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Abstract

We study option pricing problems in stochastic volatility models. In the first part of this thesis we focus on
American options in the Heston model. We first give an analytical characterization of the value function of
an American option as the unique solution of the associated (degenerate) parabolic obstacle problem. Our
approach is based on variational inequalities in suitable weighted Sobolev spaces and extends recent results
of Daskalopoulos and Feehan (2011, 2016) and Feehan and Pop (2015). We also investigate the properties
of the American value function. In particular, we prove that, under suitable assumptions on the payoff, the
value function is nondecreasing with respect to the volatility variable. Then, we focus on an American put
option and we extend some results which are well known in the Black and Scholes world. In particular,
we prove the strict convexity of the value function in the continuation region, some properties of the free
boundary function, the Early Exercise Price formula and a weak form of the smooth fit principle. This is
done mostly by using probabilistic techniques.

In the second part we deal with the numerical computation of European and American option prices in
jump-diffusion stochastic volatility models. We first focus on the Bates-Hull-White model, i.e. the Bates
model with a stochastic interest rate. We consider a backward hybrid algorithm which uses a Markov chain
approximation (in particular, a “multiple jumps” tree) in the direction of the volatility and the interest
rate and a (deterministic) finite-difference approach in order to handle the underlying asset price process.
Moreover, we provide a simulation scheme to be used for Monte Carlo evaluations. Numerical results show
the reliability and the efficiency of the proposed methods.

Finally, we analyse the rate of convergence of the hybrid algorithm applied to general jump-diffusion mod-
els. We study first order weak convergence of Markov chains to diffusions under quite general assumptions.
Then, we prove the convergence of the algorithm, by studying the stability and the consistency of the hybrid

scheme, in a sense that allows us to exploit the probabilistic features of the Markov chain approximation.

Keywords: stochastic volatility; European options; American options; degenerate parabolic problems;

optimal stopping; tree methods; finite-difference.
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Résumé

L’objet de cette these est I’étude de problemes d’évaluation d’options dans les modeles a volatilité stochas-
tique. La premiere partie est centrée sur les options américaines dans le modéle de Heston. Nous donnons
d’abord une caractérisation analytique de la fonction de valeur d’une option américaine comme 'unique
solution du probleme d’obstacle parabolique dégénéré associé. Notre approche est basée sur des inéquations
variationelles dans des espaces de Sobolev avec poids étendant les résultats récents de Daskalopoulos et Fee-
han (2011, 2016) et Feehan et Pop (2015). On étudie aussi les propriétés de la fonction de valeur d’une option
américaine. En particulier, nous prouvons que, sous des hypotheéses convenables sur le payoff, la fonction
de valeur est décroissante par rapport a la volatilité. Ensuite nous nous concentrons sur le put américaine
et nous étendons quelques résultats qui sont bien connus dans le monde Black-Scholes. En particulier nous
prouvons la convexité stricte de la fonction de valeur dans la région de continuation, quelques propriétés de
la frontiere libre, la formule de Prime d’Exercice Anticipée et une forme faible de la propriété du smooth fit.
Les techniques utilisées sont de type probabiliste.

Dans la deuxieme partie nous abordons le probleme du calcul numérique du prix des options europénnes
et américaines dans des modeles a volatilité stochastiques et avec sauts. Nous étudions d’abord le modele
de Bates-Hull-White, c’est-a-dire le modele de Bates avec un taux d’intérét stochastique. On considére un
algorithme hybride rétrograde qui utilise une approximation par chaine de Markov (notamment un arbre
“avec sauts multiples”) dans la direction de la volatilité et du taux d’intérét et une approche (déterministe)
par différence finie pour traiter le processus de prix d’actif. De plus, nous fournissons une procédure de
simulation pour des évaluations Monte Carlo. Les résultats numériques montrent la fiabilité et efficacité
de ces méthodes. Finalement, nous analysons le taux de convergence de l'algorithme hybride appliqué a des
modeles généraux de diffusion avec sauts. Nous étudions d’abord la convergence faible au premier ordre de
chaines de Markov vers la diffusion sous des hypothéses assez générales. Ensuite nous prouvons la convergence
de l'algorithme: nous étudions la stabilité et la consistance de la méthode hybride par une technique qui

exploite les caractéristiques probabilistes de I’approximation par chaine de Markov.

Mots clés : volatilité stochastique ; options américaines ; options européennes ; problemes paraboliques

dégénérés ; arrét optimal ; approximation par arbres ; différences finies.
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Introduction

The seminal work by Black and Scholes ([21], 1973) was the starting point of equity dynamics
modelling and it is still widely used as a useful approximation. It owns its great success to its high
intuition, simplicity and parsimonious description of the market derivative prices. Nevertheless,
it is a well known fact that it disagrees with reality in a number of significant ways. Even F.
Black, 15 years after the publication of the original paper, wrote about the flaws of the model
[20]. Indeed, empirical studies show that in the real market the log-return process is not normally
distributed and its distribution is often affected by heavy tail, jumps and high peaks. Moreover,
the assumption of a constant volatility turns out to be too rigid to model the real world financial
market. It is enough to analyse the so-called implied volatility (that is the value of the volatility
parameter that, replaced in the Black and Scholes formula, gives the real market price) in a set of
traded call options to recognize the well known smile/skew effect. In fact, if we plot the implied
volatility against the strike price, we can observe that the resulting shape is not a horizontal line,
as it should derive from assuming a constant volatility, but it is usually convex and can present
higher values for high and low values of the strike price (a smile) or asymmetries (from which the
term skew). Furthermore, the assumption of a constant volatility does not allow to properly price
and hedge options which strongly depend on the volatility itself, such as the options on the realized
variance or the cliquet options.

These results have called for more sophisticated models which can better reflect the reality.
Various approaches to model volatility have been introduced over time, paving the way for a huge
body of literature devoted to this subject. Let us briefly recall some of the most famous ones.

Roughly speaking, we can recognize two different classes of models. The first class is given by
models in which the volatility is assumed to depend on the same noise source as the underlying
asset. Here, we can find the so-called local volatility models, where the volatility is assumed to be a

function of time and of the current underlying asset price. Therefore, the asset price S is modeled
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Introduction

by a diffusion process of the type
dSt = ,u(t, St)Stdt + O'(t, St)StdBt.

Under classical assumptions these models preserve the completeness of the market and all the
Black-Sholes pricing and hedging theory can be adapted (see, for example, [22] Chapter 2]). The
choice of a suitable local volatility function o = o (¢, S), is a delicate problem. Bruno Dupire proved
in [46] that it is possible to find a function o = o(¢,5) which gives theoretical prices matching a
given configuration of vanilla options’ prices. Typically, the local volatility function is calibrated at
t = 0 on the market smile and kept frozen afterwards. Therefore, it does not take into account the
daily changes in the volatility smile observed in the market. For this reason, local volatility models
seem to be an analytically tractable simplification of the reality rather than a representation of
how volatility really evolves. Other different models presented in the literature belong to this first
class, for instance path dependent volatility models, in which volatility depends on the whole past
trajectory of the asset price (see [51], [60]).

The second class of models consists of the so-called stochastic volatility models. Here, the volatil-
ity is modelled by an autonomous stochastic process Y driven by some additional random noise.

Typically, a stochastic volatility model is a Markovian model of the form

dSy = ps(t, St)Sedt + 05(Yy)Std By,
dy; = ,uy(t, Y})dt + Uy(t, }/t)th,

where B and W are possibly correlated Brownian motions. Moreover, often jumps are added to
the dynamics of the assets prices and/or their volatilities. The literature on stochastic volatility
models is huge. The most successful model is the one introduced by S. Heston [58], which will
be extensively studied later on in this thesis. Among the others we cite, for example, the models
by Hull and White [61], Bates [I7] and Stein and Stein [90]. Moreover, there are also examples
of local-stochastic volatility models (such as the famous SABR model [57]) in which the volatility
coefficient og(Y;) of the underlying asset price is more general and has the form og(S,Y;), that is
it depends also on the current asset price.

These models are, in general, not complete: the derivative securities are usually not replicable
by trading in the underlying. However, this does not affect the practice since the market can
be completed with well known procedures of market completion (for example by trading a finite

number of vanilla options).
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Introduction

We point out that the research is still fervent in this area. For example, empirical studies
have questioned the smoothness of the volatility dynamics. As a consequence, new models called
rough volatility models have recently been introduced. They are non-Markovian models in which
the volatility is driven by a Fractional Brownian motion, see the reference paper [54] and the
comprehensive website [86], which gathers all the developments on this subject.

In this thesis we consider Markovian stochastic volatility models and we collect some results on
the problem of pricing European and American options. It is divided into two strongly correlated
parts. In the first one we study some theoretical properties of the American option prices in Heston-
type models. In the second part, we deal with the problem of the numerical computation of the
prices, describing and theoretically studying hybrid schemes for pricing European and American
options in jump-diffusion stochastic volatility models. More precisely, the thesis is organized as

follows:

e Part I: American option prices in Heston-type models

— Chapter 1. Variational formulation of American option prices in Heston-type models;

— Chapter 2. American option price properties in Heston-type models.
e Part II: Hybrid schemes for pricing options in jump-diffusion stochastic volatility models

— Chapter 3. Hybrid Monte Carlo and tree-finite differences algorithm for pricing options
in the Bates-Hull-White model,;

— Chapter 4. Weak convergence of Markov chains and numerical schemes for jump diffusion

processes.

The above chapters are extracted, sometimes verbatim, from the papers [73} [74] 26| 27] respectively.

We now give a brief outline of the main results collected in this thesis.

Part I: American option prices in Heston-type models

The model introduced by S. Heston in 1993 [58] is one of the most widely used stochastic volatility
models in the financial world and it was the starting point for several generalizations. In this

model, the dynamics under the pricing measure of the asset price S and the volatility process Y
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are governed by the stochastic differential equation system

dSt = (7" — (S)Stdt + \/?tstdBt, S() =S5 > 0,
dY; = k(0 — V)dt + o/ TidW;, Yo =y >0,

(0.0.1)

where B and W denote two correlated Brownian motions with
d<B>W>t = pdt, p e (_171)'

Here r > 0 and § > 0 are the risk free rate of interest and the continuous dividend rate respec-
tively. The dynamics of the volatility follows a square-root diffusion process, which was originally
introduced by E. Feller in 1951 [50] and then rediscovered by Cox, Ingersoll and Ross as an interest
rate model in [38]. For this reason this process is known in the financial literature as the CIR
process. The parameters x > 0 and 6 > 0 are known respectively as the mean-reversion rate and
the long run state, while the parameter o > 0 is called the vol-vol (volatility of the volatility). One
can observe that the volatility (Y;): tends to fluctuate around the value § and that ~ indicates the
velocity of this fluctuation and determines its frequency. This is the mean reversion feature of the
CIR process and justifies the names of the constants x and 6.

It is well known (see, for example, [5, Section 1.2.4]) that under the so called Feller condition
2k6 > 02, the process Y with starting condition Yy = y > 0 remains always positive. On the other
hand, if the Feller condition is not satisfied, as happens in many cases of practical importance (see
e.g. the calibration results in [30, [44]), Y reaches zero with probability one for any Yy =y > 0.

The great success of the Heston model is due to the fact that the dynamics of the underlying asset
price can take into account the non-lognormal distribution of the asset returns and the observed
mean-reverting property of the volatility. Moreover, it remains analytically tractable and provides
a closed-form valuation formula for vanilla European options using Fourier transform.

In this framework, the price at time ¢t € [0, 7] of an American option with payoff function ¢ and
maturity 7" is given by P(t, S, Y;), where

P(t,s,y) = sup E |7 p(st00)]
€T, T
Ti 1 being the set of all the stopping times with values in [t,7] and S»*¥ denoting the solution to
with starting condition Sy = s, Y; = 4.



Introduction

If we consider, as usual, the log-price process X; = log S, the 2-dimensional diffusion (X,Y") has

infinitesimal generator given by

_y (2 & 20 N2 LD
£_2<8x2+2p08y8x+08y2 +(7’ 1) 2)8334_&(0 y)ay

and defined on the set O = R x (0,00). Note that the differential operator £ has unbounded

coeflicients and it is not uniformly elliptic: it degenerates on the boundary of O, that is, when the
volatility vanishes. This degenerate property gives rise to some technical difficulties when dealing
with the theoretical properties of the model, in particular when the problem of pricing American

options is considered. In the first part of this thesis we address some of these issues.

Chapter [I; Variational formulation of American option prices in Heston type
models

Chapter [I] is devoted to the identification of the American option value function as the unique
solution of the associated obstacle problem. Indeed, despite the great success of the Heston model,
as far as we know, an exhaustive analysis of the analytic characterization of the value function for
American options in Heston-type models is missing in the literature, at least for a large class of
payoff functions which include the standard call and put options.

Our approach is based on variational inequalities and extends recent results of Daskalopoulos
and Feehan [42] 43] and Feehan and Pop [48] (see also [32]). More precisely, we first study the
existence and uniqueness of a weak solution of the associated degenerate parabolic obstacle problem
in suitable weighted Sobolev spaces introduced in [42] (Section . Moreover, we also get a
comparison principle. The proof essentially relies on the classical penalization technique (see [19]),
with some technical devices due to the degenerate nature of the problem.

Once we have the existence and uniqueness of an analytical weak solution, in Section [1.4] we
identify it with the solution to the optimal stopping problem, that is the American option value
function. In order to do this, we use suitable estimates on the joint distribution of the log-price
process and the volatility process. Moreover, we rely on semi-group techniques and on the affine

property of the model.

Chapter [2t American option price properties in Heston type models

In Chapter [2] we study some qualitative properties of an American option value function in the

Heston model. We first prove in Section that, if the payoff function is convex and satisfies some
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regularity assumptions, then the option value function is increasing with respect to the volatility
variable. Then, in Section [2.4] we focus on the standard put option, that is we fix the payoff
function ¢(s) = (K — s)4, and we extend to the Heston model some results which are well known
in the Black and Scholes world, mostly by using probabilistic techniques. In particular, in Section

we introduce the so called exercise boundary or critical price, that is the map
b(t,y) =inf{s > 0| P(t,s,y) > (K —s)4+},  (t,y) €[0,T) x [0,00),

and we study some features of this function such as continuity properties. Then, in Section |4.3.1
we prove that the American put value function is strictly convex with respect to the stock price in
the continuation region, and we do it by using purely probabilistic arguments. In Section [2.4.3| we
extend to the stochastic volatility Heston model the early exercise premium formula, that is, we

prove that
T
P(O7 SO? Yb) = Pe(07 S07 YO) - / e*TS]E[((SSS - TK)l{SSSb(S,Ys)}]dsa
0

where P, (0, S, Yp) is the price at time 0 of a European put with the same maturity 7" and strike
price K of the original American put with price P. Finally, in Section [2.4.4] we prove a weak form

of the smooth fit principle, a well known concept in optimal stopping theory.

Part 11: Hybrid schemes for pricing options in jump-diffusion stochas-

tic volatility models

In the second part of this thesis we face up with the problem of the numerical computation of
European and American options prices in jump-diffusion stochastic volatility models. In particular,
we consider the Heston model and some generalizations of it which have other random sources such
as jumps and a stochastic interest rate (see [17), 61]).

From a computational point of view, the most delicate point is the treatment of the CIR dynamics
for the volatility process in the full parameter regime - it is well known that the standard techniques
fail when the square root process is considered. Moreover, one has to be careful in choosing the
approximation method according to the European or American option case. In fact, when dealing
with European options, i.e. solutions to Partial (Integro) Differential Equation (hereafter P(I)DE)
problems, numerical approaches involve tree methods [2] [80], Monte Carlo procedures [3| 4, 6], 8, 98],
finite-difference numerical schemes [34] [64, O2] or quantization algorithms [82]. When American

options are considered, that is, solutions to specific optimal stopping problems or P(I)DEs with
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obstacle, it is very useful to consider numerical methods which are able to easily handle dynamic
programming principles, for example trees or finite-difference.

In this thesis we consider a backward “hybrid” algorithm which combines:
e finite difference schemes to handle the jump-diffusion price process;

e Markov chains (in particular, multiple jumps trees) to approximate the other random sources,

such as the stochastic volatility and the stochastic interest rate.

Chapter [3; Hybrid Monte Carlo and tree-finite differences algorithm for pricing
options in the Bates-Hull-White model

In Chapter [3]| we focus on the Bates-Hull-White model, where the volatility Y is a CIR process and
the underlying asset price process S contains a further noise from a jump as introduced by Merton
[T7]. Moreover, the interest rate r is stochastic and evolves according to a generalized Ornstein-
Uhlenbeck (hereafter OU) process. More precisely, under the pricing measure, we consider the

following jump-diffusion model:

s,
S
dY; = Hy(ey — Y;g)dt + Uy\/?tdZtY,
dry = kp (0, (t) — r¢)dt + 0,.dZ7],

= (ry — 0)dt + /Y dZ; + dHy,

where, as usual, § denotes the continuous dividend rate, So,r9 > 0, Yy > 0, Z%, Z¥ and Z" are
correlated Brownian motions and H is a compound Poisson process with intensity A and i.i.d.
jumps {Jk }x, that is,
Ky
Hy=> Jk
k=1
K denoting a Poisson process with intensity A. We assume that the random sources , given by the
Poisson process K, the jump amplitudes {Ji }; and the 3-dimensional correlated Brownian motion
(Z5,2Y,Z"), are independent.
We refer to the introduction of Chapter [3| for an overview on the existing numerical schemes for
pricing options in this model.
Our pricing procedures work as follows. We first approximate both the stochastic volatility and

the interest rate processes with a binomial “multiple jumps” tree approach which is based on the

techniques originally introduced in [79]. Such a multiple jumps tree approximation for the CIR
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process was first introduced and analysed in [10], where it is shown to be reliable and accurate
without imposing restrictions on the coefficients.

Then, we develop two different pricing procedures. In Sectionwe propose a (forward) Monte
Carlo method, based on simulations for the model following the binomial tree in the direction of
both the volatility and the interest rate, and a space-continuous approximation for the underlying
asset price process coming from a Euler-Maruyama type scheme.

In Section we describe a hybrid backward procedure which works following the tree method
in the direction of the volatility and the interest rate and a finite-difference approach in order to
handle the underlying asset price process. We also give a first theoretical result on this algorithm,
studying some stability properties of the procedure.

Finally, Section is entirely devoted to numerical results. Several experiments are provided,
both for European and American options, with different values of the parameters of the model.
In particular, we also consider cases in which the Feller condition for the volatility process is not
satisfied. All numerical results show the reliability, the accuracy and the efficiency of both the
Monte Carlo and the hybrid algorithm.

Chapter Weak convergence rate of Markov chains and hybrid numerical
schemes for jump-diffusion processes

We devote Chapter [4 to the study of the theoretical convergence of a generalization of the hybrid
numerical procedure described in Chapter[3] Here we just briefly describe our main results, referring
to Section for an overview on the existing literature on the rate of convergence of numerical
methods for pricing options in Heston-type models.

Recall that the hybrid algorithm uses tree approximations and that, in their turn, tree methods
rely on Markov chains. So, we first consider in Section a d-dimensional diffusion process

(Y2)te[o,r] Which evolves according to the SDE
dYy = py (Yy)dt + oy (Yz)dW,.

Fix a natural number N > 1, h = T'/N and assume that (Y,,,)n=0,... v is approximated by a Markov
chain (Ynh)nzo’m, n~. It is well known that the weak convergence of Markov chains to diffusions relies
on assumptions on the local moments of the approximating process up to order 3 or 4. We prove
that, stressing these assumptions, we can study the rate of the weak convergence. This analysis is

independent of the financial framework but, as an example, we apply our results to the multiple
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jumps tree approximation of the CIR process introduced in [I0] and used in [24] 25 27]. Let us
mention that our general convergence result (Theorem may in principle be applied to more
general trees constructed through the multiple jumps approach by Nelson and Ramaswamy [79],
on which the tree in [I0] is based — to our knowledge, a theoretical study of the rate of convergence
for such trees is missing in the literature. And it could also be used in other cases, e.g. the recent
tree method for the Heston model developed in [2].

Then, in Section we combine the Markov chain approach with other numerical techniques
in order to handle the different components in jump-diffusion coupled models. In particular, we
link (Y3)ieo,r] With a jump-diffusion process (X¢)ejo,r) Which evolves according to a stochastic
differential whose coefficients only depend on the process. In mathematical terms, we consider the

stochastic differential equation system

dXe = px (Yy)dt + ox (Yy)dBy + vx (Yi)dHy,
dY; = py (Ya)dt + oy (Yr)dWr,

where H is a compound Poisson process independent of the 2-dimensional Brownian motion (W, B).
We generalize the hybrid procedure developed in [24] 25| 27] which works backwardly by approxi-
mating the process Y with a Markov chain and by using a different numerical scheme for solving a
(local) PIDE allowing us to work in the direction of the process X. We study the speed of conver-
gence of this hybrid approach. The main difficulty comes from the fact that, in general, the hybrid
procedure cannot be directly written on a Markov chain, so we cannot apply the convergence results
obtained in Section Therefore, the idea is to follow the hybrid nature of the procedure: we
use classical numerical techniques, that is an analysis of the stability and of the consistency of the
method, but in a sense that allows us to exploit the probabilistic properties of the Markov chain
approximating the process Y. Again, we provide examples from the financial framework, applying

our convergence results to the tree-finite difference algorithm in the Heston or Bates model.
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Part 1

American option prices in

Heston-type models



Chapter 1

Variational formulation of American

option prices

1.1 Introduction

The Heston model is the most celebrated stochastic volatility model in the financial world. As a
consequence, there is an extensive literature on numerical methods to price derivatives in Heston-
type models. In this framework, besides purely probabilistic methods such as standard Monte
Carlo and tree approximations, there is a large class of algorithms which exploit numerical analysis
techniques in order to solve the standard PDE (resp. the obstacle problem) formally associated
with the European (resp. American) option price function. However, these algorithms have, in
general, little mathematical support and in particular, as far as we know, a rigorous and complete
study of the analytic characterization of the American price function is not present in the literature.

The main difficulties in this sense come from the degenerate nature of the model. In fact, the
infinitesimal generator associated with the two dimensional diffusion given by the log-price process
and the volatility process is not uniformly elliptic: it degenerates on the boundary of the domain,
that is when the volatility variable vanishes. Moreover, it has unbounded coefficients with linear
growth. Therefore, the existence and the uniqueness of the solution to the pricing PDE and obstacle
problem do not follow from the classical theory, at least in the case in which the boundary of the
state space is reached with positive probability, as happens in many cases of practical importance
(see [7]). Moreover, the probabilistic representation of the solution, that is the identification with

the price function, is far from trivial in the case of non regular payoffs.
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It should be emphasized that a clear analytic characterization of the price function allows not
only to formally justify the theoretical convergence of some classical pricing algorithms but also to
investigate the regularity properties of the price function (see [66] for the case of the Black and
Scholes models).

Concerning the existing literature, E. Ekstrom and J. Tysk in [47] give a rigorous and com-
plete analysis of these issues in the case of European options, proving that, under some regularity
assumptions on the payoff functions, the price function is the unique classical solution of the asso-
ciated PDE with a certain boundary behaviour for vanishing values of the volatility. However, the
payoff functions they consider do not include the case of standard put and call options.

Recently, P. Daskalopoulos and P. Feehan in [42] 43] studied the existence, the uniqueness, and
some regularity properties of the solution of this kind of degenerate PDE and obstacle problems in
the elliptic case, introducing suitable weighted Sobolev spaces which clarify the behaviour of the
solution near the degenerate boundary (see also [32]). In another paper ([48]) P. Feehan and C.
Pop addressed the issue of the probabilistic representation of the solution, but we do not know
if their assumptions on the solution of the parabolic obstacle problem are satisfied in the case of
standard American options. Note that Feehan and Pop did prove regularity results in the elliptic
case, see [49]. They also announce results for the parabolic case in [48].

The aim of this chapter is to give a precise analytical characterization of the American option
price function in the Heston model for a large class of payoffs which includes the standard put and
call options. In particular, we give a variational formulation of the American pricing problem using
the weighted Sobolev spaces and the bilinear form introduced in [42].

The chapter is organized as follows. In Section 2, we introduce our notations and we state
our main results. Then, in Section 3, we study the existence and uniqueness of the solution of
the associated variational inequality, extending the results obtained in [42] in the elliptic case.
The proof relies, as in [42], on the classical penalization technique introduced by Bensoussan and
Lions [19] with some technical devices due to the degenerate nature of the problem. We also
establish a Comparison Theorem. Finally, in section 4, we prove that the solution of the variational
inequality with obstacle function v is actually the American option price function with payoff v,
with conditions on v which are satisfied, for example, by the standard call and put options. In
order to do this, we use the affine property of the underlying diffusion given by the log price process
X and the volatility process Y. Thanks to this property, we first identify the analytic semigroup

associated with the bilinear form with a correction term and the transition semigroup of the pair
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(X,Y) with a killing term. Then, we prove regularity results on the solution of the variational
inequality and suitable estimates on the joint law of the process (X,Y’) and we deduce from them
the analytical characterization of the solution of the optimal stopping problem, that is the American

option price.

1.2 Notations and main results

1.2.1 The Heston model

We recall that in the Heston model the dynamics under the pricing measure of the asset price S

and the volatility process Y are governed by the stochastic differential equation system

KL = (r—8)dt + /YidBy, Sp=5>0,
dYy = (0 — Yy)dt + o/YidWy, Yo =1y >0,

where B and W denote two correlated Brownian motions with
d<B’W>t :pdt7 pE (_1’1)

We exclude the degenerate case p = +1, that is the case in which the same Brownian motion
drives the dynamics of X and Y. Actually, it can be easily seen that, in this case, S; reduces to a
function of the pair (Yt, fg sts) and the resulting degenerate model cannot be treated with the
techniques we develop in this chapter. Moreover, this particular situation is not very interesting
from a financial point of view.

Moreover, we recall that » > 0 and § > 0 are respectively the risk free rate of interest and the
continuous dividend rate. The dynamics of Y follows a CIR process with mean reversion rate k > 0,
long run state 6 > 0 and volatility of the volatility 8 > 0. We stress that we do not require the
Feller condition 2k > o2: the volatility process Y can hit 0 (see, for example, [5, Section 1.2.4]).

We are interested in studying the price of an American option with payoff function . For

technical reasons which will be clarified later on, hereafter we consider the process

0
Xy =log Sy — ¢ét, withé=r—9 — ﬂ, (1.2.1)
o

which satisfies
dX; = (222 — %) dt + \/V,dB,

dY; = k(0 — Y;)dt + o/Y;dW,.

(1.2.2)
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Note that, in this framework, we have to consider payoff functions ¢ which depend on both the
time and the space variables. For example, in the case of a standard put option (resp. a call option)
with strike price K we have 9 (t,z) = (K — e, (resp. ¢¥(t,z) = (e*t% — K),). So, the natural
price at time ¢ of an American option with a nice enough payoff (¢(t, Xt,Y:))o<t<r is given by
P(t, X, Y:), with

P(t,7,y) = sup Ele™" " 0y(0, X5, V)],
0T, T

where T;p is the set of all stopping times with values in [¢,7] and (XE™Y, YY) < st denotes the
solution to ([1.2.2)) with the starting condition (X¢,Y;) = (z,vy).
Our aim is to give an analytical characterization of the price function P. In this chapter we

denote by L the infinitesimal generator of the two dimensional diffusion (X,Y), given by

y [ 0? 0? s pkf  y\ O 0
= — _— 2 _— _— = _ — _—
£ 2 (83:2 + ”Uayax to Oy? + o 2 ) Ox 10— y) oy’

which is defined on the open set O := R x (0,00). Note that £ has unbounded coefficients and is

not uniformly elliptic: it degenerates on the boundary 00 = R x {0}.

1.2.2 American options and variational inequalities

Heuristics

From the optimal stopping theory, we know that the discounted price process I:’(t,Xt,Yt) =
e " P(t, Xy, Y;) is a supermartingale and that its finite variation part only decreases on the set
P = 1 with respect to the time variable t. We want to have an analytical interpretation of these
features on the function P(t,z,y). So, assume that P € C12((0,T) x O). Then, by applying It&’s
formula, the finite variation part of F’(t, X, V) is

oP -

Since P is a supermartingale, we can deduce the inequality

or _
— 4+ LP<
o +LP<0

and, since its finite variation part decreases only on the set P(t, Xy, Y;) = ¥(t, X3, Y:), we can write

opP .
(&+5P>(¢—P)=o.

5
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This relation has to be satisfied dt — a.e. along the trajectories of (¢, X, Y;). Moreover, we have the
two trivial conditions P(T, z,y) = (T, z,y) and P > 1.
The previous discussion is only heuristic, since the price function P is not regular enough to

apply Ito’s formula. However, it suggests the following strategy:

(i) Study the obstacle problem

e + Lu <0, u>1, in[0,T] x O,
(%% + Lu) (b —u) =0, in[0,T]x O, (1.2.3)

uw(T,z,y) = (T, 2,y).

(ii) Show that the discounted price function P is equal to the solution of (T.2.3) where 1 is
replaced by &(ta €L, y) = eirt?v/)(m €T, y)

We will follow this program providing a variational formulation of system (|1.2.3]).

Weighted Sobolev spaces and bilinear form associated with the Heston operator
We consider the measure first introduced in [42]:

m, ,(dz, dy) = yP e =y gady,

with v > 0, u>0andﬂ::%'—’“‘29.

It is worth noting that in [42] the authors fix u = 3—’; in the definition of the measure m, ,. This
specification will not be necessary in this chapter, but it is useful to mention it in order to better
understand how this measure arises. In fact, recall that the density of the speed measure of the
CIR process is given by yﬁ_le_c%y. Then, the term yﬂ_le_%y in the definition of m, , has a clear
probabilistic interpretation, while the exponential term e~ ig classically introduced just to deal
with the unbounded domain in the x—component.

For v € R™ we denote by |u| the standard Euclidean norm of w in R™. Then, we recall the
weighted Sobolev spaces introduced in [42]. The choice of these particular Sobolev spaces will
allow us to formulate the obstacle problem in a variational framework with respect to the

measure M~ ,.

Definition 1.2.1. For every p > 1, let LP(O,m,, ) be the space of all Borel measurable functions
u: O —= R for which

o, = [l < .

6
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and denote H°(O,m, ) :== L*(O,m, ).
(1) If Vu := (uz,uy) and ug, u, are defined in the sense of distributions, we set

HY (O,m, ) :={uc L*(O,m,,) : \/1+yu and /y|Vu| € L*(O,m, )},

and
lll o) = /O (yIVul? + (1 + y)u?) dm, .

(ii) If D*u = (Ugy, Ugy, Uy, Uyy) and all derivatives of u are defined in the sense of distributions,

we set

H(0,m,,) = {u€ L(O,my,) : /T4 yu, (1+)|Val, y|D%| € 2(0,m,,)}

and
HUH%{?(O,m%H) = /O (yZ‘D2u’2 + (1 + y>2’Vu‘2 + (1 + y)u2) dm%#.

For brevity and when the context is clear, we shall often denote
H:=H°0Om,,), V:=H(Om,,)

and
ullz = lullL2(0m, ) ullv = llull g1 om, )

Note that we have the inclusion
H*(0, my ) C HY(0, my )

and that the spaces Hk((’),m%u), for £k =0, 1,2 are Hilbert spaces with the inner products

(u,v)g = (u, v)LQ(O,m%H) = /Ouvdmw“

(U, U)V = (ua ’U)Hl((’),m%u) - /(; (y (vua VU) + (1 + y)“”) dm"h#
and
(4, 0) 2 (Om, ) 7= /(9 (v* (D*u, D*v) + (1 + y)* (Vu, Vo) + (1 + y)uv) dm,

where (+,-) denotes the standard scalar product in R"™.
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Moreover, for every T'> 0, p € [1,+00) and i = 0, 1,2, we set
LP([0,T); H(O,m, ) = {u : [0,T] x O — R Borel measurable : u(t,-,-) € H'(O, m, )
T
AP
for a.e. t € [0,7] and /0 llu(t, )] 1(O,m%u)dt < oo}

and
T
» _ P
||u”Lp([UyTLHi(O,mmu)) N /0 Hu(t’ )H i(ozm%u)dt'

We also define L>°([0, T]; H) with the usual essential sup norm.

We can now introduce the following bilinear form.

Definition 1.2.2. For any u,v € H*(O,m., ) we define the bilinear form

1
(1, 0) =5 /O Y (uzvs(2,Y) + pougvy(z,y) + pouyve(z,y) + o uyvy(z,y)) dm,,
+ [ 0l @uale.n) + by @y 2.0) oo ),

where
2

) 1 ypo uo
Jran@) = 5 (1= ysgn(e) = ppo),  Fyple) = 5= Dlsgna) =2 (1.2.4)
We will prove that a,,, is the bilinear form associated with the operator £, in the sense that for

every u € H*(O,m, ) and for every v € H'(O,m, ), we have
(Lu,v)g = —ay u,(u,v).

In order to simplify the notation, for the rest of this chapter we will write m and a(-,-) instead of
m, ,, and a, (-, -) every time the dependence on v and p does not play a role in the analysis and

computations.

1.2.3 Variational formulation of the American price

Fix T > 0. We consider an assumption on the payoff function ¢ which will be crucial in the

discussion of the penalized problem.

Assumption H!. We say that a function 1 satisfies Assumption H' if v € C([0,T]; H), 1+ yt €
L2([0,T); V), ¥(T) € V and there exists ¥ € L?([0,7T]; V) such that ‘%—ﬂ <.
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We will also need a domination condition on v by a function ® which satisfies the following

assumption.

Assumption H2. We say that a function ® € L?([0,T]; H?>(O,m)) satisfies Assumption H? if
(14+y)2® € L2([0,T}; H), 224Ld < 0 and /T y® € L®([0,T]; L*(O, m, 1)) for some 0 < 1/ < pu.

The domination condition is needed to deal with the lack of coercivity of the bilinear form
associated with our problem. Similar conditions are also used in [42].
The first step in the variational formulation of the problem is to introduce the associated varia-

tional inequality and to prove the following existence and uniqueness result.

Theorem 1.2.3. Assume that 1 satisfies Assumption H' together with 0 < ¢ < ®, where ®
satisfies Assumption H?. Then, there exists a unique function u such that u € C([0,T]; H) N
L*([0,T); V), 3 € L*([0,T]; H) and

- (%,v —u);+alu,v—u) >0, ae in[0,T] velLl?*[0,T}V), v>1,
u>1 ae in[0,7] x R x (0,00),

u(T) = o(T),

0<u<o.

(1.2.5)

The proof is presented in Section 3 and essentially relies on the penalization technique introduced
by Bensoussan and Lions (see also [52]) with some technical devices due to the degenerate nature
of the problem. We extend in the parabolic framework the results obtained in [42] for the elliptic
case.

The second step is to identify the unique solution of the variational inequality as the
solution of the optimal stopping problem, that is the (discounted) American option price. In order

to do this, we consider the following assumption on the payoff function.

Assumption H*. We say that a function ¢ : [0,7] x R x [0,00) — R satisfies Assumption H*
if ¢ is continuous and there exist constants C > 0 and L € [0, i—’;) such that, for all (¢,z,y) €
[0,7] x R x [0, 00),

0 < (t,z,y) < Ce” + €M), (1.2.6)
and 5 5 5
‘a‘f(t,x,y)‘ + ’{;ﬁ(t,z,y)’ + ‘E;’;(t,x,w' < C(ealelty), (1.2.7)

for some a,b € R.
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Note that the payoff functions of a standard call and put option with strike price K (that is,
respectively, ¥ = ¢(t,z) = (K — e*T), and ¢ = (¢, ) = (e*T¢ — K), ) satisfy Assumption H*.
Moreover, it is easy to see that, if ¢ satisfies Assumption H*, then it is possible to choose v and p
in the definition of the measure m, , (see (1.2.2))) such that ¢ satisfies the assumptions of Theorem
1.2.3] Then, for such v and u, we get the following identification result.

Theorem 1.2.4. Assume that 1 satisfies Assumption H*. Then, the solution u of the variational

inequality (1.2.5) associated with 1 is continuous and coincides with the function u* defined by

w(t,z,y) = sup E [(r, XL, VW)
T€Ty, T

1.3 Existence and uniqueness of solutions to the variational in-

equality
1.3.1 Integration by parts and energy estimates

The following result justifies the definition of the bilinear form a.
Proposition 1.3.1. If u € H?>(O,m) and v € H(O,m), we have
(Lu,v)g = —a(u,v). (1.3.8)
This result is proved with the same arguments of [42] Lemma 2.23] or [43] Lemma A.3] but we
prefer to repeat here the proof since it clarifies why we have considered the process X; = log Sy — ¢t
instead of the standard log-price process log S;.

Before proving Proposition [1.3.1] we show some preliminary results. The first one is about the

standard regularization of a function by convolution.

Lemma 1.3.2. Let o : R x R = R™ be a C* function with compact support in [—1,+1] x [—1,0]
and such that [ [@(z,y)dzdy = 1. For j € N we set p;(x,y) = j*p(jz,jy). Then, for every

function u locally square-integrable on R x (0,00) and for every compact set K, we have

lim // ko —u)?(z,y)dedy = 0.
j—o0

Proof. We first observe that, by using Jensen’s inequality with respect to the measure ¢;(&, ¢)d€dc,

//K(Sf’j s u)?(x,y)dzdy < //K dxdy//¢j(§7 Ou2(z — &,y — ¢)dedC
~ [[ e acac [[ 1o+ &y + ooy

10

we get,
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We deduce, for j large enough,

//K(w*U)Q(:v,y)dwdyS//[_(UQ(w,y)dxdy,

where K = {(z,y) € Olds((z,y), K) < %} Let € be a positive constant and v be a continuous
function such that [[z (u(z,y) — v(z,y))?dady < e. By using the well known inequality (z1 +--- +
z)? <l(x%+---+2?), we have

J[ e u=wipyaody
§3//}<(cpj>ku—g0j*U)Q(:c,y)dxdy—i—?)//K((pj*v—v)Z(x,y)dxdy—i—S//K(v—u)Q(x,y)da:dy

< 3//}_{(0 —u)?(x, y)dzdy + 3//}((%- x v — )% (x,y)dedy + 3//}_{(1} —u)*(x,y)dzdy
< 6e + 3//}((% x v —v)2(z,y)drdy.

Since v is continuous, we have |p; x v| < sup, e [v(z,y)| and lim;,o ;j * v(z,y) = v(z,y) on K.

Therefore, by Lebesgue Theorem, we can pass to the limit in the above inequality and we get

lim sup // (05 * u — u)?(, y)dady < Ge,
K

j—00
which completes the proof. O

Then, the following two propositions justify the integration by parts formulas with respect to the

measure m.

Proposition 1.3.3. Let us consider u,v : O — R locally square-integrable on O, with derivatives

ug and v, locally square-integrable on O as well. Moreover, assume that

/(9 (|ux(a;,y)v(:c,y)\ + \u(x,y)vx(x,yﬂ + |u(:c,y)v(x,y)\)dm < 0.

Then, we have

/ Uz (z, y)v(z,y)dm = —/ u(z,y) (vz(z,y) — ysgn(x)v) dm. (1.3.9)
o @)

Proof. First we assume that v has compact support in R x (0,00). For any j € N we consider
the C°° functions u; = ¢; * u and v; = ¢; * v, with ¢; as in Lemma [1.3.2] Note that supp v; C

11
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supp v + supp ¢; and so, for j large enough, supp v; C R x (0,00). For any € > 0, integrating by
parts, we have

/OO (o (@, y)vj (x, y)e Vo Fedy = _/

—0o0 —0o0

[e.9]

u; ((vjmx, y) 7 v3(e, y>) Vg,

%+ €
and, letting € — 0,

| whategpesoagpe e = = [~ us((05)alenn) — vsgnla)egog)e s

—00 —0o0

Multiplying by y?~'e " and integrating in y we obtain

/(ug‘)x(wvy)vj(af,y)dm = —/ wj(,y) ((v5)x (2, y) — vsgn(z)v(z,y))dm.
(@) (@)

Recall that, for j large enough, v; has compact support in R x (0,00) and m is bounded on this
compact. By using Lemma letting j — oo we get

/ ug(z, y)v(x,y)dm = —/ u(vx(m,y) — vsgn(x)v(x,y)dm.
(@]

o

Now let us consider the general case of a function v without compact support. We introduce a
C*°—function o with values in [0, 1], a(z,y) = 0 for all (x,y) ¢ [-2,+2] x [-2,+2], a(z,y) = 1 for
all (z,y) € [-1,+1] x [-1,+1] and a C*°—function y with values in [0, 1], x(y) = 0 for all y € [0, &],
x(y) =1 for all y € [+1,00). We set

T Yy . .
Aj(z,y) =« ( ) x(jy),  JEN
J J
For every j € N, A; has compact support in O and we have

/ux(a:,y)Aj(m,y)v(m,y)dm
(@]

== [ ) (0a(.9) — rsgn(a)olan ) Ay im = [ e p)o(e ) A7)l y)dm.
O O

The function A; is bounded by |laloc||X|loo and lim; 1 Aj(z,y) = 1 for every (x,y) € O. More-

T

over (4;)z(z,y) = %aw (;, %) x(Jy), so that

C
/@ u(azy)v(w)(Aj)x(x,y)dm] < /O 1oyl y)o(, o) dm,
where C = ||ag|loo||X||co- Therefore, we obtain ([1.3.9) letting j — oo. O

12
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Proposition 1.3.4. Let us consider u,v : O — R locally square-integrable on O, with derivatives

uy and vy locally square-integrable on O as well. Moreover, assume that
[ vl m)ota )]+ luteg)vesta, ) + fute. oo, ) ldm < o
Then, we have
Lot sin == [yt egan = [ (6= gtz poepin. (1310

Proof. If v has compact support in O, we obtain ((1.3.10)) as in the proof of Proposition On

the other hand, if v does not have compact support,
/Oyuy(w, y)v(z,y)A;(z,y)dm = — /O yu(z, y)vy(z, y)Aj(z, y)dm
— (3= iyt ot ) Ay e p)im = [ yute i) (4), (g,

where Aj(z,y) = a(%, %)X(jy), as in the proof of Proposition m but choosing x such that,

moreover, [|[yx'(y)|lcoc < 0o. We have (4;)y(z,y) = %ay(% Ox(5y) + ja(5, §)X'(jy). Note that

. r vy I /
[ e ntaio (3. tnyin| < [ 10 tuteote ool sup 6 (Ol

The last expression goes to 0 as j — oo since [, [u(z,y)v(z,y)|dm < co. The assertion follows by
passing to the limit j — oo. O

We can now prove Proposition [I.3.1]

Proof of Proposition|1.5.1, By using Lemma we have

/%dm__/ﬁuav_ (z)v | dm
@yaxQU - Oy(?m oz TEGRAT)Y ’

2 Ou Ov
dm = — dm+/ — B)—=—wvdm,
/ya 5V Yoy ay O(uy B)5.Y
2 ou [ Ov
/(9y8$ayvdm /Oyay (3 — 73971(90)1)) dm
and ) 900
u Qv
Oyaxayvd /Oyaxaydm—i—/(,uy—ﬂ)vdm

13
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Recalling that

_y (2 O L 2N (0 YD e D
£_2<32+paa+ a2) T\ o T2) e TRy,

and using the equality 3 = 2xf/0?, we get
/ <6u v 50udv Ju Qv 8u 8v>
+o dm

(Lu,v)m = — Ao+ poa— o+ p

Oz Ox Jy Oy Oz Oy 3y ox

0
+ /O ;au (yysgn(x) + po(uy — B)) vdm

—i—/ 20y (no?y — Bo? + poyysgn(z)) vdm+/o [(U — 2) o ﬁ(e_y)aiy vdm
= —a(u,v).
O

Remark 1.3.5. By a closer look at the proof of Proposition |1.3.1| it is clear that the choice of ¢
in (1.2.1)) allows to avoid terms of the type [(uz + uy)vdm in the associated bilinear form a. This

trick will be crucial in order to obtain suitable energy estimates.

Recall the well-known inequality

1
be = (\/Cb) (\;}) Cb2 ¢ 2, beceR, ¢>0. (1.3.11)

Hereafter we will often apply (|1.3.11]) in the proofs even if it is not explicitly recalled each time.

We have the following energy estimates.

Proposition 1.3.6. For every u,v € V, the bilinear form a(-,-) satisfies

la(u, v)| < Cullullv|vllv, (1.3.12)
1
au, u) > Collully — Cs|(1 +y)zullF, (1.3.13)
where 5 6
K?
Cr=b0+K, Co=—=, C3=— 4L
1 0+ Ky, 2= 5 3 95,
with )
t t t1t
bo=  sp |mmtposibdposhdohib] (1.3.14)
$2412>0, s3412>0 21/(s7 +1)(s3 +3)
2 2,2
§° + 2post + ot
51— 1.3.15
T el 2824 (1.3.15)

14
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and

Kl_sup\/gw + k2, (2). (1.3.16)

It is easy to see that the constants dg, d; and K7 defined in (1.3.14]) and (|1.3.16)) are positive and
finite (recall that the functions j, , = j,,.(x) and k., = K, ,(x) defined in (1.2.4)) are bounded).
These energy estimates were already proved in [42, Lemma 2.40] with a very similar statement.

Here we repeat the proof for the sake of completeness, since we will refer to it later on.

Proof of Proposition[1.5.6, In order to prove (1.3.13), we note that

1
3 /(9 Y (uxvx + poULVy + POUYVL + azuyvy) dm > 6§ /O y\Vu|2dm.

Therefore

a(u,u) 251/ y\Vu|2dm—K1/ y|Vul|u|dm
(@)

K
> (51/ y|Vul2dm — —1< y|Vul*dm — % Jo (1 + y)u’dm
@

(51 K21C> /O (y|Vul? + (1 + y)u®) dm — <51 K21C + 2C> /(9(1+Z/)U2dm-

The assertion then follows by choosing ¢ = 6;/K;. (1.3.12)) can be proved in a similar way. O

1.3.2 Proof of Theorem [1.2.3

Among the standard assumptions required in [19] for the penalization procedure, there are the
coercivity and the boundedness of the coefficients. In the Heston-type models these assumptions
are no longer satisfied and this leads to some technical difficulties. In order to overcome them, we
introduce some auxiliary operators.

From now on, we set

a(u,v) = a(u,v) + a(u,v),

where

a(u,v) = /y 8u8v+ %@_{_ 8u8v+ 2 0u v dm,
’ N 2 \ 0z Oz Ox Oy 8y Ox Ay Oy

- u .
a(u,v) = /Oyaxj%uvdm+/oyayk%uvdm.

15



Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

Note that a is symmetric. As in the proof of Proposition (1.3.6)) we have, for every u,v € V,

a(w,v)| < b / Y|Vl [Voldm,
(@)

a(u,u) > 61/ y|Vul2dm,
@
and
a(u, v)] < K /O y|Vul[v]dm,
with dg, 01 and K; defined in Proposition Moreover, for A > 0 and M > 0 we consider the
bilinear forms

a)(u,v) = a(u,v)—l—)\/o(l—i-y)uvdm,

ay(u,v) = Ez(u,v)+)\/c)(1+y)uvdm,

- ou . ou
a M (u,v) = /O(y N M) <8x‘77’“ + ayk:%u) vdm

and
a(u,v) = ax(uv) +a (u,0).

The operator a) was introduced in [42] to deal with the lack of coercivity of the bilinear form

(M)

a, while the introduction of the truncated operator ay ’ with M > 0 will be useful in order to

overcome the technical difficulty related to the unboundedness of the coefficients.

Lemma 1.3.7. Let g, 61, K1 be defined as in (1.3.14)), (1.3.15) and (1.3.16|) respectively. For any
(M)

K? . . . .
fized A > %1 + 55 the bilinear forms ay and a) ’ are continuous and coercive. More precisely, we

have

ax(u,v)| < Clullv|vllv,  wveV, (1.3.17)
5

ax(uu) > Zlul},  weV. (1.3.18)

and
M (u,0) < Cllullvlolly,  wveV, (1.3.19)

5

o™ (u, u) > ElHuH%/, uwev. (1.3.20)

where C'= §g + K1 + A.

16



Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

Proof. The proof for the bilinear form ay follows as in [42, Lemma 3.2]. We give the details for

aE\M) to check that the constants do not depend on M. Note that, for every u,v € V,

600w, 0)] < Kl/ y|Vulloldm,
@
so that by straightforward computations we get

(a$™ (u, 0)] < (80 + A+ K1) [ullv o]l

On the other hand, for every ¢ > 0,

51/ y|Vu]2dm+)\/(1+y)u2dm—K1/ y|Vul|u|dm
@ @) (@)

(5= 22 [uiwukam+ (A= 52) [+ i,

By choosing ¢ = 61/K1, we get

Y

a™ (u, )

Vv

5 K2 5
) = P [ yuPms (A= Z0) [ 1 gatin = 2l
2 Jo 251 ) Jo 2
5 K2
for every A > 5 + 55+ O

. . K2 .
From now on in the rest of this chapter we assume A > %1 ﬁ as in Lemma [1.3.7, Moreover,

. b )
we will denote by [|b]| = sup,, ,ev.u,v20 m

the norm of a bilinear form b: V x V — R.

Remark 1.3.8. We stress that Lemma[1.3.7 gives us
sup o) < €, (1.3.21)
M>0

where C'= dg + K1 + A. This will be crucial in the penalization technique we are going to describe
in Section [1.3.4. Roughly speaking, in order to prove the existence of a solution of the penalized
coercive problem we will introduce in Theorem [1.3.10, we proceed as follows. First, we replace the
bilinear form ay with the operator aE\M), which has bounded coefficients, and we solve the associated
penalized truncated coercive problem (see Proposition . Then, thanks to , we can
deduce estimates on the solution which are uniform in M (see Lemma and which will allow
us to pass to the limit as M goes to infinity and to find a solution of the original penalized coercive

problem.

Finally, we define
LY=L -)\1+vy)

the differential operator associated with the bilinear form ay, that is

(L u,v) g = —ax(u,v), u e H*(O,m),veV.

