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Introduction

Over the last thirty-�ve years, the study of deformations of manifolds driven
by parabolic partial di�erential equations has undergone a sharp expansion.
Since the introduction of the Ricci Flow in 3 dimensions by Hamilton [35]
and of the Mean Curvature Flow of hypersurfaces by Huisken [42], a multi-
tude of generalizations has been developed, as curvature �ows are powerful
tools to derive geometric results (e.g. classi�cation theorems or isoperimetric
inequalities) and, in turn, their analysis bene�ts of improvements in geomet-
ric knowledge.

We consider extrinsic curvature �ows, de�ned as time-dependent families
of immersions ϕ : M×[T1, T2)→ N satisfying a parabolic system of the form

∂ϕ

∂t
(x, t) = V (x, t). (0.0.1)

The velocity V (·, t) at each �xed time is a normal section of the immersed
submanifold, related to its extrinsic curvature; (0.0.1) is thus a second order
system of di�erential equations for the immersion. This thesis focuses on the
properties of a particular class of solutions for curvature �ows, called ancient
solutions.

A solution of a parabolic partial di�erential equation is ancient if it is de-
�ned on an interval of times (−∞, T ), for T ∈ R. It is immediate to observe
that the notion in the context of curvature �ows is not void: as intuition
might suggest, standard immersed spheres in Euclidean space move by ho-
motheties, since the system (0.0.1) reduces to an ordinary equation for the
evolving radius; thus, they provide the simplest example of a nontrivial (i.e.
non-stationary) ancient solution. If the radius of a sphere decreases in time,
we will call the �ow contractive, expansive if it increases. The most exam-
ined �ow of the form (0.0.1) is undoubtedly Mean Curvature Flow (MCF)
of hypersurfaces, obtained by choosing V = H = −Hν, the mean curva-
ture vector in codimension 1. By the classical result of Huisken [42], convex
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closed n-dimensional hypersurfaces immersed in Rn+1 shrink into a "round
point" in �nite time under MCF. We recall that every compact smooth �ow
becomes singular in �nite time due to the avoidance principle (see Theorem
2), by comparison with enclosing spheres. A non-convex hypersurface does
not disappear entirely onto a point at the singular time. Di�erent singularity
pro�les arise, according to the rate of explosion of the curvature:

Type I singularity: max
Mt

|h| ≤ C√
T − t

∃C ∈ R, ∀t ∈ [0, T )

Type II singularity: lim
t→T

max
Mt

|h|
√
T − t = +∞

where h is the second fundamental form of the immersion; we note that the

opposite bound max
Mt

|h| ≥ C√
T−t always holds, for some constant C.

Ancient solutions have a role in the analysis of singularities, since they
appear as limit �ows of a the following blow-up procedure for Type I mean
convex singularities. This technique is roughly equivalent to "zooming in"
towards the singular point in spacetime; ancient solutions, thus, describe
the asymptotic shape of the �ow. We will describe the procedure using the
argument in [47]. Let ϕ : M × [0, T ) → Rn+1 be a mean convex immer-
sion evolving by MCF having a Type I singularity at t = T . Consider a
sequence of points (xk, tk) ∈ M × [0, T ) such that, as k → +∞, tk → T
and max

Mtk

H(x, tk) = H(xk, tk). A sequence of �ows ϕ̃ is de�ned by parabolic

rescaling as follows:

ϕ̃k(x, τ) = λk

(
ϕ(x,

τ

λ2
k

+ tk)− ϕ(xk, tk)

)
with the choice of λk = H(xk, tk); each �ow is de�ned in [αk, ωk], with
αk = −λ2

ktk, ωk = λ2
k(T − tk). Thanks to parabolic invariance, these �ows

also move by mean curvature; the family is precompact, thus they admit a
subsequence converging to a limit �ow ϕ∞. Due to the assumptions on the
Type of the singularity, ϕ∞ is de�ned on (−∞, ω∞) for ω∞ < +∞ and it is
thus an ancient solution.

If the starting geometry is suitably restricted, possible limit ancient solu-
tions for Mean Curvature Flow of hypersurfaces are classi�ed. In particular,
a compact parabolic blow-up of a Type I mean-convex hypersurface is nec-
essarily a self-similar shrinking sphere ([45, 46]); convexity of the limit also
holds without assuming compactness. The statement above was proved in
[45] and it follows from a monotonicity formula. Huisken de�ned a strictly
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decreasing quantity by integrating along the �ow the backward heat ker-
nel, thus introducing a functional whose critical points satisfy the equation
H + 〈ϕ, ν〉 = 0. This equation characterizes immersions evolving by homo-
thety.

In general, the existence of monotonic quantities has an important role in
classi�cation processes for ancient solutions of curvature �ows, as an in�nite
amount of time forces those functionals to converge to their critical points,
which are usually geometrically rigid.

Huisken and Sinestrari in 2014 ([48], see also the independent work [40])
have provided su�cient conditions for a compact convex ancient solution
of 1-codimensional MCF in Euclidean space and in Sn+1 to be a shrinking
sphere and a spherical cap or an equator respectively. Recalling the struc-
ture of limit solutions, uniform convexity is a natural assumption in this
class; in addition, a classi�cation result without restrictive assumptions on
the curvature seems hopeless. Simply weakening uniform strict convexity,
Haslhofer and Hershkovits [40] described the construction of a family of ro-
tationally symmetric examples of ancient solutions that are not homotetical.
A self-shrinker that is not a shrinking sphere also exists: Angenent's shrink-
ing torus [9]. Very recently, Bourni, Langford and Tinaglia have de�ned an
ancient 2-dimensional collapsed solution in dimension 2 [15].

This thesis aims to generalize the statement of the Theorem in [48], prov-
ing rigidity results for compact convex ancient solutions for �ows di�erent
from 1-codimensional MCF. Though the details of the techniques used in the
various cases are rather di�erent, there are nodal points common to most
proofs: identi�cation of monotone quantities that characterize spheres and
the ascertainment of parabolic regularity to ensure precompactness and de-
duce the behaviour of the whole solution from that of a subsequent limit at
−∞ (we remark that sphericity is invariant forward in time).

Outline of the thesis

After recalling shortly the geometry of submanifolds and convex parametriza-
tions in the preliminary �rst chapter, we will consider Mean Curvature Flow
of submanifolds in higher codimension. General convergence results for MCF
in this setting are much scarcer than for hypersurfaces, as the complexity of
the normal bundle reduces the number of suitable scalar quantities for the
description of the evolution; analytical properties of the equations are also
more involved. Ben Andrews and Charles Baker [5] proved convergence to a
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round point for submanifolds of Euclidean space under a pinching condition
for the second fundamental tensor of the form |h|2 ≤ C|H|2, for a constant
C. Directly inspired by the argument in [48], we deduce an estimate interior
in time from the evolution equation of an integral quantity that vanishes on
the sphere. The proof also adapts a technique by Hamilton [37] to bound
the intrinsic diameter of the evolving submanifold and conclude an estimate
on the volume using Bishop-Gromov's Theorem. In the following section,
we demonstrate an analogous result for submanifolds of the spheres Sn+k

K of
constant curvature K > 0; the argument is similar but simpler, as positive
ambient curvature helps convergence of the �ow and increases rigidity.

In the last two chapters we consider fully nonlinear homogeneous and
isotropic �ows of hypersurfaces. Chapter 3 regards pinched convex ancient
solutions of contractive �ows. We preliminarly prove a general estimate
on the inner and outer radii of the evolving surface and a bound from
above on the speed, based on a well-established technique �rst introduced
by Tso in [70]. Then, we show spherical rigidity of ancient solutions under
a pinching condition λn ≤ Cλ1 on the principal curvatures for the class of
1-homogeneous �ows analysed by Andrews in [2]; we also show that pinch-
ing can be weakened if a suitable bound on the diameter holds. Both proofs
make crucial use of a Harnack Inequality ([50, 3]) to derive bounds on the
velocity and uniform parabolicity of the system. Krylov-Safonov theory (see,
for example, [50]) and Schauder estimates for parabolic di�erential equations
then grant precompactness of the solution and allow to conclude with the
aid of monotone quantities.

The second part of the chapter deals with �ows having higher homo-
geneity; we �rst examine pinched ancient solutions for the class of Gaussian
Curvature Flows. As in the previous section, the conclusion follows thanks to
a family of monotone nonincreasing entropies introduced by Andrews, Guan
and Ni in the general case ([6], see also [34]), characterizing the spheres. The
issue of parabolicity is delicate, since uniform lower bounds for the speed do
not seem to follow from the Harnack inequality ([38, 25]). We thus adapt
a technique for degenerate �ows introduced by Schulze [65] and readapted
by Cabezas-Rivas and Sinestrari [19] in the context of volume-preserving
�ows; after rescaling, the equation for the speed K̃β can be rearranged to
be of porous medium type and Hölder estimates follow from a Theorem of
DiBenedetto and Friedman [27]; we can then deduce that K̃ cannot vanish
at −∞. We then discuss �ows with high homogeneity and a stronger pinch-
ing as in [7]; in this case, we can exploit arguments similar to those already
examined for the Mean Curvature Flow. The chapter ends with a gener-
alization of the example of a nonspherical ancient solution introduced by
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Haslhofer and Hershkovits [40]. We show how their construction also yields
a solution with the same properties for a class of nonlinear �ows. We need
some new arguments in the proof, as we lack a strong convergence theorem
as the Global Convergence Theorem of Haslhofer and Kleiner [41]; this is in
turn related to the lack of invariance for two-sided noncollapsing and of an
analogous of Huisken's monotonicity formula.

The �nal chapter regards expansive �ows. Evolution of hypersurfaces
under the p-homogeneous inverse �ows we will consider has been examined
only recently in full generality for p > 1, mainly by Gerhardt ([33], see also
[62] and the recent work by [49]), though partial results had already been
obtained in dimension 2, see for example [64]. We will prove monotonicity
of a certain isoperimetric quantity, the k-th isoperimetric ratio,

Ik(Ω) =

(∫
Hk−1dµ

)n+1

|Ω|n+1−k ,

that is minimized by spheres, for �ows with speed 1

H
p
k
k

where Hk is the k-th

mean curvature. Under a pinching assumption and a restriction on the rate
of blow-up at in�nity for curvature, we prove that convex ancient solutions
are automatically spheres also in this case.
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Chapter 1

Preliminaries

In this preliminary chapter, we will recall the basic relations founding the
geometry of immersed submanifolds in Euclidean space and in other Rie-
mannian manifolds, and �x the notation that will be used throughout the
thesis. The following material is standard and well-known; good references
are [30, 53, 69, 21]

1.1 Geometry of Immersions

Throughout the following, Mn will be a di�erentiable closed manifold of
dimension n and (Nn+k, g) a Riemannian manifold of dimension n+k (we will
often omit the explicit notation of the dimension); di�erentiable means C∞,
unless otherwise stated. We will work with immersed submanifolds, de�ned
as the the images ϕ(M) of di�erentiable maps ϕ : M → N having injective
(thus of maximal rank) di�erential dϕx : TxM → Tϕ(x)ϕ(M) at every x ∈M ;
k is the codimension of the submanifold. In general, we do not require that
ϕ is an embedding, so the topology of the submanifold might be di�erent
from the induced topology as a subset of Rn+k (e.g. a priori there might be
self-intersections). Quantities de�ned on the submanifold will be denoted by
latin indices and quantities de�ned on the ambient manifold by greek indices.
We will consider isometric (or Riemannian) immersions, de�ning a metric g
onM as the pullback metric ϕ∗g, so there holds g(v, w) = g(dϕx(v), dϕx(w))
for all v, w ∈ TxM and for all x ∈ M . We will denote the components of g
by gij and those of the inverse g−1 by gij ; choosing coordinates

{
xi
}n
i=1

on

M , gij can be computed as gij = g
(
∂ϕ
∂xi
, ∂ϕ
∂xj

)
. In the last sentences we have

used (and will continue to do so without further notice) the identi�cations
of M with ϕ(M) and of TxM with dϕx(TxM) ' Tϕ(x)ϕ(M). The induced
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Riemannian volume form will be denoted by dµ.

