isochronous case.

Now, before we can formulate our new two algorithms for gesture recognition on

any regular surface, we need to do some modifications.

Remark 4.2.2. We can notice that in the last formula we expressed DS only with

elements of the even Clifford algebra of R2.

Then we want to use again the complex numbers to express our algorithm so that

is easier to implement it.

We know that if u, v P R2 pu � xe1 � ye2q, and u � x � iy, then u{v � j
�
u
v

�
.

Hence,

uv�1 � u{v � j
�
|v|2 u

v

	
� j puv̄q .

Then we can finally show the algorithm,

Algorithm. !SFTL (“S” stands for surface).

INPUT= tf0, . . . , fn, g0, . . . , gnu
(the samples for two gestures f, g)

tγ; αu (The isothermal coordinate map with αptq :�a
Eγ)

(If γpfq � �
rptq, sptq�, we denote with f � rptq � i sptq.)

!SFTLpf0, . . . , fn , g0, . . . , gnq �
n�1̧

k�1

����� ∆fk
∆fk�1

� ∆gk
∆gk�1

� 1

n

�
pfi�1 � fi�1q∇αpfiq

αpfiq � pgi�1 � gi�1q∇αpgiq
αpgiq

������
C
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And similarly we can extend it to the non-isochronous case,

Algorithm. !WSFTL.

INPUT= tf0, . . . , fn, g0, . . . , gn, t0, . . . , tnu
(The samples and the timestamps)

tγ, αu (The isothermal coordinate map with αptq :�a
Eγ)

(If γpfq � �
rptq, sptq�, we denote with f � rptq � i sptq.)

!WSFTLpf0, . . . , fn , g0, . . . , gnq �
n�1̧

k�1

����tk�1 � tk
tk � tk�1

�
∆fk

∆fk�1

� ∆gk
∆gk�1



�

� tk�1 � tk�1

2

�
pfi�1 � fi�1q∇αpfiq

αpfiq � pgi�1 � gi�1q∇αpgiq
αpgiq

������
C



Chapter 5

Shape Distance in Higher

Dimensions

In this chapter we will extend some results to dimension 3, and then to higher

dimension.

Of course, we cannot anymore use the isomorphism with complex numbers (See

Remark 3.1.2) to develop our results. The Clifford algebra instruments are now

essential to the new developments.

5.1 Similarity Invariance in Higher Dimensions

When we step into the tridimensional case, it is reasonable to lose some similarity

invariances.

More precisely, we want to distinguish space gestures lying in different planes, for

several reasons. The first reason is that some gestures can be obtained, one from

the other, by both direct and indirect similarities. For example if g is a space

gesture lying in a plane and f is its symmetrical image through the line directed

by a vector v, lying on that same plane, we can get f from g, rotating the last

one 180� degree about the line (See the figure 5.1).

However, it is reasonable to consider g to be distinct from f , as a space gesture.

As we want to use a “3D shape” to compare space gestures, we want it not to be

too invariant with respect to 3D simmetries.
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Figure 5.1: f and g

So, we have a choice between considering all the similarities, both direct and

indirect, as invariant, or losing this invariance in most cases.

We adopt to the last option, because, for our purposes, we reject an invariance

between symmetric opposite gestures.

Nevertheless, the generalized local shape distance will still be invariant for direct

similarities in the same plane, while it will be sensible not only to plane shape

differences, but also it will be able to measure of how much two gestures are far

from being locally coplanar.

To do that we will start simply extending our previous definition in the general

case,

Definition 5.1.1.

� A gesture is a regular curve f : I � r0, 1s Ñ En,

� A pm� 1q-sample of a gesture is tf0, . . . , fmu � fpIq.
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� A basic gesture in En is an ordered couple of not null vectors pv1, v2q
considered again as a particular 2-sample of a gesture tracing a triangle.

� The shape of a basic gesture pv1, v2q is the Clifford ratio v1{v2 .

� The Local Shape Distance between two basic gestures pu1, u2q and pv1, v2q
is the non-negative real number

LSD
�pu1, u2q, pv1, v2q

� � ������ u1{u2 � v1{v2

������
Obviously, we can’t use anymore the Lemma 3.1.1 outside of the plane and then

ab�1 � cd�1 is not anymore an equivalent condition of similarity between basic

gestures, but with the next lemma we recover the same properties required before,

making easier the extension in higher dimensions of our algorithms.

