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2.7 High temperature via Föllmer covariance estimates . . . . . . 48
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Résumé

In this thesis we present theoretical and numerical approaches for two ir-
reversible and parallel dynamics on one-dimensional statistical mechanics
models. In the first chapter we present theoretical results on a particles
system driven by an irreversible Markov chain namely the Totally Asym-
metric Simple Exclusion Process (TASEP). Allowing multiples spin-flips in
each time-step we define a model with a parallel dynamics that belongs to
the family of the Probabilistic Cellular Automata (PCA) and we derive its
stationary measure. In this framework we deal with the blockage problem,
i.e. to understand the effects of a localized perturbation in the transition
rates of the particles on irreversible systems. We find an exact expression
of the current with respect to the blockage intensity ε in the deterministic
regime of the dynamics.
In the second chapter we present a one-dimensional version of the Ising model
with Kac potential. Again we define a PCA dynamics with asymmetric
interaction between particles and we find its stationary measure for periodic
boundary condition. Then we prove the convergence, in the thermodynamic
limit, of such stationary measure to the Gibbs measure for all temperatures
above the critical one via Föllmer estimates and Dobrushin’s Uniqueness
Theorem.
In the second part of the thesis, we investigate these two dynamics through
numerical experiments. In the case of the TASEP we exploit general purpose
Graphical Processors Unit (GPGPU) writing a parallel code in CUDA to
identify a reasonable mixing time and reinforce the conjecture that in both
version, serial or parallel update rule, the current may be non-analytic in
the blockage intensity around the value ε = 0. In the case of the Kac-Ising
model we perform statistics to compute the average mixing time for serial
dynamics with respect to the temperature β and the interaction length γ−1.
Running a self-developed program on 64 processors in parallel we obtained
the coalescence times for 20000 samples of trajectories for volume of size
5000. The results show that increasing γ−1 and β the irreversible dynamics
reaches its equilibrium quicker than the reversible one. A fact that opens
new insights of theoretical researches and motivates the study of approaches
like parallelism and irreversibility for low temperatures regimes.
The work regarding the PCA-TASEP model has already given a publication:
B. Scoppola, C. Lancia, and R. Mariani, On the blockage problem and the non-
analyticity of the current for parallel tasep on a ring, Journal of Statistical
Physics, 161 (2015), pp. 843–858.
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Dans cette thèse, nous présentons des approches théoriques et numériques
pour deux dynamiques irréversibles et parallèles sur des modèles de mécanique
statistique. Dans le premier chapitre, nous présentons les résultats théoriques
sur un système de particules induite par une châıne de Markov irréversible, à
savoir le “Totally Asymmetric Simple Exclusion Process” (TASEP). Permet-
tant des multiples retournements de spin à chaque iteration, nous définissons
un modèle avec une dynamique parallèle appartenant à la famille des Auto-
mates Cellulaires Probabilistes (PCA) et nous dérivons sa mesure stationnaire.
Dans ce cadre, nous traitons le problème du blocage, i.e. comprendre les effets
d’une perturbation localisée dans le taux de transition des particules sur
des systèmes irréversibles. Nous trouvons une expression exacte du courant
par rapport à l’intensité du blocage ε dans le régime déterministe de la
dynamique.
Dans le deuxième chapitre, nous présentons une version unidimensionnelle
du modèle d’Ising avec potentiel de Kac. Encore une fois, nous définissons
une dynamique PCA avec une interaction asymétrique entre particules et
nous trouvons sa mesure stationnaire avec condition aux limites périodique.
Ensuite, nous prouvons la convergence, dans la limite thermodynamique, de
cette mesure stationnaire vers la mesure de Gibbs pour toutes les températures
supérieures à la température critique via les estimations de Föllmer et le
théorème d’unicité de Dobrushin.
Dans la seconde partie de la thèse, nous étudions ces deux dynamiques à
travers des expériences numériques. Dans le cas du TASEP, nous exploitons
une unité de processeurs graphiques (GPU) en écrivant un code parallèle
dans CUDA pour identifier une estimation raisonnable du temps de mélange
et renforcer la conjecture qu’à la fois dans la version, la règle de mise à jour
série ou parallèle, le courant peut ne pas être analytique dans l’intensité
du blocage autour de la valeur ε = 0. Dans le cas du modèle de Kac-
Ising, nous établissons des statistiques pour calculer le temps de mélange
moyen de la dynamique en série par rapport à l’inverse de la température
β et la longueur de l’interaction γ−1. En exécutant un programme auto-
développé sur 64 processeurs en parallèle, nous avons obtenu les temps de
coalescence pour 20000 d’échantillons de trajectoires pour un volume de 5000
sites. Les résultats montrent que, dans la dynamique irréversible lors de
l’augmentation de γ−1 et β l’obtention de l’équilibre est plus rapide que celle
de la dynamique réversible. Un fait qui ouvre de nouvelles perspectives de
recherches théoriques et motive l’étude d’approches comme le parallélisme et
l’irréversibilité pour les régimes de basses températures.
Les travaux concernant le modèle PCA-TASEP ont déjà donné lieu à une
publication:
B. Scoppola, C. Lancia, and R. Mariani, On the blockage problem and the non-
analyticity of the current for parallel tasep on a ring, Journal of Statistical
Physics, 161 (2015), pp. 843–858.
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Chapter 1

Non-equilibrium steady
states for PCA-TASEP

1.1 Introduction

The Totally Asymmetric Simple Exclusion Process (TASEP from here on) is
a driven lattice gas with hard-core exclusion and one of the most popular
example of Markov irreversible dynamics of a discrete particle system [41, 42].
It is a special case of the Simple Exclusion Process (SEP) introduced by
Spitzer in 1970 as a purely mathematical tool for studying the interaction of
Markov processes [59]. The SEP model is the natural evolution of random
walks on the lattice Zd with a hard-core interaction which allows at most
one particle per site. In one dimension each particle jumps, independently of
the others, to one of its neighbouring sites with fixed probabilities p, q ≥ 0,
p+ q = 1, unless such target site is already occupied by another particle.

The asymmetric version (ASEP) simply states that the probabilities p, q of
the left and right jump are not equal resulting in particles hopping in one
direction more often than in the other one. The continous time dynamics
assumes that each particle waits a random exponent mean one amount of
time and then attempts to jump to its neighbour right site with probability
p and to its neighbour left site with probability q, but the jump is performed
only if there is no particle at the target site. Otherwise, nothing happens
and the particle waits another exponential time.

The model has been used to study a wide variety of physical phenomena
such as: transport of macromolecules through thin vessels [40], hopping
conductivity in solid electrolytes [53], traffic flow [56] surface growth [27]
[35], sequence alignment [9] and molecular motors [33]. Its fortune is due
to the fact that the ASEP admits exact analytical solutions (see e.g. [24])
and has important relations to diffusion and growth processes, and to the
Kardar–Parisi–Zhang equation [5].

The TASEP represents the limit case of the ASEP where one of the ”jump”

9



10 CHAPTER 1. NON-EQUILIBRIUM STEADY STATES

parameters, say q, is constantly set to zero. First applied in [49] and [55]
to the analysis of vehicular traffic flow it rapidly became a paradigm in
Non-Equilibrium Statistical Mechanics [34]. In finite space the system can
be defined either on a discrete segment Λ = {1, 2, ..., 2L} or on a discrete
torus (in one dimension a circle) imposing periodic boundary conditions. A
configuration σ ∈ {0, 1}Λ can be viewed as a set of particles living in Λ, i. e.
a sequence of occupied and unoccupied sites. According to this map, σi = 1
means that the i-th site is occupied by a particle, whereas if σi = 0 then the
i-th site is a hole, i. e. it is an empty site.
The discrete time dynamics is, again, rather simple: at every time-step a
particle is chosen uniformly at random and then it is moved to the site at
its right if another particle is not already there. If such site is occupied the
configuration remains unchanged and a new particle is chosen.
In spite of having a pretty straightforward definition the model proved to be
rich in interesting behaviours giving important results regarding the study of
Non-Equilibrium Stationary States (NESS), a compelling theme in statistical
mechanics.
It is possible to generalize the dynamics extending the definition to the
continuous time on the whole Z but already in its simplest version this model
has several interesting features. On a finite circle the stationary measure is
uniform because it’s easy to show that its transition matrix is doubly Markov.
On the finite segment, instead, the stationary state depends on the boundary
rates of the particles to enter (say on the left) and exit (on the right) from
the lattice (see [17] [57]).
An interesting quantity to study is the current defined as the thermodynamic
limit of the average number of free particles, i. e. lattice-sites occupied by
a particle followed by an empty site. This quantity is important because it
measures the tendency of the system to exhibit congestion, i. e. its suscepti-
bility to form long sequences of clustered particles that are not free to move.
The current is an indication of how fast particles get transported around the
ring, thus it is strongly related to the conductivity of the system. A current
sensibly smaller than the maximum value means that the typical NESSs
exhibit portions of the lattice proportional to its volume that are occupied by
clusters of enqueued particles and portions that are not occupied by particles.
Very recently, Scoppola et al. have given in [58] a simple and clear derivation
of both the stationary distribution and the expression of the current for the
PCA-TASEP on a ring. An equivalent definition for the current is that it is
the stationary probability that the site i is occupied by a particle and the
site i+ 1 has none. Remarkably, the current does not depend on i and can
be exactly computed for both the classical TASEP defined on the segment
and on the discrete circle.
In particular, on the discrete circle the current depends only on the number
of particles and in the case of half-filled system, i. e. when there are L
particles in the lattice Λ = {1, 2, ..., 2L}, its maximum is equal to 1/4 in
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the limit L → ∞. On the finite segment the system exhibits a non-trivial
behaviour. In fact the stationary current is strongly related to the probability
of a particle entering (α) or exiting (β) the system, which has a rich phase
diagram in the α− β plane, obtained by the ”matrix ansatz” (see [17] [57]).
One of the main objective of this thesis is to investigate on a very natural
question in the study of the irreversible system: whether the effect of small
perturbations in the dynamics has local , as in the case of reversible system
far from critical points, or global effects. In the case of the TASEP this
question has been investigated imposing the so-called blockage or slow bond
([29, 28]), i. e. in a defined point of the lattice (say in the point 2L of the
circle w.l.o.g.) the probability of the jump of a particle is reduced to 1− ε,
where 0 ≤ ε ≤ 1.
It was long debated whether the presence of such localized perturbation has
global effects only for some critical value εc ≥ 0. Numerical simulations show
that the macroscopic value of the current remain unchanged for values of ε
close to 0 and, among physicists, a vast range of values εc > 0 were proposed.
The question came to be known as the ”slow bond problem” and for decades
it remained unsettled until recently Basu, Sly and Sidoravicius proved in [3]
that such critical value is indeed 0 and the effects of the blockage are global
for every value of ε ≥ 0. Another paper followed, again by Basu et al. [2],
focusing directly on the TASEP with a slow bond. Using the connection
between TASEP and directed last passage percolation on Z2 it is proved that
the introduction of the blockage has a long range effect on the distribution
of the density of particles. There is, therefore, strong indication that the
current may decrease, for small ε, with a non analytical dependence on ε
(see [13]) but unfortunately the conjecture remains unproven and probably
will be object of further research.
A recent development in the study of non-equilibrium properties of irreversible
dynamics on a lattice is represented by the employment of Probabilistic
Cellular Automata (PCAs). The essential characteristic of these Markov
chains is to have an update rule which admits a product form making them,
among other things, eligible for large-scale simulative studies on parallel
architectures like Graphical Processing Units (GPUs). Dai Pra et al. in [15]
applied this class of agent-based dynamics to the Ising model on a lattice
with remarkable results. Penalizing the transitions in which too many spins
flip simultaneously with an inertial term q ≥ 0, they showed that if such q is
sufficiently strong the PCA dynamics possess a unique stationary distribution
that is Gibbsian in the thermodynamic limit.
This result holds true even in certain cases where the PCA is designed to
violate the detailed balance principle as shown by Lancia and Scoppola in
[37]. That is to say, in a certain region of the parameters the PCA is a model
for NESS at all finite sizes, but it behaves like an Equilibrium System in the
thermodynamic limit.
In this chapter we present a parallel version of the single-spin dynamics of the
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TASEP which fits into such class of PCAs presented in [15]. Indeed, at each
time-step each particle followed by an empty site has a finite probability p to
jump, therefore the probability of a large number of free particles hopping
in the clockwise direction is penalized with an exponentially small inertial
weight.
The amount of particles is constrained to be strictly less than the size of the
lattice and each site can be occupied by a single particle at most. Particles
may hop in the clockwise (counterlockwise w.l.o.g.) direction only and the
movement is allowed only if the adjacent site is empty (hard-core exclusion).
If, at a certain time, the number of free particles is f , then the number
of hopping particles is governed by a binomial law Bin(f, p). Due to its
binomial nature it is easy to see that the transition probability from one
state to another can be factorized on the single site of the lattice. Hence this
parallel dynamics is named PCA-TASEP.
The model was first studied on a ring by Nagel and Schreckenberg [49] as a
collective dynamics for freeway traffic and then extended by Schreckenberg
et al. [55] to the case of particles performing jumps of length corresponding
to their velocity. In the case of jumps limited to next-neighbouring sites
(velocity 1), the authors derived through a mean-field approximation the
steady-state distribution of the model. However, their derivation is quite
involved, requiring to prove that the first order mean-field approximation
remains valid at all higher orders. The case of the PCA-TASEP on a ring with
inhomogeneous jump-rates is studied in [20], where the stationary distribution
of the model is given in a form equivalent to [55]. Schadschneider gives a
review of parallel TASEP on a ring with a focus on traffic applications in [54].
An exact solution to PCA-TASEP with open boundary conditions is given
both by de Gier and Nienhuis in [16], and by Evans et al. in [20] in terms
of a matrix product. An alternative, combinatorial expression in term of
Catalan numbers can be found in [19]. Finally parallel TASEP models have
been investigated also via Bethe Ansatz imposing both open and periodic
boundary. The results obtained so far comprehend the expression of the
evolute measure of the model at every time, see for instance [51] [52][44].
In this chapter we will show how, despite the changes, the PCA-TASEP
exhibits similar features with respect to the standard TASEP, particularly
for what concerns the current and the blockage problem. Numerically, for
every p < 1 the behaviour of the current is very similar to the serial TASEP
because for small ε the macroscopical current appears to be equal to the
unblocked one. In the case p = 1, on the other side, the system is exactly
solvable and it will be proven that εc = 0.
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1.2 Definitions

We define a Markov chain on a discrete circle, i. e. on the set Λ = {1, 2, ..., 2L}
with periodic boundary conditions. As in the case of standard TASEP, a
configuration σ is a point in the space phase S = {0, 1}Λ. We will denote
with σi the local configuration of σ in the point i and we will say that in the
site i there is a particle if σi = 1, while we will say that the site i is empty,
or equivalently that in the site i there is a hole, if σi = 0. We will say that
in i we have a particle free to move if σi = 1 and σi+1 = 0 and that to move
a particle means to substitute the values σi = 1 and σi+1 = 0 with σi = 0
and σi+1 = 1.

Each configuration σ can be decomposed into trains of particles, namely
sequences of particles lying in consecutive sites. The engine of a train is the
rightmost element of the sequence with highest index possible with respect to
the other particles of the train. The caboose is, conversely, leftmost element
and has the lowest index. If the train has length bigger than 1 and crosses the
boundary of the ring (two of its particles occupy sites 1 and 2L) its engine
and caboose are the elements with smallest and highest index, respectively.
Clearly, engines are the only particles with a hole in front of them hence they
can move across a single iteration of the dynamics. Whenever an engine is
moved it may either form a new train of length 1 or become the caboose of
another train.

σ

i 1 2 3 4 5 6 7 8 9 10

Figure 1.1: Example of transition from configuration σ to τ by the jump of particle
in position i = 4. The jump makes the engine particle in i = 4 to detach from its
train (from site 2 to 4) and form a new train of length 1. The other train represents
the case where the caboose has an index greater than the engine since it crosses the
boundary of the ring, between site 9 and 0.

Given a configuration σ we will define the number of particles in the system
as

m(σ) =

2L∑
i=1

σi (1.2.1)

and we will assume, from now on, that m(σ) ≤ L. The dynamics conserves
the number of particles in Λ, i. e. m(σ) = m(τ) = m. We will, also, denote
with l(σ) ≤ m(σ) the number of particles free to move in the configuration
σ, which is clearly equal to the number of particle trains in σ.

We now define the weight of the transition from a configuration σ to a
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configuration τ in the following way

w(σ, τ) =

{
wn if τ can be reached by σ moving n particles,

0 otherwise
(1.2.2)

where w > 0 is a positive parameter measuring the tendency to move of each
particle.

The transition probabilities are therefore

P (σ, τ) =
w(σ, τ)

w(σ)
, (1.2.3)

where

w(σ) =
∑
τ

w(σ, τ) =

l(σ)∑
k=1

(
l(σ)

k

)
wk = (1 + w)l(σ) . (1.2.4)

We call this Markov chain a PCA-TASEP.

With respect to the standard TASEP, where the sequential update rule allows
one particle jump per time-step, in the PCA-TASEP at each time-step every
particle free to move jumps forward with independent probability p = w/1+w.
In the limit w →∞, p = 1, all free particles move simoultaneously at each
time-step, while in the case w � 1/L the model returns to behave like a
sequential TASEP.