The tangent space of the ambient manifold along M splits into the di-
rect sum of the tangent space of the submanifold and its orthogonal com-
plement. Recalling the identi�cation above, Tϕ(x)N = Tϕ(x)M ⊕ NxM ,
with NxM =

{
w ∈ Tϕ(x)N | g(w, v) = 0, ∀v ∈ Tϕ(x)M

}
the normal space

at x. The decomposition also holds for bundles: TN = TM ⊕ NM , where
NM =

⋃
x∈M

NxM is the normal bundle of M ; it allows to de�ne di�erent

geometric operators by the restriction of the ambient metric connection ∇
to TM ⊕ TN . We will denote sections of a vector bundle B by C∞(B). For
X,Y tangent vector �elds on M , we have the Gauss' formula

∇XY = ∇XY + h(X,Y ), (1.1.1)

stating that the tangent component of ∇XY is the Levi-Civita connection
∇ of the induced metric on M , while the normal component is the second
fundamental form h, a 2-covariant tensor �eld vith values in the normal
bundle that encodes the information about the extrinsic curvature of the
submanifold. In coordinates, if {ei}ni=1 is a basis for TxM and {να}kα=1 is a
basis for NxM , we will use the following notation:

∇eiej = Γkijek

h(ei, ej) = hijανα;

we will always assume Einstein convention of summing over repeated indices
holds; in the higher codimensional case, following the notation in [12], the
repeated indices need not be of di�erent variance. The Weingarten formula

∇Xξ = −Wξ(X) +∇⊥Xξ, ∀X ∈ C∞(TM), ξ ∈ C∞(NM) (1.1.2)

describes the covariant derivatives of normal vectors. ∇⊥ = π⊥(∇) is the
projection on the normal space of the ambient connection (providing a metric
connection on the normal space with respect to the metric g⊥); Wξ is a
selfadjoint operator on the tangent space called the Weingarten map (or
shape operator) in the direction ξ. The tensor h and the family of Wξ are
linked by the fundamental Weingarten relation:

g⊥(ξ, h(X,Y )) = g(X,Wξ(Y )) ∀X,Y ∈ C∞(TM), ξ ∈ C∞(NM)
(1.1.3)

that in particular states that the Weingarten operator can be constructed
by contraction of the second fundamental tensor with the metric.
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The second fundamental form also allows to recover the intrinsic curva-
ture of the manifoldM with respect to the induced metric connection, using
the following Gauss identity:

R(X,Y, Z, V ) = R(X,Y, Z, V ) + h(X,Z)h(Y, V )− h(X,V )h(Y, Z) (1.1.4)

where R, R are the Riemann curvature tensors ofM and N respectively and
X,Y, Z, V are tangent vector �elds. The curvature of the normal bundle R⊥

is described by the Ricci equation

g⊥(R⊥(X,Y )ξ, η) = g(R(X,Y )ξ, η) + g([Wξ,Wη]X,Y ) (1.1.5)

for tangent �elds X,Y and normal �elds ξ, η. The last fundamental equation
of submanifolds, called the Codazzi equation, relates the derivatives of the
second fundamental tensor with the normal component of R:

(R(X,Y )Z)⊥ = (∇Xh)(Y,Z)− (∇Y )h(X,Z). (1.1.6)

We also recall that if the ambient manifold N is Rn+k or any sphere Sn+k(r)
with the standard Riemannian metric, the Gauss, Ricci and Codazzi equa-
tions simply reduce to:

R(X,Y, Z, V ) = K(g(X,Z)g(Y, V )− g(X,V )g(Y,Z)) (1.1.7)

+ h(X,Z)h(Y, V )− h(X,V )h(Y,Z) (1.1.8)

g(R⊥(X,Y )ξ, η) = g([Wξ,Wη]X,Y ) (1.1.9)

(∇Xh)(Y,Z) = (∇Y )h(X,Z) (1.1.10)

due to the expression of the tensor R for manifolds of constant sectional
curvature K.

The trace of the second fundamental tensor with respect to g provides
a normal vector H = Hανα = gijhijανα, called the mean curvature vector.
A point x is an umbilic (or umbilical point) if h(u, v) = g(u, v)H for all
u, v ∈ TxM . A submanifold whose points are all umbilics is totally umbili-
cal, while if |h| is identically zero the submanifold is called totally geodesic.

If the codimension k is one, the normal bundle has �bers of dimension 1
and the choice of a normal outer unit vector ν at each point provides a basis
for NM (we observe that we can choose ν globally and continuously only if
the submanifold is orientable). There is just one Weingarten operator −Wν

(the minus sign is conventional) that will be simply denoted as W . As the
second fundamental tensor in this setting has values in Rν, we will simply
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identify it with a �eld of real-valued symmetric bilinear forms on TM that
we will still denote h, as there is no possibility of confusion. As a selfadjoint
operator, at each x ∈ M the Weingarten map W admits a diagonal basis;
the eigenvalues λ1, . . . , λn are called principal curvatures of the immersion.
The mean curvature vector can be written in the same way as H = −Hν,
where H is a real-valued function on M , and it is given at each point by the
trace of the matrix second fundamental form; we will simply call it the mean
curvature. Thanks to the Weingarten relation, H is given as the sum of the
principal curvatures; we underline how other relevant geometric quantities
can be expressed in codimension 1 using principal curvatures:

|h|2 =

n∑
i=1

λ2
i ;

scal =2
∑

1≤i<j≤n
λiλj ;

K =
n∏
i=1

λi,

where scal is the intrinsic scalar curvature and K =
dethij
det gij

is the Gaussian
curvature.

1.2 Convex hypersurfaces in Rn+1

Convex bodies in Euclidean space have well established properties, and the
description of their geometry can be tackled from several points of view and
using various parametrizations. An interested reader may consult [63, 61, 56]
for a good introduction to convex geometry; we will only state few funda-
mental and well-known facts that are relevant in this thesis.

A body Ω ⊂ Rn+1 is convex if it contains every segment between its
points; we will only consider closed sets whose interior is not empty. A sup-
port halfspace of Ω is a halfspace E ⊃ Ω such that Ω ∩ ∂E 6= ∅. Ω is the
intersection of all its support halfspaces; the boundary ∂E = H is called a
support hyperplane for Ω at each point in Ω∩H. If ∂Ω is smooth, there is a
unique support hyperplane at each x ∈ ∂Ω and it coincides with the tangent
space Tx(∂Ω). The support function with respect to x0 ∈ Ω is a function
from the sphere de�ned as ux0(z) = sup

x∈Ω
〈x− x0, z〉 = sup

x∈∂Ω
〈x− x0, z〉 and

it gives the Euclidean distance to x0 of the support hyperplane with unit
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normal z; Ω is then characterized as Ω =
⋂
z∈Sn

{
y ∈ Rn+1 | 〈z, y〉 ≤ ux0(z)

}
for arbitrary x0 ∈ Ω. A support function allows to parametrize ∂Ω as an
immersion from the sphere, de�ning ψx0(z) = ux0(z)z+∇ux0 +x0, where ∇
is the Levi-Civita connection of Sn.

An immersion ϕ : Mn → Rn+1 is called convex (strictly convex) if the
principal curvatures λi are nonnegative (positive) for all i. If ϕ is an embed-
ding, then ϕ(M) is the boundary of a convex body Ω in Rn+1 according to the
de�nition in the previous paragraph (intuitively, the submanifold bends away
from the outer normal vector at each point). The Gauss map ν : M → Sn
associating to x ∈M the unit normal vector ν(x) is then a di�eomorphism,
as the di�erential is given by the Weingarten map and it is invertible; we
can use ν−1 to reparametrize M using the support function, as ϕ(ν−1(z))
is the point realizing the maximum in the de�nition of u (we will assume
0 ∈ Ω and refer to u = u0, ψ = ψ0 without loss of generality). Thus, we
have u(z) =

〈
z, ϕ(ν−1(z))

〉
and ϕ(x) = ψ(ν(x)). In these coordinates, there

holds:

bji = (h−1)ji = gik
(
∇k∇ju+ ugik

)
(1.2.1)

so the eigenvalues of b are the radii of curvature, inverse of the principal
curvatures. We will often not distinguish between this parametrization as
de�ned on M or on the sphere after the application of the Gauss map.

1.3 Starshaped Hypersurfaces in Rn+1

A subset A in Rn+1 is starshaped if there exists a point x0 ∈ A, the cen-
ter, such that A contains all the segments starting from x0 to any other
point in A or equivalently, if every line L passing though x0 has connected
intersection with A (and thus the intersection between a ray from x0 and
∂A is a singleton). Obviously, a convex subset is starshaped with respect
to any point. If A is a closed smooth starshaped set, the boundary can be
parametrized as the graph of the radial function r from the sphere centered
in x0 to the real line; for notational simplicity we will assume again the hy-
persurface is starshaped with respect to the origin. We can thus describe
∂A as ∂A = {(z, r(z)) | z ∈ Sn}, where polar coordinates have been intro-
duced on Rn+1. If we already have a parametrization ϕ : M → Rn+1 for a
starshaped hypersurface, we can associate to each x ∈M a unique direction
zx = ϕ(x)

|ϕ(x)| and the radial function is de�ned by the relation r(zx)zx = ϕ(x).

The induced metric on M in this parametrization and its inverse can be
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computed as

gij = ∇ir∇jr + r2σij , (1.3.1)

gij =
1

r2

(
σij − ∇ir∇jr

r2 + |∇r|2S

)
, (1.3.2)

where ∇, σij and | · |S are the standard Levi-Civita connection, metric and
induced norm on the sphere respectively. The second fundamental form is
given by:

hij =
r2σij + 2∇ir∇jr − r∇ijr

(r2 + |∇r|2)
1
2

.

The quantity v = 1
r (r2 + |∇r|2)

1
2 =

√
1 + |∇ log r|2 is the ratio between the

radial function and the support function with respect to 0 and it quanti�es
the starshapedness of the hypersurface.

Remark. As last remark, we underline constants C throughout the thesis
might vary from one line to another.
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Chapter 2

Pinched ancient solutions of

higher codimensional MCF

As we discussed in the introduction, the aim of this thesis is to discuss suf-
�cient conditions on the curvature that ensure an ancient compact solution
of a certain geometric evolution system is �the simplest possible solution�,
namely a sphere. We recall that an ancient solution is a solution de�ned for
an interval of times unbounded in the past, so that intuitively the di�usive
and regularizing properties of the equation have acted on the surface for in-
�nitely long.

In this chapter, we will prove rigidity results for ancient solutions of Mean
Curvature Flow (MCF)

∂ϕ

∂t
(x, t) = H(x, t) (x, t) ∈M × [T0, T ), (2.0.1)

where the velocity H is the mean curvature vector. Good references on
the Mean Curvature Flow in codimension 1 are [60, 55, 28]; for the higher
codimensional case the interested reader can consult, for example, the survey
by Smoczyk [68]. M is assumed to be a closed submanifold of dimension at
least two; we will discuss both time-dependent immersion ϕ of Mn× [T0, T )
into Rn+k and time-dependent immersions into Sn+k. We suppose T = 0
without loss of generality.

The main theorem we aim to prove is the following:

Theorem 1. LetMt = ϕ(M, t) be a smooth closed ancient solution of (2.0.1)
in Rn+k, with n, k ≥ 2. Suppose that, for all t ∈ (−∞, 0) we have |H|2 > 0

13



and |h|2 ≤ C0|H|2, with C0 a constant satisfying

C0 <


1

n− 1
n ≥ 4

4

3n
n = 2, 3.

(2.0.2)

Suppose furthermore that the norm of the second fundamental form is
uniformly bounded away from the singularity, so there exists h0 > 0 such
that |h|2 ≤ h0 in (−∞,−1). Then Mt is a family of shrinking spheres.

The result above was inspired by an analogous theorem for hypersurfaces
proved by Gerhard Huisken and Carlo Sinestrari in 2014 [48]. The authors
provide some equivalent conditions for a convex closed ancient solution im-
mersed in Euclidean space to be a homotetically shrinking sphere:

Theorem (Huisken-Sinestrari, [48]). Let Mt be a smooth convex closed an-
cient solution of MCF in codimension 1 de�ned in Euclidean space. The
following conditions are equivalent:

1. Mt is a shrinking sphere;

2. the second fundamental form satis�es a pinching condition hij ≥ εHgij
for some ε > 0 uniformly on (−∞, 0);

3. diam(Mt) ≤ C1(1 +
√
−t) on (−∞, 0), for some C1 > 0;

4. there exists a constant C2 > 0 such that ρ+ ≤ Cρ− on (−∞, 0);

5. there exists a constant C3 > 0 such that maxH(·, t) ≤ C3 minH(·, t)
on (−∞, 0);

6. Mt satis�es the reverse isoperimetric inequality |Mt|n+1 ≤ C4|Ωt|n for
some C4 > 0, where Ωt is the (convex) region enclosed by Mt;

7. Mt is of Type I (where we mean of Type I �at −∞�, so
lim sup
t→−∞

√
−tmaxH(·, t) < +∞).