Lemma 5.1.2. Let pa, bq and pc, dq two basic gestures in a euclidean space En.

Then,

ab�1 � cd�1 ðñ a, b, c, d are coplanar, and pa, bq � pc, dq
Proof. (ð)

If a, b, c, d are coplanar and pa, bq, pc, dq are direct similar we can reduce everything

at the planar case, and then easily, ab�1 � cd�1.

(ñ)

The other direction is the key result, that can be easily obtained as follows.

Observe that ab�1 � cd�1 implies that the bivector parts are equal too, hence

a^ b � c^ d. Then a, b, c, d are coplanar and then for the 2�dimensional case we

have that pa, bq � pc, dq too.

Next result is the extended version of Theorem 3.1.9.

Theorem 5.1.3.

I � r0, 1s f, g : I Ñ En P C2pIq : f 1ptq, g1ptq �� 0 @t P I.

Let Pn be a partition of I :�  
tk,n :� k

n

�� k � 0, � � � , n( and

fk,n :� fptk,nq

gk,n :� gptk,nq

Then:

lim
nÑ�8

n�1̧

k�1

�������� pfk,n�fk�1,nq{pfk�1,n�fk,nq �
pgk,n�gk�1,nq{pgk�1,n�gk,nq

�������� �
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�
»
I

�������� f2ptq{f 1ptq � g2ptq{g1ptq
�������� dt (5.1)

Now we can’t use the complex isomorphism, so we will going straight with the

use of Clifford numbers.

The proof is quite similar to the planar case. What we have done is just to

substitute the complex product with the Clifford one, despite the commutativity

of the first respect than the not-commutative of the last.

This is the reason for which we here will not comment as before and we will almost

rewrite the proof.

Proof. By hypothesis, the Riemann integral

» 1

0

�������� f2ptq{f 1ptq � g2ptq{g1ptq
�������� dt

exists; this implies that for every ε ¡ 0 there exists Nε P N such that����� ņ
k�1

�������� f2pξkq{f 1pξkq � g2pξkq{g1pξkq
�������� 1

n
�
» 1

0

�������� f2ptq{f 1ptq � g2ptq{g1ptq
�������� dt

�����   ε ,

provided n ¡ Nε, and ξk P
�
k�1
n
, k
n

�
, with k � 1, . . . , n.

Notice that, to evaluate each shape
∆gk{∆gk�1

:� gk,n�gk�1,n{gk�1,n�gk,n ,

the extremities of two adjacent intervals are needed. In particular, we can write

2m�1¸
k�1

∆gk{∆gk�1
�

m̧

h�1

∆g2h�1{∆g2h
�

m�1̧

h�1

∆g2h{∆g2h�1
, (5.2)

when n is even.

If n ¡ 2Nε, then the integral can be estimated both by�����m�1̧

h�1

�������� f2pξohq{f 1pξohq � g2pξohq{g1pξohq
�������� 1

n
�

� 1

2

» 1

0

�������� f2ptq{f 1ptq � g2ptq{g1ptq
�������� dt����   ε

2
,

where ξoh P
�

2h�1
n
, 2h�1

n

�
, with h � 1, . . . ,m.

A similar expression holds when n is even.

Then, to obtain the thesis, it suffices to see how to estimate the following quantity,�������� ∆f2h{∆f2h�1
� ∆g2h{∆g2h�1

�
�
g2pξohq{g1pξohq �

f2pξohq{f 1pξohq



1

n

�������� �
�
��������� ∆f2h{∆f2h�1

� 1� f2pξohq{f 1pξohq
1

n



�

�
�

1� ∆g2h{∆g2h�1
� g2pξohq{g1pξohq

1

n


�������� ,
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for each h � 1, . . . ,m.

Now, assuming δ � 1
n
, then, by hypothesis, the function g is twice differentiable

and g1 � 0, thus we have that, for every t P r0, 1s

lim
δÑ0

gpt�δq�2gptq�gpt�δq

δ2 {gpt�δq�gptq
δ

� g2ptq{g1ptq .

So, we have that, for every ε ¡ 0 there exists δε, such that if δ   δε, then��������1� ∆g2h{∆g2h�1
� g2pξohq{g1pξohq δ

�������� �
�
������
������
gpt2h�δq�2gpt2hq�gpt2h�δq

δ2 {gpt2h�δq�gpt2hq
δ

� g2pξohq
g1pξohq

������
������ δ   εδ ,

and this prove the thesis, provided δ   mintδε, 1
2Nε

u. �

Hence, we can also extend Definition 3.1.12.