Being the Markov chain evidently irreducible and aperiodic and having
some states τ such that Pσ,τ > 0 while Pτ,σ = 0, this Markov chain is
visibly irreversible, hence, the detailed balance principle cannot be applied to
compute explicitly the stationary measure of the dynamics. It is possible,
however, to see that for all configurations σ a more general version of the
detailed balance is satisfied, i. e.∑

τ

w(σ, τ) =
∑
τ ′

w(τ ′, σ) (1.2.5)

known in literature as global balance principle or dynamical reversibility (see
for instance [37]). The proof of (1.2.5) works as follows: for each sequence
of consecutive 1s, i. e. a train of particles, there is one right endpoint, an
engine of the train, and respectively, one left endpoint, a caboose. Since
every train has exactly one engine and one caboose the final configurations
τ at the left hand side of (1.2.5) can be mapped one-to-one onto the initial
configurations τ ′ at the right hand side in such a way that w(σ, τ) = w(τ ′, σ).
More precisely, let τ be the configuration obtained from σ by advancing the
engine of some particle trains to the empty neighboring sites; similarly, let
τ ′ the configuration obtained from σ by detaching the caboose of the very
same set of particle trains; clearly, w(σ, τ) = w(τ ′, σ) since the number of
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particles free to move l(·) is equal to the number of trains which is the same
for τ and τ ′.
The dynamical reversibility implies that the stationary measure of the dy-
namics is

π(σ) =
w(σ)∑
σ w(σ)

(1.2.6)

since it’s easy to see that it satisfies the definition of stationary measure, i. e.∑
σ

π(σ)P (σ, τ) =
∑
σ

w(σ)

W

w(σ, τ)

w(σ)
=
∑
σ

w(σ, τ)

W

=
∑
σ

w(τ, σ)

W
=
w(τ)

W
= π(τ) .

(1.2.7)

Defining the normalization factor for π(σ) as follows

W :=
∑
σ

w(σ) (1.2.8)

and using the relation in (1.2.4) such stationary measure can be expressed as

π(σ) =
(1 + w)l(σ)

W
. (1.2.9)

Looking at the expression of (1.2.9) one notes that when the weight of the
transition w → 0, when particles jumps very rarely, the stationary measure
tends to the uniform measure

π(σ) =
1(
2L
m(σ)

) . (1.2.10)

That completely agrees with the serial TASEP case. In fact, imposing w → 0
implies that the jump of more than one particle at once is very unlikely, and
we return to the single spin-flip dynamics of the standard TASEP which has
a uniform stationary distribution.
In the limit w → ∞, i. e. p = 1, the situation is radically different. Since
we supposed that m(σ) ≤ L, the maximum number particles free to move
is m(σ), hence, in this regime, the leading order of W is wm(σ) and all
configurations with l(σ) < m(σ) have a weight smaller by at least a factor
1/1+w. Being the probability of the jump p = 1 every initial congestion
in the lattice vanishes after at most m(σ) time-steps and we arrive to a
configuration with l(σ) = m(σ). After that, all particles continue to move
forward and no new traffic jam forms. Thus, the stationary measure tends
to be uniform on all the configurations where the number of particles free to
move l(σ) is equal to total number of particles m(σ).
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1.3 Current for the half-filled PCA-TASEP

As discussed in the introduction, indicating with πS the stationary measure
of the dynamics, the current JS for the sequential TASEP model is defined
as

JS := lim
Λ→∞

πS(σi = 1, σi+1 = 0). (1.3.1)

Equivalently, it can be defined as follows

JS := lim
Λ→∞

EπS [l(σ)]

2L
(1.3.2)

i. e. the thermodynamic limit of the expectation of the number of free particles
l(·) with respect to πS.
Probability (1.3.1) is independent of the site i while it depends on the total
number of particles m(σ). From now on, we consider the half-filled case in
which m(σ) = L, i. e. the number of particles is exactly half of the number
of sites. In such a case, for the standard TASEP, the current is

JS = πS(σi = 1, σi+1 = 0) ∼ πS(σi = 1) · πS(σi+1 = 0) =
1

4

since the stationary probability πS is uniform and therefore the probability
to have the configuration σi = 1, σi+1 = 0 tends for large Λ to be simply the
product of the two independent probabilities to have σi = 1 and σi+1 = 0,
both equal to 1/2.
For the PCA-TASEP we can analogously define the current JP as

JP := lim
Λ→∞

πP(σi = 1, σi+1 = 0) = lim
Λ→∞

EπP [l(σ)]

2L
. (1.3.3)

Then the following result holds:

Proposition 1.3.1. The value of the current JP = limΛ→∞ π(σi = 1, σi+1 = 0)
for the irreversible Markov chain defined by the transition probabilities in
(1.2.3) is given by

JP =
1

2

√
1 + w

1 +
√

1 + w
. (1.3.4)

Proof. We rewrite JP in the following form

JP = lim
L→∞

1

2L

∑
σ l(σ)(1 + w)l(σ)∑
σ(1 + w)l(σ)

= lim
L→∞

1

2L

∑L
l=1 l n(l)(1 + w)l∑L
l=1 n(l)(1 + w)l

(1.3.5)

where n(l) is the number of configurations σ having l(σ) = l particles free to
move. We have therefore to count such n(l).
First we note that fixed the state of one site, say σ1 = 1, a configuration is
uniquely determined by the alternate sequence of particle-trains and hole-
trains. Then we have to count the number of ways for dividing L particles in
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l distinct particle-trains and L holes in l hole-trains which is
(
L−1
l−1

)
since L

objects can be divided in l groups. If, then, we suppose that the first train
of particles has length l1, then there are l1 ways for the site i = 1 to belong
to the first particle-train and l1

(
L−l1−1
l−2

)
ways we can have l trains of which

the first has l1 particles. We then multiply by 2 to take into account the
configurations having σ1 = 0 and we get

n(l) = 2

L−l+1∑
l1=1

l1

(
L− l1 − 1

l − 2

)(
L− 1

l − 1

)
. (1.3.6)

If we put (1.3.6) into (1.3.5) we get

JP = lim
L→∞

1

2L

∑L
l=1

∑L−l+1
l1=1 l1

(
L−l1−1
l−2

)(
L−1
l−1

)
l (1 + w)l∑L

l=1

∑L−l+1
l1=1 l1

(
L−l1−1
l−2

)(
L−1
l−1

)
(1 + w)l

. (1.3.7)

In order to evaluate (1.3.7) we write l = αL, l1 = α1L and we use the leading
order approximation (

n

αn

)
≈ enI(α) (1.3.8)

where I(α) = −α lnα− (1− α) ln(1− α).

Then we get

JP = lim
L→∞

1

2L
L

∫ 1
0 dα

∫ 1−α
0 dα1 α α1e

L
(

(1−α1)I( α
1−α1

)+I(α)+α ln(1+w)
)

∫ 1
0 dα

∫ 1−α
0 dα1 α1e

L
(

(1−α1)I( α
1−α1

)+I(α)+α ln(1+w)
) .

(1.3.9)
Calling now

f(α, α1) = (1− α1)I

(
α

1− α1

)
+ I(α) + α ln(1 + w) (1.3.10)

we proceed using the saddle point method to write

JP = lim
L→∞

[
1

2
ᾱ+O

(
1

L

)]
(1.3.11)

where ᾱ is the value of α that maximizes f(α, α1). The latter is easy to
identify because computing

∂

∂α1
f(α, α1) = log

α+ α1 − 1

α1 − 1
(1.3.12)

we see that f(α, α1) is decreasing in α1 and impose α1 ≥ 0. Thus, choosing
α1 = 0, we get

f(α) = 2I(α) + α ln(1 + w) (1.3.13)
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and computing

d

dα
f(α) = −2 ln(α) + 2 ln(1− α) + ln(1 + w) (1.3.14)

it’s easy to see that f(α) is maximized by

ᾱ =

√
1 + w

1 +
√

1 + w
. (1.3.15)

Substituting ᾱ in (1.3.11) we obtain the following expression for the current
in the PCA-TASEP

JP(w) =
1

2

√
1 + w

1 +
√

1 + w
. (1.3.16)

Note that for w = O (1/L) we have that, as expected, JP = 1
4 as in the

sequential TASEP. Such current is an increasing function of w giving JP = 1
2

for w →∞.
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1.4 An (easy) blockage problem for the half-filled
PCA-TASEP

As discussed in the introduction, a very interesting and difficult open prob-
lem in non-equilibrium statistical mechanics is to establish if a localized
perturbation of arbitrarily small intensity in the dynamics has macroscopical
effects on the system. In the case of the TASEP such question has been
investigated by means of the so called ”blockage problem”, see for reference
[42], [29], [13], [2].
The PCA-TASEP version of the blockage problem works as follows. The
dynamics is defined by the fact that at each time-step a particle in the site
i ∈ Λ is chosen uniformly at random and if it is free to move it jumps to its
right neighboring site with probability p for every site i 6= 2L. If there is a
particle in i = 2L and it is free to move (i. e. if σ2L = 1 and σ1 = 0), it is
moved with probability p(1− ε), where ε ∈ [0, 1].

p(1− ε)p

σ

i 6 7 8 9 10 1 2 3 4 5

Figure 1.2: PCA-TASEP with blockage dynamics. Every particle free to move
jumps forward with probability p except the particle in i = 2L which jumps with
probability p(1− ε) where ε ∈ [0, 1].

An explicit expression for the current is not yet known neither for the serial
nor for the parallel TASEP with blockage. Numerical and perturbative
arguments show that, considering always the half-filled case in which the
number of particles is m(σ) = L, the current seems to remain equal to its
maximum value J = 1

4 until a critical value of ε. However, the results in
[3] and [2] prove that J(ε) is strictly less than its maximum value 1/4 for
every value of the blockage intensity ε > 0, settling εc = 0. It remains an
open question whether the expression of J as a function of ε behaves as a
very high-order polynomial around the value ε = 0, or if it has an essential
singularity in ε = 0, as conjectured in [13].
To treat analytically the blockage problem in the context of the PCA-TASEP
we do the following. Define the weight of the transition from the configuration
σ to the configuration τ by

wε(σ, τ) =


wn
(
1− ε1{σ2L=1,τ2L=0}

)
if τ can be reached by σ

moving n particles,

0 otherwise,

(1.4.1)
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1
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3

4
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6
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89

10

11

12

13

14

15

16

Figure 1.3: Example of particle-hole symmetric configuration: σi = 1− σ−i∀i. The
vertical axis symmetry is due to the presence of the blockage between site 2L = 16
and site 1.
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where 1{σ2L=1,τ2L=0} is equal to 1 if both conditions σ2L = 1, τ2L = 0 are
verified, and is 0 otherwise.
Thus, the transition probabilities for the PCA-TASEP with blockage are

Pε(σ, τ) =
wε(σ, τ)

wε(σ)
(1.4.2)

where
wε(σ) =

∑
τ

wε(σ, τ) . (1.4.3)

In this case the presence of the blockage in the point 2L results in the
fact that the global balance principle is not longer satisfied by the chain.
Therefore, finding the stationary measure becomes extremely difficult.
From a numerical point of view the dynamics appears to be similar to the
classical TASEP case: the current seems to be constant until ε reaches
a critical value, which is a decreasing function of w. The possibility of
rigorously proving any result about this behaviour seems nevertheless to be
as hard as for the serial dynamics.
There is, however, an exception, which is the regime w →∞, i. e. the case in
which all the particles free to move actually jump forward with probability
p = 1, except the particle in the site 2L which moves with probability 1− ε.
This case is easy to solve due to the property of the dynamics to preveserve
the so-called particle-hole symmetry, showed in Figure 1.3 and defined next.
Remark: In the following we allow for negative indexing of the configuration
σ under the convention that σ−i = σ2L−i+1.

Definition 1.4.1. A configuration σ such that, for all i = 1, 2, ..., L, σi = 1−σ−i
is said to be particle-hole symmetric. Let us denote with PH the set of all
the particle-hole symmetric configurations.

In the limit w →∞ the dynamics preserves such particle-hole symmetry.

Lemma 1.4.1. Consider the transition probabilities

Pε,∞(σ, τ) = lim
w→∞

Pε(σ, τ) . (1.4.4)

For each 0 ≤ ε < 1 and for each σ ∈ PH, if τ is such that Pε,∞(σ, τ) > 0
then τ ∈ PH.

Proof. Let us fix a site i ∈ {2, 3, . . . , L} and start considering the case σi = 1.
Due to the PH-symmetry, if σi is an engine then also σ−i−1 is an engine;
since in the regime w → ∞ the engines move with probability 1, the sites
i and −i − 1 will become holes, i. e. τi = τ−i−1 = 0, while the sites i + 1
and −i will be occupied by a particle, i. e. τi+1 = τ−i = 1. Conversely, if
σi is not an engine then it must have a particle ahead: σi+1 = 1. Thus,
σ−i = σ−i−1 = 0; therefore, site i will keep being occupied, while site −i will
continue being empty, that is to say, τi = 1 and τ−i = 0. The case σi = 0 is
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completely analogous, i. e. we have to distinguish between site i being or not
being the caboose of a train of holes which behaves exactly like a train of
particles, just in the opposite direction.
We still have to focus to what happens across the blockage on the sites 2L
and 1 where, among the six possible configurations shown in Figure 1.4, only
four are particle-hole symmetric (a. b. c. and d.).
In the case a. site 1 remains occupied and site 2L empty, then τ1 = 1 and
τ−1 = 0; in the case c. site 1 becomes empty and site 2L occupied, then
τ1 = 0 and τ−1 = 1. Conversely, in cases b. and d. site 1 becomes occupied
and site 2L empty with probability 1− ε, i. e. τ1 = 1 and τ−1 = 0, or with
probability ε the blockage acts on the particle at site 2L, which remains
occupied, i. e. τ1 = 0 and τ−1 = 1.
In all these scenarios we have that, after the transition from σ to τ , the
configuration τ is such that τ1 = 1 − τ2L, hence it fulfills the definition of
particle-hole symmetry given in (1.4.1).

1 22L2L− 1 1 22L2L− 1

a.

c.

b.

d.

e. f.

Figure 1.4: Possible configurations partial configurations of the lattice across
the blockage, i. e. sites i ∈ {2L − 1, 2L, 1, 2}. Cases e. and f., represented for
completeness, are not particle-hole symmetric hence they play no role in the proof
of the lemma.

We want, now, to show two lemmata in order to identify the set of recur-
rent states of our Markov chain Pε,∞(σ, τ), but first we need the following
definition as presented in [22].

Definition 1.4.2 (Transient State). Calling P tστ the probability to evolve
from configuration σ to τ in t time steps, the state σ̄ is called unessential or
transient if there exist a state τ̄ such that Pnσ̄τ̄ > 0, but Pmτ̄σ̄ = 0 for all m.

The defining characteristic of a transient state is the fact that it exists a
positive probability to move from it to another one in a finite time, but it is
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no longer possible to return there hereafter.

Lemma 1.4.2. For the Markov chain Pε,∞(σ, τ) all the states σ /∈ PH are
transient.

Proof. An easy way to prove this lemma is the following observation: for
all initial configurations, with a finite probability p > ε2L the system goes
in a time 2L in the configuration σqueue such that σi = 0 for i = 1, 2, ..., L
and σi = 1 for i = L + 1, L + 2, ..., 2L, i. e. if the particle in 2L does not
move for 2L time-steps then all the other particles will be in queue behind
it. The state σqueue is of course particle-hole symmetric. Hence starting
from any initial state σ /∈ PH we have a finite probability to arrive in a
symmetric state, for instance σqueue ∈ PH after 2L steps, and hence with
finite probability we will never visit again σ.

The next easy but important observation is the following: if the system
reached at some time a symmetric configuration σ? ∈ PH in which all the
particles in the first half of the ring {1, 2, ..., L} are free to move, then in that
half of the circle all the particles will be free to move at any subsequent time.
This is due to the fact that all the particles in {1, 2, ..., L − 1} can never
reach the particle ahead since they all move at any step with probability one.
Since σ? ∈ PH the particle in i = L is always free to move because σ?L = 1
implies σ?−L = σ?L+1 = 0 by definition of particle hole symmetry.

We will call Ω∞ the set of all configurations σ ∈ PH such that all the
particles in {1, 2, ..., L}, even if there is none, are free to move.

Lemma 1.4.3. For the Markov chain Pε,∞(σ, τ) all the states σ /∈ Ω∞ are
transient.

Proof. Starting from any state σ /∈ Ω∞ the system has a finite probability
to reach the configuration σqueue in 2L time-steps, and σqueue ∈ Ω∞. The
lemma is proved repeating the argument leading to Lemma 1.4.2.

The stationary probability πε,∞ of the Markov chain Pε,∞(σ, τ) is therefore
supported on Ω∞, where the Markov chain is manifestly ergodic by the
reasoning in the proof of Lemma 1.4.2. Call as before

Jε,∞ = lim
Λ→∞

πε,∞(σi = 1, σi+1 = 0) (1.4.5)

the current with blockage intensity ε and transition weight w → ∞. Let
r(σ) be the number of particles that lie in first half of the circle, the sites
{1, 2, ..., L}, which, by Lemma 1.4.3, are all free to move. Observing that the
number of particles free to move in the second half of the circle {L+ 1, L+
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2, . . . , 2L} is again r(σ) by the particle-hole symmetry, we can compute Jε,∞,
as done in (1.3.3), writing

Jε,∞ = lim
L→∞

R

L
(1.4.6)

where R = Eπε,∞(r) is the expected value of r(σ) with respect to the
stationary measure πε,∞.
We are now ready to prove the fundamental result of this section.