The condition considered in our result, and the �rst condition in the
Theorem above, is pinching of the second fundamental form. Both in codi-
mension one and for higher codimensional closed submanifolds it guarantees
that under (2.0.1) the �ow will shrink the submanifold entirely into a round
point, thanks to the results of Huisken [42] and Andrews-Baker [5]. In par-
ticular, in codimension 1 it is automatically satis�ed by any strictly convex
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hypersurface on any compact interval of times, and in all codimensions it
is preserved by the �ow. The last assertion is proved forward in time by
the maximum principle for parabolic PDEs and its extension to tensors by
Hamilton [35]; as parabolic problems are ill-posed backwards, we cannot ex-
tend the technique directly to our case and we need to assume the condition
a priori on the solution. The �nal point is called �round� as an appropriate
rescaling of the solution, constructed to mantain the area |Mt| constant, con-
verges to a standard sphere, showing the regularizing e�ect of the �ow on the
curvature. The assumption in the high codimensional case was also hinted by
a previous result by Okumura [58], which states that a submanifold satisfying
(2.0.2) and with parallel mean curvature vector is di�eomorphic to a sphere;
the condition |∇⊥H| = 0 is in general not preserved by MCF. We under-
line how most of the other hypotheses in Theorem 2 have no counterpart in
high codimensional geometry; for example, convexity or enclosed/enclosing
spheres are not well-de�ned and the second fundamental tensor has no as-
sociated meaningful eigenvalue (each (hijα)ij is symmetric for any �xed α,

but in general there is no basis {e1, . . . , en, ν1, . . . , νk} of Rn+k diagonalizing
simultaneously all the (hijα)ij).

Independently, Haslhofer and Hershkovits [40] proved a characterization
of ancient hypersurfaces similar to Theorem 2. In their work, the assump-
tion of uniform α-noncollapsing is essential: they supposed the existence of
interior and exterior tangent balls of radius α

H(x) for a �xed α and at every
x ∈ M . This is an invariant property for mean convex evolutions, but it is
not clear how it could be generalized to higher codimensional �ows. They
also provided the example of a non-uniformly convex ovaloid, an ancient
nonspherical solution; we will give more details on this in the next chapter,
where the construction will be generalized to a class of 1-homogeneous �ows
of hypersurfaces.

In the following section, we provide an introduction to (higher codimen-
sional) MCF. We will then prove Theorem 1 and that analogous conclusions
hold for the evolution of a pinched submanifold in a sphere. We remark
that similar results have been independently obtained recently by Lynch
and Nguyen [54].

2.1 Few properties of the Mean Curvature Flow

Mean Curvature Flow can be regarded as the simplest �ow of submanifolds
having a geometric character (i.e. invariant under tangential reparametriza-
tions and isometries of the ambient space) and a variational origin; as the
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variation of the area is given by

δ|M | = −
∫
M
H ·Xdµ

for any submanifold M and any variational �eld X, the evolution can be
considered as the gradient of such functional and thus the surface �ows in
the direction minimizing the area in the most e�cient way.

MCF is also analogous to a heat equation for the immersion, as in Eu-
clidean space thanks to the Gauss-Weingarten relations (1.1.1),(1.1.2) there
holds:

∆ϕ = gij∇i∇jϕ = gijhij = H.

The system is only weakly parabolic: its symbol is degenerate in tangential
directions due to symmetry under reparametrization of the submanifold.

The evolution by mean curvature was �rst inspected (in codimension 1)
from a measure-theoretical point of view by Brakke [16]. As anticipated
before, Huisken in 1984 [42] applied the methods of parabolic di�erential
systems to the �ow, inspired by the results of Richard Hamilton on Ricci
Flow [35], an evolution equation for a Riemannian metric on a manifold
that shares relevant similarities with MCF. In his in�uential work, Huisken
proved that convex compact hypersurfaces immersed in Euclidean space con-
verge to a round point in �nite time under (2.0.1); that is, there exists a
time T such that lim

t→T
supMt

|h|2 = +∞ and lim
t→T

ρ+ = lim
t→T

ρ− = 0 and

in addition, the expression
1

H2

(
|h|2 − 1

nH
2
)
converges to 0 as t→ T . As

|h|2 − 1
nH

2 =
1

n

∑
i<j

(λi − λj)2, this implies that, suitably rescaling in order

to keep the surface area �xed, the hypersurfaces get rounder as the principal
curvatures approach each other and converge to the sphere in in�nite time.
Another important property satis�ed by MCF in codimension 1 is the avoid-
ance principle (or comparison principle), that follows from an application of
the parabolic maximum principle:

Theorem 2 (Avoidance Principle). Let Mt, M
′
t be two compact hypersur-

faces evolving by Mean Curvature Flow. If they are initially disjoint, they
remain disjoint as long as they are both smooth.

The case of codimension higher than one in full generality was studied
after several years; the complexity of the normal bundle prevents from isolat-
ing suitable simple scalar quantities for the description of the evolution, and
the associated equations are also more involved. For this reason, the �rst
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studied examples had strong additional assumptions on the evolving sub-
manifold: they were either the evolution of a Lagrangian initial immersion
(see e.g. [67, 73, 57]), or had the structure of a graph of a smooth function
from a space form into a space form of the same type (for example [71]).

The �rst general results using a pinching assumption were developed
in the PhD thesis of Charles Baker [12], and in the related article [5], in
2012; the starting hypothesis is the same bound on the second fundamental
form in terms of the norm of the mean curvature vector appearing in our
Theorem 1. Under the assumption, the submanifold evolves into a round
point in �nite time and becomes spherical in the process. We underline
that one of the di�erences between the case of hypersurfaces and of general
submanifolds is the lack of an avoidance principle in the latter; �ows of closed
submanifold still lose smoothness in �nite time, thanks to the maximum
principle applied to the function |ϕ|2 + 2nt, see for example [68]. Baker also
partially classi�ed a subclass of Type I singularities (the de�nition is the
same as in the 1-codimensional case, with respect to the tensorial norm of
h), parabolically rescaling by remaining time. He chose a �xed limit point
as center of the rescalings and a scale factor λk = 1√

2(T−tk)
, for a sequence

tk converging to the singular time T . By Huisken's monotonicity formula,
that also holds in higher codimension, and by compactness arguments for
immersions, he proved that under his pinching assumption the sequence of
rescaled �ows admits a (subsequential) ancient limit and it must be a sphere
as for hypersurfaces.

The following sections of this chapter will only regard immersions having
codimension higher than one: the full mean curvature vector will be denoted
with H instead of H, as it should not be a source of confusion.

2.2 The rigidity theorem for higher codimensional

MCF

The proof of Theorem 1 is built over some estimates for high codimensional
immersions shown in Charles Baker's PhD thesis and it is inspired by the
proof of the �rst equivalence in Huisken and Sinestrari's Theorem. In [5], An-
drews and Baker have proved that the pinching inequality (2.0.2) is invariant
under the �ow, and that submanifolds satisfying this condition at an initial
time T0 evolve into a �round point� in �nite time. We recall the evolution
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equations for the relevant geometric quantities derived in that paper:

∂gij
∂t

= −2H · hij (2.2.1)

∂H

∂t
= ∆H +H · hpqhpq (2.2.2)

∂|h|2

∂t
= ∆|h|2 − 2|∇h|2 + 2R1 (2.2.3)

∂|H|2

∂t
= ∆|H|2 − 2|∇H|2 + 2R2 (2.2.4)

where R1 and R2 are two terms related to the curvature of the normal bundle
and are expressed in coordinates as:

R1 =
∑
α,β

∑
i,j

hijαhijβ

2

+
∑
i,j,α,β

(∑
p

hipαhjpβ − hjpαhipβ

)2

(2.2.5)

R2 =
∑
i,j

(∑
α

Hαhijα

)2

. (2.2.6)

As in [5, 48], for �xed small σ > 0 we consider the function

fσ =
|h|2 − 1

n |H|
2

|H|2(1−σ)
(2.2.7)

and we observe that, for any σ, fσ vanishes at x ∈ M if and only if x
is an umbilical point. Therefore, if fσ = 0 everywhere on Mt for some t,
then Mt is a totally umbilical submanifold, hence an n-dimensional sphere
in Rn+k. As spheres evolve by homothetic shrinking, fσ will remain zero for
all subsequent times. Thus, to obtain Theorem 1, it is enough to show that
f is identically zero on some time interval (−∞, T1], with T1 < 0. To this
purpose, we prove the following estimate.

Proposition 3. Under the hypotheses of Theorem 1, there are constants
α, β > 0 depending only on n,C0 and C = C(C0, n, h0) > 0 such that, for
all [T0, T1] ⊂ (−∞,−1) and for all p > α, σ ≤ β√

p , σp > n, we have

(∫
Mt

fpσ

) 1
σp

≤ C

|T0|1−
n
σp − |t|1−

n
σp

∀t ∈ (T0, T1]. (2.2.8)
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The proposition immediately implies Theorem 1. Indeed, sending T0 to
−∞ in (2.2.8), we obtain that fpσ is zero for every t < T1 for suitable values
of σ and p, thus for all t ∈ (−∞, 1). Mt is then a family of shrinking spheres.

We now prove Proposition 3.

Proof. The �rst part of the proof follows the strategy of [48] together with
the estimates of [5]. If we set

ε∇ =
3

n+ 2
− C0,

where C0 is the constant in our pinching assumption (2.0.2), then ε∇ is
positive and Proposition 13 in [5] states that

d

dt

∫
Mt

fpσ dµt ≤ −
p(p− 1)

2

∫
Mt

fp−2
σ |∇fσ|2 dµt (2.2.9)

− pε∇
∫
Mt

fp−1
σ

|H|2(1−σ)
|∇H|2 dµt + 2pσ

∫
Mt

|H|2fpσ dµt

for any p ≥ max
{

2, 8
ε∇+1

}
.

In addition, Proposition 12 of the same paper shows that there exists a
constant ε0 depending only on C0 and n such that

∫
Mt

|H|2fpσ dµt ≤
pη + 4

ε0

∫
Mt

fp−1
σ

|H|2(1−σ)
|∇H|2 dµt

+
p− 1

ε0η

∫
Mt

fp−2
σ |∇fσ|2 dµt

for all p ≥ 2, η > 0. If we �x η = 8σ
ε0

and we take any p, σ such that p > 16
ε∇
,
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σ ≤ ε0
8

√
ε∇
p , we obtain

4pσ

∫
Mt

|H|2fpσ dµt ≤
(

32σ2p

ε20
+

16σ

ε0

)
p

∫
Mt

fp−1
σ

|H|2(1−σ)
|∇H|2 dµt

+
p(p− 1)

2

∫
Mt

fp−2
σ |∇fσ|2 dµt

≤
(ε∇

2
+
ε∇
2

)
p

∫
Mt

fp−1
σ

|H|2(1−σ)
|∇H|2 dµt

+
p(p− 1)

2

∫
Mt

fp−2
σ |∇fσ|2 dµt,

so that (2.2.9) implies

d

dt

∫
Mt

fpσ dµt ≤ −2pσ

∫
Mt

|H|2fpσ dµt (2.2.10)

for all p > 16
ε∇
, σ ≤ ε0

8

√
ε∇
p . Thanks to the de�nition and our pinching

assumption, we have

0 ≤ fσ ≤
(
C0 −

1

n

)
|H|2σ ≤ |H|2σ,

so we obtain

d

dt

∫
Mt

fpσ dµt ≤ −2pσ

∫
Mt

f
p+ 1

σ
σ dµt

≤ −2pσ

(∫
Mt

fpσdµt

)1+ 1
σp

· |Mt|−
1
σp (2.2.11)

using Hölder's inequality, where |Mt| is the volume of Mt.

Claim. There exists a constant C = C(n, h0) such that

|Mt| ≤ C|t|n, for all t ≤ −1. (2.2.12)

Once the claim is proved, the statement of the proposition follows easily.
In fact, setting ψ(t) =

∫
Mt
fpσdµt, and using (2.2.11), we have

d

dt
ψ
− 1
σp = − 1

σp
ψ
−
(

1
σp

+1
)
d

dt
ψ ≥ C(|t|)−

n
σp .

20



As ψ(t) 6= 0 implies ψ(s) 6= 0 for s < t, we obtain, integrating on a time
interval (T0, t], with t ≤ T1,

ψ
− 1
σp (t) ≥ ψ−

1
σp (T0) + C

∫ |T0|
|t|

τ
− n
σpdτ > C

∫ |T0|
|t|

τ
− n
σpdτ

> C
(
|T0|1−

n
σp − |t|1−

n
σp

)
,

as σp > n.
It remains to prove claim (2.2.12). For this part, we cannot adapt the

technique of [48], which only applies to hypersurfaces, and we use a di�erent
argument.

We �rst recall a result by Chen [20], which gives a lower bound for the
minimum of sectional curvatures Kπ(p) under our pinching assumption:

min
π⊂Gr(2,TpM)

Kπ(p) ≥ 1

2

(
1

n− 1
− C0

)
|H|2(p).