17



Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

Penalized problem

For any fixed € > 0 we define the penalizing operator

C(tu) = —é(z/](t) _u), = é((t,u), te[0,TLue V. (1.3.22)

Since for every fixed ¢ € [0, T'] the function x — —(1(t)—z)+ is nondecreasing, we have the following

well known monotonicity result (see [19]).

Lemma 1.3.9. For any fized t € [0,T)] the penalizing operator (1.3.22) is monotone, in the sense
that
(C&(tﬂu)_CE(t7v)7u_v)H207 'LL,’UGV
We now introduce the intermediate penalized coercive problem with a source term g. We consider

the following assumption:

Assumption H?. We say that a function g satisfies Assumption H° if /T + yg € L%([0,T); H).

Theorem 1.3.10. Assume that 1 satisfies Assumption H' and g satisfies Assumption H°. Then,

for every fized € > 0, there exists a unique function u. such that u.\ € L*([0,T];V), 815? €

L%([0,T); H) and, for all v € L*([0,T]; V),

— (Z52(0),0)  + ar (2 (0),0(0)) + (G (b uep (), o) = (90) 0@, ace. in [0.7],
ueA(T) = (T),

(1.3.23)
Moreover, the following estimates hold:
el oo (0,11, < K, (1.3.24)
Haus’A <K, (1.3.25)
Ot 2 (or)
1
% H(T/) - u€7>‘)+HL°°([O,T],H) < K, (1326)

where K = C (19| 2(o,z3v) + VT +wall 2o,y + VT F 59l 20,110y + 10D, with C >0

independent of €, and ¥ is given in Assumption H'.

The proof of uniqueness of the solution of the penalized coercive problem follows a standard
monotonicity argument as in [19], so we omit the proof.

The proof of existence in Theorem is quite long and technical, so we split it into two
propositions. We first consider the truncated penalized problem, which requires less stringent

conditions on ¥ and g.

18



Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

Proposition 1.3.11. Let vy € C([0,T); H)N L?([0,T); V) and g € L?([0,T); H). Moreover, assume
that (T) € H>(O,m), (1 +y)»(T) € H, 3 € L*([0,T];V) and % € L*([0,T]; H). Then, there
exists a unique function uz \ p such that u. € L*([0,T);V), BUEQ’M € L*([0,T); V) and for all
ve 12(0, T} V)

(220 0),000)) -+ 0 (e a8, 0(0)) + (Gl wenar (1), o) = (9(0),o(O)r, ace in [0,7),

ug v (T) = ¥(T).

(1.3.27)
Proof. (i) Finite dimensional problem We use the classical Galerkin method of approxima-
tion, which consists in introducing a nondecreasing sequence (V;); of subspaces of V' such
that dimV; < oo and, for every v € V, there exists a sequence (v;);jen such that v; € Vj for
any j € N and ||[v —vj[|y = 0 as j — oo. Moreover, we assume that ¢(7') € Vj, for all j € N.
Let P; be the projection of V onto V; and ¢;(t) = Pjy(t). We have 1;(t) — () strongly
in V and v¢;(T) = 9(T) for any j € N. The finite dimensional problem is, therefore, to find

uj : [0,T] — Vj such that

— (B @) +alwi(t),0) = K@) = w 1)+ v)a = (90,00, vEV,

u;i(T) = (7).
(1.3.28)

This problem can be interpreted as an ordinary differential equation in V; (dim V; < o0),
that is
ou; M
=G0 + AL (0) = 2Q,((is(8) — s (8)4) = Qs9()
u;(T) = o(T),
where AE\]’?) : V; = Vj is a finite dimensional linear operator and @; is the projection of H

onto Vj. Note that the function u — Q;((¢(t) — u)4) is Lipschitz continuous, since
1Q5((45(8) = w)4) — Qi ((¢5(8) = v)p)llv; < Cjll Qi ((¥5(8) — w)+) — Qi ((¢5(8) = v)4 )l
< Gjllu = vllg.
On the other hand, the function (¢,u) — Q;((;(t) — u(t)4) is continuous with values in V;.
In fact, we can easily prove that it is weakly continuous, that is, for v € Vj, the application
(t,u) = (Q;((¥j(t) —u)4),v) is continuous. In fact
[(Qi(((1) = w) 1) = Qi(((s) —w)1),v) | < [(Q((¥5() — w)4) — Qj (Wi (s) — u)1),v)|

+[(Qj((W5(s) —u)4) — Qj((Wi(s) — w)4),v) .
(1.3.29)
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The second term in the right hand side of goes to 0 by using the Lipschitz continuity
proved above. On the other hand, it is easy to prove that for any u € V,v € H?(O,m), one
has |(w, v)v] < Cllullul[v]g2(om))- Since v € V; we can assume without loss of generality
that v € H*(O,m), so that for the first term in the right hand side of (1.3.29), we easily get

[(Qi(((1) —u)+) = Qi (W5 (s) —w)+),v) | < 05 (t) — ()l llvll 20 ,m)
which goes to 0. Finally, it is easy to see that the term Q;g belongs to L?([0,T]; V;).

Therefore, we can use the Cauchy-Lipschitz Theorem and we deduce the existence and the
uniqueness of a solution wu; of ([1.3.28)), continuous from [0, 7] into Vj, a.e. differentiable and

with integrable derivative.

(ii) Estimates on the finite dimensional problem First, we take v = u;(t)—1;(t) in (1.3.28).
We get

(GO0 = 550) -+ w0150 = 05(0) = L0~ 15 O)1s ) = )
H
= (g0, u,(1) ~ v ()

which can be rewritten as

— 5l = w0l = (GOm0 = 5,0)) +al 0 = b 0.0 ~ vy
4 L@ w0 93(0) — w0+ W50 03 (0) — 50) = (9(6),05(6) — 50

We integrate between t and 7" and we use coercivity and u;(T") = v;(T) to obtain
1 o1 1 2
Sl (8) = 5Ol + 5 2 ||ug( ) = ¥i(s)lds + - t 1(5(s) — uj(s))+l7ds

C 1
d +3 ||Ug ()l Fds + o
H

(s ol a2
<o [ ]2 e | Il

M)
+5 [ Iste) ~ vyl N ”€/“\J syl 1B s

for any ¢ > 0. Recall that ¢; = Pj3, and so |[¢;(t )HV < |¢@®)|?. In the same way
Hdw] 12, < H%”% < Haqgigt)H%, . Choosing ¢ = m after simple calculations we

deduce that there exists C' > 0 independent of M, € and j such that

an|M— 57 gDy + 2 T (w5 (s) = s )4 s
<c(|%; mwuﬂm+wuwﬂv+wwmﬁ

(1.3.30)

L2([t,T):V)

20
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We now go back to ([1.3.28]) and we take v = at () so we get

aa?( 2l (“j(t)a (?;f(to o (uj(t)’ %Z:tj(t)> - é (wj(t) ity O;tj (t)>H
= <g(t),(?tj(t))H.
Note that

-2 (wo-woGo)

I N C k7)) IR S 0,
—E(M—w, 520) <2 (wo-won o)
= g0 = w0l ~ £ (00 = w01 520

Therefore, using the symmetry of ay, we have

2 .
Lt ;i A(uj (), (1) + @™ (uj(t),aa“tj(t)> 21 gtu(wj() wi () |I%

o -wonn o) = (s 550) .

Integrating between ¢ and 7', we obtain
Ouj

[l5el,

- " qon (15060 2660 ) s+ gaatws (1) 5(1)

[ (0500 = G200 ) as— | T(g<s>,?;f<s>>Hds-

Recall that ay(u;(t),u;(t)) > %Huj(t)H%/, |aM) (u,v)] < K Joy N M|Vullv|dm and

|9

5 ()

s + 5 (5 (1), u5(0) + o]l 065(6) — us(6)) s
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Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

ax(v;(T), ¢5(T)) = ax(¥(T), ¥(T)) < [lax]| (T3, so that, for every ¢ >0,

/T 8uj

55 ) d +5 e BV + 52 H(%()—Uj(t)MH%{
<K1/ ds/y/\M\Vu] I

8u]

(s dm + 12

0 T ou,;
+€/t I605(6) = w56+ | ‘”f d”/t ool |52 s
K KiM 0
< B[ et + S5 [ |5 )H ”“A”nw( )}
o) I
b [ 100 —wots + o [ || s g [ ot s

auj

From (|1.3.30)), we already know that

T T
/ s (5) 2 s + = / 15(5) — 3(5))+ |13

<< (5

then we can finally deduce

+ H9H%2([t,T];H) + H%Z)H%2([t,T];v) + \W(Tﬂ%{) ;
L2([t,T]:V)

ou,;
[ o as+ o + o) - w. i
2 (1.3.31)
< Cow (Hat e, 16 + Wl + mer%) ,

where C; jr is a constant which depends on € and M but not on j.

We will also need a further estimation. If we denote u; = % and we differentiate the equation
(1.3.28) with respect to t for a fixed v independent of ¢, we obtain that u; satisfies

_ (%?(t),v)H —l—ag\M)(ﬂj(t),v) — ((85?( ) — ~(t)> ﬂ{wj(t)zuj(t)}’”>H = (gg(t),v>H,
(
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for any v € V;. As regards the initial condition, from ([1.3.28) computed in ¢ = T', for every

v € V; we have

<8ué§T)’U)H — G&M)(lﬁ(T),v) . (Q(T),U)H,

=—(LY(T),v) g + A (L +y)(T),v) g + (y AN M — y)(j'y,,uua: + kv,uuy)’U)H +(9(T),v) g -

Choosing v = 8“31(?), we deduce that

‘ Ou;(T) ‘

ot
that is,

‘H < CULYD) e + 1A+ ) (M)a + 1y — M)+ V(D) g + [lg(T)] 1)

< C(I(Mlzom + 1L +9)W(D)la + lg(T)lla)

2| < C (@) lm2om + 1L+ g + lg(T)a).

We can take v = @;(t) in and we obtain
ou; _ _ B 1 oY _
- (GR0.m0) @500 (520 - 50 )1om0-m0)
H

’
- (Fo.m) |
so that
g IO + S0 < 2 (520 -50) twosn o) + (Gremmn)
< (GEO1mesn0) +(F000) .

Integrating between ¢ and 7', with the usual calculations, we obtain, in particular, that

T
IOl + 5 [ Nl ds

O () By oy + 01+ 0TI + (T 1H+H

)

1333)

L2([t,T;H H

where C; is a constant which depends on ¢, but not on j.

(iii) Passage to the limit
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Let ¢ and M be fixed. By passing to a subsequence, from ((1.3.31)) we can assume that %
weakly converges to a function u’6 N L?([0,T]; H). We deduce that, for any fixed ¢ € [0, T,

u;(t) weakly converges in H to

T
us M (t) = (T) — /t ug 5 pr(s)ds.

Indeed, w;(t) is bounded in V, so the convergence is weakly in V. Passing to the limit

in (1.3.33) we deduce that BUEB’;’M € L?([0,T]; V). Moreover, from (1.3.31), we have that
(¢j — u;(t))" weakly converges in H to a certain function x(t) € H. Now, for any v € V we

know that there exists a sequence (v;);en such that v; € V; for all j € N and ||v — vj|[yy — 0.
We have

- (86?(75), “J')H +aM (u;(t), 051 — é((wj(t) —uj(t)+,v)m = (9(t),vj)m

so, passing to the limit as j — oo,

B (aus,)\,M

22(0),0) w00~ Zx(0.0) = 0000

We only have to note that x(t) = (¢¥(t) — ue a,m(t))+. In fact, ¥;(t) — 9(t) in V and, up to
a subsequence, Lyu;j(t) — lyue x ar(t) in LU, m) for every open U relatively compact in O.
Therefore, there exists a subsequence which converges a.e. and this allows to conclude the
proof.

O

We now want to get rid of the truncated operator, that is to pass to the limit for M — oco. In

order to do this we need some estimates on the function u. x ps which are uniform in M.

Lemma 1.3.12. Assume that, in addition to the assumptions of Proposition |1.3.11, \/1+ yy €

L3([0,T); V), %—f < U with ¥ € L*([0,T);V) and g satisfies Assumption H°. Let u.xnr be the
solution of (1.3.27)). Then,

T || Oue 2
ST 2552 )| s+ e ar @I + 20 = wepar )+

(1.3.34)
<C (H‘I’HB([O,T];V) + VT +ygll 2oy + VT + ywHiz([O,T];v) + HT/’(T)H%/) ;

where C' is a positive constant independent of M and .
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Proof. To simplify the notation we denote u. x s by u and uz \ pr — % = u — 9 by w. For n > 0,
define oy (x,y) = 14+ y A n. Since @, and its derivatives are bounded, if v € V| we have vy, € V.
Choosing v = (u — V)¢, = we, in (1.3.27), with simple passages we get

- (GrOen) a0 00 + Gut) wenn
— (G O+s0.ue.) — w0000,
With the notation ¢}, = %L; = 1jy<pn), we have
2 2
| [(2‘5(@) 205 0500+ o (G0) ] pudm 2 [ (14 ) 0)dm
Yy ow ow ; ow , . . ow
[ 3 (o0 500 ) wogidn s [ ynd (G200 GOk, ) o
> 61 [ yIVwOF pudm+ X [ (14 9uPEendn - Ky [ yIT0)] w()]odn
O O O

— Ko [ yVuO)] w1 g<pdm,
where Ky = 7”p2022+a4. Note that, if n = 0, the last term vanishes, and that, for all n > 0,

/OyIVw(t)l |w(t)| L fy<pydm < [Jw(B)[f7-
Therefore, for all ¢ > 0,

o™ (w(t), w(t)pn) > 61 / y [V (t)? pndm + A / (1+ y)w?()pndm
(@) O

1 [0 (§IT0OF + 5O ) eudm - Kalw )1

> (5= 558) [uiuPenm+ (3= 51) [ @+ nudendn - Kl

> O [ (5 IVuOF + (1 4+ 5020 g — Kl (O
O

2
where, for the last inequality, we have chosen { = §;/K; and used the inequality A\ > b4 Ki

Again, in the case n = 0 the last term on the righthand side can be omitted.
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Hence, we have, with the notation ||UH%/n = Jo (y ]Vv|2 +(1+ y)v2> ppdm,

3t L wOedm+ @+ £ [ (~wl)pudn <
(960 + Gy O.0)00) = ol i) w(Opn) + Kallw(o)}-
H

In the case n = 0, the inequality reduces to

_%% OwZ(t)dm + %Hw(t)H%/ 4 g /O(¢ —u)2dm < (g(t) + %‘f(t),w(t))H — ai™ (W (1), w(t)).

Now, integrate from ¢ to T and use u(T') = ¢(T') to derive

1
/ () Ppdm + — / ds||w(s ||Vn / ds/ +g0ndm
2 O 2 t

. o . (1.3.35)
< [ (s + S wen) s+ | [ Do) uohmas] + K [ ol
and, in the case n = 0,
51
S+ 2 [+ [ as
s
< [ (s + ) pas+ [ )a&M><w<s>,w<s>> ds.
We have, for all {; > 0,
T
/ (g<>+%f<>w<s>wn) ds
2
/ ds/]w gandm+2—<1 ds (s)| @ndm
</ ds [ uts)Pondm + LIV TT gl i + H¢1+
G LR(LTLH)

Moreover, it is easy to check that, for all vi, vo € V,

with K3 =99+ K1+ Ko + A,

M
a3 (01, vapn) | <
so that, for any (o > 0,

T M
/t 10 (), w(s)ipn) ds
K3(o

T T K T
< K / as(1(3) [Vnllo(3)[vm < / dsllos) [ + 5 / ds | (s)[2.0.
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Now, if we chose (1 = K32 = d1/4 and we go back to (|1.3.35) and (1.3.36)), using ’ ’ < U we get

1
2/0 ()@ndm—k / ||w( ands—i— /ds/ +<,0nalm

4 2K2

<5 (IIv L ygll7z e + IV + 9% 2 m, H)) = / 1) 1155 + KallwlZ g 71.):
4

<5 <H\/1+ng%2([t,T};H) + V1 +y‘I’Hiz([t,T];H)> H\/ w)

+K2HWH%2([1:,T];H)>

L2([t,T];V)

(1.3.37)

where the last inequality follows from the estimate Hv||%/n < 2|ly/T+yv|?, and, in the case n =0,

L0
wa 1% 1/”w s + - /ds/
(1.3.38)

2K?2

<5 (HQH%Q([t,T];H) + H\I]H%Q([t,T];H)) = ||¢||L2([tT V)

From ({1.3.38) recalling that w = u — 1 we deduce

/ lu(s)|2 ds < / 2o()IIZ + [1o(s) 2 )ds
o 32 16K3

< 3 (1ol + 19y + (F52° +2) Wy
Moreover, combining ((1.3.37)) and (1.3.38)), we have

1

5 [ Oenim % [ R ds 4 [ s [ o) o

4 16K2
< (5+752) (IWTFwlagum + IVIF 91 [tT]H)
4K?2 2K
+T3 <1+ 2) IV + Y0l 72 1)

(1.3.39)

In particular,
T T
[ s [ vueendn < [ s <2 [ Tt 2 [ dsho) s
t t
4 16K
< (5 +75%2) (IWTFaalagemm + VT 99 aqur1am)
32K? 2K,
+ < 523 <1 + 51) +4> Hmw%%[t,ﬂ;v)
1
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and, by using the Monotone convergence theorem, we deduce

T
/t ly|Vu(s)||Fds < K (Hv Lyl 2oy + IV ¥ 2 + V1 + WH%%@;T};V)) )

(1.3.40)

where K4 = 5 <§11 + 1%§2> \Y, (32K (1 + 2K2) + 4)
1
We are now in a position to prove ((1.3.34]). Taking v = —“ in ([1.3.27)), we have

B 300 ) 3) - 30),

Note that, since a) is symmetric, %é)\ (u(t),u(t)) = 2ay (u(t), %—?(t)). On the other hand,

(00 =) 5 ) = =5 510 =)l + (w0~ ) Gr0))

ou

ot

so that
ou 2 1d_
50| = g e - o 1060~ uCe)s g
=30 (a0 50) = (o0 550) =2 (00— uee 570)
<[ (a0, 5 ) |+ ol | Go0]| + (o - a9
- Ot ot 5 + H
< G lyITuOlln + a0l | 550+ (0~ uo) w0,

Moreover, if we take v = ¥(¢) in , we get

€

- (?Z(w, \w)) 4l (lt), W) = 7 (00 — u0) V(O = (900), ¥(0))
H

so that
2 (00~ a0 ¥ @)y < |10 19N+ 1 M) 19Ol + a0l ¥
H
(1.3.41)
Therefore,
2
50| =5 (0o - g 100 = u(e)s g
< (11T uO -+ Lo+ 190l) | 50| + 1M 19Oy + a0l
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hence
2
5[50 - 5w o) - 5w - woi
< 5 IVl + lgOll + 12O + 1@ R 1@ + lg Ol 1)

Integrating between ¢t and T, we get,
1
2
so, recalling that ax(u(t), u(t) > 61 [, y|Vu(t)[*dm + X [, (1 + y)u?dm > (61 A N)[u(t)|3,

1
2

—_

S (ult),u(®) + o 000) — u(®) 41 < Sar@ ), 9T) + 2al2a oy

@ 2
2 ’ 2¢

0s

L2([t=T]§H)

3K} oS IIaA |

+ 200 o oy + Tl 9V ulll72 70y + 5 l[ull L2507

10 L2 e, m5v)

Ou|? &AA
83Hmmm

laxll
() + 2llgl 72, T]~H) + 200 1y,m)

lu(®1F + Q%H(w(t) —u(t)+]|%

IIaA |

3K?2
L 3Ki || A H

1% v

Iy ulllZ2 .00y + [l Ze vy +

a
< Loy ey 4 2ng%2<[t,ﬂ;m 2

K2
71K4 (H\/ L+ 99l 2a ey + IV + 9972 + V1 + yw”i%[t,T];V))

oS (32 16K2
+ ’\2 <”9”L2(tT )+ 190221, ))+ 5%3+2 16122 . 120)

1a™)
+ = 12 vy

where the last inequality follows from (1.3.39)) and ([1.3.40). Rearranging the terms, we deduce that
there exists a constant C' > 0 independent of M and e such that

1
2

8U2 (51/\)\

95 |l 207 H)

< & (IVTF 0l + 190y + | VI 90

() + 5 16502) w0+

meua) ,

L2([t,T);V)

which concludes the proof.

29
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Proof of Theorem [1.3.10: existence. Assume for a first moment that we have the further assump-
tions (T) € H2(O,m), (1 +y)¥(T) € H, % € L*([0,T);V) and % € L2([0,T]; H). Thanks to
(1.3.34) we can repeat the same arguments as in the proof of Proposition |1.3.11| in order to pass
to the limit in j, but this time as M — oo. Therefore, we deduce the existence of a function
ue \ € L*([0,T]; V) with a%—? € L?([0,T); H) and such that

3

_ (82? (t),v) + ax(uz (1), v)H — 1((w(t) —ue A () +,v)m = (9(t),v)n-
H

The estimates (1.3.24]), (1.3.25) and ([1.3.26)) directly follow from ((1.3.34) as M — oo.

We have now to weaken the assumptions on g and ¥. We can do this by a regularization
%‘ < U
ot | —
for a certain ¥ € L?([0,T]; V) and g satisfies Assumption H°. Then, by standard regularization

procedure. In fact, let us assume that 1) satisfies Assumption H! (so, in particular,

techniques (see for example [42, Corollary A.12]), we can find sequences of functions (gn)n, (¢¥n)n
and (¥,,), of class C* with compact support such that, for any n € N, n € N, ‘%| < ¥, and
all the regularity assumptions required in the first part of the proof are satisfied. Moreover, it
is easy to see that [|[vI+ygn — vI+ygllrzqomm)y — 0, VI +y¥n — VI+ydllrzqorsy)y — 0,
[Wn = ¥l z2qo.rv) = 0, [[¥n(T) — ¢(T)|lv — 0 as n — oo. Therefore, the solution uf , , of the
equation with source function g, and obstacle function v, satisfies

T || Oul 2
ST Z526)|| ds+ uza a1 + H1Wal) = w2y 00 )+ 1

< € (IVTF gl 2qomsm + IVTF 5nl 20,170y + 19l + 1En (DI ) -

)

(1.3.42)

Then, we can take the limit for n — oo in (1.3.42)) and the assertion follows as in the first part of
the proof. 0

Moreover, we have the following Comparison principle for the coercive penalized problem.

Proposition 1.3.13. (i) Assume that ; satisfies Assumption H' for i = 1,2 and g satisfies
Assumption H°. Let ug)\ be the unique solution of (1.3.23)) with obstacle function v; and
source function g. If 11 < b9, then u; \ < ug \-

(ii) Assume that ¢ satisfies Assumption H' and g; satisfy Assumption HO fori = 1,2. Let u;)\
be the unique solution of (1.3.23|) with obstacle function i and source function g;. If g1 < g2,
then u;/\ < u?/\.

(iii) Assume that v; satisfies Assumption H' for i = 1,2 and g satisfies Assumption H®. Let
u;)\ be the unique solution of (|1.3.23]) with obstacle function ; and source function g. If
1 — 2 € L, then ugy —uZ y € L% and [Jug y — uZ \[lso < [[¥1 — Y2loc-
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Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

Proposition [1.3.13| can be proved with standard techniques introduced in [19, Chapter 3] so we

omit the proof.

Coercive variational inequality

Proposition 1.3.14. Assume that ¢ satisfies Assumption H' and g satisfies Assumption HO.
Moreover, assume that 0 < ¢ < ® with ® € L?([0,T]; H*(O,m)) such that %—(f + L® < 0 and
0<g< —%—T — L ®. Then, there exists a unique function uy such that uy € L2([0,T); V), 88% €
L*([0,T); H) and

—<86Lt)‘,v—u/\)H—|—a/\(U)\,’U—U)\) > (g;U_UA)H, a.e. in [O>T] UELQ([[)’T];V)a v >,

ux(T) = (T),
uy > ¢ a.e. in[0,7] x R x (0,00).
(1.3.43)
Moreover, 0 < uy < ®.

Proof. The uniqueness of the solution of follows by a standard monotonicity argument
introduced in [19, Chapter 3] (see [93]). As regards the existence of a solution, we follow the
lines of the proof of [I9] Theorem 2.1] but we repeat here the details since we use a compactness
argument which is not present in the classical theory.

For each fixed € > 0 we have the estimates and , so, for every t € [0,T], we can
extract a subsequence u. » such that u. x(t) — ux(t) in V as e — 0 and u.(t) — v, (¢) in H for
some function uy € V.

Note that © = 0 is the unique solution of when ¢ = g = 0, while u = ® is the unique
solution of wheny = ®and g = —%—qt)—ﬁ/\q) = —%—‘f—ﬁ@—l—)\(l—i—y)@. Therefore, Proposition
implies that 0 < u., < ®. Recall that uc \(t) — up(t) in L2(U, m) for every relatively
compact open U C O. This, together with the fact that dm is a finite measure, allows to conclude

that we have strong convergence of u. y to uy in H. In fact, if 6 > 0 and Os := (—%, %) x (9, %),

T T T
/ ds / i (s) — ux(s) 2dm < / ds [ [uen(s) — ux(s)2dm + / ds [ |ue(s) — ua(s)Pdm
0 o 0 05 0 os

T T
< / ds | luex(s) = ux(s)2dm + / ds / 40 (s)dm
0 Os 0 5

and it is enough to let § goes to 0.

From we also have that (¢(¢) —u. \(t))" — 0 strongly in H as e — 0. On the other hand
((t) —ue(t))+ — x(t) weakly in H and x = (¢ —uy)+ since there exists a subsequence of u. (%)
which converges pointwise to uy(t). Therefore, (¢(t) — ux(t))*t = 0, which means uy(t) > ¥(t).
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Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

Then we consider the penalized coercive equation in (1.3.23) replacing v by v — u. x(t), with
v > (t). Since ((t,v) =0 and (((t,v) — (¢, ue x (1)), v — ue A (1)) > 0 we easily deduce that

- <8g€t’)\ (t),v— ug,,\(t>)H +an(uea(t),v = uea(t) 2 (9(), v —uen(t))n

so that, letting € goes to 0, we have

— <88ut’\(t),v — u,\(t)>H + ax(ux(t),v) > (g(t),v — ux(t))g + lilalljélfa)\(u&)\(t), uz A (1))
> (g(t),v —ux(t)) g + ax(ua(t), ux(t)).

Moreover, since 0 < u. y < @ for every € > 0 and uy = lim._.g u. y, we have 0 < uy < ® and the

assertion follows. O

The following Comparison Principle is a direct consequence of Proposition [T.3.13].

Proposition 1.3.15. (i) For i = 1, 2, assume that v; satisfies Assumption H', g satisfies As-
sumption H° and 0 < vp; < ® with ® € L*([0,T]; H*(O,m)) such that %—? + L® <0 and
0<g< —%—f — L D, Let uﬁ\ be the unique solution of (1.3.43)) with obstacle function ; and
source function g. If 1 < o, then u%\ < u?\

(ii) Fori =1, 2, assume that ¢ satisfies Assumption H', g; satisfy Assumption H® and 0 <) < @
with ® € L*([0,T); H*(O,m)) such that %—‘f +LP <0 and0 < g; < f%—? — LA, Let ul be
the unique solution of with obstacle function 1 and source function g;. If g1 < ga,
then u}\ < ui

(i) For i = 1,2, assume that v; satisfies Assumption H', g satisfies Assumption H° and 0 <
P < @ with ® € L*([0,T); H*(O,m)) such that %—‘f + LD <0and 0 < g < —%—cf — LD
Let ug\ be the unique solution of (1.3.43)) with obstacle function v; and source function g. If

Y1 — Yo € L, then u%\ — u%\ € L™ and ||u%\ - ui”oo < |1 — ¥2]|co-

Non-coercive variational inequality

We can finally prove Theorem Again, we first study the uniqueness of the solution and then

we deal with the existence.

Proof of uniqueness in Theorem[1.2.3 Suppose that there are two functions u; and us which sat-
isfy ((1.2.5)). As usual, we take v = ugy in the equation satisfied by u; and v = u; in the one satisfied
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Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

by uy and we add the resulting equations. Setting w := uy — u1, we get that, a.e. in [0, 77,
ow
— (1), w(t) —a(w(t),w(t)) > 0.
ot "

From the energy estimate ((1.3.13)), we know that

a(u(t), u(t) > Crllu(®)|} = Call (1 +y)2u(®)|F,

so that L d
1
5 w3+ Call(1 + )bl 0.

By integrating from ¢ to T, since w(7T") = 0, we have

T 1
\w<>HH<02/ 11+ 1) bu(s) s

< Cg(/ dS/ ]l{y<)\} + y)w dm+/ dS/ ]l{y>)\} +y)w (S)dm)
< </ ds/ (1+MNw '8 Lozl o= “ydl‘dy>

+ C< + / ds/ Tysay (1 + y)wQ(s)yﬁ_16_7|xe_(u_ul)ye_“,yd:ﬁdy>
t @

T
< C(/ ds/ dxdy(l—i—)\)wQ(s)y’B16””'6’“’)
t o
/ T /
—i—C(e(““ )’\/ ds/ drdy(1 + y)®%(s)yP e eler y),
t o

where i/ < pand X > 0. Since Cy = [, dzdy(1 + y)®2(s)yP e Mle 1Y < 0o, we have

T
ol < €03 [ Tuelfds + Co(r 05,
so, by using the Gronwall Lemma,
|w(t)||3; < CoTe~ H=rNFCT=1+A)

Sending A — oo, we deduce that w(t) = 0 in [T, ¢] for ¢ such that T'—¢ < “_T“, Then, we iterate
the same argument: we integrate between ¢’ and ¢ with t — ¢ < “_T“/ and we have w(t) = 0 in [T, t']
and so on. We deduce that w(t) = 0 for all ¢ € [0, 7] so the assertion follows. O

Proof of existence in Theorem [1.2.5 Given ug = ®, we can construct a sequence (uy), C V such
that
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Sec. 1.3 - Existence and uniqueness of solutions to the variational inequality

up > ace. in [0,7] x O, n>1, (1.3.44)
Oun
— (u,v — un> + a(tn, v — up) + A1+ 9)un, v —up)g > M1+ y)un—1,v — up) m,
at " (1.3.45)
veV, v>1y, ae onl0,T]x0O, n>1,
un(T) = (T), in O, (1.3.46)
D>up >us > > Uy > Uy > >0, a.e. on [0,7] x O. (1.3.47)

In fact, if we have 0 < uy,_1 < ® for all n € N, then the assumptions of Proposition [1.3.14] are
satisfied with

gn = >‘(1 + y)unfl-
Indeed, since (1 + y)%tb € L*([0,T); H), we have that g, and /T + yg, belong to L?([0,T]; H)
and, moreover, 0 < g, < A1+ y)® < —%—f — L£,®. Therefore, step by step, we can deduce the

existence and the uniqueness of a solution u,, to ([1.3.45)) such that 0 < u,, < ®. (1.3.47)) is a simple
consequence of Proposition [1.3.15] In fact, proceeding by induction, at each step we have

gn = )\(1 + y)un—l < >\<1 + y)Un—Z = 0gn—1

so that u, < u,_1. Now, recall that

[wnl Lo o,y < K,

ouy,

— <K
ot

- )

' L2([0,T);H)

where K = C (||| 2o,y + VT F y9nll 20,00:m) + VT F 98l 22 o100y + [19(T)[v). Note that
the constant K is independent of n since |g,| = |A (1 + y)un—1,| < A(1 + y)®, for every n € N.

Therefore, by passing to a subsequence, we can assume that there exists a function w such that
u € L2([0,T); V), % € L*([0,T); H) and for every t € [0,7T], u/,(t) — u'(t) in H and u,(t) — u(t)
in V. Indeed, again thanks to the fact that 0 < w,, < ®, we can deduce that u,(t) — u(t) in H.

Therefore we can pass to the limit in

Oup,
_ (;;,un - v) + a(tn, v — up) + A1+ Y)un,v —un) g > ML+ yY)un—1,v — up)g
H
and the assertion follows. -
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Sec. 1.4 - Connection with the optimal stopping problem

Remark 1.3.16. Keeping in mind our purpose of identifying the solution of the variational in-
equality (1.2.5) with the American option price we have considered the case without source term
(9 = 0) in the variational inequality (1.2.5). However, under the same assumptions of Theorem

we can prove in the same way the eristence and the uniqueness of a solution of

(_ (%—”Z,v —u)H +a(u,v —u) > (g,v —w)g, ae n[0,T] velL*[0,T);V), v>1,
u>1 ae in[0,T] x R x (0,00),
w(T) =(T),

0<u<o,

\

; ; 0 ok
where g satisfies Assumption H” and 0 < g < —57 — L.

We conclude stating the following Comparison Principle, whose proof is a direct consequence of
Proposition [1.3.15] and the proof of Proposition [1.2.3

Proposition 1.3.17. For i = 1,2, assume that 1; satisfies Assumption H' and 0 < ¢; < ® with
O satisfying Assumption H2. Let ul)\ be the unique solution of (1.3.43)) with obstacle function ;.
Then:

(i) If 1 < abo, then ul < u3.

(ii) If 1y — ho € L™, then u) —u3 € L™ and ||u} — u3|lco < [[¥1 — Y2 lco-

1.4 Connection with the optimal stopping problem

Once we have the existence and the uniqueness of a solution u of the variational inequality (1.2.3]),

our aim is to prove that it matches the solution of the optimal stopping problem, that is
u(t,z,y) = u*(t,x,y), on [0,T] x O,

where u* is defined by

w(t,z,y) = sup E [(r, XL YRS |
T€Ty, T

Ti 1 being the set of the stopping times with values in [¢,T]. Since the function u is not regular
enough to apply It6’s Lemma, we use another strategy in order to prove the above identification.
So, we first show, by using the affine character of the underlying diffusion, that the semigroup

associated with the bilinear form a) coincides with the transition semigroup of the two dimensional
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Sec. 1.4 - Connection with the optimal stopping problem

diffusion (X,Y") with a killing term. Then, we prove suitable estimates on the joint law of (X,Y")
and LP-regularity results on the solution of the variational inequality and we deduce from them the

probabilistic interpretation.

1.4.1 Semigroup associated with the bilinear form

We introduce now the semigroup associated with the coercive bilinear form ay. With a natural

notation, we define the following spaces

t
L2, (R*; H) = {f RT o H > o/ 1£(3) s < oo} ,
0

t
2, @ V) = {1 R v vz o0 [ s < oo
0
First of all, we state the following result:

Proposition 1.4.1. For every ¢ € V, f € L (R*; H) with Vil € L? (RT; H), there erists a

loc loc

unique function w € L2 (R*; V) such that %7: € L2 (RY; H), u(0) =1 and

loc loc
ou
—,v ] Fax(u,v)=(f,v)g, vevV. (1.4.48)
ot i
Moreover we have, for everyt > 0,
2 o1 [ 2 2 2 [ 2
lu®l + 5 ; lu(s)llvds <l + 5 ; 1/ (s) |7 ds (1.4.49)
and . .
1
1+ [ o) as <€ (10l + 5 [ IVIF 0B )
with C' > 0.

The proof can be found in the appendix of this chapter. Moreover, we can prove a Comparison
Principle for the equation as we have done for the variational inequality.

We denote u(t) = P the solution of corresponding to u(0) = ¢ and f = 0. From
(T.4.49) we deduce that the operator P} is a linear contraction on H and, from uniqueness, we

have the semigroup property.

Proposition 1.4.2. Let us consider f : RT — H such that \/T +yf € L? (RT,H). Then, the

loc
solution of
’U)H—|—a)\(u,'l)):(f,U)H, ’UEV,

(%
(0) =0,

u
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Sec. 1.4 - Connection with the optimal stopping problem

is given by u(t) = fg PMf(t — s)ds = fg P} f(s)ds.

Proof. Note that V is dense in H and recall the estimate (1.4.49]), so it is enough to prove the
assertion for f = 1, 4,19, with 0 <1 <t3 and ¥ € V. If we set u(t) = fg P} . f(s)ds, we have

. /t/\t2 P v L PN pds = [T Plyds it >ty
u(t) = A s = t t—t1 .
tenk J o / P ds = / PMpds  ift€ [t ta)
0

t1
Therefore, for every v € V, we have (us,v)mg + ax(u,v) = 0if t < ¢; and, if t > ¢4,
5 5 t—t1 .
(Pt)\,tlw_Pt)\,th,v)H‘i‘a,\ (j;f—tzl P(g"lpds,’l)) if ¢ ZtQ

<8u v) + ax(u(t),v)
YR A ) = _ _ _ .

ot )y (PX4 b, 0) y + ax (fg 1 PAyds, v) if £ € [t1,t2)

The assertion follows from (P, v) g + fg ax(Psy,v)ds = (¥, v)g. O

Remark 1.4.3. [t is not difficult to prove that P} : LP(O,m) — LP(O,m) is a contraction for

every p > 2, and it is an analytic semigroup. This is not useful to our purposes so we omit the
Proof.
1.4.2 Transition semigroup

We define E; () =E( |Xo = z0, Yy =y0). Fix A > 0. For every measurable positive function
f defined on R x [0, +00), we define

t
PtAf(l'O? yO) - IEﬂfo,yo (e_)\fo(l+ys)d8f(Xta K&)) .

The operator P, is the transition semigroup of the two dimensional diffusion (X,Y") with the killing
term e~ Jo (14Ys)ds

Set Eyo( ) = E( |Yo = yo). We first prove some useful results about the Laplace transform
of the pair (Y3, fot Yids). These results rely on the affine structure of the model and have already
appeared in slightly different forms in the literature (see, for example, [5, Section 4.2.1]). We

include a proof for convenience.

Proposition 1.4.4. Let z and w be two complex numbers with nonpositive real parts. The equation

0.2
V' (t) = 71/;2@) — k() +w (1.4.50)
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has a unique solution ., defined on [0,400), such that 1, .,(0) = z. Moreover, for every t > 0,

i

Eyo (eZYt-f—w fot Y;ds) — ey0¢z,w(t)+9’§¢2,w(t)

with ¢z (t) = [ 12w(s)ds.
Proof. Let 1 be the solution of ([1.4.50). We define ¢; (resp. w;) and 1y (resp. ws) the real and
the imaginary part of ¢ (resp. w). We have

U1 = % (W3(E) —v3() — mn () +wr,
Uh(t) = o* Y1 (t)a(t) — kipa(t) + wa.
From the first equation we deduce that ¢ (t) < %2 (v (t) — 3—’;) ¥1(t) + wy and, since w; < 0,

; —2 [~ Z)ds s , :
the function ¢ — vy (t)e” 2 Jo"¥ 762 i3 nonincreasing. Therefore () < 0 if 11(0)
Multiplying the first equation by 1 (¢) and the second one by 15(t) and adding we get

N
o

0.2
s (VOP) = (00— 1) O + w1 (6) + w200

0_2
< (G0 -« WwOr + lullvo)
< (T £ L
< (F00 ) P+ P+ .

We deduce that [1(t)| cannot explode in finite time and, therefore, 1, ,, actually exists on [0, +00).
Now, let us define the function F, ,(t,y) = ¥z w () +0rzw(t) F, . is C*2 on [0, +00) x R and it

satisfies by construction the following equation

8sz 0'2 82sz anw
— = : 0—y)—F— F,w.

Therefore, for every T > 0, the process (M;)o<i<7 defined by
M, = e Ysdsp (T — 1Y) (1.4.51)

is a local martingale. On the other hand, note that

‘Mt’ _ ‘ewfotsts

enwz,w(T_t)+9N¢z,w(T_t)‘ <1

since w, 1, 4,(t) and ¢, (t) = fot ¥ w(s)ds all have nonpositive real parts. Therefore the process
(M) is a true martingale indeed. We deduce that F. ,,(T,yo) = Ey, (ew Jo stseZYT) and the

assertion follows. O
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We also have the following result which specifies the behaviour of the Laplace transform of

(Yz, fot Ysds) when evaluated in two real numbers, not necessarily nonpositive.

Proposition 1.4.5. Let \; and Ao be two real numbers such that

0.2
?)\f — KA1+ A <0.

Then, the equation

o2

— 2 (t) — mp(t) + Ao

v =7

has a unique solution 1y, », defined on [0,4+00) such that ¥y, x,(0) = A1.

t > 0, we have
E,, <€A1Yt+x2 i sts) < e¥0¥ar g (DF0Kdx 2, (1),

with G, 0 (t) = [ ¥as e (8)ds.

Proof. Let 1 be the solution of ((1.4.52)) with ¥(0) = A;. We have

V() = (o%0(t) — k)Y ().

(1.4.52)

Moreover, for every

Therefore, the function ¢ — ' (t)e™ Jo(@*v(s)=r)dsig 5 constant, hence ¢/(t) has constant sign. More-
over, the assumption on \; and Ay ensures that 1'(0) < 0. We deduce that ¢/(t) < 0 and 1 (t)

remains between the solutions of the equation

2
%)\2—/@)\+)\2:0.

This proves that the solution is defined on the whole interval [0, +o00). Now the assertion follows
as in the proof of Proposition just note that the process (M;); defined as in ((1.4.51]) is no

more uniformly bounded, so we cannot directly deduce that it is a martingale. However, it remains

a positive local martingale, hence a supermartingale.

Remark 1.4.6. Let us now consider two real numbers A1 and Ao such that

0.2
?)\% — KA1+ A < 0.

O

From the proof of Proposition[1.4.5, by using the optional sampling theorem we have

sup E, (€>\2 Jo stse%\l,AQ(T—T)Yr+9H¢A1,A2(T—T)) < eY¥A1. 20 (T) RPN, 2o (T)

T€7T)7T
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Consider now € > 0 and let \{ = (1 4+ €)1 and \§ = (1 + €)\o. For € small enough, we have
%Q(Ai)Q — RA] + A5 < 0. Therefore

sup E,
T€T0, T

(eAg I stsewg,xg(T—T)Yr+9ﬁ¢xg,xg(T—T)) < e¥Orpas(DF0ress as ()
If we have Pac g = (14 €)hx, 1y, we can deduce that

sup E,
€70,

<e)\2(1+6)fOTstse(l—s—e)(d))\l,)q(T—T)YT+0n¢>\17>\2(T—T))> < elﬂp)\i,)\g(T)-i-@H(ﬁ)\i,)\g(T)’

and, therefore, that the family (e)‘Q Jo Yeds gny 2g (T=T)Yr+0K6x, 2, (T_T)> . is uniformly integrable.
7€ o, 7

As a consequence, the process (My); is a true martingale and we have

E, (eAlmxz I sts> — oYy 2 (D FORGN o (8)

So, it remains to show that Yx: xs > (1 + €)n, z,- In order to do this we set ge(t) = e ag(t) —
(L4 €)9a, 2o (t). From the equations satisfied by Yasag and ¥y, x, we deduce that

) = % (Boas ) — (14 9 1 (0) = 5 (drgag(t) = (1+ i, 0, (0)
2 (g )~ (1 P00 0) —kgl0) + % (1 P = (15 9) 6, 0
= T Wagag)+ (1 (1) 6(6) — k(t) + Tl + 03, 0, (0
= gt + T el + 5,0,
where

2

o
felt) =+ (hae xg () + (1 + €)ha, A, (1)) — .
Therefore, the function g.(t)e~ Jo fe(s)ds g nondecreasing and, since g.(0) = 0, we have g¢(t) > 0.

We can now prove the following Lemma, which will be useful in Section to prove suitable

estimates on the joint law of the process (X,Y).

Lemma 1.4.7. For every q > 0 there exists C > 0 such that for all yg > 0,

t q C
E,, < /0 Yvdv> < (1.4.53)
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Proof. If we take A\; =0 and Ay = —s with s > 0 in Proposition we get
E, (efs N Yvdv) — oY0v0,—s () +0re0,—s ()

Since 1/10 ( ) = —s < 0, we can deduce by the proof of Proposition 5 that p _(t) =
_seo(aPe(w)—r)du, Therefore, since ¢y _s = 0, we have
o, s(t) = / elo (e =r)dv gy, (1.4.54)

Again from the proof of Proposition [1.4.5

I K\ 2 s
rei> 5B 2 > v
so, by using (1.4.54]), we deduce that
t
Yo,-s(t) < —3/ elo ~(oV2stR)dv gy, — / e MUy = —)\i(l — e tAs),
0 0

S

where A\s = 0v/2s + k. Since ¢ _s(t) fo Yo,—s(u)du, we have

qbo,_s()g—ﬁ(A _1+e—t)\)

Therefore, since 1y, —s(t) < 0, for any yo > 0 we get

KQS —tAs
E,, (e—sfothdv) < f0%0,5(t) < ¢ 5 (hs—1e ¢ ).

Now, recall that for every ¢ > 0 we can write

i_1 /°° Gi-1,—sy g
y?  T'(q) Jo
Therefore

) e
»dv = — s e v
P\ Jo Y \T(q) Jo

1 KOs —tAg KOS —lAs
< 1 / g1~ e_T%(t)‘S_He ” )ds + b /00 Sq_le_T%(t/\s_He - )ds.
L'(q) Jo INCINA

Recall that A\; = 0v/2s + &, so the first terms in the right hand side is finite. Moreover, for s > 1,

we have ;{/\923 < C. Then, by noting that the function u ~— tu — 1 + e~ is nondecreasing, we have

t —-q oo
By, </ Yvd'U) <C+ € / §01e=CltoVas—1+e77V2%) 4
0 - I'(q) J1

1 o0 )
g—1_—C(ocV2v—1+e7V2Y)
<CH+ ——— t2‘1F( ] / v e dv

< C
= th)
which concludes the proof. ]
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Now recall that the diffusion (X,Y) evolves according to the following stochastic differential

System
dX, = (PT“@ _ %) dt + \/Y,dB:,
dY, = k(6 — Yy)dt + o/Y,dW,.
If we set X; = X; — 2Y;, we have

dX; = (2 — 1) Yydt + /1 - p2V/YidBy,
dY; = k(0 — Y)dt + o/Y;dW,.

(1.4.55)

where By = (1—p?)~Y/2(B; — pW;). Note that B is a standard Brownian motion with (B, W); = 0.
Proposition 1.4.8. For all u, v € R, for all A > 0 and for all (x,y0) € R x [0, 4+00) we have

Exmyo (EWX’S—HUYte_Afg sts) - eiuzo-f-yow)q,u(t)—iug)—i-@nqﬁkl,u(t),

where Ay = i(ul +v), p=iu (2 —1)— “72(1 —p?*) =X and the function ¥y, ,, and ¢y, , are defined
. Proposition |1.4.4)

Proof. We have

E (eiuXt—i-ith—)\ I sts) K (eiu()zt—i-th)—&-ith—A I sts)
Z0,Y0 -

x0,Y0
and

- t 1 t -
X, = a0 — gyo +/ <”” — > sts~|—/ V(1 = p2)Y.dB,.
0 0

o 2

Since B and W are independent,
E (eiuf(t ’ W) _ eiu(xof§y0+f0t(%f%)sts)—%upr)fot Ysds
and

2
; Yo —\ [t iulwo—2 i(ul+v) Vit (u(2E -1 =2 (1—-p2)=A) [P V.d
Emo,yo (equt—i-wYt Ao sts) _ ezu(xo JyO)Eyo (ez(ua v) f (zu( ——35)— % (1-p%) )fo s ‘

Then the assertion follows by using Proposition [1.4.4 O
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1.4.3 Identification of the semigroups

We now show that the semigroup P} associated with the coercive bilinear form can be actually
identified with the transition semigroup P. Recall the Sobolev spaces LP(O,m. ) introduced in
Definition for p > 1. In order to prove the identification of the semigroups, we need the

following property of the transition semigroup.

Theorem 1.4.9. For allp > 1, v > 0 and p > 0 there exists A > 0 such that, for every compact
K CR x[0,400) and for every T' > 0, there is Cp k7 > 0 such that

Cp,K T

B3
tp+2p

P f(z0,y0) < 1 r(0,my ) (z0,90) € K.

for every measurable positive function f on R x [0,4+00) and for every t € (0,T].

Theorem [1.4.9| will also play a crucial role in order to prove Theorem Its proof relies on
suitable estimates on the joint law of the diffusion (X,Y) and we postpone it to the following

section. Then, we can prove the following result.

Proposition 1.4.10. There exists A > 0 such that, for every function f € H and for every t > 0,
pt)\f(‘rvy) = Pt)\f(xa y)a dl‘dy a.e.

Proof. We can easily deduce from Theorem with p = 2 that, for A large enough, if (f,), is a
sequence of functions which converges to f in H, then the sequence (P} f,,), converges uniformly
to PtA f on the compact sets. On the other hand, recall that Pt)‘ is a contraction semigroup on H
so that the function f ~ P f is continuous and we have P f,, — P} f in H.

Therefore, by density arguments, it is enough to prove the equality for f(x,y) = e™**+¥ with u,

v € R. We have, by using Proposition [1.4.8

PtAf(xv y) = E%y (e_/\f(f(l"'YS)dSeiuXt-i-ith)

_ efAteiux—i-y(w,\l,N(t)—iug)—i—efi(b)\l’,,‘(t)7

with Ay = i(u2 +v), p = iu (2 — 1) —“72(1—,02)—)\. The function F' (¢, x,y) defined by F(t,z,y) =

o
e M eitaty(¥r ()=l )+0k6x, u(t) gatisfies F(0,z,y) = e™*+vy and

oF
e (L—=X1+y))F.