Theorem 1.4.1. The current Jε,∞ of the Markov chain Pε,∞(σ, τ) is given by

Jε,∞ =
1− ε
2− ε

. (1.4.7)

Proof. The first part of the proof is the computation of the stationary
measure of the process. Let us say that at each step in which σ2l = 1 the
blockage is driven by a binary random variable, that can either be green,
giving in the successive time-step τ2L = 0, or red, giving in the successive
time-step τ2L = 1. Due to the symmetry we can say that the probability
of each configuration can be written in terms of a sequence of green and
red lights. In particular, when the particle has passed the blockage, and
therefore σ2L = 0, σ1 = 1, we know that in the next step we will have for
sure τ1 = 0, τ2 = 1. Since, by symmetry, τ2L = 1 − τ−2L = 1 − τ1 = 1 this
means that we have now a particle in the site 2L. Hence the presence of a
new particle in the set {1, 2, . . . , L} is due only to the values of the red light.
Let us first consider the set of states σ ∈ Ω∞ such that σ1 = 0. Then, if
site i ∈ {2, . . . , L} is occupied then site i − 1 is a hole with probability 1.
Therefore it is easy to realize that the (stationary) probability to have r
particles in {1, 2, . . . , L} is

πε,∞(r) = (1− ε)rεL−2r. (1.4.8)

The exponent L− 2r is due to the fact that each green light, with probability
(1− ε), results in one free particle and also an empty site ahead of it.
Conversely, if σ1 = 1 then the exponents appearing in (1.4.8) may increase
or decrease by a unit at most but this correction is negligible in the thermo-
dynamic limit, thus we will use (1.4.8) to compute the current according to
(1.4.6).
For large L we have, therefore

R = Eπε,∞(r) ≈
∑L/2

r=1 r
(
L−r
r

)
(1− ε)rεL−2r∑L/2

r=1

(
L−r
r

)
(1− ε)rεL−2r

. (1.4.9)

We can, again, evaluate this sum simply by using the approximation in (1.3.8)
and the saddle point method. We call x = r

L and we recast (1.4.9) as

R ≈ L
∫ L/2

0 xe[L((1−2x) ln ε+x ln(1−ε)−x ln x
1−x−(1−2x) ln 1−2x

1−x )]∫ L/2
0 e[L((1−2x) ln ε+x ln(1−ε)−x ln x

1−x−(1−2x) ln 1−2x
1−x )]

(1.4.10)
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In the limit L→∞ we have that

Jε,∞ = lim
L→∞

R

L
≈ x̄ (1.4.11)

where x̄ is the value of x that maximizes

f(x) = (1− 2x) ln ε+x ln(1− ε)−x ln
x

1− x
− (1− 2x) ln

1− 2x

1− x
. (1.4.12)

Being

d

dx
f(x) = −2 ln(ε) + ln(1− ε)− ln

(
x

1− x

)
+ 2 ln

(
1− 2x

1− x

)
(1.4.13)

we find

Jε,∞ = x̄ =
1− ε
2− ε

(1.4.14)

which completes the proof.

Remark 1.4.1. Despite its simplicity, this computation proves, in this com-
pletely parallel context, that a very small perturbation of the transition
probabilities in a single site extends its effect over all the volume L, without
any fading. Indeed, the uniform density of the particles in the set {1, 2, . . . , L}
is 1−ε

2−ε while in the set {L+ 1, L+ 2, . . . , 2L} the uniform density is 1
2−ε .
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Chapter 2

Irreversible parallel
Kac-Ising model

2.1 Introduction

The Ising model, proposed by Lenz and solved by Ernst Ising in one dimension
in 1925, is one of the simplest theoretical description of ferromagnetism
in statistical mechanics. Magnetic dipole moments, spins from here on,
are defined as discrete variables σi ∈ {−1, 1} arranged on the sites of a
d-dimensional lattice Λ, and interacting among nearest neighbors. The
Hamiltonian of such a discrete spin system can be written in the form

H(σ) = −
∑
ij

J (i, j)σiσj (2.1.1)

where i, j ∈ Λ ⊂ Zd are the sites of the lattice and J(i, j) is a potential equal
to 1 if i, j are nearest neighbors and 0 otherwise.

After Ising’s solution, in 1944 Onsager proved in [50] that, differently from
the one dimensional case, in the 2-dimensional square lattice the model
undergoes phase transitions. From that moment, the model was extensively
studied and showed wonderfully rich behaviors in higher dimensions making
it the prototypical model for magnetic interactions.

As we said, the classical definition of the Hamiltonian of the Ising model
was restricted to consider only the interaction between nearest neighbors
pairs of sites but this range 1 restriction was a major limitation. In fact
physics and chemistry models need to cope with long range (possibly infinite)
interactions, which however yields to problems in general very hard to solve.
The first solution to the issue was the Mean-Field Model that, by reducing
the large number of individual interactions to a single averaged effect, allowed
to obtain a partly satisfying solution. Indeed, the main issue was the non
convexity of the canonical free energy.

27
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To improve the situation, in 1963 Kac et al. introduced a new definition
of potential Jγ(r) = γJ(γr) where r is the distance between spins and γ
represents the inverse of the range of interaction, see [30]. Such model, in
a sense intermediate between short range and mean-field, allowed to prove,
among other things, the existence of a critical temperature and explain the
phenomenon of spontaneous magnetization in ferromagnetic systems.
Indeed, in 1966 Lebowitz and Penrose derived in a mathematically rigorous
way the microscopic van der Waals theory of the liquid-gas transition in [38]
and a straightforward generalization of this argument can be found, in the
case of discrete spin systems, in [60]. The model was later studied in 1993 by
Cassandro, Orlandi and Presutti in [12] in one dimension using a block-spin
construction which let them analyze the typical profiles at low temperature
and give upper and lower bounds of the space scale where these profiles
are constant. An analogous investigation but in a disordered version, the
so-called Kac-Hopfield model, was realized by Bovier, Gayrard, and Picco in
1995 in [6] and [7].
However, extending the analysis in higher dimensional spaces is non trivial
even for the classical Kac-Ising model, see for instance [10] and [8], and even
in one dimension the number of open questions that can be addressed is
remarkable. Very recently in [11] Cassandro, Merola and Presutti continued
the study of the Kac model in one dimension finding, for γ small enough,
that the in the infinite volume the coarse grained length of the plus-minus
intervals is a renewal process.
It has to be said that the majority of the cited works rely on a purely statical
analysis. A different approach is represented by the implementation of a
dynamics on the system in order to find the relation between its stationary
distribution (equilibrium) and the Gibbs measure. In this setting it becomes
interesting to study dynamical features such as the mixing time, i. e. the time
scale needed to get to the equilibrium, and develop numerical simulations
to follow the evolution of the system. The Glauber dynamics is the most
obvious example of this so-called Gibbs Samplers and it’s considered to be
the most efficient one among the single spin-flip dynamics. An extensive
review on the subject can be found in Martinelli’s book [45].
In this chapter we deal with this dynamical analysis proposing two Markov
chains based on the Hamiltonian (2.1.1) with Kac’s potential and we in-
vestigate the consequences of irreversibility and parallelism. That is to say,
we define a dynamics where each spin is updated according to the average
magnetization of the γ−1 ∈ N spins on its right. Such asymmetrical inter-
action breaks the time-reversibility of the evolution of the system implying
its irreversibility. We also define the transition probabilities in such a way
that it is allowed to update multiple spins in the same time-step. This
construction belongs to the family of Probabilistic Cellular Automata (PCA),
i. e. discrete-time Markov chain whose transitional probability is a product
measure, see for reference [23].
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The interest in such irreversible and parallel approach rises after some re-
markable examples of fast convergence times to equilibrium of this kind of
dynamics, e. g. in [14] is defined an asymptotically polynomial-time approx-
imation scheme for the 2d Ising model. In this case, the high mobility of
the parallel updating rule and the asymmetry of the interaction allow to
shorten the tunneling time, needed for the mixing of the phases. Indeed it
is possible to show that such tunneling time becomes polynomial whereas
it is exponentially long in the volume in reversible Glauber dynamics, due
to metastability effects. Hence, this approach seems very promising for the
development of a faster and more efficient sampler for the Gibbs measure.
In this regards the nature of the parallel update rule, involving only simple
operations on many data elements, is particularly suited for implementing nu-
merical simulations on Graphical Processors Unit (GPU) and multi-processors
architecture in general. In recent times, the great effort in the improvement
of video cards (GPU), their availability at affordable prices, and the advent
of parallel computing platforms (API) such as CUDA1 allowed the scien-
tific computing community to develop the so called General Purpose GPU
(GPGPU) paradigm for high-performance computing2, see for instance [32].
The result is an affordable, highly scalable and efficient way to perform
heavy numerical simulations in feasible times, and it is also tested to be
more sustainable, in terms of energetic consumption, than the standard
CPU computation, see [47]. The aim of this chapter is, therefore, to present
dynamics which combine the intrinsic speedup of the irreversible PCAs with
the parallel capabilities of the GPGPU.
In Section 2.4 we introduce and study a non-parallel single spin-flip update
rule with long range interactions between spins. We find its stationary
distribution and prove that, if the system is translation invariant, it is the
Gibbs measure in both reversible and irreversible cases using balance equation.
In section 3.3, we show how numerical simulations strongly suggest that the
irreversible update mixes faster than the reversible one. In Section 2.5 we
define an actual parallel process (a Probabilistic Cellular Automaton) and
we study it in the nearest neighbors case, i. e. for γ = 1, proving it has again
the Gibbs measure as stationary distribution at all temperatures. In the
general γ < 1 case we are able to prove that the stationary distribution of
such irreversible PCA tends to the Gibbs measure in the thermodynamic
limit for a suitable choice of parameters (high temperature) via the Föllmer
covariance estimate.

1https://developer.nvidia.com/cuda-zone
2https://hgpu.org/
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2.2 Definitions

We consider a one-dimensional lattice Λ of size L with periodic boundary
conditions, i. e. a ring, where the state of every site i ∈ Λ is represented by a
variable σi = {1,−1}. Defining the phase space S = {−1, 1}Λ, a point σ ∈ S
will be called the configuration of magnetic spins on the ring Λ.

We define the Hamiltonian for such system as follows

Hγ(σ) = −
∑
i,j∈Λ

Jγ(i, j)σiσj (2.2.1)

where Jγ(i, j) is the Kac potential between i and j.

Kac potentials are defined as functions Jγ(·) such that∑
i∈Zd

Jγ(i, ·) =
∑
j∈Zd

Jγ(·, j) = 1 (2.2.2)

where the parameter γ > 0 : 1/γ ∈ N represents the inverse of the range of
interaction. For our purposes we define two kinds of potential.

We will call symmetric a potential such that

J̄γ(i, j) = γ
21{0<|j−i|≤1/γ} . (2.2.3)

Conversely an asymmetric potential will have the form

Jγ(i, j) = γ1{0<j−i≤1/γ} . (2.2.4)

Note that, because the Hamiltonian is the sum over all i ∈ Λ, we have

Hγ(σ) = −
∑
i,j∈Λ

J̄γ(i, j)σiσj = −
∑
i,j∈Λ

Jγ(i, j)σiσj . (2.2.5)

The Gibbs measure on the state space S, with potential Jγ(i, j) and inverse
temperature β > 0 is given by

πG(σ) := µLβ,γ(σ) =
e−βHγ(σ)

Zβ
. (2.2.6)

where µβ,γ(σ) denotes the probability of the configuration σ, in a volume
|Λ| = L, at inverse temperature β. As usual, we indicate with Zβ the
partition function, i. e. the normalization factor for (2.2.6)

Zβ =
∑
σ

e−βHγ(σ) . (2.2.7)

From now on, we will indicate the sum
∑L

i=1 simply as
∑

i for brevity.
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Definition 2.2.1. We define the empirical magnetization on the volume Bi as

mi := mγ
i (σ) = γ

∑
j∈Bi

σj =
∑
j

Jγ(i, j) σj (2.2.8)

where Bi is the block of sites of length 1/γ starting from the site i+ 1, i. e.
Bi = {i+ 1, . . . , i+ 1/γ}.
We can use definition (2.2.8) to rewrite the Hamiltonian (2.2.1) in the form

Hγ(σ) = −
∑
i

σimi . (2.2.9)

Before proceeding to present the dynamics we need to show a very interesting
and useful fact about long range interactions on lattice with periodic boundary
conditions.
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2.3 The Global Balance Principle for non-reversible
models

The well known Detailed Balance Principle is a very important concept in
the study of dynamical processes and, in general, it marks the difference
between reversible and irreversible systems. In statistical mechanics it is
indeed a powerful tool to identify the stationary measure π of a Markov
chain as the following brief theorem shows.

Theorem 2.3.1. Let P be the transition matrix of a homogeneous Markov
chain and suppose there exists a distribution π such that πσPσ,τ = πτPτ,σ
for all σ, τ ∈ S. Then the Markov chain is said to be reversible and π is a
stationary distribution of the chain and the dynamics.

Remark 2.3.1. Of course if the chain is ergodic π is the stationary distribution
of the chain.

Proof. Suppose that π satisfies the conditions of the theorem. Then∑
σ

πσPσ,τ =
∑
σ

πτPτ,σ = πτ
∑
σ

Pτ,σ = πτ (2.3.1)

since
∑

j Pi,j = 1 by definition of transition matrix. Therefore, π = πP so π
is a stationary distribution.

If a system does not satisfy the detailed balance there are non-zero fluxes
in steady-state, it must have forces acting on it, hence it is said to be time
irreversible. For such irreversible systems statistical mechanics is vastly more
complicated but a weaker balance condition allows sometimes a straightfor-
ward computation of the stationary measure.

Since the dynamics we are going to study belongs to such class of systems,
before giving the definitions we proceed showing this so called Global Balance
Principle which we are able to prove for arbitrary range of interaction γ−1,
just imposing periodic boundary conditions.

Let’s first present the general theorem.

Theorem 2.3.2 (Global Balance Principle). Let a Markov chain have the
following transition probabilities

Pστ =
e−βH(σ,τ)∑
τ e
−βH(σ,τ)

:=
e−βH(σ,τ)

Zσ
. (2.3.2)

Then, under condition∑
τ

e−βH(σ,τ) =
∑
τ

e−βH(τ,σ) , (2.3.3)
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the probability distribution

πσ =

∑
τ e
−βH(σ,τ)∑

στ e
−βH(σ,τ)

=
Zσ∑
σ Zσ

:=
Zσ
Zβ

(2.3.4)

is stationary.

Proof. By (2.3.3) and (2.3.4) we have

∑
σ

πσPσ,τ =
∑
σ

Zσ
Zβ

e−βH(σ,τ)

Zσ

=

∑
σ e
−βH(σ,τ)

Zβ

=

∑
σ e
−βH(τ,σ)

Zβ
=
Zτ
Zβ

= πτ .

(2.3.5)

which is the definition of stationary distribution. Therefore the measure π is
stationary.

In order to prove the Global Balance Principle for the dynamics we will
present in the next sections, we need to show an interesting, and very useful,
fact regarding one-dimensional spin systems on a periodic lattice.

Proposition 2.3.1. Let Λ = {1 . . . L} be a one-dimensional lattice with periodic
boundary conditions and mi and σ be as defined in Section 2.2. Then, for
any function f , ∑

i∈Λ

f(miσi) =
∑
i∈Λ

f(miσi+1+1/γ) . (2.3.6)

Proof. Recalling the definition (2.2.8) we can define the total magnetization
in the block Bi as

Mi := Mi(σ) =
mi(σ)

γ
=
∑
j∈Bi

σj , Bi = {i+ 1, . . . , i+ 1/γ} (2.3.7)

and notice that we have

Mi(σ) ∈ D ⊂ N : D = {−1/γ,−1/γ + 2, . . . , 1/γ} . (2.3.8)

The idea behind the proof of (2.3.6) is to show that for a fixed value of
M ∈ D the number of times we have σi = +1 is exactly equal to the number
of times we have σi+1+1/γ = +1 and that, conversely, implies the same for
σi = σi+1+1/γ = −1. In this way the positive and negative contributions to
the r.h.s and the l.h.s. of (2.3.6) are equal ∀σ ∈ S, proving the equation.
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For a fixed value of M ∈ D we define

IM = {i ∈ {1 . . . L} | Mi(σ) = M} (2.3.9)

the set of points i such that Mi(σ) = M .
Then, define a series of families of points on Λ such that

I1(M) =

{
inf{i1 ∈ Λ : Mi1(σ) = M} if such i1 exists

+∞ otherwise.
(2.3.10)

If I1(M) < +∞ denote

I2(M) =

{
inf{i2 ∈ Λ, i2 > i1 : Mi2(σ) = M} if such i2 exists

+∞ otherwise.
(2.3.11)

Iterating the procedure we find a finite set I(M) of ordered points i on Λ
such that Mi(σ) = M , i. e.

I(M) = {I1(M), . . . , Ik(M)(M)} with k(M) ∈ [0, L]. (2.3.12)

Now, let J be a permutation of the set I(M) defined as follows

i) if |I(M)| = 1→ J
(
I1(M)

)
= I1(M)

ii) if |I(M)| > 1

J(Il(M)) =

{
Ik(M)(M) for l = 1,

Il−1(M) for l = 2, 3, . . . , k(M).
(2.3.13)

To simplify the notation from now on we will denote

Jl(M) = J(Il(M)) . (2.3.14)

Defining now
←
σ i = σi ,

→
σ i = σi+1+1/γ (2.3.15)

we can prove that for i = Il(M), j = Jl(M) we have

←
σ i =

→
σ j . (2.3.16)

Due to periodicity we clearly have that ML+1 = M1, hence, we are sure that
every time Mi−1 < Mi = M it will exist a site j such that M = Mj > Mj+1.
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Figure 2.1: Example of absolute magnetization Mi where circles represent
the family I(M) for M = 4 in the case that 1

γ is even.

Since

Mi = Mi−1 − (
←
σ i) + (

→
σ i) (2.3.17)

and we are in the case Mi−1 < Mi, necessarily

←
σ i = −1 (2.3.18)

Similarly, the relation

Mj = Mj+1 + (
←
σ j)− (

→
σ j) (2.3.19)

in the case Mj > Mj+1, yields to

→
σ j = −1 =

←
σ i. (2.3.20)

Repeating the same procedure for the case Mi−1 > M = Mi we obtain

←
σ i = +1 =

→
σ j . (2.3.21)

The case Mi+1 = Mi is trivial because it clearly implies

j = i− 1 → →
σ j =

←
σ i (2.3.22)

and that proves (2.3.16).