Definition 5.1.4.

� The shape of a gesture g, is the following function

Spgptqq � 1� 1

2

g2ptq{g1ptq

� The distance between the shape of two gestures f, g is the following operator

DSpf, gq �
»
I

����Spfptqq � Spgptqq���� dt �
� 1

2

»
I

�������� f2ptq{pf 1ptqq � g2ptq{pg1ptqq
�������� dt.

Moreover, as announced before, a same adaptation can be done with the non-

isochronous case.

Unlike the 2D case, shapes and gestures have not anymore the same dimension.

In fact, the shape belongs to Cl0 ` Cl2, then its dimension is 1 � �
n
2

�
, different

from n if this is greater than 2.

However, it is still possible to set up the ODE system Spfptqq � sptq for any given
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shape s, but it will differ based on dimension.

Remark 5.1.1. If a gesture f has constant speed (that is d
dt
|f 1| � 0), we have that

xf2, f 1y � 1
2
d
dt
p|f 1|2q � 0.

The last remark show that the shape of f has always the scalar component equal

to 1, and this let us to go towards different scenarios.

For example, as the 2D case, we can consider the shape of 3D gesture with constant

speed as a gesture too (once proven its regularity).

Example 6. Let gptq :� pxptq, yptq, zptqq be the following 3D gesture:

xptq :� 4 cosptq
yptq :� 2t� sinp2tq
zptq :� cosp2tq

According to Example 5, instead of the canonical shape, we continue to consider

1� Spgq � 1
2

g2{g1 in this example.

Figure 5.2: The gesture gptq
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Figure 5.3: the “adapted” shape 1� Spgptqq

Figure 5.4: gptq and 1� Spgptqq together

To draw the shape, if 1�Spgq � αx e2^ e3�αy e3^ e1�αz e1^ e2, we considered

it as the gesture pαx, αy, αzq.

Summing up, with the loss of some similarity invariance properties, we mantain
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the same key theorems and consequently the same algorithms:

Algorithm. !FTL

INPUT= tf0, . . . , fn, g0, . . . , gnu
(the samples for two gestures f, g)

!FTLpf0, . . . , fn , g0, . . . , gnq �
n�1̧

k�1

LSD
�p∆fk,∆fk�1q, p∆gk,∆gk�1q

�
�

n�1̧

k�1

�������� ∆fk{∆fk�1
� ∆gk{∆gk�1

�������� .
Remark 5.1.2. We can explicity express the algorithm in basic operations observing

that

LSDpa, bqpc, dq2 � 1

|b|2|d|2 p|a|
2|d|2�|b|2|c|2�2pxa, byxc, dy�xa, dyxb, cy�xa, cyxb, dyq.

This is obviously true for the complex notation too.
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Algorithm. !WFTL

INPUT= tf0, . . . , fn, g0, . . . , gn, t0, . . . , tnu
(the samples and the timestamps)

!WFTLpf0, . . . , fn , g0, . . . , gnq �
n�1̧

k�1

tk�1 � tk
tk � tk�1

LSD
�p∆fk,∆fk�1q, p∆gk,∆gk�1q

�
�

n�1̧

k�1

tk�1 � tk
tk � tk�1

�������� ∆fk{∆fk�1
� ∆gk{∆gk�1

�������� .
with,

pLSDpa, bqpc, dqq2 � 1

|b|2|d|2 p|a|
2|d|2�|b|2|c|2�2pxa, byxc, dy�xa, dyxb, cy�xa, cyxb, dyq.



Chapter 6

Conclusions

There are various implications of the work done here, but now we want to fo-

cus only on three different aspects that can be generalized starting from our results.

ODE features for shape problems

A first reasonable way to develop this work is, for example, to deepen the bond

between a gesture and its shape through the use of other ODE systems, expanding

what we have already done at the end of Section 3 and partially in Section 5 too.

For example, we can search for periodic solutions, for fixed points, or for the

stability of these systems (which are mostly autonomous).

Transformations on regular surfaces

Another interesting way to continue this work could be to focus on Definition 4.1.8.

