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Chapter 1
Introduction

In the last years, the development of the so called Artificial Intelligence (AI), and
the need to optimize computer processes, got the attention of many Information
Technology (IT) researchers, engineers and mathematicians on “gesture recogni-
tion” techniques. As in this work we address to an audience that is not necessarily
introduced to advanced mathematical notions (such as, for instance, tensor prod-
ucts, ideals of rings, etc.), we try to use a mathematical formalism as accessible

as possible, trying to approach the problem through tools as elementary as possible.

A few years ago, during the study of Clifford algebras, already used by other I'T
applications (see [4]), a research team from the Université catholique de Lou-
vain (UCL), born from a collaboration between P. Roselli and J. Vanderdonck,
has seen as possible the application of Clifford Algebras to the field of “gesture
recognition”, which investigates efficient algorithms to make an Al device able to
evaluate similarity between two different motions (that is, gestures).

Until now, most of the recognition algorithms rescale and move the input gestures
in a predetermined position before starting the effective computations. Such data
preprocessing is time consuming. So, the study of suitable similarity recognizers
implies that their algorithms should be invariant with respect to almost! all
transformations that preserve similarity, like translations, rotations, or scaling.
Clifford algebra can solve this problem. As a matter of fact, it allowed us to
initially write an algorithm for the 2 dimensional case, the !FTL algorithm, where
this preliminary data processing is not needed, thanks to the intrinsic invariance
properties of our notion of “shape” given through a ratio in a Clifford algebra.

In mathematical terms, the foregoing research team implemented an opera-

'We point out that, in this work, we don’t consider some similarities as, for example,
reflections.
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tor, the shape distance Ds(f,g), where f, g are the input motions, such that
Ds(f,g9) = Ds(f,T(g)) and T is a transformation that preserves similarity.

More informations about !FTL? can be found in [16]; however, those results are
just a starting point to approach the recognition problem and an interested reader
can see possible future development in the chapter dedicated to our conclusions.
Despite the important improvements, there are some topics that need a deeper

mathematical investigation. My work started here.

As a matter of fact, in [16] any reference concerning the use of geometric algebra
has been intentionally bypassed, avoiding excessive information about Clifford
algebras not requested by a public mainly interested to I'T algorithms.

However, if this has been possible for the particular development of 'FTL, any
extension of it to other contexts cannot be separated from the use of Clifford
algebra.

Here, we can use a more general formalism than that used in [16], and we can go
deeper in mathematical details to move on, beyond !'FTL algorithm. This work

can be divided into four main parts.

1) A particular axiomatics for the Clifford algebra, mathematically equivalent
to the non-degenerate case, (one can refer to [3]); however our approach can
profit readers having just some basic knowledge about complex numbers

and elementary linear algebra.

2) A mathematical definition of “shape” of a 2D planar gesture followed by a
proper definition of the 'FTL, the proof of its convergence, an improved ver-
sion (IWFTL) and, as a consequence, a well defined operator that measures

the “dissimilarity” of two gestures (also called “gesture recognizer”).

3) The extension of the two-dimensional results obtained in part 2) to “2.5D
spaces”, i.e. the recognition of gestures located no longer on a Euclidean

plane but on any regular surface.

4) One of the possible generalizations of all previous definitions and results
seen in 2D to higher dimensions, and the reason why we chose to go toward

this specific direction.

We point out that, in this work, our main original contributions are: Theo-
rem 3.1.9, Theorem 3.1.10, Corollary 3.1.11, Definition 3.1.12, Theorem 3.1.14,

2FTL stands for “Faster Than Light”. Such an acronym, was chosen by one of the authors
of [16] for his amazement facing the first astonishing speed results. To compensate for this
exuberance, the others authors chose to use the negation mark “!I” as a prefix.
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Proposition 4.1.5, Lemma 4.1.6, Section 4.1.3, Section 4.2 and Chapter 5.

As we have already explained, Section 2.1 and, as a consequence, the appendix
A, are our slightly original approaches to Clifford algebras, necessary for the
development of the aforementioned results.

Besides, all these results open up to other possible researches. We postpone this

discussion to our conclusions in Chapter 6.



Chapter 2

Clifford Algebras

Clifford algebras have been defined and generalized in several different ways (see
for instance [3],[4],[8],[13]).

The varieties of approaches depends on the different applications of those algebras.
This multiplicity of approaches and definitions, besides witnessing the richness and
adaptability of Clifford Algebras, has also produced some problems concerning
conflicting notations and deductions of results. In order to avoid such problems
and to keep this work self-contained as much as possible, we explicit here our
particular approach to Clifford Algebras. This is mainly suited for the results
presented in this work and it is addressed to the particular audience those results

were presented to.

2.1 Owur Axiomatics for Clifford Algebras

Definition 2.1.1. Let S be a set. An algebra generated by S, is an associative al-

gebra 2l where every element can be expressed as a polynomial in the elements of S.

Definition 2.1.2. Let V be a n-dimensional vector space on the field K, whose
characteristic is not equal to 2.

An algebra generated by V is an unitary associative algebra 2 over K generated
by V. Let r : V'— 2 be the linear monomorphism (an injective homomorphism)

corresponding to the injection of V' as a linear subspace of 2.

Remark 2.1.1. If s : K — 2 is a linear function such that s(a) = al, the unit
element 1 in 2 then s is an algebra monomorphism.

Remark 2.1.2. With abuse of notation we will ignore the r, s when we will talk
about s(K) and (V) within 2, referring to these simply as K (scalars) and V/

(vectors).
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Definition 2.1.3. Let V be a n-dimensional vector space on K, with a non-
degenerate quadratic form ). Then the Clifford algebra (or geometric algebra)
over V, Clg(V), is an algebra generated by V' satisfying these two axioms:

(C) VveV, v2=Q(v) (Clifford or contraction axiom)

(G) VY eq,---,e; mutually orthogonal (i. e. Vm £ n, e, L e,') and linearly

independent, e;---e; ¢ K (Grassmann? or extension axiom)

Remark 2.1.3.
e In (G), if @) is positive definite and ey, - - - , e; are mutually orthogonal, then
ey, -+ ,e; are necessarily Li. (linearly independent), too. So, in this case,

we may just require in (G) the orthogonality condition. (This is still true if

() is negative definite too.)

e We can however not require the quadratic form @) at the beginning. In this

case, one can replace the (C) with
VveV, v*eK,

and then observe that the map v — v? induces a quadratic form.
Remark 2.1.4.

e We must demonstrate the existence and uniqueness of Clg (V). Evidence of

this will be provided later.
e As every single vector v € V verifies (G),this implies that K n V' = {0}.

e VaeKveV  wva=av (va=uv(al))

Ezample 1. The axiom (G) is very interesting. Not only because it is a useful tool
to prove some of the main features of the algebra, but also because it is needed to
avoid degenerate examples like the following one:

K can be an algebra generated by K itself, but it cannot be a Clifford algebra
thanks to (G), unless V' is trivial, that is V' = {0} (This makes sense only if K is

not trivial).

Remark 2.1.5. If we consider the bilinear form (x,y) associated to @), we have
that:

2z, y) = Qz+y)—(Q2)+Q(y) = (in Clg(V)) = (v+y)* = (2°+y*) = 2y +yz,
Vz,yeV.

'With respect to the bilinear {, ) form induced by @, hence with u L v we mean that
{u,vy = 0.

2This axiom is related to Grassmann, because of definition 52, at pag. 29 in [7].
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Notation. We will use the following notations:
e o, f3,v--- for scalars;
e a,bc,-- ,u,v,w,x,Y, 2, for vectors;
e A B,C,--- for elements of Clg(V), also named multivectors;

e AB (juxtaposition) for the algebra product that we call Clifford (or geomet-

ric) product ;
e (x,y) or x-y for the unique symmetric bilinear form such that (z, x) = Q(x).
Remark 2.1.6. It is useful to remark that -y =0 < zy = —yx.

Definition 2.1.4. If z1,--- ,z, € V, we define the completely antisymmetric

product of k ordered vectors x1,--- ,x) as

1 :
[, ] = 7 ) sign(0)oq) gy,

o€Sk
where S is the symmetric group, i.e. the space of all the permutations of k
elements and sign(o) is the sign of o € S,, (Sometimes, to facilitate the reading,

we denote the sign of o with |o]).

Remark 2.1.7.
o [oy] = 252
o [z,2]=0

o [z,y] = —[y,]
o afz,y] = [az,y] = [z, ay]
o [z+zy]=[z,y]+[2]
We can extend the foregoing results to any dimension.
Proposition 2.1.5. For each xq,---xp,y €V, Ya e R, we have that
(i) [Trqys s ] = (=1)an, -+ 2] Vre S,
(it) |x1,--- ,2p] =0  ifx; =x; for somel <i<j<h
(111) The completely antisymmetric product is multilinear in its components.

(v) ey, -+ ,en mutually orthogonal, then [e1,--- ,en] = e1---ey.



CHAPTER 2. CLIFFORD ALGEBRAS 7

Proof. (i) The function f : Sy, — S, such that o — 7 o0 is a bijection. Then it
follows from: (—1)I7°7l = (—1)7l(—1)ll,

(ii) As a transposition, that is a permutation 7 that changes only i — j, is an

odd permutation; then (ii) follows easily from (i).

(iii) This is due to distributivity of the geometric product..

(iv) eje; = —eje;, then ey -~ eqpn) = (=1)loley - ey
]
Corollary 2.1.6.
x1,- -+ ,xp € V are linear independent <= |1, - ,x] + 0
Proof. (<) It follows from the previous proposition.
(=) The previous proposition implies that 3 ey, ..., e; mutually orthogonal such
that span{zy,...,x,} = spanfey, ..., ey}, and
X1,1 " X1,k
[21,..., 2] = aler,...,en] = aey---ep, with a = det : : ,
Xn1 *°° Xhh
where x; = 2?21 Xij€j-
Then, by hypothesis, a % 0.
The thesis then follows, using axiom (G).
]

Remark 2.1.8. The proof points out that, if we are in the Euclidean space, for
every couple of Li. vectors u, v, [u,v] = sinfejeq, where ey, ey is an orthogonal
basis for the two-dimensional linear space span{u,v} and 6 is the angle between

u and v, oriented by the ordered basis {ej, es}.

Remark 2.1.9. Hence, every non-degenerate completely antisymmetric product
can be expressed as the Clifford product of n mutually orthogonal vectors, and

vice versa.

Definition 2.1.7. We call k-blade the geometric product of k£ mutually or-
thogonal and linearly independent vectors. Thus, a k-blade coincides with the

non-degenerate completely antisymmetric product of its factors.

Notation. If gy, - - - g, is an ordered basis for V and A < {1, ...,n}, we will denote
with g4 := [[,c4 9i» where indexes in A are taken, in the product, in their natural
order.

If A=, then g4 := 1.
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Remark 2.1.10. By the anticommutative property of the orthogonal vectors, we
have that:

Span{gA}Ag{l ..... n} = Cuv)

Furthermore, if we call C1*(V') := span{k-blades} the space of k-multivectors, we
obtain the following result.

Notation. In C1(V), dimK = dim C19™V(V) = 1, but we have just shown that
1 and e; - --egimy represent different elements in the space (they are linearly
independent). So, we call pseudo-scalar an element in C19™V (V).

If {e1,...,e,} is an orthonormal basis of V' (an orthogonal basis such that e? = +1
in the relative Clifford algebra), then we call pseudo-unit the element e; ---e, €
Cl14mV (V) < Cl(V). (also called orientation of V).

We can observe that [ is invertible.

Theorem 2.1.8. Ifey,.., e, is an orthonormal basis of a non-degenerate quadratic

space V', then

i) {eayacq,..,ny s a basis for CIk(V).
H#A=k

i) {eatacq,.ny s a basis for CI(V).

iii) CU(V') can be decomposed as follows,

CUV) = P_, CI*(V).
Thus, dimCIl(V) = 24mV,

The proof of this theorem is left in the appendix.

