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RESUME

Dans cette these, nous abordons des problemes de contrdle optimal non autonomes a
I’horizon infini soumis a des contraintes d’état. Des relations de sensibilité, partielle et
totale, sont obtenues, en supposant que la fonction valeur associée soit localement Lip-
schitzienne par rapport a la variable d’état. Nous discutons également des conditions
suffisantes pour la régularité Lipschitz de la fonction valeur. Nous nous concentrons
sur les problemes liés aux fonctions de colit admettant un facteur d’actualisation, avec
la dynamique et le Lagrangien dépendant du temps. De plus, les contraintes d’état
peuvent étre non-bornés et peuvent avoir une frontiere non lisse. La régularité Lip-
schitz est obtenue a partir d’estimations sur la distance d’une trajectoire donnée de
I’ensemble de toutes les trajectoires viables, a condition que le taux d’actualisation soit
suffisamment élevé. Nous étudions également 'existence et I'unicité des solutions faibles
des équations non autonomes d’Hamilton-Jacobi-Bellman sur un domaine de la forme
(0,00) x A. IL’Hamiltonien est supposé étre uniquement mesurable par rapport au temps
et 'ensemble A est fermé. En présence de contraintes d’état, (en général) 1’équation
d’Hamilton-Jacobi-Bellman n’admet pas de solutions continues. Dans ce travail, nous
proposons une notion de solution faible pour laquelle, sous une hypothese de controla-
bilité appropriée, les théoremes d’existence et d’unicité sont valides dans la classe des
fonctions semi-continues inférieurement s’annulant & l'infini. Enfin, nous étudions une
équation autonome d’Hamilton-Jacobi-Bellman sur un sous-ensemble compact, avec des
conditions de Dirichlet sur la frontiere. Dans ce contexte, nous obtenons des résultats
de semi-concavité de I'unique solution de I’équation et les relations de sensibilité sous
la forme d’inclusions différentielles. Nous étendons ainsi un résultat connu pour la
distance sous-Riemannienne sous la condition d’Hérmander.

Mots-clefs: Controle optimal & 'horizon infini; Contraintes d’état; Conditions
nécessaires; Fonction valeur; Régularité Lipschitz; Equations d’Hamilton-Jacobi-Bellman;

Semiconcavité.






ESTRATTO

In questa tesi vengono affrontati problemi di controllo ad orizzonte infinito soggetti a
vincoli di stato. Per tali problemi si ottengono delle relazioni di sensibilita, parziali
e complete, nel caso non autonomo, assumendo che la funzione valore associata sia
localmente Lipschitz nella variabile di stato. Si forniscono delle condizioni suffici-
enti per la sua Lipschitzianita quando il funzionale costo ¢ soggetto a un tasso di
sconto. La dinamica e la Lagrangiana, inoltre, sono supposte dipendenti dal tempo
e i vincoli di stato possono essere non limitati e con frontiera non regolare. La Lips-
chitzianita ¢ provata come conseguenza delle stime sulla distanza di una determinata
traiettoria dall’insieme di tutte le traiettorie ammissibili, a condizione che il tasso di
sconto sia sufficientemente grande. Viene inoltre discussa l'esistenza e 1'unicita delle
soluzioni deboli per le equazioni di Hamilton-Jacobi-Bellman non autonome sul do-
minio (0, 00) x A. L’Hamiltoniana & supposta soltanto misurabile nel tempo e 'insieme
A chiuso. Quando si studiano problemi di controllo soggetti a vincoli di stato, I’analisi
classica dell’equazione di Hamilton-Jacobi-Bellman non gode di una nozione appropri-
ata di soluzione poiché le soluzioni potrebbero non essere continue. In questo lavoro ne
proponiamo una nozione per la quale, sotto un’opportuna ipotesi di controllabilita, i
teoremi di esistenza e unicita sono validi nella classe delle funzioni semicontinue inferi-
ormente che si annullano all’infinito. Infine, viene studiata un’equazione di Hamilton-
Jacobi-Bellman autonoma su un insieme compatto, con condizioni di Dirichlet al bordo.
E provata la semiconcavita della sua (unica) soluzione e sono fornite relazioni di sensi-
bilita in termini di inclusioni differenziali, estendendo un noto risultato per la distanza
sub-Riemanniana da un punto quando la condizione di Hérmander & verificata.
Parole chiave: Controllo ottimo orizzonte infinito; Vincoli di stato; Condizioni nec-
essarie; Funzione valore; Continuita Lipschitz; Equazioni di Hamilton-Jacobi-Bellman;

Semiconcavita.
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ABSTRACT

In this thesis we address infinite horizon control problems subject to state constraints.
Partial and full sensitivity relations are obtained for nonautonomous optimal control
problems in this setting, assuming the associated value function to be locally Lipschitz
in the state. We also discuss sufficient conditions for the Lipschitz regularity of the
value function. We focus on problems with cost functionals admitting a discount factor
and allow time dependent dynamics and Lagrangians. Furthermore, state constraints
may be unbounded and may have a nonsmooth boundary. Lipschitz regularity is recov-
ered as a consequence of estimates on the distance of a given trajectory from the set of
all its viable (feasible) trajectories, provided the discount rate is sufficiently large. We
investigate as well the existence and uniqueness of weak solutions of nonautonomous
Hamilton-Jacobi-Bellman equations on the domain (0, 00) x A. The Hamiltonian is as-
sumed to be merely measurable in time and the set A is closed. When state constraints
arise, the classical analysis of the Hamilton-Jacobi-Bellman equation lacks an appro-
priate notion of solution because continuous solutions may not exist. In this work, we
propose a notion of weak solution for which, under a suitable controllability assumption,
existence and uniqueness theorems are valid in the class of lower semicontinuous func-
tions vanishing at infinity. Finally, we study an autonomous Hamilton-Jacobi-Bellman
equation, with Dirichlet boundary conditions, on a compact subset. We give semicon-
cavity results on its (unique) solution and sensitivity relations in terms of differential
inclusions, extending a known result for the point-to-point sub-Riemannian distance
when the Hormander condition holds true.

Keywords: Infinite horizon optimal control; Pure state constraints; Necessary
conditions; Value function; Lipschitz continuity; Hamilton-Jacobi-Bellman equations;

Semiconcavity.

IX






CONTENTS

Notations 3
Introduction 5

1 Necessary conditions for infinite horizon optimal control problems

with state constraints 23
1.1 Introduction . . . . . . . . ... 23
1.2 Preliminaries on nonsmooth analysis . . . . .. .. ... ... ..... 27
1.3 The value function . . . . . . . .. ... ... 28
1.4  The infinite horizon optimal control problem . . . . . .. .. ... ... 33
1.5  Uniform Lipschitz continuity of a class of value functions . . . . . . .. 41

2 Lipschitz continuity of the value function for the infinite horizon op-

timal control problem under state constraints 49
2.1 Introduction . . . . . . .. ... 50
2.2 Preliminaries . . . . . .. . .. 51
2.3 Uniform distance estimates . . . . . . . . ... ... ... ... ... .. 53
2.4 Uniform IPC for functional set constraints . . . . . ... .. ... ... 59
2.5 Lipschitz continuity for a class of value functions . . . . . . . . . .. .. 61
2.6 Applications to the relaxation problem . . . . . .. .. ... ... ... 65

3 Hamilton-Jacobi-Bellman equations with time-measurable data and

infinite horizon 69
3.1 Introduction . . . . . . . . . 69
3.2 Preliminaries . . . . . . . . 72



2 CONTENTS

3.3 Mainresult . . . . ... 74
3.4 Proofs . . . . 78
3.5 Lipschitz continuous solutions . . . . . .. ... ... ... ... ... 88

4 Semiconcavity results and sensitivity relations for the sub-Riemannian

distance 95
4.1 Introduction . . . . . . . . . ... 96
4.2 Preliminaries . . . . . . . ... 98
4.3 Mainresult . . . . .. 99
4.4 Proof of the mainresult . . . . . .. ... ... ... ... ..., 102
4.5 Sensitivity relations . . . . . ... oL 109
4.6 Appendix . . ... 118

Bibliography 125



Liminf, ,, ., F(y)

Limsup,.,,, F(y)

NOTATIONS

Positive natural numbers

Real numbers, Positive real numbers

Euclidean norm of z € R”

Scalar product on R"

Euclidean distance from = € R” to the set F
Lebesgue measure

Space of Lebesgue integrable functions from I to R™
Space of locally Lebesgue integrable functions from I to R™
Space of locally absolutely continuous functions from I to R”
Ball centered at x of radius r in R™

Unit ball in R™

Unit sphere in R™

Complement of the set F

Boundary of the set E

Interior of the set F

Closure of the set E

Convex hull of the set £

Closed convex hull of the set £

Negative polar of the set F

Limiting normal cone to F at x

Proximal normal cone to E at z

Contingent cone to E at x

Clarke tangent cone to E at x

Uniform norm of g

Limiting subdifferential of g at x

Limiting superdifferential of g at x

Proximal supergradient of g at x

Gradient of g at x

Domain

Epigraph

Hypograph

Graph

Differential of f at x

Adjoint of &

Lower limit in the Kuratowski-Painlevé sense of F' at x from points

laying in D
Upper limit in the Kuratowski-Painlevé sense of I’ at x from points

laying in D






INTRODUCTION

his thesis addresses deterministic optimal control problems with infinite
horizon subject to state constraints. The setting we take into account is

the following optimal control problem

minimize /OO L(t, z(t),u(t))dt (1)

to
over all Lebesgue measurable trajectory-control pairs z : [ty, 00) — R™ and u : [tg, 00) —

R™ satisfying
2'(t) = f(t,z(t),u(t)) for ae. t = ty, x(ty) = o, (2)

where f:[0,00) x R" x R™ — R™ and L : [0,00) x R" x R™ — R are given functions,
and (to, o) € [0,00) x R™ is the initial datum. The variable z(-) represents the state
variable (also called trajectory) of the system, u(-) is the control, and f, L are the
dynamics and the Lagrangian, respectively. Conditions are assumed on the dynamics
to ensure the uniqueness of solutions x(-) of (2) for each initial datum and each control
u(+). Moreover, integrability conditions on the Lagrangian are imposed to ensure the

existence of the integral in (1).

Usually, in most control problems and science models, constraints on state variables
and controls are to be imposed. A way to express restrictions on the control u(-) is by
using a Lebesgue measurable set-valued map U : [0, 00) = R™ with closed nonempty

images, i.e., u : [tg,00) — R™ is assumed to be Lebesgue measurable and such that
u(t) e U(t) for a.e. t > to. (3)

On the other hand, state constraints are, at least, of two different types: functional

state constraints and set state constraints. The former requires the trajectory z(-), with

5



6 INTRODUCTION

initial datum (g, xo), to satisfy h(t,z(t)) < 0 for all ¢t > ¢y, where h : [0,00) x R" — R

is a given function. The latter requests that
z(t) € A Vit =ty (4)

where A is a closed subset of R™. We focus on infinite horizon control problems subject
to set state constraints (4) and we refer to problem (1)-(4) as HBwo.

We point out that problem Z., is not well posed without suitable assumptions on the
dynamics and Lagrangian. Indeed, control system (2)-(3) may not admit trajectories
laying in A. Hence, a trajectory-control pair (z(-),u(-)) that satisfies (2)-(4) is called
feasible. We refer to such z(-) as a feasible trajectory. The infimum of the cost functional
in (1) over all feasible trajectory-control pairs, with the initial datum (¢o, o), is denoted
by V (to, xo). If no feasible trajectory-control pair exists at (to, o), or if the integral in

(1) is not defined for every feasible pair, then we set V' (ty, z9) = +00. The function
V:[0,00) x A — RU{+o0}

is called the value function of problem %...

State of the art

Infinite time horizon models arising in mathematical economics and engineering typi-
cally involve control systems with restrictions on both controls and states. Models of
optimal allocation of economic resources were, in the late 50s, among the key incentives
for the creation of the mathematical theory of optimal control. Moreover, economic sys-
tems are often assumed to operate for an infinitely long (or at least indefinitely long)
time. Indeed, if one fixes a certain finite planning horizon for the growth process, one
leaves it uncertain how the economic system will develop after a fixed time (see, for
instance, the Ramsey macroeconomics model in [Ram28]).

The goal of optimal control theory is to find necessary and sufficient conditions for
optimality in order to construct optimal controls, that is, controls for which a given
functional reaches the minimum.

A possible approach to the problem is to give necessary conditions for a control to
be optimal. This restricts the set of all controls to a smaller set, that should be further
investigated to check if necessary conditions are also sufficient. These conditions are
often available in the form of Pontryagin’s mazximum (or minimum) principle. Such
result was formulated in the 50s by the Russian mathematician Lev Pontryagin and
it has, as a special case, the Euler-Lagrange equation and Weierstrass condition of
the calculus of variations. For constraint-free infinite horizon problems, the maximum

principle takes the following form: if (z(-),u(-)) is an optimal trajectory-control pair
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for the unconstrained infinite horizon control problem (1)-(3) at (o, o) € [0,00) x R",
then there exists an absolutely continuous co-state p : [tg,00) — R™ and A € {0,1}
satisfying:

o (1, A)#0;

e (adjoint equation) —p/(t) = d, f[t]*p(t) — AV L[t] for a.e. t > to;

e (maximality condition) {p(t), f[t]) — AL[t] = Hx(t,z(t), p(t)) for a.e. t > to,

where [t] stands for (¢, Z(t), u(t)) and H(t, z, p) == sup,cy) ((p, (7, u)) = AL(t, z,u))
is the Hamiltonian.

The above necessary conditions for constraint-free problems have been extensively
studied in the literature. We should underline that, in economic publications, methods
of the mathematical optimal control theory, including necessary optimality conditions,
are often applied without due mathematical validation. The infinite planning horizon
may cause various phenomena in the relations of the maximum principle, and this
possibility must be taken into account if one wants to avoid misleading conclusions.
A possible cause of fallacy when one considers control problems with infinite horizon,
subject or not to state constraints, is to assume that the necessary conditions, which are
valid for the finite horizon case, can be carried to the infinite horizon framework by just
replacing evaluations of quantities at the terminal time with evaluations of the limit
of the same quantities as time tends to infinity (this was already observed by Halkin
[Hal74] who provided several counterexamples to this way of doing for problems without
state constraints). When state constraints are present, it is neither correct to think that
if a trajectory-control pair satisfies both the constraints and the maximum principle,
then it is optimal. We show in the next example that to apply necessary conditions

stated for unconstrained problems to constrained ones may lead to contradictions.

Example. Consider the following problem:
maximize J(u) = /OOO e M(x(t) + u(t)) dt
over all trajectory-control pairs (x(-), u(-)) satisfying
2'(t) = —au(t) and wu(t) € [-1,1] forae. t >0, =z(0)=1,
where a > A > 0, and subject to the following state constraints
x(t) € (—oo,1] Vit = 0.

Applying the maximum principle for unconstrained problems, it follows that any opti-

mal trajectory-control pair satisfies one of the following three relations:

e 1 (t) =1+ at associated with u~ () = —1;



8 INTRODUCTION

e 17(t) =1— at associated with u*(t) = +1;

o u(t) = (I—at)xpq(t)+(1—at+a(t—1t))x(i 00 (t) associated with ut(t) = X4 (1) —
X(i,00) (1), for some ¢ > 0.

Excluding now the trajectories = and 2%, since they are not feasible, this analysis
leads to the conclusion that 2" is the only candidate for optimality. But one can easily
see that the feasible trajectory z(t) = 1, associated with the control u(t) = 0, verifies
J(u) > J(u").

Controllability assumptions. In presence of state constraints, V' may not be continuous,

unless the dynamics satisfy a controllability assumption on the boundary of A. An
example of such condition, called inward pointing condition, was introduced by Soner
(see [Son86]) and was later extended to less restrictive frameworks (cfr. [CS05, FM13al).
Such an assumption requires that at each point of A there exists an admissible velocity
pointing inward the constraint set. More precisely, under the assumption that A is a
bounded open domain with smooth boundary, f is continuous and time independent,
and U(-) = U, the inward pointing condition is as follows: for all x € A there exists

u € U satisfying

(f(x,u),n(z)) <0, (5)

where n(z) denotes the exterior unit normal to A at z € dA. This condition provides
neighboring feasible trajectories results, which basically says that any trajectories solv-
ing the dynamics (2)-(4) can be approximated by a sequence of feasible trajectories
which remain in the interior of the state constraints.

Unfortunately, in many control problems, the inward pointing condition fails and
the value function V' could be discontinuous. In this situation, Frankowska and Vin-
ter introduced in [FV00] another controllability assumption, called outward pointing
condition, to guarantee that the value function is the unique solution of the H-J-B
equation. This condition for a bounded open domain with smooth boundary and time
independent dynamics can be written as follows: for all x € JA there exists u € U
satisfying ( f(z,u),n(x)) > 0. We note that such a condition can be regarded as an
inward pointing condition for the backward dynamics. It was extended to more general
frameworks by Frankowska and her coauthors (see [FP00, FM13a]), yielding uniqueness
of weak solutions of the associated H-J-B equation.

To state a neighboring feasible trajectories result, consider the following differential

inclusion

Z'(t) € f(t,z(t),U(t)) for a.e. t, (6)



INTRODUCTION 9

and set
F(t,z):= f(t,z,U(t)) Vt>=0,VeeR"

Any locally absolutely continuous function z(-) satisfying (6) on a closed subinterval of
R is called F-trajectory. The neighboring feasible trajectories theorem ensures that for
any 0 < top < T, any € > 0, and every F-trajectory z(-) on [to, T], with z(ty) € A, there
exists f > 0 and an F-trajectory Z(-) on [to, T, starting from Z(ty) = (o), satisfying

17— llo < Bp, &((to, T]) C int A, (7)

where p = ¢ + max,ep, 11 da(2(s)). We point out that the constant 3 depends on € and
also on the time interval [¢y, 7]. Under suitable assumptions on F', neighboring feasible

trajectories theorems ensure at least the continuity of the value function.

In [BFV12] the authors provided an analogous result extending Soner’s condition
to sets A which are merely closed and assuming that the dynamics F' is absolutely
continuous in time and locally Lipschitz continuous with respect to space, under the

following inward controllability assumption:
coF(t,z)(int TS (z) #0 VY (t,z) € [0,T] x 04, (8)

where T (z) denotes the Clarke tangent cone to A at x. Furthermore, such theorems
on bounded intervals are available when the dynamics is less regular with respect to
time, under stronger estimates than the uniform one, as those in Wt (cfr. [BBV11,
BFV12, BBV10)).

When the velocity set F' is just measurable with respect to time, recovering neigh-
boring feasible trajectories theorems becomes more challenging and additional control-
lability requirements are needed. In [FM13b] the authors extend these results, with F
measurable in time and locally Lipschitz continuous with respect to state, providing
Whlestimates under a stronger inward pointing condition than (8). Moreover, the
authors in [FRO0] showed a neighboring feasible trajectories theorem on unbounded
intervals and for bounded dynamics, under the following controllability assumption:
there exists r > 0 such that for all # € 0A and for any ¢ > 0 we can find v € F(t,x)
satisfying

sup  (v,n) < —r,
neN4(z)NSn—1

where N4(x) is the limiting normal cone to A at x.
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Necessary conditions for constrained problems

As a matter of fact, necessary conditions in the form of the maximum principle and
partial sensitivity relations have been obtained for infinite horizon convex problems

under smooth functional constraints such as (see [Sei99, ABK12])
h(t,z(t)) < 0. (9)

For instance, suppose (z(-), u(-)) is optimal at (o, o) for the problem (1)-(3), subject to
state constraints of the form (9), with U(t) = U a closed convex subset of R™, h € C?
f and L continuous together with their partial derivatives with respect to x and wu.
Assuming further the controllability assumption

inf (Vo h(t, 2(1), f(t,2(t),u) — f(t, (), a(t)) <0 V>t

uelU

one shows that there exist A € {0, 1}, a co-state ¢(+), and a nondecreasing function u(-),
constant on any interval where h(t, z(t)) < 0, such that (X, q(to)) # 0, u(to) = 0, and

q(-) satisfies the adjoint equation

olt) = alto) ~ [ VoHi(s.5(5).a(s).a(s)) ds = [ Vohls,2() du(s).

and the maximum condition

(q(t), F(t,2(t), a(t))) — AL(t, 2(t), a(t)) = Ha(t, 2(t), q(t))  for a.e. t > to.

Furthermore, using the language of the calculus of variations, in [BS82] the authors show
that, under some very restrictive assumptions on f, if A is convex and int A # ) then,
for any optimal trajectory Z(:) of problem %, there exists an absolutely continuous
arc ¢(-) which satisfies the adjoint equation and the partial sensitivity relation ¢(t) €
0,V (t,z(t)) for all t > t,.

Main result 1. We describe next our achievements on this topic. Let us assume that for
all (tg, xo) € [0, 00) x A the limit limy_, ftf L(t,z(t),u(t)) dt exists for every trajectory-
control pair (x(-),u(-)) satisfying (2)-(3) with initial datum (o, o) and V (to, zo) # —00
for all (to,zo) € [0,00) x A. We impose the following regularity assumptions on f and
L:

(h1) (a) there exist two locally essentially bounded functions b,6 : RT — R and a
nondecreasing function ¥ : R™ — RT such that |f(¢,x,u)| < b(¢) (14 |z|)
and |L(t,z,u)| < 0(t)¥(|x|) for a.e. t > 0 and for all z € R™, u € U(¢);

(b) for any R > 0 there exists cg € L'(RT; R™) such that f(¢,-,u) and L(¢, -, u)
are cg(t)-Lipschitz continuous on B(0, R) for a.e. ¢ > 0, uniformly with
respect to u € U(t);
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(¢) for all z € R™ the mappings f(-,x,-), L(-,z,-) are Lebesgue-Borel measur-
able;
(d) for a.e. t > 0 and for all x € R™ the set {(f(¢,z,u), L(t,z,u)) : uwe U(t)}

is closed.

Moreover, we denote by (ipc) the following inward pointing condition:

(ipc) for any (¢,x) € [0,00) x JA there exists a set A;, C [0,00), with pg(A;,) =0,
such that for any v € Limsup, ) (.) s¢a,, F(5,y), with max{(n,v) : n €
Na(z) nS™ '} > 0, we can find w € Liminf(, ) 0),s¢4,, co F(s,y) satisfying

MaX,e N, (z)nsn—1 (1, w —v) < 0;
The Hamiltonian is defined by

%(t,x,p) ‘= Ssup ((p,f(t,x,u)> - L(t>$7u))'

uelU(t)

We give next the main result of this section.

Theorem (Necessary conditions for infinite horizon problems with state constraints,
[BCF18]). Assume (hl) and (ipc). Suppose that V (j,-) is locally Lipschitz continuous
on A for all large j € N. Then V is locally Lipschitz continuous on [0,00) X A.
Moreover, if (z,u) is optimal for B at (to,zo) € [0,00) x int A, then there exist
p € Whk(to, 00; R™), a nonnegative Borel measure yu on [ty, c0), and a Borel measurable
function v : [ty,00) — R™ such that, setting q(t) = p(t) + n(t) with

n(te) =0, n(t) = /[ POLZONRIESS

the following holds true:

(i) v(t) € Na(z(t))NB u—ae. t >ty

(i) P(t) € co {r : (r,q(t),=1) € Ngaphc)(E(E), & (t), L(t, Z(t), (1))} for a.e. t >
to, where G(t,x) = {(f(t,z,u), L(t,x,u)) : w € U(t)};

(iii) —p(to) € OV (to, Z(to));

(iv) —q(t) € OV (t,z(t)) for a.e. t > ty;

(v) (q(@), f(£,2(t), a(t)))—L(t, z(t), u(t)) = maxueu (q(t), f (¢ (t),w)) — L(t, (1), u)

for a.e. t >ty
(vi) (A(t,z(t),q(t)),—q(t)) € OV (t,Z(t)) for a.e. t > ty,

where

OV (t,z) := Limsupco 9,V (t,2'), °V(t,r):= Limsup co IV (¢,2').
' =z (t'x")—=(t,2)
int A [to, 7] xint A
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The conditions (iv) and (vi) of the above Theorem are more precise sensitivity relations
than those expressed in terms of the Clarke-Rockafellar subdifferential c6 oV (¢, x(t))
and partial Clarke-Rockafellar subdifferential ¢6 0,V (t,z(t)), since the definitions of
OV (t,z) and 0V (¢, x) involve limits which are taken within the interior of the set A.
Indeed, one can see that €0 OV (¢, x(t)) coincides with 9°V (¢, z) for any (¢, z) € [0, 00) X
int A, while it may occur that 9°V (¢, z) C 00V (¢, z(t)) for points (¢, z) € [0, 00) x DA.
We underline that the extended Euler-Lagrange inclusion in (i) improves the one given
in terms of Clarke’s Hamiltonian inclusion. Furthermore, the transversality condition
(171) leads to a significant economic interpretation (see [Asel3], [SS87]): the co-state
p + n can be regarded as the ‘shadow price’ or ‘marginal price’; i.e., (iv) describes the
contribution to the value function (the optimal total utility) of a unit increase of capital
x (cfr. [PBGM64, Neu69, DM65, Gam60, VP82, VZ98|).

From the technical point of view, the results exposed in this thesis, concerning nec-
essary conditions, rely on the idea of reformulating the infinite horizon problem %, as a
Bolza problem on each finite time interval, which can be analyzed in detail by appealing
to the existing theory for finite horizon problems. Hence, problem %, becomes a Bolza
problem on [0, 7] with the additional final cost ¢(-) = V(T,-). Assuming the local
Lipschitz regularity of V(T',-) and applying the necessary conditions for finite horizon
control problems (cfr. [Vin00, BFV15]), we derive uniform bounds for the truncated
co-states. Indeed, fixing any 7" > 0, we use that

V(s,y) = inf {V(T, (T +/ (t,x(t),u(®) dt} ¥(s,y) €[0,T]x A,  (10)

where the infimum is taken over all the feasible trajectory-control pairs (z(-), u(-)) sat-
isfying (2)-(4) on [s, T| with initial datum (s, y). Furthermore, if (Z(-),u(-)) is optimal
at (to, o) € [0,7] x int A for A, then the restriction of (z(-),u(+)) to the time interval
[to, T is optimal for the Bolza problem on the right-hand side of (10) too.

Lipschitz continuity of the value function

In Chapter 1 we investigate the Lipschitz continuity of V' for compact constraints sets
in case of autonomous control systems and Lagrangians and we use such a property to
obtain a maximum principle and sensitivity relations. In the above reference, we focus
on problems with cost functionals admitting a discount factor and allowing for time

dependent Lagrangians, i.e.,
L(t,z,u) = e M(t,z,u), X>0.

As discussed in the previous sections, the inward pointing condition becomes crucial to

ensure the continuity of the value function when state constraints are present. In order
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to investigate the regularity of the value function, useful tools are neighboring feasible
trajectory theorems. We observe that, in estimate (7), the constant 5 depends on time
interval (as well as the choice of ¢ and reference trajectory z(-)). Recovering uniform
estimates on such constant turns out to be helpful to construct feasible trajectories for
the infinite horizon problem %,.

To be more specific, denote by 4, the set of all ¢ € L _([0,00); RT) such that
lim, 00y (0) = 0, where 0y(0) :=sup{ [, |¢(7)| dr : J C I, ue(J) < o} and consider
the following assumptions on f and I:

(h2) (a) forall z € R" the mappings f(-,x,"), I(-, x, ) are Lebesgue-Borel measurable;

(b) there exist ¢ € Ll ([0,00); RT) and k € Ao such that f(¢,-,u) and (¢, -, u)
are k(t)-Lipschitz continuous for a.e. ¢t > 0, uniformly with respect u € U(t),
and |f(¢,z,u)| + |[I(t,z,u)| < c(t)(1+ |z|) for a.e. t > 0 and all z, y € R",
ue U(t);

(c) forall (t,z) € [0,00) x R™ the set {(f(t,z,u),l(t,z,u)) : u € U(t)} is closed,;

(d) there exists ¢ € HAo such that sup,ep ) (|f(E z,uw)| + |I(t, ,u)]) < q(t) for
all x € 0A and for a.e. t > 0;

(e) limsup, ,., t7' fo (c(s) + k(s)) ds < oo,

and a uniform inward pointing condition, stronger than (ipc):

(ipc,) there exist n > 0, r > 0, M > 0 such that for a.e. t > 0, any y € 0A + nB, and
any v € F(t,y), with supneN;n(n, v) > 0, there exists w € F(t,y) N B(v, M)
such that sup,cy: {(n,w), {n,w—v)} < —r, where N, = {n € "' :
nec Na(x), z € 0AN B(y,n)}.

Next we state our uniform neighboring feasible trajectories result.

Lemma. Assume (h2) and (ipc,). Then for every 6 > 0 there exists a constant > 0
such that for any [to,t1] C [0,00) with t; — ty = J, any F-trajectory &(-) defined on
[to, t1] with Z(to) € A, and any p > 0 satisfying p = SuPsepy, 1, da(2(t)), we can find an
F-trajectory x(-) on [ty,t1] such that x(ty) = &(to),

[ x”oo,[to,tl] < Bp, x((to, t1]) C int A.

If F' is more regular with respect to time, i.e., it is at least absolutely continuous from
the left, then one may assume a weaker (uniform) inward pointing condition than (ipc,)
(see Chapter 2 for details). When further integrability assumptions on functions k(-)
and ¢(-) are imposed, then we show that the constant 5 depends only on the length
of the time interval and on the starting point (cfr. [FM13b, BFV12]). The above
result ensures, in particular, the existence of feasible trajectories. Moreover, it allows
to deduce, assuming further that limsup, ,. t~* [i(c(s) + k(s))ds < oo, that feasible
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trajectories depend on initial states in a Lipschitz way with an exponentially increasing
in time Lipschitz constant (cfr. Section 3, Chapter 2).
Main result 2. We propose, in Chapter 2, sufficient conditions for the Lipschitz regu-

larity of V', assuming both f and [ to be time dependent, without requiring A to be
compact and 0A to be smooth. Our proof differs substantially from the one of the

analogous Lipschitz continuity result contained in Chapter 1.

Theorem (Lipschitz continuity, [BF]). Assume (h2) and (ipc,) hold true. Then there
exist b > 1, K > 0 such that for all A\ > K and every t > 0 the function V(t,-) is
L(t)-Lipschitz continuous on A with L(t) = be~ K¢,

Under assumptions (h2) and (ipc,), if the dynamics and the Lagrangian are bounded,
then the above Theorem implies that the value function V' is locally Lipschitz continuous
on [0, 00) x A. However, this result holds again under a weaker inward pointing condition
than (ipc,), requiring more regularity with respect to time of the set-valued map ¢ ~~
{(f(t,x,u),l(t)) : we U(t)} (see Chapter 2 for details).

Weak solutions of H-J-B equations with time-measurable data

The notion of weak (or viscosity) solution to a first-order partial differential equation
was introduced in the pioneering works [CEL84, CL83, Lio82] by Crandall, Evans,
and Lions to investigate stationary and evolutionary H-J-B equations, using sub/super
solutions involving superdifferentials and subdifferentials of continuous functions. In
particular, they obtained existence and uniqueness results in the class of continuous
functions for Cauchy problems associated to H-J-B equations, when the Hamiltonian
is continuous. In [Bar84, Sou85] the authors extended the existence results to a large
class of continuous Hamiltonians.

However, it is known that such notion of solution turns out to be quite unsatisfactory
for H-J-B equations arising in control theory and the calculus of variations (we refer
to [BCDO8, Lio82] for further discussions). Indeed, the value function, that is a weak
solution of H-J-B equation, loses the differentiability property (even in the absence
of state constraints) whenever there are multiple optimal solutions at the same initial
condition. When additional state constraints are present it may also lose its continuity.
At most, we expect lower semicontinuity of the value function. Nevertheless, the study
of uniqueness of weak solutions can be carried out by using the definition of solution
from [FPR95]. Previously, in order to deal with Hamiltonians which are measurable in
time, Ishii ([Ish85]) proposed a new notion of weak solution (cfr. [LP87] for equivalent

formulations of such a kind of solutions) in the class of continuous functions, proving,
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by a blow-up method, the existence and uniqueness in the stationary case on a general

open subset of R™ and, for the evolutionary case, on (0,00) x R™.