In particular, this implies that all the evolving submanifolds have nonneg-
ative Ricci curvature, so by Bishop-Gromov's Theorem we can bound the
volume of balls of arbitrary radius in Mt with the volume of balls in Rn.
Theorem 4 (Bishop-Gromov). Let M be a complete Riemannian manifold
vith Ricci curvature Ric bounded from below, Ricij ≥ (n− 1)Kgij for some
constant K ∈ R. Let B(r) be a geodesic ball of radius r in M . Then

V ol(B(r)) ≤ V ol(Bk(r)),

where Bk(r) is geodesic ball of radius r in the space form of the same dimen-
sion and of constant sectional curvature K.

In particular, if dt is the intrinsic diameter of Mt, we have

|Mt| ≤ V ol(Bdt) = θdnt , (2.2.13)

where θ is a constant only depending on C0 and n.

To bound the intrinsic diameter, we estimate the change of the distance
between two points during the evolution, using a technique inspired by the
one of [36, �17] for the Ricci Flow.

Let P and Q be two �xed points inM and let γ be a curve from P and Q.
The length of γ with respect to the evolving metric varies with time along
the �ow, and we denote it by L[γt]. The evolution equation (2.2.1) for the
metric gives

d

dt
L[γt] = −

∫
γ
Hαhijαγ

′iγ
′jds,
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where γ is parametrized by arclength at time t and γ′ is the tangent vector.
By the same proof as in [36, Lemma 17.3], we can estimate the time derivative
of the distance from P and Q as follows. Let Ξ denote the set of all distance
minimizing geodesics between P and Q at time t; Ξ is a compact set. Then

− sup
γ∈Ξ

∫
γt

Hαhijαγ
′iγ
′jds ≤ d

dt
d(P,Q, t) ≤ − inf

γ∈Ξ

∫
γt

Hαhijαγ
′iγ
′jds.

(2.2.14)
We have |Hαhijαγ

′iγ
′j | ≤ |H||h| ≤ C0|H|2. As estimate (2.2) implies, for

the Ricci curvature,

Ric(γ′, γ′) ≥ (n− 1)
1

2

(
1

n− 1
− C0

)
|H|2,

we also have
Hαhijαγ

′iγ
′j ≤ CRic(γ′, γ′)

along γ, with C a constant depending only on C0 and n.
We now recall Theorem 17.4 from [37], which states the following. If the

Ricci curvature of a n-dimensional manifold is nonnegative, for any curve γ
of length L and for any v ∈ (0, L2 ),∫ L−v

v
Ric(γ′, γ′) ds ≤ 2(n− 1)

v
.

We observe that the norm of the Ricci tensor of the submanifold is uniformly
bounded away from the singular time, as a consequence of the boundedness
of the second fundamental form and the Gauss equations. Thus, there is
R > 0 such that |Ricij(x, t)| ≤ R for t ≤ −1. Then (2.2.14) implies

− d

dt
d(P,Q, t) ≤

∫ v

0
CRds+

2(n− 1)

v
+

∫ L

L−v
CRds

≤ 2CRv +
2(n− 1)

v
.

Since our aim is to estimate the diameter of Mt for large negative times,
it is not restrictive to assume that d(P,Q, t) > 2. Then we can choose v = 1
to obtain

− d

dt
d(P,Q, t) ≤ 2CR+ 2(n− 1) =: C ′

and integrating on [t,−1] for an arbitrary t < −1, we get

d(P,Q, t) ≤ d(P,Q,−1) + C ′(|t| − 1),
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which implies

dt ≤ d−1 + C ′(|t| − 1) ≤ C ′′|t| ∀t ≤ −1. (2.2.15)

Using (2.2.13), we conclude that |Mt| ≤ C ′′|t|n, proving our claim (2.2.12)
and the proposition.

2.3 High codimension Mean Curvature Flow in the

sphere

Mean Curvature Flow of hypersurfaces in ambient manifolds di�erent than
Euclidean space was investigated soon after the former, for example in [43,
44]. In particular, the reaction terms in the evolution equation for the cur-
vature favour convergence if the evolution develops in a positively curved
ambient space; an assumption weaker than strict convexity is enough for a
starting hypersurface to contract to a point or converge to a totally geodesic
submanifold. Charles Baker generalized Huisken's work using a pinching as-
sumption in [12]; recently, a similar result has been obtained by Pipoli and
Sinestrari for submanifolds of the Complex Projective Space [59].

In [48], Huisken and Sinestrari also proved a rigidity theorem for ancient
hypersurfaces of the sphere, where the condition of positivity of the mean
curvature is relaxed to H ≥ 0 and the ancient solution can be either a totally
geodesic hypersurface or a spherical cap.
We want to characterize the same phenomenon on spheres Sn+k

K of constant
sectional curvature K, showing that any ancient solution of the Mean Cur-
vature Flow that satis�es a uniform pinching condition on the sphere is a
family of shrinking totally umbilical submanifolds; we will refer to them with
the term �spherical caps�. We also prove that we can relax the condition to
admit points with |H| = 0 and the ancient solution will be either a spherical
cap or a totally geodesic submanifold.

Theorem 5. Let Mn
t be a closed ancient solution of (2.0.1) in Sn+k

K .

1. If, for all t ∈ (−∞, 0), 0 < |h|2 ≤ 4
3n |H|

2 holds, then Mt is a shrinking
spherical cap.
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2. If, for all t ∈ (−∞, 0), we have |h|2 ≤ α|H|2 + βK, with

α =
1

n− 1
β = 2 n ≥ 4

α =
4

9
β =

3

2
n = 3

α =
2

4− β
β <

12

13
n = 2,

then Mt is either a shrinking spherical cap or a totally geodesic sub-
manifold.

Proof. The evolution equations for metric and curvature in a spherical am-
bient manifold, see [12], are given by:

∂|H|2

∂t
= ∆|H|2 − 2|∇H|2 + 2nK|H|2 + 2R2 (2.3.1)

∂|h|2

∂t
= ∆|h|2 − 2|∇h|2 + 2R1 + 4K|H|2 − 2nK|h|2, (2.3.2)

where R1 and R2 are as in (2.2.5) and (2.2.6). To prove the �rst statement,
let us de�ne

f0 =
|h|2 − 1

n |H|
2

|H|2
.

Using the evolution equations above, we �nd

∂f0

∂t
= ∆f0 +

4H

|H|2
〈∇|H|,∇f0〉 −

2

|H|2

[
|∇h|2 −

(
1

n
+ f0

)
|∇H|2

]
+

2

|H|2

[
R1 −

(
1

n
+ f0

)
R2

]
− 4nKf0. (2.3.3)

By our pinching assumption, we have 1
n +f0 ≤ 4

3n <
3

n+2 . Then the gradient
terms give a nonpositive contribution, as it is well known, see e.g. [12], that

|∇h|2 ≥ 3

n+ 2
|∇H|2. (2.3.4)

In order to analyze the reaction terms, we recall some more notation from
[12]. By assumption, |H|2 > 0 everywhere, so we can choose an adapted

orthonormal basis
{
{ei}ni=1 , {να}

k
α=1

}
for the sphere, such that {να}kα=1 is
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a frame for the normal space of the submanifold with ν1 = H
|H| , while, if we

write h̊ = h− 1
nH⊗g =

k∑
α=1

h̊α, the frame {ei}ni=1 is tangent and diagonalizes

h̊1. In addition, we denote the norm of h̊ in the other directions with |̊h−|2,
so that |̊h|2 = |̊h1|2 + |̊h−|2.

With this choice we have

R2 = |̊h|2|H|2 +
1

n
|H|4, (2.3.5)

and the following estimate holds, proved in [12, �5.2],

R1 −
1

n
R2 ≤ |̊h1|4 +

1

n
|̊h1|2|H|2 + 4|̊h1|2 |̊h−|2 +

3

2
|̊h−|4. (2.3.6)

From this, we obtain

2

[
R1 −

(
1

n
+ f0

)
R2

]
≤ 2|̊h1|4 +

(
2

n
− 2f0

)
|̊h1|2|H|2 −

2

n
f0|H|4

+ 8|̊h1|2 |̊h−|2 + 3|̊h−|4.

Using the de�nition of f0 and substituting |̊h|2 = |̊h1|2 + |̊h−|2, some
terms simplify and the right hand side can be rewritten as

|̊h−|2
(

6|̊h1|2 −
2

n
|H|2 + 3|̊h−|2

)
.

Thus, using our pinching assumption, we conclude

2R1 − 2

(
1

n
+ f0

)
R2 ≤ |̊h−|2

(
6|̊h1|2 −

2

n
|H|2 + 3|̊h−|2

)
≤ 2|̊h−|2

(
3|h|2 − 4

n
|H|2

)
≤ 0. (2.3.7)

So we can proceed as in the �rst case of [48]; we have

∂f0

∂t
≤ ∆f0 +

4H

|H|2
〈∇f0,∇H〉 − 4nKf0. (2.3.8)

If there existed t1 < 0 such that f0(t1) is not identically zero on Mt1 , we
could apply the maximum principle to get

0 < max
Mt1

f0 ≤ e−4nK(t1−t) max
Mt

f0 ∀t < t1 (2.3.9)
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and the function would explode for t → −∞, contradicting our assumption
f0 ≤ 4

3n −
1
n . So f0 is identically zero for all times and Mt is a family of

totally umbilical submanifolds of the sphere.
For the second case, we do not require |H|2 6= 0; we want to show that

Mt is a shrinking spherical cap or an equator.
We can follow a computation similar to par. 5.3 in [12] and consider a

perturbed pinching function f = |̊h|2
a|H|2+bK

where a = α− 1
n and the constant

b is given by:

b =



11

10
n ≥ 4

33

40
n = 3

24β

13(4− β)
n = 2.

The function f satis�es the equation

∂

∂t
f = ∆f +

2a

a|H|2 + bK

〈
∇i|H|2,∇if

〉
− 2

a|H|2 + bK

(
|∇h|2 − 1

n
|∇H|2 − a|̊h|2

a|H|2 + bK
|∇H|2

)
(2.3.10)

+
2

a|H|2 + bK

(
R1 −

1

n
R2 − nK |̊h|2 −

aR2 |̊h|2

a|H|2 + bK
− anK |̊h|2|H|2

a|H|2 + bK

)
.

Using (2.3.4) and b ≤ β, we can estimate the gradient terms as follows:

−

(
|∇h|2 − 1

n
|∇H|2 − a|̊h|2

a|H|2 + bK
|∇H|2

)

≤ −
(

2(n− 1)

n(n+ 2)
− a2|H|2 + aβK

a|H|2 + bK

)
|∇H|2

≤ −
(

2(n− 1)

n(n+ 2)
− aβ

b

)
|∇H|2,

and this expression is negative for the chosen values of b.
At the points with |H|2 6= 0, we can employ the adapted frame to analyse

the reaction terms in (2.3.10). We set

R̃ =
(
a|H|2 + bK

)(
R1 −

1

n
R2 − nK |̊h|2

)
− aR2 |̊h|2 − anK |̊h|2|H|2
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and we use (2.3.5)�(2.3.6) to obtain

R̃ ≤ a|H|2
(

3|̊h1|2 |̊h−|2 +
3

2
|̊h−|4 −

1

n
|̊h−|2|H|2

)
+ bK

(
|̊h1|4 +

1

n
|̊h1|2|H|2 + 4|̊h1|2 |̊h−|2 +

3

2
|̊h−|4

)
− nK |̊h|2(2a|H|2 + bK).

We use a Peter-Paul inequality to estimate

|̊h1|4 + 4|̊h1|2 |̊h−|2 +
3

2
|̊h−|4 ≤

5

3
|̊h1|4 +

10

3
|̊h1|2 |̊h−|2 +

5

3
|̊h−|4 =

5

3
|̊h|4.

Thanks to our assumptions, we have |H|2 ≥ |̊h|2−βK
a , a ≤ 1

3n and b ≤ β.
Using this, we �nd

R̃ ≤ a|H|2 |̊h−|2
(

3|̊h|2 − 1

na

(
|̊h|2 − βK

))
+

5

3
bK |̊h|4 +

bK

n
|̊h1|2|H|2 − nK |̊h|2(2a|H|2 + bK)

≤ |H|2
(
βK

n
|̊h|2 − 2anK |̊h|2

)
+

5

3
bK |̊h|4 − nbK2 |̊h|2.

Since our choice of the constants implies that β/n < 2an, we can use

again |H|2 ≥ |̊h|
2−βK
a and β ≥ b to �nd that, for any small ε > 0

R̃ ≤− εaK|H|2 |̊h|2 − 1

a
(|̊h|2 − βK)

(
2anK − εaK − βK

n

)
|̊h|2

+
5

3
bK |̊h|4 − nbK2 |̊h|2

≤−
[
2n− ε− β

na
− 5

3
b

]
K |̊h|4 −

[
β2

na
+ nb− 2nβ

]
K2 |̊h|2

− εK(a|H|2 + bK)|̊h|2.