2.1.1 A Classical Way to Define the non-Degenerate Clif-
ford Algebra

In this subsection, we will refer to Clg(V') with G. We do that because in this
subsection we want to observe that, if we work with non-degenerate quadratic
forms, our definition of Clifford algebra is equivalent to the following one, that is
the usual way to define it (See [13] or [3] for example).

Moreover, in this chapter we take for granted some properties of tensor algebras.

For more details see [9].

Definition 2.1.9. Let V' be a n-dimensional vector space over the field K and @)
a quadratic form on V. The Clifford algebra Cly (V') associated with (V. Q) is the

associative algebra with unit, defined by

Clo(V) = V¥/I(V.Q)
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where V® = @,-(V®" is the tensor algebra of V and Z(V, Q) the two-sided ideal
generated by all the elements of the form x ® © — Q(z)1, for z € V.

We don’t choose to use this definition because it requires a more depth knowledge
about astract algebra like tensor product and universal properties (as we can
see right now). So, in order to prove the equivalence we need to show a result,

respecting the classic definition.

Remark 2.1.11. There is a natural map i : V' — Clg(V') obtained by considering
the natural embedding j : V' — V®, followed by the projection 7 : V& — Clg(V).
Viewing V' as a subset of Clg(V) in that way, the algebra Clg(V) is generated by
V' (and the unit 1), subject to the relations

v-v=Q(v,v)l

Remark 2.1.12. V® the tensor algebra with the inclusion j : V — V® is the
essentially unique® pair that verifies the following universal property:
for any other associative algebra with unit A, and any linear map f : V — A,

there exists a unique K-algebra homomorphism
f:V® > A

satisfying

~

foj=1
Also the Clifford algebra checks its own universal property.

Proposition 2.1.10. Let A be an associative algebra with unit and f:V — A a

linear map such that for allveV

f)? = Qv)la. (2.1)
Then there exists a unique K-algebra homomorphism
f:Clo(V)— A
satisfying
foi=f
Furthermore, if C is an associative K-algebra with unit carrying a linear map
i' 1 V — C satisfying i'(v)? = Q(v)1¢, with the property above, then C is isomorphic

to CZQ(V)

3Up to isomorphisms of algebras that commute with inclusions.
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Proof. To prove this proposition we refer back to the universal property of the

tensor algebra.

V—>A

l/fT

Ve Lo Cl(V

If [a] € CI(V) (a, element of tensor algebra, is a representative of the equivalence
class [a], element of the Clifford algebra),

f(la]) = fa),

where f is the unique homomorphism granted by the universal property of tensor

algebra. By Proposition 2.1, f is well defined. Moreover,

(i) = F(Li@)) = f((v) =

For construction we have that this homomorphism is unique (It follows from the
uniqueness in the universal property of tensor algebra).

In the end, if we have C and i’ as in the hypothesis, then we obtain 7/ : CI1(V) — C
and 7 : C — CI(V) that commute with i and 7. Hence they are the inverse of each

other, and this implies that C1(V') and C are isomorphic.

v —> C
[ A
CLV)

With this result we can show the equivalence.

Proposition 2.1.11. If G is the geometric algebra, and Clg(V') is the Clifford
algebra defined above, then
G = Clg(V).

Proof. Tt is directly implied by Theorem 2.1.8.

In fact, according to the last proposition, we only need to show that there is a
unique algebra homomorphism f : G — A such that foi = f, where i is the
canonical inclusion of V' in G and f : V — A s a linear map with f(v)? = ¢(v,v)1 4.

But this is trivial, when we know that {eg}pc(i, ny is a basis for G, because if

geen

A =Y sapep is an its generic element, f can only be
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where f(es) i= f(ei) - - fles). =

Notation. Hence, for the rest of the paper we will refer to a generic Clifford
Algebra with Cl(V') or Gy without any difference.

2.2 Basic Results on Clifford Algebras

In this section we will show useful results for the development of our results, that

a reader can also find in [12] or in [§].

2.2.1 Basic Operators on Clifford algebras

Thanks to the last result we will identify the Clifford Algebra with CI(V') or Gy
without any difference.
In this section we want to introduce the most common structures used in the

geometric algebra and some of the results associated to them.

Remark 2.2.1. For every x,y € V, we have that (z + y)? = &z + y,x + y) =
(x,2) + Y, y) + 2{z, y), but (x +y)? = 2 + y* + xy = (2, 2) + {y,y) + 2y + yx,
then we obtain

ry +yr
2 - <x7y>

Now, we can show one of the main and famous identities in the geometric algebra,

Proposition 2.2.1. For every x,y eV,

ry = {x,y) + [z, y] (2.2)

Proof. xy = ®1¥ 4 WU O

Now we want to get an insight into (2.2).
First, we need to analyze the [x,y| part. We want to consider it as a binary
(bilinear) operation, to focus the algebraic aspect over the geometric one. To do

that we need to define two new operators.

Notation. A e Cl(V'), then we call (A); the k-grade component of A.
In other words, (A), is the projection of A € CI(V') onto CI¥(V).
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Definition 2.2.2. For every pair of elements A, B: Ae Cl/(V); Be CI*(V),

e (outer product) A A B = (AB);.y

e (inner product) A- B ={(AB);_; (only if £ = j ; 0 otherwise.)
Of course we can extend the definition by linearity to all elements of CI(V).
Remark 2.2.2. 1f a,b e V the inner product is the well known scalar product.
Proposition 2.2.3. The outer product is associative.

Proof. Consider first a j-vector A, a k-vector B and a [-vector C":
(AAB)AC=(AB)js A C = (AB)j1kC)jsrst = CABC)jkt

Last equality holds because only (AB);, can contribute to (ABC), 4.

a similar calculation shows the same for A A (B A C). O

The next proposition answers our previous problem, letting us to consider [z, y]

as a binary operation.

Proposition 2.2.4. Vxq,.. 2, €V,
(21, ..., 2] = 21 A o A Ty
In particular, if a,beV,
ab=a-b+anb. (fundamental identity)

Proof. We will use the induction on j.

The base is trivial ([z] = z).

Now we want to show that [z, ..z 1] A Zp = [T1, .0, T

If [x1,...,2m 1] = 0 it is true.

Otherwise, there exists an orthogonal base {ey, ..., e,,} such that
[21, ...,z 1] = k(e1 -+ ey 1) with ke K £ 0.

m
Now, z,, = >,\" | ave;, hence,

{1, ooy o1 | T ym = @k €1+ e = [T1, .y T ]
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Notation. Now we want to give a geometric meaning to our algebraic blades.
So, we will consider the span{bi,...,bx} = V the space associated to the blade
B=10b---bg.

Remark 2.2.3. Sometimes, with abuse of notation, we will call the blade and its

space associated with the same name.

Proposition 2.2.5. For everyae K, A, B,C e Cl(V), we have

(i) (aA)-B=A-(aB)=a(A-B)

(i) A-(B+C)=A-B+A-C; (B+C)-A=B-A+C-A

(iii) (aA) A B=A A (aB) = a(A A B)

(i) AN(B+C)=AAB+AAC; (B+O)AA=BAA+C A A.

(v)
A-(B-C)=(AAB)-C (2.3)

Proof. 1) and iii) Those are trivial from the definition.
ii) We suppose that A is a j-vector and B and C are k-vectors.
A(B+C) =(A(B+C))j—j = (AB+ACY_j = (AB)j_;+(AC)_; = A-B+A-C'.

If they are arbitrary multivectors, we have

A-(B+0) DAY UB+Cy =

= Z<A>j - ((B)x +<(Cx) =

= D (B (A (O =
j.k
= A-B+A-C.
We use a similar argument for the other equality and for the iv).

v) Both the terms are equal to (ABC),_;_; if A is a j-vector, B is a k-vector and

C is a [-vector. Then, like in ii), we can extend it to arbitrary multivectors. [

We denote with I the pseudo-unit in C1(V') w.r.t. to an orientation given by a

basis of the space.

Definition 2.2.6. If A € CI(V) we call A* := 4/} = AI"! its dual’. (with

respect to the orientation).

4Tt makes sense because I is always invertible.
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Proposition 2.2.7. Ifn =dimV,
(i) (aA)* = aA*
(i1) (A+ B)* = A* + B*

n(n—1)
2

(i1i)) A* = +A, and A** = (—1)

form.

A if Q is a positive definite quadratic

() if A is a k-vector then A* is a (n — k)-vector
(v) if A is a k-blade then A* is a (n — k)-blade

(vi) if U is the space associated to a blade B, then the space associated to B*
will be U+

Proof. 1) and ii) are true for the linearity of the Clifford product.

iii) If @ is a positive definite quadratic form it immediately follows from
I’ =(-1) mi , otherwise I? is anyway equal to —1 or 1, in accord to the signature

of the form.

iv) follows from v). v and vi) Let A = a; - - - a;, the product of members of an

orthogonal invertible basis for U. Let {a;41,- - ,a,} be an orthonormal basis for
Ut . Then,
P I
|1 | |a;]
Hence A* = tlay|---|a;| - aj1- -+ an. O

We can immediately see an interesting result using the dual operator.
Proposition 2.2.8. IfdimV =n, every A€ Cl, (V) is a (n — 1)-blade

Proof. 1f A€ Cl,,_1(V), from the proposition above, we have that A* is a vector,
in particularly it is a 1-blade. Then, A** is a (n — 1)-blade.
But A = +£A** hence we got the thesis. m

Example 2. Tt is useful to remark that the last statement it is not true for any
arbitrary m < n. In fact in CI(R?), the 2-multivector ejes + ezeq it is not a
2-blade.

Now we want to endow our Clifford algebra with a norm or something similar. To
do that we need to introduce the “reversion” first,

iG=1

Definition 2.2.9. If A is a j-vector, the reversion A := (—1)"z ~ A and we extend
it for linearity to all Gy .
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Remark 2.2.4. If A := a1 A as- -+ A ag, we have that A=ay Aap g A Aay.

Definition 2.2.10. A € Gy,
[A]* = (A

Remark 2.2.5. We can observe that if A =}, ase; w.r.t. to an o.n. basis of Gy,
then

AP == ) lasPlles] .

J
Then we can also see that it can be negative despite what it might seem. Only if

Q is a positive definite form, we have that this map is a norm in all respects.

Moreover, if B is a blade, ||B|| # 0 < B is invertible.
Proposition 2.2.11. If A, B € Gy,

(i) ANB=BAA

(i) [|A*]] = || All

(iii) (AAB)*=A-B*, (A-B)*=AAhB*

(iv) AB = BA

Proof. 1) It follows from Remark 2.2.4.

ii) It is another consequence of the proof of Proposition 2.2.7,(v). iii) If A is a
j-vector and B a k-vector,

A+ B* = (ABI sy = (ABI sy = (ABYy I~ = (A B)*,

We can extend it to the general case through the linearity of the involved operators.
We can use a similar argument for the other equality.

iv) For linearity, if we decompose both A and B with respect to an o.n. basis
{er}s, it suffices proving the thesis for ese;.

First of all, we start to prove that ege; = €rep.

If 0 ¢ I this is trivial; otherwise, if |I| = k, we have that,

(k—1)(k—2)

—~ (k—1)(k)
eper = (—1) 2 €l = (— )

(—1)"tereg = (1) = ereq = €rep.

(k—1)(k—2)
2

Now we can finally prove the thesis by induction on |J| simply observing the

following chain of equalities, (calling ey the “last” element of e;: e/ per =€)

€1€1 = €I/11Er€1 = Eresji €1 = €fEIeT](fy = €lCif{f)e; = €IC)-
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]

Remark 2.2.6. In Grs we can recognize the well known cross product defining it
as u x v:= (u A v)*.

Infact, we can observe that choosing an o.n. basis of the space.