Unfortunately, when addressing state constrained problems, the usual assumptions
on data may be insufficient to derive existence and uniqueness results for the H-J-B
equations. In [Son86], Soner proposed a controllability assumption to investigate an
autonomous control problem, recovering the continuity of the value function through
an inward pointing condition like in (5). Such condition implies uniqueness of viscosity
solutions. However, such a property cannot be used for sets with nonsmooth boundaries
and boundedness assumptions on A may be quite restrictive for many applied models:
for instance, macroeconomics models often consider cones as state constraints. To
allow for nonsmooth boundaries, Ishii and Koike generalized Soner’s condition in the
framework of infinite horizon problems and continuous solutions (cfr. [IK96] and the
references therein). More generally, various versions of the inward pointing condition are
useful to get the continuity or Lipschitz continuity of the value function, see for instance
Chapter 2. Furthermore, in [FP99, FP00] the authors, dealing with paratingent cones
and closed set of constraints with possibly empty interior, carry out the analysis under
an outward pointing condition. Such condition ensures, roughly speaking, that any
boundary point of A can be reached by trajectories laying in the relative interior of
A. This property was used, in particular, in [FM13a], to study an H-J-B equation on
finite time interval, when the Hamiltonian is convex and positively homogeneous in the
third variable. We would like to underline here that, in contrast, the inward pointing
condition is neither needed, nor well adapted in the context of lower semicontinuous
functions because it does not imply the uniqueness of solutions to the H-J-B equation,

unless further regularity assumptions are imposed on the solutions.

To deal with discontinuous solutions, Ishii [Ish92] introduced the concept of lower
and upper semicontinuous envelopes of a function, proving that the upper semicontin-
uous envelope of the value function of an optimal control problem is the largest upper
semicontinuous subsolution and its lower semicontinuous envelope is the smallest lower
semi-continuous supersolution. This approach, however, does not ensure the uniqueness
of (weak) solutions of the H-J-B equation. On the other hand, the upper semicontinu-
ous envelope does not have any meaning in optimal control theory while dealing with
minimization problems (the lower semicontinuous envelope determines the value func-
tion of the relaxed problem). In [BJ90, BJ91, Fra93] a different concept of solutions was
developed for the H-J-B equation associated to constraint-free Mayer optimal control
problems, with a discontinuous cost. In this approach only subdifferentials are involved.
In particular, in [Fra93], results are expressed using the Fréchet subdifferentials instead
of C'! test functions. By [CEL84, Proposition 1.1], Fréchet subdifferentials of continuous
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functions coincide with those defined in [CL83] via C' test functions. While investi-
gating, in [FPRO5], the merely measurable case, it became clear that, in order to get
uniqueness, it is convenient to replace subdifferentials by normals to the epigraph of
solutions. Such ‘geometric’ definition of solution avoids using test functions and allows

to have a unified approach to both the continuous and measurable case.

Definition. A function W : [0,00) X A — R U {+o0} is called a weak (or viscosity)
solution of H-J-B equation on (0, 00) x A if there exists a set C' C (0, 00), with po(C) =
0, such that for all (¢,2) € dom W N (((0,00)\C) x 0A)

—Pt + H—q<t7‘r7 _pm) > 0 v(pt7p$7Q) € TepiW<t7x7 W(tax))_a (11)

and for all (¢,z) € dom W N (((0,00)\C) x int A)

—Pt + H—q(ta x, _px) =0 \V/ (ptap$7 Q) € TepiW(ta x, W(tv l‘))i (12)
We recall the following definition of absolutely continuous set-valued maps.

Definition. A set-valued map P : I ~ R? is locally absolutely continuous if it takes
nonempty closed images and for any [S,T] C I, every € > 0, and any compact subset
K C RY, there exists 6 > 0 such that for any finite partition S <t <7 <ty < 7 <
o <ty <7, < T of [S,T],

m

Sri—t)<d = fjmax {dpuy(P(1) N EK), dpey (P(t) N K) } < e,

i=1 1=1
where dp(E') == inf {3 >0 : E' C E+ B} for any E, E' C R? (the infimum over an

empty set is +00, by convention).

Main result 3. We provide next an existence and uniqueness theorem for weak solu-
tions (in the sense of above definition) of nonautonomous H-B-J equations with time-
measurable data. The novelty of our work consists of recovering such a result under
a backward controllability assumption, in a class of lower semicontinuous functions
vanishing at infinity. More precisely, we prove the existence and uniqueness of weak

solutions of the following problem

—88‘/;/ + H(t,x,—V, W) =0 on (0,00) x A

hmt%oo SUPyedom W(t,") ’W(t7 y)| = 07
under the following assumptions on f and L:

(h3) (a) for all z € R™ the mappings f(-,z,-) and L(-,z,-) are Lebesgue-Borel mea-
surable and there exists ¢ € L([0, 00); R) such that L(¢,z,u) > ¢(t) for a.e.
t >0 and all (z,u) € R* x R™;
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(b) there exist ¢, k € Ao such that f(¢,-,u) and L(t,-,u) are k(t)-Lipschitz
continuous for a.e. ¢ > 0, uniformly with respect w € U(t), and |f(¢, z,u)| +
|L(t,z,u)| < c(t)(1+ |z|) for a.e. t >0 and all z, y € R", u € U(t);

(c) fora.e. t > 0andallz € R", the set-valued map y ~ {(f(¢,y,u), L(t,y,u)) :
u € U(t)} is continuous on R"™ with closed images, and the following set
{(f(t,x,u), L(t,z,u)+7) : we U(t), r >0} is convex;

(d) there exists ¢ € Lo such that sup,cp ) (| f (¢ 2, w)| + [L(t, 7, u)]) < q(t) for
all z € 0A and for a.e. t > 0;

(e) limsup, ., t7!f5 (c(s) + k(s)) ds < oo.

We denote by (opc,) the conditions (ipc,) in which F'(¢,y) is replaced by —F'(¢,y), and
by (B) the following requirements:

(B) domV # 0 and there exist T > 0 and ¢ € L'([T,00);RT) such that for all
(to, x9) € dom VN([T, 00) x R™) and any feasible trajectory-control pair (z(-), u(-))

on I = [to, OO), with l'(t()) = Xy,
|L(t,z(t),u(t))] < (t) forae. t>t.
Theorem (Existence and uniqueness of weak solutions, [BF19]). Assume (h3) and

(opcy). Let W :[0,00) x A — RU{+0o0} be a lower semicontinuous function such that
dom V' (¢,-) € dom W (t,-) # 0 for all large t > 0 and

lim  sup |[W(ty) =0 (13)

t=o0 yedom W (t,-)
Then the following statements are equivalent:
(i) W=V;

(it) W is a weak solution of H-J-B equation on (0,00) X A and t ~» epi W (t,-) is

locally absolutely continuous.
Moreover, if in addition (B) holds true, then V' is the unique weak solution satisfying

(5.8) with locally absolutely continuous t ~~ epiV(t,-).

Semiconcavity and sensitivity relations for an Eikonal equation

In Chapter 4 we address the affine dynamics case, that is,

fau) = iuifx:c),

where fi, ..., f;,, are smooth vector fields on R™ and A is compact. We study the semi-

concavity of the weak solution to the following eikonal equation with Dirichlet boundary
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conditions

|F(z)*VW(z)] —1=0 on A°
W =0 on A,

where F'(x) is the matrix which has fi(z),..., () as column vectors. We assume
that the vectors fields fi, ..., f,, satisfy Hormander’s condition (cfr. assumptions (h4)
below). It is known that the (unique) solution of the above problem is the minimum
time function W (:) = 74(-) to reach the target A, associated with the above affine
dynamics and controls taking values in the closed unit ball (cfr. [BCDO08]). More

precisely, consider the following time optimal control problem
minimize 04 (z(-), u(-))
over all trajectory-control pairs (z(-),u(-)) satisfying the following control system

2'(s) =" ui(s) fi(x(s)) forae s=0
z(0) = o (14)
u € By,

where o € R™, B, denotes the set of all Lebesgue measurable controls u : [0, 00) — R™

such that u(s) € B(0,1) for a.e. s >0, and
Oa(x(-),u(-)) =inf{s >0 : z,,.(s) € A}

is the so-called transfer time (to A) along the trajectory x(-) starting from z, and
associated with the control u(-). For any xy € R™ and any control u(-) we denote
by ,.(-) the solution of the Cauchy problem 2'(s) = f(z(s),u(s)) for a.e. s > 0,
x(0) = z. By convention 04(xz,u(), u(-)) = +00 if 4, .(s) ¢ A for all s > 0. The set
A is called the target set and the function 74(zo) = inf {0a(xeu(-),u(-)) @ v € By} is
called minimum time function.

It is known (cfr. [CS04, Chapter 8]) that 74 is locally Lipschitz continuous on the
set Z\A, where Z = {zo0 € R" : Ju € B,,, 0a(vyu(-),u(:)) < oo}, if and only if A
satisfies the inward pointing condition: there exists > 0 such that for any z € 9A and
any v proximal unit vector to A at x we can find u € R™ satisfying ( f(z,u),v) < —r
(cfr. [CS04, BCDOS]). In addition, if the target set fulfils the uniform inner ball
property, i.e., there exists r > 0 such that for every x € A we can find y € A
satisfying = € B(y,r) C A, then 74(-) is locally semiconcave on %\ A. Recovering the
local semiconcavity property for the minimum time function, associated with the above
problem, when the target set does not satisfy the uniform inner ball property, becomes
quite challenging.

Main result 4. It is known that the minimum time to reach a point is equal to the
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sub-Riemannian distance dgr from such a point associated with the distribution A =
span { f1, ..., fm} on the manifold M = R™ (cfr. [BR96, JSC87, Mon06]). Regularity
properties of dgr were obtained for subanalytic structures (cfr. [AgrOl, Tré00]). In
particular, if the Lie algebra generated by A is regular everywhere, i.e., it satisfies
Hoérmander’s condition (cfr. [Ho6r67] and Chapter 4), then for any x there exists a
dense subset S,, of R™ such that for all y € S,, the function dgg(zo,-) is Lipschitz
continuous on a suitable open neighborhood of y (cfr. [Rifl4, Chapter 2]). Furthermore,
P. Cannarsa and L. Rifford showed in [CRO8] that the function dgsgr(zo,-) is locally
semiconcave on R™\ {z(}, assuming that any geodesics associated with A connecting x

to x¢ # x is not singular in the sense of the definition below.

Definition. We say that a control u € B,, is singular at (t,z,) € [0,00) x R™ if there
exists an absolutely continuous arc p : [0,¢] — R™\ {0} such that for a.e. s € [0, ]

Taou(8) = Vpllaou(s), p(s),u(s)),  —p'(s) = Vih(@zeu(s), p(s), uls))
(P(3), fi(Tagu(s)) =0 Vi=1,..m,

where h(z,p,u) = X", u(p, fi(x)). A time-minimizing control v € B, at xy € Z is

said to be singular if it is singular at (74(x¢), o).

So, if Hormander’s condition holds true and there are no singular time-minimizing con-
trols, then for any compact set K C R™ and any y € R™\ K the function dgg(y, ) is
C'(y)-semiconcave on K. This property does not suffice to guarantee the local semicon-
cavity of dsr(A, ) = inf,ca dsr(y, -) on R™\ A, because the semiconcavity constant C'(y)
might blow up with y € A. Nevertheless, we analyze the local semiconcavity property
of the function inf e 4 dsr(y, -) obtaining uniform bounds on the constant C(y) as y lies
in a compact set. More precisely, we show that for any compact set A C R™\ K there
exists a nonnegative constant C' = C'(K, A) such that dsg(y, -) is C-semiconcave on K
for every y € A.

After establishing semiconcavity, we address sensitivity relations and transversality
conditions for the minimum time function associated with the affine control system
above. Sensitivity relations for the minimum time function to reach a set with the
inner ball property were already investigated in [CF06, CMN15, CN10]. We recover, for
time optimal control problems, sensitivity relations for the co-state in terms of proximal
supergradients (cfr. [Vin00, CMN15]). This is done under the assumption that there
are no singular geodesics associated with A and the target set is merely compact.

We impose the following assumptions on fi, ..., fin:

(h4) (a) fi,..., fm are smooth vector fields (C* or C*) and they satisfy Horman-
der’s condition, i.e., span{X*(z)},.,; = R for all € R", where X'(z) =
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{f1(@), o fru(@)}, XN (2) = X¥(2) U{[f. gl(x) : f € X'(2),g € X(2)} for
all i € N ([, -] denotes the Lie bracket);
(b) fi, ..., fm have sub-linear growth, Lipschitz continuous differential, and f;(x),

..., fm(z) are linearly independent for all z € R™.

Theorem (Semiconcavity and sensitivity relations, [BCF]). Assume (h4) and that there

are no singular time-minimizing controls for T4(-). Then the following holds true:

(i) Ta(:) is locally semiconcave on A;

(ii) if xo € A° and u is an optimal control for the minimum time function at xo, then

the solution of the adjoint equation

—p' () = dp f(2aya(t), u(t)) p(t) for a.e. t € [0,7a(xo)]

satisfies the sensitivity relation

—p(t) € 0" Ta(wapa(t)) Vit € [0,74(x0)), (15)
and the transversality condition

p(7a(z0)) € Limsup Nie(waa(t)), (16)

t—)’TA(J:())—

where Ay = {y € R" : 14(y) < t}.

Conclusions

In this thesis we undertake an analytical approach to infinite horizon optimal control
problems subject to state constraints. In particular we derive necessary conditions
and sensitivity relations for such control problems. The novelty of our work relies on
allowing for unbounded constraint sets with nonsmooth boundary, assuming the dy-
namics and the Lagrangian merely measurable in time. Lipschitz continuity of the
value function is recovered for cost functionals admitting a discount factor and allowing
time dependent dynamics and Lagrangians. We show such property as a consequence
of a uniform neighboring feasible trajectory result, provided the discount rate is suffi-
ciently large. The existence and uniqueness of weak solutions of the nonautonomous
Hamilton-Jacobi-Bellman equation on the domain (0, c0) x A are investigated assuming
the Hamiltonian to be measurable in time. Using tools of viability theory, we develop
the analysis providing a notion of weak solution for which, under a suitable control-
lability assumption, existence and uniqueness theorems are valid in the class of lower
semicontinuous functions vanishing at infinity. Finally, the study of an autonomous H-
J-B equation on a bounded domain, with Dirichlet boundary conditions, is addressed.

We recover the semiconcavity of its (unique) solution on compact subsets, extending
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a known result for the point-to-point sub-Riemannian distance when the Hoérmander

condition holds true.

Thesis outline

The dissertation is composed of 4 chapters. In Chapter 1, we focus on infinite horizon
control problems under state constraints stating the maximum principle, sensitivity
relations, and transversality conditions for the co-state. We also prove the uniform
Lipschitz continuity of a large class of value functions when the constraint set is compact.
Chapter 2 is devoted to the investigation of Lipschitz continuity of the value function. A
new neighboring feasible trajectory theorem is obtained under a uniform inward pointing
condition. Results are applied to the relaxation of infinite horizon control problems
subject to state constraints. Chapter 3 deals with weak solution of nonautonomous
H-J-B equations with time measurable data giving a new notion of weak solution for
discontinuous functions. Chapter 4 is devoted to the semiconcavity of the weak solution
of an eikonal equation with Dirichlet boundary conditions and we derive sensitivity

relations for such solution.
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NECESSARY CONDITIONS FOR INFINITE
HORIZON OPTIMAL CONTROL PROBLEMS
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Abstract. Partial and full sensitivity relations are obtained for nonautonomous opti-
mal control problems with infinite horizon subject to state constraints, assuming the
associated value function to be locally Lipschitz in the state. Sufficient structural con-
ditions are given to ensure such a Lipschitz regularity in presence of a positive discount

factor, as it is typical of macroeconomics models.
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1.1 Introduction

Consider the infinite horizon optimal control problem %,

minimize /OO L(t,z(t),u(t))dt (1.1)

to
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over all the trajectory-control pairs subject to the state constrained control system

2(t) = f(t,z(t),u(t)) ae. teE [ty,o0)

z(to) = 2o (1.2)
u(t) € U(t) a.e. t € [tg, 00)

z(t) € A t € [to, 00)

where f :[0,00) Xx R" x R™ — R™ and L : [0,00) x R" x R™ — R are given, A is a
nonempty closed subset of R™, U : [0,00) = R™ is a Lebesgue measurable set valued
map with closed nonempty images and (o, ) € [0, 00) X A is the initial datum. Every
trajectory-control pair (x(-),u(-)) that satisfies the state constrained control system
(3.3) is called feasible. We refer to such z(-) as a feasible trajectory. The infimum
of the cost functional in (3.2) over all feasible trajectory-control pairs, with the initial
datum (tg, zo) or if the integral in (3.2) is not well defined for every feasible trajectory-
control pair (z(-),u(-)), is denoted by V' (to,zo) (if no feasible trajectory-control pair
exists at (to, zp), or if the integral in (3.2) is not defined for every feasible pair, we set
V (to, 9) = +00). The function V : [0,00) x A — RU{zo0} is called the value function
of problem A.

Infinite horizon problems have a very natural application in mathematical economics
(see, for instance, the Ramsey model in [Ram28]). In this case the planner seeks to find
a solution to # (dealing with a maximization problem instead of a minimization one)
with

Lit,2,u) = e Mi(ug(z) & f(ta,u) = [(x) — ugla)

where 1(-) is called the “utility” function, f(-) the “production” function, and g(-)
the “consumption” function, while the variable x stands for the “capital” (in many
applications one takes as constraint set A = [0, 00) with U(-) = [—1,1]). The approach
used by many authors to address this problem is to find necessary conditions of the
first or second order (cfr. [AK70], [Bén10], [BF89], [Sor02]).

It happens quite often, in mathematical economics papers, that one considers as
candidates for optimal solutions only trajectories satisfying simultaneously the uncon-
strained Pontryagin maximum principle and the state constraints. Such an approach,
however, is incorrect as there are cases (see, e.g., Example 1.5.6) where no optimal
trajectory exists in this class. There is, therefore, the need of a constrained maximum

principle for infinite horizon problems with sufficiently general structure.

The literature dealing with necessary optimality conditions for unconstrained infi-
nite horizon optimal control problems is quite rich (see, e.g., [AV14] and the reference

therein), mostly under assumptions on f and L that guarantee the Lipschitz regularity
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of V(-,-). On the contrary, recovering optimality conditions in the presence of state
constraints appears quite a challenging issue for infinite horizon problems, despite all

the available results for constrained Bolza problems with finite horizon (cfr. [Vin00]).

As a matter of fact, necessary conditions in the form of the maximum principle and
partial sensitivity relations have been obtained for infinite horizon convex problems un-
der smooth functional constraints such as h(t, z(t)) > 0 (see, e.g., [Sei99]). In this paper
we prefer to deal with the constraint h(t,z(t)) < 0 (without loosing the generality).

For instance, suppose (z, %) is optimal at (¢, zo) for the problem

maximize [, L(t,2(t),u(t)) dt

2'(t) = f(t, z(t), u(t)) a.e. t € [ty,00)
x(tg) = o

u(t) e U a.e. t € [tg, 00)
h(t,z(t)) <0 t € [to, 00),

with U a closed convex subset of R™, h € C?, f and L continuous together with their
partial derivatives with respect to z and u, and assume the inward pointing condition

inf (V,h(t,Z(t), f(t, 2(t),u) — f(t,2(t),u(t)) <0 Vit >t

uelU

If h(to, 7o) < 0, then one proves that there exist ¢° € {0,1}, a co-state ¢(-), and a
nondecreasing function p(-), constant on any interval where h(t, z(t)) < 0, such that
(q°, q(to)) # (0,0), u(to) = 0, and ¢(-) satisfies the adjoint equation
¢
0(0) = alto) ~ || VaH(s.5(5)0(6),a(s)) ds — [ Voh(s,(5)) dus)
0 0,
and the maximum principle

H(t,z(t),q(t),u(t)) = max H(t,z(t),q(t),u) a.e. t € [to, 00),

where H(t,z,p,u) := {p, f(t,x,u)) + ¢°L(t,z,u). Furthermore in [BS82|, using the
language of the calculus of variations, the authors show that, under some very restrictive
assumptions on f, if A is convex and int A # () then, for any optimal trajectory Z(-) of
problem %, there exists an absolutely continuous arc ¢(-) which satisfies the adjoint
equation and the partial sensitivity relation ¢(t) € 0,V (t,z(t)) for all ¢ € [tg, 00).

In the present work, for the first time we provide the normal maximum principle
(i.e. go = 1) together with partial and full sensitivity relations and a transversality
condition at the initial time, under mild assumption on dynamics and constraints. To
describe our results, assume for the sake of simplicity that L(¢,z,u) = e (x,u) is
smooth, U(-) = U is a closed subset of R™ V(¢,-) is continuously differentiable, and
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denote by N4(y) the limiting normal cone to A at y. If (z,u) is optimal for %, at
(to, o) € [0,00) x int A, then Theorem 1.4.3 below guarantees the existence of a locally
absolutely continuous co-state p(-), a nonnegative Borel measure p on [ty,00), and a
Borel measurable selection v(-) € @ N4(z()) N B such that p(-) satisfies the adjoint

equation

—p'(t) = do f (£, 2(8), a(t))" (p(t) + (1)) — e MV, I(T(1), a(t))  ae. t € [to, 00),
the maximality condition

(p() +n(0), f(t,2(8), 0(t))) — U (1), a(1))
= max {(p(t) + (), f(t,5(1), ) — e UT(t),w)} e tE [t 00),

and the transversality and sensitivity relations

—p(to) = V. V(to, 2(to)), —(p(t)+n(t)) =V, V(t z(t)) a.e. t € (to,00), (1.3)

where 7(to) = 0 and n(t) = [, 4 v(s) du(s) for all t € (tg,00). Observe that, if z(-) €
int A, then v(-) = 0 and the usual maximum principle holds true. But if z(t) € A
for some time ¢, then a measure multiplier factor, [ v du, may arise modifying the

adjoint equation.

Furthermore, the transversality condition and sensitivity relation in (1.3) lead to
a significant economic interpretation (see [Asel3|, [SS87]): the co-state p + n can be
regarded as the “shadow price” or “marginal price” , i.e., (1.3) describes the contribution

to the value function (the optimal total utility) of a unit increase of capital x.

From the technical point of view, this paper relies on two main ideas. The first one
consists in reformulating the infinite horizon problem as a Bolza problem on each finite
time interval, which can be analyzed in detail by appealing to the existing theory for

finite horizon problems. More precisely, fixing any 7" > 0, we have that

V(s,y) = inf{ +/ (t,z(t), u(t)) dt} V(s,y) € [0,T] x A,

where the infimum is taken over all the feasible trajectory-control pairs (z, u) satisfying
(3.3) with initial datum (s,y) (Lemma 1.4.2). Hence, problem %., becomes a Bolza
problem on [0, 7] with the additional final cost ¢ (-) = V(T,-). Then, assuming the
local Lipschitz regularity of V(T),-), we derive uniform bounds for the truncated co-
states (Lemma 1.3.6) which in turn allow to pass to the limit as ¢ — oo in the necessary
conditions (Theorem 1.4.3). The second key point is Therem 1.5.1 which provides struc-
tural assumptions on the data for V' to be Lipschitz. A typical dynamic programming
argument is used to obtain such a property for certain classes of Lagrangians, which

include problems with a sufficiently large discount factor or a periodic dependence on
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time.

The outline of the paper is as follows. In Section 2, we provide basic definitions,
terminology, and facts from nonsmooth analysis. In Section 3, we give a bound on the
total variation of measures associated to Mayer problems under state constraints. In
Section 4, we focus on the main result, investigating problem %, and stating sensitivity
relations and transversality condition for the co-state. Finally, in the last Section, we
prove the uniform Lipschitz continuity of a large class of value functions when A is

compact.

1.2 Preliminaries on nonsmooth analysis

We denote by B the closed unit ball in R™ and by |-| the Euclidean norm. The interior
of C' C R™ is written as int C. Given a nonempty subset C' and a point  we denote the
distance from x to C' by d¢(x) := inf {|z —y| : y € C'}, the convex hull of C' by coC,
and its closure by @6 C. Take a family of sets {S(y) C R" : y € D} where D C R™ and
r € R". The sets?

Lig}g:itnfS(y) ={{ eR" : Vz; - 3¢ — € st & € S(ay) for all 4},
D

Limsup S(y) :={£ € R" : du; - 3¢ — € st & € S(xy) for all 4}
yoa
are called, respectively, the lower and upper limits in the Kuratowski sense. Observe

that these upper and lower limits are closed, possibly empty, and verify Liyrg InfS (y) C

D
Lim sup S(y).

Yy—x

We denote by Whi(a, b; R") the space of all absolutely continuous R™-valued func-
tions w : [a,b] — R" endowed with the norm ||ully1.(,,) = [u(a)| + [Pl ()] dt. Let
u : [a,00) — R”, we write u € Wi (a,00;R") if uljy € Wh(a,b;R") for all b > a.
Let I be a compact interval in R. We denote by C(I;R™) the set of all continuous
R"-valued functions endowed with the uniform norm [lul|, ; = sup {|u(t)| : t € I}.

Let G : [a,b] x R = R™ be a multifunction taking nonempty values. We say that
G(-, ) is absolutely continuous from the left, uniformly on R C R", if for any € > 0 there
exists 0 > 0 such that for any finite partition a < t; <7 <ta < < ... <1, < Tp < b
of [a, b] satisfying >>7"(; — t;) < 0 and for any x € R we have Y1" dg(r,.2) (G (4, x)) < e,
where for any £, £’ C R"

dp(E"):=inf{>0: E' C E+ B}.

2we write y; -2 for y; — x and y; € FE for any i.
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Take a closed set E C R" and x € E. The regular normal cone Np(z) to E at

and the limiting normal cone Ng(x) to E at x are defined, respectively, by

Ng(z) = {p eR": limsupM < 0}
E

Np() = Limsup Np(y).
E

We denote by T§(x) := (Ng(z))~ the Clarke tangent cone to E at x, where “ =7
stands for the negative polar of a set. It is well known that @ Ng(z) = N§(r) where
N¢(z) := (T§ (x))~ denotes the Clarke normal cone to E at x (cfr. [RW98, Chapter 6]).
Take an extended-valued function f : R" — R U {+o0} and define the effective domain
of f by dom f:={x € R" : f(z) < +o0}. We denote by epi f and hypo f the epigraph
and hypograph of f respectively. The subdifferential, the limiting subdifferential and
the limiting superdifferential of an extended real function f at x € dom f are defined
respectively by
0f(x) = {6 € R" : (6,~1) € N sz f(2))]

0f (x) :={§ € R" : (§, —1) € Nepis(x, f(2))}
0" f(x) = {§ €R" : (=£,1) € Nuypos(w, f(2))} -

If f is Lipschitz continuous on a neighborhood of z € dom f, then df(z) and 0" f(x)
are nonempty. It is well known that d f(z) # 0 on a dense subset of dom f, whenever

f is lower semicontinuous.

1.3 The value function

Let 7 > 0 and ¢g” : R® — R be a locally Lipschitz continuous function. Consider the
problem .# (g, 7) on [0, 7]
minimize g" (z(7)) (1.4)

over all the trajectories of the following differential inclusion under state constraints
2'(t) € F(t,z(t)) a.e. t € [to, 7]
x € Whi(ty, m; R"

(to ) (1.5)
$(t0) = X9

x(t) € Q t € [to, 7]
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with the initial datum (o, o) € [0, 7] X2, where F' : [0, 00) xR™ =2 R" is a multifunction
and 0 C R™ a nonempty closed set. Every trajectory x(-) that satisfies the state
constrained differential inclusion (2.4) is called feasible. The infimum of the cost in (1.4)
over all feasible trajectories, with the initial datum (to, zo), is denoted by V7 (¢, zo) (if

no feasible trajectory does exist, we define V7 (g, x9) = +00). The function

V7 :[0,7] x Q@ = RU{+o0}
is called the value function of problem .# (g™, 7). We say that Z(-) is a minimizer for
problem .Z (g7, T) at (to,zo) if Z is feasible, Z(tg) = xo and V (to, z0) = ¢"(Z(7)).

We start with the main assumptions on F(+,-) and €.
Hypothesis (H1):

e F'(-,) takes closed nonempty values and F(-,z) is Lebesgue measurable for any
r eR™

e there exists k € L*°([0, 00); RT) such that F'(¢,z) C k(t)(1+ |z|)B for any 2 € R",
a.e. t € [0,00);

e for all R > 0 there exists vz € L _([0,00); RT) such that F(t,z) C F(t,2') +

loc

Yr(t) |x — 2'| B for any z,2’ € B(0, R), a.e. t € [0, 00);

e (Relaxed Inward Pointing Condition-IPC’) For any (t,z) € [0,00) x 02 there

exists a set €, C [0, 00) with null measure such that for any v € R™ satisfying

v € Limsup F'(s, and max n,v) =0
(s,y)—>(t,£) ( y) neNgq(z)nSn—1 < > =
Sggt,a;

we can find w € R™ such that

w € Liminf co F(s,y) and max  (n,w—v) <0.
(S7y%§(t7m) nENQ(x)ﬂS”—l
S t,x

Let us denote by (H2) the hypothesis as in (H1) under an additional assumption

e For any R > 0 there exists r > 0 such that F(-,x) is absolutely continuous from
the left, uniformly over z € (992 + rB) N B(0, R),

and with the Relaxed Inward Pointing Condition (IPC’) replaced by

e (Relaxed Inward Pointing Condition-IPC) For any (¢, x) € [0, 00) x 0
Liminf co F(¢,2')(int 7§ (z) # 0.

(t'x")—(t,z)
(t',x")€[0,00)x Q2
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Remark 1.3.1. We note that, if F' is continuous, then the IPC condition reduces to
co F(t,z)(int TG (z) # 0 V(t,x) € [0,00) x 0. (1.6)
Define the Hamiltonian

H(t,z,p) = vgz(augyg)(p,v} vV (t,z,p) € Ry x R" x R™.

Then, by the separation theorem, (1.6) is equivalent to
H(t,z,—p) >0 Y 0#pe NS (x).

Theorem 1.3.2 ([BFV15]). Assume (H1), let g : R® — R be a locally Lipschitz
continuous function and consider the problem M (g,7) with T > 0. Then V7(-,-) is
locally Lipschitz continuous on [0, 7] x €.

Moreover, if Z(-) is a minimizer for 4 (g, T) with initial condition (to,zo) € [0, 7] X
Q, then there exists p € Whi(ty, 7;R™), a different from zero nonnegative Borel measure

i on [to, 7] and a Borel measurable function v : [tg, 7] — R™ such that, letting

q(t) = p(t) + ()

with

the following holds true:
(i) v(t) € @oNq(z(t)) NB u— a.e. t € [to,T];

(ii) p'(t) € co{r : (r,q(t)) € Narpu)(F(t), 7 (1))} for a.e. t € [to,7];
(iii) —q(7) € dg(2(7)), —q(to) € OF V7 (to, Z(to));

(iv) {q(t), 7 (t)) = max {(q(t),v) : v € F(t,2(1))} for a.e. t € [to, 7];
(v) —q(t) € VT (t,z(t)) for a.e. t € (to,7];

(vi) (H(t,Z(t),q(1)), —q(1)) € 8V (t,Z(t)) for a.e. t € (to, 7],

where

OOV (t,x) := Limsupco 9,V (t,2'),
' —x
int ©

O°V7(t,x) := Limsup co V" (¢, z).
t',x")—(t,z)
[to, 7] xint
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Remark 1.3.3. We would like to acknowledge here that the proof of the above result in
[BEV15] contains an erroneous claim which however does not have any impact neither
on the rest of the proof nor on the final result. Namely on p. 373 the correct expression
is Oh> (z(t), f(t)) = (0,0,0,0,0,0, —1) whenever Z(t) € int A and so the claim (27) is

not correct. This does not influence however the rest of the arguments of the proof.

Theorem 1.3.4 ([BFV15)). The conclusion of Theorem 1.3.2 is also valid if we assume
(H2) instead of (H1).

Definition 1.3.5. A family ¢ of R-valued functions defined on £ C R¥ is uniformly
locally Lipschitz continuous on E if for all R > 0 there exists Lr > 0 such that

lp(2) —p(2)] < Lr|z — Z|
forall z, Z€ ENB(0,R) and p € 4.

Lemma 1.3.6. Assume (H1) or (H2). For all j € N let ¢ : R" — R be a locally
Lipschitz continuous function. Fix (to,zo) € [0,00) x int 2, T > ty and consider the
problems A (g’ 7). Assume also that {V7(-, ')}j>T are uniformly locally Lipschitz con-
tinuous on [0,T] x Q. Let z € Wb (to, 00; Q) be such that for any j > T the restriction
T4 (*) s a minimizer for problem A (¢’, ) with initial datum (to,zo). Let, for every
Jj € Nt p;, q;, vj, and p; be as in the conclusion of Theorem 1.5.2 for the problem
(g, 7).