Using relations (2.3.19) and (2.3.20), again with the same assumption i =
Il(M), j = Jl(M), it follows that for any function f∑

i

f(Mi
←
σ i) =

∑
M

∑
i

f(Mi
←
σ i)1{Mi=M} . (2.3.23)
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Fixing a value M ∈ D we have

L∑
i=1

f(M
←
σ i)1{Mi=M} =

k(M)∑
l

f(M
←
σ Il(M))1{MIl(M)=M}

=

k(M)∑
l

f(M
→
σJl(M))1{MJl(M)=M}

=
L∑
j=1

f(Mj
→
σ j)1{Mj=M} .

(2.3.24)

Hence, we have that for any function f∑
i

f(Mi
←
σ i) =

∑
M

∑
i

f(Mi
←
σ i)1{Mi=M}

=
∑
M

∑
i

f(Mi
→
σ i)1{Mi=M} =

∑
i

f(Mi
→
σ i) .

(2.3.25)

It’s trivial that equation (2.3.25) is satisfied if we substitute Mi with mi

which completes the proof.

In the following two sections we will present two irreversible dynamics,
both introduced for the first time in this thesis. The first is an irreversible
version of the Glauber dynamics, i. e. a single spin-flip Markov chain. Using
Proposition 2.3.1 proved above we are able to show that its stationary
measure is gibbsian. The second dynamics is a parallel one, and the rest
of the thesis will discuss the (not yet completely solved) problem of the
comparison between its stationary measure and the Gibbs measure. The
identification of the stationary measure of such parallel dynamics is founded
on the global balance principle and, again, Proposition 2.3.1.
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2.4 Irreversible single spin-flip dynamics for the
Kac-Ising model

We define an homogeneous Markov Chain based on the one dimensional
Kac-Ising model with Hamiltonian (2.2.1). The single spin-flip dynamics
works as follows:

1. choose a site i ∈ Λ uniformly at random;

2. flip the spin σi with probability e−2β[mi(σ)σi+a] with a ≥ 1.

Note that the update rule we chose lets a spin i flip depending on the local
field mi generated by the spins at its right. Therefore, during the evolution
of the Markov chain the time flow is clear and we will refer to it as an
irreversible dynamics.

Remark 2.4.1. If in spite of definition (2.2.8) for mγ
i (σ) we use a symmetrical

version of the empirical magnetization, i. e. such that Jγ(i, j) = Jγ(j, i),

m̄i := m̄γ
i (σ) =

∑
j

J̄γ(i, j)σj = γ
2

∑
j

σj1{0<|j−i|≤i+1/γ} (2.4.1)

we get a reversible dynamics for which it’s easy to see that the detailed
balance condition with respect to the Gibbs measure (2.2.6) is satisfied.

In fact, calling σ(i) the configuration equal everywhere to σ except in the
site i, i. e.

σ
(i)
k =

{
σk for k 6= i

−σk for k = i ,
(2.4.2)

we can write the transition probabilities from configuration a σ ∈ S to
configuration a τ ∈ S

Pστ =

{
1
|Λ|e
−2β(miσi+a) if τ = σ(i),

0 otherwise.
(2.4.3)

Note that we clearly have mγ
i (σ) = mγ

i (σ(i)) therefore

mγ
i (σ)σi = −mγ

i (σ(i))σ
(i)
i . (2.4.4)
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Now, from (2.2.1)

Hγ(σ) = −
∑
j,k

J̄γ(j, k)σjσk

= −
∑
j,k
j,k 6=i

J̄γ(j, k)σjσk −
∑
j

J̄γ(j, i)σjσi −
∑
k

J̄γ(i, k)σiσk

= −
∑
j,k
j,k 6=i

J̄γ(j, k)σjσk − 2m̄γ
i (σ)σi

= −
∑
j,k
j,k 6=i

J̄γ(j, k)σ
(i)
j σ

(i)
k + 2m̄γ

i (σ(i))σ
(i)
i

= Hγ(σ(i)) + 4m̄γ
i (σ(i))σ

(i)
i

(2.4.5)

where we used the fact J̄γ(i, j) = J̄γ(j, i).

Using relation (2.4.5) we can directly compute

πG
σPσσ(i) =

e−βH(σ)

Zβ

e−2β[m̄γi (σ)σi+a]

|Λ|

=
1

ZβL
e−β[H(σ(i))+4m̄γi (σ(i))σ

(i)
i −2m̄γi (σ(i))σ

(i)
i +2a]

=
e−βH(σ(i))

Zβ

e−2β[m̄γi (σ(i))σ
(i)
i +a]

|Λ|
= πG

σ(i)Pσ(i)σ

(2.4.6)

which is exactly the definition of the detailed balance condition given in
Theorem 2.3.1. Hence, the Gibbs Measure πG is the stationary measure of
the reversible dynamics.

In the irreversible case we have in general that Jγ(i, j) 6= Jγ(j, i) preventing
the employment of the detail balance to compute the stationary measure of
the irreversible dynamics. Nonetheless, calling

←
mi(σ) =

∑
j

Jγ(j, i)σj and
→
mi(σ) =

∑
k

Jγ(i, k)σk (2.4.7)
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we can write

Hγ(σ) = −
∑
j,k

Jγ(j, k)σjσk

= −
∑
j,k
j,k 6=i

Jγ(j, k)σjσk −
∑
j

Jγ(j, i)σjσi −
∑
k

Jγ(i, k)σiσk

= −
∑
j,k
j,k 6=i

Jγ(j, k)σjσk −
←
mi(σ)σi −

→
mi(σ)σi

= −
∑
j,k
j,k 6=i

Jγ(j, k)σ
(i)
j σ

(i)
k +

←
mi(σ

(i))σ
(i)
i +

→
mi(σ

(i))σ
(i)
i

= Hγ(σ(i)) + 2
←
mi(σ

(i))σ
(i)
i + 2

→
mi(σ

(i))σ
(i)
i .

(2.4.8)

Applying directly the definition of stationary measure∑
σ

πG

σ(i)Pσ(i)σ = πG
σ (2.4.9)

we have that

∑
σ

πG

σ(i)Pσ(i)σ =
∑
i∈Λ

e−βH(σ(i))

Zβ
Pσ(i)σ +

e−βH(σ)

Zβ

(
1−

∑
i∈Λ

Pσσ(i)

)

=
∑
i∈Λ

e
−β
(
H(σ)+2

←
mi(σ)σi+2

→
mi(σ)σi

)
Zβ

Pσ(i)σ +
e−βH(σ)

Zβ

(
1−

∑
i∈Λ

Pσσ(i)

)

=
e−βH(σ)

Zβ

[∑
i∈Λ

e
−2β

(←
mi(σ)σi+

→
mi(σ)σi

)
Pσ(i)σ + 1−

∑
i∈Λ

Pσσ(i)

]
=
e−βH(σ)

Zβ

(2.4.10)
where we used relation (2.4.8).
Therefore, to show that∑

i∈Λ

e
−2β

(←
mi(σ)σi+

→
mi(σ)σi

)
Pσ(i)σ =

∑
i∈Λ

Pσσ(i) (2.4.11)

we can substitute the transition probabilities Pσ(i)σ and Pσσ(i) to get

∑
i∈Λ

e
−2β

(←
mi(σ)σi+

→
mi(σ)σi

)
e−2β(

→
mi(σ

(i))σ
(i)
i +a)

|Λ|

=
∑
i∈Λ

1
|Λ|e
−2β

(←
mi(σ)σi+

→
mi(σ)σi−

→
mi(σ

(i))+a
)

=
∑
i∈Λ

1
|Λ|e
−2β

(←
mi(σ)σi+a

)
=
∑
i∈Λ

1
|Λ|e
−2β(

→
mi(σ)σi+a)

(2.4.12)
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where we used formula (2.3.25) with the modification∑
i

f(Miσi) = γ
∑
i

f(
→
mi(σ)σi)

= γ
∑
i

∑
j

Jγ(i, j)σjσi


= γ

∑
j

(∑
i

Jγ(i, j)σjσi

)

= γ
∑
i

(←
mi(σ)σi

)
=
∑
i

f(Miσi+1+1/γ) .

(2.4.13)

Therefore, also for the irreversible dynamics the stationary measure is Gibb-
sian.

Proven that the stationary distribution of both the dynamics is gibbsian, in
Section 3.3 we present a numerical comparison between their mixing times.
Measuring the coalescence times, i. e. the average number of iterations needed
to coalesce for two Markov chains starting from opposite phases and evolving
according to a suitable coupling, we are able to give an upper bound to the
mixing time of the dynamics. We find that the ratio between the coalescence
times of the reversible chain and the irreversible one is increasing with β
and γ−1, showing how the irreversible dynamics is faster to converge to
equilibrium than its reversible counterpart.
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2.5 Parallel Dynamics for Ising model with Kac
potentials

As seen in Chapter 1, an interesting question in the study of particle systems,
and in particular for the Ising model, is the implementation of a parallel
dynamics. We can define an homogeneous Markov Chain based on the one
dimensional Kac-Ising model lifting the Hamiltonian (2.2.1) to

Hγ(σ, τ) = −H0(σ, τ) +
Q(σ, τ)

β
(2.5.1)

where

H0(σ, τ) = γ
∑
i

∑
j∈Bi

σiτj

Q(σ, τ) = q
∑
i

(1− σiτi) with q ≥ 0.
(2.5.2)

The transition probabilities from configuration a σ ∈ S to configuration a
τ ∈ S are defined as follows

Pστ =
e−βHγ(σ,τ)∑
τ e
−βHγ(σ,τ)

:=
e−βHγ(σ,τ)

Zσ
. (2.5.3)

Observe that such probabilities can be factorized as a product of the proba-
bilities of each component τi of the new configuration

Pσ,τ = ΠL
i=1P (τi|σ) (2.5.4)

where

P (τi|σ) =
e[βτimi−q(1−σiτi)]

2e−q cosh (βmiσi + q)
. (2.5.5)

Therefore, this dynamics belongs to the family of Probabilistic Cellular
Automata (PCA).

Differently from the single spin-flip dynamics, this new definition allows
multiple sites to be updated in the same time-step. That’s the reason to
add in the Hamiltonian (2.5.1) the parameter q which represents an inertial
term and models the tendency of the system to remain in its current state
σ. In fact, as defined in (2.5.2), a strictly positive value of q increases the
energy of a spin-flip, i. e. σi 6= τi, de facto inhibiting the update of site i. In
such a way we can control the average number of spin-flips in one iteration,
adjusting the grade of parallelism of the dynamics.

Before facing the problem of finding the stationary measure of this PCA, in
the next section we analyze a simpler case, the nearest neighbors interaction.
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2.5.1 Nearest neighbors case

Proposition 2.5.1. The stationary measure of the dynamics (2.5.3) in the
case γ = 1, i. e. every site i interacts only with his nearest neighbor site i+ 1,
is the Gibbs measure, with a different temperature.

In other words we want, to show that, for γ = 1, for every value of the inverse
temperature of the Gibbs measure βG there exist couples of values βP and
q such that the stationary measure of the PCA dynamics πP is exactly the
Gibbs measure πG.

Proof. Since for γ = 1

Hγ(σ) =
∑
i,j

Jγ(i, j)σiσj =

L∑
i=1

σiσi+1 (2.5.6)

the Gibbs measure results to be

πG(σ) =
1

ZG
e−β

GHγ(σ) =
1

ZG

L∏
i=1

eβ
G(σiσi+1) =

1

ZG
eβ

GLe−2J |ν| (2.5.7)

where |ν| is the number of contours, i. e. in one dimension simply the number
of pairs of adjacent spinf of different sign.

Therefore, we can write its partition function ZG as follows

ZG =
∑
σ

e−β
GH(σ) =

∑
σ

L∏
i=1

eβ
G(σiσi+1)

=
∑
σ

L∏
i=1

cosh
(
βG(1 + σiσi+1 tanhβG)

)
= 2L

[
(coshβG)L + (sinhβG)L

]
(2.5.8)

obtaining

πG(σ) =
1

2

e−2βG|ν|∑
|ν| even

e−2βG|ν| . (2.5.9)

The Hamiltonian of the PCA dynamics in the case γ = 1 is

Hγ(σ, τ)|γ=1= H(σ, τ) = −
L∑
i=1

(
σiτi+1 − q(1− σiτi)

)
(2.5.10)
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and we can compute its stationary measure applying the global balance
condition (2.3.3). In fact∑

τ

e−β
PH(σ,τ) =

∑
τ

∏
i

eβ
P(σiτi+1−q+qτiσi)

= e−qLβ
P
∑
τ

∏
i

eβ
P(σi−1τi+qτiσi)

= 2Le−qLβ
P
∏
i

cosh (βPσi−1σi + q)

= 2Le−qLβ
P
∏
i

cosh (βPσiσi+1 + q) =
∑
τ

e−β
PH(τ,σ)

(2.5.11)

hence, the stationary measure πP is

πP(σ) =
1

ZP

∑
τ

e−β
PH(σ,τ)

=
1

ZP

∑
τ

eβ
P
∑L
i=1(σiτi+1+qσiτi−q)

=
1

ZP

∑
τ

eβ
P
∑L
i=1(σi−1τi+qσiτi−q)

=
2Le−qLβ

P

ZP

L∏
i=1

cosh(βPσi−1σi + q)

=
2Le−qLβ

P

ZP
cosh(βP + q)L

(
cosh(βP − q)
cosh(βP + q)

)|ν|

(2.5.12)

where, in the fourth row of the equation, we used the parity of the iperbolic
cosine.
Writing the partition function ZP as

ZP = 2Le−qLβ
P
∑
|ν| even

cosh(βP + q)L
(

cosh(βP − q)
cosh(βP + q)

)|ν|
(2.5.13)

we have that

πP(σ) =
1

2

(
cosh(βP−q)
cosh(βP+q)

)|ν|
∑
γ

(
cosh(βP−q)
cosh(J+q)

)|ν| . (2.5.14)

Imposing πP(σ) = πG(σ) we have that

πG(σ) =
1

2

e−2βG|ν|∑
|ν| even

e−2βG|ν| =
1

2

(
cosh(βP−q)
cosh(βP+q)

)|ν|
∑

|ν| even

(
cosh(βP−q)
cosh(βP+q)

)|ν| = πP(σ) , (2.5.15)
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therefore, calling b = tanh(q),

e−2βG
=

(
cosh(βP − q)
cosh(βP + q)

)
=

1− tanhβPb

1 + tanhβPb

=
1− b sinhβP

coshβP

1 + b sinhβP

coshβP

=
coshβP − b sinhβP

coshβP + b sinhβP

=
eβ

P
+ e−β

P − beβP
+ be−β

P

eβP + e−βP + beβP − be−βP

=
(1− b)eβP

+ (1 + b)e−β
P

(1 + b)eβP + (1− b)e−βP

=
(1− b) + (1 + b)e−2βP

(1 + b) + (1− b)e−2βP .

(2.5.16)

Rearranging the terms we have

(1− b) + (1 + b)e−2βP
= e−2βG

(
(1 + b) + (1− b)e−2βP

)
e−2βP

(
(1 + b)− e−2βG

(1 + b)
)

= e−2βG
(1 + b)− (1− b)

(2.5.17)

obtainig the following relation between βP and βG

e−2βP
=
e−2βG

(1 + b)− (1− b)
(1 + b)− e−2βG(1 + b)

= e−2βG 1 + b− (1− b)e2βG

1 + b− (1− b)e−2βG

(2.5.18)

From (2.5.18) it’s clear that for every βG it exist a surface (βP, q), a curve
in this case, such that πG = πP and since 0 < (1 − b) < 1 ∀q > 0 the last
fraction in (2.5.18) is less than 1 implying that βP > βG. Furthermore, being

e−2βP
positive, clearly (1 + b) > (1− b)e2βG

, thus, for big values of βG, i. e.
at low temperature, b = tanh(q) must be close to 1. Therefore the curve
(βP, q) is shorter when βG is big and longer when βG is small.
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2.6 Gibbs measure

To identify the stationary measure of the PCA dynamics presented in Section
2.5 in the general case γ < 1 we have, again, to resort to the Global Balance
Principle. To show that the dynamics fulfills the conditions of Theorem 2.3.2
we have to show that ∑

τ

e−βH(σ,τ) =
∑
τ

e−βH(τ,σ) . (2.6.1)

Writing both expressions as{∑
τ e
−βH(τ,σ) = 2Le−qLβ

∏L
i=1 cosh(βmiσi + q)∑

τ e
−βH(σ,τ) = 2Le−qLβ

∏L
i=1 cosh(βmiσi+1+ 1

γ
+ q)

(2.6.2)

we see that it’s sufficient to prove that

L∏
i=1

cosh(βmiσi + q) =
L∏
i=1

cosh(βmiσi+1+ 1
γ

+ q) . (2.6.3)

That can be easily done using formula (2.3.25) from Proposition 2.3.1 and
choosing the function f as follows

f = cosh (βγMiσi + q) . (2.6.4)

The expression of stationary measure of the PCA is therefore the one in
(2.3.4), i. e.