It is a measurer of the “dissimilarity” of two paths on a surface, ignoring the

various curvatures of the surface.

That can help, for example, to define some of the most well-known geometrical

transformations on any regular surface, letting “move” the curve on the surface

keeping its peculiarities.
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Non-smooth planar gestures

The software engineer Nathan Magrofuoco is currently working for his Ph.D.

thesis at the Belgian university UCLouvain on a new algorithm (named $C). This

algorithm is adopting the Local Shape Distance as a metric to recognize gestures

that are not necessarily smooth. As the rate of recognition of $C and its speed are

comparable1 to those of the well established algorithm $P, it would be interesting

to investigate the convergence of $C. Is there a Sobolev-like framework within

which $C is convergent? If this is the case, does such convergence phenomenon

correspond to a notion of shape for non-smooth gestures? In that case, what

would be its relation with the notion of shape given in this work and in [10]?

1While we are writing this work, N.Magrofuoco is working to improve such already satisfactory
results.



Appendix A

Proof of Theorem 2.1.8

Here we give a complete proof of Theorem 2.1.8 in line with the axiomatics

introduced in this paper.

We use the same notation used in the first chapter.

Hence, let V be a n-dimensional vector space on K, with a non-degenerate

quadratic form Q, ClQpV q the Clifford algebra over V , and ClkpV q the space of

k-multivectors.

Lemma A.0.1. If g1 � � � gn is a blade of ClpV q (hence these are mutually orthog-

onal), then for every set A � t1, ..., nu we have that:

gigA �
#
p�1q#A gAgi if i R A
�p�1q#A gAgi if i P A.

That implies that

1

2
pgigA � p�1q#A gAgiq �

#
gigA � �gAYtiu if i R A
0 if i P A.

and
1

2
pgigA � p�1q#A gAgiq �

#
0 if i R A
gigA � �g2

i gAYtiu if i P A.

Proof. In order gi “passes through” gA from left to right, it suffices to apply

the property of anti-commutativity for mutually orthogonal vectors. If i R A, gi
anti-commutes with every element gj of monomial gA; if i P A, gi anti-commutes

with every element gj of monomial gA, except when j � i; in this case it trivially

commutes with itself, and g2
i P K (by Clifford’s axiom).

Remark A.0.1. If H �� A � t1, ..., nu, there always exists iA�, iA� P t1, ..., nu such
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that

giA�
gA � gAgiA�

giA�
gA � �gAgiA�

Proposition A.0.2.

tgAuA � t1, ..., nu
#A � k

is a basis for ClkpV q

Proof. We have only to show that it is a linearly independent set, that is, if¸
A � t1, ..., nu
#A � k

αAgA � 0,

then every coefficient αA must be zero.

Let it be a fixed B � t1, ..., nu with k elements, and rewrite the foregoing relation

as

αBgB �
¸

A � t1, ..., nu
#A � k
A �� B

αAgA � 0 (A.1)

we want to show that αB � 0. Relation (A) implies that, for each i P t1, ..., nu
αB

2
pgigB � p�1qkgBgiq �

¸
A � t1, ..., nu
#A � k
A �� B

αA

2
pgigA � p�1qkgAgiq � 0

If i P t1, ..., nu is such that i P A, i R B, then by the previous lemma, we have that

gigB � p�1qkgBgi � �gbYtiu and gigA � p�1qkgAgi � 0

producing the new relation for ever i P BC

�αBgBYtiu �
¸

A � t1, ..., nu
#A � k
A �� B
i R A

�αAgAYtiu � 0

Now we can easily recognize the (A) again and then, we obtain that:

αB

2
pgigBYtiu � p�1qkgBYtiugiq �

¸
A � t1, ..., nu
#A � k
A �� B
i R A

αA

2
pgigAYtiu � p�1qkgAYtiugiq � 0
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Then we can iterate this foregoing elimination for every ı P BCand observing that

AX BC � H ô A � B, we find that

�αBgBYBC � 0 ðñ αBg1 � � � gn � 0

Hence, αB � 0 by axiom (G).

Corollary A.0.3. Given a finite dimensional quadratic space (V,Q), then

dimClkpV q �
�

dimV

k

�

Now we only need to prove that ClkpV q X ClhpV q � H for every h �� k. This is

trivial, by (G), if h � 0 and k � dimV .