Then

(i) {p;};>p and {q;};., are uniformly bounded on [to, T);

(it) the total variation of the measures {fi;}, o on [to, T] is uniformly bounded, where
fy s defined by ldt) = |y (t)] s ().

The proof of the above lemma relies on the following proposition, which can be in

turn justified following the same reasoning as in the proof of [CF05, Lemma 4.1].

Proposition 1.3.7. Let I C R be an interval and G : I = R"™ be a lower semicontinu-
ous set valued map such that G(t) is a closed convex cone and int G(t) # 0 for allt € I.
Then for every e > 0 there exists a continuous function f : I — R™ such that for all
te{sel : G(s) #R"}

sup  (m, f(t)) < —e.
neG(t)—Nsn—1

Proof of the Lemma 1.3.6. Since z(-) is continuous, hence locally bounded, by the uni-

form local Lipschitz continuity of {V7}, we deduce that

sup { €l - g€ U RVt a(t) UoFV (te, z(to)), j = T} <oco.  (17)

te(to,T)
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By Theorem 1.3.2-(ii7), (v) we know that
—q;(T) € 3¢’ (2(T)), —q;(to) = —p;(to) € 07 V7 (to, 2(to))

and
—q;(t) € VI(t,z(t))  ae. t € (ty,T]

for all j > T. Since g; are right continuous on (to,7’), from (1.7), it follows that

{I9ill 21} .y 15 DOUDded. (1.8)

Now, by a well-known property of Lipschitz multifunctions (cfr. [Vin00, Proposition
5.4.2]), from (ii) of Theorem 1.3.2 and assumptions (H1) (respectively (H2)) it follows
that there exists & € Li. [tg, 00) such that p;(t)’ < &(t) |g;(t)] for a.e. t € [to, T] and all
j = T. Hence, in view of (1.8),

{12l .11} 15 DoUDed. (1.9)

So, the conclusion (7) follows. Also, since ¢;(t) = p;(t) + n;(t), from (1.8) and (1.9) we
deduce that

{||nj|]oo7[t07T}}j2T is bounded. (1.10)

Now let I' := {s € [ty,T] : z(s) € 00Q}. From the Relaxed Inward Pointing Condition,
it follows that int 7S (Z(¢)) is nonempty for all ¢ € I and so int 7§ (Z(t)) is nonempty
for all t € [ty, T]. Furthermore, this implies that the set valued map t ~ TS (Z(t)) is
lower semicontinuous on [tg, T]. Since T' = {5 € [to, T] : TS (2(s)) # ]R”}, we can apply
Proposition 1.3.7 with € = 2 to conclude that there exists a continuous function f :
[to, T] — R™ such that

sup  (f(t),m) < -2 Vtel. (1.11)

neN§ (z(t))nsn—1

We remark that the function f does not depend on j but only on z(-) and 7. Now,
consider f € C([to, T];R™) such that Hf — f” < 1. We obtain from (1.11)

7[t0 7T]

sup  (f(t),n) < —L. (1.12)

neN§ (z(t))nsn—1
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Then, from (1.12) we deduce that for all j > T,
| (T i) dus()
[to,T]
= (f(s),v5(5)) dpay (s)

[to,T]N{s:v;(s)#0}
v;(s)

= (f(s),

vi(s)| du;(s
[to,T]N{s:v;(s)#0} ‘l/]( )|>| ]( )| ]( )

ST vils d#] s
b [t‘)’T}”{SﬁVj(s);réO}| 5(s)] dpy (s)

:—@ﬂM@WM@-

So,
/[tm v (s)] duj(s) < (—F(5),v(s)) dp;(s). (1.13)

[to 7T]

Furthermore, from (1.10), integrating by parts, we obtain that, for some constant C' > 0
and all 7 > T,

S w5)) (o)

= —f(s) dny(s)
[to,T] (1.14)
= _77J +/ f
CGVH —%\ )
Now, since f does not depend on j, from (1.13) and (1.14) we deduce (i7). O

1.4 The infinite horizon optimal control problem
Consider the infinite horizon optimal control problem with state constraints %, as in
(3.2)-(3.3). We define the Hamiltonian function on [0, 00) x R™ x R" by
H(t,z,p) = sup{(p, f(t,z,u)) — L(t,z,u) : we U(t)}.
Let us denote by (h) the following assumptions:
e there exist two locally essentially bounded functions b,0 : RT — RT and a

nondecreasing function ¥ : RT — R such that for a.e. ¢t € RT and for all
reR" uelU(t)

[f(t, 2, u)] < b(E) (1+ |x),
Lt 2, )| < 0(8)P(|]);
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e for any R > 0 there exist two locally integrable functions cg, ag,: Rt — R* such
that for a.e. t € RT and for all x, y € B(0, R), u € U(t),

‘f(t,.’ﬂ,U) - f(tayau” < CR<t>’x - y’a
|L(t’xwu) - L(t’y7u)| < aR(t) |(£ - y| )

e for all x € R" the mappings f(-,z,-), L(-, x,) are Lebesgue-Borel measurable;

e For a.e. t € R", and for all x € R” the set

{(f(t,x,u), L(t,z,u)) : we U(t)}

is closed;
e the Relaxed Inward Pointing Condition-IPC’ is satisfied;

o for all (to,z9) € [0,00) X A the limit limy_, . fth(t,x(t),u(t))dt exists for all

trajectory-control pairs (z,u) satisfying (3.3) with initial datum (o, x¢);
o V(ty,zo) # —oo for all (to,z9) € [0,00) x A.

Remark 1.4.1. A sufficient condition to guarantee that the last two hypothesis in
(h) are satisfied is to assume that L takes nonnegative values. Alternatively, we may
assume that for any initial datum (o, 7o) there exists a function ¢y, ., € L*(0, 00) such
that L(t,2(t),u(t)) = ¢r(t) ae. t € [ty,00) for all trajectory-control pairs (x,u)
satisfying (3.3).

The above hypotheses guarantee the existence and uniqueness of the solution to the
differential equation in (3.3) for every initial datum z, and every control. So, denoting
by Zzo.u0(+) such solution starting from zy at time ¢y, associated with a control ug(-),

by Gronwall’s lemma and our growth assumptions
|xxo,u0 (t)| < (|£L’0| + (t - tO) ”bHoo,[to,t]) e(tfto)Hme’[tO,t] vt = 1o. (115)

In particular, feasible trajectories are uniformly bounded on every compact time inter-

val. Moreover, setting
My p(t) = (R + (t —to) ||b‘|oo,[t0¢]) o t0) Pl 0

by (1.15), Gronwall’s lemma, and our assumptions we have that for all R,¢ > 0, all
to € [0,t], and all g,z € B(0, R)

oy a(5) = Tag ()] < |21 — wo] 0 Mo n @Oy ey (1.16)
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Define the extended value function V' : [0,00) x A — RU {400} of problem %, by
V(to, zo) := inf L(t,x(t),u(t)) dt,
to

where the infimum is taken over all trajectory-control pairs (z,u) that satisfy (3.3) with
the initial datum (¢, ) € [0, 00) x A.

We denote by dom V' the set {(to, zo) € [0,00) x A : V(ty,x9) < +00}, and we say
that a pair (z,u) is optimal for %, at (to,z9) € dom V' if

/ L(t, #(t), a(t)) dt < / L(t, z(t), u(t)) dt
to to

for any feasible trajectory-control pair (z,u) starting from zy at time .

Lemma 1.4.2. Let T > 0 and assume (h). Consider the Bolza problem Br

T

minimize {V(T, z(T))+ | L(t,z(t),u(t)) dt}

to

over all the trajectory-control pairs satisfying the state constrained equation

() = f(t,z(t),u(t)) a.e t€E[ty,T)]
x(tg) = o

u(t) € U(t) a.e. t € [ty, T
z(t) € A t € [to, T].

Denote by Vg, : [0,T] x A - RU{+00} the value function of the above problem. Then
Var () =V(,") on [0, T] x A. (1.17)

Furthermore, if (z,u) is optimal at (to,xo) € [0,T] X A for B, then the restriction of
(z,u) to the time interval [ty, T is optimal for the Bolza problem PBr too.

Proof. Let (to,z9) € [0,7] x A and ¢ > 0. If V(tg,z9) = 400, then V(tg,z) =
Vi, (to, o). Otherwise, there exists a feasible trajectory-control pair (z., u.) for problem
P at (tg, o) such that

V(to, zo) = /T L(s,x:(s),uc(s))ds + /TOO L(s,xz-(s),u:(s))ds — ¢

to

WV

/T L(s,2.(8),u(s)) ds + V(T,2.(T)) — ¢ (1.18)

to
> V%’T(toa $0> —&.

Since ¢ is arbitrary, we obtain V' (to, ) = Vg, (to, xo)-
On the other hand, if Vg, (to, x9) = +00, then Vg, (to,z0) = V(to, o). Otherwise,

there exists a feasible trajectory-control pair (Z.,a.) for problem % at (to,x¢) such
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that
T
Virr (to,0) > [ L(s,3e(5), icls)) ds + V(T,3(T)) — &.
to
By (1.15) and our assumptions on L, [, L(s, #.(s), @i-(s)) ds < oo. Hence (T,7.(T)) €

dom V. So, there exists a feasible trajectory-control pair (Z.,4.) for problem %, at
(T, z.(T)) such that

Vi (to, 20) = /tT L(s, 7.(s), @(s)) ds + /;O L(s, #.(s), 0.(s)) ds — 2¢

. (1.19)
= L(s,z(s),u(s))ds — 2e,

to
where z(+) is the trajectory starting from xg at time ¢, satisfying the ordinary differential

equation in (3.3) with the control u given by

ﬂE(S) s € [to,T]
u(s) ==
t-(s) se (T, 0).
Since u(-) € U(+) and z([tg, 00)) C A, (z,u) is feasible for problem %, at (to, zo). Then,
by (1.19), Vg, (to, z0) = V(to, xo) — 2¢ and, since ¢ is arbitrary, Vi, (to, zo) = V (to, zo).
The last part of the conclusion follows from (1.18), by setting e = 0, (z., u.) = (Z, u),
and using that Vig,.(to, zo) = V (to, zo). O

Theorem 1.4.3. Assume (h) and suppose that V(i,-) is locally Lipschitz continuous
on A for all large i € N. Then V' is locally Lipschitz continuous on [0,00) x A.

Moreover, if (z,u) is optimal for Be at (ty,x9) € [0,00) X int 2, then there exist
pE I/Vlicl (to,00; R™), a nonnegative Borel measure j1 on [tg, 00), and a Borel measurable
function v : [ty,00) — R™ such that, setting

q(t) = p(t) +n(t)

with

the following holds true:
(i) v(t) €CON4(Z(t))NB u—ae. t € [ty,o0);

(i) p'(t) € co{r: (rq(t),~1) € Narr(#(t), (1), L(t, Z(t), u(t))} for a.e. t
€ [tg, 00) where F(t,x) = {(f(t,z,u), L(t,z,u)) : u € U(t)};

(iii) —p(to) € OV (to, @(ty)), —q(t) € OV (¢, 2(t)) for a.e. t € (tg,00);
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(iv) {afe). (8. 5(0), 5(1)) ~ Lt 2(0), (1) = mae (q(t). F(8.5(2), ) — L(t.7(2).u) for a.c.

t e [to, OO),'

4|

(v) (H(t,z(t),q(t)), —q(t)) € O°V (¢, z(t)) for a.e. t € (ty,0).

Remark 1.4.4. (a) Define G(t,z) = {(f(t,z,u),l(t,z,u)) : v € U(t)} and assume
that for all R > 0 there exists r > 0 such that G(-,z) is absolutely continuous
from the left uniformly over (0A+7rB) N B(0, R). Then the conclusion of Theorem
1.4.3 holds if IPC’ is replaced by IPC;

(b) Theorem 1.4.3 implies a weaker hamiltonian inclusion
(—=p'(t),Z'(t)) € coOppH(t, Z(t), q(t)) a.e. t € [ty, 00)
(cfr. comment (e)-[BFV15, p. 362]);

(c) If V(4,-) is locally Lipschitz continuous on A for all large i, then, under assump-
tions of Theorem 1.4.3, V'(¢,-) is locally Lipschitz on A for every t > 0;

(d) See Section 5 for the Lipschitz continuity of V'(¢,-) for the autonomous case and
A compact. Also, sufficient conditions for the Lipschitz continuity of V(¢,-) in

the nonautonomous case for unbounded A are recently investigated in [BF].

Proof of Theorem 1.4.3. For any 7 € N such that j > ¢y consider the Bolza problem
AB;. We can rewrite the problem as a Mayer one on R™*!: keeping the same notation

as in Section 3, consider the Mayer problems . (g7, j) on R""! with

7€ 2) =V(j.&+z

F(t,z,z) = {(f(t,z,u), L(t,z,u)) : ue U(t)} and Q = A x R.
Denoting by V7 the extended value function on [0, 5] x Q for problem .# (g7, 7) it
follows, by standard arguments (cfr. [CS04, Chapter 7]), that

VI(t,z,2) = Vg, (t,z) + 2 (1.20)

for all (t,z, z) € [0, 7] x AXR. Since, for all large j, V'(j, -) is locally Lipschitz continuous
on A, also ¢’ is locally Lipschitz on A x R. For every j consider a locally Lipschitz
function g’ : R*" — R that coincides with ¢/ on A x R. Note that replacing ¢’ by
g’ does not change the value function of the Bolza problem ;. So, applying Theorem
1.3.2, it follows that V7 is locally Lipschitz on [0, j] x A x R for all large j. Then Vi, is
locally Lipschitz on [0, j] x A and so, by Lemma 1.4.2, the value function V is locally
Lipschitz on [0, j] x A. By the arbitrariness of j, V' is locally Lipschitz continuous on
[0,00) x A. Hence, if T > 0, from (1.20) and (1.17) it follows that V7’s are uniformly
locally Lipschitz continuous on [0,7] x A x R for all j > T.
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Since the restriction of (Z,u) to [to, j] is optimal for Vi, at (to, zo), setting

we have that the restriction of (X := (7, 2),u) to [to, 7] is optimal for V7 at (o, (zo,0))
too. So, we may apply Theorem 1.3.2 with g’ instead of ¢/ on each time interval [tg, j]
with j € NN [tg,00). Denoting by X the pair (z, z) in R"™! we obtain that there exist
absolutely continuous arcs {F;}, and functions {®;}, of bounded variation defined on
[to, j], and nonnegative measures {y;}, on [to, j] such that {®;}, are continuous from
the right on (to,7) and

(a) Q;(t) = Pi(t)+®;(t), where ®;(to) = 0, ®;(t) = [, 4 1L;(s) du;(s) for all t € (o, J]

for some Borel measurable selections I1;(s) € 0 No(X (s)) N B pj—a.e. s € [to, j|;

(b) Pi(t) €co {R : (R,Q;(t)) € Ny su (X (1), X'(£))} for ace. t € [to, jl;
(c) —Qj(to) € IV (to, X (to));

(d) (Q;(1), X'(1)) = max {(Q;(t),v) : v € F(t, X(t))} for ae. t € [to, j];
(e) —Q;(t) € O%VI(t,X(t)) for a.e. t € (to, jl;

() (H(t, X(1),Q;(1)), —Q;(t)) € °Vi(t, X (1)) for a.e. t € (to, ],

where H(t, X, P) = max,c 7 x){ )

Let Pi(t) = (p;(t), (1)), @;(t) = (q;(t), G5 (1)), ©;(t) = (n;(t),nj(t)), and IL;(t) =

(v(t),v§(t)). Using the definition of limiting normal vectors as limits of strict normal

vectors, relations (a)-(c), and the fact that No(X(-)) = Na(z(:)) x {0} we obtain
pi(t) € co {1+ (r,q;(), () € New py ((1), 7' (8), L(t, (1), u(t))) }
a.e.t € [to, j],

0.

0\/ — O/ : 07\ __ 0
;) =0, p;(j)+n;(G)=-1, v;

Thus, on account of (d)-(f), for a.e. t € [to, j| we derive the extended Euler-Lagrange

condition

Pi(t) € co L+ (r,q;(t), 1) € Nowpay(2(0), 2 (1), L(t, 2(t), a(t))) (1.21)

where g;(t) = p;(t) +n;(t), with

(1.22)
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and v;(t) € @0 Na(z(t)) N B pj—a.e. on [to, j|, satisfy the maximum principle

(q;(0), F(t,2(t), u(t)) — L(t, 2(t), u(t))
= s (1) S 70,0) ~ LET0,0) ae b€l
the transversality condition in terms of limiting superdifferential
—p;(to) € 9V (to, z0), (1.24)
and the sensitivity relations
—q;(t) € PV (t,7(t))  ae. tE (ty,]], (1.25)
(H(E, (), 45(0), —a5 (1) € V(L) ae. t € (to,j]. (1.26)

We extend the functions p; and n; to whole interval (j, 00) as the constants p;(j) and

n;(Jj), respectively. We denote again by p,; and n; such extensions.

We divide the proof into three steps. Let k£ be an integer such that k > .

Step 1. Applying Lemma 1.3.6 to problems .#(¢’,j), we known that {pj},>r and
{4;};-, are uniformly bounded on [to,k]. Furthermore, for some ¢ € L ([0, 00);
R*) and a.e. t > to, we have |p] (t)‘ < &(t) |g;(t)| for all 5. So, by the Ascoli-Arzela and

Dunford-Pettis theorems we have, taking a subsequence and keeping the same notation,

that there exists an absolutely continuous function p* : [ty, k] — R™ such that

p; — p" uniformly on [to, k]
= () in L (1o ).

Furthermore, from Lemma 1.3.6 again, we known that {n;},_, is uniformly bounded
on [tg, k] and the total variation of such functions is uniformly bounded on [to, k].
So, applying Helly’s selection theorem, taking a subsequence and keeping the same
notation, we deduce that there exists a function of bounded variation n* on [to, k] such
that n; — n* pointwise on [ty, k] (notice that since n;(to) = 0 for all j then n*(t) = 0).
Furthermore, from Lemma 1.3.6-(i7) we deduce that there exists a nonnegative measure
p* on [tg, k] such that, by further extraction of a subsequence, fi; —* u* in C([to, k]; R)*,

where fi;(dt) = |v;(t)| p;(dt). Let
50) vi(t) # 0

v;(t) == |v;(8)]

0 otherwise.

Since v;(t) € CONA(Z(t))NB fi;—a.e. t € [to, k] is a Borel measurable selection, applying

[Vin00, Proposition 9.2.1], we deduce that, for a subsequence j;, there exists a Borel
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measurable function v* such that
V() € @NA(Z() NB pF-a.e. on [to, k]
and for all ¢ € C([ty, k;R™)
| 00 i () > [ (6(). v () dpM(s)  asi—oo.  (120)
[to k] [to,k]
Now since for ¢ € (g, k|

mi®) = [ vils)du (s) = | . (5) d, (5)

Vj;
[to,t] [to. )] s: v, (s)#0}

= / ’in(S) dﬂji(8)7
[Ovt]

t

from (1.27) it follows that for all ¢t € (¢, k]
() = [ M) du(s)
[t07t]

By Mazur’s theorem, as in [AF09, Theorem 7.2.2], using the closedness of 0}V (ty, o),
9%V (t,z(t)) and convexity in (4.47), passing to the limit in (4.29), (4.47), and (1.23) on
[to, k], and in (4.32) and (1.26) on (o, k|, we obtain condition (iv) on [to, k], inclusions
(#7) on [t, k], (i7i) and (v) at ty and on (¢, k|.

Step 2. Consider now the interval [ty, k+1]. By the same argument as in the first step,
taking suitable subsequences {p;, }, C {p;}; and {n;, }, C {n;.};, we deduce that there

k+1

exist an absolutely continuous function p**!, a function of bounded variation n**!, and

a nonnegative measure pf*1 which satisfy condition (iv) on [ty, k+ 1], inclusions (i) on
[to, k + 1], (i7i) and (v) at ¢ty and on (o, k + 1]. Moreover

Py, = P! uniformly on [t, k + 1]

p;il — ("™ in LY(tg, k + 1)

s

_ .k
to,k} _p )

and for all ¢t € [to, k + 1]

o V() A1 (s)  t € (to, b+ 1]

My, () = 17 (1) =
0 t= tO?

where v#71(.) € @oNA(Z(:))NB  p*l-ae. on [tg, k + 1] is a Borel measurable selec-
tion. Furthermore, since 7", k) = n* and p*F™|y, 5 = 1¥, we have that
Vo = VF pF-a.e. on [to, k].

We see that the functions p**', n**!, and v**! extend the functions p*, n*, and v*
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respectively, and measure p**! extends measure p*.

Step 3. Repeating the argument of the second step for any interval [ty, k + s] with
s € N, we can extend p*, n*, v* and p* to the whole interval [tg, c0), extracting every
time a subsequence of the previously constructed subsequence. Finally, we conclude
that there exists a locally absolutely continuous function p : [ty, 00) — R", a function
of locally bounded variation 7 : [ty, 00) — R, a nonnegative measure p on [ty,00), and
a Borel measurable selection v(t) € @6 N4s(z(t)) NB p—a.e. t € [tg, 00) satisfying the

conclusion of the therorem. O]

1.5 Uniform Lipschitz continuity of a class of value

functions

We now investigate the uniform Lipschitz continuity of a class of value functions. In
this section, we assume that f is time independent, i.e., f(¢t,z,u) = f(z,u), U(-) = U
is closed, A is compact, and assumptions (h) hold true. Then, thanks to Remark 1.4.4
(a) and to (1.6), (IPC’) can be replaced by the simpler condition

max (—p, f(z,u)) >0 VO0#pe N{(r) VuzedA.

uelU

Theorem 1.5.1. Assume that

L(t,z,u) = e M(z,u).

Then the function v(-) := V(0,-) is Lipschitz continuous on A for all large X\ > 0.
Consequently, the wvalue function V(t,x) of problem By, which is equal to

e Mu(x), is Lipschitz continuous on A uniformly int >0 for all large X > 0.

Proof. By our assumptions, domv = A and v is bounded. For any & € A let us denote
by %; the set of all Lebesgue measurable functions « : [0, 1] — R™ such that u(t) € U
a.e. t > 0 and z;,(s) € A for all s € [0,1]. By the dynamic programming principle
it follows that for any distinct zq1,z9 € A there exists a control ug feasible at x, for
problem %, such that

1
v(xg) + |21 — 20| > /0 e_’\sl(xwovuo(s), uo(s)) ds + 6_)\1}(1’%7“0(1)).

Thus, applying again the dynamic programming principle, it follows that for any u; €
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/8

o) = a0) < Jor o] + [ [ € Uy (89,10 9) — Ui (5) 5)] s
+ 6_)\ |U(xx1 u1<1)) - U(xxo u0<1))|

<oy = a0l | [ € a9, 01() ~ Uy (9), wo()] ds| (1.28)

1
| e Uy 0 (5). w0(5)) = Ui (5). uo(5))] ds

+ 6_)\ |U($I1,u1<1)) - U(mxo,u0<1))| .
By (1.15), there exists a constant M > 0 such that for all z € A and all Lebesgue

measurable u : [0,1] — R™ with u(t) € U a.e., the trajectories z,,(-) take values in
B(0, M) on the time interval [0, 1]. Let C" > 0 be a Lipschitz constant for [ on B(0, M),
with respect to the space variable. Then, by (1.16), there exists ¢ > 1 such that for all
r1,T0 € A

_|_

[ U 5),10(5)) g 5), uo(s))] i
<O [ iy 00(5) ~ ayan(9)] ds (1.29)
<C'-clry — xol
So, putting C' = C" - ¢+ 1, from (1.28) it follows that
v(zy) —v(z) < Clay — x| + I/ol e 1Ty s (8), u1(8)) — Uy g (8), uo(5))] ds

+ 6_)\ |U($961,U1(1)) - U($xo,uo(1))| :
(1.30)

Now we claim that there exist a constant 5 = S(f,l) > 1 and a control u; € %,
such that

/01 eiAS [l(xwl,ul (5)7u1(8)) - Z(le,u0(5)7 UO(S))] ds| < B ’1’1 - CL’0| )

|x9€17u1(1) - xCIJoMo(l” <p ’951 - 1'0| .

(1.31)

Indeed, if max,ecio,1) da(Tzu0(s)) = 0 then uy € %,,. So, (1.31) follows taking u; =

ug. Otherwise, suppose max,cjo,1] da(Tz, u,(5)) > 0 and consider the following control
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system in R™*!

2'(s) = f(z(s),u(s)) a.e. s €0,1]
2 (s) = e l(x(s), u(s)) a.e. s €0,1]
z(0) =2, 2(0) =0 (1.32)

u(-) is Lebesgue measurable

u(s) e U a.e. s €[0,1].

Let us denote by (Xz 4, u) the trajectory-control pair that satisfies (1.32) where X; ,(+) :=
(2zu(+), 20u(+)). Set © := A x R. By the neighbouring feasible trajectory theorem
[FM13b, Theorem 3.3], there exists a constant § > 1 (depending only on f and [) and

a control u; € %,, such that

[ X101 = Xouolloo oy < B <max dQ(XILuO(s))> . (1.33)

s€[0,1]
Since do(Xuy ue(+)) = da(Tay e (+)) and x4, 4,(-) € A we have

”Xxmn - Xx

17“0“00,[071]

< B max {mf | Xy u0(8) — ”Y|}

s€[0,1] (veQ

< B max {|l’x1 uo (S> - xwo,uo(s)u
s€[0,1]

< B-clr — x|

Furthermore

1
/0 ei/\s [Z(Q:mlyul (S)vul(s)) - l($m1,u0<5)7u0(8))] ds < ”Xﬂcl,ul - Xl“l,uouoo,[(),”

|x$1,u1(1) - xwo,uo(lﬂ < ||X$17u1 - le,u0‘|oo7[0,1] +c |l‘1 - I()’ .

So, replacing 5 with 23 - ¢, (1.31) follows.

Now, let 0 < r < 1. Combining the inequalities in (1.30) and (1.31) we obtain that

for all x1,z9 € A with |z, — 2| < r

v(xy) —v(xe) < (C + B)r 4+ e *w(pr)

where

w(r):= sup |v(h) —v(h)].
|h—h'|<r
hih/ €A

By the symmetry of the previous inequality with respect to x; and xg we have that

[v(z1) — v(z0)| < (C + B)r + e w(fr). (1.34)
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Letting 0 := ¢ and « := C + 3, we deduce from (1.34) that for all 0 <r < 1
w(r) < ar+0w(fr). (1.35)

So, Lemma 1.5.2 below yields the Lipschitz continuity of v for A > log j.
The last part of the conclusion follows observing that V(¢,-) = e *u(-). O

The next lemma (proved in the Appendix) extends [LT94, Lemma 2.1].

Lemma 1.5.2. Let R > 0 and w : [0, R] — [0,00) be a nondecreasing function. Suppose
that there exists 0 < 0 <1, a >0, § > 1 such that

w(r) < ar+ 0w(pr) Vo< r< R/B. (1.36)

Let m > 1 be a real number such that 03 < 1. Then there exists a constant C' > 0
such that
w(r) < Crt/m Vo< r <R

Remark 1.5.3. (a) From Theorem 1.5.1 and Theorem (1.4.3)-(¢ii), since V(¢,-) =
e Mu(+), it follows that
lim ¢(t) = 0.

t—o00

(b) From (1.35) and Lemma 1.5.2 it follows that, given any A > 0, {V(t,-)},5, are
uniformly Hélder continuous on A of exponent 1/m for all m > 1 such that

m > (log 8)/\, where 3 is as in the above proof.

Corollary 1.5.4. Assume that L(t,x,u) = e Mi(t,z,u) and there exists T > 0 such
that 1 is time independent for all t > T. Then {V(t,-)},., are uniformly Lipschitz

continuous on A for all large X > 0.

Corollary 1.5.5. Assume that L(t,z,u) = e I(t,x,u) with the further assumption:
I(-,z,u) is T-periodic, i.e. there exists T > 0 such that I(t + T, x,u) = l(t,x,u) for all
t>0, z € R" and u € R™. Then {V (t,-)},5, are uniformly Lipschitz continuous on A
for all large A > 0.

Proof. Fix t € [0,00). Then, by the dynamic programming principle, for any z,zy € A

there exists ug feasible for %, at zy such that

V(t,l’l) — V(t,l’o)
< |IL‘1 - $0| + |/tt+T 6_)\8 [Z(S,I'xhul(S),U,l(S)) - l(S,$x0’uO(S),UQ(S>)] ds

+ |V(t + Tv Ly ,uq (t + T)) - V(t + T7 Lo,u0 (t + T))|
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for any wu, feasible for %, at ;. Now, the periodicity of [ in the time variable implies
that V(s + T, z) = eV (s,r). From the previous inequality it follows that

V(t,l’l) - V(t,l’o)
< ’.731 - IL’0| + ‘/tt—‘rT e—)\s [l(sa Ly ,uq (8)7 u1(5>> - l(57 ‘Tmomo(s)v uO(S))] ds

+ eiAT ‘V(tv Txy,uy (t + T)) - V(t, T zg,u0 (t + T))‘ .

Proceeding as in the proof of Theorem 1.5.1, by the neighbouring feasible trajectory
theorem [FM13b, Theorem 3.3] there exist two constants § > 1 and C' > 0 (depending
only on f,l, and T') such that, for all |z; — x¢| < r < 1, we have that

|V(t7 Il) - V(tu I0>| < (O + 6) T+ G_AT sSup |V<t’ h) - V(tu h,)|
Jh—h/|<pr
h,h €A

The conclusion follows applying Lemma 1.5.2 for A > (log 3)/T. O

Example 1.5.6. In this example we will show the fallacy of applying the unconstrained
Pontryagin maximum principle to %, in order to obtain candidates for optimality that
satisfy some given state constraints.

Consider the following infinite horizon optimal control problem:

maximize J(u) = /0 T e () + ult)) dt

over all trajectory-control pairs (x,u) satisfying

2'(t) = —au(t) ae. t>=0
z(0) =1
u(t) € [-1,1] ae. t>0
x(t) € (—oo,1] t >0,

(1.37)

m Mm

with a > A > 0.
Applying the Pontryagin maximum principle for unconstrained problems, it follows

that any optimal trajectory-control pair satisfies one of the following three relations:
(i) z~(t) = 1 4 at associated with u™(t) = —1;
(il) =™ (t) = 1 — at associated with u™(t) = +1;

X[0.4(t) = X(,00)(t), for some ¢ > 0.

Excluding now the trajectories = and z*, since they are not feasible, this analysis

leads to the conclusion that x* is the only candidate for optimality. But one can easily
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see that the feasible trajectory z(t) = 1, associated with the control u(t) = 0, verifies

J(@) > J(ub).

Appendix

Proof of Lemma 1.5.2. Suppose first that m = 1. Let 6 < 7 < 1 be such that 78 < 1.
Then 7R < " and by the growth assumption in (1.36) and the monotonicity of w, we
have that 0
w(TR) < atR + 0w(BTR) (1.38)
< arR+ 0w(R).
Applying again (1.36), the monotonicity of w, and (1.38) we obtain
w(T?R) < at®R + 0w (TR)

<ar’R+0[arR+ 6w(R))

= atR(T + 0) + 0°w(R).
So, by induction on k € N it is straightforward to show that

W(T"R) < arR(T* 1+ 072 + .+ 605 + 0*w(R)

peer ()
14+ —+..+ (=
T T

1
k k
< aRt 1_9/T+9 w(R)
_ ot ™™ L 0Fw(R).
T—0

= aR7" + 0*w(R)

Now let r € [0, R]. Then there exists k¥ € N such that 7R < r < 7*R. Finally

w(r) < &RGTI“H + 0"w(R)
T —
« w(R)
< k+1 k+1
S GT R+71 RiTR

a w(R)
<(7‘—9+ TR)T'
0 e

T—0 TR’
If m > 1, by the growth assumption in (1.36) and the monotonicity of w we have

The conclusion holds true with C' =
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that
w(@™R) < ™R+ 0w(BO™ R) (1.39)
< ab™R + w(R).
Applying again (1.36), monotonicity, and (1.39) we obtain
w(0*™R) < afd*™R + 0w(6™R)

< al? R+ 0[abd" R+ 0w(R)]

= af" M R(1+ 0™ + 0°w(R).
So, by induction on k € N it is straightforward to show that

W™ R) < af™TFIR(1 4 0m 4 L 9R DD gk (R)

1
m-+k—1 k
< aRO™ 1_79771_1 +0 W(R)
aRO™1 .
= <1_9m1 + W(R>> 0.
Now let r € [0, R]. Then there exists k € N such that %V R < r < §*™R. Thus,
~ C [r\Ym C
km k . 1/m
- aRe™! . _ M
where C' = ————— + w(R). The conclusion follows with C' = C'/0RY/™. O

1—gmt






CHAPTER 2

LIPSCHITZ CONTINUITY OF THE VALUE

FUNCTION FOR THE INFINITE HORIZON

OPTIMAL CONTROL PROBLEM UNDER
STATE CONSTRAINTS

VINCENZO BASCO and HELENE FRANKOWSKA

To appear.