With our choice of a, β, b, we can check that both expressions in square
parentheses are negative if ε is suitably small. The above estimates, together
with (2.3.10), imply the inequality

∂f

∂t
≤ ∆f +

2a

a|H|2 + bK

〈
∇i|H|2,∇if

〉
− 2εKf.
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It remains to consider points where H = 0. In this case we have f = |h|2
b

and the reaction terms in (2.3.10) become

2

b
{R1 − nK|h|2}.

As in [12, Lemma 5.1], R1 ≤ 3
2 |h|

4 holds whenever H = 0, so that

2R1 − 2nK|h|2 ≤ (3β − 2n)K|h|2 = (3β − 2n)Kbf.

Since β < 2n
3 , we conclude that the reaction terms are bounded above by

a negative multiple of f also at these points. Then, as in the �rst part of
the theorem, we can apply the maximum principle and �nd a contradiction
unless f ≡ 0. Since we are allowing H = 0, the solution can be either a
shrinking spherical cap or a totally geodesic submanifold.
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Chapter 3

Ancient solutions of contractive

fully nonlinear �ows

In this chapter, we examine ancient solutions of fully nonlinear second-order
contractive curvature �ows of compact hypersurface immersions into Rn+1.
The evolution for an immersion ϕ from a n-dimensional manifold M has the
form:

∂ϕ

∂t
(x, t) = −f(λ(W (x, t)))ν(x, t) = −F (W (x, t))ν(x, t) (3.0.1)

where λ is the function that associates to a self-adjoint operator the n-ple
λ = (λ1, . . . , λn) of its ordered eigenvalues. The class of speeds f we consider
must satisfy some properties to ensure that (3.0.1) is well-de�ned, so we will
assume throughout:

(H1) f : Γ→ R is a symmetric smooth function, homogeneous of degree α
for some α > 0, de�ned on an open symmetric cone Γ ⊂ Rn containing
the positive cone Γ+;

(H2) f satis�es

ḟ i =
∂f

∂λi
> 0 in Γ for all i = 1, . . . , n.

The �rst hypothesis assures that the speed only depends on the values of
the principal curvatures and not on their order; to simplify the notation, we
will assume λ = (λ1, . . . , λn) with λ1 < λ2 < · · · < λn. It is well known (see,
for example, [32, 51]) that the function F is also smooth as a function of the
components of W under the assumptions above. The derivatives of F with
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respect to the curvature are denoted by dots as follows:

d

ds
F (A+ sB)|s=0 = Ḟ ij |ABij

d2

ds2
F (A+ sB)|s=0 = F̈ ij,kl|ABijBkl

for any A,B symmetric matrices such that λ(A) and λ(B) belong to Γ.
Assumption (H2) ensures that Ḟ is positive de�nite and that (3.0.1) is a
(weakly) parabolic system, since the relation

ḟ iaδ
ij = Ḟ ijA

holds for any diagonal A, with a = λ(A). We denote by L the elliptic
operator on C∞(M) de�ned as L = Ḟ ij∇i∇j . We assume that the �ow
is isotropic, so invariant under isometries of the ambient Euclidean space.
The system is is also invariant under reparametrizations of the submanifold;
as for Mean Curvature Flow, this translates into degeneracy in directions
tangential to M . Assumption (H1) also implies invariance under parabolic
rescalings. We remark that homogeneity and monotonicity imply that f is
strictly positive on Γ+, as the Euler relation

∂G

∂λi
(λ)λi = αG(λ) . (3.0.2)

holds for any α-homogeneous function G.
Some examples of speeds f that satisfy the properties above are:

1. the k-th mean curvatures Hk (for k = 1, . . . , n). We recall that Hk

is de�ned as the k-th elementary symmetric polynomial computed on
the principal curvatures of the immersion:

Hk(λ) =
∑

1≤j1<j2<···<jk≤n
λj1λj2 . . . λjk

(we remark that some authors de�neHk multiplying by a normalization

factor
(
n
k

)−1
). Each Hk is homogeneous of degree k; H1 = H, H2 =

1
2scal, while Hn coincides with the Gaussian curvature K;

2. roots or powers f = H
a
b
k (for a,b positive integers) and ratios f = Hl

Hm
(0 < m < l ∈ N) of the k-th mean curvatures;

3. power means

(
1
n

n∑
i=1

λqi

) 1
q

for integer q 6= 0;

30



4. positive linear combinations, geometric means and images of homoge-
neous functions of the above.

These functions also enjoy convexity/concavity properties and are covered
by our results; a good reference is [4].

This class of �ows can be regarded as a natural generalization of the Mean
Curvature Flow, which obviously corresponds to the choice of f(λ) = H1 =
n∑
i=1

λi. The �rst results were developed in the Eighties by Tso and Chow

([70], [23], [24]) for speeds with an established geometric meaning, namely
positive roots of the Gaussian curvature, or the square root of the scalar
curvature. In all cases a closed convex hypersurface converges to a point in
�nite time, but roundness of the rescaled limits was only proved for velocities
of homogeneity 1. The latter was demonstrated only recently by Brendle,
Choi and Daskalopoulos ([22, 17]) for �ows involving powers of K; we will
provide more details in a speci�c section. The "round point" behaviour was
later established by Ben Andrews in 1994 ([2]) for speeds within a large class
of 1-homogeneous functions with convexity or concavity properties. Results
for homogeneity di�erent from 1 are harder to obtain, since the analysis of the
evolution equations associated to the system is more intricated; for instance,
reaction terms with the wrong sign may prevent from proving invariance of
pinching conditions easily. Known examples exist of evolutions that do not
deform a convex hypersurface into a sphere: the rescaled solutions of (3.0.1)

with f = K
1

n+2 converge to ellipsoids. In all cases described, a key step
of the proof of asymptotic roundness was the identi�cation of a monotonic
quantity characterizing the sphere: suitable quotients of curvature functions
of homogeneity one appear in [2] for 1-homogeneous speeds, while an entropy
was introduced for the Gauss Curvature Flows in [34, 6]. The choice of the
right paramtetrization is also particularly relevant in the investigation of the
evolving geometric quantities of the submanifold; some estimates are easier
to obtain exploiting fully the convexity of the hypersurface, by switching to
polar coordinates or the support function. These techniques are also crucial
for our case of study.

We consider convex ancient solutions of (3.0.1) satisfying a uniform
pinching condition on the principal curvatures expressed in the following
form: there exists C1 > 0 such that

λn(x, t) < C1λ1(x, t), for all t ∈ (−∞, 0), for all x ∈Mt. (3.0.3)

Our results for this chapter will be rigidity theorems for compact, convex,
pinched hypersurfaces under several �ows. We will need some additional
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assumptions on the subcone where the speed is positive or some convex-
ity/concavity condition, that will be described in each case.

We �rst present an estimate on the speed and the diameter of a pinched
ancient solution which holds under very general assumptions on F . To this
purpose, we recall some de�nitions. If M is a n-dimensional embedded sub-
manifold of Rn+1 bounding a convex body Ω, the inner and outer radii ofM
are de�ned respectively as

ρ− = sup
{
r |Br(y) ⊂ Ω for some y ∈ Rn+1

}
ρ+ = inf

{
r |Ω ⊂ Br(y) for some y ∈ Rn+1

}
.

Along our �ow, these quantities depend on time and will be denoted by
ρ±(t).

By a result in [2], if the pinching condition (3.0.3) holds, then there also
exists C̄1 = C̄1(C1, n) such that

ρ+(t) ≤ C̄1ρ−(t), ∀ t < 0. (3.0.4)

3.1 A general estimate

We show that the pinching condition (3.0.3) implies strong bounds on the
inner and outer radii and on the speed of an ancient solution. The result
holds for general positively homogeneous speeds.

Theorem 6. Let Mt = ϕ(M, t) be a compact convex ancient solution of
the �ow (3.0.1) de�ned for t ∈ (−∞, 0) and shrinking to a point as t → 0.
Suppose that the pinching condition (3.0.3) is satis�ed for some C1 > 0.
Then there exist constants C2, C3 such that for all t ∈ (−∞,−1):

C−1
2 ρ+(t) ≤ |t|

1
α+1 ≤ C2ρ−(t) , (3.1.1)

supF (·, t) ≤ C3|t|−
α
α+1 . (3.1.2)

Proof. For simplicity, we assume that f is normalized in order to satisfy
f(1, 1, . . . , 1) = 1. Then the spherical solution of (3.0.1) that shrinks to a

point at time t = 0 has a radius given by (α+ 1)|t|
1

α+1 . By comparison, we
deduce

ρ−(t) ≤ (α+ 1)|t|
1

α+1 ≤ ρ+(t), ∀ t < 0. (3.1.3)

Combining these inequalities with (3.0.4), we immediately obtain (3.1.1).
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To bound supF from above, we use a well-known technique �rst intro-
duced in [70]. We �x any t0 < 0 and we call z0 the center of a ball realizing
ρ−(t0). We denote by u(x, t) = 〈ϕ(x, t)− x0, ν(x, t)〉 the support function
centered at x0 and de�ned on M . By convexity, we have u(·, t0) ≥ ρ−(t0)
and due to the shrinking nature of the �ow the inequality holds for all times
t ≤ t0. Hence, the function

q(x, t) =
F (x, t)

2u(x, t)− ρ−(t0)

is well de�ned for t ∈ (−∞, t0). We have the evolution equation, see e.g. [8]:

(
∂

∂t
− L

)
q =

4

2u− ρ−(t0)
Ḟ ij∇iu∇jq +

F ((1 + α)F − ρ−(t0)Ḟ ijhikh
k
j )

(2u− ρ−(t0))2
.

The pinching condition allows to estimate

Ḟ ijhikh
k
j =

n∑
i=1

∂f

∂λi
λ2
i ≥ λ1

n∑
i=1

∂f

∂λi
λi = αλ1F.

Let us set |λ| =
√∑

i λ
2
i . De�ne

f = max {f(λ1, . . . , λn) : 0 < λn ≤ C1λ1, |λ| = 1} .

By homogeneity, we have

f(λ1, . . . , λn) ≤ f |λ|α ≤ f(
√
nC1λ1)α, (3.1.4)

for all (λ1, . . . , λn) ∈ Γ+ such that λn ≤ C1λ1. It follows

Ḟ ijhikh
k
j ≥ CF 1+ 1

α , (3.1.5)

where we denote by C any constant only depending on n,C1. If we de�ne
Q(t) = supMt

q(x, t), we obtain the inequality

d

dt
Q ≤ Q2(1 + α− Cρ−(t0)F

1
α ) ≤ Q2(1 + α− Cρ−(t0)1+ 1

αQ
1
α ). (3.1.6)

It follows that Q(t) ≥ ψ(t) for all t ≤ t0, where ψ is the solution to the
equation

d

dt
ψ = ψ2(1 + α− Cρ−(t0)1+ 1

αψ
1
α ), t ≤ t0, (3.1.7)
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with �nal datum ψ(t0) = Q(t0). It is easily seen that, if ψ(t0) is such that
the left hand side is negative, that is, if

Q(t0)
1
α >

1 + α

Cρ−(t0)1+ 1
α

, (3.1.8)

then ψ(t) is decreasing for all t < t0 and blows up at a �nite time strictly
smaller than t0, since the right hand side is superlinear in ψ. On the other
hand, Q(t) is de�ned for all t ∈ (−∞, t0] and we obtain a contradiction. It
follows that (3.1.8) cannot hold and that the reverse inequality is satis�ed.
This implies, by the de�nition of F and by estimate (3.1.1),

maxF (·, t0) ≤ 2 maxu(·, t0)Q(t0) ≤ C ρ+(t0)

ρ−(t0)α+1
≤ C|t|−

α
α+1 .

Since t0 < 0 is arbitrary, this completes the proof of the inequality in (3.1.2).

In the next section, we will show how the above result can be used to
prove that pinched ancient solutions are spheres when the degree of homo-
geneity is one.

Remark 1. In the previous theorem, the pinching hypothesis (2.0.2) can be
replaced by assuming a priori that the solution satis�es a bound of the form
(3.0.4), and that the α-root of the speed function f is inverse concave on the
positive cone, that is, the function

(ρ1, . . . , ρn)→ f−
1
α
(
ρ−1

1 , . . . , ρ−1
n

)
is concave. In fact, in this case property (3.1.5) holds even without the
pinching assumption, see Lemma 5 in [8], and the same proof applies.

3.2 Flows with degree of homogeneity 1

Let us now restrict to the case where the speed is homogeneous of degree
one. We show here that the estimates of the previous section allow us to
give a quick proof of the result that ancient pinched solutions are shrinking
spheres. We remark that the result has also been proved independently by
Langford and Lynch in [52] using a di�erent approach.