Theorem 2.2.12. A, Be Gy. If A or B is a blade, then
1ABI| = [[A[l | BI]
Proof. We observe that if B is a blade we have that BB = (BB),. Then,

|[AB||* = (ABAB)o = (ABBA), = || B|[}{AAy, = ||B|*||Al[*.

O
Ezxample 3. In general this is not true: (ejes + ezeq)(eres + ezey) = 0.
Now we can extend the fundamental identity,
Lemma 2.2.13. Let B =0y ---b; a k-blade, aj € B and a; L B. Then,
a) a)-B=aB anday A B =0,
a - B is a (k —1)-blade in B (unless aj = 0)
b) ay AB=a,Banda, -B =0,
a; A B is a (k+ 1)-blade representing span{a,, B} (unless ay =0)
Proof. Since a) € B, it is a linear combination of {by,--- ,b;}. Then it is easy to

see that a)B is a combination of (k — 1)-vectors in B. Thus,
aj| -B = <(IHB>;€_1 = CLHB ap A B = <CLHB>;€+1 =0.

Moreover, if a # 0, a;B is a combination of (k — 1)-vectors, and so from
Proposition 2.2.8 is a (k — 1)-blade.

Since a; L B, a; B is a (k + 1)-blade. Hence as we did above, we obtain the
thesis. O

Proposition 2.2.14 ((Extended fundamental identity)). Let a € V' and B € Gy .
Then
aB=a-B+anB
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Proof. 1If we prove that only for blades, the thesis will follow from the linearity of
all the operators (the thesis holds by definition if B is a scalar, then we will not
consider this trivial case in the proof).

We decompose a = aj| + ay. From the lemma,
aB=(ay+a )B=a-B+a AB=a-B+anB.

]

Remark 2.2.7. Moreover a left vector product split every k-blade in a sum of
(k—1) and (k + 1)-blades.

Remark 2.2.8. We cannot extend anymore, because
AB+ A-B+ A A B.
(example: ejes and eses in R3)
We want to end listing some other properties of these operators.

Proposition 2.2.15. Let A, B be two blades in Gy. Then, according to the abuse

of notation announced in the Remark 2.2.3, we have that
(i) A- B < B (Provided A- B is a blade, or 0)
(i) Ac B=A-B=AB
(ii)) ac A=al A-B
(iv) [JA]]? = [|A- Al
(v) A B =span{A, B} if An B = {0}, otherwise it is 0
(vi) BA A= (—1)dmAdmBg B

Proof. i) Let A be a j-blade and B a k-blade. Express A = ajas---aj_1a;, a
product of orthogonal vectors. We will start with a; - B, then (a;_1a;) - B, and so
on, showing that each is a blade (or 0). According to the extended fundamental
identity, a; - B is a (j — [)-blade in B (or 0). Next, (aj_1a;) - B = {aj_1a;B);_».
Now, only the blade {(a; - B);_1 from a;B can contribute to ({a;_1a;B) 2.

Now, apply the extended fundamental identity twice to see that the right side is a
(k — 2)-blade in B (or 0). Hence,

{aj—10;B)r_o = aj_1 -{a;B)r_1 = a;_ - (a; - B).
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Continuing in this way, A - B is a blade in B (or 0).

ii) It is trivial because in this case AB is a (k — j)-blade.
iii)a-(A-B)=(anA)-B=0-B=0.

iv) Let A = ajas---aj, a product of orthogonal vectors. Then both [|A]|? and
|A - A|| are equal to |ay|[*ag|* - - - |a;|*.

v) Consider first the case A n B + {0}. Choose c € An B. Extend {c} to an
orthogonal basis {ai,---,a;_1,c} for A. If A 4 ay---a;_;c, then make it so by

multiplying at by a nonzero scalar. Similarly. B = ¢by ---bg_1. Then
AAB= <AB>] + k= |C|2<CL1 Tt aj—lbl Tt bk_1>j +k=0.

Now consider the case An B = {0}. Express A = a; - - - a;, a product of orthogonal
vectors. We will build up A A B starting with a; A B, then (a;_1a;) A B, and
so on. Since a; ¢ B, a; A B is a (k + [)-blade representing span(a;, B). Next,
analogously to i),

(aj_laj) AB= aj—1 A (CL]‘ AN B)

Since a;j_y ¢ span(a;, B), it follows that (a;_1a;) A B is a (k+2)-blade representing
span(aj_1,a;, B) = span(a;—ia;, B). Continuing in this way, A A B is a (k + j)-
blade representing span(A, B). vi) For the anticommutative property of the outer

product, if A =a;---a; and B = by - - - b, we have that
B/\AZbll\---/\bk/\al/\---/\ajZ(—1)jblA---/\bk_1/\al/\---/\aj/\bk:

= (=1 a; Ao na;Aby A Aby=AADB

2.2.2 Projection, Rotation, Reflection

A first impressive Clifford algebra result can be observed through the following new
ways to define the most common geometric transformations: projection, rotation

and reflection.

Proposition 2.2.16. a € V and B an invertible blade. Then we can decompose

a=aj+ar. Hence,
a| = a-B/B (projection)

a, = a/\B/B (rejection)
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Proof. From the propositions above, B =a-B and a, B = a A B. O

Definition 2.2.17.

v eV, B blade, then

e the distance between v and B is d(v, B) := |v, |

e the projection of v on B is Pg(v) := v

Remark 2.2.9. If B is invertible,

e d(v,B) = [[vaBl|

1Bl

o« Ppv)=""/p

Definition 2.2.18.

Remark 2.2.10.

e Pg is linear.

M € Gy, B invertible, then

Pp(M) = (M.B)/B

(Pp(aM + SN) = aPg(M) + fPp(N))

e Recalling the Remark 2.2.3, A< B= Pg(A)=A (see (2.3))

Proposition 2.2.19.

PB(M VAN N) = PB(M) VAN PB(N)

Proof. We have to show for blades, and for linearity we have the thesis.

First, Pg(a A b) = Pp(a; A b) + Pg(a; Ab). The second term is zero, hence doing

the same for b we obtain that:

PB(CI, A b) = PB(QH AN b||) =ap N bH = PB(CL) A PB(b)

. Hence, for blades A = a; A --- Aa; and C = ¢; A -+ A ¢; we have that

Pg(A A C)

Now we can speak

rotation.

= Pglax A~ AagAnct Ao AG) =
(a1) A -+ A Ppla;) A Pp(ci) A-o- A Ppley) =
= PB(A)/\PB(C)

2

O

about another fundamental geometric transformation: the

We will analyze it within euclidean spaces
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Notation. If A is a blade such that A> = —1 and )\ is a scalar, we can write
e := cos \ + Asin \. For this reason, in this context, we often use the letter I

to call such a blade A.

Definition 2.2.20. The rotation in the plane of blade I with the angle 6 is
denoted by Ryg.

Remark 2.2.11. Thanks to Remark 2.1.8 we can see that, in euclidean spaces,
if u,v are two Li. vectors, then wv = |ul|v|(cos@ + sinfI) with I the 2-blade
representing the plane of u, v, and 6 the angle between them.

Then in our new notation, uv = |ul[v|e!’.

Moreover if we want to rotate u in a plane I of an angle #, obtaining the new
vector v (with the same norm of u), we have that u?v = u|u||v|e’”?, and because

2 10

|ul|u| = |u||v| = u* we obtain that v = ue'”.

Now we want to consider a general rotation of angle € in the plane I: this time u

is not necessarily lying in the plane /. We will denote it Rg(u).

Lemma 2.2.21. If a is a vector and A is a j-blade such that a € A (it makes

sense since Remark 2.2.3), then
aA = (1) Aa.

Proof. We need to decompose a in the orthogonal basis of the blade A (obviously
we can because a € A). Then every vector of the basis anticommutes with every

element of A, except with itself (where it trivially commutates). O

Proposition 2.2.22. With the notation above,

10 10

Rip(u) = e 2uex.

Proof. We decompose u with respect to the plane of I, so u = u; + u,. Then,
we have that Ryp(u) = ue’® + u; (Indeed Rpp(wi) = wy). Thus, thanks to the

foregoing lemma,

10 10 _I0 10
Rip(u) = we2e? +uje 2e2 =
_10 I 16 I0
= € 2uye? +e 2uje? =
10 16

= e 2uez.
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For completeness, using the last result, we extend the operator R also to the
generic elements of the Clifford algebra, even if it will not be necessary for the

results of our work.

Definition 2.2.23. If M € Gy,

16 I6

Rpg(M):=e 2 Me2.

Remark 2.2.12.
o Rjp is linear.
o Ry(MN) = Rig(M)Rio(N) VY M,NeGy.
Lemma 2.2.24. Let A and B be multivectors. Then (AB)y = (BA)y.

Proof. Let aE (a a scalar, F a 1-norm blade) be a term in the expansion of A
with respect to a standard basis B. Similarly, let bF' be in the expansion of B. In
AB each aF is multiplied by each bF: (aE)(bF) = abEF. Inspection of B shows
that (EFy & 0 only if E = F. Then {(aE)(bF)) = abE?* (or 0), where E? = +1.
Similarly {(bF)(aE)Y = baE?. The scalar parts are equal. O

From the lemma, ((AB)C)y = (C(AB))y, this implies a cyclic reordering property:
(ABCy = (CAB)y.

Proposition 2.2.25.
R[Q(M 7AN N) = R[@(M) AN R[@(N),
Rig(M - N) = Rrg(M) - Rig(N).
Moreover, the rotation preserves the grade.

Proof. We already know that the rotation operator transforms vectors in vectors.

Moreover, by the previous lemma,

Rig(u) - Rrp(v) = <6_%UU6%0>0 = <6_%6%6U’U>() = (uvyy = u - v.

Then the rotation preserves the orthogonality.

For construction, we have that, for every j-blade u; - - - u;,

Rip(uy - --u;) = Ryg(ur) - - - Ryo(uy)
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. Since the rotation preserves the orthogonality, the right side is a j-blade again.
Then we have proved that rotation preserves the grade too.
Now, suppose first that M is a j-blade and N a k-blade. Applying what we have
just observed,
Rig(M AN) = Rip{MN)jiy

= (Rig(MN))jri

= (Rig(M)Rrg(N))j+r

= Rp(M) A Rp(N).

Thanks to the linearity of the involved operators, we can easily generalize this
result to general multivectors. A similar argument can be used to prove the inner

product part. O
Now it is time to analyze the reflection, another well known transformation.

Proposition 2.2.26. Let a be a vector and A a j-blade. Then,

0 A— %(aA <1y Aa),

anA= %(CLA + (=1) Aa).

Proof. a = aj +a, w.r.tto A. Hence we know that a; A = (—1)7Aa,.
And for Lemma 2.2.21, ayA = (—1)’7'Aq;. Thus,

aA—(-1YAa = (aqy+a)A—(-1)A(a+a)=
= (a +a)A = (=ay +a)Ad=2qA=2a- A

In the same way we can prove the second expression. O

Definition 2.2.27. Let a be a vector and B an invertible k-blade. Then if

a = a| + ay is the well known decomposition then the reflection of a through B is
Fg(a) :==a) —ay.
Proposition 2.2.28. With the notation above,
Fg(a) = (=)' BaB™".

Proof.
Fg(a) =ay—a; = (a-B—anB)B™ = (previous prop.) = (—1)*"'BaB~!. O
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Moreover if we are working with hyperplanes we can simplify the formula.

Proposition 2.2.29. If a is a vector, and B is an invertible hyperplane, with

b := B* its dual vector, then
Fg(a) = —bab™ .
Proof. Observing that a; L band a; || b,
—bab™" = —b(ay+ a )bt =apbb "t —abb " = a —a = Fg(a).