Abstract. In this paper sufficient conditions for Lipschitz regularity of the value func-
tion for an infinite horizon optimal control problem subject to state constraints are
investigated. We focus on problems with cost functional admitting a discount rate
factor and allow time dependent dynamics and lagrangian. Furthermore, state con-
straints may be unbounded and may have a nonsmooth boundary. Lipschitz regularity
is recovered as a consequence of estimates on the distance of a given trajectory of con-
trol system from the set of all its viable (feasible) trajectories, provided the discount
rate is sufficiently large. These distance estimates are derived here under a uniform
inward pointing condition on the state constraint and imply, in particular, that feasible
trajectories depend on initial states in a Lipschitz way with an exponentially increas-
ing in time Lipschitz constant. As an application we show that the value function of
the original problem coincides with the value function of the relaxed infinite horizon

problem.
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2.1 Introduction

Infinite time horizon models arising in mathematical economics and engineering typi-
cally involve control systems with restrictions on both controls and states. For instance
it is natural to request all the variables involved in an economic model to be non-
negative. While dealing with control constraints is rather well understood, the major
difficulties with state constraints arise whenever for small perturbations of the initial
state (or of a feasible control) the corresponding trajectory violates the constraints as
time goes. More generally, it may happen that the celebrated value function associated
to an infinite horizon optimal control problem takes infinite values and is discontinu-
ous. In particular, this prevents using such a classical tool of optimal control theory
as Hamilton-Jacobi-Bellman equation and its viscosity solution. In the literature one
finds some results concerning continuity of the value function for state constrained in-
finite horizon problems, see for instance [Son86]. However in this last reference the
state constraints are given by a compact set with a smooth boundary. This clearly
does not fit the state constraint described by the cone of positive vectors. In addition,
results of [Son86] address only the autonomous case, which is also a serious restriction,
because, as it was shown later on, arguments of its proof can not be extended to the

non-autonomous case whenever the time dependence is merely continuous.

Because of their presence in various applied models, addressing non-autonomous
control systems subject to unbounded and non smooth state constraints remains crucial.
Let us note that (the finite horizon) state-constrained Mayer’s and Bolza’s problems
have been successfully investigated by many authors, see for instance [BFV15, FM13a,
Vin00] and the references therein. However in the infinite horizon framework these
results can not be used, because restricting optimal trajectories of the infinite horizon
problem to a finite time interval, in general, does not lead to optimal trajectories of the

corresponding finite horizon problem. See [CF18] for a further discussion of this issue.

Infinite horizon problems exhibit many phenomena not arising in the finite horizon
context and for this reason their study is still going on, even in the absence of state
constraints, cfr. [AV12, AV14, CF18, CH&7, Pic10].

This paper deals with the infinite horizon optimal control problem B

minimize / TN 2(t), u(t)) dt (2.1)

to
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over all trajectory-control pairs (z(-),u(-)) of the state constrained control system

() = f(t,z(t),u(t)) ae. tE [ty,o0)

.T(to) = T
u(t) € U(t) a.e. t € [tg,0) (22)
z(t)e A Vit € [ty, 00)

where A > 0, f : [0,00) Xx R" x R™ — R™ and [ : [0,00) x R" x R™ — R are given
functions, U : [0,00) = R™ is a Lebesgue measurable set-valued map with closed
nonempty images, A is a closed subset of R™, and (o, x¢) € [0,00) x A is the initial
datum. Every trajectory-control pair (z(-),u(-)) that satisfies the state constrained
control system (3.3) is called feasible. The infimum of the cost functional in (3.2)
over all feasible trajectory-control pairs, with the initial datum (o, x¢), is denoted by
V (to,zo) (if no feasible trajectory-control pair exists at (to,xo) or if the integral in
(3.2) is not defined for every feasible pair, we set V(to,x9) = +o0). The function
V :[0,00) x A — RU{£o00} is called the value function of problem Be.

Lipschitz continuity of V' for a compact set of constraints A was recently investigated
in [BCF18] for autonomous control systems and lagrangian functions. It was used to
get a maximum principle under state constraints and also to obtain sensitivity relations.
However, in [BCF18] the maximum principle was proved for the non-autonomous case
and for possibly unbounded A under the assumption that V(¢,-) is locally Lipschitz
on A for every t > 0. So the open question remained: how to guarantee the Lips-
chitz continuity of V (¢, ) when the data are time dependent and without imposing the
compactness of A. Then recovering Lipschitz continuity of the value function is not
straightforward and calls for distinct arguments. Here we propose sufficient conditions
(cfr. Section 3) for it, allowing both f and [ to be time dependent and not requiring
boundedness of A and smoothness of 0A. Our proof differs substantially from the one
in [BCF18].

The outline of the paper is as follows. In Section 2, we provide basic definitions, ter-
minology, and facts from nonsmooth analysis. In Sections 3, we state a new neighboring
feasible trajectory theorem under a uniform inward pointing condition. In Section 4, we
give an example of uniform inward pointing condition for functional state constraints
and in Section 5 we prove our main result on Lipschitz continuity of the value function.

Section 6 is devoted to an application to the relaxation of our control problem.

2.2 Preliminaries

Let B(z,d) stand for the closed ball in R™ with radius § > 0 centered at = € R"
and set B = B(0,1), S" ! = dB. Denote by | - | and (-,-) the Euclidean norm and
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scalar product, respectively. Let C' C R™ be a nonempty set. We denote the interior
of C' by int C, the convex hull of C' by coC, and the distance from = € R" to C' by
de(x) :=inf{|x —y| : y € C}. If C is closed, we let IIo(x) be the set of all projections
of x € R" onto C. For p € RT U {oco} and a Lebesgue measurable set I C R we denote
by LP(I;R™) the space of R"-valued Lebesgue measurable functions on I endowed with
the norm || - ||, ;. We say that f € LT (I;R") if f € LP(J;R") for any compact subset

J C I. In what follows u stands for the Lebesgue measure on R.

Let I be an open interval in R, f € L} (I;R™) and 6; : [0, u(I)) — [0, 00) be defined
by
8;(c) = sup {/J ()| dr: JCT, u(]) < 0}.

We denote by Lo the set of all functions f € L{ .( [0,00); R") such that lim,_,o0;(c) =
0. Notice that L>°( [0, 00); R") C Ly, and, for any f € Lo, Of(0) < oo for every o > 0.

A set-valued map F' : R" = R” taking nonempty images is said to be L-Lipschitz
continuous, for some L > 0, if F(z) C F(Z) + L|z — Z|B for all z, & € R".

Let I C R be an open interval and G : I x R® = R" be a multifunction taking
nonempty values. We say that G has a sub-linear growth (in x) if, for some ¢ €
Lino(I;RY), sup,cqa [v] < c(t)(1 + |2]) for ae. t € T and all z € R™.

Let A C R™. We say that G(-, x) is y-left absolutely continuous, uniformly for x € A,
where v € Ll _(I;R"), if

t —
G(s,z) C G(t,x) —i—/ y(r)drB  Vs,tel :s<t Voeel. (2.3)

If I =[S, T], then we have the following characterization of uniform absolute continuity
from the left: G(-,z) is left absolutely continuous uniformly for x € A, for some v €
Li..(I; RY), if and only if for every e > 0 there exists > 0 such that for any finite
partition S <t; <7 <te <7 < ... <ty <7 < T of [S,T],

m

Z(TZ’ — tl) <9 — ZdG(n,w)(G(tlax» <e Vze A’
i=1 i=1
where dp(FE) :=inf{# >0 : E C E + 3B} for any E, E C R™.
Consider a closed set E C R" and 2 € E. The Clarke tangent cone TS (z) to E at
x is defined by

TE () == {£ €R" : Va; —»p x, Vt; L 0, Jv; — £ such that x; +t,v; € E Vi },

where z; — 5 x means z; € F for all i. We denote by N () := (TS (x))~ the Clarke

normal cone to E at x, where "~ " stands for the negative polar of a set.
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2.3 Uniform distance estimates

We provide here sufficient conditions for uniform linear L°° estimates on intervals of

the form I = [to, 1], with 0 < g < 1, for the state constrained differential inclusion

o' (t) € F(t,z(t)) ae. tel
z(t)e A Vtel,

where F': [0,00) x R = R" is a given set-valued map and A C R" is a closed set.

A function x : [tg, t;] — R™ is said to be an F-trajectory if it is absolutely continuous
and 2'(t) € F(t,z(t)) for a.e. t € [to,t1], and a feasible F-trajectory if z(-) is an F-
trajectory and z([to, t1]) C A.

We denote by (H) the following hypothesis on F'(,-):

(i) F has closed, nonempty values, a sub-linear growth, and F'(-, z) is Lebesgue mea-

surable for all x € R"™;
(ii) there exist M > 0 and a > 0 such that

sup{|v| : v € F(t,x), (t,x) € [0,00) x (0A+aB)} < M; (2.4)

(iii) there exists ¢ € Lo such that F(¢,-) is p(¢)-Lipschitz continuous for a.e. ¢t € R*.

We shall also need the following two assumptions:

(AC) there exist 7 > 0 and v € L), such that F(-,z) is 7-left absolutely continuous,
uniformly for x € 0A + 7B;

(IPC) for some ¢ > 0, n > 0 and every (t,z) € [0,00) x (0A 4+ nB) N A there exists
v € co F(t,x) satisfying

{y+[0,e](v+eB) : ye (x+eB)NA} C A. (2.5)

We state next a uniform neighboring feasible trajectory theorem for left absolutely

continuous with respect to time set-valued maps.

Theorem 2.3.1. Assume (H), (AC), and (IPC). Then for every 6 > 0 there exists a
constant § > 0 such that for any [to,t1] C [0,00) with t; — to = §, any F-trajectory
Z(+) defined on [to, t1] with Z(ty) € A, and any p > 0 satisfying

p= sup da(2(1)),

tG[to,tﬂ

we can find an F-trajectory x(-) on [to, t1] such that z(ty) = Z(ty),

12 = z||oojtor) S Bp & x(t) €int A Vi€ (to, ta].
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The following Proposition can be proved using the same arguments as in [BFV12,
pp. 1922-1923].

Proposition 2.3.2. Assume (H), (AC), (IPC), and that the assertion of Theorem 3.3.3
is valid under the additional hypothesis: F(t,x) is convez for all (t,z) € [0,00) x R™.
Then the assertion of Theorem 3.3.3 is valid under (H), (AC), and (IPC) alone.

of Theorem 3.3.3. Fix 0 > 0 and let us relabel by 7 the constant given by min{n, 7, a}.
Let

k>0,A>0,p>0,and meNT (2.6)
be such that k£ > 1/e,
(1) A<e; (zz) p+MA<e, kp<e (ii) 4AM <, (2.7)
Q ( ©(A) + ( JM) <&
(m) 2e% B (0, (A) + 0,(A) M)k < (ke — 1), (28)
and 5
. < A. (2.9)

We remark that all the constants appearing in (2.6) do not depend on the time interval
[to, 1], the trajectory &(-), and p.

By Proposition 2.3.2, we may assume that F(-,-) = co F(-,-). We consider three
cases.

Case 1: p<pandd <A.

By (2.7)-(ii7), if 2(ty) € A\(OA + IB), then z(-) = Z(-) is as desired. Suppose
next that (tg) € (0A+ IB) N A. Let v € F(to,%(t9)) be as in (IPC) and define
y : [to, 1] = R" by y(to) = Z(to) and

, B v te [to, (to + k‘p) AN tl]
v = { V(t—kp) L€ (to+kp ta] N J, (2.10)

where J = {s € (to + kp,t1] : &'(s — kp) exists}. Hence
12— lloo,fto.) < 2MEp. (2.11)

By Filippov’s theorem (cfr. [AF09]) there exists an F-trajectory x(-) on [to, ;] such
that x(tg) = y(tp) and

Jyy ey [* /
Iy = llocizon < 0 77 [ drgeyo (v () ds 212)
0
for all ¢ € [to,t1]. Then, using (H)-(iii), (2.3), and (2.10), it follows that

0,(A) + o(s)M(s —tg) a.e. s € [to, (to + kp) A ti]

) (2.13)
o(s)Mkp + [J 4, 7(T)dT ae. s € (to+ kp, t1].

dp(sys) (Y (s)) < {
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Hence, we obtain for any t € [to, (to + kp) A t1]

| o0/ (5)) ds < (65(2) + 08t ~ to),

and, using the Fubini theorem, for any ¢ € (to + kp, t1],
t
L ey 0/(9)) ds < (6,(8)M +6,(3)kp.

Thus, by (2.12), for all ¢ € [to, (to + kp) A t1]
ly — @lloo fron < €% (0,(A) + 0,(A)M)(t ~ to) (2.14)

and
[y = oo fto.tr] < 26" (0,(A) + 6,(A) M) kp. (2.15)

Finally, taking note of (2.11), it follows that [|Z — /e 19,4,] < S1p, Where §y = 2(M +
B0, (A) + 0,(A)M))k.

We claim next that z(t) € int A for all ¢ € (to, t1]. Indeed, if t € (tg, (to + kp) A t1],
then from (IPC), (2.7)-(i) and (2.10) it follows that

y(t) + (t — to)eB = &(to) + (t — to)(v + €B) C 4,

and it is enough to use (2.14) and (2.8)-(i).
On the other hand, if t € (ty + kp,t1], then for () € IIA(Z(t — kp)) we have
|2(t — kp) — 7(t)| = da(Z(t — kp)) < p, and, from (2.10), it follows that

y(t) € m(t) + kpv + pB. (2.16)

Now, since |7(t) — &(to)| < |2(t —kp) —7(t)| +|2(t — kp) — Z(to)| < p+ MA, from (2.5)
and (2.7)-(ii) we have

7(t) + kpv + kpeB = 7(t) + kp(v + €B) C A. (2.17)

Finally, (2.16) and (2.17) imply that y(t) + (ke — 1)pB C A. So, the claim follows from
(2.8)-(27) and (2.15).

Case 2: p>pand d < A.

By the viability theorem from [FP96], we know that there exists a feasible F-
trajectory z(-) on [to, 1] starting from #(to). Note that da(z(t)) = 0 for all ¢t € [to, t1].
By the Case 1, replacing &(-) with z(-), it follows that there exists a feasible F-trajectory
x(+) on [tg,t1] such that x(ty) = Z(to) and z((to,?1]) C int A. Hence, by (2.4), we have
|2 = oo fto,tn] < 2MA < PBop, with S = MgA

Case 3: 6 > A.

The above proof implies that in Cases 1 and 2, 31, B> can be taken the same if ¢ is
replaced by any 0 < §, < 8. Define 3 = 8, V By and let {[7*,71]}7, be a partition of
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[to, t1] by the intervals with the length at most §/m.
Put z¢(-) := #(-). From Cases 1 and 2, replacing [to, t;] by [72,7}] and setting

po = max{p, sup da(zo(t))},
telto,t1]

we conclude that there exists an F-trajectory x1(-) on [r1,7}] = [fo,7;] such that
xl(to) = i’(to) xl((t0,7+]) - 1ntA and

Hxl - xo”oo,[rl,'r}r] < BpO

Using Filippov’s theorem, we can extend the trajectory z(-) on whole interval [to, ;]
so that N

|21 — Zolloo,fto,1] < o 27 dTBPO < KfBpo,
where K := e (),

Repeating recursively the above argument on each time interval [7*, 7|, we conclude
that there exists a sequence of F-trajectories {z;(-)}™, on [to, 1], such that z;(tg) =
2(to), ;((to,71]) C int A for all ¢ = 1,...,m, xj(-)\[twfl] =x;4(-) forall j =2,...m
and

1% — i1 ]| oo fro.1] < K Bpic Vi=1,..,m, (2.18)

where p; 1 = max{p, sup,cp, +,) da(zi-1(t))}. Notice that
pi < pic1 + || — 21| oo, fto,t1] Vi=1,..,m. (2.19)
Taking note of (2.18) and (2.19) we get for all i = 1,...,m
2 = Zictllootots) < KB(picz + i1 — Ticalloo,totr))
< KB(L+KP)pis < .. < KB(1+ KB)!

Then, letting x(-) := z,,(+) and observing that py < p, we obtain

|z — f”oo,[to,tl] < Z |z: — $i—1||oo,[to,t1] Z (1+ Kﬁ < Bsp,
i=1 =1

where (5 = (1 + K()™ —
Then all conclusions of the theorem follow with 3 = 3V 5. Observe that 8 depends
only on ,n, M, §, and on functions ~(-) and ¢(-).
O

When F'is merely measurable with respect to time, then a stronger inward pointing

condition has to be imposed:

(IPC)’ there exist n > 0, 7 > 0, M > 0 such that for a.e. t € [0,00), any y € 0A + nB,
and any v € F(t,y), with supneN?}nm, v) > 0, there exists w € F(t,y) N B(v, M)
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such that

sup {<n7w>7 <n>w - U>} g -,
nENyl_’77

where Nz},n ={ne St :neNY(),z€dANBy,n)}

Let us denote by (H)" the assumption (H) with (H)-(ii) replaced by a weaker re-

quirement:
(H)" (ii) 3¢ € Lioe such that F(t,z) C q(t) B, Y € 0A, for a.e. t € [0,00).

Remark 2.3.3. We notice that from (H)’-(ii) and (iii) it follows that for any a > 0
there exists ¢, € Lioc such that F/(t,z) C go(t) B fora.e. t € [0,00) and all z € dA+aB.

Theorem 2.3.4. Let us assume (H)" and (IPC)’. Then the assertion of Theorem 3.3.3

1s valid.

Proof. (IPC)’ corresponds to the conclusion of [FM13a, Proposition 7] with r, n, and
M defined uniformly over A. Thanks to this observation and Remark 2.3.3 exactly the
same arguments as those in [FM13a, proof of Theorem 5] can be used to prove the

theorem.
O]

We provide next a condition that simplifies (IPC)’.

Proposition 2.3.5. Assume that for somen > 0,7 > 0, M > 0, and I' C [0, 00),
with p(I') = 0, and for any t € [0,00)\I', y € 0A 4+ nB, and v € F(t,y), with
supneNZ}n<n,v> > —r, there exists w € F(t,y)NB(v, M) satisfying supneN?}nm,w—v) <
—. Thén, (IPC)" holds true for all t € [0,00)\T. |

Proof. Indeed, otherwise there exist t € [0,00)\I', y € 0A + B, and v € F(t,y), with
SUDpent | (n,v) > —r, such that for any w € F(t,y)NB(v, M) satisfying SUPen | (n, w—
v) < —r we have supneN;m(n,w> > —r. Now, by our assumptions, there exists w; €
F(t,y)N B(v, M) such that SUD,ent | (n,w; —v) < —r. Since ad absurdum we supposed
that SupneN;n(n, wy) > —r, it follows that there exists we € F'(t,y)NB(v, M) satisfying

SUPpent (n,wy —w;) < —r. Then for any n € Nylm,

(n,we —v) = (n,wy —wy) + (n,w; —v) < —2r.

[terating the same argument, we conclude that there exists a sequence {w;};en+ in
F(t,y) N B(v, M) such that supneNyln(n, w; —v) < —ir for all i € NT. This contradicts
the boundedness of F(t,y) N B(v, M) and ends the proof.

[
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Now, consider the following state constrained differential inclusion

2'(t) € F(t,z(t)) a.e.t € [ty,o0)
z(t) € A Vit e [ty,00),

where to > 0. A function z : [ty, 00) — B" is said to be an F.-trajectory or a feasible
Fe-trajectory if |y, 4,(+) is an F-trajectory or a feasible F-trajectory, respectively, for
all t1 > to.

Theorem 2.3.6. Assume that either (H), (AC), and (IPC) or (H)" and (IPC)" hold

true. Furthermore, suppose that
1 ot

limsup — [ ¢(7)dr < 0.
twoo T J0O

Then there exist C > 1, K > 0 such that for anyty = 0, any 2°, 2 € A, and any feasible
F-trajectory x : [ty,00) — R", with x(ty) = 2%, we can find a feasible Fy-trajectory
T : [tg,00) = R™, with Z(tg) = x*, such that

|Z(t) — 2(t)| < Ce®zt — 2| Vit > to.

Proof. Let 6 = 1 and > 0 be as in Theorem 3.3.3 (or Theorem 2.3.4). Consider
K; > 0,K, >0,k > 0 such that

t+1 -
264+ 1 < e and / o(s)ds < Kot +k YVt >0. (2.20)
0

Fix 2%, 2! € A, with z! # z° and a feasible F,-trajectory x : [ty,00) — R™ with
x(ty) = zo. By Filippov’s theorem, there exists an F-trajectory o : [to,to + 1] — R"
such that yo(to) = 2! and

to+1

d
Hyo — x"oo’[t07t0+1] g e to Lp(s) 5‘$1

— 2.
Denote by xq : [to, to + 1] — R" the feasible F-trajectory, with xo(ty) = x!, satisfying

the conclusions of Theorem 3.3.3 with Z(:) = yo(+). Thus

l|zo — 3/0Hoo,[to,to+1] < 5(maxte[to,to+1] da(yo(t)) + \331 - -750|)

) 1 0 ft0+1 ‘P(S)ds 1 0
< Bllyo = llos fto o1y + 27 — 27]) < 20e vt —

to
and therefore

|9Uo - yo||oo,[to,to+1] + ||y0 - 9U||oo,[to,to+1]

Xo— X o0 <
[0 = @lloo,ito.to+1] < | Jra (2.21)
<28+ 1)l Tt —af].

Now, applying again Filippov’s theorem on [ty + 1,%o + 2], there exists an F-trajectory
y1: [to+ 1,0 + 2] = R™, with y;(to + 1) = xo(to + 1), such that, thanks to (2.21),

_ [ es)ds; 1 o
ly1 = 2l|oo,to 41,042 < (28 + 1)eto lz" — 7. (2.22)
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Denoting by x; : [to+1, tp+2] — R™ the feasible F-trajectory, with z1(to+1) = zo(to+1),
satisfying the conclusions of Theorem 3.3.3, for Z(-) = y;(+), we deduce from (2.22), that

[ o(s)ds) 4 0
21 = Y1lloo,to+1.00+2) < B(2B + 1)eto lz" — 2. (2.23)
Hence, taking note of (2.22) and (2.23),
fo+2 s)ds
1 = oo 1042 < 2B+ 160 FE |l — a0,

Continuing this construction, we obtain a sequence of feasible F-trajectories x; :
[to + 1, to + i + 1] — R” such that x;(tg + j) = xj_1(to + j) for all j > 1, and
to+i+1

i s)ds .
12 — @lloo froritorivn < (28 + 1) edo POl _ 00 vie N, (2.24)

Define the feasible F-trajectory Z : [tg, 00) — R™ by Z(t) := x;(t) if t € [to+1i,to+1+1]
and observe that Z(ty) = z'.

Let t > tg. Then there exists ¢ € N such that t € [tg +4,to + i + 1]. So, from (2.24)
and (2.20), it follows that

to+it1

#(t) — ()] < (284 1)itledn PPl g0
< ef(28 + 1)elFitk2)totd)| 1 — 20| < Cef |zt — 29,

where K = K| + Ky and C = eF(28 + 1).

2.4 Uniform IPC for functional set constraints

Consider the state constraints of the form
A=A, Ai={z eR" : g;(x) <0} i=1,...m,
i=1
where g; : R" — R is a C'! function with bounded Vg;(-) for all i € I := {1,....m}.
Furthermore, we assume in this section that there exist M > 0 and ¢ > 0 such that
sup{|v| : v € F(t,x), (t,z) € [0,00) x A} < M and F(t,-) is p-Lipschitz continuous
for any ¢t > 0.

Proposition 2.4.1. Assume that for some 6 > 0, r > 0 and for all (t,x) € [0,00) x DA
there exists v € co F(t,x) satisfying

(Vgi(x),v) < —r Vie U I(2),
z€B(x,0)

where [(z) ={i € I : z € A;}. Then (IPC) holds true.
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Proof. Let us set J(r) := U.cp(se) [(2) for all z € 0A. Fix (t,z) € [0,00) X 9A and
v € co F(t,x) satisfying (Vg;(x),v) < —r for all i € J(z). Pick

Vagi(r) — Vg
k > max sup IVgi(r) — Vgi(y)|
€L gy ‘55_3/‘

& L > max sup |Vg;(z)].
i€l rER™

We divide the proof into three steps.

Step 1: We claim that there exists ° > 0, not depending on (¢, z), such that for all
y € B(xz,n') we can find w € co F(t,y), with |w —v| < /4L, satistying for all i € J(z),

(Vgi(y),w) < —r/2.

Indeed, for all i € J(z) and y € B(x,r/4kM) we have

(Vai(y),v) = (Vai(y) — Vai(x),v) + (Vai(z),v) < kMly — 2| —r < J’Z

and for all w € R™ such that |w —v| < r/4L
’
(Vgily), w) = (Vgi(y), w = v) +{Vgi(y),v) < Llw — o] =3r/4 < —3.

Since F(t,-) is -Lipschitz continuous, there exists w € co F(t,y) such that |w — v| <
r/4L whenever |y — x| < r/4pL. So the claim follows with n = min{r/4¢L,r/4kM}.

Step 2: We claim that there exists &' > 0, not depending on (¢, x), such that for all
y € B(x,n') we can find w € co F(t,y) such that

(Vgi(2),w) < —r/4  Vze B(y,&), Vo € B(w, &), Vi € J(x).

Indeed, let y € B(z,n') and w € co F(t,y) be as in Step 1. Then for any @ € R"™ such
that [ — w| < /8L and for all i € J(z) and z € R™,

(Vgi(z),w) = (Vgi(2) = Vgi(y), w) + (Vgi(y), w — w) + (Vgi(y), w)
< k(M +r/AL +r/8L)|z —y| +1r/8 —1r/2.
So the claim follows with & = min{k~*(M + r/2L)"'r/8, r/8L}.

Step 3: We prove that there exist 7 > 0, ¢ > 0, not depending on (¢, x), such that
for all y € B(x,n) N A we can find w € co F(t,y) satisfying

z+TwE A Vze B(y,e)NA,Vw € B(w,e), VO 7 < e. (2.25)

Let y € B(xz,n) N A and w € co F(t,y) be as in Step 2. Then, by the mean value
theorem, for any 7 > 0, any z € B(y,¢') N A, any w € B(w,€’), and any i € J(x) there
exists o, € [0,1] such that

gi(2) + 7(Vgi(z + o,70), )
7(Vgi(2),®) + k(M + r /AL + £')*72
T+ k(M +r/AL + e)?272.

gi(z + Tw0)

NN
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Choosing n € (0,7] and ¢ € (0,¢'] such that n + (M + r/4L +¢) < 0 and € <
k=Y (M + r/AL + €')~2r/4, it follows that for all z € B(y,e) N A, w € B(w,¢), and all
0<7<e¢

z+ 7w € B(x,0) (2.26)

and
gi(z+71w) <0  Vie J(x). (2.27)

Furthermore, by (2.26) and since B(z,d) C A; for all j € I\J(z), we have for all
2 € B(y,e)NA, w € B(w,e),and all 0 < 7 < ¢

gi(z+71w) <0  Viel\J(x). (2.28)

The conclusion follows from (2.27) and (2.28).

2.5 Lipschitz continuity for a class of value func-

tions

Now we give an application of the results of Section 3 to the Lipschitz regularity of the
value function for a class of infinite horizon optimal control problems subject to state
constraints.

Let us consider the problem B, stated in the Introduction. Recall that for a function
q € Li([to,00);R) the integral [2°q(t)dt := limp_ o ftf q(t) dt, provided this limit

loc

exists. We denote by (h) the following assumptions on f and I:

(i) there exists o > 0 such that f and [ are bounded functions on
{(t,z,u) : t >0,z € (0A+aB), uec U(t)};
(ii) for all (¢,x) € [0,00) x R™ the set
{(f(t 2, w), Ut 2,0) = we U)}

is closed;

(iii) there exist ¢ € Ll ( [0,00); R") and k € Lo such that for a.e. ¢ € RT and for all
z,y € R", uelU(t),

’f(t,%,U) - f<t7y>u)’ + ]l(t,x,u) - l(tay’u)’ < k(t>’$ - y”

[F (&2 w)| + |1 2, )] < e() (1 J2));
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(iv) limsup, o 1 [o(c(s) + k(s)) ds < oo;
(v) for all z € R™ the mappings f(-,x,-), I(-, x,) are Lebesgue-Borel measurable.

Furthermore, we denote by (h)" the assumptions (h) with (h)-(i) replaced by:

(h)" (i) 3q € Lo such that for a.e. t € [0,00)
supev( (f (¢ 2, w)| + |1t 2, u)]) < q(t), Vo e dA.

In what follows G : [0,00) x R™ — R™*! is the measurable with respect to ¢ set-valued

map defined by
G(t,z) ={(f(t,z,u),l(t,x,u)) : we U(t)}.

For control systems, the conditions (IPC), (AC), and (IPC)’ take the following form:

(ipc) for some ¢ > 0,7 > 0 and every (t,z) € [0,00) x (0A + nB) N A there exist
{ai}y C [0, 1], with > o = 1, and {u;}1, C U(t) satisfying

{y—{— [0, €] <Zaif(t,x,ui) —}—dB%) cy € (v +eB) ﬂA} C A;

i=0

(ac) there exist 7 > 0 and v € L), such that G(-,z) is 7-left absolutely continuous,
uniformly for x € 0A + 7B;

(ipc)’ there exist n > 0, 7 > 0, M > 0 such that for a.e. t € [0,00), any y € OA + nB,
and any u € U(t), with sup,cn1 (n, f(t,y,u)) = 0, there exists w € {w' € U(t) :
|f(t,y,w') = f(t,y,u)| < M} such that

Slj’l}f <n7 f(ta va)>7 <n7 f(taya w) - f(tv Y, u)>} < T
neNy

Remark 2.5.1. If there exist 7 > 0, v, ¥ € Lioc, and k > 0 such that (f(-, z,u), (-, z,u))

is 7-left absolutely continuous, uniformly for (z,u) € (0A + 7B) x R™, U(-) is -left

absolutely continuous, and f(¢,z,-) is k-Lipschitz continuous for all (¢,z) € [0, 00) X

(OA + 1B), then (ac) holds true.

Theorem 2.5.2. Assume that either (h), (ac), and (ipc) or (h)" and (ipc) hold true.
Then there exist b > 1, K > 0 such that for all A > K and every t > 0 the function
V(t,-) is L(t)-Lipschitz continuous on A with L(t) = be~ A5t

Furthermore, for all A > K and for every feasible trajectory x(-), we have
tlggo V(t,z(t)) = 0.

Proof. We notice that, by the inward pointing conditions (ipc) or (ipc)” and the viability

theorem from [FP96], the problem B, admits feasible trajectory-control pairs for any
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initial condition. Pick (¢p,z9) € [0,00) x A. Using the sub-linear growth of f, [, and

the Gronwall lemma, we have 1 + |z(¢)] < (1 + |x0)\e 1o )4

trajectory-control pair (z(-),u(-)) at (¢o, zo)-

® for all ¢t > t, and for any

Let a; > 0, as > 0 be such that
t
/ c(s)ds < art + ao YVt > 0. (2.29)
0

For all T' > ty, we have

o c(s) ds

et a0 ()] de < i e M1+ [zo)elo O at (2.30)
<

(14 |zo)e® [, e-P=ate(t) dt.
Then, by (2.29) and denoting (t) = J* ¢(s) ds, for any A > a;
S e i, 2(t), u(t))] dt
< (U fale ([ Ot)] ) + (- a) e Amwm ) (2.31)
< (1+ |zo)e2 (e= O () T + ag) + (asty ) e (mann)

Passing to the limit when 7" — oo, we deduce that for every feasible trajectory-control
pair (x(+),u(-)) at (to, zo)

/°° NIt 2(t), u(t))| dt < o0 YA > ar.
to

From now on, assume that A > a;. Fix t > 0 and 2!, 2° € A with 2! # 2°. Then,
for any d > 0 there exists a feasible trajectory-control pair (xs(-),us(+)) at (¢, 2%) such
that

V(t,2°) + e %zt — 20| > / e (s, z5(s), us(s)) ds.
t
Hence
Vit xt) = V(t,2°%) < e %zt — 20+
e NU(s, 2(s), uls)) ds — 7 e U(s, w5(s), us(s) ds|

for any feasible trajectory-control pair (z(-),u(-)) satisfying x(t) = z'.