Moreover, since the real parts of A\; and p are nonnegative, we can deduce from the proof of Propo-
sition that the real part of the function ¢ — 9 (t) is nonnegative. Then, it is straightforward
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to see that, for every ¢t > 0, we have F(t,-,-) € H?>(O,m) and t — F(t,-,-) is continuous, so that,
for every v e V, (LF(t,.,.),v)u = —a(F(t,.,.),v). Therefore

<6F,v> +a)(F(t,.,.),v) =0 veV,

and F(t,.,.) = P} f. O

1.4.4 Estimates on the joint law

In this section we prove Theorem We first recall some results about the density of the process
Y.
With the notations

2K0 _ o? _
V:ﬁ—lzﬁ—l, ye = yoe ", Lt:4—(1—e m)’

it is well known (see, for example, [72, Section 6.2.2]) that the transition density of the process Y

is given by

_ vt

e 2Lt __Y v/2 (\/yyt>
I, ;

where [, is the first-order modified Bessel function with index v, defined by

vV S (/2"
L(y) = (5) Z nl'(n+v+1)

n=0

It is clear that near y = 0 we have I, (y) ~ (%)V while, for y — oo, we have the asymptotic

I'(v+1)
behaviour I, (y) ~ e¥/\/2my (see [I, page 377]).

Proposition 1.4.11. There exists a constant Cg > 0 (which depends only on [3) such that, for
every t > 0,
Cps WI—vi)®

e AL yfl <L2/2 - (yyt)1/4> » (0,y) € [0,400)x]0, +00).
L)z
t

Pe(yo,y) <

Proof. From the asymptotic behaviour of I, near 0 and co we deduce the existence of a constant

C, > 0 such that
ex

I(x)<C, <9€V]1{q;<1} + \/E]l{“wl]') :
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Therefore
yzt;y
€ ¢ v \/yyt
pe(yo,y) = N /QL, <L>
2yt Lt t
_Ytty V)2 VYVt
< e 2 1//20 (yyt) 1 e Lt .
< 2y;j/th v v {yy:<L?} (yyt)1/4/L1/2 {yye>L7}
C —y2t+y v %_%e gft
= ¢ | o Humescyy T il Liyye12y

On {yy; > L?}, we have yt_l < y/L? and, since v + 1 > 0,

v_ 1 v_ 1 vl
yz 4 _y1/4 y2 4 <y1/4y 4
()EtT T (gEts T LY
So
o
Cy ~uty (o) 4yve T
pe(yo,y) < o ¢ Lu+1 {yyt<L2} + L;,+g {yye>L7}
C Yty VI
= l/l-/‘r3 e~ o yle b (L Liyy<rzy + () /41{yyt>Lf})
2L,
C Wi-yiD? 12 A
- ul—jf—fe oy ( / ]l{yyt<L2} + (yye) Y ]l{yyt>L§}> ’
2L,
and the assertion follows. O

We are now ready to prove Theorem [1.4.9] which we have used in order to prove the identification

of the semigroups in Proposition [[.4.10] and which we will use again later on in this chapter.
Proof of Theorem [1.4.9. Note that

t -~
PtAf(«TOyyO) = Ea:o,yo (ei)\ fo qun)dsf(XtyY;f)) 5

where

fla,y) = f <x+ By,y) and X; =X, - 2y,
g o

Recall that the dynamics of X is given by (1.4.55) so we have
t t
X = 550—1—/%/ sts—l—ﬁ/ v/ YsdBs,
0 0
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with
_ P __pr 1 2
To=x0— =Y, kK=——5, p=+V1-p-
o o 2

Recall that the Brownian motion B is independent of the process Y. We set Xy = 4/ fg Y.ds and

n(x) = \/%76_12/2

. Therefore
P} f(xo,y0) = Ew)<€_M_AE$j/f(jo*'5234‘52t%3§)n(@dz>
< Eyo (6_>‘E§ /f (i’o + RE? + ﬁEtZ,Y}I) ’I’L(Z)dz)
1 —RY2\ dz
= E e_AZ%/ o+ 2, Y TL(Z_M)_)
Yo ( f( 0 t) PEt Pzt

Hoélder’s inequality with respect to the measure e*7|z‘*ﬂytdzdIP’y0, where v > 0 and g > 0 will be

chosen later on, gives, for every p > 1

1/
P} f(xo,y0) < [Eyo (/e—wl—ﬂ“ff’@ﬁz,mdzﬂ pJq, (1.4.56)

with ¢ = p/(p — 1) and

_ — RY? dz
I_F (a=Dlzl+(g-1)aYi—gASF g [ 27 P2t .
(Jg) Yo (/6 o Py (pX)4

Using Proposition [1.4.11] we can write, for every z € R,

B (7 0+ 2.0)) = [ dumn.n)e 7 (@0 +2.0)

Cp < <+ y(l)/4)
<

0 (I-vID? -
: / dye o Myfl (1 + y1/4> FP (F0+ 2,y).
e 0

If we set Lo, = 02/(4k), for every e € (0,1) we have

_ (I-vaD>? _ - vi)?
e 2L <e 2Loo
y VYUt Yt

=€ 2Loe Lo 2L oo

__ ¥ . eyt
< e 2L e 2Loo g2¢Looc ¢ 2Loo

y vt
— 6_(1_6) Lo em(l_ﬁ)

Yo
< e_(l_e) 2[’{/00 e2¢Lo (1_6)
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(s 1= (s i=2e
It is easy to see that e y<u+ 2L°°) (1+ 9y < Cepre y(”+2L°°>. Therefore, we can write

Eyo (717 (30 +2,77))

yO(lfe) 2 1/4
eLoo ol
Cge 2L < 1= T Y%

) /Oodye_y(H;L‘:o)yﬂ_l (1 + y1/4> P (Zo + 2,y)
0

< !
L, *?
C yO(LPG) o 1-2
;05 € cheo - 7+;€ —1 7 ~,
= M;#/ aye V) 1 (3 4 2,
L, *? 0
oy2
As regards J,, setting 2/ = z ﬁgtzt , we have

(J)? = Ey (/ ea=D12 pEi+ESE [+ (a— DAY —gASE g (<) dz/>

(pX)a—t
o i R dz
< Ey </ e((I*l)'YPEt|Z‘+((I*1)HYt+((Q*1)‘K"y*q)\)zfnq () —2 ).
2
Note that
. 1 ~ )
/ (a=1)vpE¢ 2| 9(2)dz = / (a=1)pZel2l ,—az2/2 4
e n?(z)dz e e g
(v2r)
2 . 2
< 2| ela=DpEez—az7/2 g,
< 7/
2 a-D? 20y ,;(WZ,%)Q
frd \/276 2q P t/e 2 Va dZ
T
_ ;6%32%%7
q
so that
2 VY 32 1
J) < —E (e(ql)u%Jrqut)’
i va " (pX)!
with ( )2
A R =17 2 1 - L 2
Ao =(g—1 - A — g\ = — —) ).
¢ = (0= DIFy+ =5 =77 g p_1<|ﬁlv+2pvp p

Using Holder’s inequality again we get, for every p1 > 1 and ¢1 = p1/(p1 — 1),

2 s e\ L/p 1 Va
q “ p1(q—1)aYi+p1 A2
(%) 2 (B (e ) <Ey° <(ﬁ2t>‘“<ql>>>

Com (IE (epl(q—l)ﬂi/tﬂﬂqﬁf))l/pl
- a1 Yo ’

IN
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where the last inequality follows from Lemma
We now apply Proposition with Ay = p1(¢—1)ji and A2 = p1\,. The assumption on \; and

A2 becomes
2

o ~ o 1 5.
e - Dp* — ki + Ry + %7%2 —pA<0

or, equivalently,
2

S o
~ 2p(p—1)
Note that the last inequality is satisfied for at least a p; > 1 if and only if

i 1
A prii® — w5 R + 2R
P P 2p

o? o v 1
N> —— % — kE 4+ |R|L + A% 1.4.57
2p(p — 1) p | ’p 2p? ( )

Going back to ([1.4.56)) under the condition (1.4.57)), we have

C,e (g le2e . 1/p
Pt)\f(x()ay(]) < $6Apv6y0 </ dze_’y'Z/o dy€ y<u+2Lm>yﬂ_lfp (‘%0 +Zvy)>

B, 1
Ltp+2pt1/p
C Ap,syO o0 oy g+ 1=2¢ l/p
< p,eﬂc;3 </ dze_'yzl/ dye y(“+2Loo)y5_1fp <:Eo +z+ pyjy))
tr T 0 7
C eAP,eyo - o0 —y( - iz2e e
e (/dze”zxogy/ dye V) Yot po (%y))
tr ' 2p 0
Ap eyo+7|Zol o0 ol 1-2 1/p
< Cp’eelj - (/dze‘”lz/ dyeiy@iv%Jr%“)yﬁ_lfp (z,y)> .
t5+ﬂ 0

rd

If we choose € = 1/2 and i = u + ', the assertion follows provided \ satisfies

2 2 lol
+ 1
e © < \p) At g

oyl (e e e e
2p(p — 1) o P p P

1.4.5 Proof of Theorem [1.2.4]

We are finally ready to prove the identification Theorem [1.2.4] We first prove the result under
further regularity assumptions on the payoff function v, then we deduce the general statement by

an approximation technique.
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Case with a regular function ¢

The following regularity result paves the way for the identification theorem in the case of a regular

payoff function.

Proposition 1.4.12. Assume that v satisfies Assumption H' and 0 < < d with ® satisfy-
ing Assumption H2. If moreover we assume v € L?([0,T]; H*(O, m)) cmd + LY, (1+y)® €
LP([0,T7; LP(O,m)) for some p > 2, then there exist A\g > 0 and F € Lp([O,T], Lp((’),m)) such that
for all A > Ag the solution u of satisfies

— <g§:,v> + ayx(u,v) = (F,v)H, a.e. inl]0,T], veV. (1.4.58)
H

Proof. Note that, for A large enough, u can be seen as the solution u) of an equivalent coercive

variational inequality, that is

Ouy
— | = v —un ] Fax(uxn,v—uy) > (9,0 —ur)H,
o .

where ¢ = A(1 + y)u satisfies the assumptions of Proposition [1.3.14] Therefore, there exists a

sequence (ug ). of non negative functions such that lim. o uz x = uy and

ou 1
(%)t - (2o -wie) =Gom vev
H € H

Since both wu.  and v are positive and 1 belongs to LP([0,T]; L?(O,m)), we have (¢ — uc x)4 €
LP([0,T); LP(O,m)). In order to simplify the notation, we set w = (1) — uc ))4+. Taking v = wP~!

and assuming that v is bounded we observe that v € L2([0,T]; V) and we can write

Oug _ _ 1 _
_< 8? wP 1>H+a’\(u5’)"wp 1) _ g”wuip(o,m) — (g,wp 1)H7
so that
_ 1 _ _ _
H Wl 0m — AW = ey, wP ) = w0l o m = (90" Dy — <at’“’p 1>H+ax(w,w” b
Integrating from 0 to T we get
1 T L 1T
O o~ [ ax(( = )00 Ot = [ Ol

T » o » T y (1.4.59)
:/0 (g(t), w? (75))Hdt—/O <8t() wy (t)>Hdt+/0 ax(1(t), wP™(t))dt.
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Now, with the usual integration by parts,

2 2
p—1y Q _ p—2 87?1} aﬂaﬂ 2 aﬂ
ay(w,wP™") /02(}) Dw [(830) + 2p PO a9 +o 3y dm
—i—/ ' (aj)a—w—i-k (x)a—w wpldm+)\/(1+ JwPdm
Oy JrnT) 5 ) Gy o Y
ow\? ow
> _ p—=2 | [ 22
o ot ()4 (5)
—I-)\/ ywPdm
o
ow\? ow A
— p—2 _ i ; o A2
/wa [51(;0 1) <8x> + Jyu(T) 5T S }dm

—I-/ ywP > [5 (p—1) (811))2 +k (;v)a—ww + )\wg] dm >0
0 ' y Ty -

) ow ow _
dm+/ <]%u($)ax + k%u(ﬂf)ay> wP ' dm

2

since, for A large enough, the quadratic forms (a,b) — & (p — 1)a® + j, .ab + %bz and (a,b) —
S1(p — 1)a® + k. pab + %bQ are both positive definite.

Recall that v € L2([0,T); H2(O,m)), % + £ € LP([0,T], LP(O,m)), (1 + y)¢ < (1 +y)® €
LP([0,T],LP(O,m)) and g = (1 + y)u < (1 +y)® € LP([0,T]; LP(O,m)). Therefore, going back to
and using Holder’s inequality,

1 T
S G

< ([ 100120 0t );+ (/T

Recalling that w = (¢ — uc x)4, we deduce that

p—1

1
8¢ p P T b
LP(O,m) 0

<, (1.4.60)
LP([0, ;L7 (O,m)

Hi(lb — Ug\) 4

for a positive constant C independent of €. Note that the estimate does not involve the L*°-norm of
¥ (which we assumed to be bounded for the payoff) so that by a standard approximation argument,

it remains valid for unbounded 1. The assertion then follows passing to the limit for ¢ — 0 in

Ou 1
_ ( gtvk,v) + ax(ue,v) = ((w - u€7A)+,v> +(9,0)m, veV
H 5

H
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Now, note that we can easily prove the continuous dependence of the process X with respect to

the initial state.

Lemma 1.4.13. Fiz (x,y) € R x [0,4+00). Denote by (X;"Y,YY)i>0 the solution of the system

ax; = (%0 = %) dt + VVidB,,
dY, = k(6 — Yy)dt + o/Y;dW,,

with Xo = x, Yo = y and (B,W); = pt. We have, for every t > 0 and for every (x,y), (',y) €
R x [0, +00), E‘Ytyl _Y;ty‘ <y’ —yl| and

VAN t
E‘Xf N —Xf’y‘ <o’ =2+ Sl =yl + Vily —yl.

The proof of Lemmall.4.13|is straightforward so we omit the details: the inequality E ‘Ytyl — Yty) <

|y’ — y| can be proved by using standard techniques introduced in [63] (see the proof of Theorem
3.2 and its Corollary in Section IV.3) and the other inequality easily follows.

Then, we can prove the following result.

Proposition 1.4.14. Let ¢ : R x [0,00) — R be continuous and such that there exist C > 0 and
a, b> 0 with |yp(z,y)| < Ce¥* for every (x,y) € R x [0,4+00). Then, if

2 .2 2

b _
)\>ab|p|a—|—Tg—/<;b—|—a 5 a’

we have PMY|(z,y) < oo for everyt > 0, (z,y) € Rx[0, +00) and the function (t,z,y) — PMp(x,y)

is continuous on [0,00) x R x [0, 00).

Proof. We can prove, as in the proof of Proposition that

E;y

)

<eaXt+bY}f)\fotsts) _ ale-y)p <€(a§+b)1@+(a(if—$)+‘f(1—p2)—A) fOtsts>'

Y

Thanks to Proposition if

a2/ p 2 P pr 1 a
7 (o —r(al L DR R 1.4.61
2<aa+b> n<a0+b>+(a(a 2)+2( p°) A><0, (1.4.61)
we have, for any 7' > 0 and for any compact K C R x [0, +o0],

t
B, (RN o
(tz.y)€[0,TIx K
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Note that (1.4.61)) is equivalent to
2,2 2

a’—a
A b —— — kb
> abpo + 7 KO + 5

Therefore, under the assumptions of the Proposition, we have, for any 7" > 0 and for any compact
set K C R x [0, +o0],

t
sup Ezy (ea|Xt|+bYt_’\ Jo sts) < 00.
(t2y)€l0,TIx K

Moreover, for e small enough,
sup Eyy (6“<1+€)\Xt|+b(1+€)yﬁ_)‘(1+€) Jo sts) < 00. (1.4.62)
(tay)e0TIXK
Then, let ) be a continuous function on R x [0, +oo[ such that | (z,y)| < Ce®+% Tt is evident
that Pv|(x,y) < oo and we have

t x
PRy, y) = B (e M08y (x0 v))

If ((tn, Tn, Yn))n converges to (t,z,y), we deduce from Lemmall.4.13[that X" — XY V" — Y/
and tfg” YIrds — f(f YYds in probability. Therefore e*)‘fon(HYS)dsdJ(XZi mYn YPm) converges to
e~ Mo (0HYo)dsy, (X ™Y y¥) in probability. The estimate (1.4.62) ensures the uniformly integrability
of e_Af(’tn(HYS)dS?ﬁ(Xin’y",Y;:Zn) so that limy e P ¥(2n,yn) = P(x,y) which concludes the
proof. O

Proposition 1.4.15. Fizp > 3+ 5 and A as in Theorem . Let us consider w € C([0,T]; H)N
L*([0,T); V), with %% € L*([0,T); H) such that

(%8,0),, +ax(u(t),v) = (f(t),v)n, vEV,
u(0) = 9,

with 1 continuous, Y €V, T+ yf € L*([0,T); H) and f € LP([0,T]; LP(O,m)). Then, if b and X
satisfy the assumptions of Proposition we have

(i) For everyt € [0,T], u(t) = Py + fot PMf(t — s)ds.
(i1) The function (t,x,y) — u(t,x,y) is continuous on [0,T] x R x [0, 400).

(i13) If Ay = )\fot(l +Y)ds, the process (My)o<i<T, defined by
t
M, = efAfu(T —t, X, Yy) + / e*ASf(T — 5, X5, Ys)ds,
0

with Xo = x, Yy = y is a martingale for every (x,y) € R x [0, +00).
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Proof. The first assertion follows from Proposition

The continuity of (t,z,y) — P(x,y) is given by Proposition The continuity of
(t,z,y) — f(f PMf(t — s,.)(x,y)ds is trivial if (¢,z,y) — f(t,x,y) is bounded continuous. If
f e LP([0,T]; LP(O,m)), f is the limit in LP of a sequence of bounded continuous functions and
we have fg PMfo(t — s,-)ds — fg P f(t — s,-)ds uniformly in [0,7T] x K for every compact K of
R X [0, 400)). In fact, thanks to Theorem we can write for ¢t € [0,7] and (z,y) € K

t t
C
/Omenfr<ts,-,~><x,y>dss/0 D ds||(fa = £t = 5,5 Nlzoom)

S 2p

¢ 1/p b s 1-3
< G ([ 16k = N0 =5 Mhpiomes) ([ (1.463)
0 0 g2(-1)
T 1/p T g -
<G ([ = D Mipomis) | [ e |
0 0 g2(-1

The assumption p > § + % ensures the convergence of the integral in the right hand side.
For the last assertion, note that My = e A y(Xp, Yr) + fOT e s f(T — 5, X,,Ys)ds. Then, we

can prove that M; is integrable with the same arguments that we used to show the continuity of

(t,z,y) — u(t,z,y). Moreover, by using the Markov property,

Ex,y (MT | ‘Ft)
t T
= e MNP (X, Ye) + /0 e M (T — 5, X, Ys)ds + M /t PY (T =5, )(Xe, Yy)ds

T—t t
— e (P%_mxt,m + /0 P?f(T—t—s,.,.xXt,mds) T /0 NPT — 5, X, Ya)ds

t
= e My(T —t, X, Yy) +/ e N (T — 5, X,,Yy)ds = M.
0

We are now ready to prove the following proposition.

Proposition 1.4.16. Assume that satisﬁes Assumption H*. Moreover, fix p > (3 +% and
assume that v € L*([0,T); H*(O,m)) and —|— Ly € LP([0,T]; LP(O,m)). Then, the solution u of
the variational inequality (1.2.5) satisfies

u(t,x,y) = u*(t,xz,y), on [0,T] x O, (1.4.64)
where u* is defined by

() = sp B [ X5, ¥20)].
T€T,T
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Proof. We first check that 1 satisfies the assumptions of Proposition Note that, thanks
to the growth condition , it is possible to write 0 < ¥(t,z,y) < ®(t,x,y) with ®(¢,z,y) =
C'T(e"””’_%elt + eLy*’“’Lt), where L € [0, (27—’;) and Cp is a positive constant which depends on T.
Moreover, recall the growth condition on the derivatives . Then, it is easy to see that we can
choose v and 4 in the definition of the measure m (see (1.2.2)) such that ¢ satisfies Assumption H?,

® satisfies Assumption H? (note that %—? +LP <0) and (1+y)®, %—f + Ly € LP([0,T]; LP(O, m)).

Therefore we can apply Proposition [1.4.12] and we get that, for A large enough, there exists F' €
LP([0,T]; LP(O,m)) such that u satisfies

—<6u,v> + ax(u,v) = (F,v) g, v eV,
ot I

that is 5
- (u,v> + a(u,v) = (F = A1+ y)u,v) g, velV.
ot H
On the other hand we know that
—(%,U—U)H+a(u,v—u)20, a.e. in [0, 7] veV, v>1,

u(T) = (T),
u > ae. in [0,7] x R x (0, 00).

From the previous relations we easily deduce that F' — A(1 + y)u > 0 a.e. and, taking v = 1,
that (F — A1 + y)u,¥ — u)g = 0. Moreover, note that the assumptions of Proposition [1.4.15| are
satisfied, so the process (M;)o<t<7 defined by

t
Mt—eAtu(t,Xt,Y})—i—/ e M F(s, X, Ys)ds, (1.4.65)
0

with Xo = z, Yo = y is a martingale for every (z,y) € R x [0,4+00). Then, we deduce that the

process

t
My = u(t, X3, Yy) +/ (F(s, X5, Ys) = M1+ Ys)u(s, Xs, Ys)) ds
0
is a local martingale. In fact, from (1.4.65) we can write
t
dM, = d [eAtMt — et / e M F(s, X, Ys)ds] + F(t, Xy, Vi) dt — M1+ Yy)u(t, Xy, Yy)dt
0
t
= MdM; + [)\(1 +Y))eM My — A(1 4 Yy)el / e M F (s, X,,Ys)ds
0
MM (4 X, V) F(E X, Ya) — AL+ Yoult, X, Yt)} dt

= €Atht.
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So, for any stopping time 7 there exists an increasing sequence of stopping times (7,,), such that

lim,, 7,, = o0 and

TNTh
Ex,y[u(T A Tn, XT/\Tna YT/\Tn)] = U(O, z, y) - E:E,y |:/ (F(37 Xs, Yjs) - )\(1 + }/S)U(S, X, }/s))ds .
0

(1.4.66)
Since F' — A(1 + y)u > 0 we can pass to the limit in the right hand side of (1.4.66) thanks to the

monotone convergence theorem. Recall now that an adapted right continuous process (Zt):>¢ is
said to be of class D if the family (Z;);¢7; ..., where 7o oo is the set of all stopping times with values
in [0,00), is uniformly integrable. Moreover, recall that 0 < wu(t,x,y) < ®(x,y) = Cr(e

+
ely=rL) - The discounted and dividend adjusted price process (e~("=9S;), = (eth%et)t is a

z— L0y
o

martingale (we refer to [67] for an analysis of the martingale property in general affine stochastic
volatility models), so we deduce that it is of class D. On the other hand, we can prove that the
process (elY1749%), is of class D following the same arguments used in Remark Therefore, the
process (®(t + S,Xﬁ’x’y))se[tﬂ is of class D for every (t,z,y) € [0,T] x R x [0,00). So we can pass
to the limit in the left hand side of and we get that limy, o Ey y[u(7 AT, Xrar,, Year, )] =
Eyy[u(r, X7, Y7)]. Therefore, passing to the limit as n — oo, we get

Ex,y[u(T, XTa YT)] = U(O,.%,y) - Ex,y |:/ (F(S,Xs, Y;) - )‘(1 + Y'S)u(stSa YYS))dS ;
0

for every 7 € Tor. Recall that FF — A(1 + y)u > 0, so the process u(t, X¢,Y;) is actually a
supermartingale. Since u > 1), we deduce directly from the definition of Snell envelope that
u(t, X, Yz) > u*(t, Xy, Y:) a.e. for t € [0,7).
In order to show the opposite inequality, we consider the so called continuation region
C={(t,z,y) €[0,T) x R x[0,00) : u(t,z,y) > ¥(t,z,y)},
its t-sections
Ct ={(z,y) e R x [0,00) : (t,z,y) € C}, te0,7),
and the stopping time
7 =1inf{s > t: (s, X, Ys) € C} =inf{s >t : u(s, X5, Ys) = ¥(s, X5, Ys) }

Note that u(z, X5, Ys) > (s, X5, Ys) for t < s < 1. Moreover, recall that (F'—A(1+y)u,p—u) =0
a.e., so Leb{(z,y) € Ct : F — A1+ y)u # 0} = 0dt a.e.. Since the two dimensional diffusion
(X,Y) has a density, we deduce that E [F(s, X,, Ys) — A(1 + Yy)u(s, Xs, n)l{(XS,YS)eCS}] =0, and
so F(s, X, Ys) — M1+ Ys)u(s, Xs,Ys) =0ds, dP — a.e. on {s < 71}. Therefore,

E [U(Tt7 X, YTt)] =K [u(tv Xt, Y;f)] )
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and, since u(1, X, Yr,) = (7, X4, Y7, ) thanks to the continuity of u and 1,
E [U(t, Xt? Y;f)] =E [w(Ttv XTt')YTt)] S E [U*(t, Xt7 1/vt)] )

so that u(t, X¢,Y:) = u*(t, X+, Y:) a.e.. With the same arguments we can prove that u(t,z,y) =
u*(t,z,y) and this concludes the proof. O

Weaker assumptions on v

The last step is to establish the equality u = u* under weaker assumptions on 1, so proving

Theorem [1.2.4]

Proof of Theorem [1.2.7). First assume that there exists a sequence (¢, )nen of continuous functions
on [0,7] x R x [0,00) which converges uniformly to ¢ and such that, for each n € N, 1), satisfies
the assumptions of Proposition For every n € N, we set u, = uy(t,x,y) the unique
solution of the variational inequality with final condition wu,(T,z,y) = (T, z,y) and
uy(t, 2, y) = sup ey, . E[tn(T, XE™Y YY), Then, thanks to Proposition for every n € N

we have
un(t,z,y) = u) (t,z,y) on [0,T] x O.

Now, the left hand side converges to u(t, z,y) thanks to the Comparison Principle. As regards the
right hand side,
sup E [¢h, (1, XEPY, YY) = sup E [6’“”%(7, Xy, Y:’x’yﬂ

T€T,T T€T,T

thanks to the uniform convergence of 1, to .

Therefore, it is enough to prove that, if ¢ satisfies Assumption H*, then it is the uniform limit
of a sequence of functions 1, which satisfy the assumptions of Proposition [1.4.16] This can be
done following the very same arguments of [66, Lemma 3.3] so we omit the technical details (see
[93]). O

1.5 Appendix: Proof of Proposition [1.4.1

The proof of Proposition [1.4.1] can be carried out following the very same lines of the proof of
Proposition For this reason, we retrace here only the main steps of the proof. So, the first

step is to solve the following truncated coercive problem.
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Proposition 1.5.1. Assume A > % 5 + 252 For every ¢ € V, f € Lloc(R+vH> and M > 0, there
exists a unique function u™) ¢ LlOC(R+, V), such that u(M) € L (R, H), u™(0) = ¢ and

(W™, 0)g + @ 0) = (fo)g,  veV.
Moreover, for everyt > 0,
WO+ [ WO < [l + 2 [ 1lds (500
and
/ uf™ )ds + SO O

t
< %aw,w +3 /0 1F(s)II%ds + /0 ds / / y A MITu™) (5)[|ug™ (5)]dm.

(1.5.68)

Proof. Fix ¢ € V and f € L?
finite dimension such that Uj Vj is dense in V and ¢ € V; . For every j, denote by w; the unique

(R*, H). Let (V}); be an increasing sequence of subspaces of V' with

loc

solution of the differential equation

a,
<qu> + oy, 0) = (f,v)y,  veEV,

with u;(0) = .

Taking v = u; and using the inequality aE\M)( w) > % ||ully, we get

Nig

<(3;Ltj’“j>H+a(AM)(uj»ua') = (f,u)n
g () + 0 s (), s (1) = (7). (1))
S Lg%+ L} < (w0

Integrating between 0 and ¢, we get

1 &1 [t 1 t
Sl + 5 [ lu@lds < G0l + [ 17l s

So, if f =0,

t
IIuj(t)II?{Jrc?l/O Juj(9)l[3ds < [0l
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and, for f # 0,

1 51 [ 1 51 [ I
Sl + % [ us)pds < S0+ [ lug) s + 5 [ 176 rds.
0 0 1Jo

Therefore,

1 & [ 1 I
@+ 5 [ uss)lpds < Sl 5 [ 1) rds.
2 4 0 2 61 0

By taking v = Ou;/0t, we get, using the symmetry of ay,
dui|I* | on (, Ou
’ Bt |, T\

ou; ||* | du on (. 0w\ [, 0y
'atH“ (“ 8t)+a Yo ) =\l ),
au]' 2 1 d7 ) ~(]\4) 8Uj o 8Uj
‘at LT ag® wu) AT gt )= L)

and, integreting from 0 to t,

8Uj

2 t .
G| s+ ja 0.0 = gos @+ [ (10.556) as

_ /Ot 00 <uj(s), %?@)) ds

Therefore,
ou; 01
)] ase 2o
t 0
<gmwa+ [ (f()%%)) s o [ds [y n 1906012 5.

t : t K K{M¢ | 0wy, |
s%axwww / ||f<s>||HH;‘;<s> ds + / s | (;y|wj<s,.>|2+ 12 ¢ %(s,» )dm
0 K M 0
<o)+ [ 16|52 s 5L [+ S [

Then the assertion follows by passing to the limit as j tends to infinity and by using the estimates
above. O

Then, we have the following Lemma.
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Lemma 1.5.2. If, in addiction to the assumptions of Proposition we also assume /1 +yf €
L? (RT, H), we have

loc

t [ WO+ SO0 < Jaw+ [ 16
AKIK
P (gl + [ alVIFusel).

Proof. Let us denote ¢p(z,y) = y A M. Since ¢p and its derivatives are bounded, if uM eV,
uM @y € V. Then, taking v = uM s, we get

OuM)
( = ,U(M)W)HJFG(M)( WD (Mg — (f’U(M)¢M)H7

which, setting ¢}, = d¢nr/Jy, can be rewritten as

M, dm+/ OuM) 9y (M) L OuM) 9y (M) Lo Uau(M) ouM) i
M o2 or O oy Oy P B oy M

—i—/o2<pa 5 +o a9 u gy rdm + Oy o j%u—i—iay by | " oprdm

A / (1 + 9) ™2 ysdm = (f, gy
O

OuM )
o Ot

Then, by using 0 < ¢, < Lgy<ary,
1d
2dt Jo

< (faU(M)éf?M)H+K1/Oy‘Vu(M)Hu(M)|¢Mdm+/ y

WO 2rsdm+ 31 [ y[FulD[ gurdm+ 1 [ 1+ 9) @) 0nsdm
@ ]

OuM) o OuM)
Po b to oy

< (f,u(M)QSM)HJrKl/ y‘Vu(M H s + \/m/ /\M‘Vu )‘|u(M)|dm

242 4
n iwwfzﬂ / YA M ‘WM)‘ )| dm,
@]

5 u™)| g dm

‘Vu M>‘ Gardm + 5L

% ‘u ‘ drrdm

By taking ¢ = 61/K1 and noting that [,y A M ‘Vu(M)‘ [ |dm < [[u™)|12,, we get

1d 5 o2 K? e

< (fyu(M)d)M)H + K2HU M)||%/
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252 4 2
with Ko = @ and, by using A > 01 5 + 251 and integrating from 0 to ¢,

t
;/O(MM))?(]:, .)¢Mdm+521/0 ds/o <y‘Vu(M)(s)‘2—{—(1+y)(u(M))2(s)> drrdim
t 1 t
< [ S ons s + 5 [ Wondme+ Ko [ s (s)

We have, for every ¢ > 0,

[ @onmis <5 [ as [0 ams g [Las [Lomlstoam

and, taking ¢ = 01/2,
t
3, <u<M>>2<t7.>¢Mdm+ﬁ [as] <y\w<M><s>\2+<1+y><u<M>>2<s>) Sardm
< 51 dS/ dur | ()] dm + = /%Z) ¢Mdm+K2/ [u) (s)|[3ds.
Then, by using ,
5 [P Joudm 1 /d/< Vs +<1+y><u<M>>2<s>) Pardm
4K
<5 [as [t am s [ wouim+ 2210+ 552 [
< & (IVTF gl + [ asIVIF 0l )

where K3 = max (4,1, 252 4K2) Note that K3 does not depend on M. We deduce from the last
01727 o1 51

inequality that
t
[as [ vt tim < 22 (il + [ astviEuson)
and, by using (T5.09).
I ANGY; 1
AL )(S)H%der*Hu(M)(WH%/
1 (M)
< g+ 3 [ 1 ds+ 51 [ ds [ oA MITUO0 ()0 5
1 2 (M) \2 K f* 2 (M) ()2
< Laswr+ s [ 156+ 55 [ [ pam + 50 s 6319600 ) 2am
2 2 Jo 2 Jo Jo 26 Jo Jo
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By taking ¢ = 1/(2K), we get
I AV 1
3 1) s + SO @1
0

1 1/t 4K?K t
3000+ 5 [ 18 Bas+ L (1Tl + [ aslvIFur el )

Now, in order to prove Proposition [1.4.1] it is enough to let M go to infinity.
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Chapter 2

American option price properties in

Heston type models

2.1 Introduction

One of the strengths of the Black and Scholes type models relies in their analytical tractability. A
large number of papers have been devoted to the pricing of European and American options and
to the study of the regularity properties of the price in this framework.

Things become more complicated in the case of stochastic volatility models. Some properties of
European options were studied, for example, in [81] but if we consider American options, as far
as we know, the existing literature is rather poor. One of the main reference is a paper by Touzi
[93], in which the author studies some properties of a standard American put option in a class
of stochastic volatility models under classical assumptions, such as the uniform ellipticity of the
model.

However, the assumptions in [93] are not satisfied by the well known Heston model because of
its degenerate nature and some of the analytical techniques used in [93] cannot be directly applied.

This chapter, which is extracted from [74], is devoted to the study of some properties of the
American option price in the Heston model. Our main aim is to extend some well known results in
the Black and Scholes world to the Heston type stochastic volatility models. We do it mostly by
using probabilistic techniques.

In more details, the chapter is organized as follows. In Section we set up our new notation. In

Section we prove that, if the payoff function is convex and satisfies some regularity assumptions,
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the American option value function is increasing with respect to the volatility variable. This topic
was already addressed in [I1] with an elegant probabilistic approach, under the assumption that
the coefficients of the model satisfy the well known Feller condition. Here, we prove it without
imposing conditions on the coefficients.

Then, in Section [2.4) we focus on the standard American put option. We first generalise to the
Heston model the well known notion of critical price or exercise boundary and we study some
properties of this function. Then we prove that the American option price is strictly convex in
the continuation region with respect to the stock price. This result was already proved in [93] for
uniformly elliptic stochastic volatility by using PDE techniques. Here, we extend the result to the
degenerate Heston model by using a probabilistic approach. We also give an explicit formulation
of the early exercise premium, that is the difference in price between an American option and an
otherwise identical European option, and we do it by using results first introduced in [65]. Finally,
we provide a weak formulation of the so called smooth fit property. The chapter ends with an

appendix, which is devoted to the proofs of some technical results.

2.2 Notation

Recall that in the Heston model we have

L = (r —0)dt + VYidBy, Sp=s5>0,
dYy = k(0 = Yy)dt + oY dWy, Yo =y >0,

(2.2.1)

where B and W denote two correlated Brownian motions with correlation coefficient p € (—1,1).
Through this chapter we denote by £ the infinitesimal generator of the pair (S,Y’), that is the
differential operator given by

2 92

y [ 5 0? 0 9 0 0
== — +2 +o0'=— |+ (r— — + —Y)=—.
L 5 <S 32 spo S0y o y2> (r—29)s S k(0 —y) Ay

(2.2.2)

Let (SZ’S’y,YJ’y)ue[tﬁT] be the solution of which starts at time ¢ from the position (s, ).
When the initial time is ¢ = 0 and there is no ambiguity, we will often write (S3?,Y./) or directly
(Su,Yy,) instead of (53757?/, N ¥). We recall that the price of an American option with a nice enough
payoff (¢(St))iepo,r] and maturity 7' is given by P, = P(t, Sy, Y:), where

P(t,s,y) = sup E[e"Dp(sh5)],
T€Ty, T
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Tir being the set of the stopping times with values in [t, T'.
It will be useful in this chapter to consider the log-price process, so we set X; = log S;. In this

case, recall that the pair (X,Y") evolves according to

dXt:(r—é—%Yt)dt—l—\/YtdBt, Xo=z=logs € R,

(2.2.3)
dYy = k(0 = Yi)dt + oY dW, Yo=y2>0,
and has infinitesimal generator given by
~ Yy 82 82 2 82 Yy 8 8
L=2|—=4+2 — —0—=) — 0—1y)—. 2.2.4
2 (83:2 + ”Uaxay o Oy? + (T 2> ox + il y)ay ( )

With this change of variables, the American option price function is given by wu(t,z,y) =
P(t,e",y), which can be rewritten as

U(t, x, y) = sup E[e—T(T—t)w(X;f_,x,y)L
Te7—t,T

where ¥ (z) = ¢(e").

2.3 Monotonicity with respect to the volatility

In this section we prove the increasing feature of the option price with respect to the volatility
variable under the assumption that the payoff function ¢ is convex and satisfies some regularity
properties. The same topic was addressed by Touzi in [93] for uniformly elliptic stochastic volatility
models and by Assing et al. [I1] for a class of models which includes the Heston model when the
Feller condition is satisfied.

For convenience we pass to the logarithm in the s—variable and we study the monotonicity of
the function u. Note that the convexity assumption on the payoff function ¢ € C?(R) corresponds
to the condition ¢ — ¢’ > 0 for the function ¥ (z) = ¢(e”).

Let us recall some standard notation. For v > 0 we introduce the following weighted Sobolev
spaces

L2(R, el = {u ‘R—=R: ||ulf = /uQ(a:)e”C'dm < oo} ,

WE2(R, el = {u e L2(R,e el . % € L2(R, e—wl)} ,
ou 0%u
22(R,e ) = LR, ey s 22 22 ¢ [2(R, el |
W2A(R, e ) = Cu € LR, e17) o=, o € LX(R, eV
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Theorem 2.3.1. Let 1) be a bounded function such that ) € W22(R, e~ "*)NC?(R) and ¢""—' > 0.

Then the value function u is nondecreasing with respect to the volatility variable.

In order to prove Theorem let us consider a smooth approximation f, € C*°(R) of the
function f(y) = \/y*, such that f, has bounded derivatives, 1/n < f, < n, fu(y) is increasing in
y, f2 is Lipschitz continuous uniformly in n and f, — f locally uniformly as n — co. Moreover,
assume that there exists a constant A > 0 such that f,(z) < A(1 + |z|).

Then, we consider the sequence of SDEs

2 n
dX? = (r—o6— 200 gr 4 £V dB,, X0 = a,
! ( 2 ) ()b, Xg (2.3.5)
A" =k (0 — fR(Y{")) dt + o fu(Y]")dWs,  Yg' =y.

Note that, for every n € N, the diffusion matrix a,(y) = 35, (y)E,(y)!, where

o V 1- p2fn(y> pfn(y)
En(y) - )

0 o fn (y)

is uniformly elliptic. For any fixed n € N the infinitesimal generator of the diffusion (X™,Y™) is

given by
A faly) (07 &u 5 0 2(y) 9 2 9
En _ Jn o 2 . _ 5 _Jn I 9 — N
2 Ox? + paaxay e Oy? U 2 Ox 6 (0= fuw)) oy
and it is uniformly elliptic with bounded coefficients.
We will need the following result.
Lemma 2.3.2. For any A > 0, we have
lim P sup [ X=X >A] =0 (2.3.6)
n—00 te[0,T]
and
lim P sup |[Y"'—-Y:>A]=0. (2.3.7)
n—oo t€(0,7]

The proof is inspired by the proof of uniqueness of the solution for the CIR process (see [63,
Section IV.3]). We postpone it to the Appendix.

From now on, let us set E,,[-] = E[[(Xo,Yy) = (z,y)]. For every n € N, we consider the
American value function with payoff 1) and underlying diffusion (X", Y"), that is

u"(t,z,y) = sup Ey[e7T(X])], (t,xz,y) € [0,T] x R x [0, 00).
T€T0, 17—t
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We prove that u™ is actually an approximation of the function u, at least for bounded continuous

payoff functions.

Proposition 2.3.3. Let ¢ be a bounded continuous function. Then,
lim [u"(t,z,y) —u(t,z,y)| =0,  (t,z,y) €[0,T] xR x [0,00).
n—oo

Proof. For any A > 0,

sup Egy [€_TT¢(X2)] — sup E,, [€_TT¢(XT)} ‘
T€T0, Tt T€T0, 17—t

< s B [0 - 0] |
T€T0, 7t
< Ex,y sup W(Xf) - w(XtN]
t€[0,T]
<Esy | sup |[9(X]") = D(XD)1xr_x,<ny | + 2[9][ecP < sup | X{" — X¢| > A) :
t€[0,7) t€[0,T]
Then the assertion easily follows using (2.3.6)) and the arbitrariness of . O

We can now prove that, for every n € N, the approximated price function u™ is nondecreasing

with respect to the volatility variable.

Proposition 2.3.4. Assume that 1» € W22(R, e~ "*ldz) N C%(R) and " — ' > 0. Then aa“—; >0
for every n € N.

Proof. Fix n € N. We know from the classical theory of variational inequalities that u" is the
unique solution of the associated variational inequality (see, for example, [66]). Moreover, u™ is
the limit of the solutions of a sequence of penalized problems. In particular, consider a family of
penalty functions (. : R — R such that, for each € > 0, . is a C?, nondecreasing and concave
function with bounded derivatives, satisfying (.(u) = 0, for u > € and ((0) = b, where b is such
that A" > b (see the proof of Theorem 3 in [71]). Then, there exists a sequence (u”)¢~q such that

lim._,oul = u" and, for every € > 0,

~ % — AN+ Gl — ) =0,
ul(T) = %(T),

where A" = £™ — r. In order to simplify the notation, hereafter in this proof we denote by w the

function u.
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Recall that, from the classical theory of parabolic semilinear equations, since ¢ € C?(R) we

have that u € C%%([0,T),R x (0,00)) (here we refer, for example, to [70]). Set now @ = r%‘

Differentiating the equation satisfied by u”, we get that @ satisfies
_ - 2
—% — Ava = fu(y) ) (5% - 52).
a(T) =0,
where

o 0? 0 ; : 9
o= B (P Pt PN (- HD popnw)

+ (0= W) +PR0AW) 5 O okfa) o) + Ll — ) — (r — b).

By using the Comparison principle, we deduce that, if f,,(y)f/ (y) (% — %) >0, then z > 0

and the assertion follows letting ¢ tend to 0.

Since f;, is positive and nondecreasmg, it is enough to prove that 55 — 5= > 0. We write the
equations satisfied by u/ = % and u 8 %. We have
—ai—fl”u’—i- Hu— u — /:07
g Ll =)' =) .
w(T) =1,
and
~Gr — A+ = ) = )+ Glu— ) (" =0 =0 (2.3.9)

u//(T) — w//'
Using and (2.3.9), we get that u” — v’ satisfies
SO — A — ) + = ) (0 — o) = L= ) = ) = ¢ = ) — )2,

WI(T) — ol (T) = 07—,
(2.3.10)
Recall that ¢ — ¢/ > 0 by assumption and that (. is increasing and concave. Then,

Glu=) (" =) = L(u—y) W = ¢)? 20, u"(T) - (T) ="~ >0,

hence, by using again the Comparison principle, we deduce that u” — «' > 0 which concludes the

proof. O

The proof of Theorem [2.3.1] is now almost immediate.

Proof of Theorem [2.5.1, Thanks to Proposition [2.3.4] the function u" is increasing in the y variable
for all n € N. Then, the assertion follows by using Proposition [2.3.3 O
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2.4 The American put price

From now on we focus our attention on the standard put option with strike price K and maturity

T, that is we fix p(s) = (K — s)+ and we study the properties of the function

P(t,s,y) = sup E[e "D (K — §L=v),]. (2.4.11)
TE%}T

The following result easily follows from .
Proposition 2.4.1. The price function P satisfies:
(i) (t,s,y)— P(t,s,y) is continuous and positive;
(ii) t — P(t,s,y) is nonincreasing;
(i1i) y— P(t,s,y) is nondecreasing;
(iv) s+ P(t,s,y) is nonincreasing and convez.

Proof. The proofs of 1. and 2. are classical and straightforward. As regards 3., we note that ¢ is
convex and the function ¥(z) = (K — ), belongs to the space Wh2(R, e~ "1#l) for a v > 1 but it
is not regular enough to apply Proposition However, we can proceed with an approximation
procedure. Indeed, thanks to density results and [66, Lemma 3.3], we can approximate the function
1 with a sequence of functions 1, € W22(R, e~ 71*1) 1 C?(R) such that " — 1’ > 0, so the assertion
easily follows passing to the limit. 4. follows from the fact that ¢(s) = (K — s)4 is nonincreasing

and convex. O

Moreover, thanks to the Lipschitz continuity of the payoff function, we have the following result.

Proposition 2.4.2. The function x — u(t,x,y) is Lipschitz continuous while the function y —
u(t, z,y) is Holder continuous. If 20 > o2 the functiony — u(t, x,y) is locally Lipschitz continuous

on (0, 00).

Proof. By using standard techniques for the CIR process, as we have done in the proof of Lemma
we can prove that, for every fixed ¢ > 0 and y,y’ > 0,

E[yY -y <ly-y! (2.4.12)
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Then, for (z,y), (z',y’) € R x [0,00) we have

r !

u(t,z,y) — u(t, 2, f)| = | sup Ele (K —eXe”™) ] — sup Efe "0 D(K — X" "))

967;,7" GEE,T
—r(0—t) Xtz —r(6—t) Xt’zl’yl
< sup |Ele (K—et )p—e (K —ete )4
0T, T
< C]E t»m7y — t7xl7y/
< sup | X, XY
ue[t T]

sup
s€t,T]

T
|x—x | —|—/ R[]V, Y —YJ’y/Hdu—l—E

/ \/ﬁ Yty

)

2
|z — 2| + EHYJ’y — Y;’ylﬂdu + [E | sup YV — A Y Yaw,
s€t,T)
, T TN?
<0 le—at+ [ BV ¥ au s (2| i = virhad )
0

< Cr(lz =2+ Iy =y

Now, recall that, if 26 > o2, the volatility process Y is strictly positive so we can apply Ito’s

Lemma to the square root function and the process Y; in the open set (0,00). We get

=i [ [ L v
—f+( )/\ﬁdu—/\/»du—i- W,

Differentiating with respect to y (see also [81]) we deduce that

v 2\ [t vy Loy 1
Y 1 (KG _ U) / _LSdu _k / a.s. (2.4.13)
2,/Y/ NG 8/)Jo 2(v¥)2 0 2\ Y

since K > 02/2 > 0?/4 and Y > 0, Y} > 0 (see Theorem 3.7 in [83]).
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Therefore, let us consider y,4’ > a. Repeating the same calculations as before

|u(t7 z, y) - ’LL(t, z, y,)|

sup / Y — Yty
se(t,T]

1
T T - 2
<C /E[]Yj’y—Yj’y Hdu—i—(E [/ (\/Yj’y—\/Yj’y)QduD
t t
T , T y/ Yt,w 2
-C /E[D@t’y—iﬁ’yl]dqu E / du / Y dw
t ¢ y 2V Y"
1
T 2 2
1) du
| (v

which completes the proof. O

T
<C / E[Y Y — VY ||du+ | E
t

< Cr \y—y’|+<E

S CT‘y - y/’7

Remark 2.4.3. Studying the properties of the put price also clarifies the behaviour of the call price
since it is straightforward to extend to the Heston model the symmetry relation between call and put
prices. In fact, let us highlight the dependence of the prices with respect to the parameters K,r,d, p,
that s let us write

P(t,z,y; K,r,6,p) = sup Ele """ (K — §t5¥),],
7'67171

for the put option price and

C(t,s,y; K,r,0,p) = sup ]E[e_r(T_t)(Sﬁ’S’y — K)4],
TE'EyT

for the call option. Then, we have C(t,s,y; K,r,0,p) = P(t, K,y;x,6,r,—p).
In fact, for every T € Ty, we have

Ee (7= (seft (T_

t
T s T Yst’y T(d— +Ys
_ Ee—6(’r—t)eft Va'% YdBs— [ ~5—ds (CB . Keft r+=5

t,
oY )ds+f[ VYIVaB,
- K
+

Y
)ds—ftTdBS>
+
t,y
Ys )ds— ST/ YHvaB,
)
+

T /ot T ybvy T(&—r—&-
:]Ee—(s(’r—t)eft Ys yst—ft —5 ds <CC—K€ft
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s 5 s Y;’y . .
where the last equality follows from the fact that (eft VYSUdB— [ 5 ds)se[t,ﬂ is a martingale. Then,
note that the process B, = B,— Yf’yt 1s a Brownian motion under the probability measure P which

) T L
has density dP/dP = i VYSrAB- [ yds Therefore

Y

t t, -
Ee—"(T—1) (%fg (T_a_ 5 )ds+ftT VYivan, —K) — Re—0(r—1) <$—KeftT (6_T_ =3 )ds_ft @d&)

+

+
Under the probability P, the process (—B, W) is a Brownian motion with correlation coefficient —p

so that the assertion follows.

2.4.1 The exercise boundary
Let us introduce the so called continuation region
C={(t59) €[0,T) x (0,00) x [0,00) : P(t,5,9) > ()}
and its complement, the exercise region
E=C"={(t,5,9) €[0,T) x (0,00) x [0,00) : P(t,5,y) = ¢(s)}-

Note that, since P and ¢ are both continuous, C is an (relative) open set while £ is a closed set.
Generalizing the standard definition given in the Black and Scholes type models, we consider the

critical exercise price or free exercise boundary, defined as
b(t7y) = il’lf{S > O’P(t787y) > (K - 8)+}7 (tay) € [OaT) X [O>OO)

We have P(t,s,y) = ¢(s) for s € [0,b(t,y)) and also for s = b(t,y), due to the continuity of P and

. Moreover, since P is convex, we can write
C={(t s,y) €[0,T) x(0,00) x [0,00) : s > b(t, y)}

and
E={(t,s,y) €[0,T) x (0,00) x [0,00) : s < b(t,y)}.

We now study some properties of the free boundary b : [0,7) x [0, 00) — R. First of all, we have

the following simple result.