πP(σ) =
wP
σ∑

σ w
P
σ

=
wP
σ

ZP
(2.6.5)

where we have defined the PCA weight of the configuration σ

wP
σ =

∑
τ

e−βHγ(σ,τ) . (2.6.6)

Recalling the classical Ising model presented in Section 2.2 it is a standard
task to derive its Gibbs Measure, which we recall to be defined as

πG(σ) =
wG
σ∑

σ w
G
σ

=
wG
σ

ZG
(2.6.7)

where we have defined the gibbsian weight of the configuration σ as follows

wG
σ = e−βHγ(σ) = eβ

∑
i σimi . (2.6.8)

To show the relation between the Gibbs measure πG and the PCA’s stationary
measure πP we follow a procedure already used in [15].
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Calling I the subset such that I = {i ∈ V : σi 6= τi} we have

wP
σ =

∑
τ

e−βH(σ,τ) =
∑
τ

eβ
∑
i τimi−q

∑
i(1−σiτi)

=
∑
I⊂V

eβ
∑
i σimi−2β

∑
i∈I σimi−2q|I|

= wG
σ

∏
i∈V

(1 + δφi) = wG
σf(σ)

(2.6.9)

where δ = e−2q and
φi ≡ e−2βσimi (2.6.10)

and f(σ) is the function

f(σ) ≡
∏
i∈V

(1 + δφi) . (2.6.11)

Denoting now

ZP =
∑
σ

wP
σ (2.6.12)

and computing

πP(σ) =
wP
σ∑

σ w
P
σ

=
wG
σf(σ)∑

σ w
G
σf(σ)

=
wG
σf(σ)∑
σ w

G
σ

∑
σ w

G
σ∑

σ w
G
σf(σ)

=
πG(σ)f(σ)

πG(f)

(2.6.13)

we obtain the following relation between the two stationary measures

πP(σ) = πG(σ)
f(σ)

πG(f)
. (2.6.14)

Due to the form of expression (2.6.11) we can easily show the convergence of
πP to πG under the condition

δ = e−2q <
1

L
. (2.6.15)

Defining
φmin = inf

i∈Λ
{φi} and φmax = sup

i∈Λ
{φi} (2.6.16)

we have

L∏
i=1

(1 + δφmin) ≤
L∏
i=1

(1 + δφ) ≤
L∏
i=1

(1 + δφmax) (2.6.17)

which implies

(1 + δφmin)L ≤ (1 + δφ)L ≤ (1 + δφmax)L . (2.6.18)
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In the limit L→∞ we have

eδφminL ≤ eδφL ≤ eδφmaxL (2.6.19)

and condition (2.6.15) on δ guarantees that δL→ 0 so the extremes of the
expression force f(σ) to be equal to 1 which, due to equation (2.6.14), proves
πP → πG.
Condition (2.6.15) is however a strong requirement for the parallel dynamics
because recalling the transition probabilities (2.5.5), the condition

δ = e−2q ≤ 1

L1+ε
(2.6.20)

for some ε > 0, results in

P (τi 6= σi) =
e
−βγ

∑
j∈Bi

σiτj−2q

Zσ
≤ eβ−2q

Zσ
≤ eβ

Zσ

1

L1+ε
. (2.6.21)

In the single iteration from σ to τ the probability to have a different spin in
a specific site i is less than the inverse of the volume size L. Hence the PCA
becomes, on average, equivalent to a single spin-flip dynamics.
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2.7 High temperature via Föllmer covariance esti-
mates

In order to obtain the convergence of the PCA stationary measure to the
Gibbs measure in a truly parallel dynamics we will follow the approach taken
in the main theorem of [15].
The idea of the proof is to control the decay of correlations of the family of
functions φi, defined in (2.6.10), using the well-known Dobrushin condition
for uniqueness of phase

sup
i

∑
j

tanh (2|Ji,j |) < 1 , (2.7.1)

provided that δ = e−2q is such that

lim
L→∞

δ2L = 0 . (2.7.2)

In such a way the probability of a spin-flip in a site i is

P (τi 6= σi) =
e
−βγ

∑
j∈Bi

σiτj−2q

Zσ
<
eβ−2q

Zσ
<

1

Zσ

eβ√
L
, (2.7.3)

hence, the average number of spins updated in each time step is of order√
L, in opposition to the dynamics implied by the stronger condition (2.6.20)

which results to be essentially sequential.

The original statement of the main theorem in [15] reads as follows

Theorem 2.7.1. For any q ≥ 0 let δ = e−2q. Suppose:

(a) δ = δ(L) is such that limL→∞ δ
2L = 0;

(b) there exists δ0 such that

sup
Λ

sup
δ∈[0,δ0]

1

L
Varπ

[∑
i∈Λ

φi
1 + φi

]
<∞ (2.7.4)

for π = f(σ)
πG(f)

and π = f(σ)2

πG(f2)
.

Then
lim
L→∞

‖πP − πG‖TV = 0 (2.7.5)

where the Total Variation Distance between the PCA’s stationary measure
and the Gibbsian one is defined as

‖πP − πG‖TV ≡ 1
2

∑
σ

|πP(σ)− πG(σ)| . (2.7.6)
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Using relation (2.6.14) we can derive that

‖πP − πG‖TV = 1
2

∑
σ

πG(σ)

∣∣∣∣ f(σ)

πG(f)
− 1

∣∣∣∣
= 1

2

∑
σ

wG(σ)

ZG

∣∣∣∣ f(σ)

πG(f)
− 1

∣∣∣∣
= 1

2π
G

(∣∣∣∣ f(σ)

πG(f)
− 1

∣∣∣∣)
(2.7.7)

and now, defining

∆(δ) =
πG(f2)

(πG(f))2
− 1 (2.7.8)

we have, by Cauchy-Schwarz inequality,

πG

(∣∣∣∣ f(σ)

πG(f)
− 1

∣∣∣∣) ≤
√√√√πG

((
f(σ)

πG(f)
− 1

)2
)

=

√√√√πG

(
(f(σ)− πG(f))2

(πG(f))2

)

=

√
πG(f2)

πG(f)2
− 1 =

√
∆(δ) .

(2.7.9)

To prove the theorem under condition (a), we just need to control ∆(δ)
around δ = 0 up to the second order showing that

∆(δ) =
1

L
log πG(f2)− 2

L
log πG(f) = O(δ2) . (2.7.10)

Let us define

π̃(σ) = πG(σ)
f2

πG(f2)
(2.7.11)

and, recalling definition (2.6.11), rewrite f(σ) as

f(σ) = exp

[∑
i∈Λ

log
(
1 + δφi(σ)

)]
. (2.7.12)

Using these expressions we can explicitly compute

d

dδ
log πG(f) = πP

[∑
i∈Λ

φi
1 + δφi

]
, (2.7.13)
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d

dδ
log πG(f2) = 2π̃

[∑
i∈Λ

φi
1 + δφi

]
, (2.7.14)

d2

d2δ
log πG(f) = −πP

[∑
i∈Λ

(
φi

1 + δφi

)2
]

+ VarπP

[
φi

1 + δφi

]
, (2.7.15)

and

d2

d2δ
log πG(f2) = −2π̃

[∑
i∈Λ

(
φi

1 + δφi

)2
]

+ 4Varπ̃

[
φi

1 + δφi

]
. (2.7.16)

Since the first order expansion of ∆(δ) in δ = 0 presents an explicit cancel-
lation, due to the fact that πG = πP = π̃ for δ = 0, to prove (2.7.10) it is
enough to show that the following holds

sup
Λ

sup
δ

1

L

(∣∣∣∣∣ d2

d2δ
log πG(f)

∣∣∣∣∣+

∣∣∣∣∣ d2

d2δ
log πG(f2)

∣∣∣∣∣
)
< +∞ . (2.7.17)

What it is to be shown is that the Dobrushin uniqueness condition (2.7.1)
guarantees that assumption (b) in Theorem 2.7.1 holds which, in turn, implies
(2.7.17). That is achieved using the main result of Föllmer’s paper [21], see
also Kunsch’s work [36], which gives an estimate for the covariance of the
Gibbs measure under very general conditions, among which (2.7.1).

2.7.1 Föllmer covariance estimate

Suppose the following

• µ is a probability measure on a product space E = SI and we know
for all points k ∈ I the conditional distribution µk(dxk|x);

• C is the so called Dobrushin interaction matrix with elements

Cik = sup
{

1
2‖µk(·|x)− µk(·|y)‖1 : x = y off {i}

}
(2.7.18)

and assume the following condition holds

α = sup
k

∑
i

Cik < 1 ; (2.7.19)

• D is the matrix with elements Dik =
∑∞

n=0C
n;
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• ρi(f) is the so called oscillation of f in the point i defined as

ρi(f) = sup
{
|f(x)− f(y)| : x = y off {i}

}
; (2.7.20)

Then, Föllmer’s Theorem can be expressed as follows.

Theorem 2.7.2. Under condition (2.7.19), the covariance of any two functions
f and g in C(E) with respect to µ satisfies∣∣Covµ(f, g)

∣∣ ≤ 1
4

∑
i,k

ρi(f)Dikρk(g) . (2.7.21)

See Appendix A for the proof.

2.7.2 Proof of Theorem 2.7.1

In order to apply Föllmer Theorem we have to show that Dobrushin unique-
ness condition (2.7.1) implies condition (2.7.19).

Proposition 2.7.1. Let Cij be the elements of the Dobrushin interaction
matrix for the measure π, as defined in (2.7.18), and Ji,j the potential
between sites i and j. Then

Cij ≤ tanh(2|Ji,j |) + 1
2ρj(ψi,δ) (2.7.22)

where ψi,δ is defined by

ψi,δ(σ) = 1
2 log

1 + δe−2hi(σ)

1 + δe2hi(σ)
+ 1

2

∑
l>0

log
1 + δe−2Ji,lσl−2σlhi,l(σ)

1 + δe2Ji,lσl−2σlhi,l(σ)
(2.7.23)

and

hi(σ) =
∑
j

Jijσj , hi,l(σ) = β
∑
j 6=l

Ji,jσj . (2.7.24)

Proof. Consider the simple case i = 0 and π = πP, the proof for π = π̃ is
similar. We write

Hi = log(1 + δφi) (2.7.25)

so that

πP(σ) =
1

ZP
exp

∑
i,j

Ji,jσiσj +
∑
i

Hi(σ)

 . (2.7.26)



52 CHAPTER 2. IRREVERSIBLE PARALLEL KAC-ISING

Note that, calling σ\i the configuration σ without the point i, we can write
it as ∑

i,j

Ji,jσiσj = 2σ0h0(σ) + C1(σ\0) (2.7.27)

where C1(σ\0) denotes all remaining terms which do not depend on σ0. In
such a way we have isolated the odd terms, which depend on the sign σ0,
from its even ones C1(σ\0).
Similarly

H0(σ) = log(1 + δe2σ0h0(σ))

= 1
2σ0 log

1 + δe−2h0(σ)

1 + δe2h0(σ)
+ C2(σ\0)

(2.7.28)

and for all l 6= 0

Hl(σ) = log
(

1 + δe−2σl
∑
j Jl,jσj

)
= log

(
1 + δe−2J0,lσ0σl−2σlh0,l(σ)

)
= 1

2σ0 log
1 + δe−2J0,lσl−2σlh0,l(σ)

1 + δe2J0,lσl−2σlh0,l(σ)
+ C3(σ\0) .

(2.7.29)

It follows that

πP(σ0 = 1|σ\0) =
e2h0(σ)+ψ0,δ

2 cosh(2h0(σ) + ψ0,δ)
. (2.7.30)

Writing, ψδ for ψ0,δ and σ(j) according to (2.4.2), we have

2h0(σ)+ψδ(σ)−
(
2h0(σ(j))+ψδ(σ

(j))
)

= 4J0,j +ψδ(σ)−ψδ(σ(j)) . (2.7.31)

Setting now x = −2h0(σ)ψδ(σ) and y = 4J0,j + ψδ(σ)− ψδ(σ(j)) we call

gy(x) : = πP(σ0 = 1|σ\0)− πP(σ0 = 1|σ(j)
\0 )

=
e−x

2 cosh(x)
− e−x−y

2 cosh(x+ y)
.

(2.7.32)

Unless y = 0 (which gives gy = 0), the derivative (g2
y)
′ vanishes only at

x = −y/2, where g2
y attains its absolute maximum tanh2(y/2).

This yields

|πP(σ0 = 1|σ\0)− πP(σ0 = 1|σ(j)
\0 )| ≤ tanh

(
2|J0,j |+ 1

2 |ψδ(σ)− ψδ(σ(j))|
)
.

(2.7.33)

Since, for every a, b ≥ 0, tanh(a+b) ≤ tanh(a)+b we have that the conclusion
of the Proposition 2.7.1 follows.
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To complete the proof of Theorem 2.7.1 we need to prove the following
lemma.

Lemma 2.7.1. The quantity ψi,δ, as defined in (2.7.23), is such that

sup
i

∑
j

ρj(ψi,δ) = O(δ) as δ → 0 . (2.7.34)

Proof. Set i = 0 and ψ0,δ = ψδ. The estimate for a generic i is similar.
Ignoring an irrelevant factor 2

ρj(ψδ) ≤ ρj

(
log

1 + δe−2h0(δ)

1 + δe2h0(δ)

)
+ ρj

(
log

1 + δe−2J0,jσj−2σjh0,j(σ)

1 + δe2J0,jσj−2σjh0,j(σ)

)

+
∑
l 6=0,j

ρj

(
log

1 + δe−2J0,lσl−2σlh0,l(σ)

1 + δe2J0,lσl−2σlh0,l(σ)

)
.

(2.7.35)
The main difficulty comes from the third term, and we only deal with it, i. e.
we show that∑

j

∑
l 6=0,j

ρj

(
log

1 + δe−2J0,lσl−2σlh0,l(σ)

1 + δe2J0,lσl−2σlh0,l(σ)

)
= O(δ) . (2.7.36)

Set

Cl(δ) : = log
1 + δe−2J0,lσl−2σlh0,l(σ)

1 + δe2J0,lσl−2σlh0,l(σ)

= log

(
1− 2δ

sinh(2J0,lσl)e
−2σlh0,l(σ)

1 + δe2J0,lσl−2σlh0,l(σ)

)
.

(2.7.37)

It is not restrictive to assume that δ is small so that

2δ
sinh(2|J0,l|)e−2σlh0,l(σ)

1 + δe2J0,lσl−2σlh0,l(σ)
< 1

2 . (2.7.38)

Since, on (−1
2 ,

1
2) the map x→ log(1− x) has Lipschitz constant 2, we have

|Cl(δ)− Cl(δj)| ≤ 4δ sinh(2|J0,l|)

∣∣∣∣∣ e−2σlh0,l(σ
(j))

1 + δe2J0,lσl−2σlh0,l(σ(j))
− e−2σlh0,l(σ)

1 + δe2J0,lσl−2σlh0,l(σ)

∣∣∣∣∣
≤ 4δ sinh(2|J0,l|)

∣∣∣e−2σlh0,l(σ
(j)) − e−2σlh0,l(σ)

∣∣∣
≤ 4δe2J sinh(2|J0,l|)

∣∣∣h0,l(σ
(j))− h0,l(σ)

∣∣∣
≤ 4δe4J |J0,l||Jj,l|

(2.7.39)
where we have also used the facts that the map x → x

1+ax has Lipschitz

constant 1 for x > 0 and a > 0, that |ex − ey| ≤ emax(|x|,|y|)|x− y| and that
sinh(2|J0,l|) ≤ e2J |J0,l|.
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It follows that

∑
j

∑
l 6=0,j

ρj

(
log

1 + δe−2J0,lσl−2σlh0,l(σ)

1 + δe2J0,lσl−2σlh0,l(σ)

)
≤ 4δe4JJ2 = O(δ) . (2.7.40)

At this point, choosing µ = π, f = φi
1+φi

and g =
φj

1+φj
we can use Föllmer’s

Theorem 2.7.2 to compute

1

L
Varπ

[∑
i∈Λ

φi
1 + φi

]
=

1

L

∑
i,j∈Λ

Covπ

(
φi

1 + φi
,

φj
1 + φj

)

≤ 1

L

∑
i,j∈Λ

∑
h,k

Dhkρh

(
φi

1 + φi

)
ρk

(
φj

1 + φj

)
.

(2.7.41)
Now, since condition (2.7.19) implies

sup
h

∑
k

|Dhk| ≤
1

1− α
(2.7.42)

and we have

ρh

(
φi

1 + φi

)
≤ ρh(φi) ≤ e2J |Ji,h| (2.7.43)

we get

1

L
Varπ

[∑
i∈Λ

φi
1 + φi

]
≤ e4J 1

L

∑
i,j∈Λ

∑
h,k∈Λ

Dhk|Ji,h||Jj,k|

≤ J2e4J 1

L

∑
h,k∈Λ

Dhk

≤ 1

1− α
J2e4J <∞

(2.7.44)

which completes the proof of Theorem 2.7.1.
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2.8 Remarks and open problems on irreversible
Kac-Ising dynamics

In the context of one dimensional spin systems with Kac interaction we saw
in this chapter how it is possible to define irreversible Markov chains having
as stationary measure the Gibbs measure (see Section 2.4) or a measure that,
under suitable conditions, tends to the Gibbs measure in the thermodynamic
limit (see Section 2.5). Indeed, exploiting the property of magnetization
continuity along lattices under periodic boundary conditions, see Section
2.3, we were able to identify the stationary measure of the single spin-flip
dynamics with Kac potentials for all values of γ. We have then two different
results for parallel dynamics. For nearest neighbors interaction we showed
the equivalence of the PCA stationary measure with the gibbsian one by
exact computation. In the case of long ranged (Kac) interaction we are able
to show such convergence for high temperature via Dobrushin condition.
The interest in this kind of dynamics is twofold: first, it is generally believed
(see for example the papers [14] by Dai Pra et al. and [46], [4], [31] by Werner
Krauth et al.) that an irreversible sampling of a given measure is faster
than a reversible one, and, second, the PCA dynamics are suitable to be
implemented on parallel architectures.
However, many questions remain open. Certainly the most interesting one is
the possibility to show Theorem 2.7.1 for low temperature, since condition
(2.7.1) is fulfilled for high temperature only. It would be also interesting to
find explicit estimates for the mixing time both in the reversible and in the
irreversible case. In Section 3.3 we show, with this respect, some numerical
results about the coalescence times suggesting than the irreversible sampling
should be faster that the reversible one.
Beside this, one can think that these irreversible toy models may give some
insight in non-equilibrium statistical mechanics. This is in particular the
case for the TASEP system, which however is very hard to study once the
translational invariance is removed. This thesis should be considered a first
attempt in order to find some general results.
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Chapter 3

Numerical results

3.1 Markov chains coupling for mixing time esti-
mates

In this chapter we present some numerical results for the two models studied
in the theoretical part. In both cases we need to establish a criterion to
determine when (at what time-step) the dynamics is “close enough” to its
steady state, i. e. what is its mixing time. This section is a quick summary of
the coupling as a method for estimating such mixing time while a complete
reference can be found in [39].