(2.32)

Define G(t,z,2) = G(t,z) for all (t,x,2) € [0,00) x R x R and consider the
following state constrained differential inclusion in R+
(2,2)(s) € G(s,2(s), 2(s)) a.e. s € [t,00)
x(s) € A Vs et o).

Putting z5(s) = [71(&,25(€),us(§)) dE, by Theorem 2.3.6 applied on A x R and the
measurable selection theorem, there exist C' > 1, K > 0 such that for all § > 0 we can

find a Go-trajectory (#5(-),Z5(-)) on [t,00), and a measurable selection iis(s) € U(s)
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a.e. s > t, satisfying
(Z5, %) (s) = (f(s,25(s),Us(s)), (s, Ts(s), Us(s)))  ae s>t
(z5(t), 25(t)) = (21,0), Z5([t,00)) C A, and for any s >t
|Z5(5) — w5(s)] + |Z5(s) — z5(s)| < Celat — 2. (2.33)

Now, relabelling by K the constant K V aq, by (2.33) and integrating by parts, for all
A>K,all 7>t and all § >0

ST €15, Bs(s), () ds — [ e 15, w5(5), us(s)) ds
< [[e7 U5 U #5(6), 85(9)) dE = [ UE 25(€), us(9)) dE)]|

AT € (16 25(8), 1(€)) dE — [} U8, 5(8), us(€)) dE) ds|
< e M|Z(1) — 25(T)| + N [] e ¥]25(s) — 25(s)|ds (2.34)
< Ce el |zt — 20 + NC [T e A 503|gt — 20| ds
= (Cem R 40 [ ] ) et — 2|
:(_%e—u K)r _|_)\)\C’K ()\K)|x xolgAAcI(e (A— K)| _x0|.

Taking note of (2.32), (2.34), and putting § = A — K, for all A > K we get

AC
Nk + 1) e~ MKl 0,

Vt,x') =V (t,2") < (

By the symmetry of the previous inequality with respect to ! and 2°, and since )\, C,

and K do not depend on ¢, x!, and z°, the first conclusion follows.

Now, let (tp,x9) € [0,00) X A and consider a feasible trajectory X(-) at (¢, o).
Let t > ty and (z(:),u(:)) be a feasible trajectory-control pair at (¢, X(¢)) such that
V(t, X(t) > 7= e (s, x(s), u(s)) ds — ;. Then

o0 1
VEXE) < [ e il a(s),uls) ds + 7.
From (2.29) and (2.30), we have for all " > ¢
T e MU(s, a(s), u(s))] ds < [ (L X (0))el O efs) ds

< (1+ ]xol)ft e_)‘sefto e(s) ds’ ef:c(s') ds’ c(s)ds
< (1 |zo) ST ePoels D o (5) ds < (14 |ao|)eo2 [T e~ Pa0)se(s) ds.

Then, arguing as in (2.31) with ¢, replaced by ¢ and taking the limit when 7" — oo, we
deduce that

1
VEXE) < 1+ ol (a4 320 4 a) O 4

)\
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Since K > aq, the last conclusion follows passing to the limit when ¢ — oo.

]

Corollary 2.5.3. Assume that either (h), (ac), and (ipc) or (h) and (ipc)’ hold true
and that f, | are bounded. Consider any N > 0 with

N >sup{|f(t,z,u)| + |I(t,z,u)| : t =20,z € R", ue U(t)} < co.

Then, for any X > 0 sufficiently large, for any x € A, and any t > 0 the function V (-, x)
is Lipschitz continuous on [t,00) with constant (L(t) + 2€_>‘t) N.

Proof. By Theorem 2.5.2, when A > 0 is large enough, V (¢, -) is L(t)-Lipschitz contin-
uous on A. Fix x € Aand t > 0. Let 5,3 € [t,00).
Suppose that s > 5. Then, by the dynamic programming principle, there exists a

feasible trajectory-control pair (z(-),u(-)) at (8, x) such that

Vis,a) = V() <|V(s2) = Vis,a(s)] + 7 e N, 3(0). 7€) dg
+Nls — §le M
L(s)N|s — 3| + N|s — 3le ™ + N|s — 3|e=™

_ (2.35)
< (L(t) +2¢7) Ns — 5],

Arguing in a similar way, we get (2.35) when s < §. Hence, by the symmetry with
respect to s and § in (2.35), the conclusion follows.

[]

2.6 Applications to the relaxation problem

Let f(-), {(-), and U(-) be as in B,,. Consider the relaxed infinite horizon state con-
strained problem B¢
Vi(to,wo) = inf [ et x(t), w(t)) dt,
to
where the infimum is taken over all trajectory-control pairs (z(-),w(-)) subject to the

state constrained control system

2(t) = f(t,z(t),w(t)) a.e.t € [ty o0)

l’(to) = 29
w(t) € W(t) a.e. t € [ty,0)
z(t) € A Vit € [to, 00),

where A > 0, W : [0,00) = RO+ x R™1 is the measurable set-valued map defined
by
W(t) := (xi_,U(t)) x {(ag, ... € R Zaz =1, a; > 0 Vi},
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and the functions f : [0, 00) x R" x RV« R R and [ : [0, o0) x R? x R1m 5
R — R are defined by: for all t > 0, x € R", and w = (ug, ..., Un, Qg, .., Atp) €
R+1m o Rn+1

f(t,z,w) Zalf (t,z,u;) & I(t,z,w) = zn:ail(t,x,ui).

Theorem 2.6.1. Assume that either (h), (ac), and (ipc) or (h)" and (ipc)’ hold true.
Then, for all large X >0, V(-,-) =V (-,-) on [0,00) x A.

Proof. Notice that V(t,z) < V/(t,z) for any (t,2) € [0,00) x A, and that Theorem
2.5.2 implies that V (¢, -) and V (¢, -) are Lipschitz continuous on A for all t > 0 whenever
A > 0 is sufficiently large. That is, in particular, they are continuous and finite.

Fix (to,x9) € [0,00) x A. We claim that: for all j € N* there exists a finite
set of trajectory-control pairs {(xy(-),ux(-))}k=1,.; satisfying the following: x}(s) =
f(s,20.(s),up(s)) a.e. s € [to,to+ k] and zx([to,to+k]) C Aforall k=1,...,5;if j > 2,
Trliotork—1]() = 2p—1(-) forall k =2, ... j;and forall k =1,..., 5

V(to, $0) 2 V(to + k, l’k<t0 + k)) + 67>\tl(t LCk( ) dt — 82 - (236)

to

We prove the claim by the induction argument with respect to j € N*. By the dynamic
programming principle, there exists a trajectory-control pair (Z(-),w(-)) on [tg,to + 1],
feasible for the problem B¢ at (to, x¢), such that

~ < ~ to+1 ~

V(to, z0) + 1> Vto+1,%(tg + 1)) + 5 e MI(t, Z(t),w(t)) dt. (2.37)
By the relaxation theorem for finite horizon problems (cfr. [Vin00]), for any h > 0 there
exists a measurable control 4"(t) € U(t) a.e. t € [to,to + 1] such that the solution of

the equation (2")'(t) = f(t,2"(t),a"(t)) a.e. t € [to, to + 1], with 2"(¢y) = zo, satisfies
12" = Z||oo,ltorto+1) < I
and

to+1 ~ to+1
/t e—W(t,:z(t),w@))dt—/ e MU(t, 20 (1), 6" (t)) dt| < h.

0 to

Now, consider the following state constrained differential inclusion in R**!

(z,2)(s) € G(s,2(s),2(s)) a.e. s € [ty, to+ 1]
z(s) € A Vs € [to, to + 1],

where

G(t,x, 2) = {(f(t,z,u), e M(t,z,u)) : uweU)}.

Letting X"(-) = (2"(-), 2"(-)), with 2"(t) = [{ e (s, #"(s),@"(s))ds, by Theorem
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3.3.3, or Theorem 2.3.4, and the measurable selection theorem, there exist § > 0 (not
depending on (t, o)) such that for any h > 0 we can find a feasible G-trajectory
XMy = (z"(), 2"(")) on [to,to + 1], with X"(ty) = (0, 0), and a measurable control
uh(s) € U(s) a.e. s € [to, to + 1], such that

(z", 2" (5) = (f(s,2"(s),u"(5)), e 1(s, 2" (s),u"(s))) a.e. s € [to, o+ 1]

and

X" = X loeotor) < B sup  daxa(X"(s)) + ).
s€[to,to+1]

Since sup ez, 7o41] daxe(X"(s)) < || - 2"\l oo jto,to+1], We have

it e (¢, o (t), uh (t)) dt ft°“ e NIt #(), (1)) dt|

< ot e, 2 (1), (1)) di — o+ e 20,840 df!
" to+1 —)\tl<t’xh(t) ()) t0+1 —Atl(t, (t) dt‘
M@+ 1)

and

la* = Flloe oot t) < 12 = B lloc oot + 2" = Blloc ooy < (28 + 1.

Hence, choosing 0 < h < £/4(2 4 1) sufficiently small, we can find a trajectory-control
pair (z"(-), u"(-)) on [tg, to + 1], with u"(s) € U(s) and (z")'(s) = f(s,z"(s),u"(s)) a.e.
s € [to, to + 1], 2"(tg) = g, and z"([to, to + 1]) C A, such that, by (2.37) and continuity
of V(to+1,-)

. . to+1 e

V(to,zo) > V(to +1,2"(to + 1)) + e MUt (), u(t)) dt — 3

to

Letting (z1(+),u1(+)) := (2"(-),u"(-)), the conclusion follows for j = 1.

Now, suppose we have shown that there exist {(zx(-),ux(-))}r=1,. ; satisfying the

claim. Let us to prove it for j + 1. By the dynamic programming principle there exists
a trajectory-control pair (Z(-),w(-)) on [ty + j,to + j + 1], feasible for the problem B¢

at (to + j,x;(to + j)), such that

Vito+j,zi(to+ )+ 555 >V(to+j+ 1,70t +5+1))

+ e M B (1), w(t)) dt.

(2.38)

As before, for every h > 0 there exist a feasible G-trajectory X"(:) = (z"(-), 2"(-)) on
[to+ J, to + 7 + 1], with X"(¢9) = (x;(to + ), 0), and a measurable control u"(s) € U(s)
a.e. s € [to+ j,to + j + 1], such that

(2" 2" (s) = (f(s,2"(s),u"(5)), e I(s,2"(s),u"(s))) a.e. s € [to + j,to + j + 1],
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satisfying
to+j+1 totj+l 7
[, Nt @ @~ [ e 20, @(0) d < A5+ 1)
to+j tots
and
2" = Elloo tto+5.t0 451 < P(28 +1).
Putting

(55() () on [to.to+ ]
(-

(D () on [to+ oo + 5+ 1], (2:39)

(@51(), w1 () = {

and choosing 0 < h < £/2772(283 4 1) sufficiently small, it follows from (2.38) that

V(t() —|—j, .’L’j(to +])) 2 V(to ‘|‘] + 1, Il'j+1(t() ‘l‘] + 1))

+ I e Mt 1y (8), uja (1) dE — 555

So, taking note of (2.39) and (2.40), we obtain

(2.40)

Vi(to, ) = V(to + joaj(to + 7)) + Ji0 ™ e MUt a5 (t), (1)) dt — e o1y 5
>V(to+j+Laplto+i+1) —eXi, & — 75

R e A (8w (8), ua (0) dE + [0 e MU a(8), ug(t)) dt
Vito+j+ 1, zi(to+ 5+ 1) + [0 e MUt w41 (), ujpa (t)) dt

—e T 5
Hence {(zx(-), ur(+)) }x=1,..j+1 also satisfy our claim. Now, let us define the trajectory-

control pair (x(-),u(-)) by (z(t),u(t)) = (xp(t),ur(t)) if t € [to + k — 1,to + k]. Then
((-),u(-)) is a feasible trajectory-control pair for the problem By, at (ty,zo). Since

V(t,z(t)) — 0 when ¢t — +o00, by (2.36), we have

Vto,mo) = [ e M(t,x(t),u(t))dt —e.
Hence, we deduce that V(to,xo) > V (o, 20) — €. Since ¢ is arbitrary, the conclusion
follows.
[
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HAMILTON-JACOBI-BELLMAN EQUATIONS
WITH TIME-MEASURABLE DATA AND
INFINITE HORIZON

VINCENZO BASCO and HELENE FRANKOWSKA
Nonlinear Differential Equations and Applications, 26(1):7, Feb 2019.

Abstract. In this paper we investigate the existence and uniqueness of weak solutions
of the nonautonomous Hamilton-Jacobi-Bellman equation on the domain (0, 00) x 2.
The Hamiltonian is assumed to be merely measurable in time variable and the open
set £ may be unbounded with nonsmooth boundary. The set € is called here a state
constraint. When state constraints arise, then classical analysis of Hamilton-Jacobi-
Bellman equation lacks appropriate notion of solution because continuous solutions
could not exist. In this work we propose a notion of weak solution for which, under a
suitable controllability assumption, existence and uniqueness theorems are valid in the

class of lower semicontinuous functions vanishing at infinity.

3.1 Introduction

The notion of weak (or wiscosity) solution to a first-order partial differential equation
was introduced in the pioneering works [CEL84, CL83, Lio82] by Crandall, Evans,
and Lions to investigate stationary and evolutionary Hamilton-Jacobi-Bellman (H-J-B)
equations, using sub/super solutions involving superdifferentials and subdifferentials

of continuous function associated to C' test functions. In particular, they obtained

69



70 3.1. INTRODUCTION

existence and uniqueness results in the class of continuous functions for the Cauchy

problem associated to the following H-J-B equation
-0V +H(t,x,—V,V)=0 on (0,7) x R",

when the Hamiltonian .7 is continuous, while in [Bar84, Sou85] the authors extended
the existence results to a large class of continuous Hamiltonians. When the solution is
differentiable, then it solves the H-J-B equation also in the classical sense. However,
it is well known that such a kind of notion turns out to be quite unsatisfactory for
H-J-B equations arising in control theory and the calculus of variations (we refer to
[BCDO8, Lio82] for further discussions). Indeed, the value function, that is a weak
solution of H-J-B equation, loses the differentiability property (even in the absence
of state constraints) whenever there are multiple optimal solutions at the same initial
condition. When additional state constraints are present it also loses its continuity.
At most we expect lower semicontinuity of the value function. So, subsequently, the
definition of solution was extended to lower semicontinuous functions.

For the Mayer problem (of optimal control theory) free of state constraints involving
a continuous cost function and Lipschitz continuous dynamics, the uniqueness of con-
tinuous solutions of the associated H-J-B equation can be addressed using the notion
of viscosity solution. Further, the definition of solution can be stated equivalently in
terms of “normals” to the epigraph and the hypograph of the solution. But, when the
dynamics is only measurable in time such equivalence may fail to be true. Neverthe-
less, the study of uniqueness of weak solutions can be carried out by using the solutions
concept from [FPRI5], see also Sections 3 and 4 below, based on “normals” to the epi-
graph. Previously, to deal with Hamiltonian measurable in time, in [Ish85] the author
proposed a new notion of weak solution (cfr. [LP87] for equivalent formulations of such
a kind of solutions) in the class of continuous functions, proving, by a blow-up method,
the uniqueness and existence in the stationary case on a general open subset of R” and
for the evolutionary case on (0,00) x R™. The C* test functions needed to define such
solutions are more complex, involving in addition some integrable mappings. We point
out that, under the assumptions that J# is measurable in time, Lipschitz continuous
in the space variable, and convex in the last variable, the so called representation the-
orems (cfr. [FS14, Ram05] and the reference therein) associate to the H-J-B equation
a control problem in such a way that the value function is a weak solution. This yields
an existence result for weak solutions.

To deal with discontinuous solutions, in [Ish92], Ishii introduced the concept of lower
and upper semicontinuous envelopes of a function, proving that the upper semicontin-
uous envelope of the value function of an optimal control problem is the largest upper

semicontinuous subsolution and its lower semicontinuous envelope is the smallest lower
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semicontinuous supersolution. This approach, however, does not ensure the uniqueness
of (weak) solutions of the H-J-B equation. On the other hand the upper semicontinu-
ous envelope does not have any meaning in optimal control theory while dealing with
minimization problems (the lower semicontinuous envelope determines the value func-
tion of the relaxed problem). In [BJ90, BJ91, Fra93| a different concept of solutions
was developed for the H-J-B equation associated to the Mayer optimal control prob-
lem not involving state constraints, but having a discontinuous cost. In this approach
only subdifferentials are involved. In particular, in [Fra93], results are expressed using
the Fréchet subdifferentials instead of C! test functions. By [CEL84, Proposition 1.1],
Fréchet subdifferentials of continuous functions coincide with those defined in [CL83]
via C! test functions. While investigating in [FPR95] the merely measurable case, it
became clear that in order to get uniqueness, it is convenient to replace subdifferentials
by normals to the epigraph of solutions. Such “geometric" definition of solution avoids
using test functions and allows to have a unified approach to both the continuous and

the measurable case.

To deal with state constrained problems, the usual assumptions on data may be
not sufficient to derive existence and uniqueness results for the H-J-B equations. In
[Son86] Soner proposed a controllability assumption (the Slatter like assumption) to
investigate an autonomous control problem, recovering the continuity of the value func-
tion through an inward pointing condition (under the assumption that the set  is
bounded with 9Q € C?): that is, he assumed that for any z € 9Q we can find a
control u satisfying ( f(x,u),v,) < 0, where v, is the outward unit normal to Q at x
and f is the dynamics of control system. Such condition implies uniqueness of viscos-
ity solutions. However, it cannot be used for sets with nonsmooth boundary and the
boundedness assumption on {2 may be quite restrictive for many applied models: for
instance, macroeconomics models often consider cones as state constraints. To allow
nonsmooth boundaries, Ishii and Koike generalized the concept of Soner’s condition in
the framework of infinite horizon problems and continuous solutions (cfr. [IK96] and
the references therein). More generally, various versions of inward pointing condition
are useful to get continuity or Lipschitz continuity of the value function, see for in-
stance [BF|. Furthermore, in [FP99, FP00| the authors, dealing with paratingent cones
and closed set of constraints with possibly empty interior, carry out the analysis under
another controllability requirement named outward pointing condition. Such condition
ensures, roughly speaking, that any boundary point of €2 can be reached by trajectories
laying in the relative interior of €). The outward pointing conditions allow furthermore
to use the so called backward neighboring feasible trajectory theorems, fundamental

to address the control systems under state constraints. It was used, in particular, in
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[FM13a], to study an H-J-B equation on finite time interval, when the Hamiltonian is
convex and positively homogeneous in the third variable.

We would like to underline here that, in contrast, the inward pointing condition
is neither needed, nor well adapted in the context of lower semicontinuous functions
because it does not imply uniqueness of solutions to the H-J-B equation unless further
regularity assumptions are imposed on the solutions.

The novelty of our work consists in examining the weak solutions (in the sense of
Definition 3.3.2 below) of the H-J-B equation on (0, 00) x £ (where €2 is an open sub-
set of R™ with possibly nonsmooth boundary) and with time-measurable Hamiltonian
(associated with an infinite horizon optimal control problem). Proofs of uniqueness
make use of the geometric properties of epigraphs of such solutions. We recover the
uniqueness, from a neighboring feasible trajectory theorem (cfr. [BF]) under a back-
ward controllability assumption, in a class of lower semicontinuous functions vanishing
at infinity. More precisely, we prove the existence and uniqueness of weak solutions of

the following problem
—OW + 7 (t,x,—V, W) =0 on (0,00) x Q
hmt%oo SupyEdomW(t,') |W(t7 y>| =0.

The outline of this paper is as follows. In Section 2 we introduce notations and
recall some results from nonsmooth analysis. The main result is stated in Section 3
whose proof is left to Section 4. In the last section we discuss the particular case of the

Lipschitz continuous solutions.

3.2 Preliminaries

We denote by |- | and (-, -) the Euclidean norm and scalar product in R¥, respectively,
and by p the Lebesgue measure. Let (X, |-|y) be a normed space, B(x,d) stand for
the closed ball in X with radius 6 > 0 centered at z € X and B = B(0,1). For a
nonempty subset C' C X we denote the interior of C' by int C', the boundary of C by
0C', the convex hull of C' by co C, its closure by ¢o C, and the distance from x € X to
C by do(z) :==inf {|z —y|yx : y € C}. If X = R¥ in what follows “ =" stands for the
negative polar cone of a set, i.e., C~ = {p ER* : (p,c) <0 Vee C’}. Moreover, we
denote the positive polar cone of C' by CT := —C".

Let I and J be two closed intervals in R. We denote by L!(I; J) the set of all J-valued
Lebesgue integrable functions on I. We say that f € L} (I;J) if f € L'(K;J) for any
compact subset K C I. We denote by 4. the set of all functions f € L ([0, 00); RT)

such that lim,_,o 0(0) = 0 where 8¢(c) = sup { [, f(7)dr : J C [0,00), u(J) < o}. We
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recall that for a function ¢ € Li,.([0, c0); R) the integral [;° q(s) ds = lim7_,o ft:OF q(s) ds,
whenever this limit exists.

Let D C R™ be nonempty and {Ap}, ., be a family of nonempty subsets of RF.
The upper and lower limits, in the Kuratowski-Painlevé sense, of A, at hg € D are the
closed sets defined respectively by

Limsup A, = {v € R* : liminfdy, (v) = 0} :

h—pho h—pho

Liminf Aj, = {v € R : limsupdy, (v) = 0}.

h—pho h—pho

Consider a nonempty subset £ C R¥ and o € E. The contingent cone Tg(z) to E

d h
at = is defined as the set of all vectors v € RF such that liminf,_ o, M =

0. The limiting normal cone to E at z, written Ng(x), is defined by Ng(z) :=
Limsup, ,,, Tr(y) . It is known that Np(r)™ C Tg(r) whenever E is closed. The
Clarke tangent cone is defined by Ng(x)~.

Let ¢ : R¥ — R U {400} be an extended real function. We write dom ¢ for the
domain of ¢, epip for the epigraph of ¢, and hypoy for the hypograph of p. The
(Fréchet) subdifferential, respectively the (Fréchet) superdifferential, of ¢ at zo € dom ¢
are the possibly empty sets defined by

0_p(zq) = {p € R : liminf &) = #) = (P 2= 20) o 0} , 0pp(z0) = —0_(—p)(x0).

T—rT0 ’x — xO’

The contingent epiderivative and the contingent hypoderivative of ¢ at xy € dom ¢,
in the direction u € R, written Dy¢(z0)(u) and D ¢(zo)(u), respectively, are defined
by

3 : X +hu’ — x
Dyp(xo)(u) = hilgfrlhqiu p(o h) o(z0)

o Dyp(ao)(u) = = Di(=9)(x0) (w).

It is well known that (cfr. [AF09, Proposition 6.1.4])

epi Dyp(wo) = Tepip(2o, p(20)) & hypo Dyp(0) = Thypoe(To, ¢(20))- (3.1)

From [CF18] we know that, for a measurable mapping ¢, p € 0_¢(xg) if and only
if there exists a continuous function ¢ : R¥ — R, differentiable at xg, such that ¢(x) <
o(x) for all  # o, p(xg) = ¥(xg), and Vio(xy) = p. If in addition ¢ is continuous,
then 7 can be chosen to be of class C'. In this respect for a lower semicontinuous
function ¢ the notion of the (Fréchet) subdifferential we consider differs from the one
in [CL83], where only continuous viscosity solutions were investigated and C!' support

functions were used. Similar remark can be made about superdifferentials.

A set-valued map F : R¥ ~» R" taking nonempty values is said to be upper semicon-
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tinuous at v € R¥ if for any € > 0 there exists § > 0 such that F(z') C F(z)+¢eB for all
x' € B(x,6). If F is upper semicontinuous at every z then it is said to be upper semi-
continuous. F is said to be lower semicontinuous at x € R¥ if Liminf, ., F(y) C F(z).
F is said to be lower semicontinuous if F is lower semicontinuous at every x € R*. F
is called continuous at x € RF if it is lower and upper semicontinuous at x and it is

continuous if it is continuous at each point x.

Definition 3.2.1. A set-valued map P : I ~» R* is locally absolutely continuous if it
takes nonempty closed images and for any [S,T] C I, every € > 0, and any compact
subset K C R¥, there exists 6 > 0 such that for any finite partition S < t; <7 <ty <
Ty < oo <ty < T < T of [S, T,

m

SNri—t)<s = imax {dpuy(P() NEK), dpey (P(t) N K) } < e,

i=1 i=1
where dg(E') :=inf {8 > 0 : E' C E 4 B} for any E, E' C R¥ (the infimum over an

empty set is +00, by convention).

3.3 Main result

Consider the infinite horizon optimal control problem
minimize / L(t, (), u(t)) dt (3.2)
to
over all the trajectory-control pairs of the state constrained control system on I =
[t()? OO)
o' (t) = f(t,z(t),u(t)), wu(t)eU(t), forae tel

2(ty) = o, x(I) C A, (33)

where f : [0,00) x R" x R™ — R™ and L : [0,00) x R® x R™ — R are given, A is a
nonempty closed subset of R™, U : [0,00) ~» R™ is a Lebesgue measurable set-valued
map with closed nonempty images and (¢, zg) € [0,00) x A is the initial datum. Every
trajectory-control pair (x(-),u(-)) that satisfies the state constrained control system
(3.3) on an interval of the form I = [ty,T] or I = [ty, 00) is called feasible on I. We refer
to such z(-) as a feasible trajectory. The infimum of the cost functional in (3.2) over all
feasible trajectory-control pairs on I = [tg, 00), with the initial datum (¢o, x¢), is denoted
by V (to, o) (if no feasible trajectory-control pair exists at (¢g, zo), or if the integral in
(3.2) is not defined for every feasible pair, we set V(to,z9) = +00). The function
V :[0,00) x A — RU{xo0} is called the value function of problem (3.2)-(3.3). We say
that (Z(-),u(-)) is an optimal trajectory-control pair at (tg, o) € ([0,00) x A) Ndom V'
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if V(to, xo) =[5 L(s,2(s),u(s))ds. Finally,

%(t,x,p) = uilllJI(Dt) (<f(t,:€,u),p> - L(t,a:,u))

is the Hamiltonian function associated to the above problem.

We denote by (h) the following assumptions on f and L:

(h) (i) Va € R" the mappings f(-,z,-) and L(-, x, ) are Lebesgue-Borel measurable
and there exists ¢ € L'([0,00);R) such that L(t,z,u) > ¢(t) for a.e. t >0
and all (z,u) € R" x R™;

(i) Jece€ LL.([0,00);RT) such that for a.e. ¢t > 0 and for all z € R", u € U(t)

|f(t @, u)| + [L(E, 2z, u)| < () (1 + []);
(iii) for a.e. ¢ > 0 and all x € R™, the set-valued map
R™ >y~ {(f(t,y,w), L(t, y,u)) : we Ut)} (3.4)
is continuous with closed images, and the set
{(f(t,z,u), L(t,x,u) +r) : we U(t), r =0} (3.5)

Is convex.
We denote by (h)’ the assumptions (h) with the further requirement:

(h)" (iv) 3k € LL.(]0,00); R") such that for a.e. ¢ > 0 and for all z, y € R™, u € U(t)

loc

and by (h)” the assumptions (h)" with the further:
1
(h)” (v) k € Lo and limsup,_, i Jy(e(s) + k(s)) ds < oo;
(vi) 3 g € Ao such that for a.e. t >0

sup (|f(t, z,u)| + |L(t, z,u)|) < q(t), Yx € 0A.
ueU(t)

Moreover, we denote by (B) and (OPC) the following assumptions:

(B) domV # () and there exist T > 0 and ¢ € L'([T,00);R") such that for all
(to, z0) € dom VN ([T, 00) xR™) and any feasible trajectory-control pair (z(-), u(-))

on ] = [tQ,OO), with l’(to) = Ty,

|L(t,x(t),u(t))] <(t) fora.e. t > to;
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(OPC) there exist n > 0, 7 > 0, M > 0 such that for a.e. £ > 0 and any y € JA + 1B,
and any v € f(t,y,U(t)), with infneNylm<n, v) <0, we can find w € f(t,y,U(t))N
B(v, M) satisfying

inf {<n7w>7 (n,w - U>} > T,
”EN;,U

where N, :={n € 9B : n € ®N4(z), z € AN B(y,n)}.
We denote by (IPC) the conditions (OPC) in which f(¢,y, U(t)) is replaced by — f(t,y, U(t)).

Remarks 3.3.1.

(i) If L(t,z,u) = e (¢, z,u), with [ bounded and A > 0, then (B) is satisfied.
(ii) If f(t,-,u) and L(t,-,u) are continuous, uniformly in u € U(t), then the set-valued

map in (3.4) is continuous for a.e. ¢ > 0.

Define the augmented Hamiltonian H : [0,00) X R" x R” x R — R by

H(t,x,p,q) = Selllfl()t) ((f(t,z,u),p) — qL(t,,u)).

Definition 3.3.2. A function W : [0,00) x A — R U {+oc} is called a weak (or
viscosity) solution of H-J-B equation on (0,00) x A if there exists a set C' C (0, 00),
with p(C") = 0, such that for all (¢,2) € dom W N (((0,00)\C") x 0A)

_pt_'_H(th? _pma_q) 2 O v(ptuP:mQ) € TepiW(tuwi(tax>>_7 (36)

and for all (¢,z) € dom W N (((0,00)\C") x int A)

_pt+H(t7x7_va_Q) =0 v(ptapxaQ) € TepiW(twra W(trx))_ (37)

The next theorem ensures the existence and uniqueness of (weak) solutions of the
Hamilton-Jacobi-Bellman equation in the class of the lower semicontinuous functions

vanishing at infinity.
Theorem 3.3.3. Assume (h)"” and (OPC). Let W : [0,00) x A — RU{+00} be a lower
semicontinuous function such that dom V' (t,-) C dom W (t,-) # 0 for all large t > 0 and

lim  sup |[W(t,y)| =0. (3.8)

t=%0 yedom W(t,)

Then the following statements are equivalent:
(i) W=V;

(it) W is a weak solution of H-J-B equation on (0,00) x A and t ~» epi W (t,-) is

locally absolutely continuous.
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Moreover, if in addition (B) holds true, then V is the unique weak solution satisfying

(3.8) with locally absolutely continuous t ~ epi V(t,-).

Remarks 3.3.4.

(1)

(i)

(iii)

The proof of Theorem 3.3.3 given below implies that instead of lower semicontinuity

of W we can assume that

liminf Wi(s,y) =W (0,z2) Ve A,

s—=0+,y—ax
to get the same conclusion as in Theorem 3.3.3.
Proposition 3.4.4-(v) and Remark 3.4.1-(¢) below imply that under the assumptions
(h) and (OPC), if dom(V) # (), then the set-valued map ¢ ~~ epi V (¢, -) is locally
absolutely continuous even though V' may be discontinuous.
From the proof of implication (ii) = (i) of Theorem 3.3.3 given in Section 4, it
follows that Theorem 3.3.3 holds true again if the condition (3.8) is replaced by
the weaker requirement
liminf  sup |W(t,y)| =0,
t=00  yecdom Wi(t,)

and assuming further regularity:

Ir>0: liminf Wi(s,y)=W(t,z) V(t,z)€ (1,00) x A. (3.9)

§—t—, Y—>int AT

By Proposition 3.4.4-(iii) given below and [BF, Theorem 2], the value function V'
satisfies (3.9) whenever (h) holds true.

Under the assumption (OPC), if for all large ¢ > 0 and all z € A
{DW(t,2)(=1,—v) : v € F(t,z) N int (Na(z)")} R £,

then condition (3.9) is satisfied. Indeed, let 7 > 0 be such that for all ¢ € (7, +00)
and x € A there exists v € F(t,z) Nint (N4(z)) with finite D+W (¢, x)(—1, —0).
Then, by [RW98, Theorem 2|, there exists n > 0 such that z + sw € A for all
w € B(v,n) and s € [0,n]. Now, by the definition of contingent epiderivative there
exists & € R and h; — 0+, w; — v satisfying W (t — h;, x — hyw;) — W (t, z) < ah;
for all 7. Since x — h;w; € int A for all large i, passing to the lower limit as i — oo

and using the lower semicontinuity of W, we get (3.9).