Proposition 2.4.4. We have:
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(i) for every fized y € [0,00), the function t — b(t,y) is nondecreasing and right continuous;
(ii) for every fized t € [0,T), the function y — b(t,y) is nonincreasing and left continuous.

Proof. 1. Recalling that the map ¢t — P(t,s,y) is nonincreasing, we directly deduce that ¢ —
b(t,y) is nondecreasing. Then, fix ¢t € [0,7") and let (¢,),>1 be a decreasing sequence such that
lim,, oo t, = t. The sequence (b(ty,y)), is nonincreasing so that lim, o b(t,,y) exists and we
have limy, o0 b(tn,y) > b(t,y). On the other hand, we have

and, by the continuity of P and ¢,
P(tn, lim b(tn, y),y) = ¢( lim b(tn, y)).

We deduce by the definition of b that lim, . b(tn,y) < b(¢,y) which concludes the proof.
2. The second assertion can be proved with the same arguments, this time recalling that y —

P(t,s,y) is a nondecreasing function. O

Note that, since P > 0, we have b(t,y) € [0, K). Indeed, we can prove the positivity of the

function.
Proposition 2.4.5. We have b(t,y) > 0 for every (t,y) € [0,T) x [0,00).

Proof. Without loss of generality we can assume that 0 < ¢t < T, since T is arbitrary and the put
price is a function of T'— t. Suppose that b(t*,y*) = 0 for some (t*,y*) € (0,7 x [0,00). Since
b(t,y) > 0, t — b(t,y) is nondecreasing and y — b(t,y) is nonincreasing, we have b(t,y) = 0 for
(t,y) € (0,¢*) x (y*,00), so that

P(t,s,y) > o(s), (t,s,9) € (0,t") x (0,00) x (y*,00).

To simplify the calculations, we pass to the logarithm in the space variable and we consider the
functions u(t, z,y) = P(t,e”,y) and () = ¢(e®). We have u(t,z,y) > ¢(x) and

O +L—r)u=0 on (0,t) x R x (y*, 00),

where £ was defined in (2.2.4). Since ¢ — u(t, z,y) is nondecreasing, we deduce that, for t € (0, t*),
(£~ —r)u = Opu > 0 in the sense of distributions. Therefore, for any nonnegative and C* test

functions @, ¥ and ¢ which have support respectively in (0,¢*), (—o0,00) and (y*, 00), we have
t* o0 [e%e) t* o0 [e'e)
[ o [~ e [T agtuteaotacn = [ o [ do [Tyt - eotaicn.
—00 y* S y*
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or equivalently, by the continuity of the integrands in ¢,

/ s / dyLutt,ay)o()) 2 [ ds / dy(K — e)o()C(y). (2.4.14)

—00 *

Let x1 and x2 be two nonnegative C* functions such that supp x1 C [—1,0], supp x2 C [0, 1] and

[ x1(z)dx = [ x2(x)dz = 1. Let us apply (2.4.14) with ¢(z) = Ax1(Az) and ((y) = Vxa(VA(y —
y*)), with A > 0. For the right hand side of m, we have

s [Tyt = ot =k < [~ Aty

—00

Since supp x1 C [—1,0], lim)_,o fe%g(x)dm =0, so that

"
)l\iir%)r/Rdx /_OO dy(K — e")¢(z)((y) =rK > 0. (2.4.15)

As regards the left hand side of (2.4.14)), we have

- 400 00 2u 2’LL 2u
[T [T (§ﬂ<t,m,y> + 2paaiay<t,x,y> " U2gy2<t,m,y>) M )V R (VA — u*))dy
—+o0 (o]
+/_ dx / ((r -0 - %) g (t,z,y) + k(0 —y) gy (t,z, y)) Ax1(Az)VAx2(VA(y — y*))dy.

We first study the second order derivatives term. Integrating by parts two times we have
+o00 00 y 82
/ dx/ 5@“(%%?4))\)(1()\37)\[\)(2(\5\@ —y"))dy
—0oQ

“+o00
:/ dac/ u(t, 2, y) X (A2)VAxa (VA (Y — y*))dy

= g/mdx/ y+fy) < i\yﬂw*) X1 (@)x2(y)dy.

Since u is bounded and y2 has support in [0, 1], the last term goes to 0 as A tends to 0. For the
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mixed derivative term, since y2(0) = 0,

/+oo o0 62
dx/ POY———1U
oo ox

7y T MO VAIR(VAW —y7)dy

—o [ o |yt m )G )V (VA 5y

= pff/ /y ult, , ) NP1 M)V A (VY = y*))dy
+p0/ dz /Oo (t, 2, ) X (A2) A (VAWY” — y)dy

—)\pa/+oodx/ (

N
+A2pa/_:o dw/o u( % )x’l(w)x’z(y)dy,

which goes to 0 as A tends to 0 with the same arguments as before
Moreover, integrating by parts two times, we have

+o0 2
IR

v
_/ dx/ 737u(t’x’y)AX1(Am) (VAie(VAy = ) + y0G(VA - 4)) ) dy
/+°° dg;/ u(t, z,y) (2)\X1(/\x)>\x’2(\f)\(y _ y*))> dy

~vart [T [ (85025 40 vato) (Wt + 3 (Vi) i) ) do

which again tends to 0 as A goes to 0. We now study the terms in (2.4.14]) which contains the first
order derivatives of u. First, note that

+o0 o] y o
/OO dx/y* (r—5—7>—u

2/ Ox

T y*) G @)xa(y)dy

>/\ 8 S‘@

(t, 2, 1) A1 (A2)Vax2 (VA(y — y7))dy

(t, 2, 9) A1 A) VA2 (VY — ) dy
[ e [T (-0 L)t a0y R (VA — y )y
S

AT [T (A L) (11

=+ y*) X1 (@) x2(y)dy.
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Again, passing to the limit, the last term tends to 0. On the other hand,

—+o00 0 6
/ dx / (0~ y@uu 2, 1) M1 (M) Vaxa (VA®Y — y*))dy
/ g / 0t 2, )Xo O VAo (VA — )y

_ / T / oy gy (t, 2, 1) A (Az)VAx2 (VA — ) dy.

Integrating by parts and doing the usual change of variables we have

—+o00 [e%s) 8
/_ dzx /* &Ha—yu(t,:U,y)>\X1()\fL‘)\f)\X2(\5\(y —y*))dy

400 %)
:_\f/\/ d/ 0 <t,x,y+ ) ! (y)dy,
e | wbu {5 ety x1(x)xs(y)dy

which tends to 0 as A tends to 0, while

— /+OO dx /oo f-@ygu(t x y))\X1(>\93)\5\X2(\5\(Z/ —y"))dy
y oy - ’

—00 *

which is nonpositive, since u is nondecreasing in y. We finally deduce that

+o00o o}
limsup/ dm/ dyLu(t,z,y)o(z)((y) <0, (2.4.16)
A—0 —00 y*
which, together with (2.4.15)), contradicts (2.4.14)). Then, the assertion follows. O

As regards the regularity of the free boundary, we can prove the following result.

Proposition 2.4.6. For any t € [0,T) there exists a countable set N C (0,00) such that
bt~ y) =b(t,y),  yeE(0,00)\N.

Proof. Without loss of generality we pass to the logarithm in the s—variable and we prove the
assertion for the function b(t,y) = Inb(t,y). Fix t € [0,T) and recall that y — b(t,y) is a nonin-
creasing function, so it has at most a countable set of discontinuity points. Let y* € (0,00) be a

continuity point for the maps y — b(t,y) and y — b(t~,y) and assume that

b(t™,y*) < b(t, y"). (2.4.17)
Set € = w. By continuity, there exist yg,y1 > 0 such that for any y € (yo,y1) we have

€ ~ =~ €

bty) > b(ty") = and  B(ET,y) < BT,y + 5
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Therefore, by using (2.4.17)), we get, for any y € (yo,v1),

- 3 .
bt y) > b(ty") = 5 > bt y") + Te> Bty + 7 > bl y).
Now, set b~ = b(t~, y*)+5and bt = l;(t_,y*)—i—% and let (s,z,y) € (0,¢) x (b=,b%) X (yo,y1). Since
t— b(t, -) is nondecreasing, we have x > IN)(t*,y) > I;(s,y), so that u(s,z,y) > ¢(x). Therefore, on
the set (0,t) x (b=,b") x (y0,y1) we have

(£~ ryu(s,9) = ~ Gt (s,2.1) 2 0

This means that, for any nonnegative and C* test functions 6, ¥ and ¢ which have support

respectively in (0,¢), (b=,b") and (yo,y1) we can write
t 00 00 _
[ [~ o [ " an(z -t e o)) 2o
0 —00 y*

By the continuity of the integrands in ¢, we deduce that (£ — r)u(t,-,-) > 0 in the sense of
distributions on the set (b=, b%) x (yo, y1)-

On the other hand, for any (s,z,y) € (£,T) x (b=,b%) x (yo,y1), we have = < b(t,y) < b(s,y),
so that u(s,z,y) = ¥ (z). Therefore, it follows from % + (£ = 7)u < 0 and the continuity of
the integrands that (£ — r)u(t-,-) = (£ — r)(-) < 0 in the sense of distributions on the set
(b, b%) % (30, ).

We deduce that (£—7)1 = 0 on the set (b~,b") x (yo,y1), but it is easy to see that (£L—r)i(z) =

(L —7)(K — €*) = §e* — rK and thus cannot be identically zero in a nonempty open set. O

Remark 2.4.7. It is worth observing that the arguments used in [95] in order to prove the continuity
of the exercise price of American options in a multidimensional Black and Scholes model can be
easily adapted to our framework. In particular, if we consider the t-sections of the exercise region,
that is

& ={(s,y) € (0,00) x [0,00) : P(t;5,y) = ¢(s)},

(2.4.18)
={(s,y) € (0,00) x [0,00) : s < b(t,y)}, tel0,7),

we can easily prove that

& =1{)Eu &=J¢&. (2.4.19)

u>t u<t
However, unlike the case of an American option on several assets, in our case (2.4.19) is not
sufficient to deduce the continuity of the function t — b(t,y).
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2.4.2 Strict convexity in the continuation region

We know that P is convex in the space variable (see Proposition[2.4.1]). In [93] it is also proved that,
in the case of non-degenerate stochastic volatility models, P is strictly convex in the continuation
region but the proof follows an analytical approach which cannot be applied in our degenerate
model. In this section we extend this result to the Heston model by using purely probabilistic
techniques.

We will need the following Lemma, whose proof can be found in the Appendix.

Lemma 2.4.8. For every continuous function s : [0,T] — R such that s(0) = Sy and for every

€ > 0 we have

P( sup |S;—s(t)| <e sup |V =Yy <e] >0.
t€[0,T] t€[0,7]

Theorem 2.4.9. The function s +— P(t,s,y) is strictly convex in the continuation region.

Proof. Without loss of generality we can assume t = 0. We have to prove that, if (s1,y), (s2,y) €
(0,00) x [0,00) are such that (0, s1,¥), (0, s2,y) € C, then

P(Oa 081 + (1 - 0)827y) < HP(O7 Slvy) + (1 - Q)P(O, SQ)y)‘ (2420)

t Yu t
Let us rewrite the price process as SV = selo (r=0="5)dut Jg ov/VudBu sMY, where MY = S}V
and assume that, for example, s; > so. We claim that it is enough to prove that, for e > 0 small

enough,

IP((951 + (1= 0)so) MY > b(t, V)Vt € [0,T) & (01 + (1 — 0)s9) MY € (K — e, K + g)) > 0.
(2.4.21)

In fact, let 7* be the optimal stopping time for P(0, 0s1+(1—0)s2,y). If (0s14+(1—0)s2) M} > b(t,Y})
for every t € [0,T), then we are in the continuation region for all ¢t € [0,7"), hence 7* = T'. Then,
the condition (fs1 + (1 — 0)s2) MY € (K — ¢, K +¢) for £ > 0 small enough ensures on one hand
that s; MY > K, since

SlMg* = (981 + (1 — H)SQ)MS_J* + (1 — «9)(81 — SQ)M}_/*

(1—=0)(s1 —s2)(K —¢)
Os1 4+ (1 —60)sy

>K—¢e+ > K,

for € small enough. On the other hand, it also ensures that soMY. < K, which can be proved with

similar arguments. Therefore, we get

P((K — s M%), =0& (K — s5MY%), > 0) >0,
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which, from a closer look at the graph of the function z — (K — z)4, implies that
Ele™™ (K — (051 + (1 — 0)s2) M%) 4] < OE[e™"™ (K — s1 M%) ]+ (1 — O)E[e™™™ (K — soMY.) 4],

and, as a consequence, ([2.4.20)).
So, the rest of the proof is devoted to prove that (2.4.21)) is actually satisfied.

With this aim, we first consider a suitable continuous function m : [0,7] — R constructed as
follows. In order to simplify the notation, we set s = 0s; + (1 — 0)s2. Note that, for £ > 0 small
enough, we have s = 0s1+(1—60)s2 > b(0,y) +¢ since (0, s1,y) and (0, s2,y) are in the continuation
region C, that is s1, s2 € (b(0,y),00). By the right continuity of the map ¢ — b(¢,y), we know that
there exists ¢ € (0,7') such that s > b(t,y) + 5 for any ¢ € [0,t]. Moreover the function y — b(t, y) is
left continuous and nonincreasing, so there exists 7. > 0 such that s > b(t, z) + § for any z > y —1..

Now, set

1+§-<Kj%—1), 0<t<i,

s i

t

IN

t<T.

Note that m is continuous, m(0) = 1 and, recalling that ¢t — b(¢, y) is nondecreasing and b(t,y) < K,

s+Hi(K+5-s)>s>bty—n)+%5, 0<t
K+52>0b(t,y—mne), t

IN

t,
sm(t) =

|
IA
IA
~

Moreover, by Lemma we know that, for any € > 0,

P| sup [sM/ —sm(t)| <€, sup |Y;—y|<e] >0.
te[0,71) te[0,7T]

Therefore, by applying Lemma with € = min {%, ng}, we have that, with positive probability,
sM} > sm(t) —

2 bty —ne) + 2 2 0(t, 7).

o ™
ol ™

and
sM%Ssm(T)%—%gK—i—s, sM%Zsm(T)—%ZK—a,

which proves (2.4.21)) concluding the proof.

2.4.3 Early exercise premium

We now extend to the stochastic volatility Heston model a well known result in the Black and

Scholes world, the so called early exercise premium formula. It is an explicit formulation of the
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quantity P — P,., where P, = P,.(t, s,y) is the European put price with the same strike price K and
maturity T of the American option with price function P = P(t, s,y). Therefore, it represents the

additional price you have to pay for the possibility of exercising before maturity.

Proposition 2.4.10. Let P.(0,Sp,Yy) be the European put price at time 0 with maturity T and

strike price K. Then, one has

T
P(07 SO7 }/b) = PE(07 S07 YO) - / 677‘8]]2[(658 - TK)l{SSSb(s,YS)}]dS'
0

The proof of Proposition[2.4.10|relies on purely probabilistic techniques and is based on the results
first introduced in [65]. Let Uy = e " P(t, S;,Y;) and Z; = e "p(S;). Since Uy is a supermartingale,

we have the Snell decomposition
U = My — Ay, (2.4.22)

where M is a martingale and A is a nondecreasing predictable process with Ay = 0, continuous

with probability 1 thanks to the continuity of ¢. On the other hand,

t t t
Zy = e UK — )y = Zo — 7"/ e (K — 8y)4ds — / s T s / e ALK (S)
0 0 0
=m + at,

where L (S) is the local time of S in K,

t
my = Z() - / e_rsl(,qu]Ss\/Y;st
0

is a local martingale, and

t ¢ t
a; = —r/ e (K — Sg)4ds — / € "L (oo, k) Ss(r — 0)ds + / e "*dLg (S)
0 0 0

is a predictable process with finite variation and ag = 0. Recall that a; can be written as the sum
of an increasing and a decreasing component, that is a; = a;" + a; . Since (LE); is increasing, we
deduce that the decreasing process (a; ); is absolutely continuous with respect to the Lebesgue
measure, that is

da; < dt.

We denote by k: = k(t, St, Y;) the density of a; w.r.t. dt.

79



Sec. 2.4 - The American put price

We now define
G=U—2;>0.

Thanks to Tanaka’s formula,
t 1 0
G =G =G+ [ Leondto+ 5L,

where LY(() is the local time of ¢ in 0. Therefore,
t 1 0
G =G+ [ Lo - 2) + 3100

t t t
1
= (o +/0 Lie,>0pdMs —/0 1ee,>0pdms —/0 1¢e,>0ydas + §L?(C),

where the last equality follows from the fact that the process A; only increases on the set {(; = 0}.
Then, we can write

t

_ t 1 _ 1
Up = Uy + My — / 14, >0pdas + §L?(<) +ay = Uy + M; + / 1(,=0ydas + iLg(O?
0 0

where M; = fg 1{C5>O}d(Ms — mg) + my is a local martingale. Thanks to the continuity of U; we

have the uniqueness of the decompositions, so
t 1 0
- At = 1{C5:0}das + ELt (C) (2423)
0

This means in particular that fg 1¢¢,—0ydas + 2LY(¢) is decreasing, but LY(¢) is increasing so

N fot 1i¢,—0ydas must be an increasing process and
Lo .
§st (€) € 1y¢g—gyda, < dt.

We define 11, the density of $LY(¢) w.r.t. a; and, by Motoo Theorem (see [41]), we can write
e = u(t, S, Y;). Moreover, let us consider the ¢-sections of the exercise region defined in (2.4.18]).

We can easily prove the following Lemma.

Lemma 2.4.11. For any t € [0,T) we have
gt = tha

and & = {(s,y) € (0,00) x [0,00) : 0 < s < b{t,y*)} # 0, where b{t,y*) = lim, ,+ b(t, ).
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The proof is given in the Appendix for the sake of completeness. Now, let us prove the following

preliminary result.
Lemma 2.4.12. The local time LY(¢) is indistinguishable from 0.

Proof. First of all, note that LY(¢) only increases on the set {(¢,S;,Y;) € OE}. In fact, recall that
L¢ = fg’ 1(y,—z,=q}dL$ for every a > 0 and ¢ > 0, so that

t
/O 1{(S,Ss,ys)eé}dLg - O.

Moreover it is well known that, for any ¢ > 0, LY = lim,_,o L¢, which implies that the measures L¢

weakly converge to LY as a — 0. Then, we can deduce that
LY({(5,5s,Ys) € £}) < liminf LI({(s, S5, ) € }) = 0.
Moreover, thanks to Lemma [2.4.11] we have

08 = {(t,b(t,y),y) : (t,y) € [0,T) x [0,00)} U | J {(5,9) : blt, ) < s < b(t,y™)},
y€D:

where D; is the (numerable) set of the discontinuity points of y — b(t,y) and the union is disjoint.
Thanks to the continuity of P and ¢, it is easy to show that Leb{(¢,b(t,y),y) : (t,y) € [0,T) x
[0,00)} =0, so that Lebd& = 0 for any t € [0,T]. Therefore,

t t
E[L{(¢)] = E[/O L, z,—oydL] = E[/o 1(s,5,,v.)coe1 (5, S5, Ys)k(s, S5, Yy )ds]

t
=/ dS/ dxdy p(s,x,y)k(s, z,y)p(s, z,y) = 0.
0 Es

We can now prove Proposition [2.4.10

Proof of Proposition|2.4.10} Thanks to (2.4.23)) and Proposition |2.4.12| we can rewrite (2.4.22)) as

t t
Ut = Mt + / 1{U,9:Zs}das = Mt + / G_Ts(ﬁ - T)SD(SS)l{SsSb(S,Ys)}dS’
0 0

where the last equality derives from the application of the It6 formula to the discounted payoff Z.

In particular, we have
T
UO = MO = E[MT] = E[UT] —E |:/ e_rs(ﬁ — T)@(Ss)l{ssgb(s’ys)}ds
0

T
= E[UT] — /O S_TSEK(SSS — TK)l{SSSb(s,YS)}]dS-
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The assertion follows recalling that Uy = P(0, Sy, Yo) and E[Ur] = E[Z7] = E[e """ (K — S7)4],
which corresponds to the price P.(0, Sy, Yy) of an European put with maturity 7" and strike price
K. O

2.4.4 Smooth fit

In this section we analyse the behaviour of the derivatives of the value function with respect to the
s and y variables on the boundary of the continuation region. In other words, we prove a weak
formulation of the so called smooth fit principle.

In order to do this, we need two technical lemmas whose proofs can be found in the appendix.

The first one is a general result about the behaviour of the trajectories of the CIR process.

Lemma 2.4.13. For all y > 0 we have, with probability one,
v —y o V) —y
msup —————— = — liminf ————
tlo y/2tInln(1/t) tl0 2tInln(1/t)

The second one is a result about the behaviour of the trajectories of a standard Brownian motion.

li = 0./y.

Lemma 2.4.14. Let (Bt)i>o be a standard Brownian motion and let (t,)nen be a deterministic

sequence of positive numbers with lim,_, t, = 0. We have, with probability one,

lim 1nf —= = —00 (2.4.24)

n—oo n

We are now in a position to prove the following smooth fit result.
Proposition 2.4.15. For any (t,y) € [0,T") x [0,00) we have %P(t,b(t,y),y) = ¢'(b(t,y)).

Proof. The general idea of the proof goes back to [18] for the Brownian motion (see also [83, Chapter
4]). Without loss of generality we can fix t = 0. Note that, for h > 0, since b(0,y) —h < b(0,y), we
have
P(0,6(0,y) — h,y) — P(0,6(0,9),y) _ o(b(0,y) — 1) — (b(0,y))
h h ’
so that, since ¢ is continuously differentiable near b(0, y), %S P(0,b(0,y),y) = &' (b(0,y)).

On the other hand, for h > 0 small enough, since P > ¢ and P(0,b(0,y),y) = ¢(b(0,y)), we get

P(0,5(0,y) + h,y) = P0,0(0,9),y) _ #(b(0,y) +h) = ¢(b(0,y))
h - h ’

so that
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Now, for the other inequality, we consider the optimal stopping time related to P(0,b(0,y) + h,y),

i.e.

m = int{r € 0.7) [ 5PV <y vy AT =it {1 e 0.7) |3 < @ ST,

where MY = S}"Y. Recall that P(0,b(0,y),y) > E(e "™ @(b(0,y)ME,)), so we can write
P(0,5(0,y) + h,y) = P(0,b(0,9),y) _ E(e”"™o((b(0,y) + h)Mz,) = P(0,5(0,),y)

h h
- h
Assume for the moment that
i = .S. 2.4.2
lim 7, = 0, a.s ( 5)
so we have y ”
b(0,y) + h)Mz)) — @o(b(0,y)M;
im o((b(0,y) + h) hh)) p(b(0,y)M3,) _ o (5(0.9).

y b(t, YY) K _ - Y o_ AgY _
Moreover, recall that M7, < b(0.9) TR < 5(0.5) if 7, <T and Mz, = My if 7, = T. Therefore, by

using the fact that ¢ is Lipschitz continuous and the dominated convergence, we obtain

P —-p
hnﬁfoup (O,b(O,y)Jrh,y})L (0,6(0,y),y) < J(b(0,))

and the assertion is proved.
It remains to prove (2.4.25). Since ¢ — b(t,y) is nondecreasing, if M} < b(%(?/’)ylh and Y)Y =y, we

have

b(0,y) _ b(t, YY)
b(0,y) +h = b(0,y) + A’

MY <

so that

. b(0,y)
< inf > MY <« —277 Yy = . 2.4.2
7 < in {t_0| t<b(0,y)+h& p y} ( 6)

We now show that we can find a sequence %, | 0 such that Ytz =0 and Mtyn < 1. First, recall that

with a standard transformation we can write

@ = (r = 8)dt + VYi(\/1 = p2dW; + pdWy), Sp=s >0,

(2.4.27)
dY; = k(6 — Y)dt + o/YidW, Yo=y >0,

where W is a standard Brownian motion independent of W. Set AY = In M. We deduce from
Lemma [2.4.13| that there exists a sequence t, | 0 such that Yti = y Py-a.s. . Therefore, from
(2.4.27) we can write fg” VYZdW, = —£ [ (0 — Y )ds for all n € N. So, we have

tn yy tn _ tn
M=ot [ s i [ a2 [0 v
0 0 0
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Conditioning with respect to W we have

(r — 6)t, Jam ¥ g \/1 — P2 [im N YEAW, 25 (0 - Y )ds

lim inf A =liminf —

n—00 tn n—oo \/fon des \/fOn des \/m \/m

— ), i Yds LV L= Wi ypgs 25 (9 — Y¥)ds

= lim inf — = —00,
noree \/ fn YZds \/ fn des \/ t" YZds \/fg” YZds

where we have used the Dubins-Schwartz Theorem and we have applied Lemma to the

standard Brownian motion T and the sequence 1/ fg” Yy ds which can be considered deterministic.

We deduce that, up to extract a subsequence of t,, we have Ay < 0 and, as a consequence,

My, Y < 1. Therefore, for any any fixed n, there exists h small enough such that My, Y < b(o(y)]rh SO

that, by definition, 7, < t"™. We conclude the proof passing to the limit as n goes to infinity.
O

As regards the derivative with respect to the y variable, we have the following result.
Proposition 2.4.16. If 2k > o2, for any (t,y) € [0,T) x (0,00) we have %P(t, b(t,y),y) =0.

Proof. Again we fix t = 0 with no loss of generality. Since y — P(t,s,y) in nondecreasing, for
any h > 0 we have P(0,b(0,y),y —h) < P(0,b(0,y),y) = ©(b(0,y)) so that P(0,b(0,y),y —h) =
©(b(0,y)). Therefore,

P(07 b(oay)7y — h) — P(07 b(07y)7y)
h

=0,

hence %P(O,b(O,y%y) = 0. On the other hand, since y — P(t,z,y) is nondecreasing, for any
h > 0 we have

P P
h%ignf (0,6(0,y),y + h})b (0,6(0,¥),v) >0,

To prove the other inequality, we consider the stopping time related to P(0,b(0,y),y + h), that is

b(t, YY"
= inf {t € [0,T) | S*HODvHh b(t,Yt“h)} AT = inf {t elo,T)| My*" < W} AT

and we assume for the moment that

li =0. 2.4.28
hli% T ( )
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We have

PO.b(0, ),y + ) — P0,6(0,y).y) B (70 (b0.0)ME™) ) = P(0,5(0,9),9)

h h
© (b(O, y)M3h+h) —(b(0,y)M?,)

]

where the last inequality follows from the fact that ¢ is Lipschitz continuous and b(0,y) < K.

<E|e"™ (2.4.29)

+h
HMy -~ M

9

Now, if the Feller condition 2k0 > o2 is satisfied, we can write

y+h t ¢
MY gy = / / 1 / Vids | elr-0-fi X dst i VYEaB g
Yy 0 9.7V,
Scd VYSdB : . .
The exponential process e —b st+Jo VYSdBs gatisfies the assumptions of the Girsanov Theorem,

so we can introduce a new probability measure P under which the process Wt =W;— fg VY.ds is a

standard Brownian motion. If we denote by E the expectation under the probability P, substituting

in (2.4.29) and using ([2.4.13]) we get

o (r—=6)T y+h . s
P(0,50,y),y +h) = P(0,b(0,y),y) _ ¢ K/ dch /
Y 0

h - h

Yy -
AW,
21/ Y
2 1/2

(r=0)Tpr ryth . Th Yf (r=&Tpg [yth 1
< eh/ ¢ | B / ds < eh/ B[\ /aldC
Y 0 24 /}/SC y 2\/Z

which tends to 0 as h tends to 0.
Therefore, as in the proof of Proposition [2.4.15, it remains to prove that limy|g 7, = 0. In order

to do this, we can proceed as follows. Again, set

1 t t
A =In(M}) = (r — )t — 2/ YYds +/ VYW,
0 0

b(t, YT
m=inflte[0,T) | AV <=2t L) VAT
h { [ ) | t b(O, y)

so that
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~

We deduce from Lemma ([2.4.13]) that, almost surely, there exist two sequences (t,), and (t,)n
which converge to 0 with 0 < ¢, < ¢, and such that

Y =y, and, for t € (t,,t,), Y <y.

In fact, it is enough to consider a sequence (fn)n such that limy o t, = 0 and Y:, < y and define
t, = sup{t € [0,%,) | Y} = y}.

Proceeding as in the proof of Proposition [2.4.15] up to extract a subsequence we can assume
A{ <.

On the other hand, up to extract a subsequence of h converging to 0, we can assume that, almost
surely,

lim sup ‘Yy+h — Yy‘ = lim sup ’Ay+h — Ay‘ = 0.
hi0 tefo, 1] ! ! hi0 tefo,1] ! !

Now, let us fix n € N. For h small enough, there exists § > 0 such that
AV <0, b (ty — 6ty +0).

Then, for any t,, € (t, — 9,tn, +6) N (tn, ), we have at the same time A?{ﬁh < 0 and, since ny <y,
ny+h < y for h small enough. Recalling that ¢t — b(¢,y) is nondecreasing and y — b(t,y) is

nonincreasing, we deduce that
b(En, YIH) > b(0, V") > b(0,1).

Therefore
b(ln, Y7
b(0,y)

and, as a consequence, 7, < t, <, so (2.4.28) follows.

A%H_h <In

2.5 Appendix: some proofs

We devote the appendix to the proof of some technical results used in this chapter.
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2.5.1 Proofs of Section 2.3

Proof of Lemma[2.3.2. Consider 1 > a; > ag > -+ > ay, > -+ > 0 defined by

1 a

1 m-1 ]
/duzl,...,/ —du-
alu am

We have that a,, tends to 0 as m tends to infinity. Let (7y,)m>1, be a family of continuous functions
such that

2 am—1
SUpp m C (@m; am-1), 0 < mm(u) < —, / N (u)du = 1.
um am

|z| Yy
:/ dy/ N (w)du, x eR.
0 0

It is easy to see that ¢, € C2(R), |¢,,| < 1 and ¢ (z) 1 |z| as m — co. Fix ¢t € [0,T]. Applying

1t6’s formula and passing to the expectation we have, for any m € N,

Moreover, we set

E[6n(Y]" — ¥0)] = / [asm( (Ve 20V ds
+Z / Vo) (V) = VY5 ds
Let us analyse the right hand term in (2.5.30). Since |gb;n| < 1, we have

t t
<w [ E[ROT) - ds+r [ BIY - Yilds
0 0

(2.5.30)

t
o [ B [on = Yo - 2] ds
0

On the other hand,

";/E [0V = YY) = VY] ds

<o / I 07 = ¥l 02) = VTPl [ [l (02 = Vol — V2]
<o [mm_ (FaV™) = VY L0 <y —ve<an. 1}]d]
”/E[mrw?— e =i o

< 20 e [(atr) - ] + 220

Observe that, if |z| > ap-1,

||
() > / dy = [7] - amor.
aAm—1
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Therefore, for any m large enough,

t t
By - vill < [ BV - Villds+x [ B0 - v ds
0 0

+ 22 [ 8 [0 - V] + 2

M,

Recall that f,,(y) — f(y) = y locally uniformly and that Y™ has continuous paths. Moreover, since
f2(x) < A(|x|+1) with A independent of n, it is easily to see that for any p > 1 there exists C > 0
independent of n such that

E | sup [V"[P

te[0,7

<C. (2.5.31)

Therefore, by using Lebesgue’s Theorem and recalling that lim,, .~ a,, = 0, we deduce that for

any ¢ > 0 it is possible to choose 7 such that for every n > n
t
By - %l <C | BJYy ~Yil]+3
0

We can now apply Gronwall’s inequality and we deduce that E[|Y;* — Y;|] < 6e®?, so that

lim E[|Y;" — Yy[] =0 (2.5.32)

n—o0

from the arbitrariness of §.
Now, note that

T
sup V)" — V3| < ﬁ/ Yy = Y*[ds + sup
te[0,T] 0 t€[0,T]

t
/0 (Vs — Fu(YT))dW,

The first term in the right hand side of (2.5.33)) converges to 0 in probability thanks to (2.5.32]), so

it is enough to prove that the second term converges to 0. We have

(2.5.33)

/ot(m ~ Y)W ] < </OTE[|\/Z - fn(Ys”)|21d8> 2 (2.5.34)

E | sup
te[0,T]

and
E[[VY:— £ V7)) < 2B ||VYe = VYT + 2B [ VYT = fuY2)P]
< 2E[|Y, = ¥ + 2B |[VYT — fu(V)P)] -

Therefore, we can conclude that (2.5.34]) tends to 0 as n goes to infinity by using (2.5.32)) and the
Lebesgue Theorem so that (2.5.37) is proved.
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As regards (12.3.6)), for every n € N we have

szﬂ/ot(r(s fall5) )d +/fnY” .

/0 (fu (V) — V/Y2)dB,

It is enough to show that the two terms in the right hand side of (2.5.35)) converge to 0 in probability.

Concerning the first term, note that, since ¥ has continuous paths, for every w € €, Yo 1 (w) is

so that

1 T
sup X7 =X < 5 [ I£07) ~ Yilds + sup (2.5.35)
0

te[0,7) t€[0,7]

a compact set and K := {z[d(z, Yjo,r7) < 1} is compact as well. For n large enough, Y™ lies in K,

SO
T T T
/ F2(YT) — F2(Ya)|ds < / P2V — (Y™ ds + / P2 - (Y lds,
0 0 0

which goes to 0 as n tends to infinity, since f2 — f? locally uniformly and f? is a continuous
function.

On the other hand, for the second term in the right hand side of (2.5.35)), we have

LS‘S%]/ T = ] (/OTE[<f<n">—¢Z>2]ds>2

and we can prove with the usual arguments that the last term goes to 0.

2.5.2 Proofs of Section [2.4]

Proofs of Lemma[2.7.8 To simplify the notation we pass to the logarithm and we prove the asser-
tion for the pair (X,Y). We can get rid of the correlation between the Brownian motions with a

standard transformation, getting

dXy = (r =6 — V) dt + VYi(\/1 — p2dW, + pdWy), Xo € R,

dYy = k(0 = Yi)dt + oY, dW, Yo > 0,
where W is a standard Brownian motion independent of W. Moreover, from the SDE satisfied
by Y we deduce fg VY, dW, = % (Yt Yy — fo k(0 — Y, )ds) Conditioning with respect to Y, we
reduce to prove that, for every continuous function m : [0,7] — R such that m(0) = X and for

every € > 0 we have

P ( sup |X; —m(t)| < €] Y) >0, (2.5.36)
te[0,T]
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and

P ( sup |Y; —Yy| < e) > 0. (2.5.37)
te[0,7)

As regards (2.5.36), by using the Dubins-Schwartz Theorem, there exists a Brownian motion W
such that

t
P(Sup x—i—/(r— —E——(G Y))ds—i— y)+vV1—p /\FdW '<6|Y>
t€[0,T] 0 2
:]P<sup V1—p \/?des—fn(t)‘<e|Y>
t€(0,T)
(sup ’\/1— Wf Yuds — )‘<6|Y>
te[0,17] 0

where m(t) = m(t) —x — fot (r—6—2% —£560-Y,))ds— £(Y;—y) is a continuous function which,
conditioning w.r.t. Y, can be considered deterministic. Then, follows by the support
theorem for Brownian motions.
In order to prove , we distinguish two cases. Assume first that Yy = yo > 0 and, for
a > 0, define the stopping time
=inf{t >0|Y; =a}.

Moreover, let us consider the function

VY, ify >,
M=% o
o HysH

and the process (f/t)te[O,T}a solution to the uniformly elliptic SDE
dYy = k(0 — Y)dt + on(Y)dW;, Yo =Y.

It is clear that Y; = fft on the set {t < T%o} so we have, if € < %,

P| sup |Vi—Yo|<e|=P| sup |V; —Yy|<e],
te[0,T] t€[0,T7]

where the last inequality follows from the classical Support Theorem for uniformly elliptic diffusions
(see, for example, [88]).

On the other hand, if we assume Yy = 0, then we can write

P(t:B%]n<e> :P(Tg ZT) +IP’(T§ <T,Vie [Tg,T}Yt<e>.
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Now, if P (Tg < T> > 0, we can deduce that the second term in the right hand side is positive
using the strong Markov property and the same argument we have used before in the case with
Yp # 0. Otherwise, P (Té > T) = 1 which concludes the proof. ]

Proof of Lemma[2.4.11 Let us define & = {(s,y) € (0,00) x [0,00) : s < b(t,y*)}. Note that
& # 0 since b > 0. We first show that th = &. If (s,y) € &, then s < b(t,y") < b(t,y), since
y +— b(t,y) is nonincreasing. Therefore, & C & so that, since & is closed, ETt cé& .

On the other hand, let (s,y) € & and consider the sequence ((Spn,¥yn))n = ((s — 1/n,y — 1/n))y.
Then, (sp,yn) — (s,y) and we prove that (s,,yn) € &, so that (s,y) € & In fact, for each n € N,
we can consider the sequence ((sp k) Yn.k))k>n, = ((s — % + %,y — % + %))k>n We have

1 1 1 1
=s——4+-<s<bt,y) <b(t,y—=+=) =b(t .
Sn,k S n + k S = ( y) = < Yy n + k‘> ( yn,k)
Letting k£ tends to infinity, we get
sn <5 < b(t,yt),

hence (s, yn) € &, and the assertion is proved.
Then, we show that & = &. Note that & is an open set, since the function (s, y) — b(t,y) —s is
lower semicontinuous. Therefore & C ét. Let us now consider an open set A C &. Fix (s,y) € A,

then (s + %, Y+ %) € A for n large enough. Therefore,

1 1
s<s+<b<t,y+> < b(t,y"),
n n

hence (s,y) € &:. O
Proof of Lemma[2.4.15 We have
t t
Y/ —y= /q/ (H—Ysy)ds+0/ VYW,
0

:a\/ywtm/(a YY) ds+a/ (VY& = vg) aw,

so it is enough to prove that, if (H;);>o is a predictable process such that lim; ;o H; = 0 a.s., we

have
s HdWs

m-_J0 "8

tl0 /2tInln(1/t)
This follows by using standard arguments, we include a proof for the sake of completeness. By
using Dubins-Schwartz inequality we deduce that, if f(¢) = y/2tInln(1/t), for ¢ near to 0 we have

/OHdes <Cf (/0 Hfds).
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Let us consider € > 0. For ¢ small enough, we have fg H2ds < et and, since f increases near 0,

t
/ H,dW's
0

f2(et)  etin(l/et)  In(in(1/) +In(1/e))
200 thn(l/t) ° Inln(1/f)

In (In(1/%)) + 13/ In(1/e)
= Inln(1/t) B <1 - In(1/t) 1n1n(1/t)> ’

< Cf (et).

We have

(et

[

where we have used the inequality In(z + h) < In(z) 4+ £ (for z, h > 0). Therefore lim sup, 10 J;( )

<
¢ and the assertion follows. ]
\[

Proof of Lemma[2.4.14) With standard inversion arguments, we can reduce to prove that, for a

sequence t, such that lim, . t, = oo, we have, with probability one,

By
lim su 2 = +o00. 2.5.38
n~>oop V tn ( )

The assertion is equivalent to

By
P ( limsu =~ <c| =0, c >0,
< TL*)OOp V tn B >

that is

P Uﬂ{%gc} =0, ¢>0.

m>1n>m

Therefore, it is sufficient to prove that P (ﬂnzm {3’% < c}) = 0 for every m € N and ¢ > 0. Take,
for example, m = 1 and consider the random variables % and B;" , for some n > 1. Then,
By, By,

ﬁ’ m NN(O, 1),

where N(0,1) is the standard Gaussian law and

CW(&lBM):hA%< t
Vi Vi Vitity, tn’

which tends to 0 as n tends to infinity. We deduce that

By By 2
P(2h <o, 2tn <o) 5 P(Zy < ¢, Zs < ¢) = P(Z; < ),
(\/EC\/TZC> (Z1 < ¢, Zy <c¢) (Z1 <¢)
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where Z; and Z, are independent with Z1, Zy ~ N(0, 1).
Take now m,, € N such that ¢,,, > nt,. Then, we have

B, B; B
t1 7 tn, tmp NN(O, 1)
Vi Vi Vi,

By, By, By, B, tn
Cov , 2|, Cov , L) <y —.
Vi Vem, Ve tm,,

which again tends to 0 ad n tends to infinity. Therefore, we have

and

B By By > 3
P Lle, 2 <e, 2 <) =sP(Z1 <c
(\/tl \/tn \/tmn ( )

with Z; ~ N(0,1). Iterating this procedure, we can find a subsequence (ty, )gen such that ¢,, — oo

and
By
P ﬂ{"kgc} =0
k>1 Vi

By, _

Vi T T

which proves that limsup,,_,
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Part 11

Hybrid schemes for pricing options in
jump-diffusion stochastic volatility

models
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Chapter 3

Hybrid Monte Carlo and tree-finite
differences algorithm for pricing
options in the Bates-Hull-White

model

3.1 Introduction

In this chapter, which is extracted from [27], we focus on the so called Bates-Hull-White model. Fol-
lowing the previous work in [24] 25], we further develop and study the hybrid tree/finite-difference
approach and the hybrid Monte Carlo technique in order to numerically evaluate option prices.
The Bates model [I7] is a stochastic volatility model with price jumps: the dynamics of the
underlying asset price is driven by both a Heston stochastic volatility [58] and a compound Poisson
jump process of the type originally introduced by Merton [77]. Such a model was introduced by
Bates in the foreign exchange option market in order to tackle the well-known phenomenon of the
volatility smile behavior. Here, we assume a possibly stochastic interest rate following the Vasicek
model, and we call the full model as Bates-Hull-White. In the case of plain vanilla European
options, Fourier inversion methods [33] lead to closed-form formulas to compute the price under
the Bates model. Nevertheless, in the American case the numerical literature is limited. Typically,
numerical methods are based on the use of the dynamic programming principle to which one

applies either deterministic schemes from numerical analysis and/or from tree methods or Monte
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Carlo techniques.

The option pricing hybrid tree/finite-difference approach we deal with, derives from applying an
efficient recombining binomial tree method in the direction of the volatility and the interest rate
components, whereas the asset price component is locally treated by means of a one-dimensional
partial integro-differential equation (PIDE), to which a finite-difference scheme is applied. Here,
the numerical treatment of the nonlocal term coming from the jumps involves implicit-explicit
techniques, as well as numerical quadratures.

The existing literature on numerical schemes for the option pricing problem in this framework is
quite poor. Tree methods are available only for the Heston model, see [94], but they are not really
efficient when the Feller condition does not hold. Another approach is given by the dicretization
of partial differential problems. When the jumps are not considered, namely for the Heston and
the Heston-Hull-White models, available references are widely recalled in [24), 25]. In the standard
Bates model, that is, presence of jumps but no randomness in the interest rate, the finite-difference
methods for solving the 2-dimensional PIDE associated with the option pricing problems can be
based on implicit, explicit or alternating direction implicit schemes. The implicit scheme requires
to solve a dense sparse system at each time step. Toivanen [92] proposes a componentwise splitting
method for pricing American options. The linear complementarity problem (LCP) linked to the
American option problem is decomposed into a sequence of five one-dimensional LCP’s problems
at each time step. The advantage is that LCP’s need the use of tridiagonal matrices. Chiarella
et al. [34] developed a method of lines algorithm for pricing and hedging American options again
under the standard Bates dynamics. More recently Itkin [64] proposes a unified approach to handle
PIDE’s associated with Lévy’s models of interest in Finance, by solving the diffusion equation with
standard finite-difference methods and by transforming the jump integral into a pseudo-differential
operator. But to our knowledge, no deterministic numerical methods are available in the literature
for the Bates-Hull-White model, that is, when the the interest rate is assumed to be stochastic.

From the simulation point of view, the main problem consists in the treatment of the CIR dy-
namics for the volatility process. It is well known that the standard Euler-Maruyama discretization
does not work in this framework. As far as we know, the most accurate simulation schemes for the
CIR process have been introduced by Alfonsi [4]. Other methods are available in the literature,
see e.g. [7], but in this chapter the Alfonsi technique is the one we compare with. In fact, in our
numerical experiments we also apply a hybrid Monte Carlo technique: we couple the simulation of

the approximating tree for the volatility and the interest rate components with a standard simula-
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tion of the underlying asset price, which uses Brownian increments and a straightforward treatment
of the jumps. In the case of American option, this is associated with the Longstaff and Schwartz
algorithm [76], allowing to treat the dynamic programming principle.

As already observed in [24] 25], roughly speaking our methods consist in the application of the
most efficient method whenever this is possible: a recombining binomial tree for the volatility and
the interest rate, a standard PIDE approach or a standard simulation technique in the direction
of the asset price. The results of the numerical tests again support the accuracy of our hybrid
methods and besides, we also justify the good behavior of the methods from the theoretical point
of view (see also Chapter [4)).

This chapter is devoted to present in detail the hybrid procedures introduced in [27] to compute
functionals of the Bates jump model with stochastic interest rate. In particular, we consider a
hybrid tree-finite differences procedure which uses a tree method in the direction of the volatility
and the interest rate and a finite-difference approach in order to handle the underlying asset price
process. We also propose hybrid simulations for the model, following a binomial tree in the direction
of both the volatility and the interest rate, and a space-continuous approximation for the underlying
asset price process coming from a Euler-Maruyama type scheme. As regards the theoretical analysis
of the algorithm, we study here the stability properties of the procedure and we refer to Chapter [4]
for an analysis of the rate of convergence of a generalization of this algorithm under quite general
assumptions. We provide numerical experiments which show the reliability and the efficiency of
the algorithms.

The chapter is organized as follows. In Section [3.2] we introduce the Bates-Hull-White model. In
Section we describe the tree procedure for the volatility and the interest rate pair (Section ,
we illustrate our discretization of the log-price process (Section and the hybrid Monte Carlo
simulations (Section [3.3.3). Section is devoted to the hybrid tree/finite-difference method: we
first set the numerical scheme for the associated local PIDE problem (Section , then we apply
it to the solution of the whole pricing scheme (Section and analyze the numerical stability of
the resulting tree/finite-difference method (Section [3.4.3). Section refers to the practical use of

our methods and numerical results and comparisons are widely discussed.
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3.2 The Bates-Hull-White model

We recall that in the Bates-Hull-White model the volatility is assumed to follow the CIR process
and the underlying asset price process contains a further noise from a jump as introduced by
Merton. Moreover, the interest rate follows a stochastic model, which we assume to be described
by a generalized Ornstein-Uhlenbeck (hereafter OU) process. More precisely, the dynamics under
the risk neutral measure of the share price S, the volatility process Y and the interest rate r, are

given by the following jump-diffusion model:

%St = (ry — 0)dt + /Y dZ{ + dHj,
.
dY; = ky (0y — Y;)dt + oy /Y; dZY (3.2.1)

dry = kp (0, (t) — r)dt + 0pdZ]

where ¢ denotes the continuous dividend rate, Sp, Yo, ro > 0, Z%, Z¥ and Z" are correlated Brow-
nian motions and H is a compound Poisson process with intensity A and i.i.d. jumps {Ji}x, that
is

K
Hy=>Jy, (3.2.2)
k=1

K denoting a Poisson process with intensity A. We assume that the Poisson process K, the jump
amplitudes {.J; }» and the 3-dimensional correlated Brownian motion (Z°, ZY, Z") are independent.
As suggested by Grzelak and Oosterlee in [55], the significant correlations are between the noises
governing the pairs (S,Y) and (S, 7). So, as done in [25], we assume that the couple (ZY,Z") is a
standard Brownian motion in R? and Z9 is a Brownian motion in R which is correlated both with
ZY and Z7:

d(Z5,2Y), = prdt and d(Z°,Z"), = padL.

We recall that the volatility process Y follows a CIR dynamics with mean reversion rate ky, long run
variance fy and oy denotes the vol-vol (volatility of the volatility). We assume that 0y, ky, oy > 0
and we stress that we never require in this chapter that the CIR process satisfies the Feller condition
2ry by > 0'52,, ensuring that the process Y never hits 0. So, we allow the volatility Y to reach 0.
The interest rate r; is described by a generalized OU process, in particular 6, is time-dependent
but deterministic and fits the zero-coupon bond market values, for details see [30]. We write the
process r as follows:

re = o Ry + ¢ (3.2.3)
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where

¢ ¢
Ry = —KZT/ Ryds+ Z] and ¢ = roe "' + /@T/ GT(s)e_“T(t_s)ds. (3.2.4)
0 0

From now on we set
z¥ =wt, zr=w?  Z°=p W+ paW? + psW3,
where W = (W1, W2 W3) is a standard Brownian motion in R? and the correlation parameter p3

ps=1/1—pl—p3, pi+p3<1.

By passing to the logarithm X = In S in the first component, by taking into account the above
mentioned correlations and by considering the process R as in (3.2.3))-(3.2.4), we reduce to the
triple (X, Y, R) given by

is given by

dX; = px (Ye, Ry, t)dt + V/Y; (prdW + podW? + psdWE) +dN;, Xo=InSp € R,
dY; = ,u,y(Yt)dt + O’y\/?tthl, Yy > 0, (3.2.5)
th = /LR(Rt)dt + thZ, Ro = 0,

where
1
px(y,rt) = orr + o =0 = Sy, (3.2.6)
py (y) = Ky (Oy —y), (3.2.7)
pR(r) = —kr, (3.2.8)

and Ny is the compound Poisson process with intensity A and the i.i.d. jumps {log(1 + Ji)}«, that
is
K

Ny =) log(1+ Jp),
k=1

K being a Poisson process with intensity A. Recall that K, the jump amplitudes {log(1+ Ji)}; and
the 3-dimensional standard Brownian motion (W1, W2, W?3) are all independent. We also recall

that the Lévy measure associated with N is given by
v(dx) = AP(log(1 + J1) € dx),
and whenever log(1 + Ji) is absolutely continuous then v has a density as well:
v(dr) = v(x)dr = Apiog(14.4,) (7)dz, (3.2.9)
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Plog(1+.,) denoting the probability density function of log(1 + Jy). For example, in the Merton
model [77] it is assumed that log(1 + J;) has a normal distribution, that is

log(1+ Ji) ~ N(u,77°).