O

Definition 2.2.30. As we did for rotation and projection, we can extend the

definition of reflection to multivectors, then if A is a multivector whose grade is 7,
Fp(A) := (=1y*+YBAB™!,
Proposition 2.2.31. Fg is linear, preserves grade. Moreover,
Fg(M A N) = Fg(M) A Fg(N),

Fp(M - N) = Fg(M) - Fg(N).
Proof. The proof is similar to that at Proposition (2.2.25). O
Remark 2.2.13. Summarizing,
e (projection) Pg(A) = (A-B)B™!
o (rotation) Ryp(A) = e = Ae?
o (reflection) Fg(A) = (—=1)/¢+VBABEY

Now, we can rewrite the rotation in a more useful way, using a classical theorem?

of geometry: the Cartan-Dieudonne theorem.

Theorem 2.2.32 (Cartan-Dieudonne). Let f be an orthogonal transformation in
a n-dimensional symmetric bilinear space, then f is a composition of at most n

reflections.

With the notation and the results above we can rearrange the theorem in a “new”

algebraic form for our context.

5See details in [6]
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Theorem 2.2.33. Let f be an orthogonal transformation in a n-dimensional
non-degenerate quadratic space, then there exists a V = vy ---v, with r < n such

that,
flv) = (=1)"Vov 1.

Notation. If a,b are two vectors, we denote with ab the angle between them.

Remark 2.2.14. Let us to show an example: the rotation in the plane represented
by the 2-blade i (2 = —1), Ryp(v) = e~ 2 ve’™ .
If we find two unit vectors a, b € I such that ab = 6/2, we have that ab = e? then

we obtain the statement above, hence Rrg(v) = b~ ta tvab.



Chapter 3

Shape Distance in 2D

In this chapter, our purpose is to find a reasonable way to describe a “similarity
distance” between two smooth curves. In particular, we will find a pseudo-distance
between smooth curves that can measure how much similar are two curves.

We consider two smooth curves as similar if we can obtain one composing the
other one with a direct homothety (a scaled rototranslation), while we exclude
inverse homothety (An interested reader may also see [11]).

We want to stress that we work with such invariances only in dimension 2, as we
will choose other similarity criteria to compare gestures in higher dimensions, in
Chapter 5.

3.1 Gestures and Shapes

In this section V' will be a two-dimensional Euclidean space, that we shortly
denote by E2. We start to define similarity between two ordered couples of vectors,

and then a similarity distance.

Lemma 3.1.1. a, b, c are coplanar in a Euclidean space, if and only if
abc = cha.
Proof. As abc = a(b,cy + a(b A ¢), using Lemma 2.2.21, we obtain
abc = alb,cy — (b A ¢)a = {c,bya + (¢ A b)a = cba.

]

Proposition 3.1.2. Let (a,b,c) be an ordered triple of elements € E*. Then if

a,b are l.i., we have that d = ba~'c is the “vector fourth proportional” to the triple

25
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(a,b,c), that is the unique vector such that:
. % = % (scalar)
e the angle ab = cd. (directional)

Proof. Since we Let ¢ = R, ,, »(c) that we denote, with abuse of notation, R (c).
For Remark (2.2.14), we have that

a+b . a+b
Ryl(e) = 2 aea "
la+0b] |a+ b
where T = ﬁ Now we got the thesis iif d = %c’. Then,
b b a+b . . a+b
uc’ _ blax 2 o0 (by Lemma (3.1.1))
|al lal|a + b |a+ b|
Harh aai
= 19 CH—{) a—Hfdc: (because o™ = i)
lal & +b| |a+ b| |af?
ol dH;adH;a*lc— o d+6&&+l§a L _
lal o +b| |+ b| a+b| |a+bl
= |b| Fau (@) a te=|blba 'c=ba 'c=d.
|a+b]
We recall that Fp(x) is the reflection of « through the blade B. O

As F,, (a) = b, we can reformulate this proposition in a “geometrical” way, to
|a+b]
better focus our point of view.

Notation. If three consecutive vectors a, b, ¢ trace a triangle in the plane (so that
A
a+b+c=0), we denote that triangle by abc, as a geometric figure.

This definition does not depend on the translations (only vectors are involved in
this construction); consequently, it describe the triangle as an object unrelated to

the origin.

Corollary 3.1.3. Let T and Ty be two triangles in the plane such that T Z:.IlIAQl’g
A
and Ty :=y1ysy3. Then,

Ty ~ Ty (direct similarity) <= Ja,b,c,d e {1;2;3} such that z,z;' = yey;".
Definition 3.1.4. Let S := {(a,b) | a,be R?, b+ 0}.

Then, (a,b) ~ (¢,d) <= ab'=cd

Remark 3.1.1. We can see that if we consider b consecutive to a and d to ¢,
A A

(a,b) ~ (¢,d) = ab(a+b)~ cd(c+ d), but not the reverse!
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A A

For example, ejep(—e; — e3) ~ —e1(e1 + e3)(—es), but eje; ' + —ey(e; +ep) L

Now we can introduce the objects we will use in this section,

Definition 3.1.5.

o Acurve f: I =[0,1] > R? is a plane gesture if it is regular
(that is C?[0, 1] such that f’ # 0),

e A (n+ 1)-sample of a gesture is {fy, ... , fn} < f(I).

This definition is useful both to mathematicians and to IT engineers. As a matter
of fact, we can interpret the samples as the input data of a basic gesture in the
plane, but we can still look at them as the points associated to a generic partition

of the curve.

Definition 3.1.6. A basic gesture in R? is an ordered couple of not null vectors
(v1,v9) commonly considered as a particular 2-sample of a plane gesture tracing a

triangle.
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This definition is the result of what we had shown in the last corollary, namely

that the basic gesture can be interpreted as a “triangle with ordered sides”.

Definition 3.1.7. The shape of a basic gesture (vq,v2) is the Clifford number

U1
v -

From Corollary 3.1.3, the shape of a basic gestures is invariant through direct
similarity transformations. Then it induces us to consider the follow “measurer”

function,

Definition 3.1.8. The Local Shape Distance between two basic gestures

(u1,uz) and (vy,vq) is the non-negative real number

LSD((u1,us), (vi,v2)) = Hm/” -, H

Thus, the Local Shape Distance is simply a proper distance between the elements
representing the shapes of two basic gestures, (according to [10]), hence a measure

of how much the two “ordered triangles” are far from being directly similar.

Finally, we define our operator to evaluate a shape pseudo-distance for plane

gestures too.

Theorem 3.1.9.
I=100,1 f,g:I—>R*eC3I): f'(t),g(t) £0 Vtel.
Let P, be a partition of I := {tk,n = %‘ kE=0,--- ,n} and

fk,n = f(tk,n)
Gkn = g(tk,n)

Then:

n—1

(gk—l—l,n_gk,n) ‘ ‘ o

(fk,n_fk—l,n)/

-

To prove this theorem we need to show some other results.

lim _ (gk‘m_gk—l,n)/
n—-+0o00 i1

(fk—i—l,n_fk,n)

" iy =" g | e &
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Remark 3.1.2. Tf we consider the even subalgebra C1°(E?) @ C1?(E?) < CI(E?) we
can observe that,
C ~  CI9E*) @ CI*(E?)

o (3.2)
r+1y — T + exe1y

Now C = E? as vectorial space (with its quadratic form), then if u,v € E* (u =
zey + yes), we can obviously consider both as elements of C  (u = z + iy).

And we can finally observe that

Vo = /J —J( )

The last equality follows from the foregoing definition of isomorphism j. We point
out that in the even subalgebra, the product is commutative, and that we can
swap indifferently between the two spaces C and CI%(E?) ® CI*(E?).

Then, thanks to this isomorphism we can consider the shape of a gesture or any
element of the even subalgebra as fraction of complex numbers too. More in
details,

u

e (complex) shape(u,v) =2 €C

w _ v

uz V2

=0

e (complex) LSD((uq,us), (v1,v2)) = .

Remark 3.1.3. 1t is better to specify that LSD is a pseudometric in the space of
basic gestures {(u,v) | 0 % u,v € R?}, while we are talking about it as “distance”.
This is perfectly fine, because it is a distance in the space of shapes (C or the

even subalgebra, depending on the point of view).
Hence, Theorem 3.1.9 is equivalent to the following one,

Theorem 3.1.10. I =[0,1] f,g: I —>R*> e C*(I): f'(t),d'(t) £0 Vtel.
Let P, be a partition of I := {t;m = %‘ k=20,--- ,n} and

fk,n = f(tk,n)

Gk = g(tk,n)

Then: )
- (fkn - fkfl,n) . (gk,n — gkfl,n)
(fk+1 n fk:,n) (ngrl,n - gk,n) C

/" 9"

(@) (g'(®)

lim
n~>+00

dt (3.3)
C
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Proof of both Theorem 3.1.9 and Theorem 5.1.10.

1 " "
t t
By hypothesis, the Riemann integral J 1) _ 9 ®)

o | 1'(t)  g'(t)
that for every e > 0 there exists N, € N such that

1 1
(CnL

provided n > N, and &, € [%, %], with k =1,... n.
Agi . Ykn — Gk-1m

Agri1 ' 9k+1,n — Gkn
two adjacent intervals are needed. In particular, we can write

dt exists; this implies
C

n

(&) 9" (&)

f(&) 9 (k)

) g"@)

OO

C

<e,

k=1

Notice that, to evaluate each shape , the extremities of

2m—1 —1
A o Agn1 | Aga
> = + ) : (3.4)
1 Agr+1 hel Agan hel Agont1
when n is even. A similar expression holds when n is odd. Thus, to estimate
the difference between shapes and terms of a Riemann sum, we have to consider
the latter on couples of adjacent intervals. In order to simplify notations, we will
consider only the case n = 2m (n even). However, our arguments can be applied
similarly to the case: n odd. If n > 2N, then the integral can be estimated both
by

i &) 9"E)| 1 }f /") g"@) €
o1 F&) g€ len 20 [0 9@ ¢ 2’
where & € [Q(hn_l), %}, with h =1,...,m, and
¢ m—1 1
P& g@| L1 g0 ] e
A& 7@ len ), 176 G
where & € [th—_l, %], with h =1,...,m.

Then, to obtain the thesis, it suffices to see how to estimate the following quantity,

‘ Afen  Agan (9”(52) B f”(ﬁﬁ)) 1
Afoni1 Agonsa g &) nlc
:‘< Afon 14 f"(&0) l) I (1 Agap 9”(5;3)1

Ao fE) N CAgony g€




CHAPTER 3. SHAPE DISTANCE IN 2D 31

for each h = 1,...,m. In particular, we can observe that, assuming ¢ = %, then
Agon g(ton) — glton —0)  g(tan +6) — 2g(tan) + g(tan — )
1l—-—=1- = =
Agont1 g(ton +6) — g(tan) g(ton + 6) — g(tan)
g(tan+0)—29(tan)+9g(tan—9)
— 92 )
g(tan+06)—g(tar) '
5

By hypothesis, the function g is twice differentiable and ¢' # 0, thus we have that,
for every t € [0, 1]

. 9(t+5)—2!(15(275)+9(t—5) _ g”(t)
50 g(t+5§—g(t) g'(t) ’

as the limit of a quotient is the quotient of the limits, provided the limit of the
denominator is not zero. So, we have that, for every ¢ > 0 there exists ., such
that if § < 4., then

0 6)—2 _5 o
L Ben g€ _ i tO) Rl oltan=d) ooy o
g g6 o | mflad G|

and provided 0 < min{J, ﬁ}, observing that a similar argument can be also
applied for the function f, this prove the thesis.
O

The foregoing proof can also be used to prove other results, such as the following

one'.

Corollary 3.1.11. With the same notations of the previous theorem, given a plane

gesture g, then, if P, be a partition of I, girn := 9(tkn), and Agk = Gkn — Gk—1.n,

n—1 1
lim Ag :2—] 90 4 cc.
n—o0 0 g’(t)

That is why it is reasonable to give the following definitions.