Under the assumptions of Theorem 3.3.3 and that f and L are continuous, by
[Roc81, Theorem 1], the statement (i) of Theorem 3.3.3 is equivalent to the fol-
lowing: for all (¢,z) € dom W N ((0,00) x 0A)

—DP + %(twru _pz) > 0 \V/(ptapz) € a_W(t7$>,
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and for all (¢, ) € dom W N ((0,00) X int A)

—pe+ H(t,x,—py) =0 Y (p,pe) € O-W(t, x).

3.4 Proofs

We recall first two more definitions. Let I C R, be a given interval. Consider a set-
valued map Q : I ~ R* and let y € Q(s) for some s € I, y € Rk, The contingent
derivative DQ(s,y) of Q at (s,y) is the set-valued map DQ(s,y) : R ~ R* whose graph
is given by graph DQ(s,y) = Tyraph (s, y). By [AF09, Proposition 5.1.4],

dogs h
DQ(s,y)(1) = {v € B : lim inf XA *’”S” v _ o}. (3.10)

For a set-valued map G : I x R¥ ~» R* taking nonempty values, a locally absolutely
continuous function z : I — RF is called a G-trajectory if 2/(t) € G(t,x(t)) for a.e.
tel

Let us define the set-valued maps G : [0,00) X R" ~» R" xR, F': [0,00) x R" ~» R"|
and G : [0,00) X R" x R ~» R” x R by

G(t,2) = {(f(t 2 u), ~ Lty w) — )+ we UL, 1 € [0,e(t)(1+ Jo]) — L(tz,u)]}
F(t,z):= f(t,z,U(t)) & G(t,x,v) = G(t, x).

Remarks below follow directly from the assumptions.

Remarks 3.4.1.

(i) Notice that, if (OPC) holds true, then
—F(t,x)NcoTa(x) # 0 for a.e. t >0, Va € A. (3.11)

(ii) Let (to,z0) € [0,00) x R™. Then, by Gronwall’s lemma and our growth assump-
tions, any absolutely continuous trajectory x : [tp, 00) — R™ solving the differ-
ential equation in (3.3) and starting from z at time ¢, satisfies 1 + |z(t)] <
(14 |xo]) eftto W for all t > ty. In particular, feasible trajectories starting at
the same initial condition are uniformly bounded on every finite time interval.

Moreover, setting for all R > 0
r(t) = (1+ R) c(t)eh ®®% vt >0,

it follows that vz € L _([0,00); RT) and for any R > 0, any (tg, 7o) € [0,00) X
(AN B(0,R)), and any feasible trajectory-control pair (z(-),u(-)) on I = [tg, 00),
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with z(tg) = xy, we have
|f(t,z(t),u(t)| + | L(t,x(t), u(t))] < yr(t) forae. t > to.

(ili) To apply the results from [FPR95, Sections 2 and 4] we extend them to maps
with sublinear growth in the following way: letting R > 0 and T" > 0, the set-
valued map G, : [0,T] x R*! ~ R defined by G.(t,X) = G(t, X) for any
(t,X) € [0,T] x B(0, M) and G.(t,X) = G(t,7(X)) for any (¢, X) € [0,T] x
(R"\ B(0, M)), where 7(-) stands for the projection operator onto B(0, M) and
M = R+ 2 vg(s) ds, satisfies

sup lv] < 29g(t) for ae. t €[0,T).
vEGK(t,X), XeR+1

Thus, X : [ty, T] — R" with X (¢y) € B(0, R), is a G,-trajectory if and only if
it is G-trajectory on [to, T'.
(iv) Since we assume that the set-valued map U(-) takes nonempty images, so are G(-)

and F'(-). Moreover, (OPC) implies that A is the closure of its interior. Similarly,
for (IPC).

Proposition 3.4.2. Under assumption (h), for all x € R™ the set-valued maps F (-, x)
and G(-,x) are Lebesque measurable. Furthermore, for a.e. t > 0 the set-valued maps

G(t,-) and F(t,-) are continuous with closed convezr images.

Proof. The first statement follows from assumption (h)-(i). Notice that, by (h)-(iii), for
a.e. t >0, F(t,-) is continuous and F(t,z) is closed convex, since it is the projection
of the closed set in (3.4) and the convex set in (3.5). Now, consider t > 0 and z €
R™ such that {(f(¢t,z,u), L(t,z,u)): u € U(t)} is closed and (h)-(ii) holds true. Let
(f(t,x,ug), —L(t,x,ux)—rr) — (a,b) € R"xR with uy € U(t) and ry € [0, c(t)(1+]z])—
L(t,x,uy)] for all k. Since {L(t, x,uy)}, is bounded we deduce that {r}, is bounded.
So, we may assume that rp, — r > 0. Then (f(¢,z,uy), L(t,x,ux)) — (a,—b—1), and,
by closedness, there exists u € U(t) such that a = f(¢t,z,u) and —b —r = L(t, z,u).
This proves that G(t,x) is closed.

Now, let ¢ € [0,00) be such that z ~» {(f(t,z,u), L(t,z,u)) : w € U(t)} is contin-
uwous. Then x ~ Gy(t,x) := {(f(t,z,u),—L(t,z,u)) : u € U(t)} and x ~ Gy(t,x) :=
{(f(t,z,u), —c(t)(1 + |z|) : w € U(t)} are continuous. Thus x ~» G(t,z) U Ga(t, x)
is continuous, and it follows that I : & ~» @ (Gy(t,x) U Ga(t,x)) is continuous too
(cfr. [AF09]). Since G(t,x) = I'(z), we deduce that G(t,x) is convex and G(t,-) is

continuous. O

In the same way as the proof of continuity of G(¢,-) in the above Proposition, we

show the next result.
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Proposition 3.4.3. If (h)" holds true, then for a.e. t > 0 the set-valued map G(t,-) is
Lipschitz continuous with constant k(t) + c(t).

The following Proposition summarizes some properties satisfied by the value function

V.
Proposition 3.4.4. Assume (h). Then

(i) 'V is lower semicontinuous and for any (t,x) € domV there exists an optimal

trajectory-control pair (z(-),u(-)) at (t,z). Moreover, for any x € A

liminf V{(s,y) = V(0,z); (3.12)

s—0+,y—ax

(i7) there exists a set C C [0,00), with u(C) = 0, such that for any (t,z) € domV N
(([0,00)\C) x A4)

Ju e U(t), DV(ta)1,f(tx,a) < —L(t,z,a); (3.13)

(iii) there exists a set C' C (0,00), with u(C') = 0, such that for any (t,z) € domV N
(((0,00)\C") x int A)

Vu e U(t), DiV(t,x)(—1,—f(t,z,u)) < L(t,z,u); (3.14)

(iv) there ezists a set C" C (0,00), with u(C") =0, such that for any (t,z) € domV N
(((0,00)\C") x int A)

Vue Ut), —Lit,zu) < DV (t,2)(L, f(t2,u)); (3.15)

(v) if (3.11) holds true and domV # () then t ~ epi V(t,-) is locally absolutely con-

tinuous.

Remark 3.4.5. We would like to underline that the local absolute continuity of ¢ ~~
epi V (¢, -) does not yield local absolute continuity or even continuity of V'(-, z). It implies
however that lim infs ¢~ 4,z V (s, 2) = V(to, zo) for all (tg, xo) € dom VN((0, 00)x A)
and that liminfy ;4 . .0 V(s,2) = V(t, x0) for all (t,z9) € dom V N ([0, 00) x A).

Proof of Proposition 3.4.4. The first two statements in (i) are well known. Let = € A.
If V(0, ) = 400 then, since V is lower semicontinuous, (3.12) holds true. Suppose next
that (0,z) € dom V. Consider an optimal trajectory-control pair (Z(-),u(-)) at (0, z).
Then, by the dynamic programming principle, for all s > 0

Vis,2(s) = V(0,2) = [ L(&2(6),u(©)) de.

So, limg_,o4 V(s,2(s)) = V(0,z). The lower semicontinuity of V' ends the proof of (7).
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To prove (ii), let 7 € NT. From [FPR95, Corollary 2.7] applied to the set-valued
map G, there exists a set C; C [0,7], with p(C;) = 0, such that for any (to,z9) €
(([0, /]\C;) x A)Ndom V" and any optimal trajectory-control pair (z(-),u(-)) at (to, zo),

3 _1150 (3‘3(5) — Zo, —

Furthermore, by the dynamic programming principle, for all ¢ > ¢

V(t 2(t)) — V(to, 70) = — /tL(s,.%(s),'a(s)) ds.

to

3

to

() # Lim sup {

§—to+

L(s,z(s),u(s)) ds)} C G(to, o). (3.16)

So, dividing by t — ¢y this equality, passing to the lower limit as ¢t — t9+, and using
(3.16), we get (3.13). Then (it) follows setting C' = U,en+C}.

We prove next (iii). Let j € N*. From Remark 3.4.1-(iii), [FPR95, Theorem
2.9] applied to the set-valued map —G(j — -,-,-), and from the measurable selection
theorem, we can find a subset C} C [1/7, j], with u(C%) = 0, such that for any (to,2¢) €
((1/4,71\C}) xint A and any ug € U (to) there exist ¢, € [1/],t0) and a trajectory-control
pair ((z,v), (u,r))(-) satisfying

(@'(8),v'(t)) = (f(t, 2(t), u(?), =L(t, x(t), u(t)) —r(t)) forae. t € [t,to]
(z(to), v(to)) = (20,0)

u(t) € U(t), r(t) € [0,c(t)(1+ |x(t)|) — L(t, z(t),u(t))] fora.e. t € [ty,to]

(@'(to), v'(to)) = (f (o, o, uo), —L(to, Zo, o)),

and x([t1,t0]) C A. Hence, if (t9,z9) € dom V', by the dynamic programming principle
it follows that for all s € [ty, to]

V(S,l’(S)) — V(t()?xO) < 1
to — S = to — S

(3.17)

(v(s) = v(to))-

Passing to the lower limit when s — ¢y—, we have that

DTV(tO,xo)(—la—f(toaxo,uo)) L(t07x07u0)

Since ug € U(ty) is arbitrary and setting C" = Ujen+ C, we get (i77). Moreover, arguing

in a similar way, we deduce that (iv) holds true as well.

Now, assume (3.11) and that domV # ). Notice that the value function V is
bounded from the below and since it is lower semicontinuous, t ~» epiV(¢,-) takes
closed images. Let (¢,Z) € dom V. Then, by the dynamic programming principle, it
follows that the set-valued map ¢ ~ epi V/(¢, -) takes nonempty values on [t, 00). If ¢ > 0,
consider 7 € [0,7). From (3.11) and (3.10), it follows that —F'(¢,z) N DP(t,z)(1) # 0
for a.e. t € (7,t] and all z € A, where P(-) = A. Hence, Remark 3.4.1-(iii), the
viability theorem [FPR95, Theorem 4.2] applied to the set-valued map —F(t —-,-), and
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the measurable selection theorem, imply that there exists a feasible trajectory-control

pair (Z(-),a(-)) on I = [r,1] satisfying Z(f) = Z. So, applying again the dynamic
programming principle and since 7 € [0,1) is arbitrary, it follows that ¢ ~» epi V (¢,-)
takes nonempty values on [0,¢]. Now, fix 0 < t; < to. Let K C R™"! be a nonempty
compact subset, (z1,v1) € epiV(t1,-) N K, and put R = maxyex |y|. Consider an

optimal trajectory-control pair (Z(-),u(-)) at (t1,21). Then

V(ty,z1) — /tlto o(s)ds = /:O L(s,z(s),u(s))ds — /: o(s)ds
> /t°° L(s, 2(s), @(s)) ds = V(to, Z(to)).

0

Since vy > V(t1, 1) we get (Z(to), v1 — J;° ¢(s) ds) € epiV(to, ). Hence we deduce that

(1,v1) € epiV (to,*) + /tlto(fyR(s) + |¢(s)|) ds B.

On the other hand, let (zo,vy) € epiV(t,-) N K. Applying again Remark 3.4.1-(iii),
the viability theorem [FPR95, Theorem 4.2], and the measurable selection theorem,
we deduce that there exists a feasible trajectory-control pair (Z(-),a(:)) on I = [t, to]
satisfying Z(ty) = zg. So, by the dynamic programming principle, we get V' (t1, Z(t1)) <
V(to, o) + [° L(s,%(s),@(s))ds < vo + [ vr(s)ds, ie., (E(t1),v0 + [°Vr(s)ds) €
epiV (t1,-). Finally, since (o, vo) = (Z(t1), vo+ [,° Yr(s) ds)+(zo—Z(t1), — [}° r(s) ds),
we conclude

to
(xo,v0) € epi V(t1,+) + 2 t Yr(S) ds B,
1

and so (v) follows. O
The proof of the following lemma can be found in the Appendix.

Lemma 3.4.6. Assume (h)’. Let W : [0,00) x A — R U {400} be such that t ~
epiWi(t,-) is locally absolutely continuous. If there exists a set C' C (0,00), with
w(C") =0, such that for all (t,x) € dom W N (((0,00)\C") X int A)

—pe + H(t, 2, —ps, —q) <OV (pr, pas @) € Tepiw (t, 2, W(t, x)) ", (3.18)

then for all0 < 179 < T and any feasible trajectory-control pair (x(-),u(-)) on I = [19, ],
with x([10,71]) Cint A and (11, x(m)) € dom W, the solution w(-) of

(3.19)

w'(t) = —L(t, x(t),u(t)) fora.e. t € |1y, 7]
w(r) = W(mn,z(m))

satisfies

(x(t),w(t)) € epiW (t,-) Vt € [r9,71].
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Remark 3.4.7. By the definition of local absolutely continuity, our assumption implies
that epi W (t,-) is a nonempty closed set for all ¢ > 0. In particular, dom W(¢,-) # 0

and W (t,-) is lower semicontinuous for all ¢ > 0.

Arguing in analogous way as in the proof of Lemma 3.4.6, we have the following

result involving the hypograph:

Lemma 3.4.8. Assume (h)'. Let W :]0,00) x A — RU {+00} be such that
t~{(z,v) : v< W(t z) # 400}

is locally absolutely continuous. If there exists a set C" C (0,00), with u(C") =0, such
that for all (t,xz) € dom W N (((0,00)\C") x int A)

—D¢ + H(t, Xy —Pz, _Q) < 0 v(ptapxa Q) € ThypoW(t7$7 W(ta'x))Jra

then for all0 < 179 < 1 and any feasible trajectory-control pair (x(-),u(-)) on I = [19, ],
with ([0, 71]) C int A and (19, (7)) € dom W, the solution w(-) of

{w’(t) = —L(t, (), u(t)) for a.c. t € [, 7] (3.20)

w(ty) = W70, 2(10))

satisfies

(x(t),w(t)) € hypoW(t,-) ¥Vt € [r9, 7]

Proposition 3.4.9. Let W : [0,00) x A — RU {400} be such that t ~ epiW(t,-) is

locally absolutely continuous.

(1) If (h)(i)-(ii) hold true and G(t,-) is upper semicontinuous, with closed convex

images, for a.e. t > 0, then the following two statements are equivalent:

(a) there exists a set C' C (0,00), with u(C) = 0, such that for all (t,x) €
dom W N (((0,00)\C) x A)

JueUt), DW(t )1, f(t,z,a) < —L(t, z,a); (3.21)

(b) there exists a set C' C (0,00), with u(C") = 0, such that for all (t,x) €
dom W N (((0,00)\C") x A)

—pt + H(ta Ty —Pa, _q) > 0 v(pt)p:m Q) € TepiW(tu z, W(ta Z‘))_

(ii) If (h)" holds true, then the following two statements are equivalent:
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(a) there exists a set C' C (0,00), with u(C') = 0, such that for all (t,x) €
dom W N (((0,00)\C) x int A)

VueU(t), DyW(t,z)(—1,—f(t,z,u)) < L(t,z,u); (3.22)

(b)' there exists a set C' C (0,00), with u(C") = 0, such that for all (t,z) €
dom W N (((0,00)\C") x int A)

—Pt + H(t7 X, =Pz, _Q) < O V(phpam Q) € TepiW(ta x, W(ta l’))_

Proof. We prove (i). Suppose (a). Fix (t,z) € domW N (((0,00)\C) x A) and
let (pr,pesq) € Tepiw(t,z, W(t,z))". From (3.1) and (3.21), we have (1, f(¢,x,u),
—L(t,z,u)) € Topiw (t, 2, W(t,z)). Thus p; + (ps, f(t,z,0)) —qL(t,x,u) <0, and so

—Dt + H(ta X, =Pz, _Q) > 0

Suppose next that (b) is satisfied and let 7 € N*. By the separation theorem, (b)
implies that

({1} x G(t,x)) N0 Topiw (t, 2, W(t, x)) # 0 (3.23)

for all (t,z) € domW N (((0,7)\C") x A). By [FPR95, Corollary 2.7] and [FP96,
Corollary 3.2], for a set C; C [0, j], with pu(C;) = 0, and for all ¢, € [0,7]\C; and
all (zg,v9) € P(ty) := epiW(ty,-) there exists a G-trajectory (x,v)(-) on [to, j], with
(z(tg), v(to)) = (x0,v0), satisfying (x,v)(t) € P(t) for all t € [ty, j] and

() # Lim sup {

E—to+

1
o 00 = a0, 0(6) ~ oft0) | € Gl ).
Taking vy = W (to, ), by the measurable selection theorem we conclude that there exist
two measurable functions u(-) and r(-), with u(t) € U(t) and r(t) € [0, c(t)(1+ |=(t)]) —
L(t,z(t),u(t))] for a.e. t € [to, 5], such that v(t) = W (to,zo) — [, L(s, z(s),u(s)) ds —
i r(s)ds = W (t,x(t)) for any ¢ € [to, j]. Then

v(t) —vlto) = W(t,x(t)) — W(to, o) Vi E [to, j].

So, dividing by t — ¢y the last inequality and passing to the lower limit as t — ¢+,
(3.21) follows for C' = U;en+C)j.

To prove (ii), suppose that (h)" holds true. Assuming (a)
to (i), we can conclude that there exists ¢’ C (0,00), with p(C’) = 0, such that
—pr + H(t,x,—py, —q) < 0 for all (p,ps,q) € Tepiw (t, 2, W(t,z))” and all (t,z) €
dom W N (((0,00)\C") x int A). Now, assume (b) and let j € N*. From Remark
3.4.1-(iii), Proposition 3.4.2, and [FPR95, Theorem 2.9] applied to the set-valued map

G(j — -, -), and the measurable selection theorem, we can find a subset C; C [1/7, ],

" and arguing similarly
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with p(C;) = 0, such that for any (¢, o) € ((1/4,7]\C;) x int A and any uy € U(to)
there exist ¢, € [1/4,t0) and a trajectory-control pair ((x,v), (u,r))() satisfying (3.17)
and z([t1,%0]) C int A. From Lemma 3.4.6 we get

v(s) —v(ty) = W(s,z(s)) — W(to,z(ty)) Vs € [t1,t0].

Hence, dividing by ¢y — s, passing to the lower limit as s — ty—, and since ug € U (ty)
is arbitrary, we have (3.22) after taking C' = U;en+C)j.
m

Proof of Theorem 3.3.3. By Proposition 3.4.9, (i7) is equivalent to the following:

(7i1) there exists a set C' C (0, 00), with p(C) = 0, such that for all (¢,2) € dom W N
(((0,00)\C) x A)

dueU(t), DW(t,z)Q1, f(t,z,u)) < —L(t,x,u), (3.24)
for all (¢t,z) € dom W N (((0,00)\C) x int A)
Vue U(t), DW(t,x)(—1,—f(t,z,u)) < L(t,x,u), (3.25)

and t ~ epi W (t, -) is locally absolutely continuous.

Furthermore, the implication (i) == (i4i) follows from Proposition 3.4.4. We have to
prove (ii) = (7). Fix (t, ) € (0,00) x A.

We first show that W(tg, zg) = V(to, o). If W(to,zg) = +o0, then Wi(ty, xy) >
V (to, zo). Suppose next that (tg, xo) € dom W. From the separation theorem and (3.6)
we deduce (3.23) for all (t,z) € domW N (([0,00)\C") x A). By [FP96, Corollary
3.2] applied with P(t) = epiW (t,-) there exists an absolutely continuous trajectory

Xo(+) = (zo(+),vo(+)) solving

X'(t) e G(t,X(t)) fora.e. t€ [t to+ 1], X(t) = (x(t),v(t))
w([to,to +1]) C A

x(to) = xo, v(te) = W (to, o)

v(t) = W(t,z(t)) Vt € [to,to+ 1].

(3.26)

We claim that for any j € NT the trajectory Xo(-) admits an extension on the interval
[to, o + j] to a G-trajectory X;(+) satisfying (3.26) on [tg,to + j]. We proceed by the
induction argument on j € N*. Let j € N* and suppose that X;(-) = (z;(-),v;(+))
satisfies the claim. Then, using (3.23) and applying again [FP96, Corollary 3.2] on the
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time interval [to + j, o +j + 1], we can find a G-trajectory X () = (z(-), v(-)) satisfying

X'(t) € é(t,X(t)) for a.e. t € [tg+ j,to + 7 + 1]
w([to+j,to+j+1) C A

x(to + j) = x;(to + J), v(to + J) = v;(to + J)

o(t) = W(t,z(t)) Yte [to+jto+7+1].

Puttlng Xj+1(t) = (l’]<t),1)](t)) if t € [to,to +j] and Xj+1(t) = (l’(t),?)(t)) if t €
(to + j,to + j + 1], we deduce that X;.(-) satisfies our claim. Now, consider the G-
trajectory X (t) = (x(t),v(t)) given by

X(t) = X;(t) ifte[to+j,to+7+1].

By the measurable selection theorem, there exist two measurable functions u(-) and
r(-), with u(t) € U(t) and r(t) € [0,¢c(t)(1 + |z(t)]) — L(t, z(t),u(t))] for a.e. t > t,
such that v(t) = W (to, zo) — [i, L(s, z(s), u(s)) ds — [ r(s) ds for all ¢ > t;. Then
t
W(to,xzo) = W(t,x(t)) + | L(s,z(s),u(s))ds Yt =t (3.27)
to
Thus (¢t,z(t)) € domW for all t > to. Since L(t,-,-) > ¢(t) for a.e. t > 0, where
¢ € L'([0,00); R), it follows that the limit lim,_,o f; L(s, z(s),u(s)) ds exists. So, using
(3.8) and passing to the limit in (3.27) as t — oo yields W (to, 7o) > [,;° L(s, x(s),u(s)) ds.
Therefore W (ty, xo) = V(ty,x0). Consequently W > V.
We show next that W (ty, z) < V(tg, o) for all (to,zg) € [0,00) x A. If V (to,z0) =
+00, then V (g, xg) = W(to, o). So, let us assume that (to,z9) € domV. Fix ¢ > 0.

By our assumptions, there exists 7" > t; such that domV(¢,-) C domW(t,-) for all
t > T and

sup  [W(ty)<e Vt>T" (3.28)

yedom W (t,-)
Let (z(-),u(:)) be an optimal trajectory-control pair at (tg,zo) and consider s; T +o0
with {s;}, C (I",00). Put X(-) = (z("), 2(-)) where z(t) = — [ L(s,2(s), u(s)) ds. For
all (t,z,w) € [0,00) X R" x R define

Qt,z,w) = {(f(t,z,u), L(t,z,u)) : ue U(t)}.
Applying [BF, Theorem 2| we deduce that for any i there exists a Q-trajectory X;(-) =
(@;(+), zi(+)) solving
X[(t) € Q(t, X;(1)) for a.e. t € [ty, si]

i(
Xi(s:) = (2(si), 2(s4))
z;(t) € int A Vit € [to, si)
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and
lim HX _ XHOO =0

i—00 ftorsi]
Hence, by the measurable selection theorem, for any 7 there exists a measurable selection
u;(t) € U(t) such that (x;(-), u;(-)) satisfies
xi(t) = f(t,xi(t),u;(t)) for ae. t € [ty, s

xi(8;) = Z(s;)

z;(t) € int A Vit e [to, Si),
lim ;(to) = (1), (3.29)
and
lim t L(s, z:(s), wi(s)) ds — /too L(s, #(s), a(s)) ds. (3.30)

Now, fix 7 € N* and consider {Tj}j C (1", s;) with 7; — s;. Note that, by the dynamic
programming principle, z;(7;) € dom V(7;,-) for all j. Consider the solution w;(-) of

the Cauchy problem

w'(t) = —L(t,z;(t), u;(t)) for a.e. t € [to, ]
w(r;) = W(rj, 2i(75))-

From Lemma 3.4.6, we conclude that

/] L(s,xi(s),wi(s))ds + W (r;,xi(15)) = W(to, zi(to)) V7.
to

Hence, by (3.28),

|7 Lis,ails), wils)) ds + 2 = Wito,ailto) Vi,
to

and taking the limit as j — oo we get [ L(s, z(s), ui(s)) ds+¢e = Wi(to, 24(to)). Passing
now to the lower limit as ¢ — oo, using (3.29), (3.30), and the lower semicontinuity of
W, we have [ L(s,Z(s),u(s)) ds +e = W (to, z0), i.e., V(to, zo) +& = W (to, o). Since
e is arbitrary, we conclude that V' (to, z9) = W(to, o). Hence V=W on (0,00) x A.

Since t ~ epi W (t, -) is locally absolutely continuous and W is lower semicontinuous,
liminfy o4,y 0 W(s,y) = W(0,2) for all z € A. So, fix zy € A. From (3.12) and what

precede, we have

W(0,z9) = liminf Wi(s,y)= liminf V(s,y)=V(0,zo).

s—0+4,y— ax0 s—04+,y—ax0

Now, assume in addition (B). Let ¢ € [0,00) be such that domV (¢,-) # 0. By
(OPC) this implies that dom V' (¢,-) # @ for all ¢t € [0,¢]. Moreover, by the dynamic
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programming principle, it follows that dom V (s, ) # 0 for all s > ¢. Hence,

V(s,y)| < /oozp(g) dé VyedomV(s,),Vs>T.

S

So, we deduce that V satisfies (3.8).

3.5 Lipschitz continuous solutions

In [BF] we provided sufficient conditions for the local Lipschitz continuity of the value
function under state constraints. Before stating an existence and uniqueness result for
Lipschitz continuous solutions (in the Crandall-Lions sense) of H-J-B equation, we show

a geometric result (in the spirit of Section 3) involving the hypographs of functions.

Proposition 3.5.1. Under all the assumptions of Theorem 3.3.3 suppose that the set-

valued map
t~{(z,v) EAXR : v < W(t,z) # +oo} (3.31)

is locally absolutely continuous.

Then the following statements are equivalent:

(i) W=V;
(ii) there exists a set C" C (0,00), with u(C") = 0, such that for all (t,z) € dom W N
(((0,00\C") x A)
—pr+ H(t, 2, —pay; =q) 20V (pr, P2y @) € Tepiw (2, W(E, )7
for all (t,z) € dom W N (((0,00)\C") x int A)
—pe+ H(t, 2, —pe, —q) OV (P, 92, q) € Tigpow (t, 2, W(t,2))",

and t ~ epi W (t,-) is locally absolutely continuous.

Proof. Notice first of all that by the definition of locally absolutely continuous set-valued
map, the hypograph of W (t,-) restricted to dom W (t,-) is closed. Assume (7). From
Proposition 3.4.4-(iv), we can find a subset C' C (0, 00), with pu(C) = 0, such that for
any (to,zo) € ((0,00)\C) x int A we have —L(to, o, ug) < DV (to, z0)(1, f(to, o, uo))
for all ug € U(ty), i.e., recalling (3.1),

(1, f(to, zo, uo), —L(to, zo, o)) € Thypov (to, o, V (to, o)) Vuo € Ulto).

So,
—pi+ H(t, 2, =ps, —q) O ¥ (D1, p2,9) € Tagpov (t, 7, V(E,7)) "
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The first inequality in (i7) follows from Theorem 3.3.3.

Now assume (4i). By Theorem 3.3.3 and the proof of (ii) = (i) of Theorem 3.3.3,
it is just sufficient to show (3.25). Arguing as in the proof of Proposition 3.4.4-(ii),
there exists C" C (0, 00), with u(C") = 0, such that for any (¢y, zo) € ((0,00)\C") x int A
and uy € U(ty), we can find ¢t; € (0,%p) and a trajectory-control pair ((z,v), (u,7))(-)
satisfying (3.17) and x([t1,%p]) C int A. By Lemma 3.4.8, taking {s;}, C (t1,ty) with
s; — to—, we get that for all ¢ the solution w;(-) of

w'(t) = —L(t, z(t),u(t)) fora.e. t € [s;, 0]
w(si) = Wi(si, x(si)),

satisfies w;(to) = W (s;, x(s:))—[2° L(s, z(s),u(s)) ds < W (to, z(to)). Hence W (s;, z(s;))—

W (to, m9) < [ L(s,x(s), u(s)) ds < v(s;) for all i. Dividing by to — s; and passing to

the lower limit as ¢ — oo, we have the conclusion. O

Remark 3.5.2. Assuming further that f, L, and W : [0,00) X A — R are continuous
functions, then, using the same arguments as in the proofs of [Fra93, Theorem 4.3
and Lemma 4.3], the assumption (3.31) in Proposition 3.5.1 can be skipped and (i) is
equivalent to the following:

—pr + H(t,x,—p) =0 V(t,x) € (0,00) X A, ¥V (ps,p) € O_W(t, )

—pi+ H(t,x,—p,) <O V(t,z) € (0,00) X int A, YV (py, pz) € 0L W (¢, x).

From Theorem 3.3.3 and Proposition 3.5.1 we get immediately the following three

corollaries.

Corollary 3.5.3. Assume (h)” and (OPC). Let W : [0,00) x A — R U {400} be a
lower semicontinuous function such that dom V' (t,-) C dom W (t,-) # O for all large
t >0 and (3.8) holds true. Suppose that

p{t €0,00) : Iz € A, (t,z) € dom W,
{0} # Topiw (t,z, W(t,z))” CRxR" x {0} } =0.

Then the following statements are equivalent:

(i) W=V;
(ii) there exists a set C' C (0,00), with u(C") = 0, satisfying for all (t,z) € dom W N
(((0,00)\C") x 0A)

—De + %(t,[ﬁ, _px) > 0 \V/(pt,pw) c 8_W(t,x),
for all (t,z) € dom W N (((0,00)\C’) x int A)

—Pt + %(tax7 _p.r) =0 v(phpm) € 8_W(t,x),
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and t ~ epi W (t,-) is locally absolutely continuous.

Corollary 3.5.4. Under all the assumptions of Corollary 3.5.3 suppose that the set-
valued map
t~ {(z,v) € AXR : v < W(tx)# 40},

is locally absolutely continuous and
p{te€0,00) : dz € A, (t,x) € dom W,
{0} # Thgpow (t, 2, W(t,z))" CR x R" x {0} } =0.
Then the following statements are equivalent:
(i) W=V;

(ii) there exists a set C' C (0,00), with u(C') = 0, satisfying for all (t,z) € dom W N
(((0,00)\C") x A)

—pe+H(tx,—ps) 20 V(pr,pa) € O-W(t ),
for all (t,z) € dom W N (((0,00)\C") x int A)

—pe+ H(t,x,—ps) <OV (pr,pa) € 0L W(H 2),
and t ~ epi W(t, ) is locally absolutely continuous.

Remark 3.5.5. Let W : [0,00) X A — R be a locally Lipschitz continuous function.
Then it is well known that

0 7é (pt7p£ﬂ7Q) € Tel)iW(tax7 W(tvx))_ =q 7& 0
0 7é (pt7pzaq) € ThypOW(ta*Ta W<t7$))+ - q 7A 0.

and if O_W (t,x) # 0, then Topiw (t, 2, W(t,x))” = Urso A(O-W (¢, z), —1). Similarly, if
O W(t,x) # 0, then Thypow (t, 2, W(t,z))t = Urso A(OL W (t, 2), —1).