We will require either convexity or concavity of the speed, since this
will allow us to apply Krylov-Safonov's regularity theory for fully nonlin-
ear parabolic equations [50] to the equations associated with our �ow. An
easy case of a convex speed is f = |λ|, while classical concave examples are

f = H
1/k
k or f = Hk/Hk−1.
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Theorem 7. Let Mt = ϕ(M, t) be an ancient solution of the �ow (3.0.1),
with f satisfying (H1)�(H2) for α = 1. Suppose in addition that f is either
convex or concave on the positive cone, and that Mt satis�es (3.0.3). Then
Mt is a family of shrinking spheres.

Proof. We �rst observe that, under our hypotheses, our solution shrinks to
a point at the singular time by the results of [2]. In that paper, additional
assumptions are made in order to obtain preservation of pinching, but we do
not need them here because we are assuming pinching a priori; we observe
that the estimates of Theorem 6 apply. We adapt to our setting the procedure
of �7 in [2], with the di�erence that we want to prove convergence to a
spherical pro�le backwards in time rather than forward; we will omit the
details that are entirely analogous to [2].

As usual, we assume that the singular time is t = 0. We consider a
rescaling of the solution, choosing a new time variable τ = −1

2 log(−t), so
that τ ∈ (−∞,+∞), and de�ne immersions ϕ̃τ = (−2t)−

1
2 (ϕt − p), where

p is the limit point of the original system; quantities pertaining to rescaled
solutions will be denoted with a tilde. By Theorem 6, ρ̃± and sup F̃ are
bounded from above and below uniformly for all τ . Then, as in Lemma
7.7 in [2], we can write the rescaled solution as a spherical graph and apply
Krylov-Safonov's Harnack inequality to show that min F̃ is bounded away
from zero, ensuring that the curvatures of the rescaled solution stay in a
compact subset of the positive cone and that the �ow is uniformly parabolic.

The argument is as follows: as in the proof of Theorem 6, we �x τ0 ∈ R;
let r̃ : Snρ−(τ0) → R be the radial function of M parametrized as a spherical
graph on Snρ−(τ0). The estimates in Theorem 6 allow to conclude

1

2C2
≤ ρ̃−(τ0) ≤ r̃ ≤ 2ρ̃+ ≤ 2C2

on a time interval [τ0, τ0 + δ], where δ = δ(C2) is independent of our choice
of τ0. As the hypersurface is convex and the support function in the same
interval satis�es 〈ϕ̃(x, τ), ν̃〉 ≥ ρ̃−(τ0), we have that |∇r̃| ≤ C holds for
the derivative of the radius. The evolution equation for the rescaled speed
satis�es:

∂F̃

∂τ
− L̃F̃ =

˙̃
F (W̃ 2)− F̃ − 1

r
Ḟ g̃ij(∇iF̃∇j r̃ +∇ir̃∇jF̃ ) (3.2.1)

where ∇ is the connection on the sphere Snρ−(τ0). The coe�cients of F̃ and

∇F̃ are bounded and we can apply Krylov-Safonov Harnack inequality: inf F̃
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is bounded from below on the whole subinterval [τ0, τ0 + δ]. As δ does not
depend on τ0, the bound holds on (−∞,+∞).

Then, as in Lemma 7.9 in [2], we can apply Krylov-Safonov's regularity
results to show that the support function ũ of the rescaled immersion is
uniformly bounded in Ck for all k. We can thus �nd sequences of times τk
going to −∞ along which ũ converges to some limit ũ−∞ that is the support
function of a convex, compact hypersurface.

To study the structure of the possible limits, we consider a suitable zero-
homogeneous function of the curvatures whose integral is monotone along
the rescaled �ow. We recall for instance the procedure for a concave F . In

this case we de�ne η = |W̃ |
F̃
, and we denote by η0 = η(1, . . . , 1). It is easy to

check that η ≥ η0, with equality only at umbilical points. Then [2, Lemma
7.9] gives the following estimate, for suitably large p > 0:

d

dτ

∫
M
K̃(ηp − ηp0)dµ̃ ≤ −C5

∫
M
K̃
|∇̃W̃ |2

|W̃ |2
dµ̃ (3.2.2)

where K̃ is the rescaled Gauss curvature. We can then integrate the inequal-
ity above on an interval [τ0, τ1] and send τ0 to −∞: as both ηp − ηp0 and K̃
are bounded, positive functions, the left-hand side remains bounded, and we
conclude that ∫ 0

−∞

(∫
M
K̃
|∇̃W̃ |2

|W̃ |2
dµ̃

)
dτ < +∞.

So we can choose a sequence of times {τk} such that |∇̃W̃ (·, τk)|L2(M) → 0;
by possibly taking a further subsequence, the corresponding support func-
tions ũ(·, τk) converge smoothly to the support function of a standard sphere.
Therefore, along this subsequence, we have∫

M
K̃(ηp − ηp0)dµ̃→ 0.

Since by (3.2.2) the left hand side is positive and nonincreasing, it must
be identically zero for all τ . Then the solution is a family of spheres, as
claimed.

3.2.1 Ancient solutions with a diameter bound

In this section, we prove that a convex ancient solution with a weaker pinch-
ing hypothesis and a time-dependent diameter bound is a shrinking sphere,
provided the speed of the �ow satis�es some concavity conditions and it is
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de�ned on a suitable convex cone. The result parallels an equivalence ob-
tained by Huisken and Sinestrari for the Mean Curvature Flow in [48] and
it relies on a generalized Harnack estimate obtained by Ben Andrews in [3].

Theorem 8. Let Mt be an ancient solution of (3.0.1), with the speed f
satisfying (H1)�(H2) and 1-homogeneous. Suppose f is de�ned on an open
cone such that {λ = (λ1, . . . , λn)|λ1 ≥ 0, λ1 + λ2 > 0} ⊂ Γ2 and Γ2 ⊃ Γ+;
suppose furthermore that f is convex or concave and inverse-concave. If
λn ≤ Cλ2 for some constant C uniformly in (−∞, 0) and there exists C1 > 0
such that

diam(Mt) ≤ C1(1 +
√
−t) ∀t ∈ (−∞, 0), (3.2.3)

then Mt is a family of shrinking spheres.

We recall that a function is inverse-concave if f∗, de�ned by

f∗(λ
−1
1 , . . . , λ−1

n ) = f(λ1, . . . , λn)−1 (3.2.4)

is a concave function.
To prove Theorem 8, we �rst need to show that the estimate (3.2.3) is

equivalent to a two-sided time-dependent bound on the speed F .

Lemma 9. Let Mt be a convex ancient solution of (3.0.1), with F inverse-
concave. The diameter of M satis�es (3.2.3) if and only if there exist two
positive constants C2, C3 such that

C2√
−t
≤ F ≤ C3√

−t
∀t ∈ (−∞, 0) (3.2.5)

Proof. The proof of the Lemma is essentially the same as in [48]; we will
sketch it here for completeness. If (3.2.5) holds, (3.2.3) follows from the
inequalities:

|ϕ(x1, t)− ϕ(x2, t)| ≤
∫ 0

t
F (x1, τ)dτ +

∫ 0

t
F (x2, τ)dτ

≤ 2C3

∫ 0

t

dτ√
−τ

= 4C3

√
−t ∀x1, x2 ∈M.

To prove the opposite implication, we recall the Harnack inequality 2 from
Theorem 5.21 in [3], which implies for an ancient solution, for x1, x2 ∈ M
and t1 < t2 < 0

F (x1, t1) ≤ F (x2, t2) exp

(
Cdiam2

I(Mt)

4(t2 − t1)

)
.
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If we choose t1 = t, t2 = t
2 , since by comparison min

Mt

F ≤
√
n√
−2t

, we obtain

max
Mt

F ≤ eC̃
√
n√
−2t

. Setting t1 = 2t, t2 = t instead, from max
Mt

≥ 1√
−2t

, there

also holds min
Mt

F ≥ e−C̃

2
√
−t and, thus, (3.2.5).

We can now prove Theorem 8

Proof. We can restrict to the case where the inequality λn ≤ Cλ1 is not sat-
is�ed, else the theorem follows from the previous section. If it does not hold,
then there is a sequence of points in spacetime (pk, tk) such that tk → −∞
and λn

λ1
(pk, tk) → +∞. We can rescale the �ow for t ∈ [2tk, tk] by fac-

tors 1√
−tk

in space and 1
−tk in time to obtain a sequence of smooth �ows in

[−2,−1]. By a standard compactness argument, the latter admits a subse-
quence converging to a solution of the �ow in [−3

2 ,−1], since the diameter
and the speed are bounded by the previous lemma and the bound, together
with the pinching assumption, in turn implies an estimate on H. In fact,
let Γ be the pinching subcone Γ = {λ ∈ Γ2|λn ≤ Cλ2}; as ∂Γ2 ∩ ∂Γ = {0},
Γ ∩ Sn has compact closure in Γ2 ∩ Sn. As F is positive on Γ2,

F
H ≥ C4 > 0

on Γ ∩ Sn and then on the whole Γ, as F
H is homogeneous of degree zero.

Bounds on the derivatives of F are then assured by Krylov's estimates in
[50]. This solution has a point with λ1 = 0; the Splitting Theorem in [14]
implies that λ1 = 0 on the whole submanifold, which is thus the product
of a compact manifold times a �at factor, contradicting boundedness of the
diameter.

Remark 2. For the same class of velocities and under the same convexity
hypotheses of Theorem 8, the conclusion holds if we change the assumption
of uniform two-pinching with any of the following (C is a constant):

• uniform pinching for the radii of the submanifold,
ρ+ ≤ Cρ− along the �ow;

• a reverse isoperimetric inequality of the form V ol(Ωt)
n ≥ C|Mt|n+1;

• Mt is a Type I solution, so max
Mt

(hji )
√
−t ≤ C on (−∞, T1), for some

T1.

as all these conditions imply the bound (3.2.3) (see [48]). We can also con-
clude that an ancient solution of the same kind which is not a family of
shrinking spheres must admit a family of rescaled �ows converging to a trans-
lating soliton, thanks to the Harnack inequalities and the results of [51] (see
Section 5.4 and Appendix B).
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3.3 Flows by powers of the Gauss curvature

We will now analyse a precise class of �ows of variable homogeneity, namely

∂ϕ

∂t
(x, t) = −Kβ(x, t)ν(x, t) (3.3.1)

where K is the Gauss curvature of the submanifold and β > 0.
Many authors in the last decades have investigated the singular behaviour

of these �ows. The �rst one, in the case β = 1, was Firey [29], who proved
that a compact convex hypersurface with spherical symmetry shrinks to a
round point in �nite time, and conjectured that the same property holds
without symmetry assumptions. After various partial results through the
decades, the conjecture was proved for a general β > 1/(n+2) by combining
the results of the papers [6, 22, 17], where the reader can also �nd more
detailed references.

In this section we consider an ancient compact convex solution of (3.3.1)
de�ned in (−∞, 0). We translate the coordinates if necessary, so that the
solution shrinks to the origin as t → 0. Following [6, 34], we consider the
rescaled �ow ϕ̃(·, τ) = eτϕ(·, t(τ)), where t and τ are related by

τ(t) =
1

n+ 1
log

(
|B(1)|
|Ωt|

)
.

Here |B(1)| is the volume of the unit ball, which we can also write as
|B(1)| = (n+ 1)−1ωn, with ωn = |Sn|. In this way, the volume of the rescaled
enclosed region Ω̃τ is constant and equal to |B(1)|. In addition, the �ow is
de�ned for τ ∈ (−∞,∞) and satis�es the equation

∂ϕ̃

∂τ
(x, τ) = − K̃β(x, t)

ω−1
n

∫
Sn K̃

β−1dθ
ν(x, τ) + ϕ̃(x, τ). (3.3.2)

An important feature of these �ows is the existence of monotone integral
quantities, called entropies, see e.g. [25, 29]. Here we will use the one
considered in [6], which is de�ned as follows. LetM be any convex embedded
hypersurface in Rn+1 and let Ω be the convex body enclosed by M . The
entropy functional Eβ(Ω) is de�ned for each β > 0 as

Eβ(Ω) = sup
z∈Ω
Eβ(Ω, z) ,

where

Eβ(Ω, z) =


1

ωn

∫
Sn

log uzdθ β = 1

β

β − 1
log

(
1

ωn

∫
Sn
u

1− 1
β

z dθ

)
β 6= 1.
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Here, uz is the support function of Ω with respect to the center z ∈ Ω and
it is de�ned on the sphere Sn with the aid of the (inverse) Gauss map. For
simplicity of notation, we will use in the following the same symbol for uz
considered as a function on Sn and as a function de�ned on M . In [6], it
is proved that for each Ω, there exists a unique point e ∈ Ω, called entropy
point, such that the supremum in the de�nition is attained.