This is the choice we will do in our numerical experiments, as done in Chiarella et al. [34]. But
other jump-amplitude measures can be selected. For instance, in the Kou model [69] the law of

log(1 + Jp) is a mixture of exponential laws:

Progi+a) (#) = pAre M Loy + (1= p)A_e™ " Liycqy,

1 4 denoting the indicator function of A. Here, the parameters A+ > 0 control the decrease of the
distribution tails of negative and positive jumps respectively, and p is the probability of a positive
jump.

Given this framework, our aim is to numerically compute the price of options with maturity 7" and
payoff given by a function of the underlying asset price process S. By passing to the transformation

X =1n.S, we assume that the payoff is a function of the log-price process:
European payoff:  ¥(X7),
American payoff:  (¥(Xy))icp0,175

where ¥ > 0. The option price function P(¢,x,y,r) is then given by

T N
European price:  P(t,z,y,r) = ]E(e* Ji (or RS +‘F’S)ds\I/(X§~’x’y’T)>7

I 3.2.10
American price:  P(t,z,y,r) = sup E(e‘ft G +“Ds)d8\IJ(Xi’m’y’T)>, ( )
T€7;7T

where T; 7 denotes the set of all stopping times taking values on [t,T]. Note that we have used
the relation between the interest rate (r;); and the process (Ry)s, see and (3.2.4)). Hereafter,
(xtzyr Yty RUT) denotes the solution of the jump-diffusion dynamic (3.2.5)) starting at time ¢ in
the point (z,y, 7).

3.3 The dicretized process

We first set up the discretization of the triple (X, Y, R) we will take into account.
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3.3.1 The 2-dimensional tree for (Y, R)

We consider an approximation for the pair (Y, R) on the time-interval [0,7] by means of a 2-
dimensional computationally simple tree. This means that we construct a Markov chain running
over a 2-dimensional recombining bivariate lattice and, at each time-step, both components of the
Markov chain can jump only upwards or downwards. We consider the “multiple-jumps” approach
by Nelson and Ramaswamy [79]. A detailed description of this procedure and of the benefits of
its use, can be found in [10, 24, 25]. Here, we limit the reasoning to the essential ideas and to the
main steps in order to set-up the whole algorithm. We start by considering a discretization of the
time-interval [0, 7] in N subintervals [nh, (n+ 1)h], n =0,1,..., N, with h = T/N.

For the CIR volatility process Y, we consider the binomial tree procedure firstly introduced in

[10]. For n =0,1,..., N, consider the lattice

n : n gy 2
In =A{Yr te=01,..,n  With gy = ( Yo + 7(2]‘3 - ”)‘/a Ly %528 h—n)vi>0}- (3.3.11)

Note that y) = Yy, so that Y2 = {Yy}. Moreover, the lattice is binomial recombining and, for n
large, the “small” points degenerate at 0. Let us briefly recall how this lattice arises (see [10] for
all the details). The idea is to reduce to a process with a constant diffusion coefficient. So, let us
consider the process Y = VY. If we (heuristically) apply It6 formula, we get that the dynamics of
Y, is given by
d¥; = uy (Vi)dt + dz)

for a suitable drift coefficient yy = iy (y). The term §dB; gives the foremost contribution to the
local movement of Y;. The standard binomial recombining tree for the Brownian motion lives on
the lattice

g(%—n)\/ﬁ, 0<k<n<A.
Coming back to Y, we get the lattice in (3.3.11). Note that the term ]1{\/70+”7Y(2k7n)\/ﬁ>0} is
inserted in order to deal with invertible functions.

We now define the multiple “up” and “down” jumps: the discretized process can jump just on
two nodes which in turn are not necessarily the closest ones to the starting node. In particular,
for each fixed y;! € V,, we define the “up” and “down” jump by ygj(ilk) and yl::l;?rlz,k)’ ky(n, k) and
kq(n, k) being respectively defined as

ku(n k) =min{k* : k+1<k* <n+1and yf + py(y)h <y}, (3.3.12)

ka(n, k) = max{k* : 0 <k* <k and y} + py (yp)h >y (3.3.13)
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where py is the drift of Y, defined in (3.2.6)), and with the understanding ky(n,k) = n + 1,
respectively kq(n, k) = 0, if the set in the r.h.s. of (3.3.12), respectively (3.3.13]), is empty. The
transition probabilities are defined as follows: starting from the node (n, k) the probability that

the process jumps to ky(n, k) and kg(n, k) at time-step n + 1 are set as
ny DR+ Y = il

n+1 n+1
Yku(nk) = Yka(n,k)

Y (n,k) =0V Al and p)(n,k)=1-p)(n,k) (3.3.14)
respectively. We recall that the multiple jumps and the transition probabilities are set in order to
best fit the local first moment of the diffusion Y. We will see in Chapter [4] that this property will

be crucial in order to study the theoretical convergence of the procedure.
We follow the same approach for the binomial tree for the process R. Forn =0,1,..., N consider

the lattice
Rn={rj}j=01,.n with = (25— n)Vh. (3.3.15)

Notice that ro0 = 0 = Ro. For each fixed 7 € R;,, we define the “up” and “down” jump by means

of ju(n,7) and jg4(n, ) defined by

Ju(n,j) =min{j* : j+1<5° <n+1and r] + pg(ri)h < r;-frl}, (3.3.16)
ja(n,j) = max{j* : 0 < j* <jand rj + pg(ri)h > 7“;7;“ , (3.3.17)

wr being the drift of the process R, see (3.2.8)). As before, j,(n,j) = n+1, respectively jq(n,j) =0,
if the set in the r.h.s. of (3.3.16)), respectively (3.3.17)), is empty and the transition probabilities
are as follows: starting from the node (n, j), the probability that the process jumps to j,(n,j) and

ja(n,j) at time-step n + 1 are set as

’ pr(rh +r? — it _ ’
P, j) =0V —— D A1 and pfi(n,j) =1 - pfi(n,j) (3.3.18)

ju(nzj) ]d(nmj)

respectively.
Figure|(3.1|shows a picture of the lattices ), (left) and R,, (right), together with possible instances

of the up and down jumps.

The whole tree procedure for the pair (Y, R) is obtained by joining the trees built for Y and for
R. Namely, for n =0,1,..., N, consider the lattice

yn X Rn = {(yz,r?)}k,j:0,17.._’n. (3319)
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Figure 3.1: The tree for the process Y (left) and for R (right), showing as the trees may be visited.

Starting from the node (n,k,j), which corresponds to the position (y, r;l) € Vn X Ry, we define

the four possible jumps by means of the following four nodes at time n + 1:

(n+ 1, ku(n, k), ju(n, j)) with probability puu(n.k,j) = py (n, k)pii(n, j),
(n+1,ky(n, k), ja(n,j)) with probability pyq(n,k,j) = pg(n, k‘)pg(n,j), (3:3.20)
(n+1,kq(n, k), ju(n,j)) with probability pg.(n,k,j) = pg(n, k)pf(n,j),
(n+1,kq(n, k), ja(n,7)) with probability pgq(n,k,j) = pzl/(n, k)pg(n,j),

where the above nodes ky(n, k), kq(n,k), ju(n,j), ja(n,j) and the above probabilities pY (n, k),

pY (n, k), pf(n, j), pf(n,j) are defined in (3-3:12)-([3-3.13), (3-3:16)-(-3.17), (3-3.14) and (3:3.18).
The factorization of the jump probabilities in (3.3.20)) follows from the orthogonality property of

the noises driving the two processes. This procedure gives rise to a Markov chain (}Aﬁfl, Rf’z)n:07_,_7 N

that weakly converges, as h — 0, to the diffusion process (Y, Rt);c(o,r) solution to

dYy = py (Y)dt + oy/Ye dW}!, Yy >0,
dR; = ur(Ry) dt +dW7?, Ry = 0.

This can be seen by using standard results (see e.g. the techniques in [79]) and the convergence of
the chain approximating the volatility process proved in [10]. And this holds independently of the
validity of the Feller condition 2ky 6y > 032,.

Details and remarks on the extension of this procedure to more general cases can be found in

[25]. In particular, if the correlation between the Brownian motions driving (Y, R) was not null,
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one could define the jump probabilities by matching the local cross-moment (see Remark 3.1 in

[25]).

3.3.2 The approximation on the X-component

We describe here how we manage the X-component in (3.2.5) by taking into account the tree
procedure given for the pair (Y, R). We go back to (3.2.5)): by isolating v/Y;dW in the second line
and dW}? in the third one, we obtain

dX; = (Ys, Ry, t)dt + p3/Ys AWE + Up—ldYt + po/YidRy + dN, (3.3.21)
Y

with
ply,rit) = px(y,mt) = Zopy (y) = p2/y pr(r) (3.3.22)
=0+ —0— 5y~ Lry(Oy —y) + parer /Y

(ux, py and pg are defined in , and respectively). To numerically solve
(3.3.21]), we mainly use the fact that the noises W3 and N are independent of the processes Y and
R. So, we first take the approximating tree (Y,{’, Rn)nzoylw, ~N—1 discussed in Sectionand we set
(Y, R?)te[O,T} = (f/ﬁ m 1 R}ft m+ 1)sejo,7) the associated time-continuous cadlag approximating
process for (Y, R). Then, we insert the discretization (Y R") for (Y,R) in the coefficients of
(3.321). Therefore, the final process X" approximating X is set as follows: X(’} = Xy and for
t € (nh,(n+1)h] withn=0,1,...,N =1

XP = XDy + n(Yy,, Byy,nh)(t — nh) + pgﬁ(th = Wan)
(3.3.23)

FIL = V) + ooy VP RY = Rl) o+ (Ne = No)

3.3.3 The Monte Carlo approach

Let us show how one can simulate a single path by using the tree approximation for the
couple (Y, R) and the Euler scheme for the X-component.

Let (X’n)nzo,l,mw be the sequence approximating X at times nh, n = 0,1,..., N, by means of
the scheme in (3.3.23): X} = Xy and for t € [nh, (n+ 1)h] withn=0,1,..., N — 1 then

XM= XP 4 u(VR R nh)h + psy/hY R AL

pL o . [om s & ;
+;(erb+1 =Y+ pa YJZ(RZH — R+ (Ntng)h = Nan),
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where p is defined in and Aq,...,Ay denote i.i.d. standard normal r.v.’s, independent
of the noise driving the chain (Y,]Ei) The simulation of N, 1), — Ny is straightforward: one
first generates a Poisson r.v. K}ZH of parameter \h and if K,’;‘H > 0 then also the log-amplitudes
log(l—l—Jl?H) fork=1,..., K;ZH are simulated. Then, the observed jump of the compound Poisson

process is written as the sum of the simulated log-amplitudes, so that

Xhoy= Xh 4 p(VE RE nh)h + psy/hY I Apa

Kt (3.3.24)
FEL R =T + VB Z log(1+ /1),
in which the last sum is set equal to 0 if K;L"H = 0.

The above simulation scheme is plain: at each time step n > 1, one lets the pair (Y, R) evolve
on the tree and simulate the process X by using . We will refer to this procedure as hybrid
Monte Carlo algorithm, the word “hybrid” being related to the fact that two different noise sources
are considered: we simulate a continuous process in space (the component X) starting from a
discrete process in space (the tree for (Y, R)).

The simulations just described will be used in Section in order to set-up a Monte Carlo
procedure for the computation of the option price function (3.2.10). In the case of American
options, the simulations are coupled with the Monte Carlo algorithm by Longstaff and Schwartz in
[76].

3.4 The hybrid tree/finite difference approach

The price-function P(t, z,y,r) in is typically computed by means of the standard backward
dynamic programming algorithm. So, consider a discretization of the time interval [0, 7] into N
subintervals of length h = T/N. Then the price P(0, Xy, Yy, Ro) is numerically approximated
through the quantity Py, (0, Xo, Yo, Ro) backwardly given by

Py(T,z,y,r) =¥(zx) andasn=N —1,...,0,

- —(orr nh,xzy,r y nh, nh,r
Pu(nh,z,y,1) = maX{‘I’(%’)y@ (or w"h)hE(Ph((” + Dh XG50 ’}/(n—i-zl/)h’R(n—l-l)h)) },
(3.4.25)
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for (z,y,7) € R x Ry x R, in which

0 in the European case,
U(x) in the American case.
So, what is needed is a good approximation of the expectations appearing in the above dynamic

programming principle. This is what we first deal with, starting from the dicretized process
(YR, YR R") introduced in Section

3.4.1 The local 1-dimensional partial integro-differential equation

Let X" denote the process in (3.3.23)). If we set
Zh = XP — BL(yh — ¥l = por /YR (RE — Rup),  t € [nh, (n+1)h] (3.4.26)
oy

then we have

dZP = p(Y)l Ry, nh)dt + p3\ /YR dW2, +dN; t € (nh, (n+1)h], (3.4.27)
Zgh - ijlhv

that is, Z" solves a jump-diffusion stochastic equation with constant coefficients and at time nh it

starts from th. Take now a function f: we are interested in computing
E(f(X(nJrl)h) | Xnh =2, Yon =y, Byp = 7”)-

We actually need a function f of all variables (z,y,r) but at the present moment the variable z is
the most important one, we will see later on that the introduction of (y,r) is straightforward. So,
we numerically compute the above expectation by means of the one done on the approximating

processes, that is,
E(f( (n+ )]X’hh:th_y,Rh_r)
= E(f(Z{\ 1y + 2 (Y(Z-H)h Vi) +02\/Y7(R?n+1) ) | 2 =2, Yl =y, Ry, = 1),
in which we have used the process Z" in . Since (Y", R") is independent of the Brownian

noise W3 and on the compound Poisson process N driving Z" in ([3.4.27)), we have the following:

we set
\IIf(Ca z,Yy, T‘) = E(f(z(hn+1)h + C) ’ ZY}LLh =7, Yr?h =Y, R:’LLh = T) (3428)
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and we can write

1 (yh ph ph v h ph (3.4.29)
- E(\Ilf ( v (}/(n—&-l) nh) + p2\/ﬂ(R(n+l)h - Rnh); T, Y, T) ‘ Ynh =Y Rnh = T) .

Now, in order to compute the quantity W ;(¢) in (3.4.28), we consider a generic function g and set
u(t,asy,r) = B(g(Z( 0y) | 28 =2,V =y, R =), t&[nh,(n+1)h].

By (3.4.27)) and the Feynman-Kac representation formula we can state that, for every fixed r € R
and y > 0, the function (¢, z) — u(t, z;y,r) is the solution to

duu(t, z;y, ) + LYu(t, z;y,7) =0 y e Rt € [nh, (n+1)h),

(3.4.30)
u((n+Dh,z3y,7) = g(y) z €R,
where £ is the integro-differential operator
LOu(t, zy,r) = ply,r)0ult, ziy, r) + Sp3y02,u(t, z3y,r)
oo (3.4.31)
[l + ) — ult ) €,

where p is given in (3.3.22) and v is the Lévy measure associated with the compound Poisson
process NN, see (3.2.9). We are assuming here that the Lévy measure is absolutely continuous (in
practice, we use a Gaussian density), but it is clear that the procedure we are going to describe

can be straightforwardly extended to other cases.

Finite-difference and numerical quadrature

In order to numerically compute the solution to the PIDE (3.4.30)) at time nh, we generalize the
approach already developed in [24] 25]: we apply a one-step finite-difference algorithm to the
differential part of the problem coupled now with a quadrature rule to approximate the integral
term.

We start by fixing an infinite grid on the z-axis X = {x; = X + iAz}iez, with Az = x; — 21,
i € Z. For fixed n and given » € R and y > 0, we set u} = u(nh,z;;y,r) the discrete solution of
(3.4.30) at time nh on the point x; of the grid X — for simplicity of notations, in the sequel we do

not stress in u' the dependence on (y, ).

107



Sec. 3.4 - The hybrid tree/finite difference approach

First of all, to numerically compute the integral term in (3.4.31)) we need to truncate the infinite

integral domain to a bounded interval Z, to be taken large enough in order that

/ v(€)d¢ ~ M. (3.4.32)
a

In terms of the process, this corresponds to truncate the large jumps. We assume that the tails of v
rapidly decrease — this is not really restrictive since applied models typically require that the tails
of v decrease exponentially. Hence, we take L € N large enough, set Z = [- LAy, +LAy] and apply
to the trapezoidal rule on the grid X with the same step Ax previously defined. Then, for
& =1Az, l=—L,..., L, we have

L

/+LAZ/ [u(t,x + &) —u(t,z)|v(§)dE = Ax Z (u(t,z+ &) —ult,x)) v(&). (3.4.33)
—LAy I—1I

We notice that x; + & = Xo + (i +)Ax € X, so the values u(t,z; + &) are well defined on the

numerical grid X for any 4,l. These are technical settings and can be modified and calibrated for

different Lévy measures v.

But in practice one cannot solve the PIDE problem over the whole real line. So, we have to
choose artificial bounds and impose numerical boundary conditions. We take a positive integer
M > 0 and we define a finite grid Xy = {z; = Xo + iAz}icy,,, with Ty = {—M, ..., M}, and
we assume that M > L. Notice that for x = x; € Xy then the integral term in splits
into two parts: one part concerning nodes falling into the numerical domain Xj; and another part

concerning nodes falling out of X;. As an example, at time ¢ = nh we have

L

L

Y oulhwi+ Q&) ~ > up(@) = Y, upgv@+ Y,k v(&),

I=—L I=—L L U<L, i+l <M L UL, i+l >M
where 4 stands for (unknown) values that fall out of the finite numerical domain Xj;. This implies
that we must choose some suitable artificial boundary conditions. In a financial context, in [39] it
has been shown that a good choice for the boundary conditions is the payoff function. Although
this is the choice we will do in our numerical experiments, for the sake of generality we assume
here the boundary values outside X to be settled as @] = b(nh,z;), where b = b(t, z) is a fixed
function defined in [0, 7] x R.

Going back to the numerical scheme to solve the differential part of the equation , as

already done in [25], we apply an implicit in time approximation. However, to avoid to solve at
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each time step a linear system with a dense matrix, the non-local integral term needs anyway an
explicit in time approximation. We then obtain an implicit-explicit (hereafter IMER) scheme as
proposed in [39] and [28]. Notice that more sophisticated IMER methods may be applied, see for
instance [29] 87]. Let us stress that these techniques could be used in our framework, being more
accurate but expensive.

As done in [25], to achieve greater precision we use the centered approximation for both first and
second order derivatives in space. The discrete solution u™ at time nh is then computed in terms

of the known value u"*! at time (n + 1)k by solving the following discrete problem: for all i € Jyy,

urtt —yn uly —ul 1, Py —2ul - ul f
% +MX(?/,T)% + §p§ y —tl Ag;2 =1 4 Ag Z (u:irll _u?ﬂ) v(&) = 0.
I=—R
(3.4.34)
We then get the solution u™ = (u",, ..., u?,)T by solving the following linear system
n o __ n+1
A" = Bu"* 4 d, (3.4.35)

where A = A(y,r) and B are (2M + 1) x (2M + 1) matrices and d is a (2M + 1)-dimensional

boundary vector defined as follows.

» The matrix A. From (3.4.34]), we set A as the tridiagonal real matrix given by

1428 —a-—p
a—0p 1428 —a-p
A= ) (3.4.36)
a—pF 1428 —a-p
a—0 1423
with
h 2
— - 4.
« 2Axﬂ(nh7y7r> and /8 2Ax2 P3Y, (3 37)

u being defined in (3.3.22)). We emphasize that at each time step n, the quantities v and x are
constant and known values (defined by the tree procedure for (Y, R)) and then o and § are constant

parameters.
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» The matrix B. Again from (3.4.34), B is the (2M + 1) x (2M + 1) real matrix given by

v(0)—A v(Ax) ... v(LAx) 0
B I+hAz v(—Ax) I/(O.) —A V(Ax) . v(LAx) | (3.4.38)
0 v(—LAz) ... v(-Az) v(0)—A
where [ is the identity matrix and 5
A= v(&)
l=—L

» The boundary vector d. The vector d € R?M*1 contains the numerical boundary values:
d=ay +ay*t, (3.4.39)

with
ap = ((B—a)b™p_1,0,...,0,(B+ )bt € R*MH!

and a?“ € RZM+1 g quch that

( —M—i—1
hAx Z v(z;) b?jll, fori=—-M,...,—M+L—1,
l=—L
(ap™); =< 0 fori=—-M+L,...,.M—1L
L
hAx Z V(xl)b?jll, fori=M-—-L+1,...,M—1,
\ l=M—i+1

where we have used the standard notation b} = b(nh,z;), i € Ju.

In practice, we numerically solve the linear system with an efficient algorithm (see next
Remark [3.5.1)). We notice here that a solution to (3.4.37)) really exists because for 8 # ||, the
matrix A = A(y,r) is invertible (see e.g. Theorem 2.1 in [31]). Then, at time nh, for each fixed
y > 0 and r € R, we approximate the solution = +— u(nh,x;y,r) of on the points x;’s of
the grid in terms of the discrete solution u" = {u] }ic7,,, which in turn is written in terms of the

value u" ! = {u"},c 7, at time (n + 1)h. In other words, we set

u(nh, zi;y,r) =~ ul, i € Iy, where v = (ul)ieg,, solves (3.4.35) (3.4.40)
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The final local finite-difference approximation

We are now ready to tackle our original problem: the computation of the function W¢({;x,y,7) in
allowing one to numerically compute the expectation in . So, at time step n, the
pair (y,r) is chosen on the lattice V,, X Ry: y = 43}, 7 = Ty for 0 < k,7 < n. We call AZ:J the
matrix A in when evaluated in (yi,r7) and d" the boundary vector in at time-step
n. Then, gives

V(G s, yps 7“;1) ~upy ., where u’y = (Uzk’j)iejM solves the linear system
Therefore, by taking the expectation w.r.t. the tree-jumps, the expectation in (3.4.29) is finally

computed on Xy; X YV, X R, by means of the above approximation:

E(f(X(hn+1)h) ’ XT}LLh = T4, Yr?h - 3/]?; RZh = r;l) = u?,k,jv

where u?y . = (uf') ;)i solves the linear system

n n . p n n n
Ak,ju~,k,j = Z pab(na ka])Bf <:‘U + i(yk?i k) ) + pZ\f( ]b+7ij )> +d".
a,be{u,d}

Finally, if f is a function on the whole triple (z,y,r), by using standard properties of the conditional

expectation one gets

E(f(j(( +1)h> Y(}111+1)h’ R?nﬂ)h) | Xﬁh = i, 57,,?;1 - yZ’RZh - 7"?) = uzk,j’

where uy ;= (7'}, ;)ic7,, solves the linear system

Af july
. Pl , n o n n n
= Z{: }pab(”’k’3)3f<x o Wkl — )+ VO Gy =) U szﬂ,j)) +d".
a,be{u,d

(3.4.41)

3.4.2 Pricing European and American options

We are now ready to approximate the function P, solution to the dynamic programming principle
(3.4.25). We consider the discretization scheme (X", V", R") discussed in Section and we use
the approximation for the conditional expectations that have to be computed at each time
step n. So, for every point (z;, y}j,r}‘) € Xy X YV X Ry, by we have

nh,x;,yrr nh,y nh,r? n
E<Ph(( +1)h, X0 5/(n+11§h’R(n+f)h)) & Ui, g
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where u”y ; = ('), ;)ic7,, solves the linear system
Aful =B > pap(n,k, )%
a,be{u,d}
P1
xph((n+1)h Y. +7(y]2HE7llk) yk)+,02\[( ;L:_TILJ J)yka j) yZ:E:Lk)’r;Iij)> +dn
(3.4.42)
We then define the approximated price Py(nh,z,y,r) for (z,y,7) € Xy X Vo X Ry, and n =
0,1,...,N as
ﬁh(T,:Ei,yl]CV,er) =U(z;) andasn=N-—1,...,0:
Bunh s it ) = ma {0 (i), e~ O3 embigy, L
in which a? ;= ({L?’k’j)iejM is the solution to the system in (3.4.42)) with P} re~placed by Py,
Note that the system in (3.4.42) requires the knowledge of the function y — P,((n+ 1)h,z,y,r)

in points x’s that do not necessarily belong to the grid X3;. Therefore, in practice we compute

(3.4.43)

such a function by means of linear interpolations, working as follows. For fixed n, k, j, a, b, we set
L k.j.ab(i), i € T, as the index such that

P1 1 1
i+ 7(:’-/2—?” k) - yk) + p2[( ‘Z)Jrn] ‘;’L) € [xln,k,j,a,b(i)’ xln,k,j,a,b(i)""l)’

with I k,jap(1) = =M if 2+ 22 (ij(}l k) ~ Yi) +r2/u( Z’Lij —r?) < =M and Ik jap(i) +1 =M

yZJr(rlzk) Yr) + p2/y(r nH )y T ™) > M. We set

Jb(n,5)

+ o

1 1
i + oy (yZ;L(n k) yk) + pr( ;Lb_'_nj - r]n) - xln,k,j,a,b(i)
Az '

G jjab(1) =
Note that gy, jap(i) € [0,1). We define

(ja,bph)«n + 1)h7 Zg, Z/Z—F(il k) T;:E;])) = ph((n + 1)h7 xln,k,j,a,b( )s y]r?:—(il k) TZ—EJ ])) ( qn,k,j,a,b(i))

+ Py((n+ 1)h, LI, ian(i)+1s yka(n k) ZJ&J)) Ink,j,a,b (1)
and we set
Pi((n Db+ Lo = u) + oI =T )
— GupP)((n+ 1>h,x“y;§+(; ).
Therefore, starting from , in practice the function ﬂ?:”k’j = (’a?’k‘vj)iGJM in is taken

as the solution to the linear system

AT =B Y pasln ke D @asPi)(n+ Dl gt b (3.444)
a,be{u,d}
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We can then state our final numerical procedure:
Ph(T,xi,y,iV,rjv) =VU(z;) andasn=N—1,...,0:
Py, (nh, z;, Yi,T}) = max {‘/I\l(x,), e~ (o Fenn)hyn }

i,k,j
fﬁkj = (ﬂ?kj)iejM being the solution to the system (|3.4.44)).

Remark 3.4.1. In the case of an infinite grid, that is M = 400, i+ I 1 j«p(1) is a translation:

(3.4.45)

Lk jap(®) = Ingjap(0) +i. So, z; — (Ja,bph)((n + Dh, x;, yﬁiak),r;’ﬁ’j)) is just a linear convex

n+1 n+1 )

combination of translations of z; — Pp((n + 1)h, z;, Yieo (k) T ()

3.4.3 Stability analysis of the hybrid tree/finite-difference method

We analyze here the stability of the resulting tree/finite-difference scheme. To this purpose, we
consider a norm, defined on functions of the variables (x,y,r), which is the uniform norm with
respect to the volatility and the interest rate components (y, ) and coincides with the standard Iy
norm with respect to the direction x (see next (3.4.51)). The choice of the Iy norm allows one to
perform a von Neumann analysis in the component z on the infinite grid X = {z; = Xo+iAz}iez,
that is, without truncating the domain and without imposing boundary conditions. Therefore,
our stability analysis does not take into account boundary effects. This approach is extensively
used in the literature, see e.g. [45], and yields good criteria on the robustness of the algorithm
independently of the boundary conditions.

Let us first write down explicitly the scheme on the infinite grid X = {x;};ez. For a
fixed function f = f(t,z,y,r), we set g = f (in the case of American options) or g = 0 (in the case

of European options) and we consider the numerical scheme given by

Fh(T,:Ui,y,iV,rj-V) :f(T,mi,y,iV,rj-V) andasn=N—1,...,0:

) (3.4.46)
Fh(nhv L, yl?a T;l) = max {g(nha L, ygv r‘?)? ei(arrj +¢nh)hu2k,j}
where u”) . = (uf), ;)iez is the solution to
(n k= Brg)ui g g ; + (L +2Bnp)uly ; — (Qnkj + B )ik
= Z pab(nvkaj) X |:(ja7th)((7’L+ 1)h,$€2,y2:2317k),7";:617]))+
a,be{d,u} ) . (3447)
+hAzx Z V(&) ((TapFn)((n+ 1)h, x4, yZ:r(n,k), TZJ{W))

l
~(JapFn)((n + Db,z yﬁii,mﬂ“?ﬁ,ﬁ))} :
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in which o, 1 ; and 3, ; are the coefficients o and 3 defined in (3.4.37) when evaluated in the pair
(yg,r?). Note that is simply the linear system on the infinite grid, with d" = 0 (no
boundary conditions are needed). Let us stress that in next Remark we will see that, since
Bn,k = 0, a solution to does exist, at least for “nice” functions f. It is clear that the case
g = f is linked to the American algorithm whereas the case g = 0 is connected to the European
one: gives our numerical approximation of the function

B (e—(m- ST RS s+ oads) pop x b yhy, Ré’f")) if g=0,

F(t,z,y,r) = (3.4.48)

sup B (7 TR ), X107 VIV RE)) i g =
T€Ti, T

at times nh and in the points of the grid X x Y, X R,.

The “discount truncated scheme” and its stability

In our stability analysis, we consider a numerical scheme which is a slight modification of (3.4.46)):
we fix a (possibly large) threshold ¢ > 0 and we consider the scheme

Fg(T,xi,yéV,rf) :f(T,ati,y,iV,rjv) andasn=N—1,...,0:

n) _(UTT‘?]I{T?>719}+SOnh)h n }
)

(3.4.49)
F}?(nh7$i7yl?7r?) = max {g(nha xi,y]?,r‘ Ui k,j

with g = f or g = 0, where u”} ; = (u?k]’)iez is the solution to (3.4.47), with (J44F}) replaced by
(TapF) ,‘f ). Let us stress that the above scheme (3.4.46)) really differs from ([3.4.49) only when o, > 0
(stochastic interest rate). And in this case, in the discounting factor of (3.4.49) we do not allow 7‘?
to run everywhere on its grid: in the original scheme (|3.4.46)), the exponential contains the term
'r;‘ whereas in the present scheme (|3.4.49)) we put 7”?]1{@5—19}7 so we kill the points of the grid R,
below the threshold —¢. And in fact, (3.4.49) aims to numerically compute the function

E(e_(U” SRS e gydst )i GDsds)f(T X0 vy R?”) ifg=0
FO(t,x,y,r) = —(or [TRY ds+ [ psd

'Y Sl;dp E(e (or [ Rs (RS9} s+ [, ¢s S)f(7'7 X;t_,gc,y,r,Y:,y’Rf_,r)) if g = f,
7€, T

(3.4.50)
at times nh and in the points of the grid X x )V, x R,. Recall that in practice h is small but
fixed, so that the implemented scheme incorporates a threshold (see for instance the tree given in
Figure . And actually, in our numerical experiments we observe a real stability. However, we
will discuss later on how much one can lose with respect to the solution of .
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Forn = N,...,0, the scheme (3.4.49) returns a function in the variables (x,y,r) € X X YV, X Ry.
Note that Y, x R, C I} x IF, where

I =yt yn] and IF=[rg,r,

that is, the intervals between the smallest and the biggest node at time-step n:

2 2
i = (VI i) Loy oy = (VT GnvR)'
Tg = _n\/ﬁv TZ = n\/ﬁ

As n decreases to 0, the intervals I} and IF are becoming smaller and smaller and at time 0 they
collapse to the single point yJ = Yy and r) = Ry = 0 respectively. So, the norm we are going to
define takes into account these facts: at time nh we consider for ¢ = ¢(t, z,y,r) the norm

1

2

loh,Yn = sup llonh, )l = s (D lo(nh,ziy,r)PAy) T (34.51)
(y,T)GIXXI,IF (y,T)GIXXI,IE 1€E7
In particular,
1/2
1600, )llo = 1900, Yo, Fo)llscay = (3 16w Yo, Ro)PAy) * and
1EZ

1/2
(T, )lIv < sup  [[¢(@i, y, ")) = sup (E \¢($i,y,7”)!2Ay) -
(y,r)ER+XR (y7T)€R+XR €7

We are now ready to give our stability result.

Theorem 3.4.2. Let f > 0 and, in the case g = f, suppose that

sup |f(t,z,y,7)| < yrlf(T,2,y,7)],
te[0,7

for some yp > 0. Then, for every ¥ > 0 the numerical scheme (3.4.49) is stable with respect to the
norm (3.4.51)):

HF;L9(07 )HO < Cé“V’ﬂHFI?(Ta )HN = Cj]y’ﬂHf(T7 ')”Na Vh7 Ay7

where
N T
N AT +09T=30 | onnh N—oo C;’l — 2AT+0 9T — [ et if g =0,
Cr’ =

_3WN N— _[r .
max {’YT, e2AT+ordT—3 00y <Pnhh} %7 C% = max {’YT, AT +ordT— [ ‘Ptdt} ifg=1,

in which ¢ > 0 is such that >, v(§)Ax < Ae. In the standard Bates model, that is o, = 0
and deterministic interest rate ry = @, the discount truncated scheme (3.4.49)) coincides with the

standard scheme (3.4.45)) and the stability follows for (3.4.45)).
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rh
J

EP (nh, x4, y7, ), (Ja, b i ko = Jan D) (0 + l)h,xz,yzzll k) Z‘E} J)) (we have also dropped

the dependence on ). The scheme (3.4.49) says that, at each time step n < N and for each fixed
0<k,5<n,

Proof. In order to simplify the notation, we set g, i= = g(nh,z;,y,r") and, similarly, F

zk]

_(O'TT]T'L]]-{rﬂ>—19}+<Pnh)h n }

ank] = max {ng,jv e J Ui ki (> (3.4.52)

where, according to (3.4.47)), u;', j solves

(an,k,j - Bn,k’)u?—l,k,j + (1 + 2ﬂn,k)u2k,j - (O‘n,k’,j + ﬂn,k)uznﬂ,k,j
= Y palnk,j) <(ja,bFn+1)i,ka,jb +hAZ Y () [Fap ™ ) ivikay — TasF™ i ke ss] ) :

a,be{d,u} 1
(3.4.53)
Let §¢ denote the Fourier transform of ¢ € l3(X), that is,
—isA 0
S0 — Z pse 80 g e R,
2m SEL
i denoting the imaginary unit. We get from ((3.4.53))
((an,k,j - 5n,k)e_i9Az +1+ 26?1# - (an»k»j + ’Bnﬁk)eieAx>SuzJ(6)
(3.4.54)

= <1 +hAz Y v(&) (AT — 1)) > anetduy Pab(1 ks D)F(TapF" )k, 5, (6).

Note that

(e — B )e P27 + 1+ 28, 5 — (i j + Brg)et 727
> ‘%e[(an’k’j _ lgmk)einAx +14+28,% — (an,k,j + %,k)eimﬂ ‘
=14 26p k(1 —cos(fAz)) > 1

for every 6 € [0, 2m) (recall that £, > 0). And since ), v(§)Az < Ac, we obtain

S 0] < (1480 31 —1u(@)) S pan(n b DIFOwsF" )k, 5, (0)

lez a,be{d,u}

<(1+2xeh) D pan(n by DI TapF™ i, 5, (0]
a,be{d,u}

Therefore,

IFup 2 (o.2m) by < (L4 20h) D> pap(n ks DIFTas ™ kg iyl £2((0,270) Leb)
a,be{d,u}
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We use now the Parseval identity [|F¢||r2(j0,27),Leb) = [ ll1(x) and we get

[u jllizey < (L+20ch) D pap(n, kDI (TapF™ ). ko l122)
a,be{d,u}

=(1+2xch) > par(n k DIF )
a,be{d,u}

the first equality following from the fact that i — (J,, bF”H)i’kGJb is a linear convex combination
of translations of i — F; l”,j 1] (see Remark |3 . This gives

—(orr? Lpme )b _
sup [le” I Ty e < (L 2eh)e P sup [ )

0<k,j<n 0<k,j<n+1
and from ([3.4.52)), we obtain

sup([F gy < e sup gl (14 20h)er et sup 5 ).
0<k,j< 0<k,j<n 0<k,j<n-+1

We now continue assuming that g = f, the case g = 0 following in a similar way. So,

sup 1F7 sy < max (vl F(T ), (14 20eh)em ™ =omtt sup  [[F5H ) ).
0<k,j<n 0<k,j<n+1

For n = N — 1 we then obtain

s N ey < max (3 £(T, Ly, (1+ 20ch)em oot (T, ) | )
_— 7]—”

and by iterating the above inequalities, we finally get
N
1FOo = 1P o liacy < max (A7 LF (T, )l (1 -+ 2Ach)NeNorEh=Sms ennh|| 1(T, )| ).

0

Remark 3.4.3. We have incidentally proved that, as n varies, the solution u",w to the infinite
linear system (3.4.47) actually exists and is unique if ||f(T,-)||n < oco. In fact, starting from
equality (3.4.54), we define the function iy, ;(9), 0 € [0,27), by

<(an,k,j - 5n,k>6_i6Ax +1+ 2/871,/6 - (an,k,j + Bn,k)eieAx)wk,j (6)
= (14 hAZ S (@) (5 1)) L e gy Pav(s B )T Fa P )i 3, (0):
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As noticed in the proof of Proposition the factor multiplying 1y, ;(0) is different from zero
because B, > 0. So, the definition of vy ; is well posed and moreover, ¥y, ; € L?([0, 27, ), Leb).

We now set u,"kj as the inverse Fourier transform of 1y, ;, that is,

1 2 X
upy = (0)el2qh 1 e Z.
L,k,j Ay\/ﬂ/o wk,]( )
Straightforward computations give that u'ly fulfils the equation system (3.4.47)).

Of course, Theorem gives a stability property for the scheme introduced in [25] for the
Heston-Hull-White model: just take A = 0 (no jumps are considered).

Back to the original scheme ({3.4.46))

Let us now discuss what may happen when one introduces the threshold ¥. We recall that the
original scheme (3.4.46)) gives the numerical approximation of the function F' in whereas
the discount truncated scheme aims to numerically compute the function FV in .
Proposition below shows that, under standard hypotheses, F? tends to F as ¥ — oo very

fast. This means that, in practice, we lose very few in using (3.4.49) in place of (3.4.46)).

Proposition 3.4.4. Suppose that f = f(t,x,y,r) has a polynomial growth in the variables (x,y,r),

uniformly in t € [0,T]. Let F' and F? with 9 > 0, be defined in (3.4.48)) and (3.4.50)) respectively.
Then there exist positive constants ey and Cr(x,y,r) (depending on (x,y) in a polynomial way and

on 1 in an exponential way) such that for every ¥ > 0
|F(t,z,y,r) — F(t,z,y,7)| < 0,.Cr(z, y,r)e*CTW*xeiM(Tit)P,
for every t € [0,T] and (z,y,7) € R x Ry x R.

Proof. In the following, C' denotes a positive constant, possibly changing from line to line, which

depends on (x,y,r) polynomially in (x,y) and exponentially in r. We have
|F(t,.’E,y,T) - Fﬂ(t,l’,y,’r)’

—or [*RETT r ds —or [P REYTT r ds
< CE < sup |f(u, XL5V" VRV RETY| x e JRS sy <e R e A
t<u<T

(3.4.55)
Set now

0 =inf{s >t : RL" < —9}.
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Notice that {Rs < —0} C {79 < s} C {7—p < T'}. Therefore, one has ]l{RZ,T<ﬂ9} < 1{T§§<T} and

u u u
t’ — t) t7
O'r/t Rsr]l{Rg,r<ﬂ9}ds = /t \UTRST\]I{Rg,r<ﬂ9}dS < Jr]l{Tt,g<T}/t |Ry"|ds.
So we can write

t,
e_UT IS Ry o | |RS"|ds

0< (RLT<—0y %S _ 1<e (b <T} ) 1= <60'T JY IR |ds 1) 1

{rh5<T}
Substituting in (3.4.55)) and applying Holder inequality, we get

|F(t,3§‘,y,’l“) - Fﬂ(t,x,y,rﬂ

—oy “Ré’rl ” d u | pt,r
< CE < sup | f(u, X559 YV RETY|e T ) (RE">—03 (em Ji IR |ds _ 1) ]l{Tt_’:;<T}>

t<u<T
o\ /2
< CE | sup |f(u, XL5vr yhv RLT)[2e20r SRS ds (ear JY RS |ds 1) y
t<u<T
1/2
P (]1{7{’:;<T})
T | pt 1z 1/2
<CE ( sup |f(u, XL%9T YV RET) 2 x elor Ji 1Rs |d5) x P <]l{Tt,r<T})
t<u<T )

1/4
S 1/4 1/2
< CE ( sup | f(u,Xfﬁ’y”“,Yj’y,RfL’T)\‘l) xE (e&fr SRS \ds) X P (]1 {Tt,gd}) . (3.4.56)

t<u<T

The first term in the left hand side of (3.4.56|) is finite since f has polynomial growth in the space
variables, uniformly in the time variable, and by using standard estimates. Also the second term

in (3.4.56]) is finite. This is because, for every ¢ > 0,
E <ecsupts5gT lR?Tl) < 0. (3.4.57)

In fact, recalling that that RY" = pe—rr(s=t) 4 fts e_“"(s_“)dW3, follows from the fact that,
for a Brownian motion W, supy<<r |W;| has finite exponential moments of any order, for every
T > 0. This is true since supy< < [Ws| < supg<s<r Ws + supg<s<r(—Ws) and E(eP*"Poss<r Ws)
< oo for every p > 0. As regards the third term in , note that

P t,r <T)=P( inf R _9 =P( inf —kr(s—t) /S —nr(s—u)dWQ _9
(129 <T) (selﬁ,T] S <=0) <séﬁ,T] (Te +)oe u)< )

o+ re"‘T(Tt)\Q)

S
§IF’< sup ‘/ err AW
t “ 2ftT e2rrudy

s€t,T)

> 9+ re_“T(T_t)) < 2exp (

By inserting the above estimates in (3.4.56[), we get the result.
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Further remarks

As already stressed, the introduction of the threshold —¢ allows one to handle the discount term.
In order to get rid of the discount, a possible approach consists in the use of a transformed function,
as developed by several authors (see e.g. Haentjens and in’t Hout [56] and references therein). This
is a nice fact for European options (PIDE problem), being on the contrary a non definitive tool
when dealing with American options (obstacle PIDE problem). Let us see why.

First of all, let us come back to the model for the triple (X,Y, R), see . The infinitesimal

generator is

1
Liu = (UTT +pr— 06— 52/) Ot + ky (Oy — y)Oyu — KrrOru

1
+5 (yaixu + oy yOp,u+ 02+ 2p10y YO, + 2020/ 35&) (3.4.58)

+o0
+ / fult, =+ & y,7) — ut, 73, 7)] V(€)dE.

—00

We set
G(t,7) = E(emr I e

and we recall several known facts: one has (see e.g. [72])

Gt,r) =e 2 T . At T)=—5 (3.4.59)

Ry

2 2
—ro‘rA(t,T)—;—TQ(A(t,T)—T—f—t)—UK—TA%t,T) 1— e rr(T—1)

and moreover, GG solves the PDE

1
oG — kpx0,G+ —02.G —0,rG =0, te[0,T),r€cR,
2 (3.4.60)

G(T,r)=1.
Lemma 3.4.5. Let L; denote the infinitesimal generator in (3.4.58)). Setw=wu-G~'. Then
ou+ Lyu —ru = G(@tﬂ + Ztﬁ),

where
o 1 — g—kr(T—t)
£t - Et — Oy [P2\/§axﬂ + 67"@] .

i

Proof. Since G depends on ¢ and r only, straightforward computations give

O + Liu — zu =G [&tﬂ + Etﬂ] + 0,G(t,r) [pg\/@(?xﬂ + &ﬂ] + H[@tG — k10, G + %83,,6' — UTT’G] )
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By (3.4.60]), the last term is null. The statement now follows by observing that 9, InG(t,r) =
1_6757-(T7t)
e

(2% o

We notice that the operator L; in Lemma is the infinitesimal generator of the jump-diffusion
process (X,Y, R) which solves the stochastic differential equation as in , with the same
diffusion coefficients and jump-terms but with the new drift coefficients

1 — o—rr(T—1)
px(ty,r) = px(y,r) —or—————p2Vy,  nyly) = nr(y),

T

1— e—nr(T—t)

(1) = intr) = o

Let us first discuss the scheme with ¢ = 0 (European options), which gives the numerical
approximation for the function F in (3.4.48). By passing to the associated PIDE, Lemma m
says that

F(t,z,y,r) = G(t,r)F(t,z,y,7),

where

F(t, x,Y, 7") = E(e_ ftT wstf(T’ Yg,jr,yf’ ?gLy’ E;r))

Therefore, in practice one has to numerically evaluate the function F. By using our hybrid
tree/finite-difference approach, this means to consider the scheme in (3.4.49), with the new co-
efficient @, 1, ; (written starting from the new drift coefficients) but with a discount depending on

_(UTT;LI[{T;L>—L}+§Dnh)h

the (deterministic) function ¢ only, that is, with e replaced by e~ #nrh And

the proof of the Proposition shows that one gets
— N
(0, ) lo < max (yp, e~ 2n=02unP) || £(T, )| .

In other words, by using a suitable transformation, the Furopean scheme is always stable and no
thresholds are needed.

Let us discuss now the American case, that is, the scheme (3.4.46) with ¢ = f, giving an
approximation of the function F' in (3.4.48)). One could think to use the above transformation in
order to get rid of the exponential depending on the process R. Set again
F(t? x? y? T) = G(t7 T)_lF(t7 x? y? T)'

By using the associated obstacle PIDE problem, Lemma suggests that

F(t,z,y,r) = sup E(e J IF (7 X020 YIV R,
T€Ty, T
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with f(t,z,y,r) = G7Y(t,r)f(t,z,y,7). So, in order to numerically compute F, one needs to set
up the scheme (3.4.49) with the new coefficient @, j, with f replaced by f, g = f and with the

—(orr? L e 4 0nn)h ) .
(orrf g >y tonn) replaced by e~#nr. So, again one is able to cancel the

discounting factor e
unbounded part of the discount. Nevertheless, the unpleasant point is that even if || f(7) )|y has
a bound which is uniform in N then ||f(7, )|y may not have because G~1(t,r) has an exponential

containing r, see (3.4.59)). In other words, the unboundedness problem appears now in the obstacle.

3.5 The hybrid Monte Carlo and tree/finite-difference approach

algorithms in practice

The present section is devoted to our numerical experiments. We first summarise the main steps

of our algorithms and then we present several numerical tests.

3.5.1 A schematic sketch of the main computational steps in our algorithms

In short, we outline here the main computational steps of the two proposed algorithms.
First, the procedures need the following preprocessing steps, concerning the construction of the

bivariate tree:

(T1) define a discretization of the time-interval [0, 7] in N subintervals [nh, (n+1)h],n =0,..., N—
1, with h = T'/N;

(T2) for the process Y, set the binomial tree !, 0 < k < n < N, by using (3.3.15), then compute
the jump nodes kq(n, k) and the jump probabilities p} (n, k), a € {u,d}, by using (3.3.12)-
(13.3.13)) and ((3.3.14);

(T3) for the process R, set the binomial tree r}‘, 0 < j < N, by using (3.3.15)), then compute the

jump nodes jy(n, j) and the jump probabilities p{f(n,j), b € {u,d}, by using (3.3.16)-(3.3.17)
and (3.3.18));

(T4) for the 2-dimensional process (Y, R), merge the binomial trees in the bivariate tree (yi,r7),
0<k,7 <n<N,by using (3.3.19)), then compute the jump-nodes (kq,(n, k), jp(n, 7)) and the
transitions probabilities pqp(n, k, j), (a,b) € {d,u}, by using (3.3.20).

The bivariate tree for (Y, R) is now settled. Our hybrid tree/finite-difference algorithm can be

resumed as follows:
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(FD1) set a mesh grid x; for the solution of all the PIDE’s;

(FD2) for each node (y,]gv ,rjv ), 0 < k,57 < N, compute the option prices at maturity for each z;,
1 € Xy, by using the payoff function;

(FD3) for n = N —1,...0: for each (y,7"), 0 < k,j < n, compute the option prices for each
x; € Xy, by solving the linear system ((3.4.44]).

Notice that, at each time step n, we need only the one-step PIDE solution in the time interval
[nh, (n 4+ 1)h]. Moreover, both the (constant) PIDE coefficients and the Cauchy final condition
change according to the position of the volatility and the interest rate components on the bivariate

tree at time step n.

Remark 3.5.1. We observe that in order to compute the option price by the hybrid tree/finite-
difference procedure, in step (FD3) we need to solve many times the tridiagonal system .
This is typically solved by the LU-decomposition method in O(M) operations (recall that the total
number of the grid values x; € Xy is 2M + 1). However, due to the approzimation of the integral
term , at each time step n < N we have to compute the sum

> ariv(&), (3.5.61)

which is the most computationally expensive step of this part of the algorithm: when applied directly,
it requires O(M?) operations. Following the Premia software implementation [8]]], in our numerical
tests we use the Fast Fourier Transform to compute the term and the computational costs
of this step reduce to O(M log M).

We conclude by briefly recalling the main steps of the hybrid Monte Carlo method:
(MC1) let the chain (Y, R") evolve for n =1,..., N, following the probability structure in (T4);

(MC2) generate Aq,..., Ay ii.d. standard normal r.v.’s independent of the noise driving the chain
(V" Rh;

(MC3) generate K}L, ceey K,]LV i.i.d. positive Poisson r.v.’s of parameter A\h, independent of both the
chain (Yh,Rh) and the Gaussian r.v.’s Ay,..., Ay, and for every n = 1,..., N, if K} > 0
simulate the corresponding amplitudes log(1 + J7'),...,log(1 + JI”(}?);

(MC4) starting from X(’} = Xy, compute the approximate values X,’;, 1 <n < N, by using (3.3.24));
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(MC5) following the desired Monte Carlo method (European or Longstaff-Schwartz algorithm [76] in
the case of American options), repeat the above simulation scheme and compute the option

price.