From Corollary 3.5.4 and Remark 3.5.5, we deduce the following:
Corollary 3.5.6. Assume (h)” and (OPC). Let W : [0,00) x A — R be a locally Lips-

chitz continuous function satisfying (3.8). Then the following statements are equivalent:
(i) W=V;

(ii) there exists a set C' C (0,00), with u(C") = 0, satisfying for all (t,z) € dom W N
(((0,00)\C") x A)

—De + %(t)xu _px) > 0 \V/(pt,px) € 8_W(t,x),
for all (t,z) € dom W N (((0,00)\C’) x int A)

—Pt + %(uxa _pm) < 0 v(ptapl‘) € 8+W(t,$)



3.5. LIPSCHITZ CONTINUOUS SOLUTIONS 91

Now, let [ : [0,00) x R™ x R™ — [0, 00) be a bounded measurable function, A > 0,

and
L(t,z,u) = e M(t, x,u). (3.32)

Proposition 3.5.7. Assume (3.32), (h)”, and (IPC).
Then, there exists X > 0 such that for all X > X the value function V is the unique

locally Lipschitz continuous function on [0,00) x A satisfying

—p+ H(t,x,—py) =20 Y (p,pe) € 0_V(t,x), forae. t >0,Vr € A
—pr + H(t,x, —ps) <O YV (py,pe) € 0LV (t, ), for a.e. t >0, Vo € int A, (3.33)
limy 00 SUP,c4 [V (t,y)] = 0.

Proof. From [BF, Theorem 4] and the proof of [BF, Corollary 1] it follows that there
exists A > 0 such that for all A > X the value function V is locally Lipschitz continuous
on [0,00) x A. Moreover, arguing as in the proofs (i) = (i7) of Theorem 3.3.3 and
Proposition 3.5.1, and from Remarks 3.3.1-(i) and 3.5.5, we deduce that V satisfies
(3.33).

Now, let W :[0,00) x A — R be a locally Lipschitz continuous function satisfying
(3.33). From the proof (it) = (i) of Theorem 3.3.3 it follows that W > V on (0, c0) x A.
Let (tg, 7o) € (0,00) x A, (Z(-),u(-)) be optimal at (¢, zo), and € > 0, 7" > ¢, such
that (3.28) holds true. Consider s; T +oo with {s;}, C (1",00). Fix ¢ € N* and
let {7;}; C (t0,0) and {y;}; C int A be such that 7; = #p and y; — zo. Repeating
the same arguments as in the proof of the implication (i7) = (i) of Theorem 3.3.3
and using [BF, Theorem 2|, we show that for all j there exists a measurable selection
u;(-) € U(+) on [}, s;] such that (z;(-),u;(-)) satisfies

x;(t) _ f(t,.rj(t),uj(t)) for a.e. t € [Tj,Si]

zi(75) = y;
x](t) EthA Vte [Tj,Si],
and
lim [ L(s, 2;(s), u;(s)) ds = / " Lis, #(s), als)) ds. (3.35)
J—0 T to

Consider the solution w;(-) of the Cauchy problem

w'(t) = —L(t,z;(t),u;(t)) forae. te 7, s
w(r;) = W5, ;).
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From Lemma 3.4.8 we get
Wi(ryus) = | Lis,ai(s), us(s)) ds < Wsi,aj(si) V.
So, by (3.28), passing to the limit as j — oo, using (3.34), (3.35), and the continuity of
W, we have W (to, z9) < [ L(s,7(s),u(s))ds+e. Then, passing to the limit as i — oo
and since ¢ is arbitrarily small we get W (to, z0) < V(to, zo).
Finally, since V'= T on (0, 00) x A, from the continuity of V" and W, the conclusion

follows.

]

Appendix

Proof of Lemma 3.4.6. Notice that, by the separation theorem, (3.18) is equivalent to
{—1} x =G(t,z) C W Tepiw(t,z,v) for all v > W (t,x) and all (t,z) € (((0,00)\C") x
int A)Ndom W. Let 0 < 79 < 7. Thus

(1, f(s,2,u), L(s, 2, u)) € € Tyapn (s, 2, 0) (3.36)
for a.e. s € [0,71 — 7o), any (x,v) € Q(s) N (int A x R), and any u € U(s), where
f(s,x,u) = —f(n — s,x,u), L(s,z,u) == L(r, — s,z,u), and Q(s) := epiW(r —
s,+). Consider a trajectory-control pair (z(-),u(-)) solving (3.3) on I = [r9, 7], with

x([r0,71]) C int A and (1, 2(my)) € domW. Putting a(-) = u(m — ), we claim that
dqes)((y(s),w(s))) =0 for all s € [0, 7y — 79, where y(-) = x(1; —-) and w(-) = w(m —)
are the unique solutions of 3/(s) = f(s,y(s),a(s)) and @w'(s) = L(s,y(s),a(s)) a.e.
s € 0,7 — 7o, respectively, with y(0) = z(m) and w(0) = W(m,x(r)). Putting

g(s) = does)((y(s), w(s ))) from [FPR95, Lemma 4.8], applied to the single-valued map
s~ {(f(s,y(s),(s)), L(s,y(s),i(s))) }, it follows that g(-) is absolutely continuous.
Pick (£(s), (5)) € Q(s) with g(s) = |(y(s), @(s)) — (€(s), (s))] for all 5 € (0,7, — 7).
We claim that g(-) = 0 on (0, 7y — 7). Indeed, otherwise, we can find 7" € (0, 7, — 7] with
g(T) > 0. Denoting t* = sup {t € [0,T] : g(t) = 0}, let £ > 0 be such that £(s) € int A
and g(s) > 0 for any s € (t*,t* + ¢|. Consider s € (t*,t* + €) where g(-), y(-), and
w(-) are differentiable, with /(s) = f(s,y(s),a(s)) and @'(s) = L(s,y(s),@(s)). Let
(0,v) € Tyraph(s,€(s),r(s)) and 6; = 0, v; = v, h; — 0+ satisfy

(’5(3)7 T(S)) + hiv; € Q(S + 1%91) Vi.
Then, setting Z = (y(s),w(s)) and Y = (£(s),r(s)), we get

g(s+ hib;) — g(s) < |(y(s+ hib;),w(s+ hb;)) =Y — hyv;| —|Z =Y.
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Dividing this inequality by h; and passing to the limit as ¢ — co we have

g'(5)0 < (p, ([(s,y(s),(s)), L(s,y(s),@(s))) 6 — v), (3.37)

7
1Z-Y]
convex combinations of elements in Tyapn (s, £(5),7(s)) we conclude that (3.37) holds

for all (0,v) € € Tyapn(s,&(s),7(s)). By (3.36) the inequality (3.37) holds true for

0=1 & v=(f(s£0s).s)). L(s.&(5). a(5))).

Therefore ¢'(s) < k(s) |y(s) — &(s)] < k(s)g(s). From the Gronwall lemma we conclude
that g(-) = 0 on [t*,t* + ¢], leading to a contradiction. Thus g = 0 and the proof is

where p = Since (3.37) holds for any (0,v) € Tyaphq(s,&(s),r(s)), taking

complete. O






CHAPTER 4

SEMICONCAVITY RESULTS
AND SENSITIVITY RELATIONS
FOR THE SUB-RIEMANNIAN DISTANCE

VINCENZO BASCcO, PIERMARCO CANNARSA!, and HELENE FRANKOWSKA

To appear.

Abstract. Regularity properties are investigated for the value function of the Bolza
optimal control problem with affine dynamic and end-point constraints. In the absence
of singular geodesics, we prove the local semiconcavity of the sub-Riemannian distance
from a compact set I' C R™. Such a regularity result was obtained by the second
author and L. Rifford in [Semiconcavity results for optimal control problems admitting
no singular minimizing controls, Annales de I’IHP Analyse non linéaire 25(4): 2008]
when I' is a singleton. Furthermore, we derive sensitivity relations for time optimal
control problems with general target sets I', that is, without assuming any geometric

assumptions of I'.
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4.1 Introduction

Regularity properties of the value function of optimal control problems with finite hori-
zon, in the absence of state constraints, have been widely investigated. For the Mayer
and Bolza problems it can be shown that the value function is continuous, Lipschitz con-
tinuous, or semiconcave in line with the problem data (cfr. [CF91, CF06, CF13, CF14,
CFS15, CS04]). Even for optimal exit time problems, regularity results are available
under suitable controllability assumptions (cfr. [CPS00, CS95a, CS95b, CS04]). More
precisely, let I be a compact subset of R™ and consider the following time minimization
problem

minimize Or(z(-), u(-))

over all trajectory-control pairs (z,u)(-) satisfying

2'(s) = f(z(s),u(s)) forae. s>=0, x(0)=umx

u € L*(RT;R™),

where f: R" x R™ — R™ is a given function, o € R™, and fr(z(-),u(:)) := inf{s > 0|
Tzou(s) € '} is the so-called transfer time (to I') along the trajectory z(-) starting
from zy and associated with the control u(-). For any zy € R™ and any control
u(-) we denote by x,,(-) the solution of the Cauchy problem '(s) = f(z(s),u(s))
for a.e. s > 0, x(0) = 9. By convention Op(xy,.(-),u(:)) = +oo if zzu(s) ¢ T
for all s > 0. The set I' is called the target set and the value function 7r(xy) =
inf {0p(zp0.0(),u(-)) |u € L2(RT;R™)} is the minimum time function. Tt is well known
(cfr. [CS04, Chapter 8]) that 7 is locally Lipschitz continuous on the set o/ =
{xg € R"|Ju € L*(RT;R™), Or(xypyu(-),u(-)) < oo} provided that I' satisfies Petrov’s
condition: there exists r > 0 such that for any y € dI' and any v proximal unit vector
to I' at y we can find v € R™ satisfying ( f(y,u),v) < —r. In addition, if the target set
fulfils the uniform inner ball property, then 7(-) is locally semiconcave on <7 \I" and it
is locally Lipschitz continuous on 7 \I" if and only if I" satisfies Petrov’s condition.
Recovering the local semiconcavity property for the minimum time function, associ-
ated with the above problem, when the target set does not satisfy the uniform inner ball
property, becomes quite challenging. Indeed, let us suppose that f(z,u) = >, u; fi(z)
and u(-) takes values in the m-dimensional closed unit ball, with fi, ..., f,, smooth (C*
or C¥) vector fields on R” and 1 < m < n. Then Petrov’s condition may be not satis-
fied and, if I is a singleton, the uniform ball property fails. Nevertheless, the minimum
time to reach a point is equal to the sub-Riemannian distance dggr from such a point
associated with the distribution A = span{fi, ..., f;,} on the manifold M = R" (cfr.
[BR96, JSC87, Mon06]). Regularity properties of dsg were obtained for subanalytic
structures (cfr. [Agr01, Tré00], and Section 4). In particular, if the Lie algebra gener-
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ated by A is regular everywhere, i.e., it satisfies Hormander’s condition (cfr. [H6r67]
and Section 4), then for any xz, there exists a dense subset S,, of R” such that for all
y € Sy, the function dggr(zo, -) is Lipschitz continuous on a suitable open neighborhood
of y (cfr. [Rifl4, Chapter 2]). One can show (cfr. [CR08]), assuming furthermore that
any geodesics associated with A connecting = to xy # x is not singular (see Section 2
for the definition), that the function dgsgr(zo, -) is locally semiconcave on R™\ {z¢}. So,
under such assumptions, it follows that for any compact set A C R™ and any y € R"\A
the function dgg(y,-) is C(y)-semiconcave on A. Such a property does not suffice to
guarantee the local semiconcavity of dsg(I',-) = inf,cr dsr(y,-) on R"\I', because the
semiconcavity constant C(y) might blow up with y € I'. Nevertheless, in this paper
we analyze the local semiconcavity property of the function infyer dgg(y, -) obtaining
uniform bounds on the semiconcavity constant C'(y) as y lies in a compact set (cfr.
Section 4). More precisely, we will show that for any compact set I' C R™\A there
exists a nonnegative constant C' = C'(A,I") such that dgg(xg, ) is C-semiconcave on A

for every xo € T'.

In order to obtain the semiconcavity results we assume that there are no singular
geodesics and we study the dependence of the semiconcavity constant with respect to the
initial point, showing that it is bounded from the above when z( lies in a compact set.
As was the case in [CRO08], a key point of the reasoning is to show the local invertibility of
the end-point map (zg,u) — x4, .(T), where T > 0, and to prove the C*! regularity of
its inverse function (Proposition 4.4.5). Then, we use a compactness result ensuring that
all optimal controls are uniformly Lipschitz continuous and uniformly bounded. The
final step consists in combining the local semiconcavity property of the cost functional

with the 1! regularity of the inverse of end-point map.

After establishing semiconcavity, we address sensitivity relations and transversality
conditions for the minimum time function associated with an affine control system as

above. Such relations are given in the form of the following inclusions

—p(t) € 8P7p(x$07ﬂ(t)) Vit e [0, (z0))
p(7r(x0)) € Limsup; _, 11 (ng) Ny, (T (1)),

where zy € R™\I', u(-) is an optimal control for 7 at zo, Iy = {y € R" | 7r(y) < t}, and
p(+) solves the adjoint equation —p'(t) = du f(z4,.a(t), u(t))*p(t) for a.e. t € [0, 0 (z0)].
Sensitivity relations for the minimum time function to reach a set with the inner ball
property were already investigated (cfr. [CF06, CMN15, CN10]). We recover, for time
optimal control problems, sensitivity relations for the co-state in terms of proximal
normal cones (cfr. [Vin00, CMN15] and Section 2). This is done under the assump-

tion that there are no singular geodesics associated with A and the target set is merely
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compact. The analysis, that applies to any compact target, is based on the dynamic pro-
gramming principle and further properties of viscosity solutions of the eikonal equation
|F(2)*Vrr(z)| —1 =0 for z € I'°, where F(z) is the matrix which has fi(x), ..., fi(x)
as column vectors (cfr. [BCDO08, CS04]).

The outline of the paper is as follows. Section 2 recalls some basic notation and
results from nonsmooth analysis and control theory. In Section 3, we state our main
results. We give their proof in Section 4. Finally, in Section 5, we derive sensitivity

relations for the minimum time function.

4.2 Preliminaries

Let (X, |- |y) be a normed space. We denote by Bx(z,r) the open ball centered at z with
radius r > 0 in X (we write B,(2) in place of Bgn(z,7) when no confusion arises) and
we set ST = dBx(0,1). For a subset C C X we write int C, C, and C¢ for the interior,
the closure, and the complement of C, respectively. We denote by |-| and (-,-) the
Euclidean norm and the scalar product in R", respectively. Let A C X be a nonempty
subset. The distance from z to A is defined by d(z, A) = inf {|z —y| |y € A}. A
function ¢ : A C X — R is said to be C-semiconcave (with linear modulus) on A, with

C > 0, if it is continuous and
o(z+h)+ oz —h) —20(z) <C|h® Vz,he X, [x—hx+h]CA.

We say that ¢ is locally semiconcave on A if for any compact subset K C A there exists
Cx > 0 such that ¢ is Cg-semiconcave on K. If A is open, we say that ¢ € C'! or
p e C’llo’i if o is continuously differentiable with Lipschitz continuous or locally Lipschitz
continuous differential on A, respectively. We say that ¢ : X — X has a sub-linear
growth if there exists M > 0 such that |¢(z)|y < M(1+ |z|y) for all z € X.

Remark 4.2.1. If ¢ € C2} and K is a compact subset of A, then ¢ is Lg-semiconcave

on K, where Lk is a Lipschitz constant of d ¢(-) on K.

For p € N* we denote by LP(0,T;R") the set of all Lebesgue measurable functions
g : [0,T] — R™ such that ||g||%, := [ |g(s)|” ds < oo, by C(0,T;R") the space of all
R"™-valued continuous functions on [0,7], and by CP?(0,7;R") the space of R™-valued
functions on [0, T, p-times continuously differentiable.

Let D C R" be nonempty and {A}, ., be a family of nonempty subsets of R™. The
upper limit, in the Kuratowski-Painlevé sense, of A, at hg € D is the closed set defined
by

Limsup A, = {v € R" : liminfdy, (v) = O} .

h—pho h—pho
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If D = N*, then Limsup,; . S(i) := Limsupy—oG(y) where A = {1/i}, + and
A
G(1/i) := S(1).

Let E be a closed subset of R" and z € E. We denote by E~ the negative polar of
the set F, i.e. the set {y € R"|(y,z) <0 Va € E}. The proximal normal cone to E
at x is the set defined by

NE(@) = {p e R"| 3o = o(2,p) 2 0: (p,y—a) <oly—af Vye E}.
Furthermore, p € N (z) if and only if there exists A > 0 such that B, (z + rp) C E*
for all 0 < r < A (cfr. [Vin00]).

The contingent cone to E at x is the set defined by

Tp(x) ={veR"|3t; = 0+, Jv; = v, x + tv; € EVi}.

It is known that NE(€) C Tg(£)™ for all £ € OF.

Let ¢ be a real valued function on E. The superdifferential D" () of p at x € E
is defined as the set of all p € R™ such that

lim sup o(y) — () — (p,y — )
v ly — |

< 0.

The proximal and horizontal proximal supergradient of ¢ at x are the sets defined,

respectively, by
() = {€ € R (=€ 1) € NE o (2, 0(0))}

0 () = {€ € R [ (=€,0) € NE o (2, 0(2))}

where hypo ¢ denotes the hypograph of the function ¢. For further properties of su-

perdifferentials and proximal cones we refer to [Cla90, Vin00].

4.3 Main result

Let 1 < m < n be two natural numbers. Consider the optimal control problem
t
minimize / L(ay u(s), u(s)) ds (4.1)
0

over all controls u € L*(0,t;R™) such that the solution x,,,(-) of the affine control

System
2'(s) =" ui(s) fi(xz(s)) for ae. s €0,t]

(4.2)
x(0) = g
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satisfies the end-point constraint

xﬂfo,u(t) =Y, (43)

where (t,y) € [0,00) x R" and f; : R* — R" L : R" x R™ — R are given functions. We
say that a control v € L?*(0,t;R™) steers zg to y in time t if z,,,(t) = y. The infimum
of the cost functional in (4.1) over all controls steering xy to y in time ¢ is denoted by
Vi (t,y) (if there are no controls steering xy to y in time t, we set V, (t,y) = +00).
The function V,, : [0,00) x R™ — RU{=%o00} is called the value function of the problem
(4.1)-(4.3) with starting point xzo. A control v € L*(0,t;R™) is said to be an optimal
control or a minimizer (for the problem (4.1)-(4.3)) at (zo,t,y) if x4,,(t) = y and
Vo (t,y) = [o L(74,.4(5),v(5)) ds. We denote by U,, (s, y) the (possibly empty) set of all
optimal controls steering x( to ¥ in time s.

Let us denote by (H) the following assumptions:

(H) (i) fi,-.., fm are C? vector fields on R™ with sub-linear growth and Lipschitz
continuous differential;

(ii) L e C*and V2L(z,u) > 0 for all (z,u) € R" x R™;
(iii) G is a given nonempty compact subset of R” and the following set is none-
mepty
D :={(t,z) € [0,00) x R" |V, (t, ) < +00 Vxg € G};

(iv) there exists a nonempty open subset g C [0,00) x R™ such that Q¢ C Zg;
(v) there exist ¢ > 0 and a function ¢ : [0, 00) — RT such that

lim inf o(r)/r* >0 & L(x,u) > ¢(jul) —c V(z,u) € R" x R™,
and for any r > 0

VLl g ol
sup{ o([al) |z € B.(0), ue R }< .

Remark 4.3.1. Assume (H) and that |L(z, u)| < @(z)(1+ |u|?), where ¢(-) is a locally
bounded function on R". Then (t,z) € g if for any zy € G there exists a square

integrable control u : [0,¢] — R™ steering xy to z in time t.

Let T > 0 and % C L*(0,T;R™) be such that all solutions of (4.2), with u € ¥/,
are well defined on [0, 7. The end-point map associated to the system (4.2) at time T,
written Er, is the function given by

Er(xo,u) = Tgyu(T) V(zg,u) e R" X ¥
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It can be proved that, if the vector fields f1, ..., f,, are smooth, then # can be chosen
to be open (cfr. [BR96, Mon06]).

Definition 4.3.2. A control u € L?(0,¢; R™) is said to be singular at xq if dF; (g, u)(0, )

is not a surjective map on L%(0,t; R™).

Definition 4.3.3. If (H)(iii)-(iv) hold true, we say that the problem (4.1)-(4.3) does
not admit singular minimizers (on G) if any u € U,,(t,y) is not singular whenever

(t,y) € Qg,y ¢ G, and xy € G.
We state next the main result.

Theorem 4.3.4. Assume (H) and suppose that the problem (4.1)-(4.3) does not admit
singular minimizers.
Then, for any compact subset I' C Qg, there exists a constant C = C (G,T") =2 0

such that the value function Vy,(-,-) is C'-semiconcave on I for all o € G.
Now, let us denote by (H)’ the following assumptions on fi, ..., fi:

(H) (i) fi,..., fm are smooth vector fields (C* or C*) and they satisfy Hormander’s
condition, i.e.,
span {X’(x)} =R" VzeR"

i>1
whete X1(z) = {fu(2), -, fm(2)}, X (&) = Xe(@)U{[/, g)(2) | f € X'(2),g €
X'(x)} for all i € N* ([-,-] denotes the Lie bracket);
(ii) f1,..., fm have sub-linear growth, Lipschitz continuous differential, and f;(z),

..ty fm(z) are linearly independent for all x € R™.

If (H)'-(i) holds true, by the Chow-Rashevsky theorem (cfr. [Cho40, Ras38]), for any
xo,y € R™ there exists an absolutely continuous arc z : [0,1] — R", with square

integrable derivative, such that x(0) = z, (1) = y, and

2'(t) € span { fi(z(t)), ..., fm(x(¥))} for a.e. t € [0, 1]. (4.4)

An absolutely continuous arc on [0, 1] satisfying (4.4), with square integrable derivative,
is said to be an horizontal arc.

Let us denote by .#(zg,z) the set of all horizontal arcs  such that §(0) = x
and B(1) = x. Then, if (H)" holds true, there exists a bijection between .#(zo, z) and
L*(0,1;R™) such that for any § € .(x¢,x) there exists a unique ug € L*(0,1;R™)
satisfying 3'(s) = 27 (up(s))ifi(B(s)) for a.e. s € [0,1]. We can associate to any
horizontal arc [0,1] > t + B(t) its length given by 1(3) = [ |ug(t)| dt, and the sub-
Riemannian distance between g and x, written dsg (o, x), is inf {I(8) | 8 € S (xg,x)}.
The following result is very useful (cfr. [BRI6)):
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Proposition 4.3.5. Assume (H)'-(i). For any xy, x € R"

dsp(zo, z)° = e(xg, x) := inf {/01 lug(t)|” dt| B € Y(Io,x)} .

The function e(-,-) is said to be the sub-Riemannian energy, and an horizontal arc
minimizing e(zq, z) is said to be a geodesic steering o to x. A geodesic [ is said to be
a singular geodesic (or singular) if the associated control ug is singular.

Consider the following minimization problem
E, (t,z) ;= inf {/ lu(s)|* ds|u € L2(0,t;R™), 24y u(t) = x},

where (¢,x) € [0,00) x R" and xy € R". Then, by Proposition 4.3.5, it follows that
dsr(zo,z) = y/Ez(1,2) for all x € R", and, assuming that any geodesic connecting
x to »y # x is not singular, by [CR08, Theorem 5] the function dgg(zo,-) is locally
semiconcave on R™\ {zo}. We would like to underline that the infimum of a family of
semiconcave functions is not in general a semiconcave function. When each member of

the family is semiconcave with same constant then the infimum is semiconcave too.

Lemma 4.3.6 ([CS04]). Let {u|u € Z} be a family of C-semiconcave functions on
I' € R” and put w(z) = infyeru(x). If w(x) # —oo for all x € T then w(-) is
C-semiconcave on I'.

For any compact set I' C R”, the sub-Riemannian distance between I' and z is
dSR(F,ZL’) = inf dSR(SUo,.CE).
zo€l

Definition 4.3.7. We say that there are no singular geodesics for I' (associated to the
distribution spanned by fi,..., f;) if any geodesics connecting x to y is not singular

whenever z € [' and y € I'“.
Finally, in light of Proposition 4.3.5 and Theorem 4.3.4, we get the following result:

Corollary 4.3.8. Assume (H). Let T' C R™ be a compact set and suppose that there
are no singular geodesics for T'.

Then dsgr(T, ) is locally semiconcave on T'°.

4.4 Proof of the main result

We provide here proofs of our main results deferring technical details to the appendix.
For any k > 0,7 > 0, zg € R", and [' C [0,00) x R", we introduce the following

notation

= U Usls,y),

(s,y)erl’
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L ={u:[0,T] = R™| |lul|, <k and u is k-Lipschitz continuous} .

We equip the set £ with the uniform norm.

Lemma 4.4.1. Assume (H) and let T > 0. Then, for any k' > 0 there ezists K > 0
such that for any z € G the map

0.7) % 255 (1) [ " L(@au(s), u(s)) ds (4.5)

is K-Lipschitz continuous and K -semiconcave.

Proof. By Remark 4.6.1 from the Appendix, there exists r = r(k/, G) > 0 such that
7.l <7 forall z€ G andallue ZL. Consider a > 0, M > 0, depending on &’
and G, such that for all z,y € B,(0) and all u,w € By(0)

L) - o) <ale—yl+lu—w) & |[L@wl <M, (46)
and for all x,n with [x + 7,2 —n] C B;,(0) and every u € By(0)

L(z+n,u)+ L(z —n,u) — 2L(z,u) < |7]| (4.7)

Fix z € G. Denote for simplicity the map in (4.5) by Cy(u). Then, from Lemma
4.6.2 and (4.6), there exists 0 = o(k’,G) > 1 such that for any 0 < s <t < T, and any
u,w € LL

Col) = Co(w) < [ 1Lwnl€), wl)] de
[ 1, 0() = Lo, ()] d
<= s+ a [ (2:0(6) = 22l + [u(6) — w()) dg
< (M +aoT) (1t = s| + [lu—w]..) -

Now, let ¢, h,u, and v be such that [t — h,t + h] C [0,T] and u —v,u +v € LL. We
have
Ciin(u~+v) + Crop(u — v) — 2C(u)
= Ci(u+v) + C(u — v) — 2C(u)
+ Crin(u+v) + Crp(u—v) — Clu +v) — Cy(u — v).
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Then,
Ci(u+v)+ Cy(u —v) —2C(u)
= [ (Eerals)suls) +0() + Llemafs)uls) = v(s) = 2120 (5), u(s))) ds
[ (Lata(9), 4() + L-l5) = ios), us)) = 2L (asa(s), u(s))) ds

+ / (220(), () + 0(8)) = L(22 00(5), u(s))) ds

+ / (220(8), u(5) = 0(5)) = L(2200(s), u(s))) ds

+ / (rno(8), 1(8)) — L(22s0(8) — Tsuso(8), uls))) ds.
(4.8)

From (4.7) and Lemma 4.6.2, there exists a constant oy = oo(k’, G) > 0 such that

/Ot (L(xz,u—i-v('s)au(s)) + L(2xz,u(3) - $Z,u+v(5)a U(S)) - QL(:EZM(S),U(S))) ds < 0 ||U||c2>o

According Proposition 4.6.3 below and Remark 4.2.1, we can assume that there exists
o1 = o1(k,G) > 0 such that |2, ,40(8) 4+ T2 o(s) = 22.,(s)| < o1 ||v]%. for all s €
[0,T7]. Hence, by (4.6),

[ L aa5),0()) = L2020(9) = (), uls)) ds

¢
a/ T2 wt0(S) + Tou—u(S) — 22,4(s)| ds
0

< oz lollZ

where 09 = 03(k’,G) > 0. For the second and third term in (4.8) we have, using the
regularity of the Lagrangian in the second variable, Lemma 4.6.2, and the Cauchy-

Schwarz inequality, that

[ (e o1l 10) 26) = o). l5))

A e
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where a; = 03(k', &) > 0 for i = 3,4. On the other hand,
Cian(u+v)+ Crp(u—v) — Ci(u+v) — Cy(u —v)
= [ (Lran(s). ) + 0(9) = L) u(s) + ofs)) ds
b Elsinl®) u(5) +0(5) ~ Lrawen(t), u(s) — o)) ds

t+h
b Elsnl®) us) — v(5) = Lrass(8), u(s) — o)) ds
t+h t
+ ~/t L(xz,u—v(t>7 U(S) - U(S)) ds — ~/t—h L<Iz,u—v(3)7 u(s) - U(S)) d87
and, on account of (4.6) and the Lipschitz regularity of trajectories, the first three terms
are bounded by 3C (h||v||, + h?), while, since u — v € £}, there exists a constant
M = M (K',G) > 0 satisfying
t

/t L@ o(t), u(s) — v(s)) ds — /t L(sueu(s), u(s) — v(s)) ds

= /tt+h (L(ﬁz,u—v(t)a (U — U)(S)) - L(J?z,u—v(s - h)7 (u - U)(S - h))) ds
< MA2.
Then

Cran(t+v) + Crop(u—v) = Ci(u+v) = Ci(u—v) < (Ba+ M) (h o], + ).

]

Remark 4.4.2. From Lemma 4.4.1 and Lemma 4.6.2, it follows that, for any 7" > 0,
the map

¢
R* x L*(0, T;R™) x R™ > (t,u, z) |—>/ L(x,.(s),u(s))ds
0
Is continuous.

Lemma 4.4.3. Assume (H) and suppose that the problem (4.1)-(4.3) does not admit
singular minimizers.

Then the function (zo,t,x) = V,,(t,2) is continuous on G x Zg.

Proof. Let (%o, t,7) € G X P and consider a sequence (z;, t;, T;) — (To,t,Z) in G x Dg
such that

71— 00
By [LM67, Theorem 8, Chap. 4]), for all ¢ > 1 there exists a square integrable control
ui(-) such that Vi, (t;, z;) = [3° L(2%(s),us(s)) ds, where z'(-) denotes the trajectory

Ty, u;(+) such that x., ., (¢t;) = x;. Without loss of generality we can suppose that for
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all large i the controls {u;}; are defined on [0,¢ + 1] putting u; = 0 on [¢;,t + 1]. By
assumptions on ¢@(-), there exists o, C' > 0 such that ar? < ¢(r) for all > C. So

2 2 2
u; = w;(8)|” ds + u;(8)|” ds

s i(s)])ds + C*(t + 1
a/[07t+1]ﬂ{s:ui(s)>c} ¢(|U (S)D S ( )
t+1 ' )
gOé/ L(xl(5)7ui(8)) d8+<c+02)<t—|—1)

0

and it follows that {|u;.}, is bounded. By further extraction of a subsequence
and from Gronwall’s lemma and the Ascoli-Arzela theorem, keeping the same no-
tation, we have that w; — @ in L*(0,f + 1;R™) and x'(-) converges uniformly on
[0,%+1] to an absolutely continuous trajectory y(-) := zz,a(-). Now, since |y(t;) — 7| <
ly(t;) — =" (t;)| + |2*(¢;) — z|, we conclude that lim; |y(¢;) — z| = 0. So y(¢) = z. Then,
from the convexity of L with respect to the second variable (cfr. [LM67, proof of Theo-
rem 8 Chap. 3]), we deduce that lim; [5° L(2%(s), u;(s)) ds > fgL(y(s),ﬂ(s)) ds. Hence
Vio(t,7) < 1.

Now suppose that Vz,(t,Z) < . Let v(-) be an optimal control steering z, to T in
time ¢. From [CR08, Lemma 3], v(-) is continuous. Moreover, according to Lemma 4.6.5
below, there exists {vj}?zl C C(0,¢R™) such that the map ¢ : R® — R™, defined by
(B) = Xj_; B;dEy(To,v)(0,v;), is an isomorphism. Then, from Lemma 4.6.2 and
Corollary 4.6.4, we conclude that the map & : R" x RT x R" defined by

&(y,s,08) = (y, s, Es(y, v+ Xn: @'vj))

=1
is C' in a neighborhood of (%, t,0) and det d&(Zy,t,0) # 0. So, applying the Inverse
Function Theorem, the map & is open in a neighborhood of (¢, Zg,0). It means that
any point (z;,t;, x;), sufficiently close to (Zo,t, ), admits a control w’ = v + >0 Bivj
close to v in L? such that x., () = z;: by Remark 4.4.2, [5" L(z., ,(s), w'(s)) ds is

close to fgL(a:i07v(s), v(s)) ds, leading to a contradiction. O

From the proof of [CR0O8, Lemma 3], Remark 4.4.2, and Lemma 4.4.3, we get the
following compactness result.