Definition 3.1.12.

e The shape of a plane gesture g, is the following function

sta®) =1- 27y

LA more general proof of it will be given with Theorem 3.1.14.
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e The distance between the shape of two gestures f, g is the following operator

DS(f7 g)

L 1S(£(1) = S(a(t)]] at =
_ 1 f”(t)
_ §L /

Ezample 4. f(t) = (xo,t); g(t) = (x1 + rcos(2mt — @), y1 + rsin(2wt — ¢)) with
t€[0,1] and r > 0, ¢, 21,91 € R.

g"(t) /

aoy = Vg || o

. S((1) =1
e S(g(t))=1—merey
o Ds(f,g)= =

Remark 3.1.4.

e We choose to use the Clifford product (instead of the product between

complex numbers) to keep continuity with the first definitions.

e We decided to scale in half so that the shape of a rectilinear gesture would
be 1, regardless of whether it is considered as “basic” or not. Indeed,
Definition 3.1.12 is scaled in a half also to compensate a kind of double

counting of intervals used in the sum in (3.1)%.

e Despite the previous arguments, we preferred to avoid to scale in half the
(3.1). This, in continuity with the subsequent original definition of !FTL
(See Section 3.2).

2That double counting is clearly visible in the proof of the theorem, where we needed to
divide the intervals in even and odd
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With the next example we want to show that the shape of two gestures can
differ considerably, although their images may appear close to each other, or even
be the same. We can also notice that, for every planar gesture f, sometimes
its shape can be considered as a gesture too. In fact, applying the bijection
a+ f (e1 A eg) < («, 3), we obtain a parametrized curve which, if regular, repre-
sents a new gesture.

Thus in the next figures we will show both the imagine of the gesture and its

shape together (we have chosen gestures whose shapes are regular).

Example 5. We will consider three gestures:
e b:t— (tt%), a quadratic function.

e r:t— (t,13), a cubic function, “visually close” to the previous quadratic®.

e g:t— (sin(Z),sin(%)?), a gesture which has the same image of b (¢([0, 1] =

b([0,1])) but, as a gesture, different.

To avoid the overlap of gesture graphics, instead of the canonical shape, we choose

to consider 1 — S(f) = 3 ! ”/ s for any gesture f involved in this example.

0,5

-0,5 4

Figure 3.1:  (Top) b(t) = (¢,t?)
(Bottom) 1 — S(b(t))

30bviously, this is a subjective parameter: a reader might consider these as very different
functions, also in terms of appearance.
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0.8 4
0.6
0.4 4

0.2 4

-02
-04
-0.6

-0g -

Figure 3.2:  (Top) r(t) = (¢,t3)
(Bottom) 1 — S(r(t))

051
s 0 05 0 e
03 4
14
-1,3 i
Figure 3.3: (Top) g(t) = (sin(%F), sin(5)?)

34
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0.5 1

-0,5 3

-1,5 1

Figure 3.4: b,r, g all together with their shapes

As you can see, the graphs of the three shapes differ greatly, although with the

images of three curves are close to each other, and two of them even coincide!

We have noticed that, for some planar gestures, their shapes can be considered as
a gestures t0o0.
Now we consider the generic gesture f(t) = (z(t),y(t)) = z(t)e; + y(t)es in R2.

Hence we have that its shape is

"o Mo "o ",/

L0y, o L (e Yy
s =1-3" Y =13 (Gt et )

Therefore, if s(t) = 1 — £(01(t), 02(t)) is a given shape, one can ask to solve the
following ODE system S(f(t)) = s(t), that is:

B = (1)
=0
In particular, one can ask to look for any gesture that coincides with its shape,
that is S(f(t)) = f(t), or
x//x/+y//y/ _ x
@+ )2
="y —y'x y

As we are considering only regular gestures (those for which |f’| & 0), we can also
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write
.T”xl + y//y/ _ J}((Z‘/)Z 4 (y/)Z)
:c”y’ _ y”x’ — y((x’)2 4 (y/)Q)

Putting u = 2’ and v = ¢/, we have that,

u=ua
v=1y
l 1y 2 2
uu +v'v = z(u® + v°)

u'v —v'u = y(u? + v?)

Manipulating the two last relations, we can obtain the following equivalent ODE,

v =20 —yu " =z’ + gy
—
u' = zu + yv y' = xy —ya

Of course, setting 1 = x,x9 = y,x3 = x’, x4 = 9/, the system can be reduced to a

system of first order:
X = (21,29, 23,24); X' = F(X)
where,
F:R* - R*: F(vy,19,13,14) = (3, T4, 1173 + ToTy, 1174 — ToT3).

As F is C®(R%), the initial value problem has always a unique local solution.

More interesting is the existence of bounded periodic solutions.

Theorem 3.1.9 requires some specific samples of the gestures to work. In fact we
used only P, := {tkm = %‘ k=0,--- ,n} as associated partitions.

We refer to this situation as the isochronous one, a model for input data in the
case of the difference in scan time between two subsequent samples is always the

same?.

Before continuing we want to focus on a topic:

Remark 3.1.5. The shape of a gesture (or the distance between two shapes) is
strongly dependent on its parametrization, and we want that, because it patterns
the speed in making a motion.

Indeed, if one wants to study only the supports of the curves one should use other

41.e. we have uniformly spaced timestamps.
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instruments from Differential Geometry. In that case, one refers to curves (in the

IT environment) as strokes, instead of gestures.

For this reason, if we have a n-sample for a gesture, we can’t simply rescale
it to obtain an isochronous parametrization.

However, most of sampling devices are multitasking; this implies that the Central
Processing Unit is not always sampling points, so the time interval between two
consecutive sampled points is not constant. Thus, it is too restrictive to require
the isochronous condition, and then we need to extend Theorem 3.1.9 to more

general partitions.

Fortunately, we can do it (in the next subsection), keeping a central role for
Definition 3.1.12.

3.1.1 The non-Isochronous Case

Lemma 3.1.13. Given a plane gesture g(t) then, for each t € (0,1), we have that

lim (1_ Ta —T1 9(7'1)_9(7'0)> 1 _ 19”(’5)
ot n—T g(r2) —9(n)) =71 24(1)
T1—t
T2—>t

TOFTL , TIFT2 , T2#T0

Proof.
Lo mnogm)—g(n)y 1 dmmen) il (3.5)
1 =10 9(12) — 9(11) / 2 — To Ty = To 9(r2)—o(m) .
T2—T1
we notice that
g(r2)=g(m1) _ g(r1)—g(0)

TO—T1 T1—T0 36
P (3.6)

is the second divided difference® of the complex valued function g at points 79, 71
and 75. Being the function twice continously differentiable, it is sufficient to apply

the Mean Value Theorem for divided differences® to real and imaginary parts of g,

5See [5] at page 123.
6See Theorem 2.10 in [14], at page 60.
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to obtain that

g(m2)—g(m)  g(r1)—g(0) J"(t)

hm T2—T1 T1—70 —
To — T0 2

T()Ht
7'1~>t
To—t

TO<T1I<T2

Notice that we can always assume condition 79 < 71 < 7To; as a matter of fact, the
second divided difference (3.6) is symmetric with respect points 79, 7y and 7. As
the limit of quotient (3.5) is the quotient of the limits, provided the limit of the

denominator is not zero, one obtains the thesis. O

Theorem 3.1.14. Given a plane gesture g(t) = (x(t),y(t)) € R? with the notation

above, then

f%ygwn__dﬁywﬁantZQDﬂﬁ@ (3.7)

n—1
lpg1 — Tg

Afk/Aka - Agk/Ang

lim n n
+ _
0—0 i1 k k—1

-

where 0 =tg < -+ <t <tp <---<t, =1, andézlrg?é({tk—tk,l}.

Proof. As we have already done before, we can reduce all the proof to show that,

n—1 1 _n
oo —ti A t
lim ) -k gk=2—fgf)ﬁec,
60t by — tp1 Agria 0o 9'(t)
1 g”(t)
By hypothesis, the complex valued Riemann integral 0 dt exists; this
g
implies that for every € > 0 there exists §. > 0 such that
1 n n "
t
o 9'(t) ~ g (&)

C
provided the partition
O=tg<-- <1<ty <---<t,=1

is such that ¢, — ty_1 < 0., and & € [ty_1,1x] for each k =1... n.

b , the extremities of two adjacent intervals

Notice that, to evaluate each shape
Agri1
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are needed. This implies that

2m—1

2

=t =t Agria

m—1

thyr —te Agy i ton —ton—1 Agon—1 tont1 — ton Agon

= o1 — tag1) Agan = ton — ton-1 Agania
(3.8)

when n is even. A similar expression old when n is odd. Thus, to estimate the

Y

difference between shapes and Riemann sums, we need to consider the latter on
couples of adjacent intervals; one with even-indexed extremities, the other with
odd-indexed extremities. In order to simplify notations, we will consider in the
following only partitions of [0, 1] having an even number of points (n = 2m), that
is

O=t)y< <t <tp<---<toy,=1. (3.9)
However, our arguments can be applied similarly to partitions of [0, 1] having an

odd number of points. If partition (3.9) is such that

max { max (toy, — torp_ max (t — top_ <0
{thm( on — tah-1)) , thm( oh+1 — tan—1) €

then we can estimate the Riemann sum both

e on “even indexed” intervals

1 m.on
g"(t) 9"(&)
dt — o= (tan — tagn—1))| < €,
Jﬁm 2 ) "y
whatever are & € [tan—1),ton] when b =1,...,m, and

e on “odd indexed” intervals, where a similar estimate is possible

1w " " m=1 p
g'(t) 9" (&) 9" (&) 9" (&)
dt — t1 —tog) — ———(tom — tom—_1) — t —Top_1)| < €,
Jy = iy =10 gy o ) = 3 Gy s =)
whatever are £ € [top—1,tons1], with h = 1,...,m — 1, £ € [to,t1], and

ff% € [tmela t2m]

Now, let us focus on the first term of the right expression in (3.8); in order to get

the thesis, we need to estimate each term

ton —ton—1 Agon—1

ton—1 — tagh-1) Agon
_ < bon — tan—1 Agap—1 1 _q 14"(&)
ton—1 — togn—1) Agon ton — togn1) 24'(&)

9" (&)

(t t )+ 1 (t t ) =

> (tan — tagn-—1y) -
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If one considers Lemma 3.1.13 with 79 = to,—1), 71 = ton—1, and 7o = tg, we have
"

then, thanks to the uniform continuity of =, the estimate
g

ton—1 — ton 1) Dgon ton —togy  29¢(&)| 27

ton —ton—1 Agon—1 1 1 1g"(&) o€

which is independent from index h. By applying the same lemma for the odd

terms involving £, the thesis follows. m

An interesting question may arise to the reader.
Why did we introduce the Clifford algebra if we can bypass it using complex

numbers? Essentially for two reasons.

1) We used two isomorphisms to link C to the geometrical algebra. Firstly,
through the canonical R? = C; and, another time, when we used the j in
Remark 3.1.2. That helped us in the computation simplifying the calculus,
but we cannot consider vectors and shapes as the same objects.

Clifford algebra help us to differentiate them: vectors are vectors, shapes
are elements of the even subalgebra, hence a scalar plus a bivector.
Moreover in this way we can do algebraic operations together. (For example,

a vector times a shape is equal to another vector.)

2) The even subalgebra is isomorphic to the complex algebra. But this happens
only for R%2. This imply that we cannot extend this procedure to higher

dimensions or out of this context.

3.2 Algorithms for Planar Gestures

In this subsection we will show how to “translate” all the previous results in a
new algorithm for gesture recognition.
More details can be found in [16].

3.2.1 !FTL

Purpose of the algorithm:
Given the n-samples of two plane gestures f and g, we want to give a measure of
their dissimilarity through an algorithm with an intrinsic invariance with respect

to translation, dilation, and rotation.
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Algorithm. !FTL" is the “solution” recently developed (2018).