There exist several definitions for the mixing time of a Markov chain, but we
hereby proceed to give just the basic principles.

Definition 3.1.1. Consider a Markov chain Xt with state space S and indicate
with µtσ the distribution at the time-step t of a dynamics started with the
measure µ0

σ concentrated on the configuration σ. The mixing time of such
dynamics is defined as

T := T (ε) = min
t>0

{
‖µtσ − π‖TV < ε for all σ ∈ S

}
(3.1.1)

where π is the stationary measure and ε is a small positive parameter,
independent on the cardinality of the phase space, often set equal to e−1.

Computing the mixing time of Markov chain can be a non trivial task
depending on the dynamics. An effective and widespread method to give
an estimate of the value of iterations needed to be “close” to equilibrium is
represented by the coupling. The coupling is, indeed, a useful and elegant
technique in probability theory through which random variables can be
compared with each other in order to draw conclusions about their respective
distributions. Standard references for coupling methods can be found in
Lindvall’s and Thorisson’s books [43], [1].

57
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Definition 3.1.2. Let Xt and Y t be two Markov chains on the state space S,
then a coupling between Xt and Y t is another Markov chain Zt = (Xt, Y t)
with state space S × S such that

P
(
Xt+1 = τ | Zt = (σ, σ′)

)
= P

(
Xt+1 = τ | Xt = σ

)
= Pστ (3.1.2)

and

P
(
Y t+1 = τ ′ | Zt = (σ, σ′)

)
= P

(
Y t+1 = τ ′ | Y t = σ′

)
= Pσ′τ ′ . (3.1.3)

The coupling between Xt and Y t allows to introduce a dependence between
them and to carry out the following general scheme:

1. Define a coupling such that eventually Xt = Y t with probability 1, i. e.
PZ(Xt = Y t)→ 1 as t→∞;

2. Bound the total variation distance between π and µtσ in terms of
probability P (Xt 6= Y t) having started X with a measure concentrated
in state σ and Y with the stationary measure π;

3. Use this bound to estimate the mixing time T (ε).

Lemma 3.1.1. Let Xt and Y t be two Markov chains with state space S with
initial distributions µ0 and ν0, respectively, and Zt = (Xt, Y t) be a coupling
on them. Then

‖µt − νt‖TV ≤ P
(
Xt 6= Y t

)
. (3.1.4)

Proof. Given any A ⊂ S, we have

µt(A)− νt(A) = P (Xt ∈ A)− P (Y t ∈ A)

= P (Xt ∈ A, Y t /∈ A)− P (Y t ∈ A,Xt /∈ A)

≤ P (Xt ∈ A, Y t /∈ A)

≤ P (Xt 6= Y t) .

(3.1.5)

Applying Lemma 3.1.1 with the initial distribution µ0 concentrated on a
single state σ ∈ S, and with ν0 being the stationary distribution π gives the
estimate

‖µtσ − π‖TV ≤ P
(
Xt 6= Y t

)
. (3.1.6)

Therefore, for a time-step T such that

P
(
XT 6= Y T | X0 = σ, Y 0 distributed according to π

)
≤ ε (3.1.7)
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we have T (ε) ≤ T , which is the estimate of the mixing time of the Markov
chain.

From a numerical point of view this technique is a powerful tool to understand
how many iterations are enough to be confident that a simulation of a
dynamics has reached its steady state. Constructing two or more processes
on the same probability space and updating them with the same variables,
i. e. the extracted site and the random number to compare with the transition
probability, we are sure that after the coalescence the Markov chain will
remain equal during all the future evolution independently from the starting
state.
Setting the starting configurations of the Markov chains “as far as possible”
one from the other, e. g. in discrete spin systems the +1 and the −1 states,
the time needed for them to be equal is a good indication of the mixing
time. Furthermore, if the update rule preserves the partial order between the
configurations, starting the coupling from the “top” state (all +1) and the
“bottom” state (all−1) ensures that all the chains starting in any intermediate
states have to join as well. This is the so called sandwiching technique, see
[26], and allows to compute an upper bound for the mixing time without
running the coupling for all the intermediate configurations.
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3.2 PCA-TASEP

The classical TASEP model imposes that exactly one particle is chosen
uniformly at each iteration and moved forward if not blocked by another
particle. In big volume instances of the problem this means that the whole
dynamics results to be very slow.
Adopting the parallel PCA dynamics for the classic discrete-time TASEP
increases enormously its capability to be implemented on the calculator and
to be studied numerically. We will show how the parallelization doesn’t
change the model qualitatively but only quantitatively, making it get faster
to the stationary state than the classical version.
We present a series of numerical results obtained in a half-filled PCA-TASEP
system, with blockage probability ε ∈ [0, 1] located on the last site i = 2L,
on a ring lattice of 1000 sites and 500 particles. In particular we will
compute experimentally the current J(p, ε) and the density ρ(x, p, ε) around
the site x, as functions of both the probability p = w

1+w and the blockage’s
intensity ε. The current is computed according to (1.3.2), while the density
in x ∈ {1, 2, . . . , 2L/10} is defined as follows

ρ(x, p, ε) =
1

10

[
10x+9∑
i=10x

σi

]
. (3.2.1)

To guarantee the achievement of the stationary state we need to run the
simulation for the mixing time of the PCA-TASEP, hereby simply referred as
T . Unfortunately we are not aware of rigorous estimate of the mixing time
for the serial dynamics nor the parallel one. In the case of the symmetric
exclusion process on the circle, in [48] Morris proved that T = L2 logL, and
this corresponds in our case to the choice p = 1/2L. Therefore, we can imagine
that a PCA-TASEP dynamics with jump probability p will have a mixing
time approximately

T ≈ 2
L

p
log(L) . (3.2.2)

To test such estimate we implemented the procedure described in Section
3.1 and performed a numerical simulation. As widely explained, the PCA-
TASEP is a parallel Markov chain of the class of PCA, i. e. its update rule is
factorized on the single sites i. This feature makes the dynamics particularly
well suited to be implemented on Graphical Processors Units (GPUs) without
time-consuming inter-thread dependencies. In other words, they are eligible
for large scale simulations on relatively cheap computing architectures like
graphics cards.
Figure 3.1 is the result of a simulation executed within the CUDA1 frame-
work of 105 couplings, referred as rings in the x-axis of the figure, of the

1https://developer.nvidia.com/cuda-zone
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Figure 3.1: Coalescence times for the PCA-TASEP with periodic bounday
conditions (the lattice is a ring) of 105 rings of volume 16, 20, 24 and 28.

PCA-TASEP parallel dynamics for different volume sizes and returns their
coalescence times, plotted on the y-axis. Exploiting the parallel capabilities
of the GPU both within the parallel update rule of each coupling and also
executing 1000 couplings at once, we were able to obtain a statistic sample
of 105 coalescence times for volume sizes 16, 20, 24, 28, 32 in just 102 runs of
the simulator. Obtaining coalescence times for bigger volumes begins to be
unfeasible and its beyond the purposes of the simulation. The final version
of the code is given in Appendix B.1.

The fact that in no one of the 105 instances of the coupling the coalescence
time exceeded the estimate (3.2.2) is an indication that running the simulation
for, at least, that number of iterations implies the attainment of a stationary
state. Hence, in the following simulations we run the dynamics for a time
greater than 2L/p log(L).

In our numerical experiments we are particularly interested on two facts:

1. We know from [13] that for the standard TASEP the current remains
very close to the limit value without blockage, up to a certain value
εc of the blockage intensity. We also know from Theorem 1.4.1, that
for the explicitly solvable blocked system, in the case p = 1 there is
no critical blockage probability, in the sense that the current has a
decrease that is proportional to ε near the value ε = 0.

We want to check numerically if the indication of such εc 6= 0 is a
particular feature of the single spin flip dynamics or if it survives in
the PCA procedure too. As it will be clear in the following figures, the
second scenario seems to be true from a numerical point of view.
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2. We want to see if the density before the blockage is an increasing
function of the distance from the blockage when the current decreases,
or if the presence of the blockage implies simply a queuing of particles
close to it.

3.2.1 Current

The measure of the current J is carried out, according to formula (1.3.2,
counting the average number of particles free to move during all the iterations
and weighting such value with the total volume of the system 2L.

Figure 3.2: Current in PCA-TASEP as function of the probability p = w/(1+w)

and the blockage intensity ε.

Figure 3.2 shows the surface obtained interpolating 441 measures of J(p, ε)
for every p ∈ [ 1

2L , ..., 1] and ε ∈ [0, ..., 1], both with increments of 25/L = 0.05.

As we see, the Current-Blockage plane of the 3D graph fits very well the
relations shown in Proposition 1.3.1 and Theorem 1.4.1, both in the p = 1
and p = 1

L cases.

Figure 3.3 represents the behavior of the current J(p, ε) for several values
of p plotting the side projection of the 3D graph from Figure 3.2. It clearly
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appears that except in the case p = 1, where the current decrease with a
non-zero slope for all ε > 0, the decrease of J(p, ε) starts only after a certain
value of the blockage.

In this sense, the critical behavior of the standard TASEP, corresponding in
our model to the regime p = 1

L , is conserved for all the probabilities except
p = 1.

Figure 3.3: Profile curves of the PCA-TASEP current for different values of
the probability p, from p = 1 (up) to p = 1

L (down).

Figure 3.4 shows the threshold values of ε for which the current deviates
more than the 1% from its initial value in the absence of blockage. This gives
an indication of the shape of the region in which the current remains nearly
constant from a numerical point of view, having however ε > 0. Note that
the dots have a monotone behavior as to higher mobility rates correspond a
system more sensible to the blocking effect in the end of the volume.

Again, it seems from the simulations that for every value of p ,except p = 1
for which the slope of the current is clearly negative already at ε = 0, it
exists a critical blockage intensity εc. However the recent developments in
[3], [2] proves that such εc is indeed 0, leaving open the conjecture of the
non-analyticity of J(p, ε).
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Figure 3.4: Threshold values of ε for a 1% deviation from value of the current
without blockage.

3.2.2 Density

The second feature we focused on is the distribution of the particles in the
whole volume during the evolution of the system. The density diagrams
we are going to show describe the density of segments of the configuration,
assigning a darker color according to the density. We suppose that a good
choice for the coarse-graining of the volume is to have segments of length 10
in order to have 100 samples to look at and still a representative basis to
measure the concentration of particles.

The diagrams in Figure 3.5, are an instantaneous plot of the configuration σ
at the mixing time defined in (3.2.2) for each probability p as defined above
the plot. Each diagram is composed of 6 tiny rows showing the particle
density for ε ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. As we expected the last row of every
diagram is split in half white-empty and half black-full dots, due the total
congestion of the ring when ε = 1.

Figure 3.6 plots the average behavior from 100 density diagrams computed
every 100 iterations after the system reached the steady state. Exactly like
the previous graph, the first row correspond to the complete absence of
blockage and its uniform gray color fairly reflects this situation showing a
uniform distribution of the particles.
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Figure 3.5: Average site occupation (density) for the PCA-TASEP at different
values of blockage ε.

Figure 3.6: Mean density for 100 steps of 100 iterations each, after the Mixing
Time.
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All the evidence seems to indicate the possibility that, although the current
decreases for all ε, the system exhibits for p < 1 a nearly-constant density up
to a certain value of ε, while after this value the density appears to be smaller
in the first L sites than in the second L. Such a difference in the density
of the two halves of the ring is precisely what has emerged in Section 1.4
for the case p = 1 with an arbitrary blockage-intensity ε > 0, where the
particle-hole symmetry plays a key role. Again, a complete understanding
of this phenomenon should be based on the knowledge of the stationary
measure in presence of a blockage.
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3.3 Kac-Ising

For what concerns the Kac-Ising model we focused on a numerical compari-
son of the speed of convergence to equilibrium between the reversible and
irreversible dynamics. Differently from the previous model, in this case we
deal with single spin-flip dynamics because we are interested on testing the
general belief that an irreversible sampling of a given measure is faster than
a reversible one. We wrote a script in Ruby language for the computation
of the coalescence times and, exploiting the multi-processors architecture
and the parallel nature of the statistical sampling, we managed to run 64
couplings in parallel, one on each available CPU.

In order to apply the sandwiching technique described in Section 2.4 we
need a coupling that preserves the partial order during the evolution of the
configurations.

Proposition 3.3.1. Call U ti a family of i.i.d. random variables uniformly
distributed in (0, 1) and define the update scheme of the site i at the time-
step t for the two configurations σ, τ as follows:

• flip σi if U ti < e−2β(mi(σ)σi+a);

• flip τi if U ti < e−2β(mi(τ)τi+a) and σi = τi;

• flip τi if U ti > 1− e−2β(mi(τ)τi+a) and σi = −τi;

• in any other case we leave σi, τi unaltered.

Then, initializing the Markov chains with the configurations σ0 : σ0
i =

−1, τ0 : τ0
i = +1 ∀i and setting a > 1 + log(2)

2β , the coupling defined above
preserves the partial order between σ, τ .

Proof. We want to show that σt � τ t, i. e. σtj ≤ τ tj ∀j, at all the time-steps t.
Clearly that’s true at t = 0, therefore we have to prove that all these events
are impossible:

• flipping σi from −1 to +1 keeping τi = −1 unflipped;

• flipping τi from +1 to −1 keeping σi = +1 unflipped;

• flipping σi from −1 to +1 while flipping τi from +1 to −1.

Since σt � τ t implies mi(σ) ≤ mi(τ), the first and second case are trivial
because the event

(
σti = +1|σt−1

i = −1
)

happens when

U ti < e−2β(a−mi(σ)) < e−2β(a−mi(τ)) (3.3.1)

which implies
(
τ ti = +1|τ t−1

i = −1
)

and, similarly,
(
τ ti = −1|τ t−1

i = +1
)

happens when
U ti < e−2β(a+mi(τ)) < e−2β(a+mi(σ)) (3.3.2)
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which implies
(
σti = −1|σt−1

i = +1
)
.

The event
(
σti = +1|σt−1

i = −1
)
∪
(
τ ti = −1|τ t−1

i = +1
)

could only happen
when

U ti < e−2β
(
a−mi(σ)

)
∨ U ti > 1− e−2β

(
a+mi(τ)

)
, (3.3.3)

but that’s not possible because, having set a > 1 + log(2)
2β , we have

e−2β
(
mi(σ)σi+a

)
+ e−2β

(
mi(τ)τi+a

)
< 1 (3.3.4)

therefore there’s no intersection for U ti to be, see Figure 3.7 below.

0 1

(
σti = +1|σt−1

i = −1
)

e−2β(mi(σ)σi+a)

(
τ ti = −1|τ t−1

i = +1
)

1− e−2β(mi(τ)τi+a)

Figure 3.7: Probabilities of the event of flipping σi from −1 to +1 while
flipping τi from +1 to −1.

Figures 3.8, 3.9, 3.10 show the results of 20000 couplings at different β and γ
for two versions of the same dynamics: one that updates each site according
to its symmetric local field, i. e. the average magnetization of the sites at
distance γ−1 in both left and right directions, and the other for its asymmetric
local field, i. e. only on the right. The results agrees with the conjecture that
irreversible dynamics mix faster than the reversible ones and also indicates
that such speedup increases with β, i. e. at low temperature, and also with
γ−1. This feature suggests that the irreversible sampling can be a valid
candidate to replace the classical reversible ones having better performance
in the usually most interesting regions of parameters, low temperature and
long interaction.



3.3. KAC-ISING 69
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Figure 3.8: Coalescence times for reversible and irreversible single spin-flip
Kac-Ising dynamics for β = 0.5, 0.9, 1.0, 1.1, 1.2, 1.4 and γ−1 = 2.
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Figure 3.9: Coalescence times for reversible and irreversible single spin-flip
Kac-Ising dynamics for β = 0.5, 0.9, 1.0, 1.1, 1.2, 1.4 and γ−1 = 4.
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Figure 3.10: Coalescence times for reversible and irreversible single spin-flip
Kac-Ising dynamics for β = 0.5, 0.9, 1.0, 1.1, 1.2, 1.4 and γ−1 = 6.
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Appendix A

Föllmer Theorem

In this appendix we show and prove the covariance estimate presented by
Föllmer in [21] and used in Theorem (2.7.2). The proof builds on a variant
of Dobrushin’s comparison theorem, see [18], we present in Section A.1 and
uses an estimate of the Kantorovich distance we show in A.2.

A.1 Dobrushin Uniqueness Theorem

For two probability measures µ and ν on a countable product space E
suppose the following:

• µ is a probability measure on a product space E = SI and we know
for all points k ∈ I the conditional distributions µk(dxk|x);

• ν is another measure which does not have to be Gibbsian but its
conditional probabilities νk(·|x) must exist;

• C is the so called Dobrushin interaction matrix with elements

Cik = sup
{

1
2‖µk(·|x)− µk(·|y)‖1 : x = y off {i}

}
(A.1.1)

and we suppose the following condition holds

α = sup
k

∑
i

Cik < 1 ; (A.1.2)

• D is the matrix with elements Dik =
∑∞

n=0C
n;

• the so called oscillation of f in the point i is defined as

δi(f) = sup
{
|f(x)− f(y)| : x = y off {i}

}
; (A.1.3)
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• and b is the vector such that

bk = 1
2

∫
‖µk(·|x)− νk(·|x)‖1 ν(dx) . (A.1.4)

Theorem A.1.1. Under condition (A.1.2) we have∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ≤∑
i∈I

(bD)i δi(f)
(
f ∈ C(E)

)
. (A.1.5)

In the following proof we will use the notation µk(f |x) =
∫
fµk(dxk|x), which

in probability theory is commonly written as the conditional expectation
Eµ [f |Σ6=k] (x) of the measure µ with respect to the σ-algebra, generated by
the random variables that are different from xk computed on the point x of
the sample space E. We will also need the following lemmata.