Lemma 4.4.4. Assume (H) and suppose that the problem (4.1)-(4.3) does not admit
singular minimizers.
Then, for any nonempty compact subset I' C Qg, we have Uy (s,y) # O for all
(s,y) € I' and zo € G, and there exists k = k(G,I") > 0 such that
U ™) c zr.
20€G
We give next an inverse mapping result for the end-point map.
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Proposition 4.4.5. Assume (H) and suppose that the problem (4.1)-(4.3) does not

admit singular minimizers. Let I' C Qg be a nonempty compact subset and define
T=sup{t>0|dzeR", (t,z) €T},
A ={(t,2,u) €[0,00) x G x L*(0,T;R™) | Iz € R", u € U.(t,x), (t,x) € T'} .
If for some k > 0
U %) c 4, (4.9)
x0€G

then there exist k' > k, r > 0, and ¢ > 0 such that for any (t,z,u) € A we can find
a map
Fi.w: Bo(t) x Bo(2) X Bo(z,,(1) = Z2,

satisfying for all (t,z,u) € A:
(i) Fiou€CHY

(i) Es(Z, Fi.u(s,2,8)) =0 forall (s,2,8) € B,(t) x B.(2) X By(z,4(t));
(1it) AF; .., is (-Lipschitz.

Proof. Let (tg, z0,up) € A. We know that dF}, (20, ug)(0, -) is surjective on L*(0,T; R™).
Let ¥ C CY(0,T;R™) be a countable subset such that span? = L%*(0,T;R™). By
Lemma 4.6.5, there exist n linearly independent vectors {v?,...,v9} C ¥ such that the
map Ag : R"™ — R”, defined by Ag(a) = S0, aydEy, (20, u0)(0,0Y), is an isomorphism.
Define for any (t,z,u) € (0,00) x R" x L*(0,T;R™) the map ¢?_, : R* — R" by
07, u() = XL, a;dEy(z,u)(0,v7). By Lemma 4.6.2 and Corollary 4.6.4, there exist
00 > 0, o > 0 such that for any (t,z,u) € Jo := By,(to) X By, (20) X Br2(uo, 00)
the map &7, , : (0,00) x R" x R" — (0,00) x R" x R", defined by &, ,(s,y,a) =

(5,9, Es(y,u+ X0, a;v?)), satisfies for all (¢, z,u) € Jo

| det (d&2, (£, 2,0)) | = |det ).,

Z [o-

Now, from (4.9) and the Ascoli-Arzela theorem, the set U, ,cq Z ™ (I') is compact.
Then there exists N € N* such that, for all j = 1,..., N, we can find p; > 0, p; > 0,
(tj,2;,u;) € A, and linearly independent {v{, e vﬁl} C ¥, such that

AC ' U ng<tj> X ng<2j) X BLQ('U,J,QJ) =: 4 U \7j7

and, defining for any (¢, 2, u) € J; the maps &7, ,, : (0,00) x R" x R" — (0, 00) x R" x R”
and ¢, : R" = R" by & ,(s,y,0) = (5,9, Es(y,u + Xy aw])) and ¢] . ,(a) =
S aidEy(z,u)(0,0]), for all (t,2,u) € J;and j =1,..., N

| det (dé‘}{z,u(t, 2,0)) | = ’det gp{w > p; = min{py, ...,un}t > 0. (4.10)
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Applying the Inverse Mapping Theorem to the map é‘?w and using a compactness
argument, we conclude that for each j there exists r; > 0 such that for V;(¢, z,u) =
(t —rj,t +1;) X By (2) X By, (Ey(2,u)) is isomorph to (@Jw)_l (V;(t,z,u)) for any
(t,z,u) € J;. Put r = min {ry,...,rn} and define for any (¢, z,u) € J;,

Fi..(t',2,8)=u+ i ot 2, B)v] V(t', 2, B) € V(t, z,u),
i=1
where (é@jzu)il (t',2',p) = (', 2, a2, pB)). Notice that, since the coefficients «; are
bounded by a suitable constant M > 0 and v/ € C*(0,T;R™), there exists a constant
k' > k such that F ., take values in £7. Hence, (i) and (it) follow. Moreover, from
(4.10) and the Cllo’i regularity of the end-point map, there exists a constant ¢ > 0,
depending only on k and G, such that dF} ., is ¢-Lipschitz for all (¢,z,u) € A. So, we
get (i11). O

Proof of Theorem 4.3.4. Define ¢ = dist(0Q¢g,I") and let r > 0 be as in Proposition
4.4.5 (we can pick r such that r < ¢). It is sufficient to prove the semiconcavity of
Vo, uniformly in zg, on the set ([t —r,t+7r] X T(a:)) NI whenever (t,z) € I'. So, fix
xo € G and let u € U,,(t,x) and h, n € R™ be such that [t — h,t+ h| X [z —n,z+n] C
([t —rt+r] x T(a:)) N I'. Hence, denoting for simplicity F},,. by F and using the
same notation as in the proof of Lemma 4.4.1, from Lemma 4.4.4 and Proposition 4.4.5

we conclude that
Vi (t, ) = Cy(F(t, x0, 7)),
and for all (¢',2') € ([t —r,t+7r] X m) ans
Vo (t,2") < Cy(F (', o, 2")).

So, by Lemma 4.4.1 and Proposition 4.4.5, there exist ¢ = C(G,T) > 0, C =
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C (G, T') > 0 such that for all zy € G

Vie(t +hyx+n)+ Vo (t — h,x —n) — 2V, (¢, )
< Ct-i-h(F(t + h7$07$ + 77)) + Ct—h(F(t - h7 To, T — 77)) - 2Ct(F(tv 1‘0,93'))
= Ct—l—h(F(t + h7 To, T + 77)) + Ot—h(F(t - h7 Lo, L — 7]))

F(t+hax0>$+n)+F(t_hvaax_n)
— 204 5

+2<Ct (F(t—l—h,xo,x—l—n)—;—F(t—h,azo,x—n)> —Ct(F(t,xg,x))>
< Z|F(t+h,x0,x+n)—F(t—h,wo,x—n)l2

+C|F(t+ h,zo,x +n)+ F(t — h,xo,x —n) — 2F(t, ¢, x)|
< sz (h+n)*+CC (K + 7).

Since all constants involved in the previous inequality depend only on GG and T, the

conclusion follows. n

4.5 Sensitivity relations

Let us investigate sensitivity relations for the minimum time function. Let I' C R™ be

a compact subset.

Remark 4.5.1. It is known (cfr. [JSC87, Proposition 3.1]) that the sub-Riemannian
distance between two points y and z is equal to the minimum time 7y, (x) to reach y

from z, associated to the control system

y'(s) = 2%, wi(s) fi(y(s)) forae s>0
y(0) == (4.11)
U E B,

where %,, denotes the set of all Lebesgue measurable controls u : [0,00) — R™ such
that u(s) € B1(0) for a.e. s > 0. So, the minimum time function () to reach I' for
the control system (4.11) satisfies 7 (x) = infyep 70 (2) = infyer dsr(y, ) = dsr(T, x)
for all z € R™. A control u € %, is said to be optimal (for the minimum time function

) at z if 7r(2) = Op(z24(-), u(:)).

Subsequently, to shorten notation, we write f(x,u) in place of 1" u; f;(x). Next
we recall a result from [CFS00, Theorem 3.1], stated under more general assumptions
for the vector fields fi, ..., fi:
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Lemma 4.5.2 ([CFS00]). Assume (H)-(i). Let A C R™ be a closed set, u be an optimal
control at xo € A° for the minimum time function Ta(+), and put 79 = Ta(xo).

Then for any & € Tac(x4,a(10))” the solution q : [0, 7] — R" of the adjoint system

_q,<t) = dxf(xxo,ﬁ(t)a a(t))*Q(t) fOI‘ a.e. t € [07 TO]
q(Ta(20)) = =€

satisfies the minimum principle

(q(t), f(xzoa(t), u(t))) = min_(q(t), f(2za(t), w)) Vi€ 0]

(4.12)

We denote by H the Hamiltonian function on R™ x R", defined by

H(z,p) = max (p, f(z,u)).
ueB1(0)

Proposition 4.5.3. Assume (H)-(i). Let A C R™ be a closed set and fix xy € A°. Let

u be an optimal control at xy for the minimum time function and let & € N%(i’), where
= Typ.al(Ta(20)).

The following statements hold true:

K1

(i) if H(z,&) # 0, then
—p(t) € 0" TA(x0a(t)) Yt €[0,7a(20)),

where p(-) solves (4.12) with final condition p(Ta(xo)) = &/H(Z,£);

(i) if H(z,&) =0, then
—p(t) € 0 T4(wppa(t)) Vit €[0,Ta(m0)),

where p(-) solves (4.12) with final condition p(Ta(xg)) = &.

Proof. Denote for simplicity by 7(-) the minimum time function 74(-). Let ¢(-) be the
solution of (4.12) with final condition —q(7(z0)) = £ € N4(Z), and put o := H(z,§)
and p(-) := —¢q(-). We only show the conclusions (i) and (ii) at t = 0, i.e.,

(p(0), @) € Niygpo- (w0, 7(20))- (4.13)

First of all we claim that o > 0. Indeed, since p(7(x0)) € N4(T), there exists o > 0
such that (£, 9 —7) <oy — J_U|2 for all § € Ac. So, for every 0 < t < 7(z0)

(& Tapa(t) = Taoa(T(0))) < 0 |Tag,a(t) = Tuga(T(w0))]?,
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and, dividing the previous inequality by t — 7(xq), it follows

(6 [ flraals) als) ds)

t— T("Eo) (w0)
(4.14)
S . T a(t) = Tap.a(T(20))] /t F2aya(s),u(s)) ds| .
Tt 7(w) T ot gy FaolS);
Now,
1 t )
) Ly S roas) () ds
1 ¢ ) _
T t—7(z0) /T(xo) (f(zgea(s),u(s)) = f(Tz,al((20)), u(s))) ds (4.15)
* 75—7'1(330) /T(xo) f(@ao,a(T(20)), u(s)) ds.

By Lemma 4.6.2, there exists a constant C' > 0 such that

1 t _ _
L_T@d[@wumma@m@»—fmwawm»m@mds<cn—7mww<4m>

Furthermore, since f(z, B1(0)) is compact and convex for all x € R",

[ Franalr(@0)),5(5) ds € (g alr(), Bi0)),

t— T(LL'()) 7(x0)

and there exist t; — 7(xo)— and u* € B;(0) satisfying
1 b
L o (7(20)),8($)) s = [ (@ a(7(0)). 7). .
i fo H(rlen) 56 ds = faalrlao) ). (@)
So, using (4.15), (4.16), and (4.17), passing to the limit in (4.14) when ¢ = t; and
t; — 7(x9)” we get that

<f7 f(%:o@(T(Jfo)),u*)) > 0.

Hence, the claim holds true.

To prove (4.13), we have to show that there exists & > 0 such that for all y € A¢
and 3 < 7(z0)

(p(0),y — ) + (B —7(w0)) <6 (Jy —al* +18 = 7)) (4.18)

On account of [CLSWO08, Proposition 1.5], we prove (4.18) for all y € A¢ and 3 < 7(y)
with |7(y) — 7(z)| < 1. Fix such y and 3, and let £(-) be the solution of the Cauchy

problem

{5’(75) = f(&(t),u(t)) forae t>=0
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Put y; = &(7(y)) € A¢ and x1 = 24, 2(7(y)) € A°. By Gronwall’s lemma there exists
K > 0 such that for any s € [0, 7(z0)]

[€(5) = @aga(s)] < ey — 2 <M Jy —af. (4.19)

Furthermore, since

Dy(p(s), () = Tap,a(s))
= (P(s),€(s) = wae,a(s)) + (p(s), f(&(s), uls)) = f(zaq.als), uls)))
= (—daf(2a0.u(s), uls))"p(s),£(5) = Laga(s))
+ (p(s), f(&(s), u(s)) = f(aoals), uls)))
= (p(s), f(&(s), u(s)) = f(wap.a(s),uls)) = daf (agals), u(s))(£(s) = Tag.a(s)))
= (p(s), - / (1= )7 f(tE(s) = (1 = t)zaga(s), u(s))(E(s) = wap.als))® db),
and

(p(T(y),y1 — z1) - +/ — Typ.a(s)) ds,

applying (4.19) we deduce that there exists o; > 0 (not depending on y) satisfying

(p(0),y — ) < {p(r(y), 1 — 1) +orly — . (4.20)

Since p(-) is Lipschitz continuous, there exists g5 > 0 such that

(p(T(¥), 91 — 1) = (p(7(20)), 91 — 21) + {P(7(y)) — p(7(20)), 41 — 1)
(y) -

< (p(7(20)), 91 — 1) + 02[7(y) — 7(w0)| Y1 — 71 (4.21)
< (p(7(20)), 1 — 1) + ? (|T(3/) 7(0)[* + [y1 — 56’1|2) :
and

(p(7(20)),y1 — 1)

= (P(7(20)) Tao,a(T(20)) = Tap,a(T(¥))) + (P(7(0)), E(T(Y)) — Tap,a(7(0)))
(o)

= (p(7(20)), f(@a.a(s), uls))) ds + (p(7(20)), E(T(Y)) = Tap.a(T(20))) (4 99)

7(y)
7(20)

= [y (P (@0)), f(@epals), 8ls)) = f(zayalr(@o)), wlr(wo))))) ds
+a(r(zo) = 7(y) + (p(T(20)), y1 — T).
Since p(7(x0)) € N4:(Z), we have

(p(T(20)),y1 — Z) < o |y — @

4.23
<o (o) = ) + | — 7). "
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and there exists o3 > 0 such that for all s € [0, 7(x0)]

((7(20)), f(@20,u(5), u(8)) = [ (@apu(7(20)), u(7(20))))

= (P(7(20)); f(X2o.a(5), U(5)) = f(2ao,u(T(20)), uls)))

+ (p(7(20)), ( 0:1(T(20)), U(8)) = [ (2a0,u(7(20)), u(7(20))))
(

<O'3’TLCO)—S|.

|

/—\
V2)
~—

(4.24)

§|

So, using (4.22) and inequalities (4.23) and (4.24), it follows that

(p(m(20)), 41 — 21) < a (7(w0) = 7(y)) + max (0, 03) (|7 (o) = ()" + |t — ) .
(4.25)

On account of (4.19), by (4.25) there exists o4 > 0 satisfying
((r(w0)), 1 — 1) < () — 7)) + 1 (g — 2l + (o) — 7))

Finally, from (4.19), (4.20), and (4.21), we deduce (4.18) (we assumed [ < 7(y)).
Case 2: 7(y) > 7(x0).

Put 5 = £(7(x0)) (notice that § € A¢). In a similar fashion as in the previous step,
there exists o5 > 0 such that

(p(0),y —z) < (p(r(x0)), 5 — T) + 05|y — 2| (4.26)
We claim that

(p(7(x0)),x) € nypm(i;, 0). (4.27)

Let us suppose for a while that (4.27) holds true. So, (4.27) means that there exists
06 > 0 satisfying for all § € A° and 3 < 7(7)

(p(r(20)),5 — &) + af <o (|7 — 2" + 5?). (4.28)

From the dynamic programming principle it follows that if § < 7(zg) then 5 — 7(y) <
T(zo) — 7(y) < 7(¥), so by (4.28) we have

(p(r(20)),5 — 7) + (8 — 7(20)) < 06 (|7 — 7I* + |8 — 7(x0)F) |

and, using (4.19), we deduce that there exists o7 > 0 such that for all y € Ac and
B<T(y)

(p(m(20)),5 — &) + a (8 — 7(20)) < o7 (ly — 2> + |8 = 7(0) *) .

So (4.18) follows. It remains to (4.28). If 3 < 0, then (4.28) follows from the condition
p(7(x)) € NL(Z). On the other hand, suppose that 0 < B < 7(5) <1 and let 2(-) be
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the solution of the problem

2'(t) = f(z(t),u(r(xg))) fora.e. t>0
2(0) =

Define 4, = 2(3) and observe that §; € A°. So, letting K > 0 to be the Lipschitz
constant of f with respect to the space variable on the compact set {y € R" | 7(y) < 1},
we deduce that for all 0 < ¢t < 3

3 < [ 17((s), a(r(ao))] ds

<A|fzsm7xo ) = 1@ lr(wo)))] ds + ¢ £, u(r(x0)))]
<K [[1a(s) = 7l ds + 177 7l (o)

<K [ Jat9) = 3l ds+ 31 @ alr(w)].

From Gronwall’s lemma, it follows that for all 0 <t < g <1

|2(t) — gl < Be™" | £(5, ul(7(x0)))]
< B (1 £ (5, ulr(x0))) — F(2,u(r(20)))| + |F(Z, (7 (0)))])
< BEeX |5 — | + B’ | (2, u(r(xo)))] (4.29)
< Kef |y — 7| + 5 | £ (7, ul(7(x0)))]
< Ke® (| — 2] + B1f (3, a(r(x0)))])
where K = K + 1. Now
(p(r(x0)), 5 — &) = (p(r(20)), 5 — 1) + (P(7(0)), 41 — %), (4.30)
and, combining the inclusion p(7(zo)) € N4(Z) with (4.29), it follows that
(p(T(20)), 51 — ) < o |gr — @
<20 (ljn —3° + |y — 2I°)
< 20(K2%%F) (2] — 2 + 282 | £ (2, u(r(20)))|* + |7 — 2[°)
<os (B +5—2),

(4.31)



4.5. SENSITIVITY RELATIONS 115

for a suitable constant og > 0. On the other hand,
(p(T(Io?), y— )
-/ B(ﬁ(T(l’O))’f(Z(S)ﬂ(T(fCO)))WS

_ _/B ((w0)), F (&, W(r(x0)))) ds (4.32)
- / (2(s), a(7(x0))) — f(F,u(r(x0)))) ds
= —af - / (2(5). a(r(x0))) — f(Z, W(7(x0)))) ds.

Furthermore, putting & = |p(7(x¢))| K,
~ [ ptren), £(=(6), 0l (w) ~ £, a(r(w0))) ds
< I la)] [ 1 (6), i (o)) — £, i(r(ao))] ds

B
/ |z — x| ds
0
s) — I d5+ﬁ|y—$|> (4.33)

|17—at~|2>
- 1o 1, o
Rl — 3l + 5 1@ alr @) + 55 + 515 — 7P

<oy (B + |y - 2| )
for a suitable constant og > 0. Now, from (4.32) and (4.33) it follows that

Qz

DN | —

o |7~ |+ s 17(@ Alr(m)| ds + 557+

Qz

Qz
/\/—\/—\
Ql

(p(7(x0)), ¥ — 1) + B < 09 (32 + |y — 9_U|2) : (4.34)

Hence, the claim (4.27) follows from (4.31) and (4.34).

Finally, from the dynamic programming principle and with the same technique as
those used for the case t = 0, we show that the conclusion holds on the whole time

interval [0, 7(xy)). O

Proposition 4.5.4. Let u be a C-semiconcave function on an open set & C R", with
C > 0. Suppose that, for some X\ € R,

(1)) Uy={zel|ulx) < \}#92
(i) AU\NO €O (4.35)
(i) FJa >0 such that D u(x) N B.(0)°#0 Vze O, (4.36)
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then there exists v > 0 such that for all x € OU, N € we can find 9, € S* satisfying

B, (x + rd,) C Uy.

Proof. We claim the following: if z € U, N O, p € DYu(z), and R’ > 0 are such that

Br(z)Cc O & p#0, (4.37)
then for v := —p/|p| we have B, (z+10) C U, where " = min{R'/2, |p| /2C}.
Indeed, for such 7, by (4.37), we have [z,z — r’m +r'v] C O for all v € S', and,

p
applying [CS04, Proposition 3.3.1], we get
2
u(x — Py r'v) < u(z)+ (p,r'v — r’£> +or? - L
p| p| p|

<X+ rtpa) =+ 207 (1= )

p|
=A+w«nw—mDQ—2gﬂ

<A

So, the claim holds true for o = —p/ [p|.

Now, denote R, = sup{r > 0| B,(r) C ﬁ} forall z €e OUyNO. If R, = +00
for some z € QUy N O, then ¢ = R". Otherwise, we claim that there exists R > 0
such that R, > R for all x € 0OU, N 0. Indeed, otherwise there exists a sequence
{z;}, € OUy N O such that m No° # ( for all i > 1 and R,, — 0 for
any ¢ > 0. Using (4.35), by further subsequence extraction, we can suppose that
r; = T € OU\N O (then T € 0), and since d(z;, 0°) < R,, + ¢, passing to the limit we
obtain d(z, 0°) < e. By arbitrariness of ¢ it follows that d(z, &°) = 0 and so x € 0°.
Hence Z € 0 N 0° = 90, and a contradiction follows by (4.35). So, the claim holds
true. We can conclude that for some R > 0, Br(z) C € for all z € OUy N €. From
the first claim, we deduce that for any x € dU, N & and any p, € DTu(z) N B,(0)¢,
Dy == —pa/ |pa|satisfies B, (x + r,0,) C Uy, where 7, = {R,/2, |p.| /2C}. Finally, using
(4.36), we have r, = min{R,/2,|p,|/2C} > min{R/2,a/2C}, and the conclusion
follows with r = {R/2, a/2C'}. O

We state next the main result of this section.

Theorem 4.5.5. Assume (H)'. LetT' C R" be a compact set and suppose that there are
no singular geodesics for I'. Let xo € I'° and u be an optimal control for the minimum
time function at xo. Denote I'y = {y € R™ | m(y) < t}.
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Then the solution of the adjoint equation

—p'(t) = dpf (o a(t), u(t)) p(t) for a.e. t € [0, 7r(x)]
satisfies the sensitivity relation
—p(t) € 0P 1 (24,a(t)) YVt € [0, 7r(70)), (4.38)
and the transversality condition

p(rr(z0)) € Limsup Nge(way,a(t))- (4.39)

t— 1 (z0)—

Proof. Let \; — 0+ and write for simplicity I'; in place of 'y,. It is well known that 7 (+)
is a continuous function and its level sets are compact subsets (cfr. [BCDO08, CS04]).
Hence for all 7 > 1 there exist open sets A;, B;, D C R™ such that D is bounded and

rcBcintl;y & I';CA; CD. (4.40)

Putting 0; = A;\B;, it follows from (4.40) that OT; N &; is bounded and I'; =
{y e R"|mr(y) =N} C O;. So, dL;NO; C O;. Moreover, from Corollary 4.3.8
and Remark 4.5.1, the minimum time function 7t is locally semiconcave on I'*. We
know (cfr. [BCDO08, Chapter IV]) that 7 is a viscosity solution of the equation
|F(y)*Vr(y)| — 1 = 0 on I'°, where F(y) is the matrix whose columns are the vec-
tors f1(y), ..., fm(y). So, putting M = max{||F(y)|| |y € E}, it follows that for all
1 > 1 and all y € 0; there exists pz € DT 1r(y) such that p;
Proposition 4.5.4, for all ¢ > 1 there exists r; > 0 such that for any y € 9I'; we can find

> M~!. Hence, applying

a unit vector ¥;(y) satisfying

B, (y +riti(y)) C I (4.41)

We note that (4.41) implies that the set Nrﬂ(y) contains a nonnull vector for all y € JT';.
Also, 7 is locally Lipschitz continuous on I'® and 7, (-) = 7r(-) — A; on I'§ for all large
i > 1. Therefore, from [CS04, Theorem 8.2.3], for all ¢ > 1 and all y € JI'; we
have H(y,&) # 0 for any £ € NE(y) NS, We next construct a solution p(-), solving
the adjoint equation, associated to the sequence {);}, as follows. For all i > 1 pick
& € Nr%(yi) NS where y; = 2, a(7or, (70)). We denote by p;(-) the solution of (4.12) on
[0, Tor, (0)], with final condition & H (y;, ;) ", and we extend such functions as solutions
of the adjoint equation in (4.12) to the whole interval [0, 7r(x¢)] (we continue to denote
by p;(+) such extended functions). Notice that " or,(y) = 077 (y) for all y € T¢. From
Proposition 4.5.3 it follows that

—pi(t) € O (x44(t)) Yt € [0, or, (0)]. (4.42)
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Letting L = max {||d, f(xs,a(t), u(t))] |t € [0, 70(z0)]}, by Gronwall’s lemma we get
Ipi(t)] < €L |pi(0)] and |p/(t)] < Llpi(t)| for all t € [0,7r(z)]. Since O (xo)
is bounded, the sequence {|p;(0)|}, is bounded. So, applying the Ascoli-Arzela and
the Dunford-Pettis theorems, there exists an absolutely continuous function p(:) on
0, 71 (z0)] such that p; — p uniformly on [0, 7+(z0)] and p; — p’ in L*(0, 7(xo)). Such

p(-) satisfies the adjoint equation on [0, 7r(z0)].

Now, using the closedness of 9¥'1(y) for any y € I'¢, we get (4.38) by passing to the
limit in (4.42), and from the definition of upper limit we get (4.39). O

4.6 Appendix

Below we assume that T > 0.

Remark 4.6.1. If (H)-(i) holds true and B C R™, # C L*(0,T;R™) are bounded
subsets then, by Gronwall’s lemma, it follows that there exists r = r (#', B) > 0 such
that

Hxxo,unoo <r YueW,Vr, € B. (4.43)

If # C Br=(0,R) for R > 0, then all trajectories x,, () with (x¢,u) € B x # are

uniformly Lipschitz continuous on [0, 7.

Lemma 4.6.2. Assume (H)-(i). Let B C R™ and % C L*(0,T;R™) be bounded subsets.

Then there ezists C = C(#',B) = 0 such that for all t € [0,T], z,y € B, and
v,we W

220 (1) = 2y ()] < C([lv —wl2 + [z = yl). (4.44)

In particular, if # C Bp=(0, R), then there exists C = C(R, B) > 0 such that for all
t,s €10, 7], z,y € B, andv,w € ¥

[20(t) = 2y ()] < C (o = wll e + [z =yl + 1t = s]).
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Proof. Let B C R™ and # C L*(0,T;R™) be bounded subsets. We have
|il'z,v(f) = Zyu(t)]
s) fi(x.n(s ))ds—/sz ) fi(@yw(s ))ds—l—z—y‘
/ Z Uz )f’L xzv dS—/ Zwl fz xyw( )) - fi(xz,v(s))) ds
+1z =yl
<3 (1) = D o) st [ )] (5] = Ao )
+lz—yl.
(4.45)

From (4.43) it follows that z,,(-) takes values in a compact set of R” for all v € # and

z € B. Then there exists M = M (#',B) > 0 such that # C B2(0, M) and for all
z,y € Byv,weW,se€|0,T],and i = 1,...,m holds

[filzp()I <M & [filw2n(s) = filzyw(s))] < M |22u(s) = 2y(s)| . (4.46)
Now, from the Cauchy-Schwarz inequality and since 37, |v;] < v/m |v|, we have
3 [ 16006) = ws(D) i) s
<MY [ In(s) — wfo)l s

M\/_/ [(s) — w(s)| ds
S MVmT [lv = wl|

and

3

t

wi(s)] |fi(xyw(s)) = filzz0(s))] ds

i=170

Mz/m )| [2yan () — @20(5)] ds
=1 [ (S o)) ko9~ .09

On account of the above inequalities, (4.45) becomes

|220(t) — Tyw(t)] < MW(”U — w2 + [z —yl)
#1300 ) ) = o)
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Applying Gronwall’s lemma and letting C' = M+/mT we have
(2,0 (t) = ()] < C (lv = wll 2 + ]2~ y])
t m t m
(0 [ (St M S g )
0 \i=1
<O (1+CMe™) (o = wllzz + |2~ yl)

Then, putting C' = C (1 + C~']\4eéM>7 we get the first conclusion.
Now, if #* C Br=(0, R), then the last conclusion follows from (4.44) and Remark
4.6.1. L

Proposition 4.6.3. Assume (H)-(i). Then Ep € Ciul(R* x L*(0,T; R™)).

Proof. Let (y,u) € R™ x L*(0,T;R™) and consider a bounded neighbourhood of (y, u)
in R x L*0,T;R™) of the form Bs(y) x By2(u,d), with § > 0. Set for simplicity
Az() = Typnuto() and z(-) = yu(-). So

;J-f—h u+v (t) I’; u (t)

_Zuz +oy(t)) fi( Ax(t Zuz fil (4.47)

i (1) f:(Aa(t) + f:lum (Fi(Aa(t) — Filx(2).
Observe that
F(A() - fi(a(t)
= AN D) — (1) + [ (= 0w — (1= 5) Ma(e)) (A(r) — (1)) ds.
hence we can rewrite (4.47) as
OREN0

—sz ) fi(Ax(t))

4.48
+Zu1 afi(e(0)(Aa(t) — () (4.48)

+ Zuz / (1 —s)d*fi(sz(t) — (1 — s)Ax(t))(Az(t) — z(t))* ds.
Since 3212, vi(t) fi(Az(t)) = 37y vi(8) fi(w(8) +20 vilt) (fi(Ax(t)) — fi(z(t))), letting

§(t) = Aw(t) — x(t)
A(t) = XLy wi(t)d fi(x(t))
B(t) = (f1(@(@®)]..| fn(2(1))),
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the equation (4.48) becomes
¢ =Af+ Bv+ R, (4.49)

where

R(t) = 3o 0(t) (f(Ae(0) — fila(t))
+ Zuz / (1 —s)d*fi(sz(t) — (1 — s)Ax(t))(Ax(t) — z(t))*ds.

We remark that Az and x depend on starting points y + h, y and on controls u + v, u
respectively, while the matrices A and B depend only on y and .

By Lemma 4.6.2, there exists C' = C'(§) > 0 such that for all ¢t € [0, T
[Az(t) — ()] < C(Jh[+ [vll2)  ¥(h,v) € Bs(y) x Bra(u, 0). (4.50)

Observe that there exists M > 0 such that, by (4.50) and (4.46),

m

f: ost)] (A (t)) — Fiw(®)] + 1€ (] + [o]12)* 3 Jua(t)
=1 mizl (4.51)
< MC (A + loll2) zl fost)] 4+ BTC ([A] + oll ) 3 Jus(t)

=1

Solving the system (4.49) with initial condition £(0) = h we have that
t
£(t) = X(D)h + / X(H)X(s) " B(s)o(s) ds
0
t
+ / X(H)X(s) " R(s) ds
0

where X () is the fundamental solution, i.e.,

(4.52)

X'(t) =A@t)X(t) fora.e. te][0,T]
X(0)=1.

Furthermore, letting C; = max {|| X (T)X (s)7!|| | s € [0, 7]} and Cy = max {MC’, MC’},
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we have that

/OT X(T)X(s) ' R(s)ds

< [ x| 186) ds
<O /OTyR(s)| ds

(RN of O AR of MOGIEY

< LA+ ol =)
0

where L >
that

’Aa:(T) —z(T) — (X(T)h + /OTX(T)X<S)_IB(S)U(S) ds)

is a suitable constant depending only on §. Finally, from (4.52) it follows

<L (Ih]+ ol )?

and since

(h,v) = X(T)h + /0 X (T)X (5 B(s)o(s) ds
is linear and continuous on R™ x L%(0, T; R™), we get
dEr(y,u)(h,v) = X(T)h + /OT X(T)X(s)"'B(s)v(s) ds. (4.53)

Now, from (4.53) and regularity of f;’s it follows that there exists C' = C (8) > 0
such that

|dEt<y17 ul)(ﬁu ﬁ) - dEt(y27 u2)(@7 IAL>|
< C(lyr — ol + llur — uall2) (19 + [|2]] .2)
for all t € [0,T]. So,

|AE, (y1,w1) — dEy(ya, u)|| < C (lys — vl + |Jus — uall ) - (4.54)

Corollary 4.6.4. Assume (H)-(i). Then the map
[0, 7] x R™ x L*(0, T3 R™) 5 (t,y,u) — dEy(y, u)

18 continuous.

Proof. The proof follows from (4.53), (4.54), and regularity of f;’s. O

The following result is well known.
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Lemma 4.6.5. Let X be a separable normed space and ® : X — R"™ be a linear,
continuous, and surjective operator. Consider {z;}, dense in X.
Then there exist linearly independent vectors xy, ..., x, such that ® : W — R" is an

isomorphism, where W = span {1, ..., x,}.

Proof. Let {x;}, be dense in X. Then there exists a countable increasing family of
finite dimensional subspaces W}, = span {xi}le such that UyW,, = X. So, ®(W}) is a
finite dimensional subspace and ®(W},) is increasing. Hence there exists kg such that
O(Wy,) = R™. So we can choose n linearly independent vectors 1, ..., z, in Wy, such

that ® is onto and injective on W = span {z1, ..., z,}. ]
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