Remark A.0.2. For every (non-degenerate) quadratic space V , we can find a

pseudo-orthonormal basis teiui.
Notation. In ClpV q, dimK � dimCldimV pV q � 1 but we have just shown that

they represent different elements in the space. So we call pseudo-scalar an element

in CldimV pV q.
If te1, ..., enu is a pseudo-orthonormal basis of V , then we call pseudo-unit the

element e1 � � � en P CldimV pV q � ClpV q (called orientations of V ).

If A,B are two sets, then the symmetric difference is

A4B :� pAYBqzpAXBq.
Remark A.0.3. If e1, .., en is a pseudo-orthonormal basis, then for each

A,B � t1, ..., nu, it is trivial to prove that

eAeB � �eA4B

Lemma A.0.4. For every B � t1, ..., nu let iB : Ppt1, ..., nuq ÝÑ Ppt1, ..., nuq
such that iBpAq � A4B.

Then, iB is a bijection.

Proof. It is trivial if we observe that pA4Bq4B � A. (So, iB is an involution).

Proposition A.0.5. If e1, .., en is a pseudo-orthonormal basis of a non-degenerate

quadratic space V , then

teAuA�t1,...nu is a basis for ClpV q

Thus, dimClpV q � 2dimV .
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Proof. We have to show that if
°

A�t1,...,nu αAeA � 0, then every coefficient αA

must be zero. we can assume (by contradiction) that there exists at least a

coefficient αB �� 0. Let us rewrite the foregoing relation as:

αBeB �
¸

A � t1, ..., nu
A �� B

αAeA � 0,

Now (last remark) every uA is pseudo-invertible and for Lemma A.0.4) we have

that, multiplying both terms for e�1
B , we have that (with a change of sign if needed)

αB �
¸

A � t1, ..., nu
A �� H

βAeA � 0.

Now we can rewrite this expression in the following way,

αB � βt1,...,nuet1,...,nu � βCeC �
¸

A � t1, ..., nu
A �� H; C

βAeA � 0, (A.2)

for some proper C � t1, ..., nu. By Remark A.0.1 (and observing that e�1
i � ei

because we have a pseudo-orthonormal basis) we know that exist iC�, iC� such

that:

peiC�qeCpeiC�q � peiC�q2eC and peiC�qeCpeiC�q � �peiC�q2eC
Now we have to distinguish two cases:

(i) s :� peiC�q2 � peiC�q2

In this situation, the “concord case”, multiplying (A.2) from left and right

by puiC�q we obtain:

s αB � sp�1qnβt1,...,nuet1,...,nu � s βCeC �
¸

A � t1, ..., nu
A �� H; C

�βAeA � 0.

Analogously, multiplying (A.2) from left and right by peiC�q, we obtain:

s αB � sp�1qnβt1,...,nuet1,...,nu � s βCeC �
¸

A � t1, ..., nu
A �� H; C

�βAeA � 0.
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Making the arithmetic mean (and dividing for s), we obtain the new relation

αB � p�1qnβt1,...,nuet1,...,nu �
¸

A � t1, ..., nu
A �� H; C

γAeA � 0.

(ii) s :� peiC�q2 � �peiC�q2

Here we can observe that, multiplying (A.2) from left and right by puiC�q
we obtain:

s αB � sp�1qnβt1,...,nuet1,...,nu � s βCeC �
¸

A � t1, ..., nu
A �� H; C

�βAeA � 0.

Also here, multiplying (A.2) from left and right by peiC�q, we obtain:

�spαBq � sp�1qnβt1,...,nuet1,...,nu � s βCeC �
¸

A � t1, ..., nu
A �� H; C

�βAeA � 0.

This time, doing the difference (instead of the sum), in the arithmetic mean,

we obtain the same relation above:

αB � p�1qnβt1,...,nuet1,...,nu �
¸

A � t1, ..., nu
A �� H; C

γAeA � 0.

So, we have obtained the same equation in both cases.

Thus, following the foregoing procedure, we can eliminate from (A.2) almost all

the terms, obtaining:

αB � βt1,...,nuut1,...,nu � 0

But that cannot holds unless αB � βt1,...,nu � 0 for the axiom (G).

Corollary A.0.6. ClpV q is a graduate algebra with the following decomposition,

ClpV q �
nà
k�0

ClkpV q.

With this last corollary, we have finally completely proved Theorem 2.1.8.
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