Lemma A.1.1. If µ1 and µ2 are two probability measures on the phase space
Ω, defining c = c(f) = 1

2 (sup f + inf f) for every f ∈ C(E) we have that

|µ1(f)− µ2(f)| = |(µ1 − µ2) (f − c)|
≤ ‖µ1 − µ2‖1 sup |f − c|
= ‖µ1 − µ2‖1 1

2 |sup f − inf f | .
(A.1.6)

A vector a = (ai)i∈I will be called an estimate for two probability measures
µ and ν if∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ ≤∑
i∈I

aiδi(f) ∀f ∈ C(E) . (A.1.7)

Lemma A.1.2. If a is an estimate for µ and ν, then the vector (aC + b) is
also an estimate for µ and ν.

Proof. Let J be a set of points in I and define aJ by

aJi =

{
min

(
ai, (aC + b)i

)
(i ∈ J)

ai (i /∈ J) .
(A.1.8)

Remark A.1.1. Note that a∅ = a since i /∈ J = ∅ =⇒ a∅i = ai which we
supposed is an estimate.

Clearly if we prove that aJ is an estimate for µ and ν for every J ⊂ I
we showed that (aC + b) is also an estimate for µ and ν. We proceed by
induction on the cardinality of J :
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1. for J = ∅ , as said in Remark A.1.1, aJ is an estimate for µ and ν;

2. we have to show that if aJ is an estimate for µ and ν (for a given
J 6= ∅) then also aK is an estimate for µ and ν, where K = J ∪ {k}.

For f ∈ C(E) we have, by definition,∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ =

∣∣∣∣ ∫ µk(f |x)µ(dx)

−
∫
νk(f |x)ν(dx)

∣∣∣∣ . (A.1.9)

Adding inside the modulus on the r.h.s of (A.1.9)

0 =

∫
µk(f |x)ν(dx)−

∫
µk(f |x)ν(dx) , (A.1.10)

using the triangular inequality and grouping conveniently the terms, we
obtain ∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ ≤ ∣∣∣∣∫ µk(f |x)(µ− ν)(dx)

∣∣∣∣
+

∫
|µk(f |x)− νk(f |x)|ν(dx) .

(A.1.11)

For simplicity from now on we will refer to the terms of (A.1.11) as

I =

∣∣∣∣∫ µk(f |x)(µ− ν)(dx)

∣∣∣∣ (A.1.12)

and

II =

∫
|µk(f |x)− νk(f |x)|ν(dx) . (A.1.13)

To find an estimate for (A.1.12) we use the definition of estimate for µ and
ν given in (A.1.7) to write∣∣∣∣∫ µk(f |x)(µ− ν)(dx)

∣∣∣∣ ≤∑
i

aiδi
(
µk(f |·)

)
(A.1.14)

where, provided that i 6= k, we have that

δi
(
µk(f |·)

)
= sup

∣∣∣µk(f |x)− µk(f |y)
∣∣∣ : x = y off {i} . (A.1.15)

Suppose, now, that {s, t} are two configurations, i. e. two points on E, which
coincide everywhere except the point {i}:

{
s, t : s = t off {i}

}
.

We can compute (A.1.15) as done by Gross in [25] as follows

µk(f |·) =

∫
f(x ◦k s)µk(dx|s) (A.1.16)
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where (x ◦k s) denotes the configuration taking the value xk in the point k
and which is s everywhere else.
The argument of the r.h.s. of equation (A.1.15) can then be written as∣∣∣µk(f |s)−µk(f |t)∣∣∣ =

∣∣∣∣∫ f(x ◦k s)µk(dx|s)−
∫
f(x ◦k t)µk(dx|t)

∣∣∣∣ (A.1.17)

for any point i 6= k.

Adding inside the modulus of (A.1.17)

0 =

∫
f(x ◦k t)µk(dx|s)−

∫
f(x ◦k t)µk(dx|s) , (A.1.18)

using the triangular inequality and grouping conveniently the terms we obtain

|µk(f |s)− µk(f |t)| ≤
∣∣∣∣∫ (f(x ◦k s)− f(x ◦k t)

)
µk(dx|s)

∣∣∣∣
+

∣∣∣∣∫ f(x ◦k t)
(
µk(dx|s)− µk(dx|t)

)∣∣∣∣ . (A.1.19)

On the one hand, for i 6= k we have that∣∣∣∣∣
∫ (

f(x ◦k s)− f(x ◦k t)
)
µk(dx|s)

∣∣∣∣∣
≤ sup

{
|f(s)− f(t)| : s = t off {i}

}
= δi(f) .

(A.1.20)

On the other hand, using Lemma A.1.1, we have∣∣∣∣∣
∫
f(x ◦k t)

(
µk(dx|s)− µk(dx|t)

)∣∣∣∣∣
≤ sup

s,t

{
‖µk(·|s)− νk(·|t)‖1 1

2 |sup(f)− inf(f)|
}

= Cikδk(f)

(A.1.21)

since in our case∣∣∣ sup(f)− inf(f)
∣∣∣ =

∣∣∣∣sup
x

(
f(x ◦k t)

)
− inf

x

(
f(x ◦k t)

)∣∣∣∣
= sup

{
|f(s′)− f(t)| : s′ = t off {k}

}
= δk(f) .

(A.1.22)

Therefore, we obtain∣∣∣µk(f |s)− µk(f |t)∣∣∣ ≤ δi(f) + Cikδk(f) with s = t off {i} . (A.1.23)
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Recalling definition (A.1.3) we have

δi
(
µk(f |·)

)
= sup

{∣∣∣µk(f |s)− µk(f |t)∣∣∣ : s = t off {i}

}
(A.1.24)

and, immediately, it follows that

δi
(
µk(f |·)

)
≤ δi(f) + Cikδk(f) . (A.1.25)

Moreover, since the integral µk(f |s) =
∫
fdµk(·|s) is independent of sk, if

i = k the difference in the l.h.s of (A.1.23) is zero, i. e.∣∣∣µk(f |s)− µk(f |t)∣∣∣ = 0 with s = t off {i} or {k} (A.1.26)

thus

δi
(
µk(f |·)

)
≤

{
δi(f) + Cikδk(f) if i 6= k,

0 otherwise.
(A.1.27)

Let’s now find an estimate for (A.1.13). Using again Lemma A.1.1 we can
write∫ ∣∣∣∣µk(f |x)− νk(f |x)

∣∣∣∣ν(dx)

≤
∫ ∣∣∣‖µk(·|x)− νk(·|x)‖1 1

2

∣∣ sup f − inf f
∣∣∣∣∣ν(dx)

≤ sup
{∣∣f(x)− f(y)

∣∣ : x = y off {k}
}

1
2

∫
‖µk(·|x)− νk(·|x)‖1ν(dx)

=δk(f)bk
(A.1.28)

where we have used (A.1.22).

At this point, recalling equation (A.1.27), we have∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ≤ II + I

= bkδk(f) +
∑
i

ai [δi(f) + Cikδk(f)]

= (aC + b)k δk(f) +
∑
i 6=k

aiδi(f) .

(A.1.29)

By induction hypothesis we have that∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ≤ aJk δk(f) +
∑
i 6=k

aJi δi(f) (A.1.30)
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so the best of the two estimates is∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ≤ min
(
aJk ,
(
aJC + b

)
k

)
δk(f) +

∑
i 6=k

aJi δi(f)

= aKk δk(f) +
∑
i 6=k

aKi δi(f)

=
∑
i

aKi δi(f) .

(A.1.31)

Thus, if aJ is an estimate for µ and ν also aK is an estimate for µ and ν,
where K = J ∪ {k}, which completes the proof of Lemma A.1.2.

Proof of Theorem A.1.1. Applying Lemma A.1.2 recursively we obtain that
every vector an such that

a0 = a

a1 = (a0C + b) = (aC + b)

a2 = (a1C + b) =
(
(aC + b)C + b

)
. . .

an = aCn + b
n∑

m=0

Cm

(A.1.32)

is an estimate and since, in the limit n→∞ and under condition (A.1.2),
we have

aCn → 0 and b
n∑

m=0

Cm → bD . (A.1.33)

Therefore

|Covµ(f, g)| =
∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ ≤∑
i

(bD)iδi(f)
(
f ∈ C(E)

)
which completes the proof of Theorem A.1.1.

Remark A.1.2. If µ and ν have same the conditional probabilities then b = 0
and that implies µ = ν, and this is Dobrushin’s uniqueness theorem.
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A.2 Covariance estimate via Kantorovich distance

To complete the proof of Theorem 2.7.2 it remains to show that, using the
appropriate metrics, we can estimate the variance between two measures µ
and ν as ∣∣Covµ(f, g)

∣∣ ≤ 1
4

∑
i,k

ρi(f)Dikρk(g) .

Define the Rubinstein-Kantorovich distance as follows

R(µ, ν) = sup
f

∣∣∫ fdµ− ∫ fdν∣∣
δ(f)

(A.2.1)

where, as before,

δ(f) = sup
s 6=t

|f(s)− f(t)|
r(s, t)

(A.2.2)

is the so called oscillation of f and r(s, t) is a metric

Remark A.2.1. If such metric is discrete, i. e. r(s, t) = 1{s 6=t}, clearly

δ(f) = sup
s 6=t
|f(s)− f(t)| = sup(f)− inf(f) (A.2.3)

and, by Lemma A.1.1,

R(µ, ν) = 1
2‖µ− ν‖1 . (A.2.4)

Recalling the definition of covariance for two functions f, g ∈ L(µ)2, if two
measures µ and ν are such that dν = gdµ we have

Covµ(f, g) : =

∫
fg dµ−

∫
f dµ

∫
g dµ

=

∫
f dν −

∫
f dµ

∫
dν

=

∫
f dν −

∫
f dµ .

(A.2.5)

We can then write, by Cauchy-Schwarz inequality,∣∣∣∣∫ f dν −
∫
f dµ

∣∣∣∣ =
∣∣∣Covµ(f, g)

∣∣∣ ≤ Varµ(f)
1
2 Varµ(g)

1
2 . (A.2.6)

Lemma A.2.1. The variance of a function g with respect to a measure µ can
be written as

Varµ(g) = inf
α

∫
(g − α)2 dµ . (A.2.7)
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Proof. Let’s find the value ᾱ that minimizes∫
(g − α)2 dµ =

∫
g2 dµ+

∫
α2 dµ− 2

∫
gα dµ . (A.2.8)

Deriving the expression we obtain

d

dα

∫
(g − α)2 dµ = 2

∫
α dµ− 2

∫
g dµ (A.2.9)

and substituting α with
∫
g dµ we have

inf
α

∫
(g − α)2 dµ = inf

α

∫ (
g2 + α2 − 2gα

)
dµ

=

∫
g2 dµ+

∫ (∫
g dµ

)2

dµ− 2

∫
g

(∫
g dµ

)
dµ

=

∫
g2 dµ+

(∫
g dµ

)2

− 2

(∫
g dµ

)2

=

∫
g2 dµ−

(∫
g dµ

)2

= Varµ(g) .

(A.2.10)

Since g(x) ≤ supx
{
g(x)

}
we clearly have that

g(x)− 1
2(sup g + inf g) ≤ 1

2(sup g − inf g) ≤ 1
2δ(g) (A.2.11)

where we used (A.2.3).

Choosing α = 1
2(sup g + inf g) and plugging it in equation (A.2.7) we obtain

Varµ(g) ≤
∫ (

g − 1
2(sup g + inf g)

)2
dµ

≤
∫ (

1
2δ(g)

)2
dµ ≤ 1

4δ(g)2 .

(A.2.12)

Thus, for a discrete metric we have

1
2‖µ− ν‖1 = R(µ, ν) = sup

f

∣∣∫ fdµ− ∫ fdν∣∣
δ(f)

≤ sup
f

Varµ(f)
1
2 Varµ(g)

1
2

δ(f)


=

1

4
δ(g) .

(A.2.13)
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Therefore, recalling definition (A.1.4),

bk = 1
2

∫
‖µk(·|x)− νk(·|x)‖ν(dx)

≤ 1
4δk(g)

∫ [∫
g dµ(·|x)

]−1

g(x)µ(dx)

= 1
4δk(g)

(A.2.14)

hence, the estimate (A.1.5) becomes∣∣Covµ(f, g)
∣∣ ≤∑

i

∑
k

bkDkiδi(f) ≤ 1
4

∑
i,k

δi(f) Dki δk(g)

which completes the proof of Theorem 2.7.2.
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Appendix B

Listings

We set out the final versions of the codes used for the numerical analysis
presented in Chapter 3. First the C-CUDA code for the computation of
the PCA-TASEP’s coalescence times and then, the code in Ruby for the
comparison of the Kac-Ising reversible and irreversible coalescence times.

B.1 CUDA PCA-TASEP Simulator

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4 #include "cuda.h"
5 #include "driver_types.h"
6 #include "cuComplex.h"
7 // #include "cudadebug.h"
8 #include <curand.h>
9

10 // Ring reassignment
11 int new_ring(int L, float *s1, float *s2){
12 size_t i;
13 for( i = 1; i < L/2; i++ ){
14 s1[i] = 0.0;
15 }
16 for( i = L/2; i < L; i++){
17 s1[i] = 1.0; //check!
18 }
19 // Shuffle balls from position 1 to L-1
20 for (i = 1; i < L-1 ; i++) {
21 int w = i + (rand()/(RAND_MAX / (L-1 - i) + 1));
22 float t = s1[w];
23 s1[w] = s1[i];
24 s1[i] = t;
25 }
26 s2[0] = 1.0;
27 s2[1] = 0.0;
28 for (i = 1; i < L-1; i++){
29 s2[i] = s1[i];
30 }
31 }

85
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32

33 // Initialization
34 int iniz_coupling(int n, int L, float *h_v1, float *h_v2, float *h_c,

float *h_CT, float *CTdistribution, int CTlength){
35 float *s;
36 s = (float*)malloc(L*sizeof(float));
37

38 size_t i;
39 for( i = 1; i < L/2; i++ ){
40 s[i] = 0.0;
41 }
42 for( i = L/2; i < L; i++){
43 s[i] = 1.0;
44 }
45 int k;
46 int j = 0;
47 for (k = 0; k < n; k++){
48 if (k%L == 0){
49 h_v1[k] = 0;
50 h_v2[k] = 1;
51 }
52 else if (k%L == L-1){
53 h_v1[k] = 1;
54 h_v2[k] = 0;
55 }
56 else{
57 h_v1[k] = s[k%L];
58 h_v2[k] = s[k%L];
59 }
60 // Shuffle balls from position 1 to L-1
61 if(k!=0 && k%L == 0){
62 for (i = 1; i < L-1 ; i++) {
63 int w = i + (rand()/(RAND_MAX / (L-1 - i) + 1));
64 float t = s[w];
65 s[w] = s[i];
66 s[i] = t;
67 }
68 }
69 }
70 // Initialize the check_coalescence_vector: h_c for the difference v1-v2,

h_CT and CTdistribution for the Coalescence Times
71 for (i = 0; i < n; i++){
72 h_c[i] = 0;
73 }
74 for (i = 0; i < n/L; i++){
75 h_CT[i] = 0;
76 }
77 for (i = 0; i < CTlength; i++){
78 CTdistribution[i] = 0;
79 }
80 }
81

82 // Deprecated sequential RNG
83 int sequential_randomvect(int n, double *vrnd){
84 size_t i;
85 for(i = 0; i < n; i++){
86 vrnd[i] = ((double)rand()/(double)RAND_MAX);
87 }
88 }
89

90 // Kernel functions
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91 __global__ void compute_u(int n, int L, float *v1, float *u1, float *v2,
float *u2, float *vrnd, float p){

92 int id = blockIdx.x*blockDim.x+threadIdx.x;
93

94 if (id < n){
95 if(v1[id%n] == 1){
96 if(v1[ L*(id/L) + (id+1)%L ] == 0){
97 if ( vrnd[id] < p ){
98 u1[id] = -1;
99 u1[ L*(id/L) + (id+1)%L ] = 1;

100 }
101 }
102 }
103

104 if(v2[id%n] == 1){
105 if(v2[ L*(id/L) + (id+1)%L ] == 0){
106 if ( vrnd[id] < p ){
107 u2[id] = -1;
108 u2[ L*(id/L) + (id+1)%L ] = 1;
109 }
110 }
111 }
112

113 }
114 }
115

116 __global__ void update_v(int n, int L, float *v1, float *u1, float *v2,
float *u2){

117 int id = blockIdx.x*blockDim.x+threadIdx.x;
118

119 if (id < n){
120 v1[id] = v1[id] + u1[id];
121 v2[id] = v2[id] + u2[id];
122 u2[id] = 0;
123 u1[id] = 0;
124 }
125 }
126

127 __global__ void check_coalescence(int n, int L, float *v1, float *v2,
float *c){

128 int id = blockIdx.x*blockDim.x+threadIdx.x;
129

130 // Evaluates the absolute difference between v1 and v2
131 if( id < n && id%L == 0){
132 for (int i = id; i < (id+L); i++){
133 c[i] = abs(v1[i]-v2[i]);
134 }
135 // Puts on the first element the total of the differences
136 for (int i = id+1; i < (id+L); i++){
137 c[id] = c[id] + c[i];
138 }
139 }
140 }
141

142 // Input parameters validation
143 void check_input(int n, int L, float p, float e, int nsteps, int step, int

print_state){
144 if(n%L != 0){
145 printf("Error: the multi-ring must be a multiple of the size of the

single ring!\n");
146 exit(0);
147 }
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148 else if( p < 0 || p > 1){
149 printf("Error: the jump probability must be between 0 and 1\n");
150 exit(0);
151 }
152 }
153

154 // Needed just for quicksort
155 int compare (const void * a, const void * b)
156 {
157 return ( *(int*)a - *(int*)b );
158 }
159

160 int main( int argc, char* argv[] )
161 {
162 // Number of positions on the multi-ring
163 int n = 20000;
164 // Number of positions on the single ring
165 int L = 40;
166 // Lenght of the CTdistribution
167 int CTlength = 100000;
168 // Step for the evaluation of the coalescence
169 int step = 4;
170 // Step for the printing of the state
171 int print_state = 1;
172