Remark 3.5.2. In Section[3.5.9 we develop numerical experiments in order to study the behavior of
our hybrid methods. Our tests involve also the standard Bates model, that is without any randommness

in the interest rate. Recall that in the standard Bates model the dynamic reduces to
dSy g
= (r—90)dt+ /Yy dZ; + dH;,

Sy (3.5.62)
dY; = Hy((gy — Y;)dt + Uy\/?tdZtY,

with Sg > 0, Yo > 0 and r > 0 constant parameters. We assume a correlation between the two
Brownian noises:

d(z°%,2Y); = pdt, |p| < 1.
Finally, Hy is the compound Poisson process already introduced in S’ection see (3.2.2). We can

apply our hybrid approach to this case as well: it just suffices to follow the computational steps
listed above except for the construction of the binomial tree for the process R. Consequently, we

do not need the bivariate tree for (Y, R), specifically we omit steps (T3)-(T4) and we replace step
(MC1) with

(MC1°) let the chain Y,! evolve forn=1,..., N, following the probability structure in (T2).

And of course, in all computations we set equal to 0 the parameters involved in the dynamics for

r, except for the starting value ro. In particular, we have o, = 0 and @y = rg for every t.

3.5.2 Numerical results

We develop several numerical results in order to assess the efficiency and the robustness of the
hybrid tree/finite-difference method and the hybrid Monte Carlo method in the case of plain vanilla
options. The Monte Carlo results derive from our hybrid simulations and, for American options,
the use of the Monte Carlo algorithm by Longstaff and Schwartz in [76].

We first provide results for the standard Bates model (see Remark and secondly, for the
case in which the interest rate process is assumed to be stochastic, see .

Following Chiarella et al. [34], in our numerical tests we assume that the jumps for the log-returns
are normal, that is,

1
log(1+J1) ~ N (7 = 50 n?), (3.5.63)
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N denoting the Gaussian law (we also notice that the results in [34] correspond to the choice
v = 0). In Section we first compare our results with the ones provided in Chiarella et al. [34].
Then in Section we study options with large maturities and when the Feller condition is not
fulfilled. Finally, Section is devoted to test experiments for European and American options
in the Bates model with stochastic interest rate. The codes have been written by using the C++
language and the computations have all been performed in double precision on a PC 2,9 GHz Intel

Core I5 with 8 Gb of RAM.

The standard Bates model

We refer here to the standard Bates model as in (3.5.62)). In the European and American option
contracts we are dealing with, we consider the following set of parameters, already used in the

numerical results provided in Chiarella et al. [34]:
e initial price Sy = 80,90, 100, 110, 120, strike price K = 100, maturity 7" = 0.5;
e (constant) interest rate r = 0.03, dividend rate = 0.05;

e initial volatility Yy = 0.04, long-mean 0y = 0.04, speed of mean-reversion Ky = 2, vol-vol

oy = 0.4, correlation p = —0.5,0.5;

e intensity A = 5, jump parameters 7 = 0 and n = 0.1 (recall (3.5.63)).

It is known that the case p > 0 may lead to moment explosion, see. e.g. [9]. Nevetheless, we report
here results for this case as well, for the sake of comparisons with the study in Chiarella et al. [34].

In order to numerically solve the PIDE using the finite difference scheme, we first localize the
variables and the integral term to bounded domains. We use for this purpose the estimates for
the localization domain and the truncation of large jumps given by Yoltchkova and Tankov [96].
For example, for the previous model parameters the PIDE problem is solved in the finite interval
[In Sy — 1.59,1In Sy + 1.93].

The numerical study of the hybrid tree/finite-difference method HTFD is split into two cases:

- HTFDa: time steps N; = 50 and varying mesh grid Az = 0.01, 0.005, 0.0025, 0.00125;
- HTFDb: time steps Ny = 100 and varying mesh grid Az = 0.01, 0.005, 0.0025, 0.00125.

Concerning the Monte Carlo method, we compare the results by using the hybrid simulation
scheme in Section that we call HMC. We compare our hybrid simulation scheme with the
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accurate third-order Alfonsi [4] discretization scheme for the CIR stochastic volatility process and
by using an exact scheme for the interest rate. In addition, we simulate the jump component in
the standard way. The resulting Monte Carlo scheme is here called AMC. In both Monte Carlo
methods, we consider varying number of Monte Carlo iterations Nyic and two cases for the number

of time discretization steps iterations:
- HMCa and AMCa: N; = 50 and Nyc = 10000, 50000, 100000, 200000;
- HMCb and AMCb: N; =100 and Nyc = 10000, 50000, 100000, 200000.

All Monte Carlo results include the associated 95% confidence interval.

Table reports European call option prices. Comparisons are given with a benchmark value
obtained using the Carr-Madan pricing formula CF in [33] that applies Fast Fourier Transform
methods (see the Premia software implementation [84]).

In Table we provide results for American call option prices. In this case we compare with the
values obtained by using the method of lines in [35], called MOL, with mesh parameters 200 time-
steps, 250 volatility lines, 2995 asset grid points, and the PSOR method with mesh parameters
1000, 3000, 6000 that Chiarella et al. [34] used as the true solution. Moreover, we consider the
Longstaff-Schwartz [76] Monte Carlo algorithm both for AMC and HMC. In particular

- HMCLSa and AMCLSa: 10 exercise dates, N; = 50 and Ny = 10000, 50000, 100000,
200000;

- HMCLSb and AMCLSDb: 20 exercise dates, Ny = 100 and Ny¢c = 10000, 50000, 100000,
200000.

Tables and refer to the computational time cost (in seconds) of the various algorithms for
p = —0.5 in the European and American case respectively.
In order to make some heuristic considerations about the speed of convergence of our approach

HTFD, we consider the convergence ratio proposed in [40], defined as
Py — Py
4

" 3.5.64
Py Px’ ( )
2

ratio =

where Py denotes here the approximated price obtained with N = N; number of time steps. Recall

that Py = O(N~%) means that ratio = 2¢. Table suggests that the convergence ratio for
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HTDPFbD is approximatively linear. The analysis of the convergence in Chapter 4 will confirm this
heuristic deduction.

We notice that the above argument does not formally allow to state the speed of convergence
of a method knowing its ratio. We will come back on this topic in the next chapter of this thesis.
However, we anticipate here that our theoretical analysis of the convergence confirms the first order
in time rate of convergence of the procedure.

The numerical results in Table show that HTFD is accurate, reliable and efficient for
pricing European and American options in the Bates model. Moreover, our hybrid Monte Carlo
algorithm HMC appears to be competitive with AMC, that is the one from the accurate simula-
tions by Alfonsi [4]: the numerical results are similar in term of precision and variance but HMC is
definitely better from the computational times point of view. Additionally, because of its simplicity,
HMC represents a real and interesting alternative to AMC.

As a further evidence of the accuracy of our hybrid methods, in Figure 3.2 and [3.3] we study
the shapes of implied volatility smiles across moneyness SEO and maturities T using HTFDa with
N; = 50 and Ay = 0.005, HMCa with N; = 50 and Ny¢ = 50000 and we compare the graphs

with the results from the benchmark values CF.
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(a)

p=—0.5 Az HTFDa HTFDb CF Nnc HMCa HMCb AMCa AMCb
0.01 1.1302 1.1302 10000 1.08+0.09 1.11£0.09 1.00£0.09 1.08+0.09
0.005 1.1293 1.1294 50000 1.12+0.04 1.17£0.04 1.07+0.04 1.10£0.04
Sp = 80 0.0025 1.1291 1.1292 1.1293 100000 1.14+£0.03 1.14+0.03 1.1340.03 1.13£0.03
0.00125 1.1291 1.1292 200000 1.13£0.02 1.14+0.02 1.1140.02 1.1240.02
0.01 3.3331 3.3312 10000 3.27+0.17 3.27+0.17 3.194+0.16 3.2240.16
0.005 3.3315 3.3301 50000 3.32+0.08 3.40+0.08 3.2440.07 3.26+0.0
Sp =90 0.0025 3.3311 3.3298 3.3284 100000 3.34+0.05 3.34%+0.05 3.32+0.05 3.331+0.05
0.00125 3.3310 3.3297 200000 3.32+0.04 3.35+0.04 3.284+0.04 3.311+0.04
0.01 7.5245 7.5239 10000 7.464+0.25 7.46+0.25 7.37+£0.24 7.361+0.25
0.005 7.5236 7.5224 50000 7.534+0.11 7.6240.11 7.40+£0.11 7.43£0.11
Sp = 100 0.0025 7.5231 7.5221 7.5210 100000 7.5440.08 7.5240.08 7.53+0.08 7.52+£0.08
0.00125 7.5230 7.5220 200000 7.5040.06 7.5440.06 7.46+0.06 7.501+0.06
0.01 13.6943 13.6940 10000 13.6940.34 13.69+0.34 13.524+0.33 13.484+0.33
0.005 13.6923 13.6924 50000 13.714+0.15 13.814+0.15 13.55+0.15 13.58+0.15
Sp =110 0.0025 13.6918 13.6921 13.6923 100000 13.724+0.11 13.6940.11 13.67+0.11 13.70+£0.11
0.00125 13.6917 13.6920 200000 13.6440.08 13.7140.08 13.63+0.07 13.69+0.08
0.01 21.3173 21.3185 10000 21.40+0.41 21.40+0.41 21.08+0.40 21.03£0.41
0.005 21.3156 21.3168 50000 21.3540.18 21.46+0.19 21.17+0.18 21.21+0.18
Sp = 120 0.0025 21.3152 21.3164 21.3174 100000 21.36+0.13 21.32+0.13 21.29+0.13 21.33£0.13
0.00125 21.3152 21.3163 200000 21.2540.09 21.3340.09 21.264+0.09 21.3340.09
(b)
p=0.5 Az HTFDa HTFDb CF Nnmc HMCa HMCb AMCa AMCDb
0.01 1.4732 1.4751 10000 1.42+40.12 1.40+0.12 1.37+0.12 1.35+0.12
0.005 1.4724 1.4744 50000 1.49+0.06 1.47+0.05 1.40+0.05 1.4240.05
Sp = 80 0.0025 1.4723 1.4742 1.4760 100000 1.48+0.04 1.46+0.04 1.46+0.04 1.49+0.04
0.00125 1.4722 1.4741 200000 1.47+£0.03 1.48+0.03 1.48+0.03 1.48+0.03
0.01 3.6849 3.6859 10000 3.634+0.19 3.634+0.19 3.48+0.19 3.49+0.19
0.005 3.6836 3.6849 50000 3.70+0.09 3.70+0.09 3.57+0.09 3.60+0.09
Sp =90 0.0025 3.6832 3.6847 3.6862 100000 3.67+0.06 3.67+0.06 3.66+0.06 3.71+£0.06
0.00125 3.6832 3.6847 200000 3.66+0.04 3.70+0.04 3.69+0.04 3.68+0.04
0.01 7.6247 7.6245 10000 7.58+0.28 7.58+0.28 7.35+0.28 7.364+0.27
0.005 7.6238 7.6232 50000 7.66+0.13 7.65+0.13 7.47+0.12 7.5240.12
Sp = 100 0.0025 7.6234 7.6229 7.6223 100000 7.6140.09 7.59+0.09 7.58+0.09 7.66+0.09
0.00125 7.6233 7.6228 200000 7.584+0.06 7.6410.06 7.62+0.06 7.61+0.06
0.01 13.4863 13.4835 10000 13.48+0.36 13.48+0.36 13.21+0.36 13.19+0.36
0.005 13.4842 13.4818 50000 13.554+0.17 13.494+0.16 13.274+0.16 13.35+0.16
Sp =110 0.0025 13.4837 13.4814 13.4791 100000 13.474+0.12 13.414+0.12 13.4440.12 13.544+0.12
0.00125 13.4836 13.4813 200000 13.4240.08 13.4940.08 13.47+0.08 13.48+0.08
0.01 20.9678 20.9661 10000 21.0440.44 21.04£0.44 20.67+0.44 20.64£0.43
0.005 20.9659 20.9642 50000 21.0540.20 20.98+0.20 20.71£0.20 20.81+£0.20
Sp = 120 0.0025 20.9655 20.9636 20.9616 100000 20.96+0.14 20.87+0.14 20.92+0.14 21.04+0.14
0.00125 20.9654 20.9635 200000 20.88+0.10 20.96+0.10 20.97+0.10 20.98+0.10

Table 3.1: Standard Bates model. Prices of European call options. Test parameters:
r=20.03, § =0.05, Yy =0.04, 0y =0.04, ky =2, 0y =04, A=5,vy=0,n=0.1, p=
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(a)

p=—0.5 Ax HTFDa HTFDb PSOR MOL Nnic HMCLSa HMCLSb AMCLSa AMCLSb
0.01 1.1365 1.1365 10000 1.03+0.08 1.14+0.09 1.06+0.09 1.03£0.09
0.005 1.1356 1.1358 50000 1.19+0.04 1.14+0.04 1.1840.04 1.1240.04
Sp = 80 0.0025 1.1354 1.1356 1.1359 1.1363 100000 1.15+0.03 1.1340.03 1.13£0.03 1.13£0.03
0.00125 1.1353 1.1355 200000 1.1440.02 1.1440.02 1.14+0.02 1.1440.02
0.01 3.3579 3.3563 10000 3.39+0.15 3.44+0.16 3.384+0.15 3.48+0.16
0.005 3.3564 3.3551 50000 3.46+0.07 3.33+0.07 3.46+0.07 3.324+0.07
Sp =90 0.0025 3.3560 3.3548 3.3532 3.3530 100000 3.35+0.05 3.35+0.05 3.331+0.05 3.361+0.05
0.00125 3.3559 3.3547 200000 3.35+0.03 3.33+0.03 3.351+0.03 3.3440.03
0.01 7.6010 7.6006 10000 7.68+0.23 7.88+0.24 7.63+0.23 7.801+0.24
0.005 7.6001 7.5992 50000 7.754+0.11 7.59+0.10 7.76+0.10 7.53£0.10
Sp = 100 0.0025 7.5997 7.5989 7.5970 7.5959 100000 7.561+0.07 7.61+0.07 7.56+0.07 7.611+0.07
0.00125 7.5996 7.5989 200000 7.58+0.05 7.55+0.05 7.5840.05 7.574+0.05
0.01 13.8853 13.8854 10000 13.90+0.29 14.284+0.30 13.844+0.29 14.10+0.29
0.005 13.8836 13.8842 50000 14.05+0.13 13.89+0.12 14.07+0.13 13.86+0.12
Sp =110 0.0025 13.8832 13.8839 13.8830 13.8827 100000 13.8040.09 13.9140.09 13.84+0.09 13.89+0.09
0.00125 13.8831 13.8838 200000 13.8640.06 13.84+0.06 13.87+0.06 13.83+0.06
0.01 21.7180 21.7199 10000 21.83+0.34 22.07+0.33 21.71£0.30 22.04+0.34
0.005 21.7168 21.7187 50000 21.91+0.15 21.76+0.13 21.90+0.15 21.7240.13
Sp =120 0.0025 21.7166 21.7184 21.7186 21.7191 100000 21.59+0.10 21.78+0.10 21.64+0.10 21.72+0.10
0.00125 21.7165 21.7183 200000 21.684+0.07 21.65+0.07 21.68+0.07 21.67+0.07
(b)
p=0.5 Az HTFDa HTFDb PSOR MOL Nnmc HMCLSa HMCLSb AMCLSa AMCLSb
0.01 1.4817 1.4837 10000 1.32+0.11 1.03+0.09 1.51+0.13 0.6610.08
0.005 1.4809 1.4830 50000 1.51+0.05 1.31£0.05 1.54+0.05 1.47£0.05
Sp = 80 0.0025 1.4807 1.4828 1.4843 1.4848 100000 1.50+0.04 1.50+0.04 1.51£0.04 1.48+0.04
0.00125 1.4807 1.4828 200000 1.50+£0.03 1.4940.02 1.4940.03 1.47£0.02
0.01 3.7134 3.7148 10000 3.8340.19 3.7940.17 3.89+0.19 3.95+0.19
0.005 3.7121 3.7139 50000 3.8140.08 3.70+0.08 3.84+0.08 3.6940.08
Sp =90 0.0025 3.7118 3.7137 3.7145 3.7146 100000 3.69+0.06 3.75+0.06 3.721+0.06 3.7040.06
0.00125 3.7118 3.7137 200000 3.70+0.04 3.71+0.04 3.724+0.04 3.701+0.04
0.01 7.7044 7.7051 10000 7.74+0.26 7.85+0.25 7.964+0.26 7.9940.26
0.005 7.7036 7.7039 50000 7.85+£0.12 7.684+0.11 7.871+0.12 7.684+0.11
Sp = 100 0.0025 7.7033 7.7036 7.7027 7.7018 100000 7.66+£0.08 7.75+0.08 7.651+0.08 7.731+0.08
0.00125 7.7032 7.7036 200000 7.6940.06 7.67+0.05 7.681+0.06 7.69+0.05
0.01 13.6770 13.6756 10000 13.57+0.32 13.98+0.31 13.88+0.32 14.1240.33
0.005 13.6752 13.6742 50000 13.83+0.14 13.67+0.13 13.894+0.14 13.64+0.13
Sp =110 0.0025 13.6747 13.6739 13.6722 13.6715 100000 13.564+0.09 13.74+0.10 13.58+0.10 13.71+0.10
0.00125 13.6747 13.6738 200000 13.654+0.07 13.6540.07 13.64+0.07 13.64+0.07
0.01 21.3668 21.3671 10000 21.45+0.32 21.60£0.35 21.39+£0.33 21.84+0.34
0.005 21.3655 21.3658 50000 21.54+0.15 21.40+0.14 21.61+0.16 21.40+0.13
Sp = 120 0.0025 21.3653 21.3655 21.3653 21.3657 100000 21.26+0.10 21.43+0.10 21.2740.10 21.38+0.10
0.00125 21.3652 21.3653 200000 21.31+£0.07 21.33+0.07 21.31+0.07 21.31+£0.07

Table 3.2: Standard Bates model. Prices of American call options. Test parameters: K = 100, T = 0.5,
r=20.03, § =0.05, Yy =0.04, 0y =0.04, ky =2, 0y =04, A=5,v=0,n=0.1, p=—-0.5,0.5.

Az HTFDa HTDFb Nyvc HMCa HMCb AMCa AMCb CF
0.01 0.09 0.34 10000 0.007 0.16 0.16 0.30

0.005 0.18 0.72 50000 0.36 0.72 0.79 1.51

0.0025 0.46 1.62 100000 0.71 1.44 1.57 3.12 0.001
0.00125 0.84 3.53 200000 1.45 2.95 3.14 6.17

Table 3.3: Standard Bates model. Computational times (in seconds) for European call options in Table
for Sp =100, p = —0.5.
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Az HTFDa HTDFb Nnic HMCLSa HMCLSb AMCLSa AMCLSb
0.01 0.10 0.37 10000 0.09 0.23 0.20 0.45
0.005 0.19 0.77 50000 0.47 1.11 1.01 2.25
0.0025 0.48 1.77 100000 1.07 2.25 2.01 4.57
0.00125 0.95 3.61 200000 1.94 4.55 4.05 8.98

Table 3.4: Standard Bates model. Computational times (in seconds) for American call options in Table
for Sp =100, p = —0.5.

N So=80 Sp =90 So=100 Sg=110 So =120
200 1.919250 1.961063  1.894156  2.299666  2.109026
400 2172836  2.209762  2.556021  1.673541  1.996332
800  1.544849  1.851932  1.463712  2.935697  2.106880

Table 3.5: Standard Bates model. HTFDb-ratio (3.5.64]) for the price of American call options as the
starting point Sy varies with fized space step Az = 0.0025. Test parameters: T = 0.5, r = 0.03, § = 0.05,
Yo=0.04,0=004, k=2,0=04, A=5,v=0,n=0.1, p=—-0.5.
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Figure 3.2:  Standard Bates model. Moneyness vs implied volatility for Furopean call options. Test
parameters: T = 0.5, r = 0.03, § = 0.05, Yy = 0.04, 0y =0.04, ky =2, 0y =04, A=5,v=0,n=0.1,
p=—0.5.
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Figure 3.3: Standard Bates model. Maturity vs implied volatility for European call options. Test parameters:
So = 100, K = 100, r = 0.03, 6 = 0.05, Yo = 0.04, fy = 0.04, ky =2, oy =04, A\=5, v =0, n = 0.1,
p=—0.5.
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Options with large maturity in the standard Bates model

In order to verify the robustness of the proposed algorithms we consider experiments when the Feller
condition 2kyfy > 052/ is not fulfilled for the CIR volatility process. We additionally stress our
tests by considering large maturities. For this purpose we consider the parameters from Chiarella
et al. [34] already used in Section with p = —0.5, except for the maturity and the vol-vol,
which are modified as follows: T'= 5 and oy = 0.7 respectively.

Table reports European call option prices, which are compared with the true values (CF).
In Table we provide results for American call option prices. The settings for the experiments
HTFDa-b, HMCa-b and AMCa-b are the same as described at the beginning of Section [3.5.2
The settings for the experiments in the American case HM CLSa-b and AMCLSa-b are changed

- HMCLSa and AMCLSa: 20 exercise dates, N; = 100 and Ny = 10000, 50000, 100000,
200000;

- HMCLSb and AMCLSDb: 40 exercise dates, Ny = 200 and Nyc = 10000, 50000, 100000,
200000.

In the American case the benchmark values B-AMC are obtained by the Longstaff-Schwartz [76]
Monte Carlo algorithm with 300 exercise dates, combined with the accurate third-order Alfonsi
method with 3000 discretization time steps and 1 million iterations.

The numerical results suggest that large maturities bring to a slight loss of accuracy for HTFD
and HMC, even if both methods provide a satisfactory approximation of the true option prices,
being in turn mostly compatible with the results from the Alfonsi Monte Carlo method. It is worth
noticing that for long maturity 7" = 5 we have developed experiments with the same number of
steps both in time (V) and space step (Az) as for "= 0.5. So, the numerical experiments are not

slower, and it is clear that one could achieve a better accuracy for larger values of NVy.
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p=—0.5 Az HTFDa HTFDb CF Nnic HMCa HMCb AMCa AMCb
0.01 9.0085 8.9457 10000 9.214+0.55 9.09+0.55 8.69+0.53 8.56+£0.51
0.0050 9.0032 8.9405 50000 9.134+0.25 8.9240.24 8.81+0.24 9.04+0.24
So = 80 0.0025 9.0020 8.9392 8.9262 100000 9.01+0.17 8.81+0.17 8.92+0.17 8.88+0.17
0.00125 9.0016 8.9389 200000 8.9940.12 8.9240.12 8.95+0.12 8.90+0.12
0.01 12.7405 12.6520 10000 12.954+0.67 12.954+0.67 12.2940.65 12.154+0.6
0.0050 12.7342 12.6458 50000 12.87+0.30 12.64+0.29 12.4940.29 12.76+0.3
So = 90 0.0025 12.7327 12.6442 12.6257 100000 12.724+0.21 12.50+0.21 12.631+0.21 12.584+0.21
0.00125 12.7323 12.6438 200000 12.714+0.15 12.614+0.15 12.661+0.15 12.614+0.15
0.01 17.0324 16.9176 10000 17.2440.80 17.2440.80 16.434+0.77 16.2940.75
0.0050 17.0254 16.9106 50000 17.184+0.36 16.914+0.35 16.731+0.35 17.034+0.35
Sp = 100 0.0025 17.0237 16.9089 16.8855 100000 17.00+0.25 16.74+0.25 16.91+0.25 16.8440.25
0.00125 17.0232 16.9084 200000 16.994+0.18 16.861+0.18 16.9440.18 16.884+0.18
0.01 21.8149 21.6741 10000 22.04+0.93 22.04+0.93 21.06£0.93 20.91+0.88
0.0050 21.8067 21.6659 50000 21.96+£0.42 21.67+£0.41 21.4340.41 21.8240.41
Sp =110 0.0025 21.8047 21.6639 21.6364 100000 21.76+£0.29 21.47+0.29 21.6940.29 21.5940.29
0.00125 21.8042 21.6634 200000 21.76+£0.21 21.59+0.20 21.7040.20 21.6340.20
0.01 27.0196 26.8539 10000 27.26£1.05 27.26£1.05 26.1241.03 25.9441.01
0.0050 27.0108 26.8452 50000 27.1740.47 26.86+0.46 26.56+0.46 27.0240.47
So =120 0.0025 27.0086 26.8430 26.8121 100000 26.94+0.33 26.63+0.33 26.8940.33 26.78+0.33
0.00125 27.0081 26.8425 200000 26.95+0.23 26.75+0.23 26.8940.23 26.8140.23

Table 3.6: Standard Bates model. Prices of European call options. Test parameters: K = 100, T = 5,
r = 0.03, 6 = 0.05, Yy = 0.04, 0y = 0.04, Ky =2, 0y =07, A\=5,7v=0,n=0.1, p = —-05. Case
2ky by < 0'32/.

p=—0.5 Ay HTFDa HTFDb B-AMC Nnic HMCLSa HMCLSb AMCLSa AMCLSb
0.01 9.8335 9.7978 10000 10.15+0.46 10.20+0.46 10.474+0.47 9.8040.42
0.0050 9.8283 9.7927 50000 9.93+0.20 9.86+0.20 9.89+0.19 9.784+0.19
Sp = 80 0.0025 9.8271 9.7914 9.7907+ 0.04 100000 9.76+0.14 9.6940.13 9.7440.14 9.76+0.13
0.00125 9.8267 9.7911 200000 9.7940.10 9.70+0.09 9.731+0.10 9.7240.09
0.01 14.0801 14.0318 10000 14.58+0.56 14.46+0.55 14.9440.58 14.084+0.51
0.0050 14.0741 14.0258 50000 14.13+0.24 14.144+0.24 14.1940.23 14.1240.23
Sp = 90 0.0025 14.0726 14.0244 14.0030%+ 0.05 100000 13.98+0.16 13.87+0.16 13.94+0.16 13.89+0.16
0.00125 14.0722 14.0240 200000 13.934+0.12 13.914+0.11 13.9440.12 13.96+0.11
0.01 19.0658 19.0075 10000 19.5940.66 19.44+0.63 19.88+0.66 19.13+0.59
0.0050 19.0594 19.0011 50000 19.10+0.27 19.06+0.27 19.261+0.26 19.014+0.26
Sp = 100 0.0025 19.0578 18.9995 18.9632+ 0.05 100000 18.92+0.19 18.88+0.18 18.85+0.19 18.90+0.18
0.00125 19.0574 18.9991 200000 18.80+0.13 18.84+0.13 18.85+0.13 18.924+0.13
0.01 24.7434 24.6788 10000 25.02+0.74 24.84+0.72 25.32+0.72 24.78+0.67
0.0050 24.7364 24.6719 50000 24.79+0.30 24.57+0.29 24.94+0.29 24.7240.29
Sp =110 0.0025 24.7347 24.6701 24.6289+ 0.06 100000 24.5340.21 24.47+0.20 24.50£0.21 24.51£0.20
0.00125 24.7343 24.6697 200000 24.42+40.14 24.45+0.14 24.50£0.15 24.53+0.14
0.01 31.0646 30.9983 10000 30.88+0.74 31.15+0.75 31.18+0.74 31.0440.71
0.0050 31.0577 30.9914 50000 31.10£0.32 30.94+0.31 31.32£0.32 30.984+0.32
Sp =120 0.0025 31.0559 30.9896 30.9052+0.07 100000 30.89+0.23 30.72£0.22 30.70£0.22 30.7240.22
0.00125 31.0555 30.9892 200000 30.72£0.16 30.73£0.16 30.77£0.16 30.8940.15

Table 3.7: Standard Bates model. Prices of American call options. Test parameters: K = 100, T = 5,
r=0.03, § =0.05, Yy =004, 0y =0.04, ky =2, 0y =07, A=5,vy=0,0 =0.1, p=—-0.5. Case

2ry By < 0’%.
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Bates model with stochastic interest rate

We consider now the case of Bates model associated with the Vasiceck model for the stochastic
interest rate. For the Bates model we consider the parameters from Chiarella et al. [34] already

used in Section Moreover, for the interest rate parameter we fix the following parameters:
e initial interest rate ro = 0.03, speed of mean-reversion k, = 1, interest rate volatility o, = 0.2;

e time-varying long-term mean 6,.(¢) fitting the theoretical bond prices to the yield curve ob-

served on the market, here set as P.(0,T) = e~ 0037,

We study the cases
p1=psy =—05 and p2 =pg, = —0.5,0.5.

No correlation is assumed to exist between r and Y. We consider the mesh grid Ay = 0.02, 0.01,
0.005, 0.0025, the case Ay = 0.00125 being removed because it requires huge computational times.
The numerical results are labeled HTFDa-b, HMCa-b, AMCa-b, HMCLSa-b, AMCLSa-b,
their settings being given at the beginning of Section [3.5.2

When the interest rate is assumed to be stochastic, no references are available in the literature.
Therefore, we propose benchmark values obtained by using a Monte Carlo method in which the
CIR paths are simulated through the accurate third-order Alfonsi [4] discretization scheme and the
interest rate paths are generated by an exact scheme. For these benchmark values, called B-AMC,
the number of Monte Carlo iterations and of the discretization time steps are set as Ny = 10 and
N; = 300 respectively. In the American case, B-AMUC is evaluated through the Longstaff-Schwartz
[76] algorithm with 20 exercise dates. All Monte Carlo results report the 95% confidence intervals.

European and American call option prices are given in tables and respectively. Tables
and refer to the computational time cost (in seconds) of the different algorithms in the
European Call case and American Call case respectively. The numerical results confirm the good
numerical behavior of HTFD and HMC in the Bates-Hull-White model as well.
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(a)

psr =—0.5 | Az HTFDa HTFDb B-AMC Numc HMCa HMCb AMCa AMCb
0.02 1.0169 1.0079 10000 1.00+0.09 0.96+0.09 1.0040.09 1.0640.10

0.01 1.0201 1.0188 50000 1.0240.04 0.97+0.04 0.98+0.04 1.0140.04

So = 80 0.0050 1.0199 1.0194 | 1.015340.01 | 100000 1.0040.03 1.0040.03 1.0140.03 1.0340.03
0.0025 1.0197 1.0193 200000 1.0140.02 1.0140.02 1.0240.02 1.0040.02

0.01 3.1172 3.1032 10000 3.05+0.16 3.05+0.16 3.07+0.16 3.14+0.17

0.01 3.1186 3.1137 50000 3.1040.07 3.03+0.07 3.02+0.07 3.09+0.07

So =90 0.0050 3.1174 3.1135 | 3.1008+0.02 | 100000 3.07+0.05 3.08+0.05 3.09+0.05 3.14+0.05
0.0025 3.1174 3.1136 200000 3.0940.04 3.10+0.04 3.1140.04 3.08+0.04

0.02 7.2528 7.2472 10000 7.17+0.24 7.17+0.24 7.2010.24 7.2410.25

0.01 7.2528 7.2479 50000 7.2140.11 7.1840.11 7.1240.11 7.2140.11

So = 100 0.0050 7.2528 7.2480 | 7.2315+0.02 | 100000 7.1840.08 7.2440.08 7.2040.08 7.2740.08
0.0025 7.2528 7.2480 200000 7.2240.05 7.254+0.05 7.2440.05 7.2040.05

0.02 13.4553  13.4565 10000  13.30+0.32  13.30+0.32  13.41+0.33  13.3940.33

0.01 13.4465  13.4440 50000  13.37+£0.15  13.40+0.15  13.27+0.15  13.38+0.15

So =110 0.0050  13.4435  13.4407 | 13.425640.03 | 100000  13.35£0.10  13.46+0.10  13.38+0.10  13.48+0.10
0.0025  13.4432  13.4404 200000  13.40+0.07  13.4740.07  13.43+0.07  13.3940.07

0.02 21.1320  21.1356 10000 20.89+0.40  20.89+0.40  21.08+0.40  20.9940.41

0.01 21.1243  21.1239 50000  21.03+£0.18  21.09+0.18  20.92+0.18  21.03+0.18

So = 120 0.0050  21.1222  21.1214 | 21.107040.04 | 100000  21.01£0.13  21.174£0.13  21.04+0.13  21.17+0.13
0.0025  21.1215  21.1207 200000  21.06+0.09  21.16+0.09  21.1240.09  21.0640.09

(b)

psr =05 | Az HTFDa HTFDb B-AMC Numc HMCa HMCb AMCa AMCb
0.02 1.3459 1.3379 10000 1.2940.11 1.2840.11 1.3240.10 1.4140.11

0.01 1.3482 1.3471 50000 1.3440.05 1.3040.05 1.3240.05 1.3540.05

So = 80 0.0050 1.3479 1.3475 | 1.344640.01 100000 1.3240.03 1.3140.03 1.3440.03 1.3440.03
0.0025 1.3477 1.3473 200000 1.3340.02 1.3440.02 1.3540.02 1.3240.02

0.01 3.7320 3.7233 10000 3.62+0.18 3.62+0.18 3.64+0.18 3.76+0.19

0.01 3.7323 3.7304 50000 3.69+0.08 3.65+0.08 3.64+0.18 3.76+0.19

So =90 0.0050 3.7311 3.7298 | 3.7263+0.02 | 100000 3.66+0.06 3.68+0.06 3.71+0.06 3.73+0.06
0.0025 3.7311 3.7299 200000 3.69+0.04 3.72+0.04 3.73+0.04 3.68+0.04

0.02 8.0100 8.0073 10000 7.83+0.26 7.83+0.26 7.8240.26 8.00+0.27

0.01 8.0112 8.0102 50000 7.92+0.12 7.93+0.12 7.934+0.12 7.9740.12

So =100 | 0.0050 8.0114 8.0107 | 8.0069+0.03 | 100000 7.914+0.08 7.9740.08 7.9940.08 8.02+0.08
0.0025 8.0114 8.0107 200000 7.954+0.06 8.02+0.06 8.00+0.06 7.9540.06

0.02 14.1482  14.1505 10000  13.89+0.35  13.89+0.35  13.88+0.35  14.0740.36

0.01 14.1413  14.1414 50000  14.0140.16  14.0540.16  14.0340.16  14.09+0.16

So =110 | 0.0050  14.1388  14.1388 | 14.132340.03 | 100000  14.01£0.11  14.1040.11  14.12+40.11  14.14+0.11
0.0025  14.1386  14.1386 200000  14.06+0.08  14.17+0.08  14.13+0.08  14.0740.08

0.02 21.6737  21.6772 10000  21.37£0.42  21.37+0.42  21.35+£0.42 21.5140.43

0.01 21.6670  21.6674 50000  21.5040.19  21.5540.19  21.5240.19  21.60+0.19

Sp =120 | 0.0050 21.6651  21.6653 | 21.650140.04 | 100000  21.52-40.13  21.63+0.13  21.64+0.13  21.68+0.14
0.0025  21.6645  21.6646 200000  21.57+0.10  21.71+0.10  21.654+0.10  21.5840.09

Table 3.8: Bates-Hull- White model

. Prices of European call options. Test parameters: K = 100, T =

§ =005 ,7r=003 k=1, 0, =02, Yo =004, 0y =0.04, ky =2, oy =04, A=5, v=0,
psy = —0.5,ps, = —0.5,0.5.
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(a)

psr = —0.5 Az HTFDa HTFDb B-AMC Nnmc HMCLSa HMCLSb AMCLSa AMCLSb
0.02 1.0561 1.0470 10000 0.76£0.07 0.56+£0.06 0.95+0.08 0.82+0.08

0.01 1.0598 1.0588 50000 1.08£0.04 0.91+0.04 1.01£0.04 0.96+0.04

Sp = 80 0.0050 1.0597 1.0596 1.0544+£0.01 100000 1.07£0.03 1.03£0.03 1.07£0.03 1.04+£0.03
0.0025 1.0596 1.0595 200000 1.05£0.02 1.04£0.02 1.07£0.02 1.05+0.02

0.01 3.2511 3.2364 10000 3.284+0.15 3.39+0.16 3.354+0.16 3.07+0.15

0.01 3.2537 3.2493 50000 3.33£0.07 3.21+£0.07 3.25+0.07 3.30+0.07

Sp =90 0.0050 3.2528 3.2494 3.227340.01 100000 3.23+0.05 3.24+0.05 3.27+0.05 3.25+0.05
0.0025 3.2528 3.2495 200000 3.2240.03 3.23+0.03 3.25+0.03 3.24+0.03

0.02 7.6012 7.5952 10000 7.6440.22 7.9940.23 7.80+£0.23 7.68+0.22

0.01 7.6020 7.5976 50000 7.7240.10 7.5840.09 7.61£0.10 7.65+0.10

Sp = 100 0.0050 7.6022 7.5980 7.558940.02 100000 7.5440.07 7.6240.07 7.611+0.07 7.5440.07
0.0025 7.6022 7.5980 200000 7.5440.05 7.5440.05 7.564+0.05 7.60+0.05

0.02 14.1510 14.1524 10000 14.2240.28 14.6140.29 14.35+0.29 14.074+0.28

0.01 14.1443 14.1425 50000 14.2540.13 14.1140.12 14.164+0.12 14.174+0.13

Sp =110 0.0050 14.1420 14.1401 14.0909+0.03 100000 14.034+0.09 14.184+0.09 14.1040.09 14.06+0.09
0.0025 14.1419 14.1399 200000 14.054+0.06 14.0440.06 14.0740.06 14.134+0.06

0.02 22.2466 22.2505 10000 22.3840.32 22.8440.33 22.46+0.32 22.15+0.32

0.01 22.2412 22.2419 50000 22.3540.15 22.2740.14 22.24+40.14 22.2840.14

Sp = 120 0.0050 22.2398 22.2402 22.17364+0.03 100000 22.1240.10 22.2740.10 22.1940.10 22.17+0.10
0.0025 22.2394 22.2397 100000 22.1240.10 22.2740.10 22.19+0.10 22.17+0.10

(b)

psr = 0.5 Az HTFDa HTFDb B-AMC Nnmc HMCLSa HMCLSb AMCLSa AMCLSb
0.02 1.3551 1.3470 10000 1.18+0.09 1.29+40.10 1.124+0.09 0.80+0.08

0.01 1.3576 1.3566 50000 1.35£0.05 1.17£0.04 1.33+£0.05 1.25+0.05

Sp = 80 0.0050 1.3573 1.3570 1.3559+£0.01 100000 1.33£0.03 1.30£0.03 1.33+£0.03 1.2740.03
0.0025 1.3571 1.3569 200000 1.35£0.02 1.31£0.02 1.38+0.02 1.34+0.02

0.01 3.7696 3.7606 10000 3.7240.17 3.784+0.17 3.8240.18 3.7240.17

0.01 3.7705 3.7688 50000 3.86+0.08 3.71+0.08 3.8040.08 3.814+0.08

Sp =90 0.0050 3.7694 3.7685 3.76331+0.02 100000 3.75+0.06 3.74+0.05 3.76+0.05 3.7440.05
0.0025 3.7694 3.7686 200000 3.75+0.04 3.74+0.04 3.80+0.04 3.79+0.04

0.02 8.1285 8.1249 10000 8.12+0.24 8.52+0.26 8.25+0.26 8.15+0.25

0.01 8.1308 8.1301 50000 8.254+0.11 8.084+0.11 8.154+0.11 8.184+0.11

Sp = 100 0.0050 8.1311 8.1308 8.112240.03 100000 8.07+0.08 8.164+0.08 8.1140.08 8.10+0.08
0.0025 8.1312 8.1309 200000 8.08+0.06 8.07+0.06 8.14+0.06 8.16+0.06

0.02 14.4455 14.4468 10000 14.484+0.32 14.8440.33 14.43+0.32 14.51+0.32

0.01 14.4409 14.4414 50000 14.60+0.15 14.404+0.14 14.45+0.14 14.47+0.14

Sp = 110 0.0050 14.4389 14.4395 14.3884+0.03 100000 14.3440.10 14.4740.10 14.3940.10 14.384+0.10
0.0025 14.4388 14.4394 200000 14.354+0.07 14.374+0.07 14.384+0.07 14.484+0.07

0.02 22.2859 22.2893 10000 22.23+0.36 22.8740.39 22.45+0.36 22.29+40.35

0.01 22.2815 22.2827 50000 22.5040.17 22.2940.16 22.2740.16 22.28+0.16

Sop = 120 0.0050 22.2802 22.2813 22.2039+£0.04 100000 22.1740.12 22.3140.12 22.2440.12 22.2240.12
0.0025 22.2798 22.2808 200000 22.1740.08 22.17+40.08 22.17+0.08 22.32+0.08

Table 3.9: Bates-Hull-White model. Prices of American call options. Test parameters: K = 100, T = 0.5,
0 =0.05, 79 =003, k =1, 0, =02, Y5 =004, 0y =004, ky =2, 0y =04, A=5,~v=0, n=0.1,
psy = —0.5,ps, = —0.5,0.5.
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Az HTFDa HTDFb Nyc HMCa HMCb AMCa AMCb
0.02 2.77 22.95 10000 0.13 0.25 0.36 0.48
0.01 6.15 48.17 50000 0.66 1.35 1.11 2.48
0.005 12.12 99.19 100000 1.37 2.56 1.82 4.99
0.0025 27.61 204.88 200000 2.56 5.08 3.70 9.96

Table 3.10: Bates-Hull-White model. Computational times (in seconds) for European call options in Table
[5-§ for So = 100, ps, = —0.5.

Az HTFDa HTDFb Nnic HMCLSa HMCLSb AMCLSa AMCLSb
0.02 2.77 23.10 10000 0.28 0.43 0.40 0.62
0.01 6.39 48.65 50000 0.80 1.79 1.30 2.72
0.005 12.50 99.85 100000 1.91 3.89 3.02 6.15
0.0025 27.92 205.60 200000 4.03 8.11 5.20 10.75

Table 3.11: Bates-Hull-White model. Computational times (in seconds) for American call options in Table
[5-9 for Sp =100, ps, = —0.5.
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Chapter 4

Weak convergence rate of Markov
chains and hybrid numerical schemes

for jump-diffusion processes

4.1 Introduction

This chapter is devoted to the study of the weak convergence rate of numerical schemes allowing one
to handle specific jump-diffusion processes which include the Heston and Bates models in the full
parameters regime. We generalize the hybrid tree- finite difference method described in Chapter
for the computation of European and American options in the stochastic volatility context and
we study the rate of convergence. Let us mention that, under these models, the literature is rich
in numerical methods but, as far as we know, poor in results on the rate of convergence, with the
exception of the papers [4, [6 23, O8], all of them either dealing with schemes written on Brownian
increments or requiring restrictions on the Heston diffusion parameters. So, we first study the
convergence rate of tree methods and then we tackle the hybrid procedure.

Tree methods rely heavily on Markov chains. So, in the first part (Section we study the rate

at which a sequence of Markov chains weakly converges to a diffusion process (Y;).(o,r) solution to
dYy = py (Yy)dt + oy (Yz)dWy.

In this framework, the weak convergence is well known to be governed by the behaviour of the

local moments up to order 3 or 4 (see e.g. [89]). In order to get the speed of convergence, we
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need to stress such requests, making further but quite general assumptions on the behaviour of the
moments, and in Theorem [4.3.1| we prove a first order weak convergence result. As an application,
we give an example from the financial framework: we theoretically study the convergence rate of the
tree approximation proposed in [10] for the CIR process (and described in Section . Several
trees are considered in the literature, see e.g. [36], 59] [91], but all of them work poorly from the
numerical point of view when the Feller condition fails. Our result for the tree in [I0] (Theorem
works in any parameter regime. Recall that in equity markets, one often requires large values
for the vol-vol o whereas in interest rates context, o is markedly lower (see e.g. the calibration
results in [44] and in [30] p. 115, respectively). So, a result in the full parameter regime is actually
essential. We stress that our convergence Theorem 4.3.1]is completely general and may in principle
be applied to more general trees constructed through the multiple jumps approach by Nelson and
Ramaswamy [79] or also to other cases, e.g. the recent tree method developed in [2].

In the second part (Section , we link to (Y)icpo,7] @ jump-diffusion process (X¢).e[o,7) which
evolves according to a stochastic differential equation whose coefficients only depend on the process
(Yo)tepo,r):

dX; = px (Ya)dt + ox (Y)dB, + vx (Y)dH,,

where H is a compound Poisson process independent of the 2-dimensional Brownian motion (B, W).
So, the pair (Xi,Y:)epo,7) evolves following a Stochastic Differential Equation (hereafter SDE)
with jumps. Given a function f, we consider the numerical computation of E[f(Xp,Yr)] or
sup,e7; - E[f (X7, Y7)] through a method (Section, which works backwardly by approximating
the process Y with a Markov chain and by using a different numerical scheme for solving a (local)
PIDE allowing us to work in the direction of the process X. Then (Section , in Theorem
4.4.1] we give a general result on the rate of convergence of the hybrid approach. We stress that
the approximating algorithm is not directly written on a Markov approximation, so one cannot
extend the convergence result provided in the first part of the chapter. We then study the stability
and the consistency of the hybrid method, but in a sense that allows us to exploit the probabilistic
properties of the Markov chain approximating the process Y.

It is worth mentioning that the test functions on which we study the rate of convergence are
smooth. In fact, there is a strict connection between such hybrid schemes and the use of a discrete
noise in the approximation procedure. This means that we cannot use regularizing arguments a
la Malliavin in order to relax the smoothness requests, as it can be done when the approximation

algorithm is based on the Brownian noise (see the seminal paper [16] or the recent [6] for the
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Heston model) or on a noise having at least a “good piece of absolutely continuous part” (Doeblin’s
condition, see [14]).

We then consider two possible finite-difference schemes (Section [1.4.3)) to handle the (local) PIDE
related to the component X: an implicit in time/centered in space scheme (Section and an
implicit in time/upwind in space scheme (Section . In both cases, the numerical treatment of
the nonlocal term coming from the jumps involves implicit-explicit techniques, as well as numerical
quadratures. We apply the convergence Theorem and we obtain that the hybrid algorithm
has a rate of convergence of the first order in time and of a order in space according to the chosen
numerical scheme. As an application, we give the weak convergence rate of the hybrid procedure
written on the Heston and on the Bates model for pricing European options (Section . Finally,

in Section [4.6] we give a theoretical result on the convergence rate in the case of American options.

4.2 Notation

In this section we establish the notation which will be used in this chapter. Let d € N* = N\ {0}.

e For a multi-index | = (I1,...,l5) € N% we define |I| = Z;.lzl l; and for y € R% we define
a; = 8;11 e 850; and y! = yll1 .- -yé‘i. Moreover, we denote by |y| the standard Euclidean norm in R¢
and for any linear operator A : R? — R? we denote by |A| = supjy|=1 | Ay the induced norm.

e ILP(RY dm) denotes the standard LP-space w.r.t. the measure m on (R%, B,), By denoting the
Borel o-algebra on R? and we set | - | L»(Rd,dm) the associated norm. The Lebesgue measure is
denoted through dx.

e Let D C R? be a domain (possibly closed) and ¢ € N. C%(D) is the set of all functions on D
which are ¢-times continuously differentiable. We set Cgol(D) the set of functions g € C'9(D) such
that there exist C,a > 0 for which

0Lg(y)| < CA+1y*), yeD, |I|<q

For [a,b] C RT, we set CgoL[a,b] (D) the set of functions v = v(t,y) such that v € Cl9/214([a, b) x D)

and there exist C, ¢ > 0 for which

sup [0fdo(t,y)| < C(1+1yl°),  yeD, 2k+|| <q.
tela,b)

For brevity, we set C(D) = C(D), Cpo1(D) = Cgol(D) and Cpol[a,4(D) = C’gol (a4] (D). We also
need another functional space, that we call Cg’gl(]Rm,D), pe[l,0], g e NymeN*: g=g(z,y) €
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Coa(R™ D) if g € Cf |(R™ x D) and there exist C, ¢ > 0 such that

18049, 9| iom ) < CA+1yl7), U]+ < q.

Similarly as above, we set C?'% . (R™, D) the set of the function v € C?

pol,[a,b] pol,[a,b] (Rm X D) such that

sup [0F 0L Ov(t, -, y)|io@mar) < C(L+ [y, 2k + ||+ 1] < q.

t€(a,b)
If [a,b] = [0,T7], to simplify the notation, we set C’zol 0.7] (D) = C’f)OLT(D) and Cg’gl 0.7] (D) =
Cporr(P)-

e For fixed Xo = (Xo1,...,X0q) € R? and Az = (Azy,...,Azy) € (0,+00)? (spatial step), X =
{r = (Xo1+i1Am1, ..., Xog+i4Az4) };ez¢ denotes a discrete grid in RZ. For p € [1, oc], we set [,(X)
the discrete I,-space of the functions ¢ : X — R with the norm ||, = (3_,cx [¢(2)[PAzy - -- Axg)'/p
if p € [1,00) and |¢|o = sup,ex ()] if p = co. Moreover, for a linear operator I' : [,(X) — [,(X),
the induced norm is denoted by [I'[, = supj, <1 [I'¢|p. And for a function g : R?Y — R, we set
lg|p the I,(X) norm of the restriction of g on X. When d = 1, we identify (p(x))zcx with (i)icz
through ¢; = (X0 + iAz), i € Z.

e [P(Q) is the short notation for the standard LP-space on the probability space (2, F,P), on
which the expectation is denoted by E. We set || - ||, the norm in LP(Q).

4.3 First order weak convergence of Markov chains to diffusions

Let d € N* and D C R? be a convex domain or a closure of it. On a probability space (2, F,P),

we consider a d-dimensional diffusion process driven by
dY; = py (Y)dt + oy (Yy)dWr, Yoe D, (4.3.1)

where W is a /-dimensional standard Brownian motion. From now on, we set ay = oyoy, the

notation x denoting transpose. We recall that the associated infinitesimal generator is given by
1
A= 5Tr(aypj) + py - Vy, (4.3.2)

where Tr denotes the matrix trace, D; and V, are, respectively, the Hessian and the gradient

44'77

operator w.r.t. the space variable y and the notation stands for the scalar product.