The main property of the entropy is monotonicity along the solutions of
the rescaled �ow (3.3.2). In fact, we have the inequality (see [6], Theorem
3.1):

d

dτ
Eβ(Ω̃τ ) ≤ −

[∫
Sn f

1+ 1
αdστ ·

∫
Sn dστ∫

Sn f
1
αdστ ·

∫
Sn fdστ

− 1

]
, (3.3.3)

where f = K̃β

ue(τ)
, dστ =

ue(τ)

K̃
dθ, and ue(τ) is the support function of the

rescaled solution at the entropy point e(τ) of Ω̃τ .

By the Hölder inequality, the right hand side of (3.3.3) is nonpositive, and
it is strictly negative unless f is constant. The manifolds with constant f are
the stationary solutions of (3.3.2), which correspond to the homothetically
shrinking solitons of (3.3.1). Using this property, it was showed in [6] that,
for every β > 1

n+2 , convex hypersurfaces evolve into a singularity which is a
soliton under rescaling. It was �nally proved in [22, 17] that the only soliton
is the sphere, thus proving Firey's conjecture.

Our result for �ows by powers of the Gauss curvature is the following:

Theorem 10. Let Mt be an ancient closed strictly convex solution of (3.3.1)
with β > 1

n+2 . If there exists C > 0 such that λn
λ1
≤ C on (−∞, 0), then Mt

is a family of shrinking spheres.

Proof. By our pinching assumption, the solution satis�es the conclusions of
Theorem 6. Let us consider the rescaled �ow (3.3.2). By construction, the
domains Ω̃τ contain the origin for all times. It is easy to check that estimate
(3.1.2) translates into a uniform upper bound on the Gauss curvature K̃
of the rescaled hypersurfaces, as K̃ = e−nτK. By pinching, each principal
curvature is also bounded. In addition, by (3.1.1), the inner and outer radius
are bounded from both sides by positive constants uniformly in time. Thanks
to these bounds, we know from Lemma 4.4 of [6] that the entropy point of
Ω̃τ satis�es dist(e(τ), ∂Ω̃τ ) ≥ ε0, for some ε0 independent of τ . Therefore,
we have the estimates

1

C
≤ ũe(τ) ≤ C, K̃ ≤ C (3.3.4)

40



on M̃τ , where we denote by C any large positive constant independent of
τ . It follows that the entropy Eβ(Ω̃τ ) is also bounded from above for all τ .

Since Eβ(Ω̃τ ) is monotone decreasing, it converges to some �nite value E−∞
as τ → −∞. To conclude the proof, we need to show that M̃τ converges to
a stationary point of the entropy as τ → −∞.

Using the property that∫
Sn
dστ =

∫
M̃τ

ũe(τ)dµ̃ = (n+ 1)Vol(Ω̃τ ) = ωn,

we can rewrite formula (3.3.3) as

d

dτ
Eβ(Ω̃τ ) ≤ −

 ∫
M̃τ

f
1+ 1

β dν∫
M̃τ

f
1
β dν ·

∫
M̃τ

fdν
− 1

 ,
where dν := ω−1

n ũe(τ)dµ̃ is a probability measure on M̃τ . Then, as in Propo-
sition 4.3 in [66], we can use the re�nement of Jensen's inequality∫

M̃t

(
f

f

)1+ 1
β

dν ≥ 1 +
β + 1

2β

∫
M̃t

(
f

f
− 1

)2

dν, (3.3.5)

together with ∫
M̃t

f
1+ 1

β dν ≥
(∫

M̃t

f
1+ 1

β dν

) 1

1+ 1
β

∫
M̃t

f
1
β dν,

to estimate the right-hand side and deduce that, for any ε1 > 0 there exists
ε2 > 0 such that∫

M̃τ

(
f − f̄

)2
dν ≥ ε1 =⇒ d

dτ
Eβ(Ω̃τ ) ≤ −ε2; (3.3.6)

in the previous lines we have set

f̄ =

∫
M̃τ

fdν =
1

ωn

∫
M̃τ

K̃βdµ̃.

We want to use (3.3.6) to show that f converges to a constant as τ → −∞.
To do this, we need some uniform control on the regularity of the solution;
we begin by estimating f̄ . Since the area of M̃τ is bounded from both sides
by convexity and the bounds on the radii, an upper bound on f̄ holds in
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view of (3.3.4). To �nd a lower bound, we argue as follows: if β ≥ 1, we can

use the Hölder inequality and the bound on |M̃τ | to conclude

f̄ ≥ 1

ωn

(∫
M̃τ

K̃dµ̃

)β
|M̃τ |1−β =

(
|M̃τ |
ωn

)1−β

≥ 1

C
,

while if β < 1, we can write

f̄ ≥ 1

ωn

1

(sup K̃)1−β

∫
M̃τ

K̃dµ̃ =
1

(sup K̃)1−β
≥ 1

C
.

Observe that we lack a lower bound on K̃, and that the methods of [34, 6]
to obtain such a bound do not seem to work in the backward limit τ → −∞.
This means that we do not know yet whether our problem remains uniformly
parabolic as time decreases. We then follow a strategy introduced by Schulze
in [65] and later used in [19, 66], which exploits the theory for degenerate or
singular parabolic equations. In our case, we can do computations similar to
[19, �7.2], and �nd that the speed Kβ satis�es an equation of porous medium
type, to which the Hölder regularity results from [26, 27] can be applied. For
clarity, we recall brie�y the theorem and the procedure for β = 1.

Theorem (Di Benedetto, Friedman [27]). Let v ∈ C2(Br × [T1, T2]) be a
nonnegative solution of the degenerate parabolic equation

∂v

∂τ
= Di

(
aij(x, t,Dv)Djv

d
)

+ b(x, t, v,Dv), (3.3.7)

with Br ⊂ Rn the ball of radius r centered in the origin, d > 1 (D denotes
derivation with respect to the coordinates). Suppose

m|ξ|2 ≤ aijξiξj ≤M |ξ|2 (3.3.8)

for two constants m,M on Br × [T1, T2]. Furthermore let c1, c2, N be such
that

|b| ≤ c1|Dv|+ c2 (3.3.9)

sup
T1<τ<T2

‖v(·, τ)‖L2(Br) + ‖Dvd‖2L2(Br×[T1,T2]) ≤ N. (3.3.10)

Then for any T1 < δ < T2 and 0 < r1 < r, we have

‖v‖Cα(Br1×[δ,T2]) ≤ C (3.3.11)

for suitable C > 0 and α ∈ (0, 1).
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In order to apply the theorem above, we rewrite the evolution equation
for K̃,

∂K̃

∂τ
= L̃K̃ + H̃K̃2 − nK̃. (3.3.12)

as in (3.3.7) with aij = 1
dK̃

(1−n)
n

∂K̃

∂h̃ij
, b = Γ̃jjl

∂K̃

∂h̃ij
DiK̃ + H̃K̃2 − nK̃ and

d = 1 + (n−1)
n .

Due to the pinching condition and convexity, ∂K̃

∂h̃ij
is equivalent as a

quadratic form to H̃n−1g̃ij This implies that aij is equivalent to 1
d g̃

ij , thus
(3.3.8) is satis�ed. Moreover,

|b| ≤ 1

d

∣∣∣∣K̃ (1−n)
n Γ̃jjl

∂K̃

∂h̃ij
DiK̃

d

∣∣∣∣+ c2 ≤
1

d

∣∣∣∣CΓ̃jjlg̃
ijDiK̃

d

∣∣∣∣+ c2 ≤ c1|DK̃d|+ c2

follows by representing the hypersurface locally as a graph on its tangent
plane (see [19], Cor.5.3) and from the uniform estimate from above on K̃.
To obtain a bound on the L2 norm of DK̃, we observe we can integrate by
parts to obtain: ∫

M̃τ

|∇̃K̃d|2dµ̃τ = −dC
∫
M̃τ

K̃dL̃K̃dµ̃τ . (3.3.13)

From (3.3.12) then follows∫
M̃τ

|∇̃K̃d|2dµ̃τ ≤
d

dt
C

∫
M̃τ

K̃d+1dµ̃τ + C1 (3.3.14)

and integrating on [T1, T2] ⊂ (−∞, 0) we establish the required estimate on
the L2 norm ‖Dvd‖2L2(Br×[T1,T2]) ≤ C−, with C− depending on the length
T2 − T1 of the time interval, but otherwise independent of T1, T2. We can
thus apply (3.3) to �nd that there exist α ∈ (0, 1) and η > 0 such that, for
any x0 ∈ M and τ0 ∈ R, the parabolic α-Hölder norm of K̃β on Bη(x0) ×
(τ0 − η, τ0 + η) is bounded by some C independent of (x0, τ0).

Now we are able to prove a lower bound on K̃ as τ → −∞. In fact,
suppose that K̃(x0, τ0) = δ0 at some (x0, τ0), with δ0 > 0 suitably small
depending on the constants C of the previous estimates. Then, the bounds
from below on ue and f̄ imply that |f(x0, τ0) − f̄(τ0)| is far from zero. By
Hölder continuity, the same holds for (x, τ) ∈ Bη(x0) × (τ0 − η, τ0 + η). It

follows that
∫
M̃τ

(
f − f̄

)2
dν ≥ ε1 for τ ∈ [τ0 − η, τ0 + η], where ε1, η do not

depend on τ0. In view of (3.3.6) and of the boundedness of the entropy, this
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can only occur on a �nite number of intervals. We deduce that K̃(·, τ) > δ0

for all τ << 0.
As we have shown that the rescaled Gaussian curvature is uniformly

bounded from both sides, we deduce from the pinching condition that each
principal curvature is bounded between two positive constants. This implies
that the equation is uniformly parabolic with bounded coe�cients, and we
have uniform estimates on all the derivatives of the solution from Krylov-
Safonov and Schauder theory. Standard arguments ensure precompactness
for the family M̃τ , so that every sequence M̃τk with τk → −∞ as k → +∞
admits a subsequence converging in C∞ to a limit M̃−∞.

We now want to show that the right-hand side of (3.3.3) must vanish on

M̃−∞. To this purpose, we need some continuity with respect to τ of the
function ũe(τ). In Lemma 4.3 of [6] it was proved that, for convex bodies Ω
satisfying uniform bounds on the inner and outer radii, the entropy point
is a continuous function of Ω with respect to the Hausdor� distance. Since
the speed of our �ow is bounded, we deduce that for any ε > 0 there exists
η > 0 such that

||e(τ)− e−∞|| ≤ ε, ∀τ ∈ [τk − η, τk + η],

for all k su�ciently large, where e−∞ is the entropy point of Ω̃−∞. Therefore
ũe(τ) is uniformly close to u−∞. By the regularity of K̃, we �nd that the
right hand side of (3.3.3) is uniformly close to the same expression computed

on M̃−∞ for τ ∈ [τk − η, τk + η]. Therefore, if the right-hand side of (3.3.3)

is nonzero on M̃−∞, it is also uniformly negative for τ in a set of in�nite
measure, in contradiction with the boundedness of the entropy.

We conclude that the right-hand side of (3.3.3) vanishes on M̃−∞. As
already recalled, it is proved in [17, 22], that the only convex hypersurface
with this property is the sphere. This implies that the whole �ow converges
to a sphere as τ → ∞. On the other hand, it is known that the entropy
attains its minimum value on the sphere among all convex bodies with �xed
volume. By monotonicity, the entropy must remain constant on the �ow M̃τ ,
and M̃τ is a sphere for every τ .

3.4 General �ows with high degree of homogeneity

It is already evident in the special case of evolution by Gaussian Curvature
that �ows with high degree of homogeneity have in general more complicate
analytic properties than in the 1-homogeneous case. Various authors have
proved convergence of convex hypersurfaces to a spherical pro�le for certain
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speci�c speeds with homogeneity α > 1, see [1, 19, 23, 24, 65], under the
requirement that the initial datum satis�es a suitably strong pinching con-
dition. A general result of this form has been obtained in [7], where a large
class of speeds is considered, with no structural assumptions such as convex-
ity or concavity. Here we show that an ancient solution which satis�es the
same pinching requirement as in [7] is necessarily a shrinking sphere.