[NPUT: {fo, ;fn; do, --- ;gn}
(the samples for two gestures f,g)

(If f = (r(t),s(t)), we denote with £ =r(t) +is(t).)

n—1
'FTL(f07 afn , go, - - 7gn) = Z LSD((Afk7Afk+l)7(AglﬂAgk—i-l))
k=1
_”Zl Af,  Agy
el Afpr Agriile

3.2.2 !'WFTL

Algorithm. For more accurate results we can extend the \FTL to the non-
isochronous case, obtaining the new !WFTL (Weighted !FTL).

INPUT= {fo, 7fn7 do, --- s9n, to, 7tn}
(the samples and the timestamps)

(If f = (r(t),s(t)), we denote with £ =r(t) +is(t).)

n—1
t —1
'WFTL(fOJ B 7f'rL y go, --- 7gn) = Z t:-i—_l—tk?LS‘D((AfkaAfk-&-I% (Agk>Agk+1))
k=1 -
_ nzwj ben — e | Afy,  Agy
ot — oo [Afpr Agriae

Remark 3.2.1. At first impression it may seem incongruent to ignore the multi-
plicative factor %, especially after all previous considerations.

But this is only meant to be consistent with the initial development of the !FTL
done in [16]. This is the reason because we are leaving unchanged the original

algorithm, whereas we accorded the definition of the various shapes.

TAs we have seen in the Introduction in Chapter 1, FTL is the acronym of “Faster than
light”.



Chapter 4

Shape Distance on Regular

Surfaces

The next step is to expand our results on surfaces?.

The purpose is similar to the previous section, in fact we want to understand
when 2 curves (or gestures) are “similar” on any immersed regular surface.

To do that, we have to recall some useful facts about differential geometry, and

after that, we need to improve that results through the Clifford Algebra tools.

4.1 Gestures on Regular Surfaces

4.1.1 Basic Results of Differential Geometry

Hereafter follows the list of some features about regular surfaces in R3.
All the following basic differential geometry notions can be found with more details
in [1] or [15].

Remark 4.1.1. If S is a regular surface (i. e. a surface S in R? that admits a smooth
atlas {¢.}) let ¢ be a local parametrization: U — S such that p(zq,22) =s€ S
and centered in p € S (that is p(0) = p).

If we define a%ﬂp = %(O) (7 = 1,2; O is the origin), we obtain that {%Ip , a_ig\P}
is the associated basis for the tangent space 7,5 (The set of all tangent vectors to
the surface in the point p).

This basis depends on the local parametrization.

Notation. For brevity sometimes we will use d; or J;), to denote %‘p.
J

'Results on surfaces can have applications to gesture recognition on devices with foldable
and curved input surfaces.

42
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Remark 4.1.2. We denote the metric coefficients associated to ¢ with
E(x) = Ojp@) Ojp@),  F(T) = Otjp(a) Plp(a),  G(@) = Oajp(a) Oajpe) VT €U.
or simplifying, with abuse of notation,

E=0,-0, F=0 -0 G=0y-0 Vzel.

Moreover we use the canonical notation for the Christoffel symbols T}, using their

classical definition on surfaces:
Py
é‘xzﬁxj

= ngal + Ffjag + CijN,

where {01, 0y, N} is a basis of R3 such that N := IISKSEII

(“x” is the cross product).

Remark 4.1.3. We want to express these coefficients in a different way, then doing

some calculations we obtain that

1 2 _ /& _ 192 __ 10FE
BT, + FI2, = Wl,al> — 1240,0) = 128 |
1 2 _ /2% _ 0 _ Pp N _ oF _19E
Frll + GFll - <6z% ’ a2> T ox <81,62> <al’ 6x16x2> 0z 2 0xo

Similarly,

)
S|

D
8
N

BT}, + FI%, =
FTi, + GT%, =

NI— D=
Dl
R

E
3

N[
D

s

[l

ETY, + FT3, =
FTh, + GT3, =

NI=

T2
Pl
oo

Definition 4.1.1. Let F': 5] — 55 a C® map between two regular surfaces and
p € Si. The differential of F' on p is dF, : 1,51 — 1,55 such that
dF,(v) = (F o0)(0) where o is a curve on Sy: ¢(0) = p, 0/(0) = v.

Remark 4.1.4. R? is a surface too, with T,(R?) = R?
(just “translate the atlas” if necessary). In these terms, if v: S — R? dy,(v) €
R? Vo e T,S, and if v = v10y), + v20s), We have that dv,(v) = (vi,v2).

Remark 4.1.5. Now we have to recall some other definitions.

e A smooth vector field along a smooth curve ¢ : I — S, is a C* map
X : I — R? such that X (t) € T,»S Vtel.
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e The covariant derivative for a vector field X along a smooth curve o on
the surface S is the vector field DX along o such that
DX(t) = 7o (Z(t)), where myp) : R® — T,4y(S) is the orthogonal
projection on the tangent plane 75, (S).

e A vector field X on a smooth curve ¢ is parallel, if DX = 0.

e The parallel transport P(c)s : T,(S) — T(S5), along a smooth curve
o :]0,1] — S such that ¢(0) = p and o(1) = s, is the map that moves any
vector v from p to s along o in a “parallel way”,

that is P(0)5(v) = X(1) where X is the unique parallel vector field on o

such that X (0) = v.

Remark 4.1.6. The required parallel field involved in the last definition is the only

solution of the following Cauchy’s problem,

Hence the parallel transport is well defined.

Remark 4.1.7. Now we want express DX in local coordinates to show how the

notion of covariant derivative depends only on metric coefficients.

If : U — S a local parametrization whose image contains the support of a curve
o:1— 5. If X ‘s a vector field along o, we can write o(t) = ¢(o1(t), 02(t)) and

Then,
dX d 0 0 B
%—E(Xla—xloa)—f‘()(ga—boa)—

) 09 /

2 a2¢
= —+ X _— _— )
— dt + Lk (01 0x10xy, ©0+ 0 01201}, ° O)

2 2
DX = Z [% + Z (% 0 U)O’Z{Xj] Ok - (4.1)

ij=1
Now we recall another main notion that it will help us for our purposes.

Definition 4.1.2. A local parametrization ¢ for a surface S is isothermal if its
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metric coefficients satisfy the following equalities

Remark 4.1.8. With an isothermal parametrization the Christoffel symbols can

be expressed in a very compact way,

1 _172 _ 17l _ 1 0E
'y =11, = 1122—2}3_5;qu
2 _ 1 _ 172 _ 1 0E
I =T =1% =555

Theorem 4.1.3. Every reqular surface admits an isothermal local parametrization.

The proof of this theorem is delicate and will not be taken up here. The interested

reader may consult [2].

4.1.2 Isometries between Clifford Algebras

Now it is the time to apply our informations about the isometries between vector

spaces on the relative Clifford algebras.

Remark 4.1.9. V' a vector space endowed with the scalar product (-,-). Let Gy
be its geometric algebra.

IA+B|?+|[A- Bl =2 AP +2|BIF VA, BeGy -

= || - || induces a scalar product on Gy .

And it is the following one:

k(k—1)

(A,By= ) (-1)"7 (A By)

Lemma 4.1.4. U,V wvector spaces. H : U — V' a linear map.
Then, 3 H a linear map: Gy — Gy such that ]:I‘U =H (I:I is an extension of H ).

Moreover:
e VA, Be Gy, HAB) = H(A)H(B) and H is the only extension with this
property.
e If H is an isometry = H is an 1sometry.

Proof. Ae Gy, A=), A
Ay =X, azer, so H(Ay) := Y, a;H(er) where H(e;, ---e;,) == H(es,)--- Hles,).
We define H : H(A) := D H(Ay). This H proves the thesis.
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Now if H is an isometry and A, = >}, are;, H transforms any orthonormal

base in an orthonormal base, then:

A~ A~

(H(Ay), H(Ay)) = <Z OrCH(I), Z OéleH(I)> = Z OéIOéJ<€H(I)7 6H(J)> =
I I I,.J

= Z OéIOéJ51,J = Z Oé?<617 €J> = <Ak, Ak>
I,J I

Then H is an isometry. O]

Remark 4.1.10. It could be useful to recognize that if H, L : U — V are two linear
maps with H, an isometry such that L = AH (A € R), then it is not always true
that L = \H.

For example, if L = 2H, L(ey) = 2H (e1) and L(eqes) = 4H (eqe5).

Remark 4.1.11. Then if H is nonsingular = [:[|Clk(U) c CIkWV).

Remark 4.1.12. U 25 V 22 W and H := Hy 0 Hy, then H = H, o H,

Now we will work with S surface = R3. Let 2,y € S.
Let P, : T,,(S) — T,(S) be the parallel transport along o, a smooth curve: z — y.

Then, P, is an isometry.
Notation. Let H : Gy — Gy be a nonsingular map. Then, H:= I;ﬁCZO(U)JrClz(U).

Proposition 4.1.5. Let P, defined as above, and x,y € S.

v

Pazpcp Vo,p:x—y — S is orientable

Proof. (=)
x € S. Let N be a vector field defined in the following way:

v 0 o \"
N(s) =P, | — —
(5) ¢ <8uz " ﬁvx)

N is well defined by hypothesis. Then,

N(s)

N(s)] is a normal unit vector field on S = S is orientable.
s

(<)

S is orientable. First, we want to show that

det P, =1 with the bases {i 0 Nx}ﬂ{ﬁ 0 N}.

Oulz’ vz’ ouly vy’ Y
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Then, let (Ug,vx)x be the charts that cover Imo (in a finite number n, because
Imo is a compact space.)

We prove by induction on n:

(n=1)

% is a local vector field on U; so, P, (

that det P, = 1.

2 =9 K . .

(inductive step)
o = oy +0 , where detP,, =1 and P, = P,, o P; with Imao < Uj,;.
By induction, det P,, = det P; =1 and det P, = det P,, - |M| - det P; where

M is the changing base matrix between {i 0 Nk} — { d 0 Nk+1} :

oulk’ vk’ Oulk+1 OVlk+1’

But S is orientable, so [M| =1 = det P, = 1.

Hence, H := P, o Pgl is an isometry: det H =1 Vo, regular paths: x — .
Therefore H(ab™') = H(a)/H(b) = a/b, and then we obtain that

P,(ab™') = P,(ab™) VYa,be T,S.

Finally, because span{ab™!|a,be T,S) = CI°(T,S) + CI*(T,S),

we have that f’a = R,

Let S be an orientable surface < R3.

We will work with ¢, an isothermal parametrization of S and v := ¢~ (locally)
the coordinate map.

We call a(z) := \/E(y(x)) = 1/01jc - 011z (: S > RY), and H := .
Remark 4.1.13. Vpe S = H(p) : T,S — T, ,»R? is an isometry.

We denote it with H,. So, |H,(v)| = |v| VYveT,S, Vpe S

Lemma 4.1.6. Let B, := CI°(T,,S) + CI*(T,,S) VpeS.
Let P,_,, be a generic parallel transport and H, defined as above.
If we denote with G, := Gr,g, then, Yp € S, we have:

Y] 9

Hy © |Gz = Hx|G:c

Proof. be B,
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Hence,

Remark 4.1.14. H,(b) € C1°(T,()R?) + CI*(T,»yR?) while
H,(P(b)) € CI°(T,,y)R?) + CI(T,(,yR?), then they belong to two different spaces.
But 7.R? =~ R? Vze R2? so with abuse of notation we have omitted the compo-

sition through the two canonical isomorphisms.

4.1.3 Shape Distance on Regular Surfaces

We keep on working with our orientable surface S immersed in R?® with own isother-
mal parametrization ¢ and its local inverse map v that makes S a 2-dimensional
manifold.

We consider f: I — S a regular smooth curve on S, which means I = [a,b] = R
and f'(t) € Ty S such that f'(t) £0 Vel.

f(t) is a vector field on f, f' = ;%‘f(t) + fz’)a%u(t)’ and we locally define

F1(t) == dy(f'(8) = (fa(t), fi(t)) Vtel.

We denote with D the covariant derivative, so by (4.1) and by Remark 4.1.8 we

have:

Now before continuing we observe some properties:
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Remark 4.1.15.