Hereafter, we fix T'> 0, f : D — R and we define

ut,y) = E[f(Yz")],  (t,y) € [0,T] x D, (4.3.3)
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where Y'Y denotes the solution to the SDE in (4.3.1)) that starts at ¢ in the position y. We do
not enter in specific requests for the diffusion coefficients or for f, we just ask that the following

properties are met:
(a) py has polynomial growth;

(b) for every (t,y) € [0,T] x D there exists a unique weak solution (YY) set,r) of (4.3.1) such
that P(Vs € [t,T], Y'Y € D) =1,

(c) the function u in (4.3.3)) solves the PDE

9% Au=0, in[0,T)x D,

’U,(T, y) = f(y>7 in D.

(4.3.4)

The above proverties (a), (b) and (c) will be assumed to hold throughout this section.

We are interested in the numerical evaluation of u(0,Yy) = E(f(Yr)). A widely used and compu-
tationally convenient method is by computing the above expectation on an approximation of the
process Y. Here, we consider an approximation through a Markov chain that weakly converges to
the diffusion process Y, see e.g. the classical references [89]. We will see in Section an appli-
cation to tree methods, that is, when the process Y is approximated by means of a computationally
simple Markov chain. Here, our aim is to study, under suitable but quite general assumptions, the
order of weak convergence.

So, let N € N* and set h = T'/N. The parameters N and h are fixed once for all. Let (erl)nzo,_,_,N
denote a Markov chain, whose state space, at time-step n, is given by Y* C D. In our mind,
(er’)n:(),_._7 N~ is a Markov process which is a discrete weak approximation in time (and possibly
in space) of the d-dimensional diffusion Y, namely, Y,? approximates Y at times nh, for every
n=20,...,N. Of course, we assume that Yoh = Yp, that is, yg} = {Yy}. Without loss of generality,
we may assume that (Y,"),—o .y is defined in (2, F,P).

In order to study the rate of the weak convergence of (YJ‘)nzo’“_,N to Y, we need to stress the
requests that are usually done in order to merely prove the convergence (see e.g. [89]). In particular,

we need the following assumption.

Assumption A;. There exists h > 0 such that, for every h < h, the first three local moments
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satisfy
B[V, = Y | Y = py (V)R + fa (V) (4.3.5)
B[V — Y)Y — Y1) | Y2 = ay (V)R + ga(V), (4.3.6)
E[(Vl — Y1) | Y = V), e N i =3, (43.7)

where f, : D — RY, gy : D — R and Jny : D — R satisfy the following properties: there ewist
p>1 and C >0 such that

sup sup ||fh(Y,fL)||p < Ch?, (4.3.8)
h<hn=0,..,N
sup sup [lgn(Y,)ll, < CH?, (4.3.9)
h<hn=0,...,.N
sup sup [ljna(Yi)llp < CR?, |l = 3. (4.3.10)
h<hn=0,..,.N

We also need the following behavior of the moments.

Assumption As. There exists h > 0 such that for every p > 1 there exists Cp > 0 for which

sup sup 1Y, < Cp, (4.3.11)
h<h0<n<N

sup sup Yo=Y, <G, (4.3.12)

1
he<h0<n<N Vh H

We can now state the following first order weak convergence result.

Theorem 4.3.1. Let assumptions A1 and As hold and assume that u € Céol (D), u being defined
in ([4.3.3)). Then there exist h > 0 and C > 0 such that for every h < h one has

[E[f(Y3)] - E[f(Y7)]| < CTh.

Proof. The proof is quite standard. Since E[f(Y2)] = E[u(T,Y})] and E[f(Y7)] = u(0,Yp), we
have
N-1
E[f(Y7)] = E[f(Y7)] = E[w(T, Y7) — w(0,Yp)] = D Elu((n + 1)h, Y;y) — u(nh, Y1),
n=0
Since u € C’éol’T(D), we can apply Taylor’s formula to ¢ — u(t,y) around nh up to order 1 and to
the functions y + u(t,y) and y +— dyu(t,y) around Y;* up to order 3 and 1 respectively. We obtain

!

W (Ve = V),
TiE

u((n+ Dh,Y ) = Y 9L0 u(nh, Y}
0<|i[+21'<3

+ Ri(n,h, Y, Vi), (4.3.13)
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where the remaining term R is given by
1
Ri(n,h, Y TL+1) = h2/ (1 —7)0u(t + Th,YTiLH)dT
0

1
0 S (W - Y /0 (1— )0k Du(nh, Y, + €YV, — V) de

\k|*2

h
+ Z "“ Y) /0( — &)Pu(nh, Y, + E(Y, Iy — Y,)dE.

k=4

We now pass to the conditional expectation w.r.t. Y;* in (#.3.13) and use (4.3.5) and (4.3.6). By
rearranging the terms we obtain

E[u((n + 1)h, Y,iﬁrl) — u(nh,Y,")]

5 4.3.14
= hE [atu(nh, Y + py (V) - Vyu(nh, Y1) + Tr(ayDZu(nh,YTi"))] + ) R (h), (43.14)

=1

in which
Ry, (h) = E[Ri(n, b, V' Vi 1)), R;,(h) = hE[(ury (Ya)h + fu(Y)) - Vydyu(nh, Y,!)],
RS(h) = B[V - Vyu(nh, YL, RA(R) = SE[Te(on (V) Diu(nh, Y1),
RE() = 5 7 Elofulnh, ¥} ()
k=3

Thanks to (4.3.4]), the first term in (4.3.14) is null, so
5
[E[u((n+ 1)h, Y1) — ulnh, Y,1)]| < Z

We now prove that |R¢ (h)| < Ch?, for every i = 1,...5. Let h > 0 such that both assumptions A;
and Aj hold and let h < h. Since the derivatives of u have polynomial growth, one has

a
Ry (n, b Y Vi) < O (14 [ 4 (V) [0 RV = Y2+ Yl = Y],

where C,a > 0 denote constants that are independent of h and, from now on, may change from a
line to another. Then, by using the Cauchy-Schwarz inequality, (4.3.11) and (4.3.12)), we get

n

RLW)| < C(1+ V] + [Y2D |, |12 + AV = Y + (¥ = Y, < CR2.
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As regards R%(h), we use the polynomial growth of V,dyu, the Cauchy-Schwarz inequality and the
Hoélder inequality, so that

[R2(h)] < CE[(1+ Y1) lny (V)1 + CE[(1 + Y1) | fn (V)]

n

< C[[T+ 11|y Iy Yo 22 + O+ 1| (V]

where p is given in (4.3.8]) and ¢ is its conjugate exponent. Since uy has polynomial growth, by
(4.3.8) and (4.3.11)) we get

|RA(R)| < Ch.

The remaining terms R3(h), Rit(h) and R?(h) can be handled similarly, so the statement follows.
U

4.3.1 An example: a first order weak convergent binomial tree for the CIR
process

We now fix d = 1 and D = Ry = [0,00). We consider the CIR process (Y;).c[o,r) solution to the
SDE

dY, = k(0 — Y,)dt + o\/Y, dW;, Yy > 0.

We assume that 6, x,0 > 0 and we do not require the Feller condition. Therefore, the process Y
can reach 0.

We consider here the “multiple jumps” tree approximation for the CIR process described in
Section We first briefly recall how the tree works and then, as an application of Theorem
we study the rate of convergence.

Recall that, for n =0,1,..., N we have the lattice

Vo =A{yith=01,.n with yp = ( Yo+ 5 (2k — n)\/ﬁ) Ly ¥o42 @h-n)VR>0) (4.3.15)

Note that Y% = {Yy}. For each fixed node (n,k) € {0,1,..., N —1} x {0,1,...,n}, the “up” jump
kyu(n, k) and the “down” jump kq(n, k) from y? € V" are defined as

ku(n k) =min{k* : k+1<k* <n+1and yf + py(yH)h <y}, (4.3.16)
ka(n, k) = max{k* : 0 < k* <k and y' + py (yp)h >y}, (4.3.17)
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where py (y) = k(0 — y) and with the understanding k,(n, k) = n + 1, resp. kq(n,k) = 0, if the set
in (4.3.16]), resp. (4.3.17), is empty. In fact, starting from the node (n, k) the probability that the
process jumps to ky(n, k) and kgq(n, k) at time-step n + 1 are set as

n+1

py (WOP + Ui = Yy

n+1 n+1
Yeunk) ~ Ykg(n,k)

keypu(n, k) =0V A1l and pg(n, k) =1—pu(n,k)

respectively. We will see in next Proposition that for A small enough the parts “0vV” and “A1”
can be omitted.
We call (Ynh)n:o,l,m’ ~ the Markov chain governed by the above jump probabilities. As an appli-

cation of Theorem [4.3.1], we shall prove the following result.

Theorem 4.3.2. Let f € C’gol(RJr). Then, there exist h > 0 and C > 0 such that for every h < h,
ELf (Y] - E[f(Yr)]| < CTh,
that is, the tree approximation (Ynh)n:[),m’N is first order weak convergent.

In order to discuss the assumptions A; and Ay of Theorem we need some preliminary

results which pave the way to the analysis of the convergence.

Proposition 4.3.3. There exist 0,,0%,Cy,h > 0 such that for any h < h the following properties
hold.

(i) If O.h <y < 0% /h, then ky(n, k) = k+1, kq(n, k) = k. Moreover,
yk:r(ilk) =y + Zh +oy/yrh and ykd_zll’k) =y, + Zh —o/yph.
(it) If yi < O:h, then kq(n, k) = k. Moreover,

0 <yt o — Vi < Cihe (4.3.18)

(iit) If yi > 6% /h, then ky(n,k) =k + 1.

(iv) The jump probabilities are
1
iy (YR + YR = Y Y ) — UE = by (YR
pu(n, k) = n+1 nt1 v ), pa(n. k) = (nn—gl n+1 : (4.3.19)
Ykumk) = Yka(n,k) Ykumk) = Yka(n,k)

The proof of Proposition relies on a boring study of the properties of the lattice, so we
postpone it in Appendix This is all we need to prove that Ay holds:
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Proposition 4.3.4. The CIR approzimating tree {Yf}nzo,m,N satisfies Assumption As.

Proof. Step 1: proof of . We use a technique firstly developed in [3] for a CIR discretiza-
tion scheme based on Brownian increments. The key point is the proof of a monotonicity property
allowing one to control the moments of the tree: there exist b, C,h > 0 such that for every h < h
andn=0,...,N —1 one has

0<Y", <(A+bh)Y)+Ch+o\/YrhW (4.3.20)
where W/, is a r.v. such that

P(Wyyir = 20a(n, K)|Y,! = i) = puln k) = 1 = P(Wyley = —2pu(n, k)| Y, = yp). (4.3.21)

n n

To this purpose, fix a node (n,k). For the sake of simplicity, we write k,, resp. kg, in place of
ky(n, k), resp. kq(n, k). We have (see (4.7.94))) that
2 2

o o
yptl <up+ T htoyuih Yt <yp+ T h= o\ Juih.

By Proposition [4.3.3] for h < h, if 6.h < y? < 0*/h the up and down jumps are both single, hence

y,’{f“ = ?/g-ﬁ and y"Jrl = yﬂ“ On the other hand, if y > 6*/h the up jump is single, that is

ygjl = yZIll , while the down jump can be multiple but, in every case, is still true that

2

g
gt <yt =g+ Th—o\uih.

Finally, if y; < 60.h, we have y”+1 = yﬁ“, while the up jump can be multiple but we can always

write

yﬁ“ <yp +Cih <y + Cih + 04 /yth.

Summing up, if we set C' = max (C*, 42) for every h small we can write

0<Yr, <YP+Ch+oyYinZ,,,

where Z!',, is a random variable such that P(Z!',; = +1|Y;» = ) = pu(n, k) and P(Z}, | =
1|V} = y) = pa(n, k). Note that E(Z" |V} = y}) = pu(n, k) — pa(n, k) = 2pu(n, k) — 1. Then,
the random variable

W1 = Z1 — ElZy oY)
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has exactly the law given in (4.3.21)). We also define the function P,(y}}) = pu(n, k). Therefore,

0<Yl, <Y+ Ch+o\/VPh(2P,(Y") — 1)+ o\/YPRW],
h

~ h
<Y+ Ch+oVo* 2P, (V) — UL ypsoey +oy/Yih (2P, (V") — Dy e
+01/Y]h Wn+1
Now, if Y;* > & then h< Yth and, since P, € [0, 1], we have [2P,(Y;®) — 1] < 1. Then,

h ~ h
0<Y, < (1+bh)Y!+Ch+o\/Y)h (2P, (Y,}) — 1)]1{Y#<%} + o\ YRR W,

where b = ﬁ. Let us study the quantity o+/Y,"h (2P, (Y,") — 1)]1{Y#<%}. If 6.h <y < 60*/h, by
using (4.3.19) and point 1. of Proposition we can explicitly write

2 2

o\Jih QPu() = 1) = o\ [yh (2(% + %)h ~1) =y () — N
k

If instead y}' < 6,h, then by using 2. in Proposition we have

210y () + 208 = Yo )~ Vi
o\Juph GP.R) — 1) = 0\ [y T

Yku(nk) = Yka(n,k)

2,uy yp)h + 2y 2k0h + 26.h
S o\ Yk il < oy/yih % Th = (k0 + 0,)h.
+

So, by inserting, for every n < N — 1 we get
0< Yy < (L4 )Y+ Ch+o(kf+0.)h + o\ /YR W)

and (4.3.20]) is proved.

Now, we repeat step by step the proof of Lemma 2.6 in [3] in order to get . We use
induction on p. For p = 1, by definition one has E[Y," |V;}] = Y + py (Y,")h and, by passing to
the expectation, E[Y,", ;] = E[Y,] + E[uy (Y,))h] < E[Y;"] 4+ £6h, from which we obtain E[Y,", ] <
Yo + k0(n + 1)h < Yy + k0T and the case p = 1 is proved. So, assume that (| m ) holds for p — 1
and let us prove its validity for p. Using , we have

E[(y7f+l)p] < Z pil( 1+ bh)ll F2OBE [(Yét)ll—i-%hlg-i-%(wg_i_l)lz} .

11115113!
l1i+l2+i3=p 12

So, it is sufficient to control £(Iy, I, l3) = E [(Y,{z)lﬁ%hlﬁ%(wgﬂ)ﬂ for iy + Iy + 13 = p
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Assume first that {1 + l2 <p- , a case giving I3 + l2 > % Without loss of generality we
can assume C,_; > 1. Moreover recall that |W, +1| < 2. By using the Holder’s inequality with
_ p—1
o= l1+%2, we get

El, o, 13) < |E(L, I, 13)| < E [(Y,f)h*%] olaplat 3 < ¢ 12l2h3.
Therefore

‘ |

Z W(l + bh)ll l2cl35(l1, l2’ l3) < Cp 1h2 %(1 + bh)ll (20_)l20l3

li+lo+iz=p 1:02:43 11+52§+13_p NTATA
l1+12/2<p—3/2

< Cpah2(1+b+ 20+ C)P.

The case [1 + %2 >p— % gives 4 further contributions, namely (I1,l2,13) = (p,0,0), (p — 1,0, 1),

(p—1,1,0) and (p — 2,2,0). So, we get
E[(Y,"1)"] < Cpo1(1 4 b+ 20 + C)Ph> + (1 + bh)PE[(Y,)?] + p(1 + bh)P~ CRE[(Y,!)" ']
o1+ by e 2w PP by W)L
Consider the last two terms above. For the first, we note that
(Y)W ) = B[P PEW Y] = 0

and for the second, we recall that |W, +1| < 2. So, we easily obtain

E[(Y1)7) < Cpah(1+b+20+CP [1+p+ p(p; 1)] + (1 + bRYPE[(Y;1)7).

By recursion on n, we get

2 9 n )
pPZEPTENT (4 p)ie 4 YP(1 4 bh) @ DP
0

J=0

E[(Y}41)"] < Cpih(1 +b + 20 4 C)

and {.3.17] now follows.
Step 2: proof of (4.3.12)). We can write

2
h -1|@ o P ~11yh
| n+1 -Y, ‘p <3’ 1’Zh to Y?ithn-i-l‘ ]1{9*h<Y7?<0*/h} + 3" 1’Yn+1 - Yr?’p]]‘{Y,fS&h}

+ 3PN = VP L ynsgepy = 3P (I + o + ),
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where we have used that, on the set {6,h < Y,» < 6*/h}, we have Y, | = Y, + 2 ‘hto Yhnz!
with IP)(Zh+1 =1] Yrﬁ»l) P,(Y;}") and P(ZQJA = -1} YT{L+1) = Py(Y;}). N0W7 by using (4.3.11)),

Proposition [4.3.3] the Cauchy-Swartz and the Markov inequality,

(s T <2 () oty < () <

I, < CPRP,

0*\1/2 Cy,C.
< h _ h 2p 1/2 h < 2p p p/2
I3 < E[(Ym-l Y1) P IP’(Yn > m ) 2p 0 h
and (4.3.12)) follows. O

Proposition 4.3.5. The CIR approximating tree {Y#}TFO””W satisfies Assumption Aj.

Proof. Straightforward computations give E[Y;" ; — Y, | V'] = py (Y,")h, so (£3F) and (3.3)
immediately follow. As for (4.3.6),

E[(Yy =Y Y =yl = Bl = YO 1Y = gl lgyno.ny
+E[(Y = V)2 1Yo = R go.neyp<omy + BV = Y2 1 Vi = 4l ynse jny-

We study separately the first two terms of the above r.h.s. If y;' < 6.h, Proposition gives
lypt ! — yp| < Cuhand [ypt! — yp| < Cuh so that

E[(Y1 = Y2 [ Y = yillgyr<o.ny = o1(Ui) D> Lyn<o,ny,

with o1 such that |¢1(y)| < C2. If instead 6,k <y < 6*/h, by using (4.3.19) we get

(ka yk)2pu(nv k) + (yk;rl - ykz)2pd(na k) = U2ykh + ?(”(9 —Yr) — §>h2-

So,
E[(Y 1 = Y2 1Y = yillo.n<yp<o-ny = (02ukh+ 02U0)h*) Lig.neyn <ot ny»

with @9 such that |p2(y)| < %( 0+vy)+ %) By inserting, (4.3.6) follows with g satisfying
lgn (V)| < er(1+ Y)h? + E((Yily = V)2 + ohY | ) Liyasge nys

¢1 denoting a suitable constant. By Proposition and the Markov inequality, (4.3.9) follows.

Finally, for (4.3.7)), we write
E[(Yyh = Y)? | Vi = 2] = E[(Viy — V) | Y = i1 yr<onn

n

+E[(Yy — V)P 1Y = R o, nayp<ommy + BV = V)2 | Vi = gl ynsge jny-
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Now, if y < 6,h then |Y7f°Jrl — Y3 < C3h3. 1f instead 0.h < yi < 0*/h, by (4.3.19) one obtains

n+1 n\3 n+1 n\3 ny 2 2, n 304 04 n 04 2

W = v paln B) + (™ = ) paln. k) = o (wi)h? (0% + T ) + (G vkt + T )i
Therefore,

(Y] < eah?(1+ (V1)) + B[4y — Yo' P + ohY | V)L ynsge jny

co denoting a suitable constant, and again by Proposition and the Markov inequality, (4.3.10)
follows. m

We are finally ready for the

Proof of Theorem[{:3.3. By Theorem 4.1 in [3] (or Corollary [4.5.5)), one has that if f € C(Ry)
then u € CéolT(]RJr) . Since Assumption A4; and Az both hold, the statement follows as an
application of Theorem [4.3.1 ]

4.4 Hybrid schemes for jump-diffusions and convergence rate

We now introduce a m-dimensional jump-diffusion (Xt)te[O,T} whose dynamics is given by coefficients
depending on the process (Y;i)te[O,T] discussed in Section More precisely, we consider the

stochastic system

dX; = #X(Y;g)dt + O‘X(Y}/) dB; + Wx(Y}/)dHt, Xo € R™,
dY; = py (Y)dt + oy (V) Wi, Yy € D,

(4.4.22)

where B is a /1-dimensional Brownian motion and H is a f»- dimensional compound Poisson process

with intensity A and i.i.d. jumps {Jg}, that is

K
Hy=>Jy, (4.4.23)
k=1

K denoting a Poisson process with intensity \. We assume that the Poisson process K, the jump
amplitudes {Ji }; and the Brownian motions B and W are independent. Moreover, we ask that J;

has a density p,, so that the Lévy measure associated with H has a density as well:

v(dr) = v(x)dx = \pj, (z)dz.
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Hereafter, we denote by £ the infinitesimal generator associated with the diffusion pair (X,Y), i.e.

Lg(x,y) = %ﬁ(a(y)Di,yg(w, Y)) + 1Y) - Vaeyg(z,y)

(4.4.24)
Fx () / (9(z + C) — gl 9))w(dC),

where pu(y) = (ux (y), py (y))* and a(y) = oo™ (y), where

o) = (“X@) 0’””) .
Odxm oy (Y)

Here, D%y and V, , are respectively the Hessian and the gradient operator w.r.t. the space variables
x and y. We assume that the coefficients of X do not depend on the time variable just to simplify
the notation, but all the proofs in this chapter are still valid in the time-depending case under non
restrictive classical assumptions.

Let (Xi™Y, Yst’x)se[tﬂ be the solution of with starting condition (X, Y;) = (z,y). Here-
after, we fix T'> 0 and f : R™ x D — R. We are interested in computing the quantity «(0, Xo, Yp),

where, as specified from time to time, w is given by

ult, z,y) = E[f(X;x’y, Y}:y)}, (t,z,y) € [0,T] x R™ x D, (4.4.25)
or
u(t,z,y) = sgp ]E[f(Xﬁ’z’y,YTt’y)}, (t,x,y) € [0,T] x R™ x D, (4.4.26)
TE T, T

where T; 7 denotes the set of all stopping times taking values on [t,T].

This can be, in general, a problem of interest in a large number of applications. Of course, the
immediate application in this thesis is in the financial world, where X can represent the log-price (or
a transformation of it) and Y can be interpreted as a random source such as a stochastic volatility
and/or a stochastic interest rate. In this framework, the function defined in is the price
value at time ¢ of a European option with maturity 7" and (discounted) payoff f, while the function
u as defined in is the value function of the corresponding American option. Therefore, from
now on we will refer to the European case when u is defined as in and to the American
case where u is given by .

From now on, the following assumptions (1), (2) and (3) will be in force throughout this chapter:

(1) there exists a unique weak solution of (4.4.22)) such that P((Xy,Y;) € R™ x D Vt) = 1;
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(2) p and o have polynomial growth;
(3) the function u in (4.4.25)) solves the PDE

Owu(t,z,y) + Lu(t,z,y) =0 (t,z,y) € [0,T) x R™ x D,

(4.4.27)
u(T,z,y) = f(z,y), in R™ x D.

4.4.1 The hybrid procedure

The European case

Let u be given in . We study here the computation of u(0, Xo, Yy) by a backward hybrid
algorithm which generalizes the procedure developed in [24] 25 27] and described in Chapter 3.
Roughly speaking, one uses a Markov chain in order to approximate the process Y and a different
numerical procedure to handle the jump-diffusion component X. Let us briefly recall the main
ideas and set up the approximation of u.

We start from the representation of wu(t,z,y) at times nh, h = T/N and n = 0,..., N, by the

usual (backward) dynamic programming principle: for (z,y) € R™ x D,

uw(T,z,y) = f(x,y) andasn=N—1,...,0,

ulnh,2,y) = Elu((n+ Db, X YR

(4.4.28)

So, the central issue is to have a good approximation of the expectations in .

As a first step, let (Yf)n:07,,.7 ~ be the Markov chain discussed in Sectionwhich approximates
Y. Of course, we assume that (Y,?)n:(),m, n is independent of the Brownian motion B and the
compound Poisson process H driving X in . Then, at each step n = 0,1,...,N — 1, for

every y € Y we write

nh,z, nh, _ nh,x, h h _
B [u((n+ Db X000 YR )| & B fu((n+ Db, XU V) [V =y

Recall that Y C D is the state space of ;" and that Y = {Y;}.
As a second step, we approximate the component X on [nh, (n + 1)h] by freezing the coefficients
in ([#.4.22)) at the observed position Y, =y, that is, for t € [nh, (n + 1)h],

nh.xy 2% Snh.o
XY XM (y) = @+ px () (E — nh) + ox(y) (Br — Ban) +vx () (Hy — Hop).
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Therefore, by using that the Markov chain, B and H are all independent, we write

E [u((n + 1)h, X&hﬁ)yh, y(zliz{)h)} ~E [u((n + 1)h, )A(thﬁ)h(y)’ Y)Y = y}

= E[Qb(YrZ»la xay)‘Yr{L = y]’

where
#(Gia,y) = Elul(n+ D, X015, (). O] (4.4.29)

From the Feynman-Kac formula, one gets ¢(¢;z,y) = v(nh,x;y,(), where (t,z) — v(t,z;y,() is
the solution at time nh of the parabolic PIDE Cauchy problem

v+ LWy =0, in [nh, (n + 1)h) x R™,

(4.4.30)
v((n+ Dh,z;y,() =u((n+ 1)h,z,(), =eR™,

where £) is the integro-differential operator acting on the functions g = g(z) given by
1
£Wg(x) = px(y) - Vag(z) + 5 Tr(ax (y)Dig(x)) +vx(y) - / (9(z +¢) = g(2)v(Q)d¢.  (4.4.31)

Here ax (y) = ox(y)o% (y), while V, and D? are the m dimensional gradient vector and the Hessian
matrix with respect to the x variable respectively. Recall that here y is just a parameter and that
for each fixed y € D, £ has constant coefficients.

We consider now a numerical solution of the PIDE (4.4.30)). Let Az = (Azy,. .., Azy,,) denote a
fixed spatial step and set X’ denote a grid on R" given by X = {z : = = ((Xo)1+i11Az1,...,(X0)m+
imATm), (i1, ... im) € Z™}. For y € D, let 11, (y) be a linear operator (acting on suitable
functions on X’) which gives the approximating solution to the PIDE at time nh. Then we

get the numerical approximation

E[u((n +1)h, X&hﬁ’;’h,}f(’:ﬁfl’)h)} ~ E[ng(y)u((n + Db, V) (@)Y = y}, z € X.

Therefore, by inserting in (4.4.28]), the hybrid numerical procedure works as follows: the function
x> u(0,,Yy), © € X, is approximated by ul(x, Yp) backwardly defined as
ulh(z,y) = f(z,y), (z,y) € X x Y%, andasn=N-1,...,0:

(4.4.32)
up (2, y) = B[R, (n)un 1 (Vo) (@) [ Vi = ul, () € X x V.
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The American case

Let us now consider the function u defined in (4.4.26)). Again, we want an approximation of the

h

quantity u(0, Xo, Yp). In practice, at times nh, the function u is approximated by the function u,

defined through the backward programming dynamic principle, that is,

@l (z,y) = f(z,y) andasn=N—1,...,0

, . (4.4.33)
(e, y) = max { £z 9), B[, (X000 ) ]}

In financial terms, 113 corresponds to approximate the original continuous time American option
price at ¢ = 0 by the price of an option which can be exercised only at the discrete times nh,
n=0,...,N (Bermudean option).

Now, at each step of , we can use the procedure described in Section in order to
compute the conditional expectations therein. Therefore, the hybrid numerical procedure becomes:

forn=0,1,...,N and (x,y) € X x Y @l (x,y) is approximated by u”(z,y) defined as

u}]{,(x,y) = f(z,y), andasn=N—1,...,0:

. (4.4.34)
(. y) = max { f(z, 9), B, (y)u o (V) (@]}

The general hybrid procedure

As we have done in Chapter 3, it is useful to put together in a unique formulation the numerical
procedures described respectively in Section [£.4.1] for the European case and in Section [£.4.1] for

the American case. In both cases we have to consider at time nh the function @” defined as

@' (z,y) = f(z,y) andasn=N—1,...,0

\ N (4.4.35)
~ ~ nh,x, nh,
uZ(LB? y) = max {g(xv y)? E |:’LL2+1 (X(n-i-l)yh’ }/(n-i-?{)h)] }’
where
0, in the European case;
9(z,y) =
flx,y), in the American case.

h

~ coincides with the function u defined in

We stress that, in the European case, the function u
(4.4.25) at time nh, while, in the American case, it is the Bermudean approximation of the (con-

tinuous monitored) American option value given in (4.4.33)).
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Then, for n =0,1,..., N and (z,y) € X x V", we approximate the function @" by the function
ul defined as
ul(z,y) = f(z,y), andasn=N-—1,...,0:
b,
ul(z, y) = max {g(z, ), B [, (y)ul 1, (V70,0 ()] } -

Our aim is to study the speed of convergence of the scheme (4.4.36]) that is, we give a quantitative

(4.4.36)

estimate for
|ﬂg(x,y)—u8(m,y)|, (ZL‘,y) GXX:)/(]}.

As regards the American case, we recognize two types of error. The first one is the error induced
by the approximation of the function «(0,-) in with the function @?() in the backward
programming principle . In the standard hypotheses on the model, that is, for sublinear
and Lipschitz continuous diffusion coefficients and standard semiconvex payoff function, this error
is known to be of the first order in h (we refer, for example, to Theorem 2 in [I3]). The degenerate
models such as the Heston model do not satisfy such requests, so we might just argue a first order
error in time. The second type of error is the one related to the approximation of 128 with the

function ug defined in (4.4.34]). Here, we focus on studying the latter one.

4.4.2 Convergence speed of the hybrid scheme

The idea is to follow the hybrid nature of the procedure by using numerical techniques, that is, an
analysis of the stability and of the consistency of the method. This will be done in a sense that
allows us to exploit the probabilistic properties of the Markov chain approximating the process Y.

We introduce the following assumption on the linear operator II% (y) in (recall the
notation /,(X) in Section [£.2)).

Assumption B(p,c,E). Let p € [1,00], ¢ = ¢c(y) > 0, y € D and & = E(h,Ax) > 0 such that
limj, Agy—0 E(h, Az) = 0. We say that the linear operator A (y) : [,(X) — 1,(X), y € D, satisfies
Assumption B(p,c,E) if

I, ()l < 1+ e(w)h (4.4.37)

and, @l being defined in [#.4.35), for everyn =0,..., N — 1, one has

E [T, (V)i (Vi) ()| Vit = o] = Bl (X, vho)] + Rh(r,y), (4.4.39)
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where the remainder R (z,y), (x,y) € X x VI satisfies the following property: there exist h < 1
and C > 0 such that for everyn € N, h < h, |Az| <1 andn < N = |T/h] one has

=i OPMREC Y| < ChehAT), ifp e 1,00,
) ) p (4.4.39)
Hezﬁ COMRAC, leooHl < Ché(h,Az),  ifp=cc.

Assumption B(p, ¢, ) is inspired by the Lax-Richtmeyer’s convergence theorem [75]. In fact,
recall that at each time step n, the hybrid scheme isolates the component y and applies the discrete

operator 1% (y) for solving (one step in time) the PIDE
d(t,z) + LYv(t,z) =0,  (t,z) € [nh, (n+ 1)h) x R™,

Here, y is just a parameter (the current position of the Markov chain), so the coefficients of £
(see (4.4.31))) are indeed constant. That’s why the Lax-Richtmeyer technique can be adapted, as

it follows in the next result.

Theorem 4.4.1. Assume that 11 (y), y € D, satisfies Assumption B(p,c,E). Let @l be the
function defined in(4.4.35) and uﬁ be the approximation through the scheme (4.4.36)). Then, there
exist h € (0,1) and C > 0 such that for every h < h and Ax < 1 one has

[af (-, Yo) — ub(-,Yo)|, < CTE(h, Az). (4.4.40)

Proof. Set err” (-, Y,!) = @l (-, V?) —ul (-, Y,}). By using the relation | max{(a,b)} —max{(a’,t')}| <

max{|a — d[,|b — |} we get

(n+1

< |EMA, (Yo erry 1 (- Yy (@)Y,

77 h: ) h’
e, 1201 < [B [al (230 )] |~ B [Tt (v @) v
| + R, Y1),

in which we have used ([£.4.38)). Since err!(z;, Y) = 0, by iterating one gets

n—1
\ (H nzxm) RE VM)
=0

N-1

jerrg (-, Yo)| < ) E

n=0

i
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~1
in which we use the convention H() = Id. We use now (4.4.39). For p # oo,
1=0

=z

—1 n—1

2

-1

/
enf (Yol < D [E[( TTTA07)RAC V]| < IEH(H a0 R[]
n=0 1= n=0
N-1 ’ 1 N-1
< (E [eE?=1PC<‘G”>h|RQ(.,Yg)yg}) v hCE(h, Az) < TCE(h, Ax).
n=0 n=0
The case p = oo follows the same lines. ]

Remark 4.4.2. In Assumption B(p,c,E) we have required that the constant C and the function
Ein do not depend on h and n. A closer look at the proof of Theorem shows that
this assumption can be relazed. In fact, we can replace C and £ in by Cyn and &, which
depend on h and n but such that im, Az)—(0,0) ZnNz_Ol hChn€hn(h, Ax) = 0. However, in this case

we do not get information about the rate of convergence of the method.

4.4.3 An example: finite difference schemes

We specify here some settings ensuring that the assumptions of Theorem [4.4.1] are satisfied. In
particular, we choose the operator H in m 4.4.32) by means of two different finite difference
schemes: the first one is a generahzatlon of the procedure described in Chapter 3 and allows us to
study the convergence in the lo-norm, while the second one works [,,. For the sake of readability,
we consider the case m =d =0 =401 =¥y = 1.

As regards the Markov chain (Ynh)n:g,w N, in addition to Assumption A; and Ay (see Section
, we will need also the following:

Assumption A;3(g) Let g =g(y) >0, y € D. (Y,")n—o.. N satisfies Assumption As(g) if

E {ezlﬁlg(ylh)} < 0.

Moreover, we assume hereafter that the Lévy measure v satisfies the following property: there

exists ¢, > 0 such that for every Ax < 1 one has

Z v(lAz)Az < Ay, (4.4.41)
lEZ

where A is the intensity of the Poisson process K in the definition of the coumpound Poisson process

Hin (322).
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Convergence in [>-norm

We study here a hybrid procedure which generalizes the one introduced in [27] and described in
Chapter [3| for the Bates model. For y € D, Hzx(y) gives the numerical solution on X = {x; =
Xo +iAzx}icz a time nh to the PIDE , the operator £(¥) therein being given in . It
is clear that the solution v of depends on y and ( as well, but these are just parameters
(and not variables of the PIDE), so for simplicity we drop here such dependence. We split the

operator L) = E((fi/f)f + Ei(ft) in its differential and integral part:

£80(a) = px (n)0uv(a) + 50k (0)0Ru(a), (4442
Ei(ﬁ/t)v(x) =vx(y) / (v(z + 2) —v(2))v(2)dz. (4.4.43)

()

int

We now apply the trapezoidal rule in order to approximate the integral term L;;/v and we use the

central finite difference scheme to solve 5(%1). Applying an implicit-explicit method in time, we
obtain an approximating solution v" = (v});ez to the PIDE (4.4.30) given by the solution of the
linear equation

ARy (y)o" = BR,(y)o™*! (4.4.44)

(recall that v"*1 is known). Here A% (y) is the linear operator given by

ol (y)— B (y), ifi=j+1,
1+28%,(y), if i = j,
(AAo)i(w) =9 . 0 (4.4.45)
_an(y) - ﬁAx(y)v if 1=]— 17
0, if [i —j| > 1,
with
h _ N h _ N 4.4.46
an,(y) = EMX(y)v Br.(y) = 2Ax20x(y), (4.4.46)

and BR (y) is the linear operator defined as

(4.4.47)
1+ hAzyx (y) (1/(0) — e Z/(IA:):)) it i = j.

(BRo)ij(y) =

Then we have

Lemma 4.4.3. For every y € D, the operator A% (y) : l2(X) — 12(X) is invertible and
[(AR ) "H(y)|2 < 1. Moreover | B (y)|a < 1+ 2Xey|yx (y)|h, where ¢, is defined in ([4.4.41)).
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Proof. Fix y € D and w € l3(X). Then A% (y)v = w, for some v € l5(X), if and only if

(X, (y) = BR.(¥)vj—1 + (1 +2BR,.(1)vj — (ak,(y) + BR,(¥)vj41 = wj, jEL, (4.4.48)
o/&x and ng being given in (4.4.46). Let ¢ denote the Fourier transform of ¢ € l3(X), that is,
o(0) = % djez p e 829 9 ¢ [0,27), i denoting the imaginary unit. We define the function
¥(0), 6 € [0,2m), by

(@, ) = BRA)e 37 + 1+ 284, () — (0, (v) + BR, (W) ) (6) = (0).  (4.4.49)

Note that

(@R (y) — BAu(1)e 027 + 14+ 28K, (y) — (k. (y) + BA.(y))e 27|
> [Re[(h, (1) — Bhe()e 727 + 14 28X, (y) — (ak, (y) + BR, () 27|
= 1+26% . (y)(1 — cos(AAzT)) > 1,

for every 0 € [0,27). So, ¢ € L?([0,27),dx) and we can define v. as its inverse Fourier transform:

1 2 ..
v;i=—— )92 qp, € Z.
= /0 () j

Straightforward computations give that v is the unique solution to (4.4.48)), hence AZI is invertible.
Moreover, from (4.4.49)) we obtain [¢(6)| < [w0(0)], so that [1(0)|12((0,27),dz) < [W(0)|L2(j0,27),dz)- We
use now the Parseval identity |Q[12(j0,2r),dz) = |[2 and we get [(AR )~ Hy)w|2 < |wl|z, which gives
|(AR )7(y)|2 < 1. Finally, for w € l5(X) we have
(BR:(y)w); = wj + hAzyx (y) ( > v(iAzywi - V(lAw)wj)7
l l
so that

o —

BR, ()w(0) = (14 hawyx(y) 3 v(1az) (e - 1) )i 6).
l
Then,

|BR ()Wl 1210 20),a2) < (1 4+ 2X¢y [yx (0) 1)@ L2((0,21, der)
because |e? — 1| < 2 and Y, v(IAz)Ax < A¢,. By the Parseval relation, |B% (y)w|z < (1 +

2Xeu|vx (y)|h)|w|2, which concludes the proof. O

In the following we will use functions v € C?% (R,D) a.e. uniformly in n and h. This
pol,[nh,(n+1)h]
means that v € CL9/2)4([a,b),R x D) a.e. and there exist C,¢ > 0 independent of n and h such
that

sup  |OFOLALu(t, - y) amm awy < C(L+[yl%), 2k + ||+ < q.
tenh,(n+1)h)

We can now state the convergence result.
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Theorem 4.4.4. Let ﬂf; be defined in (4.4.35) and uﬁ be given by (4.4.36)) with the choice
A, (y) = (AR,) ™' B, (v),

Al&v(y) and ng(y) being given in (4.4.45)) and (4.4.47) respectively. Moreover, for n =0,..., N,

consider the function
WMt z,y) =E [aﬁﬂ(x(ﬁyl)h’ Y(ﬁﬁ-l)h)] ’ t € [nh, (n+ 1)h). (4.4.50)

Assume that

/ 1

o L. ¥ e L*(R,dv);
e the Markov chain (Y,})n—o.. N satisfies assumptions Ay, Az and As(4\cy|yx|);

o VI ¢ C’sz[nh’(nH)h} (R,D) a.e. and uniformly in n and h.

Then, there exist h,C > 0 such that for every h < h and Az < 1 one has
it (-, Yo) — uf(, Yo)l2 < CT(h + Ax?). (4.4.51)

We stress that, from , the rate of convergence is of the second order in space, because of
the choice of a second order finite difference scheme, and of first order in time, as it is natural also
for the presence of the approximating Markov chain Y (see Theorem .

Theorem is a direct consequence of Theorem once we prove that Assumption B(p, ¢, )
holds with p = 2, ¢(y) = 2Ae,|vx|(y) and E(h, Az) = h + Ax?. To this purpose, we first need two
technical lemmas which allow us to handle the error coming from suitable Taylor’s expansions and

from the quadrature approximation. We postpone the proofs to Appendix

Lemma 4.4.5. (i) Let g € C*(R) be such that g,¢',g" € L*(R,dx). Then

> gaae- [

Az?
[ gw)da| < 5 1912 ey (44.52)
leZ

(ii) Let g € C*(R) be such that g,¢',g" € L*(R,dx). Then

Az
ZQQ(UUl)Aa: < |g’%2(R,d:c) + 5 (’9/‘%2(]1%419@) + 19l 2R d) X 19" | L2 (R, da) ) - (4.4.53)

leZ

Remark 4.4.6. In our convergence result Theorem [[.4.4] or also in the following Theorem [{.4.10,

we require that ”7/, VT// € LY(R,dv) (recall that v is a finite positive measure), and this implies that

v,V V" € LN(R,dx). By using [{.4.52), [@.4.41) holds with Ac, = X+ |[V"| 11 (R au) -
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Lemma 4.4.7. Let g : [0,7] x R x D — R be such that

Ja,A>0: sup |05g(t, y)|reman < AL+ 1y|"), k=0,1,2 (4.4.54)
tel0,T)

and suppose that
—V, —V” e L*(R,d 4.4.55
L . 4.
v ? v ( Y I/) ( )

For fixed h <T, Az > 0 and v > 0, consider the functions defined by

Uy (t,z,y) = Y v(Az)[g(t, s + 1Az, y) — g(t, z,y)] Az, (t,2,y) € [0,T] x R x D,
l

1
Uo(t, 2,y) = / (1= gt +7h,,y)dr, (t,,y) € [0,T —h] x R x D,
0
1
\P3(tax7y) = / (1 - 77)79@795 + 77A337?J>d777 (t,l',y) € [07T] xR x D7
0
1
Uyt w,y,2) = / (1 =09t 2,y +C(z—y))d(, (t,2,y,2) €[0,T]x RxD xD.
0

Then there exists C > 0 such that

sup [Wn(t, - y)l2 <C(1+yl*), n=1,23, (4.4.56)
t€[0,T]
sup | Wa(t, -y, 2)|2 < C(L+[y|" + 2[*). (4.4.57)
te[0,7

Moreover, set

Us(t,x,y) = /g(t,x + &, y)v(€)dE — Zg(t,x + Az, y)v(lAx)Az, (t,z,y) € [0,T] x R x D.
l

If (4.4.54) holds also with k = 3,4, there exists C > 0 such that

sup |Ws(t, -, y)|2 < AC(1 + |y|*) Az (4.4.58)
te[0,7

We can now prove the following key result.

Proposition 4.4.8. Set 1% _(y) = (A% ) "1BX (y), with A% (y) and B% (y) given in ([£.4.45) and
[@.4.47). For alln =0,...,N —1, let v" be the function defined in ([#.4.50). Suppose that

o L V¢ [2(R,dv);

° (Yh)nzo,.,.,N satisfies Assumptions Ay, Ay and As(4Xey|vx]);

n

162



Sec. 4.4 - Hybrid schemes for jump-diffusions and convergence rate

ov c C*¢

polnh,(n-+1)h }(R,D) a.e. and uniformly in n and h.

Then TIX (y) satisfies Assumption B(2,2)\c,|vx|, h + Ax?).

Proof. Lemma [1.4.3] gives [T, (y)|2| < [(AR,) " (W)]2|Bh, ()2 < 1+ 2)e,|vx (y)|h, so ([E437)

holds with ¢(y) = 2Aey|vx(y)|. We prove now ﬂ Wlth p = 2 and 5(h Azx) =h + Aw We
n+1)h

first recall that v/ (¢, z,y) = E [un 1 tnxﬁ . for t € [nh, (n+1)h] so that (4.4.38) equals

to
E[ng( Yop((n + Vh, -, YA ) (@) | Y = ] h(nh,2,y) + R (z,y), (4.4.59)

which can be rewritten as

E[BR,(Y;)vn((n+ Dh, - Vi) (@) | V1] = AR (V)on(nh, -, Yi) (@) + ARe (VR Y ().

(4.4.60)
Step 1. Taylor expansion of the l.h.s. of (4.4.60). We set
I = BR, (Y )un((n+ 1)k, -, Yoliy) (@) = vp((n+ Dbz, V)
by (V) D2 wlan) (Vb + Dby i, Yit) = ob((n o+ Dby @i, Vi) ) Ae, (4.4.61)

l

As regard the first term in the r.h.s. above, we first apply Taylor’s expansion to ¢ ~— v/ (¢, x;, Y}fﬁrl)

around nh up to order 1 and, then, we consider the Taylor expansion of y ~ v (nh,z;,y) around
Y up to order 3 and of y — v (nh,z;,y) around Y* up to order 1. Rearranging the terms we

obtain

vn((n + Dh, i, Y1) = vp(nh, 25, Y,)
+ Ol (nh, i, YR + 0,0l (nh, 2, )(Yn+1 Yy + 285 ol (nh, z;, Y, )(Yn+1 Ym?2
+ 0,0l (nh, 2, VY RV — V) + 83 Mnh, xp, YV — Y2 + Ri(n, hyo, YY),
where R; is given by
1
Ri(n,h,z;, Y, Yn+1) hQ/ (1 —7)0%" (nh + Th, :L‘i,Y,fH)dT
0

h h
+(Yn+16y)/ (1= ¢)*0yun(nh, x5, Y, + (Vi — Yo))dC (4.4.62)
0

+h(Yhy = Y)? /1(1 — Q)0y02ul (nh,xi, Y, + C(Ylhy — Yi))dC.
0
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For the second term in the right hand side of (4.4.61)), we stop the Taylor expansion of ¢ +—
P ((n + Dh, 4, Y," ) around nh at order 0 and of y — v!(nh, x4, y) around Y;* at order 1,

obtaining

Py (V) (o vl ((n 4+ Dby i, i) = 3 v(@)vh((n+ Dh,ai, Vi) ) A

l l

= hyx (Y Zu(xl)[vg(nh,xiﬂ,Yf) — ol (nh, z;, Y, )]Ax
1

+ h’yX(YTiL)(Yn’,Z—i-l - Yril) Z V(:El) [ayv (nh’ 'IZ-H’ n ) a v (nha L, Y,:')]ACL‘
l
+ R2 (na h> xiv Yn+1)

where the remaining term Rp contains the integral terms:

RQ(na h7 Z;, YT?? Ynﬁkl) =

+hyx (Y (v, — Zu x]) Az X
l

1
xéa—o@ﬂmmMm¢+mﬁl YY) — 9yl (nh i, Y4 (Y — Y] dC.

(4.4.63)
By resuming, we obtain
= h(nh xi,Yf) + 8tvh(nh,$i,Yh)h + Oyv (nh mZ,Yn )(Yn+1 Y,il)
+Qa§ Z(nh xlen )(Yn+1 ) +8 8tv (nh 331, n ) h(Yn+1 YT?)
682 Z(nh Zi, Yn )(YT{I:F]. 7?)5 + hAx’yX(Ynh) Z V(xl) [Uz(nhv Litls Ynh) - UZ(TLh, Li, Yril)]
!
3
+ Z Rl(nv h, i, Ynh’ Ynh—l—l)a
i=1
(4.4.64)
where
Ry(n, hya;, Y VR ) = (Y — VEODIRZE hnh, x4, YY) — 0,0l (nh, i, YY) | Az,
I
(4.4.65)
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Step 2. Taylor expansion of the first addendum in the r.h.s. of (4.4.60). We set

IQ AAx n(nh7 7Y1ﬁ)( ) (aZx(Yr?) - BZ:E(YT?))UZ(nhv Ti—1, Yr?)
+ (14 28R, (Y1) on(nh, i, Y1) — (ak, (Y1) + BR. (Vi) vl (nh, @iy, V).

We expand with Taylor o +— v!(nh, z,Y,?) around x; up to order 3 and we insert the values of oy |
and 6&6 in (4.4.46). Rearranging the terms we get

1
Iy =v(nh, z;, Y1) — hux (YO0 (nh, 2, YY) — Z ho o2l (nh, x;, Y,
2 =un( ") = hpx (V) dovn ) = 5 hok (V) dvn( ) (4.4.66)

+ R4(TL, ha T, Y ) Yn+1)
where

Azpx (Yy)) — ok
12

Yh 1
Ry(n, hya;, Y, V0 ) = (¥n) hA:U2/ (1 —n)30kl(nh, z; — nAz, Y, dn
0

CAzpx (V) + 0%
12

(¥,) > [! 394, h
hAx (1 —n)2atol (nh, z; + nAz, Y, dn
0

1
5 hAZ px (Y030 (nh, 25, Y.

(4.4.67)
Step 3. Rearranging the terms. By resuming, from (4.4.64)) and (4.4.66) we have
I — I = hdhli(nh, 21, V) + (Y — V)00l (nhy i, Y1) + hux (Y)00l (nh i, V)

+5 [(Yn+1 Y20 v (nh, @i, Y,) + hoX (Y 7vp (nh, 2i, V)]

+h’VX(Yn)/(vZ(t7x+C Y, = gt @, Vi) w(dQ) + 8,0y (nh, i, V) A(Yyy = Y1)
5

683 ’Z(nh xlvyn)(yn+1 Yél)i; +ZRZ(n7h7xlaY7?aY7ﬁ+1)
i=1

where
Rs(n, b, i, Y1) = hyx (Y] )Z [0l (t, i, V) — ol (t, 2, Y v (1AZ) Az
! (4.4.68)
= (V) [ (e + 2, YD) = ot Vo),

Now, note that, by the Feynman-Kac formula, the function v/ (¢, z,) = E [ﬂﬁ (X (tnz+7J1) b Y(ii/u) h)]
solves the PIDE

Bl (t,2,y) + Lub(tz,y) = 0, (t,2,3) € [nh, (n + ) x R™ x D,
oh((n+ Dh,z,y) =al, (z,y), nR™xD.
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Then, by passing to the conditional expectation and by using formulas (4.3.5)), (4.3.6) and (4.3.7))

for the local moments of order 1, 2 and 3, we obtain
R (24, Y1) =E[I, — I, | Y] = h(8:[o"(nh, z;, Y) + L]0P (nh, z;, Y1)

n n

1
+ E[ayat [oh(nh, i, V) h(Vyy = V) 4 20y [vli(nh, i, V) (Vi = V)| y;jl]

5
+ ZE[Ri(n7h7$i7Y7faY7?+l) | Ynh]
i=1

n

6
= " E[Ri(n, hyxi, YY) | Y
=1

where we have set

1
Rg(n, h,xi,YTfL,Y,fﬂrl) = fh(Y,f)ava(nh,xi, YJL) + fgh(YéL)@;vh(nh,xi,YT?)

n

. 2 (4.4.69)
+ (V) Ogun(nh, 2, V),
fn, gn and jp, being defined in , and .
Step 4. Estimate of the remainder. Hereafter, C' denotes a positive constant which may vary
from a line to another and is independent of n, h, Ax.