173 float p = 0.7; // If I put (2L)ˆ-1 I get a serial TASEP
174 float e = 0.0;
175

176 check_input(n, L, p, e, nsteps, step, print_state);
177

178 // Input vectors
179 float *h_v1, *d_v1, *s1;
180 float *h_u1, *d_u1;
181 float *h_v2, *d_v2 ,*s2;
182 float *h_u2, *d_u2;
183 float *h_vrnd, *d_vrnd;
184 float *h_coalescence, *d_coalescence;
185 // This vector will contain the value of the last iteration where it was

found coalescence
186 // between two rings, value needed to correctly compute reassigned rings

coalescence times
187 float *h_CT;
188 float *CTdistribution;
189

190 // Size, in bytes, of each vector
191 size_t bytes = n*sizeof(float);
192

193 // Allocate memory for each vector on host
194 h_v1 = (float*)malloc(bytes);
195 h_u1 = (float*)malloc(bytes);
196

197 h_v2 = (float*)malloc(bytes);
198 h_u2 = (float*)malloc(bytes);
199

200 s1 = (float*)malloc(bytes);
201 s2 = (float*)malloc(bytes);
202

203 h_vrnd = (float*)malloc(bytes);
204 h_coalescence = (float*)malloc(bytes);
205 h_CT = (float*)malloc((n/L)*bytes);
206

207 CTdistribution = (float*)malloc(CTlength*bytes);
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208

209 curandGenerator_t gen;
210 curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_DEFAULT);
211 curandSetPseudoRandomGeneratorSeed(gen, 1234ULL);
212

213 // When a ring coalescence the iteration is stored and the configuration
214 // is reassigned to check another ring configuration
215 for(L = 16; L <= 32; L += 4){
216 n = 1000*L; // This can be obviusly adjusted according to hardware

capability
217

218 iniz_coupling(n, L, h_v1, h_v2, h_coalescence, h_CT, CTdistribution,
CTlength);

219 // sequential_randomvect(n, h_vrnd);
220

221 size_t i;
222 // for(i=0; i<n;i++){
223 // if (i != 0 && i%L == 0 ){printf("\t");}
224 // printf("%f ",h_vrnd[i]);
225 // }
226 // printf("\nCoupling vectors initialized!\n");
227 // printf("\nh_v1\nh_v2\n");
228 // for(i=0; i<n;i++){
229 // if (i != 0 && i%L == 0 ){printf("\t");}
230 // printf("%.0f ", h_v1[i]);
231 // }
232 // printf("\n");
233 // for(i=0; i<n;i++){
234 // if (i != 0 && i%L == 0 ){printf("\t");}
235 // printf("%.0f ", h_v2[i]);
236 // }
237 // printf("\n\n");
238 // update(n, L, h_v, h_vrnd, p, e);
239

240 // Allocate memory for each vector on GPU
241 cudaMalloc(&d_v1, bytes);
242 cudaMalloc(&d_u1, bytes);
243 cudaMalloc(&d_v2, bytes);
244 cudaMalloc(&d_u2, bytes);
245 cudaMalloc(&d_vrnd, bytes);
246 cudaMalloc(&d_coalescence, bytes);
247 // cudaCheckError("Error from first malloc");
248

249 // Copy the input data on the GPU
250 cudaMemcpy(d_v1, h_v1, bytes, cudaMemcpyHostToDevice);
251 cudaMemcpy(d_u1, h_u1, bytes, cudaMemcpyHostToDevice);
252 cudaMemcpy(d_v2, h_v2, bytes, cudaMemcpyHostToDevice);
253 cudaMemcpy(d_u2, h_u2, bytes, cudaMemcpyHostToDevice);
254 cudaMemcpy(d_coalescence, h_coalescence, bytes, cudaMemcpyHostToDevice);
255 // cudaMemcpy(d_vrnd, h_vrnd, bytes, cudaMemcpyHostToDevice);
256

257 int blockSize, gridSize;
258 // Number of threads in each thread block
259 blockSize = 512;
260 // Number of thread blocks in grid
261 gridSize = ((n+blockSize-1)/blockSize);
262 // fprintf(stderr,"Bytes: %d blockSize %d griidSize %d\n",bytes,

blockSize,gridSize);
263 // Execute the kernel
264 size_t j = 0;
265 size_t position = 0;
266
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267 while(position < CTlength){
268 curandGenerateUniform(gen, d_vrnd, n);
269 compute_u<<<gridSize, blockSize>>>(n, L, d_v1, d_u1, d_v2, d_u2,

d_vrnd, p);
270 update_v<<<gridSize, blockSize>>>(n, L, d_v1, d_u1, d_v2, d_u2);
271 check_coalescence<<<gridSize, blockSize>>>(n, L, d_v1, d_v2,

d_coalescence);
272 // cudaCheckError("Error in update kernel");
273

274 // Build the Coalescence time statistics every ’step’ iterations
275 if (j != 0 && j%step == 0){
276 size_t w = 0;
277 cudaMemcpy( h_coalescence, d_coalescence, bytes,

cudaMemcpyDeviceToHost );
278

279 for(int q = 0; q < n/L; q++){
280 // If the first position of the diff vector is 0 and the corresponding

element on CT
281 // vector isn’t already filled, writes the actual iteration on it
282 if (h_coalescence[q*L] == 0){ // && h_CT[q] == -1 ){
283 // When a ring reach coalescence a new ring configuration is created
284 new_ring(L,s1,s2);
285 // printf("\nq = %d",q);
286 // Display the new ring configuration to reassign to the device
287

288 // printf("\ns1\t");
289 // for(w=0; w<L;w++){
290 // printf("%.0f ", s1[w]);
291 // }
292 // printf("\ns2\t");
293 // for(w=0; w<L;w++){
294 // printf("%.0f ", s2[w]);
295 // }
296 // The output vector is updated with the difference between the

last coalescence time
297 // of the old ring and the new one
298 CTdistribution[position] = j-h_CT[q];
299 // printf("\nposition = %d\n", position);
300 position++;
301 h_CT[q] = j;
302 // printf("\nh_CT\t");
303 // for(w = 0; w < n/L; w++){
304 // printf("%.0f ", h_CT[w]);
305 // }
306 // printf("\nCTdistribution\t");
307 // for (w = 0; w < CTlength; w++){
308 // printf("%.0f ", CTdistribution[w]);
309 // }
310 // The new ring configuration is copied on the device’s arrays d_v1

and d_v2
311 // with an offset equal to the beginning of the coalesced ring: q*L
312 cudaMemcpy(d_v1 + q*L, s1, L*sizeof(float),

cudaMemcpyHostToDevice);
313 cudaMemcpy(d_v2 + q*L, s2, L*sizeof(float),

cudaMemcpyHostToDevice);
314 }
315 }
316 }
317

318 // Print state and coalescence vectors every tot iterations, to control
the update-----

319 // if (j!=0 && j%print_state == 0){
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320 // cudaMemcpy( h_v1, d_v1, bytes, cudaMemcpyDeviceToHost );
321 // cudaMemcpy( h_v2, d_v2, bytes, cudaMemcpyDeviceToHost );
322 // cudaMemcpy( h_coalescence, d_coalescence, bytes,

cudaMemcpyDeviceToHost );
323 // cudaMemcpy( h_vrnd, d_vrnd, bytes, cudaMemcpyDeviceToHost );
324 // cudaCheckError("Error memcpy2");
325

326 // size_t w = 0;
327

328 // printf("\n");
329 // for(w=0; w<n;w++){
330 // if (w != 0 && w%L == 0 ){printf("\t");}
331 // printf("%.0f ", h_v1[w]);
332 // }
333 // printf("\n");
334 // for(w=0; w<n;w++){
335 // if (w != 0 && w%L == 0 ){printf("\t");}
336 // printf("%.0f ", h_v2[w]);
337 // }
338 // printf("\nend of iteration \t%d of %d \t %.0f %% \n",j, nsteps,j

*100.0/nsteps);
339 // }
340 // -----------------------------------------------------------
341 j++;
342 }
343

344 // Print the final CT vector: the array of instants when the coupled
rings reach coalescence

345 printf("\nEnd of execution with L = %d", L);
346

347 FILE *f = fopen("results.txt", "a+");
348 if (f == NULL)
349 {
350 printf("\nError opening file!\n");
351 exit(1);
352 }
353

354 qsort(CTdistribution, CTlength, sizeof(float), compare);
355 fprintf(f, "\nring_length_%d,",L);
356 for (i = 0; i < CTlength; i++){
357 // printf("%.0f ", CTdistribution[i]);
358 fprintf(f, "%0.f,", CTdistribution[i]);
359 }
360 fclose(f);
361 }
362

363 printf("\n");
364 /* Cleanup */
365 curandDestroyGenerator(gen);
366 cudaFree(d_vrnd);
367 free(CTdistribution);
368 free(h_CT);
369

370 return EXIT_SUCCESS;
371 }
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B.2 Kac-Ising Simulator

1 #!/usr/bin/env ruby
2 require ’pry’
3 require ’matrix’
4 require ’ruby-progressbar’
5 require ’parallel’
6 require ’fileutils’
7 # require ’json’
8 # require ’descriptive_statistics’
9 # require_relative ’util’

10

11

12 def initsigma_sign(sign = 1)
13 sign = sign/sign.abs # returns only the sign of the argument
14 conf = Array.new(@vol){sign}
15 return conf
16 end
17

18 def initsigma_unif
19 # initialize a uniform random configuration of +1 and -1
20 segment = Random.new.rand(@vol)
21 conf = Array.new(segment){1}
22 conf += Array.new(@vol-segment){-1}
23 return conf.shuffle!
24 end
25

26 # ------------------------------------ LOCAL FIELD
27 def m_irrev(i, conf)
28 # empirical magnetization in i+1, i+1/gamma
29 m = 0
30 @gamma_inv.to_i.times do |j|
31 m += conf[(i+1+j) % @vol]
32 end
33 m*(1.0/@gamma_inv)
34 end
35

36 def m_rev(i, conf)
37 # empirical magnetization in i+1, i+1/gamma
38 m = 0
39 (@gamma_inv).to_i.times do |j|
40 m += conf[(i-1-j) % @vol]
41 end
42 (@gamma_inv).to_i.times do |j|
43 m += conf[(i+1+j) % @vol]
44 end
45 m*(1.0/(2*@gamma_inv))
46 end
47

48 # ------------------------------------- UPDATE RULES
49 def hb_update(s,i,p,m)
50 b = @beta
51 # Heat bath
52 if p < Math.exp(b*m)/(2*Math.cosh(b*m))
53 s[i] = 1
54 else
55 s[i] = -1
56 end
57 end
58

59 def mod_update_rev(s,t,i,p)
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60 if s[i] == -t[i]
61 t[i] = -t[i] if p > (1-Math.exp(-2*@beta*(m_rev(i,t)*t[i] + @a)))
62 else
63 t[i] = -t[i] if p < Math.exp(-2*@beta*(m_rev(i,t)*t[i] + @a))
64 end
65 s[i] = -s[i] if p < Math.exp(-2*@beta*(m_rev(i,s)*s[i] + @a))
66 end
67

68 def mod_update_irrev(s,t,i,p)
69 if s[i] == -t[i]
70 t[i] = -t[i] if p > (1-Math.exp(-2*@beta*(m_irrev(i,t)*t[i] + @a)))
71 else
72 t[i] = -t[i] if p < Math.exp(-2*@beta*(m_irrev(i,t)*t[i] + @a))
73 end
74 s[i] = -s[i] if p < Math.exp(-2*@beta*(m_irrev(i,s)*s[i] + @a))
75 end
76 # -------------------------------------- SAVE
77 def save_mix_times(ary)
78 folder = ".output/"
79 FileUtils.mkdir_p folder unless File.exists?(folder)
80

81 file_name = "L_#{@vol}-G_#{@gamma_inv.to_i}-B_#{@beta}.dat"
82

83 if File.exists?(folder+file_name)
84 old_data = File.read(folder+file_name).split("\n").map{|row|
85 row.split("\t").map{|x| x.to_i}}.transpose
86 new_data = [(old_data[0] + ary[0]).sort, (old_data[1] + ary[1]).sort]
87

88 FileUtils.rm(folder+file_name)
89 else
90 new_data = ary
91 end
92

93 new_data.transpose.each do |row|
94 File.open(folder+file_name, "a") do |f|
95 f.puts(row.join("\t"))
96 end
97 end
98 return file_name
99 end

100 # -------------------------------------- COUPLING
101 def coupling_irrev
102 tau = initsigma_sign(+1)
103 sigma = initsigma_sign(-1)
104

105 rnd = Random.new(Random.new_seed)
106 pos = Random.new(Random.new_seed)
107

108 t = 0
109 while true do
110 p = rnd.rand
111 i = pos.rand(@vol)
112

113 # hb_update(sigma,i,p,m_irrev(i,sigma))
114 # hb_update(tau,i,p,m_irrev(i,tau))
115 mod_update_irrev(sigma,tau,i,p)
116 t += 1
117

118 if (t% (@vol)) == 0
119 # print_coup(sigma,tau,t)
120 if Vector.elements(sigma) == Vector.elements(tau)
121 return t
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122 break
123 end
124 end
125 end
126 end
127

128 def coupling_rev
129 tau = initsigma_sign
130 sigma = initsigma_sign(-1)
131

132 rnd = Random.new(Random.new_seed)
133 pos = Random.new(Random.new_seed)
134

135 t = 0
136 while true do
137 p = rnd.rand
138 i = pos.rand(@vol)
139

140 # hb_update(sigma,i,p,m_rev(i,sigma))
141 # hb_update(tau,i,p,m_rev(i,tau))
142 mod_update_rev(sigma,tau,i,p)
143 t += 1
144

145 if (t% (@vol)) == 0
146 # print_coup(sigma,tau,t)
147 if Vector.elements(sigma) == Vector.elements(tau)
148 return t
149 break
150 end
151 end
152 end
153 end
154

155 def coupling_rev_irrev(betas, volumes, gammas)
156 caption = "Parallel enumeration"
157

158 betas.each do |beta|
159 @beta = beta
160 @a = 1 #+ Math.log(2)/(2*@beta) #for the coupling of the mod_dynamics
161

162 volumes.each do |vol|
163 @vol = vol
164

165 gammas.each do |gamma_inv|
166 @gamma_inv = gamma_inv
167

168 caption = " Rev L_#{@vol}-B_#{@beta}-G_#{@gamma_inv}"
169 rev_results = Parallel.map(1..@samples, progress: caption) do
170 coupling_rev
171 end
172

173 rev_results.sort!
174 # rev_results[0] = "REV"
175

176 caption = "Irrev L_#{@vol}-B_#{@beta}-G_#{@gamma_inv}"
177 irrev_results = Parallel.map(1..@samples, progress: caption) do
178 coupling_irrev
179 end
180 irrev_results.sort!
181

182 # irrev_results[0] = "IRREV"
183 save_mix_times([rev_results, irrev_results])
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184 puts
185 end # gamma cycle
186 end # volume cycle
187 puts "\n\n"
188

189 end # beta cycle
190 # data <- read.delim(’L_50-G_4-B_1.0-samples_100.dat’, header = T)
191 # attach(data)
192 # p1 <- hist(REV); p2 <- hist(IRREV); plot(p1, col=rgb(0,0,1,0.25));
193 # plot(p2, col=rgb(1,0,0,0.25), add=T)
194 end #EOF
195

196 # -----------------------------------------------------------
197 class Array
198 def cut(value = nil)
199 if block_given?
200 inject([[]]) do |results, element|
201 if yield(element)
202 results << []
203 else
204 results.last << element
205 end
206

207 return results
208 end
209 else
210 results, arr = [[]], self.dup
211 until arr.empty?
212 if (idx = arr.index(value))
213 results.last.concat(arr.shift(idx))
214 arr.shift
215 results << []
216 else
217 results.last.concat(arr.shift(arr.size))
218 end
219 end
220 return results
221 end
222 end
223 end
224 # -----------------------------------------------------------
225

226 def single_chain(iterations)
227 rnd = Random.new(Random.new_seed)
228 pos = Random.new(Random.new_seed)
229 s = initsigma_unif
230

231 iterations.times do
232 p = rnd.rand
233 i = pos.rand(@vol)
234

235 s[i] = -s[i] if p < Math.exp(-2*@beta*(m_irrev(i,s)*s[i] + @a))
236 end
237 return s
238 end
239

240 def smooth_block_mag(s,width,threshold)
241 binding.pry
242 block_mags=s.each_slice(width).to_a.map{|x| x.inject(:+)/width.to_f}
243 block_mags.map!{ |x| x > (1-threshold) ? x=1 : x}
244 block_mags.map!{ |x| x < (-1+threshold) ? x=-1 : x}
245 binding.pry
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246 return block_mags
247 end
248

249 def phase_len(res)
250 len = Array.new
251 res.each do |blocks|
252 blocks = blocks.cut{|x| x.abs != 1}.delete_if{|x| x.length == 0}
253 blocks.each do |block|
254 idx = Array.new
255 block.each_with_index do |b,i|
256 next if i==0
257 idx.push(i) if b!= block[i-1]
258 end
259 idx.push(block.length)
260 count = [idx[0]]
261 idx.each_with_index do |e,i|
262 next if i == 0
263 count.push(e-idx[i-1])
264 end
265 len.push(count)
266 end
267 end
268 return len.flatten!
269 end
270

271 def save1D(ary, filename="saved")
272 folder = ".output/"
273 FileUtils.mkdir_p folder unless File.exists?(folder)
274 # ary.each{|e| e.sort!}
275 ary.each do |e|
276 File.open(folder+filename, "a") {|f| f.puts(e)}
277 end
278 end
279

280

281 @samples = 20000
282

283 betas = [0.5,0.9,1.0,1.1,1.2,1.4]
284 volumes = [5000]
285 gammas = [6,4,2]
286

287 coupling_rev_irrev(betas, volumes, gammas)
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