. o . 0, -, _ (0a O«
) it h=wa s (Vo (5.5))

(i7) ( fi— f)eleQ—Va/\f

- 0 0 0 0
@i an i = ((or-2n) s (~Sn+ L)

Finally we can simply the formula, obtaining that

f;)

D) = P+ (o, POF = (Ve n ) =
f/vaf/

«

_ ]?// +
Hence, we have proved the following lemma,

Lemma 4.1.7. Let S be an immersed orientable surface with the isothermal

coordinate map v and o := VE. If f : I — S is a reqular smooth curve,

V(@) (Va)y(F D)

(0%

Vtel

dyrey (Do (f'(1) = (V(F ()" +
The following remark will be useful later.

Remark 4.1.16.
ﬁf(t f/f/ —dyft)( f/f/ =
=dvf(t) (Df) - (v (f))~" =
" 1
_ () /v(f)’ + 29(f)'Va
Finally we can define our “distance”:

Definition 4.1.8. Let f,g : I — S be two regular smooth curves on S an

orientable immersed surface in R3.

Ds(f.9) := %L praw(t)(fo/f’)— Dgg/g’

Remark 4.1.17. 6 S =R? = Ds(f,9) = {,|| 7'/pr = ¢/ ||dt.

We can recognize the “distance” defined on the plane.

Remark 4.1.18. As we wanted, we can easily notice that if f, g are two geodesics,
DS(f7 g) =0.
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Remark 4.1.19. As in the 2D case, this “distance” is a pseudometric too.
To prove that, we need to write it in a little different way: next theorem will help

us in this regard.

Theorem 4.1.9. With the same hypothesis of the previous lemma, if v is the

1sothermal coordinate map of S with its own a, then

Proof. Using Lemma 4.1.6, Lemma 4.1.7 and Remark 4.1.16,

(Pt~ Pty
B (11129 ) -
i, P gy~ i, Pod ) )H dt

_ %L H( V(f)”/y(f)' - 7(g)ﬂ/v(g)’ ) + (V(f)/% _V(g)I%)H “
O

DS(f,g) = dt:

|
N~ N~ N~
e s R

Remark 4.1.20. The foregoing result makes easier to see the pseudometric proper-
ties of Dg.

4.2 Algorithms for 2.5D Gestures

In computer science, sometimes the recognition algorithms for a surface are re-

ferred as “2.5D algorithms”. We adopt such terminology here.

Theorem 4.1.9 can move our focus on other scenarios; as a matter of fact, we have
expressed our distance D without using the parallel transport.
Moreover we can work with this formula to not involve the Clifford operators too,

founding a nice implementable algorithm to compute this “distance”.

Remark 4.2.1. If we choose the same partition used in the bidimensional case (and
the same notation), thanks to Theorem 4.1.9 we have that, for the isochronous

case,
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DS(fag) = ) )
= I H Ui =B e oy = I G g+

As we have done for the 2D case, we can still extend the algorithm to the non-
isochronous case.
Now, before we can formulate our new two algorithms for gesture recognition on

any regular surface, we need to do some modifications.

Remark 4.2.2. We can notice that in the last formula we expressed Dg only with
elements of the even Clifford algebra of R2.
Then we want to use again the complex numbers to express our algorithm so that

is easier to implement it.

We know that if u,v € R? (u = ze; + yeg), and u = 2 + iy, then “/, =j (2).

Hence,
wt ="y =i (VE2) = j (uv).
v

Then we can finally show the algorithm,

Algorithm. !SFTL (“S” stands for surface).

INPUT= {f07 7fn7 go, --- ;gn}
(the samples for two gestures f,g)

{v; a} (The isothermal coordinate map with a(t) := \/E,)
(If v(f) = (r(t), s(t)), we denote with £ =r(t) +is(t).)

ISFTL(fo, --- fas 905 -+ 2 Gn) =

| Af _ Agy
A Age
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And similarly we can extend it to the non-isochronous case,

Algorithm. !WSFTL.

INPUT={fo, .- s fns 90> -~ >Gn> oy - stn}

(The samples and the timestamps)

{7, a} (The isothermal coordinate map with a(t) := \/E,)
(Ifv(f) = (r(t),s(t)), we denote with £ =r(t) +1is(t).)

WSETL(fo, -+ s fas Gos - +Gn) =
nzwj L1 — T ( Af,  Agg )+
= T — 1 Afk+1 Agk—H

t —tp_ Va i
+ % <(fz’+1 —fi_1) (f) — (8it1 — 8i-1)

52



Chapter 5

Shape Distance in Higher

Dimensions

In this chapter we will extend some results to dimension 3, and then to higher
dimension.

Of course, we cannot anymore use the isomorphism with complex numbers (See
Remark 3.1.2) to develop our results. The Clifford algebra instruments are now

essential to the new developments.

5.1 Similarity Invariance in Higher Dimensions

When we step into the tridimensional case, it is reasonable to lose some similarity
invariances.

More precisely, we want to distinguish space gestures lying in different planes, for
several reasons. The first reason is that some gestures can be obtained, one from
the other, by both direct and indirect similarities. For example if ¢ is a space
gesture lying in a plane and f is its symmetrical image through the line directed
by a vector v, lying on that same plane, we can get f from g, rotating the last
one 180° degree about the line (See the figure 5.1).

However, it is reasonable to consider g to be distinct from f, as a space gesture.
As we want to use a “3D shape” to compare space gestures, we want it not to be

too invariant with respect to 3D simmetries.
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Figure 5.1: f and ¢

So, we have a choice between considering all the similarities, both direct and
indirect, as invariant, or losing this invariance in most cases.

We adopt to the last option, because, for our purposes, we reject an invariance
between symmetric opposite gestures.

Nevertheless, the generalized local shape distance will still be invariant for direct
similarities in the same plane, while it will be sensible not only to plane shape
differences, but also it will be able to measure of how much two gestures are far

from being locally coplanar.

To do that we will start simply extending our previous definition in the general

case,

Definition 5.1.1.

e A gesture is a regular curve f: I = [0,1] —» E",

e A (m + 1)-sample of a gesture is {fo, ... , fm} < f(I).
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e A basic gesture in E" is an ordered couple of not null vectors (v, vs)

considered again as a particular 2-sample of a gesture tracing a triangle.
e The shape of a basic gesture (vy,v) is the Clifford ratio vl/ .

e The Local Shape Distance between two basic gestures (u, ug) and (vq, vg)

is the non-negative real number

LSD((ug,ug), (v1,v2)) = H ul/u2 B Ul/vg H

Obviously, we can’t use anymore the Lemma 3.1.1 outside of the plane and then
ab™! = ed™! is not anymore an equivalent condition of similarity between basic
gestures, but with the next lemma we recover the same properties required before,

making easier the extension in higher dimensions of our algorithms.

Lemma 5.1.2. Let (a,b) and (c,d) two basic gestures in a euclidean space E™.
Then,
ab™' =cd™t = a,b,c,d are coplanar, and (a,b) ~ (c,d)
Proof. (<)
If a,b, ¢, d are coplanar and (a, b), (¢, d) are direct similar we can reduce everything

at the planar case, and then easily, ab™! = cd!.

(=)

The other direction is the key result, that can be easily obtained as follows.
Observe that ab! = c¢d~! implies that the bivector parts are equal too, hence

aAb=cnd. Then a,b,c,d are coplanar and then for the 2—dimensional case we
have that (a,b) ~ (c,d) too. O

Next result is the extended version of Theorem 3.1.9.

Theorem 5.1.3.
I=100,1 f,g:I—>E"eC*I): f(t),d(t) £0 Vtel.
Let P, be a partition of I := {tk,n = %‘ k=20, ,n} and

fk:,n = f(tk,n)
Gk = g(tk,n)

Then:

n—1

lim Z
n——+00

k=1

(gk—i-l,n_gk,n) ‘ ‘ o

(fk,n_fk—l,n)/ o (gk,n_gk—l,n)/

(fk—i—l,n_fk,n)
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:LH f”(t)/f,(t) B g”(t)/g,(t) H gt (5.1)

Now we can’t use the complex isomorphism, so we will going straight with the
use of Clifford numbers.
The proof is quite similar to the planar case. What we have done is just to
substitute the complex product with the Clifford one, despite the commutativity
of the first respect than the not-commutative of the last.
This is the reason for which we here will not comment as before and we will almost
rewrite the proof.

1

L ‘ PO iy = 7 g H .

exists; this implies that for every € > 0 there exists N, € N such that

; " 1 1 " "
" ey - T e |2 [ |7 Uy - " ||

provided n > N, and &, € [%, %], with k =1,... n.

Proof. By hypothesis, the Riemann integral

n

2

k=1

<e,

Jkn—9k—1n
9k+1,n"9kn °

the extremities of two adjacent intervals are needed. In particular, we can write

Notice that, to evaluate each shape Agk/Ang =

2m—1 Ag m Ag m—1 Ag
kzl k/Ang a h21 Qh_l/Agzh + th 2h/Ag2h+1 , (5.2)

when n is even.
If n > 2N, then the integral can be estimated both by

X f (éﬁ)/f,(gg) 9 (5’2)/9'(@3)
1 (! " " €
i 170 - " | <5

where & € [2=1 2] with h = 1,...,m.

n ' n

m

3

1
—+
n

A similar expression holds when n is even.

Then, to obtain the thesis, it suffices to see how to estimate the following quantity,

A A Il ¢0 Il ¢0 1
|22 8 s = 2 g = (" Pty = W ey )
A Il ¢0 1
(a1 i)

A I (¢o 1
i (1 - g2h/A92h+1 -7 (gh)/g'(fz) ﬁ)‘

)
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foreach h=1,...,m.
Now, assuming § = %, then, by hypothesis, the function ¢ is twice differentiable

and ¢’ # 0, thus we have that, for every ¢ € [0, 1]

g(t+0)—2g(t)+g(t—0)

n
' t
lim 52 / oti)g(t) = 70

So, we have that, for every € > 0 there exists d., such that if 6 < J., then

A Il ¢0
1- g2h/Ag2h+1 -7 (gh)/g'(ﬁﬁ) 5H -

g(top +6)—2g(toy, ) +9g(top,—0) "9
- o gltay+)=gltay) — 2oy ([0 < €0,
5 g(éh)

and this prove the thesis, provided § < min{J,, ﬁ} o
Hence, we can also extend Definition 3.1.12.
Definition 5.1.4.

e The shape of a gesture g, is the following function

sta®) =157V

e The distance between the shape of two gestures f, g is the following operator

Ds(f.9) Lusuun—swanuﬁ _
1

_ §L f”(t)/

Moreover, as announced before, a same adaptation can be done with the non-

g”(t)/

aw) = " gy | o

isochronous case.

Unlike the 2D case, shapes and gestures have not anymore the same dimension.
In fact, the shape belongs to CI° @ C1?, then its dimension is 1 + (}), different
from n if this is greater than 2.

However, it is still possible to set up the ODE system S(f(t)) = s(t) for any given
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shape s, but it will differ based on dimension.

Remark 5.1.1. If a gesture f has constant speed (that is %|f’| = 0), we have that
1= 3@ 1?) = 0.

The last remark show that the shape of f has always the scalar component equal
to 1, and this let us to go towards different scenarios.

For example, as the 2D case, we can consider the shape of 3D gesture with constant

speed as a gesture too (once proven its regularity).

Ezxample 6. Let g(t) := (x(t),y(t), 2(t)) be the following 3D gesture:

x(t) := 4cos(t)
y(t) := 2t + sin(2t)
2(t) := cos(2t)

According to Example 5, instead of the canonical shape, we continue to consider
i
1—S(g) =4%7/y in this example.

Figure 5.2: The gesture g(t)
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Figure 5.3: the “adapted” shape 1 — S(g(t))

Figure 5.4: g(t) and 1 — S(g(t)) together

To draw the shape, if 1 —S(g) = a, €2 A e3+ay e3 A €1 + o, €1 A e, we considered

it as the gesture (o, oy, ;).