By (4.4.60), the remaining we have to study is R (-, Y,!) = (Agx)*l(Yﬁ)ﬁZ(-, Y"). By Lemma
(AR )W)z < 1, so [RE(, Y| < IR!(-,Y")|2. Now, by applying the Cauchy-Schwarz
inequality and by using Assumption Asz(4Ac|yx]),

E [BZL 2Xevx (Ylh)hwgfL(.’ v !%] <E [62?:1 4/\07x(Y/‘)h] 12 URZ(’ YT?)\%] 1/2

6
< E[‘ﬁ2(7 Yi)’%] 2 < CZEURi(n7 h: " Ynh> Yél-&-l)’%] 1/2'

i=1
So, we study the above 6 terms: we prove in fact that each one is upper bounded by C(h?+hAz?)2.

The inequalities studied in Lemma |4.4.7| now come on.

Consider first R; in (4.4.62). By applying (4.4.56|) for ¥ and ¥4, we get
[Ri(n, by Y, Yl )la

< CIA(1+ (V) Was = Yal (1 + [V 4 (Y ) 1Yoy = Yl S V1)),

So, by using the increment estimates (4.3.11f), the moment estimates (4.3.12) and the Cauchy-

Schwartz inequality, we obtain

E[|Ry(n, h,- Y2, VI 82 < Cnt.

n
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Ry in (4.4.67) can be handled in a similar way: recalling that px and ox have polynomial growth,
we apply now (4.4.56)) for ¥35 and we get

E[|Ra(n, b, Y2,V )|8]"? < Ch2Ax*,

The same approach can be used for Rg in (4.4.69)): we use first (4.4.53), then the Holder inequality
and (4.3.8), (4.3.9), (4.3.10). Thus, with simple calculations

1/2

E[|Rs(n, h, -, Y, Yl )] '~ < Ch*.

In order to study Rs in (4.4.63)), let us first set

1
g(t, x,YTfZFI) = / (1— T)atvﬁ(t + Th,$,YTfL+1)dT.
0

Then, for £k =0,1, 2,

1
|0 9( = n+1)|L2 (R,dz) S/0 (1 —T)2|85U2(nh+7h7 aYn+1)|L2(Rdx)dT <SCA+Y, +1| ),
so, by (4.4.56) for ¥y, we obtain

x (Ya) D v(lAz) [g(nh, -+ 1Az, Y0 ) — g(nh, - V)] Axy < Clyx (YOI + Y1)
l

CL+ YA+ Y1419,

the latter because vx has sublinear growth. And if we define

1
g(tvyuy 7Yn+1) / ( C)a U(t y7Y +C( n+1 Y#))dgv
0
the same reasonings give

{WX(YT{L) Z V(ZA‘T) [g(nha T+ ZA‘Ta Yh7 Yn+1) (nh7 K Yh7 YnJrl ]Ax‘z
l

< Clyx (YOI + [+ (V2] < CA+ [YRDIL + [V + [V |9).
Therefore, by the Cauchy-Schwartz inequality, and , we finally obtain
E[|Ra(n, b, Y2, VI 82 < Cht.
R3 in can be estimated analogously, so we get

1/2

E[|R3(n7h7'>yh>yn+1)’ ] < Ch4
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Finally, for R in (4.4.68)), (4.4.58) gives that |R5(n, h, -, Y,")|s < Ch(1+4|Y;*|*) Az? and by passing
to the expectation, (4.3.11)) gives
E[|Rs(n, h,- Y 3]"? < Ch2Az*,

y v dn

Putting all the above estimates together, the statement holds. O

Proof of Theorem [{.4.4). The proof is a straightforward application of Proposition and Theo-
rem (44,71 O

Convergence in /,,-norm

We consider here a different finite difference scheme for equation : we still approximate
(explicit in time) the integral term Ei(ﬁ/t)v in with a trapezoidal rule, but we use an upwind
first order scheme to approximate (implicit in time) the differential part Egﬁ%v in . As
usually done in convection-diffusion problems, we distinguish the cases in which px(y) is positive
or negative in order to take into account the asymmetry given by the convection term and we use
one sided difference in the appropriate direction. Specifically, if ux(y) > 0, we approximate Eg?f)fu
by using the scheme
vt —op n ,UX(?J)U?—H — i L ( )U?ﬂ —2uf + ity
h Az 27x\¥ Ax? ’

while, if px(y) < 0, we use the approximation

vt — o vf —vity 1 o U — 200 F Uty
The resulting scheme is
AR, ()" = B, (y)o" ™, (4.4.70)

where A% (y) is the linear operator given by

1+ 268, (y) + ok, ()], ifi=j
(ARL)ii(y) = \ . Y (4.471)
with
h h

h _ h _ 2
ana(y) = 1orx(¥), Bre(y) = 51 2ox (),
and Bgz(y) is the linear operator defined in (4.4.47]). Then we have:
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Lemma 4.4.9. For every y € D, the operator A% (y) : loo(X) — loo(X) is invertible and
|(AZZ)_1(y)|OO < 1. Moreover, \ng(yﬂoo < 14 2X\a|yx(y)|. Finally, if vx = 1, sz(y) =

(AR )"1BR (y) is a stochastic operator, that is,
(MA)i(y) >0, i,j€Z, > (MA)iw) =1, jez
JEZL

Proof. We write A% (y) = n(y)I — P(y), where n(y) = 1+ 28%,(y) + [a,(v)|, I is the identity
operator and P;j(y) = 0 if |i — j| # 1 and P;; = —(AR)i; if |i — j| = 1. So, it is easy to see that
the operator A% (y) : loo(X) — loo(X) is invertible with inverse

e k
(87 (0) = )T = P = T

" k=0

The assertion for BR_(y) immediately follows from ([#.4.47). Finally, (AR )=*(y) > 0 for all i,

ij
because all entries of P(y) are non negative and (B% );;(y) > 0if ux = 1. Moreover, 1% (y)1 =1

because, by construction, A% (y)1 =1 and B} (y)1 =1 when ux = 1. O

We can now state the convergence result.

Theorem 4.4.10. Let a;; be defined in (4.4.35) and uZ be given by (4.4.36|) with the choice
A, (y) = (AR,) "' BR.(v),

Agx(y) and ng(y) being given in (4.4.71)) and (4.4.47) respectively. Moreover, for n =0,..., N,

consider the function

UZ(t, r,y) =E [afz-f—l(Xé;ﬁ_yl)ha Y(iﬁ_l)h)} ) t € [nh,(n+ 1)h].

Assume that
o LV ¢ LN(R,dv);
e the Markov chain (Y,fl)nzow,N satisfies assumptions Ai, As and As(4Xey|vx|);
e v ¢ C]?)zl%[nh,(n—l-l)h} (R,D) a.e. and uniformly in n and h.

Then, there exist h,C > 0 such that for every h < h and Az < 1 one has

i (-, Yo) — uf (-, Yo)loo < CT(h + A?).
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Proof. By rewriting the proof of Proposition in terms of the norm in [, (X), one gets that
ng(y) satisfies B(oo, 2Acy|vx |, h + Az). The statement now follows by applying Theorem m
We only notice that here one applies (4.4.52) to the remaining term Rs in (4.4.68[). Since this

term contains just v/, one does not need more regularity for v”, that’s why we do not need that
vl € C';Z’PT(]R, D) and the class C’Sf)’flT(]R, D) is enough. O

It is natural to look for conditions on the function f which ensure that the regularity assumptions
on the function vﬁ for n = 0,..., N, which are required In Theorem 4.4.10} are actually satisfied.
Of course, these conditions depend on the regularity of the model. In Sections [4.5] and [4.6] we will

study the case of the degenerate Heston or Bates model.

4.5 The European case in the Heston/Bates model

As an application in finance, in this section we apply our convergence results to to a tree-finite
difference procedure for pricing European options in the Heston ([58]) or Bates ([17]) model: the

asset price process S and the volatility process Y evolve following the stochastic differential system

ds )
Tt = (r — 8)dt + p\/Yy dZ} + ~dHy,
= (4.5.72)

dY; = k(0 — Y;)dt + 0+/Y, dZ2,
where Sy > 0, Yo > 0, Z = (Z',Z?) is a correlated Brownian motions with d(Z', Z2); = pdt,
lp] < 1, Hisa compound Poisson process with intensity A and i.i.d. jumps {jk}k as in .
Here, v = 1 (Bates model) or v = 0 (Heston model). The above quantities 7 and § are the interest
rate and the dividend interest rate respectively. We assume, as usual, that the Poisson process K,
the jump amplitudes {.J; }s and the correlated Brownian motion (Z!, Z?) are independent.
With a simple transformation, we can reduce the model to our reference model .

To get rid of the correlated Brownian motion, we set
p=+1—-p2 and Z2=W, Z'=pZ®+pB,

in which (B, W) denotes a standard 2-dimensional Brownian motion. Moreover, considering the

process X; = log Sy — gY}, we reduce to the jump-diffusion pair (X,Y"), which evolves according to

dX; = px (Yy)dt + p/Y: dBy + ydHy,

(4.5.73)
dY; = k(0 — Yy)dt + 0+/Y, dW,,
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where

px() =r =65~ "r(0—y),

H, is the compound Poisson process written through the Poisson process K, with intensity A, and
the i.i.d. jumps J, = log(l—l—jk). The standard Bates model requires that J; has a normal law. But
it is clear that the convergence result holds for other laws such that the Lévy measure v satisfies the
requests in Theorem [£.4.4) or Theorem For example, these properties hold for the mixture
of exponential laws used by Kou [69].

In this section we focus on European options. Recall that, in this case, the function ! (-) defined
in is nothing but the European price value at time nh, that is u(nh, ) where u is defined
in . Moreover, we can easily see that, for any n = N — 1,..., the function v? defined in
satisfies

ol (t,x,y) = ut,z,y),  t€[nh,(n+1)h].

We consider the approximating Markov chain for the CIR process discussed in Section [£.3.1] and

the two possible finite difference operator discussed in Section [4.4.3] and [4.4.3] As an application,

we get the following convergence rate result of the hybrid method.

Theorem 4.5.1. Let (X,Y) be the solution to (4.5.73) and let (Ynh)n:07,,,7N be the Markov chain
introduced in Section for approzimating the CIR process Y. Let u(t,z,y) = E(f(er,lm’y, Yr_ﬁ’y))

be as in (4.4.25)) and (uﬁ)nzo,m,N be given by (4.4.32)) with the choice
X, (y) = (AX,) "' BR.(v)-
(i) [Convergence in lo(X)] Suppose that

o AR (y) and BX (y) are defined in (A4.45) and (4.4.47) respectively;

° ”7,, ”7” € L*(R,dv) and v has finite moments of any order;

o« 0 f ¢ Cﬁf{j(R,R_%) for every j =0,...,6.
Then, there exist h,C > 0 such that for every h < h and Az < 1 one has

]u((), R Yb) - u8(7 %)’2 < CT(h + sz)-

(17) [Convergence in I (X)] Suppose that

° Azz(y) and ng(y) are defined in (4.4.71) and (4.4.47)) respectively;
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° ”7/, ”7// € LY(R,dv) and v has finite moments of any order;
° 8§jf € C’gf)’fl_j(R, Ry) for every j =0,...,4.

Then, there exist h,C > 0 such that for every h < h and Ax < 1 one has

”U,(O, K Yb) - ul(;b(’ YZ))’OO < CT(h + Am)

Proof. We apply Theorem for (i) and Theorem {4.4.10| for (7). The validity of assumptions
A; and As is proved in Proposition and since here yx = v € {0,1}, As(4\c,|vx|) trivially
holds. So, we need only to prove that if a%jf € 012)’67j(R,R+) as j = 0,1,...,6, resp. &%jf €

ol
Coot (R,Ry) as j = 0,1,...,4, then u € Cog) (R, Ry), resp. u € Cpoyl(R,R). This is proved
in next Proposition m (set p=0,a=r—0— gﬁﬁ and b = gn — % therein), the whole Section
being devoted to. ]

Remark 4.5.2. In C’hapter@ we have considered the Bates-Hull-White model [27], which is a Bates
model coupled with a stochastic interest rate. Recall that the dynamics follows (4.5.72)) in which r

s not constant but given by the Vasicek model
dri = K (0, — r)dt + 0,.dZ3,

Z3 being a Brownian motion correlated with Z' (and possibly Z?). Here, there is no global trans-
formation allowing one to reduce to our reference model. Nevertheless, a similar convergence result
can be proved by means of the local transformation introduced in Section|3.4.1), acting on each time
interval [nh, (n + 1)h].

4.5.1 A regularity result for the Heston PDE/Bates PIDE
We deal here with a slightly more general model: we consider the SDE

dX; = (a4 bY;) dt +\/Y; dW}! + yxdH;,

(4.5.74)
dY; = k(0 — Yy)dt + o/Y; AW},

where W', W?2 are correlated Brownian motions with d(W?!', W?); = pdt and H is a compound
Poisson process with intensity A and Lévy measure v, which is assumed hereafter to have finite
moments of any order. Here, a,b € R and vx € {0, 1} denote constant parameters. Note that when
a = r — ¢ (interest rate minus dividend rate), b = —% and yx = 0 (resp. yx = 1), then (X,Y)
is the standard Heston (resp. Bates) model for the log-price and volatility. When instead p = 0,

a=7r—0— gnﬁ and b = g:‘i — %, we recover the equation (4.5.73)) discussed in Theorem m
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Let £ denote the infinitesimal generator associated to (4.5.74]), that is,
Lu = % (92u + 2p0 0, 0yu + 028§u) + (a+ by) Opu + k(8 — y)Oyu + Liu, (4.5.75)
where, hereafter, we set

Liu(t, z,y) = vx / [u(t,z + ¢, y) — ult, =, y)|v(C)dC.
So, the present section is devoted to the proof of the following result.

Proposition 4.5.3. Let p € [1,00], ¢ € N and suppose that 02 f € ngl_j(R,R+) for every
j=0,1,...,q. Set
u(t,z,y) = E[f(Xz"", Yp")].

Then u € ngl,T(R’ Ry). Moreover, the following stochastic representation holds: for m+2n < 2gq,

O dult,w,y) = E TG0 FXEHY Y|
T (4.5.76)
+nE [ / [28;”+2851u + b@;"“@glu] (5, X0, }’S”’t’x’y)ds} ,
t

where 8}?8;‘*11& =0 when n =0 and (X™H5Y, YY) n > 0, denotes the solution starting from
(z,y) at time t to the SDE (4.5.74)) with parameters

7”L0'2

Pn=p, ap=a+npo, b,=0b kK,=x, 9n:0—|—§, oy = 0. (4.5.77)

In particular, if ¢ > 2 then u € C12([0,T] x O), O =R x R, solves the PIDE

owu(t,z,y) + Lu(t,z,y) =0, tc[0,T), (x,y) €O,

’ (4.5.78)
U(T,:E,y) :f(xay)v (5573;/) € 0.

Remark 4.5.4. For our purposes, we need both the polynomial growth condition for (x,y) —
u(t,z,y) and the LP property for x — u(t,x,y), and similarly for the derivatives. A closer look
to the proof of Proposition shows that the result holds also when one is not interested in the
latter LP condition. In this case, Proposition reads: for q € N, if 97 f € C17 (R x Ry) for

pol

every j = 0,1,...,q then u € C’golT(R x R4). Moreover, the stochastic representation (4.5.76))
holds and, if ¢ > 2, u solves PIDE (4.5.78|).

As an immediate consequence of Proposition we obtain the already known regularity result
for the CIR process which has been already proved in Proposition 4.1 of [3].
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Corollary 4.5.5. Assume that f = f(y) and set u(t,y) = E[f(Y;;’y)]. If f e Cl (Ry), then

p
u € Cgol,T(R—i-)- Moreover, for n < q,

Dpult,y) = E [e = T000 p(v7)|

where Y™5Y denotes a CIR process starting from y at time t which solves the CIR dynamics with
parameters k, = Kk, 0, = 0 + %, on = 0. In particular, if ¢ > 2 then u € Cgol(R+) solves the
PDE

Ou + Au = 0, (t,y) €[0,T) x Ry,

un(T7y):agf(y)7 y€R+,
where A is the CIR infinitesimal generator (see (4.3.2))).

We first need some preliminary results. First of all, recall that X and Y have uniformly bounded

moments: for every 7' > 0 and a > 1 there exist A > 0 such that for every ¢ € [0, T,

sup E[|X5"Y|%] < A(1 4 |z|* 4+ y*) and sup E[[Y Y]] < A(1 +y%). (4.5.79)
s€[t,T] s€[t,T]

For the second property in (4.5.79)), we refer, for example, to [3], whereas the first one follows from

standard techniques.

Lemma 4.5.6. Let p € [0,00], g € CP

PORRL), hoe CEY L(R,Ry) and consider the function

T
ut,z,y) =E [e“T—”g(X%””’y,Y%’y)— / e@“‘“h(s,X;@’y,YJ*’)ds}, (4.5.80)
t

0
where o € R. Then u € Choy (R, Ry).

Proof. We set
T
ui(t,z,y) =E eQ(T_t)g(X%m’y,Y%’y) , ug(t,z,y) =E [/t eg(s_t)h(s,X?z’y,Y;t’y)ds}
and we show that, for i = 1,2, u; € CgfLT(R,RJF). We prove it for i = 2, the case i = 1 being
similar and easier.
Fix (t,z,y) € [0,7] x R x Ry and let (tn, Tn, Yn)n C [0,7] x R x R4 be such that (¢, 2, yn) —

(t,z,y) as n — co. One can easily prove that, for every fixed s > t, V t, (X" yinvn) -
( XL YSW) in probability. We write us as

T
u2(t7 xz, y) = / ]]-s>t€‘g(s_t)IE [h(S, X;,w,y’ }gt7y)] ds
0
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Since h is continuous, for s > t, V ¢ the sequence (h(s, Xt ¥" Yim¥")), converges in probability
to h(s, XL™Y YY), By the polynomial growth of h and (£.5.79), for p > 1 we have

sup E[|A(XL 9 Yin9m) P < sup CE[L 4 | X292 [ 4 (Vi9")aP] < oo, (4.5.81)
n n

Thus, (h(Xa™ ¥ yim¥m)), is uniformly integrable, so h(X ¥ Virn) — h(X5™Y YY) in L
and

Toor E [eQ(S—tn)h(s7X£n,l‘n,yn7}/Stnvyn):| 1 E [e@(s—t)h(s’ xtey yi)|

a.e. s € [0,T]. By (4.5.81), ua(tn,Tn,yn) — uz(t,z,y) thanks to the Lebesgue’s dominated
convergence and moreover, us grows polynomially. So, us € Cpor,7(R x RY).

Fix now p # co. We have

T
E [ / 69(5t)h(s,Xz"’y,Yst’y)ds]
t

sup [[ua(t, -, y) || Lr(r,dz) = SUP
t<T

t<T LP(R,dx)

1/p

1/p T
< CiggE [/ |R(s, X0v, Y0P, Rdw)] = C%?E [/t |A(s, -+ HLY, YY) HLP(RM

1/p
= CsupE [/ |h(s,- YY", Rdm} < OT sup (1+ E[(YIv)Pa))l/e
t<T t<s<T

in Which we have used twice the Cauchy-Schwarz inequality. Then, by using (4.5.79)), we have
uy € CPO pol. +(R,Ry). The case p = oo follows the same lines. O
To simplify the notation, from now on we set Eb*¥[.] = E[-|X; = 2,Y; = y] and O = R x (0, 00)..

Lemma 4.5.7. Let g € Cpo1(O) and h € Cpor1(0) be such that O > z — h(t,z) is locally
Hélder continuous uniformly on the compact sets of [0,T). Let u be defined in (4.5.80). Then,
u € C([0,T) x O)NCY2([0,T) x O) and solves the PIDE

ou+ Lu+ou=h, nl0,T)x0,
u(T,z) = g(2), in O.

(4.5.82)

Moreover, if the Feller condition holds, that is, 2k0 > o2, then u is the unique solution to (4.5.82))
in the class Cpol’T(@).

Proof. Let S €1]0,T), R=R x (¢,00), ¢ >0, Q@ =1[0,5) x R and consider the PIDE problem

O+ Lv+ov="h, inQ,

v =u, in @,
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0@ denoting the parabolic boundary of . The coefficients satisfy in Q) all the classical assumptions
(see e.g. [53, [78]), so a unique (bounded) solution v € C%2([0,T) x R) N C([0,T] x R) actually

exists (and have Holder continuous derivatives v;, V,v and D?v in Q). As a consequence,
S
Zs = e%u(s, X, Ys) —/ e h(r, X,, Y, )dr
t
is a martingale over [t, S A 7r|, where Tg denotes the exit time of (X,Y’) from R. Then,

e v(t, x,y) = E"Y(Z;) = VY (Zspry )
SATR
= Eb®Y [eQSATRu(S ANTR, XShrr s YSArm ) — / e?" h(r, Xy, Yr)dr].
t

Now, by the strong Markov property,

T
egS/\TRu(S A TRyXS/\TR7YS/\TR> =E ePTg(XT;YT) _/

SATR

e h(r, Xp, Yy )dr | Foneg .

By replacing above, it follows that v = u in (). Whence, the first assertion is proved. Suppose
now that 2k6 > 02 and that g has polynomial growth. Let w € C([0,T] x O) denote a solution to
(4.5.82) with polynomial growth. We prove that w = u. Let S,, < T and let R,, denote a sequence
rectangles as before such that @, = [0,5,) X R, 11[0,T) x O. Let w, the unique solution to

Orwy, + Lw, + ow, = h,  in Qy,

Wy, = W, in 0yQn.

Since w trivially solves the above PIDE problem, we get w,, = w and
Sn/\TRn
egtw(t’ Z, y) =E""Y |:€QS"/\TRH w(Sn NTR, XSn/\TRn ’ YSn/\TRn) - / egrh(,r’ X, va’)d"{| :
t

Now, as n — 0o, one has Tg, 1 oo because, by the Feller condition, P¥(Yy > 0Vs) = 1. Then, we

pass to the limit and since w is continuous and has polynomial growth, we easily obtain w = u. [

Lemma 4.5.8. Let u be defined in ([1.5.80), with g and h such that, as j = 0,1, 92 g € C’;glj(@)

and 07 h € Cll)gf;T((’_)). Then u € CII)OLT((’_)). Moreover, 8%u € Cpor7(O) and one has

T
OMu(t, z,y) = EbY [e@<T—t>agg(XT,YT) — / eQ(S_t)ﬁg‘h(s,Xs,Y;)ds] . om=1,2, (4.5.83)
t

T 1
Oyu(t,z,y) = Eb®Y [e(g_“)(T_t)ﬁyg(X}, Y7) + / ele—r)(T—s) [@,h + iagu + b@xu} (s, X2, Ys*)ds] ,
t

(4.5.84)

where (X[, Y}") solves (4.5.74) with new parameters p, = p, @, = a+po, by = b, ke = K, O, = 9—1—%,

Oy = 0.
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Proof. First, the stochastic flow w.r.t. x is differentiable (here, (X*)?x’y =x+ Zf;’y and Z;’y does
not depend on x). Hence, by using the polynomial growth hypothesis, by (4.5.80|) one gets (4.5.83)).

Let us prove (4.5.84)).
By Lemma u solves (4.5.82)). So, setting v = Jyu, by derivating (4.5.82) one has

O+ Lyv+ 050 =hy, in[0,T)x O,
o(T,2) = gu(2), in 0.

where L, is the infinitesimal generator of (X*,Y™*) and ¢, = 0 — K, hy = Oyh — bO,u — %8§u,
g« = Oyg. By using and Lemma hi € Cporr(0). Moreover, the Feller condition
2k405 > 02 holds, and by Lemma the unique solution with polynomial growth in (z,y) to the
above PIDE is

T
@@xw»—W%yaﬂ”MAxanw—/“é“%mdaxaxn@.
t

In order to identify v with v = 9,u we would need to know that dyu € Cpo17(O). If the diffusion
coefficient of Y* was more regular, one could use arguments from the stochastic flow. But this is
not the case, hence we use a density argument inspired by [47].

For k > 1, let ¢ be a C*°(R) approximation of \/|y| such that ¢i(y) > 1/k, pr(y) = /||
uniformly on the compact sets of [0,+0c) and 3 is Lipschitz continuous uniformly in & (which
means that ¢y} is bounded uniformly in k). Consider the diffusion process (X*,Y*) defined by

dXF = (a+ bY¥) dt + ¢ (YF)dB, + dH,, (45.85)
Y} = k(0 — YF)dt + oo (Y} AW, -

whose generator is

i (y)
2

Lru= (8§u + 2p00,0yu + 0'2a§u) + (a+ by) Opu + k(6 — y)ayu + Zu.

Set
T

u%uxw>=H%%yF“T%@cx%y#y—/°

e p(s, X5, Yf)ds] :
t

Le us first show that 9yu* € Cpo17(O). Since the diffusion coefficients associated to (X*,Y*) are
good enough, we can consider the first variation process: by calling Z2"%Y = (0y X htey %Y;k’t’w’y),

we get,

8yuk(t,$, y) :E |:€Q(T*t) <vx,yg(X§i7t7x7y’lefvtzxvy)j Zéivtvxvy>i|

T
_ / PUCD) ) [<Vm7yh(s,Xf’t7x’y,Y;k’t””’y),Zf’t’x’yﬂ ds.
t
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The functions g, h and their derivatives have polynomial growth, so
‘ayuk(t, X, y)‘ <E |:C'(1 + |X§7t,x7y|a + |Y7’f’t’x’y|a)|Z§qt’xvy|]
T
+ /t (s |:C<1 4 ‘Xéf,t,z,y‘a + ‘Y‘-gk,t@,y‘a)‘zf,tmyq ds

and the usual LP-estimates give

sup 0,1, . )| < Cu1 + Jal"* + ),
t<T

for suitable constants Cj, a;, > 0. Moreover, from the standard theory of parabolic PIDEs, u* is a

solution to
ol + Lru® + ouF =h, in[0,T)x O,

uF(T, 2) = g(2), in O.

By differentiating, v* = 8yuk solves the problem

Ak + Ek,*vk + Q*’Uk =hpx, in[0,T)xO,
V(T 2) = g.(2), in 0.

where

2
Ly v :cka(y) (851) + 2p00,0yv + 02(951))

)

+ (a4 by + 2000104 (y)) v + (K0 — y) + o 0rp(y)) Dyo + Tv

and hy, = Oyh — 6O uk — gokgogc(y)ﬁguk. By developing the same arguments as before, we get
i« € Cpor7(O). The PIDE for v* has a unique solution in Cpe17(O) (recall that, by construction,

the second order operator is uniformly elliptic). Thus, the Feynman-Kac formula gives
T
dyul (t,x,Y) = Mo [6“’”‘“9*<X%*,Yq’f’*> - / 69‘8‘”hk,*<s,xf’*,Y;f’*WS] /
t

where (X** Y**) is the diffusion with infinitesimal generator given by Ly .. Now, the standard L?
estimates for (X*,Y*) and (X**, Y**) hold uniformly in k (recall that ¢y, is sublinear uniformly
in k and ¢}, is bounded uniformly in k): for every p > 1 there exist C,a > 0 such that

supsup B (|XFP + [¥17) + supsup B (| X7 4 ¥/ P) < O(1+ Ja]* + Jy|).
E t<T k t<T

This gives that

sup sup |uk(t,x,y)| + sup sup ‘%uk(t,x,y)’ <O+ |z|* + |y,
k t<T k t<T
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for suitable C,a > 0 (possibly different from the ones above). Moreover, using the stability results
of [12] one obtains

. k : k
lim w*(t,z,y) = u(t,z,y) and  lim Gyu"(t,z,y) = v(t, z,y)

n—oo

for every (t,z,y) € [0,T) x O. And thanks to the above uniform polynomial bounds for u* and
Oyuk , for every ¢ € C*°(Q) with compact support we easily get

[ otz otay)dody = [ 1m0yt v 0)o(ey)dady
—— [t (t2.9)0,0(e, p)dady =~ [ ult,.9)00(z, )dudy.

Therefore, v(t,z,y) = Oyu(t,x,y) in [0,T) x O. The statement now follows.

We can now prove the result which this section is devoted to.

Proof of Proposition[{.5.3. We follow an induction on ¢. If ¢ = 0, Lemma gives the result.
Suppose the statement is true up to ¢ — 1 > 1 and let us prove it for q.

Take f such that 0% f € C’gf{j(R,RJF) for every j =0,1,...,q. Then, by induction, 8%8;”6;% €
Cg’gLT(R, R4 ) when 21 +m +n < ¢ — 1. So, we just need to prove that 8%8218;11 € Cg’gLT(R, R4)
for any [, m,n such that 2l + m 4+ n = q.

Assume first | = 0. For n = 0, we use that Xfp’z’y =x+ erp’y and we get OV'u(t,x,y) =
EbeY (07 f (X, Y7)]. Since 82 f € Cg’gl(R, Ry ) for any m < 2¢, by Lemma we obtain 0J'u €
Cg’(?LT(R, R, ) for every m < 2gq.

Fix now n > 0 and m > 0. Recursively applying Lemma we get formula . Let us
stress that, because of the presence of the derivatives 8;’”28;_% and 8;”“6;“% in , the
recursively application of Lemma gives the constraint m + 2n < ¢. Then, by Lemma it
follows that 07'0;u € Cg’gLT(]R, Ry ) for every m,n € N such that m + 2n < 2¢, and in particular
when m +n =q.

Consider now the case [ > 0. By , Lemma ensures that if m + 2n < 2q then

Un,m = 8;”8;% solves

1 .
8tum,n + Enum,n — NKUmn = _n[ﬁum—i-Q,n—l + bum—&—l,n—l] mn [07 T) x O,

(4.5.86)
Um,n(T,SE, y) = a;nagf(%y) in Oa
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where L, is the generator in (4.5.75) with the (new) parameters in (4.5.77)). Therefore, the general
case concerning 8%8;”8;% with 2] + m + n = ¢ follows by an iteration on [: by (4.5.86)),

1
QOO = —L,00 0O + nkdl OO — [§a§—16y+285—1u + b@é‘lﬁg"”“@g_lu] .

4.6 The American case in the Heston/Bates model
In this section we focus on the American case. We first prove a simple lemma which better specifies
the behaviour of the moments in the Heston and Bates model.

Lemma 4.6.1. For every p > 2 there exists C > 0 (depending on p and on the model parameters)
such that

sup E[|Xf;jfl)h\p] < (14 Ch)(1 + |zP +yP), (4.6.87)
te[nh,(n+1)h]
sup E[(Yéfil)h)p] < (1+Ch)(1+yP). (4.6.88)

te[nh,(n+1)h]

Proof. It can be easily proved that there exists C' > 0 such that

sup E[|X:["] < C(1+ []” +¢), sup E[(Y,"")"] < C(1+yP). (4.6.89)
te[0,717] t€[0,T

We start by proving (4.6.88). Let us fix p > 1. By using It6’s Lemma, for any ¢ € [nh, (n+ 1)h] we

have

t (+D)h p—1, t 1 t
N A (e (e e ey |
t t

Passing to the expectation and using (4.6.89)), we can find C' > 0 (depending on p and on the
coefficients of the model) such that

(n+1)h )
(YEvy=haw,,

sup  E[(Y2 )] P + hO(L+ 9P +47) < (14 2Ch)(1 +¢P),
te[nh,(n+1)h]

from which (4.6.88)) follows. As regards (4.6.87)), again by It6’s Lemma, for ¢t € [nh, (n + 1)h] we
get

t,w7y)2p—2 ds
o

(n+1)h

(ntDh . (n+1)h .
[ e ar, [ o (i) (X,
t t
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K denoting the Poisson process driving the compound Poisson process H, whose associated Lévy

measure is v. Passing to the expectation, and using the martingale properties (which hold thanks

to (L559)) we get
tz,y |2p 2p (n+Dh t,y t,x,y\2p—1 2 ty t,x,y\2p—2
BIXGT P =0+ [ [Blm (V) (X5 4 p(2p = 1)k (V) (X422 ds
(n+1)h
+ / ds / E[(X52 1 2)2 — (X500) 2P (dz).
t

(4.6.87) now follows by using Hoélder inequality, the estimate (4.6.89) and the existence of all
moments under v. O

Again, we approximate the CIR process with the Markov chain discussed in Section and
we consider the two finite difference operators introduced in Section [£.4.3] and [£.4.3] Therefore, we

get the following convergence rate result.

-----

introduced in Section|4.3.1| for the approzimation of the CIR process Y . Let ﬂfl be defined in (4.4.33))
and UZ be given by (4.4.34) with the choice

A, (y) = (ARs) ' B, (y)-
(i) [Convergence in l2(X')] Suppose that

. Agm(y) and Bgz(y) are defined in (4.4.45) and (4.4.47)) respectively;

vy
v

o U, € L?(R,dv) and v has finite moments of any order;

o [ € Cpo(Rx D) is such that there exist C,a > 0 with
020, () 2@an < CU+yY),  UIEN.
Then, there exist h,C > 0 such that for every h < h and Az < 1 one has

[u(0, -, Yo) — ug (- Yo)|2 < CT(h + Ax?).

(77) [Convergence in lo(X)] Suppose that

o AR (y) and BR (y) are defined in (E471)) and ([E4.47) respectively;
° ”7/, ”7” € LY(R,dv) and v has finite moments of any order;
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o [ € Cpo(Rx D) is such that there exist C,a > 0 with
050, f (9l Loy < C(L+y%), U 1EN,
Then, there exist h,C > 0 such that for every h < h and Az < 1 one has

lu(0,-,Yp) — ug(-,Yo)]oo < CT(h+ Ax).

Proof. We prove (i), (ii) following in the same way. The validity of assumptions .4; and A is
proved in Proposition and since yx = 1 or vx =0, Az(4Acy|yx|) trivially holds. So, as in the
FEuropean case, in order to apply Theorem it is enough to prove that the function v/ defined
in m belongs to the space c28 pol

Let us consider a function f €
such that

(ko (n+ 1)) (R, D) a.e. and uniformly in n and h.

pol(R x D) such that for any [,I" € N there exist Cy, ajpp > 0

080, ()| r2moan) < Cra(1+y), y € D. (4.6.90)

We point out that in the statement of the theorem we actually require that there exist C,a > 0
such that Cp; < C and ap; < a for any [,I’ € N. We will use this strong assumption only at the
end of the proof, when it will be clear why we need it in order to get the assertion.

We proceed by a backward iteration. For n = N — 1 we have v%,_, (¢, z,y) = E[f(X3"", Y7Y)].
By the proof of Proposition and by using (4.6.87) and (4.6.88]), we deduce that, if [ = 0, by

using (4.6.87)-(4.6.88) we have

sup |aalnlvl}i/—1(tv " y)|L2(]R,dx) < C1l’,0(1 + Coh)(l + yal/’o)'
te[(N—1)h,T)

On the other hand, again from the proof of Proposition we have that, for t € [(N — 1)h,T),

3l oy yUN— 1t zy) = E[ e t)al/alf( oy Yl’m’y)}

T (4.6.91)
+IE |:/ |: al +2al 1 h + bal +lal 1 h :| (S’Xé,t,m,y’}/sl,t,x,y)ds] ’
t

where b = 2k — § and (X', Y"') is the solution of the Heston/Bates model with new coefficients

r=r+lpo, kg=k, 0, =0+ %, o1 = 0. Denote by Cj the constant such that

sup  EY[(Y(,11)0)" < (1+97)(1+ Cih).
te[(N=1)h,T)

Then, if [ = 1, by (4.6.91]) we get

sup  [0L D, 4 (t, )| < Cra(1+ Cih)(1 + ')
te[(N—1)h,T)

1
(G20l + CLRL 4 5520) 4 BiCrnofL + C)(1 4 5700) ).
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Without loss of generality we can assume that % +|b] < C1, C; < Cj41 and that the constants Cj

and a;p are nondecreasing in both ! and . Then, we easily deduce that

sup 050y v 1 (t )| e(ade) < Crazn(1+ Crh)? (1 4y +21).
te[(N—1)h,T)

With the same arguments, if [ = 2, we get

sup  [OL 05N 1t W) r2ran) < Crgpan (14 Cah)P(1+y v +an).
t€[N—1)h,T)

By iterating, it can be easily seen that

h,N—1 A
sup |8l 8ZUN 1 (2, 7y)|L2 (R,dz) < Cl(/,l ) (1 +y ) )
te[N—1)h,T)

where
h,N—1 N—1
Y = Crpu+ G, ey Y = arpa

As regard the derivatives w.r.t. the time variable, again from the proof of Proposition we

have
ol b ol vy = —Li0 kbl _y + ikd) Ttobalul
_ lbai—lagwaé—lv?v_l " baé”—la;’—i-laé—lka_l}
so that
I ol (h,N—1) Z(’Nl 1)+l//
sup |0} Lol 1 ()| eman) < a0 (14" : (4.6.92)
te[nh,(n+1)h)

where c is a constant which depends on the coefficient of the model.
Therefore,

uN—l(xay) = max{f(x,y),v]}{,_l((]\f - 1)h,[]3,y>}

is a continuous function, whose derivatives, of any order, a.e. continuously exist and for every I’, [,
VAl ~h (h,N—1) a7y
0 0y un 1 (5 W) Lerae) < Cpy ' (1 +y w, a.e.. (4.6.93)

Note that the estimates (4.6.92)) on the time derivatives of U?Vq are not involved in the estimate
(4.6.93]) and, as a consequence, in the iterative procedure.
At time step n = N — 2 the function U?V_Q is defined by

Voot a,y) = E[ay (XN YN_yw)]s  tE€ (N =2)h, (N = 1)h].
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By developing arguments already done for n = N — 1, we get

' h,N—2 (V=2
sSup ‘8:5: 8yvj}i/—2(ta g y)|L2(R,dx) < Cl(gl ) <1 + yal ot )
te[N—1)h,T)
where
h,N—2 h,N—1 N—2
Cl(’,l = Cl(’+217l (1+ Cih)"™ = Cypagg (1 + Crh) 2, al(/,l ) = ayiay.
Moreover

"ol ol h h,N—2 N=2
sup |@@@W¢m»wmmMSdaﬂﬁ<uw%z )
t€[nh,(n+1)h)

Therefore, the function

a}]if—Q(xvy) = max{f(:p, y)’ U]hV—2((N - 2)ha$a y)}

is a continuous function, whose derivatives, of any order, a.e. continuously exist and for ever
t function, whose d tives, of any order, t ly t and f y U1,
N—=2 1
I'al ~h h,N—2 aly 7241
\8z 8yuN—2(',y)’L2(lR,d:r) < Cl’,l <1 +y N ) a.e.,

By iterating, we get that, at time step n = N — k, the function v]}{,_k satisfies

(N—k

/ h,N—k AR
OL Oy (o9 2ty < L (Lw%l ) ac.,

where

h,N—Fk N—k
Cl(l,l ) = Cl’+2kl,l(1 + Clh)k(l+1), al(’J ) = al’-‘r?k‘l,l'

Again

"o h,N—k (/N*k)_,'_l//
sup \Bé ai 8@1}1}{,%(@ . y)’LQ(R,dm) < ch’l(,+27l+2) (1 + )
t€nh,(n+1)h)

h 2,6

In order to hav/e vy, € Cpol,[nh,(n+1)h]
the derivatives 9% dLv! for I + 1’ < 6 which are uniform in n and h. It is clear that for each k < N ,

T YyYn

since h =T /N and | <6,

(R,D) a.e. and uniformly in n and h, we need estimates of

(1 +Clh)k(l+l) S ecth(l+l) S €7TCG.

Moreover, the assumption that there exist C,a > 0 such that Cp; < C and ay; < a for any [,I' € N

now comes in. Thanks to this, we can deduce that v € Cf)fl,[nh,(n 41

in n and h, so by Theorem [£.4.4] we get the result. O

i) (R,D) a.e. and uniformly
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Remark 4.6.3. In Theorem[].6.9 we require really strong reqularity and boundedness assumptions
on the test function f. On the other hand, let us stress that our algorithm is strongly based on
numerical analysis techniques. When these procedures are used, as far as we know, literature is
missing in results on the rate of convergence of numerical schemes for obstacle problems.

Let us mention that, in some particular cases, different approaches could in principle be followed.
For example, let us consider the scheme introduced in Section [{.4.3, where the linear operator is
given by

A, (y) = (AX.) "B, (v),

Agz(y) and Bgm(y) being defined in (4.4.71)) and (4.4.47) respectively. Here, we have proved in
Lemma that Hgm(y) 1s a stochastic operator. From a probabilistic point of view, this means

that the algorithm can be written through a Markov chain (see [2])]). Then, one could apply purely
probabilistic methods to prove the convergence of the procedure, for example by developing techniques
similar to the ones introduced in [13]. On the other hand, in this case, 1% (y) is a monotone linear
operator, so another possible way to proceed is to use the theory introduced by Barles [15]], which
uses viscosity solutions. In order to do this, we need a comparison principle for viscosity solutions
of Heston-type degenerate parabolic problems (note that in Section we have proved such a result
in the case of weak solutions). However, both the mentioned approaches give in principle just the

convergence, that is, no information about the rate of convergence is provided.

4.7 Appendix

4.7.1 Lattice properties of the CIR approximating tree

The aim of this section is to prove Propostition m For later use, let us first give some (trivial)

properties of the lattice. First, by construction, kq(n, k) < k < ky(n, k), so that yg;'z}t g < y?“ <
yp < ygjrrll < y]?:r(il k)" Moreover for every n and k, it is easy to see that
vk Suia e SR <yl
2 (4.7.94)

vE Sy othk 20y for b gt <y D= o fuph.

Proof of Proposition[.5.3. 1. The statement is an immediate consequence of the following facts:

if ky(n, k) > k +2, then g < 0., (4.7.95)
if kq(n,k) <k —1, then y > 6*/h, (4.7.96)
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which we now prove.

First of all, note that y? + puy (y2)h = k6h + y?(1 — kh), so by choosing h = 1/k, one has
Yy + py (yi)h > 0. Moreover, as a direct consequence of ([4.3.16)—(4.3.17) and of (4.7.94), we have
that, if py (y)) > 0, then kq(n, k) =k, and if py (y) <0, then ky(n,k) =k + 1.

Concerning (4.7.95)), we obviously assume y;: > 0, so that yZIll > 0. Note that, from (4.3.16)),
2
o
v+ iy (WD > Y g1 2 i = vk + pht oy Jyih.

Since py (y) < K, we get
2
KkOh > %h +oyJyph > oy /yh,
o\ 2
P < (i) h=6.h

o
We prove now (4.7.96). First of all observe that, if y; < 6, then py (y7) > 0 and so kq(n, k) = k.
Then we have y! > 0 and from (4.3.15) we can assume yZH > 0 up to take h < (2v0/0)?. Now,
by (4.3.17) we get

from which

2
g
Ui+ 1y UDR < Yy SUET = U+ h— oy Juph,

so that
2

k(0 —yp)h < %h —oyJyph.
This gi "h > o+ /UTh — 2 b+ kOh and, for h small enough, one gets y7h > Zx
S gives Ky o4y, T kOh and, tor h small enough, one gets y;. 12

2. If yp < 04h, (4.7.96) gives kq(n,k) = k. As regards the up jump, the case yZ:(i%k) =0

is trivial so we consider y,:f:r(}lk) > 0. In order to prove (4.3.18)), we consider two possible cases:
ky(n,k) = k+ 1 and ky(n, k) > k + 2. In the first case, we have

ik k= < (5 oz
and the statement holds. If instead k,(n,k) > k + 2, then by we have
Yoy~ Yk < i (i)
We apply the third inequality in (with n replaced by n + 1 and k = ky(n, k)) and we get
0 < iy = U S VL by 20\ U0 gy o =
< iy ()R + 20/ + py () )R + 0

< (K0 +20+/0, + K0 + 0*)h < C.h.
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3. The statement follows from (4.7.95)).

4. Formula (4.3.19) follows from the fact that the sets K,(n,k) and K4(n,k) are nonempty.
Indeed, if y? > 0.k then k, =k + 1, so K,(n, k) # 0. And if y}! < 6,h,

yrtl — oyl — v ()b > Yo — 0uh — k0h = Yo — (6, + £0)h > 0

for h < Yy /(0 + k0), which gives k,(n,k) < n + 1. Therefore K, (n, k) # 0 for every (n, k).
As regards Kq(n, k), if y} < 6*/h then k4(n, k) = k by Proposition so that K4(n,k) # 0.
If instead y}! > 6*/h, then

g 0
vo =i =y (W)h < Yo — o = KOh + Kyith < Yo — — + Kyith.

Recalling that h = T'/N, we note that there exists C' > 0 such that

yrh < yNh = (\/17o+ %N\/H)Qh = (\/170\/?+ %T>2 <cC.

Therefore
*

0
W = vk~ ()R < Yo — 5+ KC <0

for h < %. So, K4(n, k) # 0.
Now, by (4.3.17) and (4.3.16)), since K4(n, k) # 0 and K, (n, k) # 0,

wy (YR + 9 = vk o wy (YR +9¢ = vk o ny (YDh +y¢ =yt
k) >0 k) 14 k) <9,
n+1 n+1 ’ n+1 n+1 n+1 n+1
Yeunk) ~ Ykalnk) Yeunk) ~ Ykaln,k) Yku(nk) ~ Yka(n,k)

4.7.2 Proof of Lemma [4.4.5] and Lemma [4.4.7]

We first recall the Poisson summation formula. It is worldwide famous but is usually written on

the Schwartz space. We propose here the following version.

Proposition 4.7.1. If ¢ € C%(R) with ¢, ¢',¢" € L*(R,dz) then

Z(p(n) :/ch(m)dx—i— Z /ch(x)e%imda:. (4.7.97)

nez neZ,n#0
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Proof. For z € R, let |z] = sup{k € Z : k < x} denote the integer part. For N € N, straightfor-

ward computations give
1 N N N
3 et =3+ [ ptois s [ (o= le) =)o o

We recall that ¢(+N) — 0 as N — oo (because ¢, ¢’ € L'(R,dy)). Moreover, the Fourier series

representation gives

1 6727rin:1:
_ — = R.
r-lel-5= ) S 7€
ne€Z,n#0
So,
—27r1na:
ng(n):/ dx—i—/ > G (@)
nez neZ,n#0

Let F[] denote the Fourier transform. Then, [, e ?™"%/(z)dz = F[¢'](2n) = 27win[p] (27n).
We also have |F[¢'](2mn)| < |M| < M Thus, we can put the sum outside the integral and
the statement holds.

O

Proof of Lemmal[f-4.8l. (i) We apply (4.7.97) to ¢(z) = g(zo + zAz). So,

Zf xn AJ;_/ ( )d _ Z eQﬂinxo/Ach/g(x)e27rinm/Azdl,
R

nez neZ,n#0
2winxo / Az
e o
—A ZL’2 E : — g"(:n)e 27r1n;t/A$dx,
(27in)?  Jg
neZ,n#0

the latter inequality coming from the integration by parts formula. The statement now follows by

2

recalling that > -, n% =%
(i) We apply (4.4.52) to the function g2. Note that if g,¢’,¢"” € L?*(R,dz) then ¢ and its
derivatives up to order 2 belong to L'(R,dz). Moreover, [, g*(x)dz = |g|3, and [(g*)"|1 <

2|g'|32 4 2|gl219" |2, and ([4.4.53) immediately follows. O

Proof of Lemma[{.4.7. Hereafter, C > 0 denotes a constant which can vary from line to line.
As regard Uy, we recall that i — v(iAx)Az/ ), v(IAx)Az is a probability measure on X and
> v(lAz)Az < cA. Then,

=% (Z (102) gt 2141.) — gt 21, ) Ax) Aa

< 20/\22 (IAZ)[g2(t, iy, y) + G2t x4, y)] Az® < 26°X2|g)3.
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By (ii) of Lemma and (4.4.54), we can write

Ax?

W[5 < 2C2>\2(|9|%2(R,dx) +— (’ayg‘LQ(R dz) T 19122 (R az) % 10 g|L2(R,dx))> <O+ [yl*)*

Concerning ¥y, by using again (7i) of Lemma we have

1
Uyl2 < 1—7)% g2t—|—7'h,:1:i,y Ax |dT
? 0

Az?
= /(; (1 - 7_)27 [’g(t +7h, - ay)‘L2(]R dx) +— (’8y9<t + 7h, - 7y)‘L2 R,dx)
gt Thy ) Ba X 1029(t + T, -,yﬂLQ(R,d@)}dT < C(1+ Jyl)2.
For W3 and Wy the assertion follows in a similar way. Finally, again from (i7) of Lemma (4.4.5)),

A
s[5 < [Us[7aman) + —— (19572 + 195l 2@an % 95|02 ar))- (4.7.98)

Now, by (i) of Lemma [4.4.5]

2
05|72 (1 ) =/’/g(t,CJra:,y)V(w)ddf—Zg(t,CJrle,y)V(le)A:B‘ d¢

§144 /}82 (t, ¢+, y)v \dx) dc
dC/I gtC+:vy)|2+|3yg(tC+a:y| i )
/ dfﬂ/ 1959, ¢ +y, )!2+\3yg(té“+yyl|%\ +IgtC+yy|| ?!2)61{

!

= 25 (@39(@ wy)|%2(R,dx)\V\ +19y9(t, '7y)|%2(R,da:)‘;|L2(]R,du) + lg(t, '7y)|%Q(R,dI)‘7‘L2(R,du)>
< OXAZY (1 + [y|")?,

last inequality following from (4.4.54]) and (4.4.55)). Similar calculations allow one to bound the
terms |\IJ,5’L2(R,d:E) and |\I’g’L2(R,dI) n 4798 OJ
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