Summing up, with the loss of some similarity invariance properties, we mantain
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the same key theorems and consequently the same algorithms:

Algorithm. !FTL
INPUT={fo, -+ s fus 9o -+ +Gn}
(the samples for two gestures f,g)

n—1

'FTL(f(]v e 7fn , 90, --- 7gn) = Z LSD((AfkaAfk+1)> (AgkaAngrl))
k=1

= A A
= kle fk/Aka - gk/Ang

Remark 5.1.2. We can explicity express the algorithm in basic operations observing

that

LSD(a, b)(e.d)? = o (lal |+ b lef—2(a, b(e, dy—(a. d)b,ch+a, b, ).

~ [bldl?

This is obviously true for the complex notation too.
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Algorithm. !WFTL

[NPUT: {fo, ;fn; go, --- ,9n, to, ,tn}
(the samples and the timestamps)

n—1
t
'WFTL(f07 afnu do, - -- 7gn) = Z t:+—1 e 1LSD((Afk7Afk+1) (Agk)Agk-l-l))
k=1

_ Z lev1 — tk

by — th—1

M nfer = S ngy

with,

(LSD(a,b)(c, d))* = RE 1|d|2(|a| [+ b c*~2(¢a, b)}e, d)—(a, d)Xb, c)+a, )b, d)).



Chapter 6
Conclusions

There are various implications of the work done here, but now we want to fo-

cus only on three different aspects that can be generalized starting from our results.

ODE features for shape problems

A first reasonable way to develop this work is, for example, to deepen the bond
between a gesture and its shape through the use of other ODE systems, expanding
what we have already done at the end of Section 3 and partially in Section 5 too.
For example, we can search for periodic solutions, for fixed points, or for the

stability of these systems (which are mostly autonomous).

Transformations on regular surfaces

Another interesting way to continue this work could be to focus on Definition 4.1.8.
It is a measurer of the “dissimilarity” of two paths on a surface, ignoring the
various curvatures of the surface.

That can help, for example, to define some of the most well-known geometrical
transformations on any regular surface, letting “move” the curve on the surface

keeping its peculiarities.
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Non-smooth planar gestures

The software engineer Nathan Magrofuoco is currently working for his Ph.D.
thesis at the Belgian university UCLouvain on a new algorithm (named $C). This
algorithm is adopting the Local Shape Distance as a metric to recognize gestures
that are not necessarily smooth. As the rate of recognition of $C and its speed are
comparable! to those of the well established algorithm $P, it would be interesting
to investigate the convergence of $C. Is there a Sobolev-like framework within
which $C is convergent? If this is the case, does such convergence phenomenon
correspond to a notion of shape for non-smooth gestures? In that case, what

would be its relation with the notion of shape given in this work and in [10]?

"'While we are writing this work, N.Magrofuoco is working to improve such already satisfactory
results.



Appendix A

Proof of Theorem 2.1.8

Here we give a complete proof of Theorem 2.1.8 in line with the axiomatics
introduced in this paper.

We use the same notation used in the first chapter.

Hence, let V be a n-dimensional vector space on K, with a non-degenerate
quadratic form @Q, Clg(V') the Clifford algebra over V, and CI*(V) the space of

k-multivectors.

Lemma A.0.1. If g1 --- g, is a blade of Cl(V') (hence these are mutually orthog-
onal), then for every set A < {1,...,n} we have that:

ggn=d OV ougif g A
T DM g i e A

That implies that

1 9iga = *gau if i¢ A
5(9i94+ (=1)"7 ga9i) { 0 if icA

and

1

§(gi9A - (—1)#A gagi) = { ’ v oA

9iga = T9igacqy if i€ A

Proof. In order g; “passes through” g4 from left to right, it suffices to apply
the property of anti-commutativity for mutually orthogonal vectors. If i ¢ A, g;
anti-commutes with every element g; of monomial g4; if i € A, g; anti-commutes
with every element g; of monomial g4, except when j = ¢; in this case it trivially

commutes with itself, and ¢g? € K (by Clifford’s axiom). O

Remark A.0.1. If & + A < {1,...,n}, there always exists i4,,i4_ € {1,...,n} such
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that

Gins 9A = JAGia,

Gis 9A = —GAGis_

Proposition A.0.2.
{gatacq,..ny s a basis for CI*(V)
#A=k

Proof. We have only to show that it is a linearly independent set, that is, if

then every coefficient a4 must be zero.

Let it be a fixed B < {1, ...,n} with k elements, and rewrite the foregoing relation
as

aggs+ Y, auga=0 (A1)

we want to show that ag = 0. Relation (A) implies that, for each i € {1,...,n}

ap ap

- (9ig5 + (=1)*g89:) + > = (9194 + (=1)"g49:) = 0
Ac{l,..,n}
H#A=k
A+B

If i € {1,...,n} is such that i € A, i ¢ B, then by the previous lemma, we have that

9198 + (—1)*gsg; = tgio  and  giga + (—1)*gagi =0

producing the new relation for ever i € B¢

Tapgpofiy + Z taagacy =0

Now we can easily recognize the (A) again and then, we obtain that:

aB

QA
7(92‘9&){1‘} + (=1 g80gy9:) + Z T(QigAu{i} + (=1 ga09:) = 0
Ac{l,..,n}
#A =k
A+B
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Then we can iterate this foregoing elimination for every 1 € B%and observing that
AnBY =@ < A= B, we find that

taggpope =0 <= apgi- g =0

Hence, ap = 0 by axiom (G).

Corollary A.0.3. Given a finite dimensional quadratic space (V,Q), then
dim V/
dim CIF(V) = ( HZ )

Now we only need to prove that CI¥(V) n CI"(V) = ¢ for every h % k. This is
trivial, by (G), if h =0 and k£ = dim V.
Remark A.0.2. For every (non-degenerate) quadratic space V', we can find a

pseudo-orthonormal basis {e;};.

Notation. In CI(V), dimK = dim C19™V (V) = 1 but we have just shown that
they represent different elements in the space. So we call pseudo-scalar an element
in C14™V (V).

If {e1,...,e,} is a pseudo-orthonormal basis of V| then we call pseudo-unit the
element e, - --e, € C19V (V) < CI(V) (called orientations of V).

If A, B are two sets, then the symmetric difference is
AAB:=(AuB)\(An B).

Remark A.0.3. If ey, .., e, is a pseudo-orthonormal basis, then for each
A, B c {1,...,n}, it is trivial to prove that

€ACB = Teunn

Lemma A.0.4. For every B < {1,...,n} let iz : P({1,...,n}) — P({1,...,n})
such that ig(A) = AN B.

Then, ig is a bijection.
Proof. 1t is trivial if we observe that (AAB)AB = A. (So, i is an involution). [

Proposition A.0.5. Ifeq, .., e, is a pseudo-orthonormal basis of a non-degenerate

quadratic space V', then

{eatacq,.ny s a basis for CU(V)

Thus, dimCIl(V) = 24mV,
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Proof. We have to show that if ZAQU oy @aea =0, then every coefficient a4
must be zero. we can assume (by contradiction) that there exists at least a

coefficient ag % 0. Let us rewrite the foregoing relation as:

opep + Z ageq = 0,

Ac{l, .., n}
A+B

Now (last remark) every uy is pseudo-invertible and for Lemma A.0.4) we have

that, multiplying both terms for e;', we have that (with a change of sign if needed)

ap + Z Baeq = 0.
Ac{l,..n}
A+

Now we can rewrite this expression in the following way,

ag + Bu,..n€q,..ny + Beee + Z Baea =0, (A.2)

Ac{l,..n}
A+ ;€

for some proper C = {1,...,n}. By Remark A.0.1 (and observing that e; ' = ¢;
because we have a pseudo-orthonormal basis) we know that exist icy,ic_ such
that:

(eic+)ec(eic+) = (eic+)2€c and (eic—)ec(eic—) = _(eic—)QeC

Now we have to distinguish two cases:

(1) 5= (eic,)* = (i )’

In this situation, the “concord case”, multiplying (A.2) from left and right

by (u;., ) we obtain:

sag—s(=1)"Bu,. me,..ny + 5 Beec + Z +B4e4 = 0.

Ac{l,..,n}
A+ g;C

Analogously, multiplying (A.2) from left and right by (e;._), we obtain:
sag—s(=1)"Bu,..me,..ny — S Beec + Z +B4e4 = 0.

Ac{l,..,n}
A+ g;C
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Making the arithmetic mean (and dividing for s), we obtain the new relation

(i) s = (eic,)* = —(eic )?

Here we can observe that, multiplying (A.2) from left and right by (u;, )

we obtain:

This time, doing the difference (instead of the sum), in the arithmetic mean,

we obtain the same relation above:

So, we have obtained the same equation in both cases.
Thus, following the foregoing procedure, we can eliminate from (A.2) almost all

the terms, obtaining:

But that cannot holds unless ag = 1.3 = 0 for the axiom (G). H

77777

Corollary A.0.6. CI(V) is a graduate algebra with the following decomposition,
ClV) =P CI*V).
k=0

With this last corollary, we have finally completely proved Theorem 2.1.8.



Bibliography

[1] M. Abate, F.Tovena, Curve e superfici, Springer-Verlag Italia, Milano 2006.

[2] L. Bers, Riemann surfaces, New York University, Institute of Mathe- matical
Sciences, New York, 1957-1958, pp. 15-35.

[3] CL Chevalley, P. Cartier, Ca. Chevalley, The algebraic theory of spinors and
Clifford algebras (collected works vol.2), Springer, 1996.

[4] L. Dorst, D. Fontijne, and S. Mann, Geometric Algebra for Computer Science:
An Object-Oriented Approach to Geometry, Morgan Kaufmann, 2007.

[5] J. D. Faires, and R. Burden, Numerical methods, 10th edition, Cengage
Learning, Boston, MA, 2016.

[6] J. Gallier, Geometric Methods and Applications, Springer Science+Business
Media New York 2001, pp. 197-247.

[7] H. Grassmann, Extension Theory, Amer. Math. Soc., USA, (2000).

[8] D. Hestenes, New Foundations for Classical Mechanics, Springer Verlag, (1999),
2nd ed.

[9] S. Lang, Algebra, Graduate Texts in Mathematics, 211 (3rd ed.), Springer
Verlag, 2002.

[10] J.A. Lester, Triangles. I. Shapes Aequationes Math. 52 (1996), no. 1-2, 30-54.

[11] L. Luzzi, P. Roselli, The convergence of a gesture recognizer and the shape of
a plane gesture, arXiv:1811.07593v1, 2018.

[12] A. Macdonald, Linear and Geometric Algebra, Createspace Independent
Publishing Platform, 2011

[13] M. Riesz, Clifford numbers and spinors, Kluwer Academic, 1993.

69



BIBLIOGRAPHY 70

[14] P. K. Sahoo, and T. Riedel, Mean value theorems and functional equations,
World Scientific Publishing Co., River Edge, NJ, 1998.

[15] E. Sernesi, Geometria 2 , Torino, Bollati Boringhieri, 1994

[16] J. Vanderdonckt, P. Roselli, and J.L. Pérez-Medina, /FTL, an Articulation-
Invariant Stroke Gesture Recognizer with Controllable Position, Scale, and
Rotation Invariances, ICMI "18 Proceedings of the 20th ACM International
Conference on Multimodal Interaction (2018), 125-134.



Symbol Index

Clo(V), 6
Cl*(V), 9

aulp  0s Ojips 45
dr,, 46

DX(t), 47
Ds(f,g), 34, 52, 61
E,F,G,T% | 46
Fg(), 23

4,31

Li., 6

LSD(), 30, 59
Pg(), 20

P(o)s, 47
Rpy(), 21

S(g), 33, 61

T,, 45

71

G T
17
A, 15
(A, 12