We consider a speed f(λ) satisfying (H1)�(H2) for some α > 1; for sim-
plicity, we assume the normalization f(1, . . . , 1) = n. By the smoothness
and homogeneity of F , there exists µ > 0 such that, for any matrices A,B:

|F̈ kl,rs(A)BklBrs| ≤ µHα−2|B|2. (3.4.1)

Since by symmetry Ḟ |HI = αHα−1I, where I is the identity matrix, it is
easy to deduce

(αHα−1 − µHα−2 |̊h|)I ≤Ḟ ≤ (αHα−1 + µHα−2 |̊h|)I, (3.4.2)

Hα − µ

2α
Hα−2 |̊h|2 ≤F ≤ Hα +

µ

2α
Hα−2 |̊h|2 (3.4.3)

(we recall that h̊ = h2 − 1
nH

2).

Theorem 11. If Mt = ϕ(M, t), t ∈ (−∞, 0) is an ancient solution of
(3.0.1), with F homogeneous of degree α > 1 such that |̊h|2 ≤ εH2 holds
for all times t ∈ (−∞, 0) for a suitable ε ∈ (0, 1

n(n−1)) depending only on
µ, α, n, then it is a family of shrinking spheres.

Proof. This time, similarly to the mean curvature case, we study the function

fσ =
|̊h|2

H2−σ (3.4.4)

and we want to show that it is identically zero for all negative times, for a
suitable choice of σ ∈ (0, 1). We observe that, under our hypothesis, f0 ≤ ε.
If ε is small enough, we obtain from (3.4.3)

F ≥ α

2
Hα. (3.4.5)

The evolution equations for the relevant quantities are computed in [7]:

∂

∂t
H =LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh

m
l H + (1− α)F |h|2 (3.4.6)

∂

∂t
G =LG+ [ĠijF̈ kl,rs − Ḟ ijG̈kl,rs]∇ihkl∇jhrs + Ḟ klhkmh

m
l Ġ

ijhij

+ (1− α)FĠijhimh
m
j (3.4.7)
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if G is any smooth symmetric function of the eigenvalues of the Weingarten
operator. Using these, we compute the evolution equation for fσ:

∂

∂t
fσ = Lfσ +

(2− σ)

H
Ḟ ij [∇iH∇jfσ +∇jH∇ifσ] (3.4.8)

+
1

H2−σ

[
2

(
hij − 1

n
Hgij − 2− σ

2
f0Hg

ij

)
F̈ kl,rs

]
∇ihkl∇jhrs

− (1− σ)(σ − 2)

H2−σ Ḟ ij∇iH∇jHf0

− 2

H2−σ Ḟ
ij

[
∇ihkl∇jhkl −

1

n
∇iH∇jH

]
+ σfσḞ

klhkmh
m
l +

2(1− α)

nH2−σ F (nC −H|h|2)− (1− α)(2− σ)

H
F |h|2fσ,

where C =
∑

i λ
3
i . We estimate the terms in second row, using f0 ≤ ε,

0 < σ < 1 and the bound (3.4.1):∣∣∣∣2(hij − 1

n
Hgij − 2− σ

2
f0Hg

ij

)
F̈ kl,rs∇ihkl∇jhrs

∣∣∣∣ (3.4.9)

≤ 2|F̈ | |∇h|2H
√
ε
(
1 +
√
nε
)

≤ 2µHα−1|∇h|2
√
ε
(
1 +
√
nε
)
.

The term in the third row satis�es∣∣∣Ḟ ij(1− σ)(σ − 2)f0∇iH∇jH
∣∣∣ ≤ 2ε|Ḟ ||∇H|2

≤ 2ε
(
α+ µ

√
ε
)
Hα−1n+ 2

3
|∇h|2. (3.4.10)

The next term gives a negative contribution. In fact, it was shown in the
proof of Theorem 5.1 in [7] that

− 2Ḟ ij
[
∇ihkl∇jhkl −

1

n
∇iH∇jH

]
≤ −4(n− 1)

3n
Hα−1(α− µ

√
ε)|∇h|2.

(3.4.11)
We observe that all positive terms occurring in the above estimates can be
made arbitrarily small by choosing a small ε > 0, and the total contribution
of the second, third and fourth row of (3.4.8) is nonpositive due to the
negative term with the α factor in (3.4.11).
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To estimate the terms in the last row, we rewrite them as

σfσ

(
Ḟ hkmh

m
l +

(1− α)

H
F |h|2

)
+

2(1− α)

H
F

(
nC −H|h|2

nH1−σ − |h|2fσ
)
.

The second part will give a negative contribution. To see this, we �rst apply
Lemma 2.3 in [7] to obtain

nC − (1 + nf0)H|h|2 ≥ f0(1 + nf0)(1−
√
n(n− 1)f0)H3 ≥ 1

2
f0H

3.

Then

nC −H|h|2

nH1−σ − |h|2fσ ≥
nfσH|h|2 + 1

2fσH
3

nH
− |h|2fσ = fσ

H2

2n
, (3.4.12)

and we conclude, using α > 1 and (3.4.5),

2(1− α)

H
F

(
nC −H|h|2

nH1−σ − F |h|2fσ
)
≤ (1− α)fσ

Hα+1

2n
. (3.4.13)

At the same time, we have

σfσ

(
Ḟ hkmh

m
l +

(1− α)

H
F |h|2

)
≤ σfσ(Ḟ hkmh

m
l )

≤ σfσ
(
αHα−1 + µHα−2 |̊h|

)
|h|2 ≤ σfσ(α+ µ)Hα+1. (3.4.14)

The above estimates and (3.4.8) imply that, choosing σ < α−1
4n(α+µ) , we have

∂

∂t
fσ ≤ Lfσ +

2(2− σ)

H
Ḟ ij ∇iH∇jfσ +

(1− α)

4n
fσH

α+1.

Since fσ ≤ Hσ, if we set ψ(t) = maxMt fσ, we �nd

d

dt
ψ ≤ −(α− 1)

4n
ψ1+α+1

σ .

An easy comparison argument, similar to the one in Proposition 3, shows
that ψ(t) cannot be de�ned for all t ∈ (−∞, 0) unless it is identically zero.
Therefore, |̊h|2 ≡ 0 on our solution and the assertion is proved.
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3.5 A convex non-pinched counterexample

We conclude our analysis of convex compact ancient solutions for nonlinear
curvature �ows of contractive type by partially generalizing the example of
Angenent Ovaloids for Mean Curvature Flow, which was discussed in de-
tail by Haslhofer and Hershkovits [40]. The authors constructed a family
of solutions that are not uniformly convex in time and proved that they
are not shrinking spheres; by Huisken's convergence theorem in [42], due to
convexity these hypersurfaces contract to round points at T = 0, while for
t→ −∞, after parabolic rescaling, they are asymptotic to generalized round
cylinders. The "tips" also converge by a suitable blow-down to the translat-
ing bowl [39]. This counterexample was inspired by a remark by White [74]
and was anticipated by a formal asymptotic study by Angenent [10]. We
follow the same procedure to construct an analogous convex nonspherical
ancient solution for (3.0.1); we are not able to deduce the asymptotics from
our construction, since the result in [40] relies on the powerful Global Con-
vergence Theorem for Mean Curvature Flow by Haslhofer and Kleiner ([41])
and on Huisken's monotonicity formula and both have no extension to our
case. The Global Convergence Theorem in particular depends essentially on
the α-noncollapsing property of solutions of MCF, and this condition is not
invariant in general under evolution via fully nonlinear �ows (for an exhaus-
tive account of one-sided noncollapsing, see [51]). As in [40], letM l

0 ⊂ Rn+1,
for l ∈ N be the family of compact hypersurfaces de�ned by capping the
truncated cylinder Sn−1× [−l,−l] at a scale (independent of l) of length one
and in such a way that the result is rotationally symmetric and convex. The
sequence obtained is also uniformly 2-convex, namely λl1 + λl2 ≥ CH l for
some constant C independent of l (the index l obviously identi�es geometric
quantities relative to the l-th submanifold in the sequence and its evolu-
tion). We will obtain the ancient solution as limit (after suitable rescaling)
of a subsequence of �ows whose initial data are given by the M l

0.
We assume f satis�es (H1)�(H2), is 1-homogeneous and it is de�ned on a
convex symmetric cone Γ ⊂ Rn, such that Γ+ ⊂ Γ and

Γn−1
+ = {λ = (0, λ2, . . . , λn) |λi > 0, i = 2, . . . , n} ⊂ Γ.

We will also suppose one of the following conditions holds:

1. n = 2;

2. f is convex;

48



3. f is concave and inverse concave up to the boundary of the positive
cone, meaning the function

f∗(λ2, . . . , λn) := f

(
0,

1

λ1
, . . . ,

1

λn

)−1

is also smooth and concave as a function on Γn−1
+ . We require two

additional conditions on f in this case:

(a) lim
λ→∂Γ

f(λ) = 0

(b) lim
µ→+∞

f(1, . . . , 1, µ) = +∞ .

Most of the additional assumptions are needed to �x issues related to invari-
ance of convexity: we need to ensure that compact weakly convex hypersur-
faces become immediately strictly convex, that strict convexity is preserved
and that there is convergence to a round point in �nite time; we also need
Hölder estimates of the second order for the solution.
To address the �rst two problems, we invoke the Splitting Theorems of Lang-
ford [51] and Bourni-Langford [14], that hold in general in dimension n = 2,
for convex speed functions and for inverse-concave functions if n ≥ 2. Con-
vergence to round points of convex hypersurfaces is also granted for n = 2
in full generality, for convex speeds ([2]) or inverse-concave speeds which are
also concave, or with f∗ → 0 as λ → ∂Γ+ ([8]), a condition equivalent to
(3b) above for axially symmetric submanifolds. Hölder estimates follow from
parabolic theory, once established second order bounds and parabolicity of
the equation, if the speed is either convex or concave, or, again, if n = 2.
We will thus require f convex or concave and inverse-concave, unless the
dimension is equal to 2.

In what follows, we will denote by M l
t the evolution of M l

0 by (3.0.1).
We observe that all the starting M l

0 are enclosed by the standard cylinder
Sn−1 ×R and enclose the standard sphere Sn of radius 1: by avoidance, the
extinction time for all the �ows of the sequence must be comparable to one.
We will denote by x the coordinates on Rn+1 and de�ne al(t) = max

x∈M l
t

|xn+1|

and bl(t) = max
x∈M l

t

(∑n−1
i=1 x

2
i

) 1
2
; due to rotational symmetry and convexity,

they are equivalent to the outer and the inner radius respectively, and the
spheres realizing the radii are centered in 0. Since the hypersurfaces are
becoming spherical we can parabolically rescale the sequence of �ows with a
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scaling factor that depends on l and perform a translation in time to ensure

that each one is de�ned on a time interval [−Tl, 0),
al(−1)

bl(−1)
= 2 and

al(t)

bl(t)
≥ 2

for every t < −1 and for every l. From this point, we will always work on
the rescaled �ows; we use the same notation as it should not be a source of
confusion.
First, we want to obtain uniform spatial bounds and prove the lifespan of
each solution is becoming longer as l increases. The avoidance principle
grants a two-sided bound on the diameter at time −1 which is uniform in l.
Then diam(M l

−1) ≥ c must hold or we could enclose the hypersurfaces of the
sequence, from some index l, in a sphere with a small radius, that shrinks
in less than unit time. As the hypersurfaces are convex, their diameter is

comparable to al and as the ratio
a(−1)

b(−1)
is �xed, the opposite inequality

diam(M l
−1) ≤ C holds, or b(−1) would be too large and we could enclose

(from a certain l) a sphere too big to cease to exist in unit time.
We also have that bl is not increasing in time by comparison with enclosing

cylinders, so bl(t) ≥ c in [−T l,−1]. Then al, and thus
al

bl
, need a uniform

time period of at least
c2

32n
to be halved by the same argument as in [40]: for

t0 < −1 and for every l, a sphere of radius bl(t0)
4 can be enclosed in M l

t0 at

distance al(t0)
2 from the origin, since al(t0)

bl(t0)
≥ 2 for every t0 < −1, and then

the comparison principle applies. This also implies T l → −∞ as l goes to
+∞, as al(T l) explodes.

We need to prove that the diameter and the speed have bounds inde-
pendent of l on each compact subset of times (we can obviously discard a
�nite number of unde�ned terms of the sequence). Let K ⊂ (−∞, 0) be
a compact subinterval of times; then the uniform two-sided bound cK ≤
diam(M l

t) ≤ CK holds for some constants depending only on K. We can
assume K ⊂ (−∞,−1) without loss of generality, as the bounds follow im-
mediately in (−1, 0) from the condition in t = −1 and the smoothness of
the hypersurface; the lower bound is also trivial from what we have already
shown. If a uniform upper bound did not hold, then there would exist a sub-
sequence M lk such that max

t∈K
diam(M lk

t ) → +∞ as k → +∞; for convexity,

alk would also explode. Then a contradiction would follow from the �xed
rate of shrinking for a and the uniform upper bound at t = −1. Thus, both
a and b have two-sided bounds uniform in l on each compact subinterval of
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times.

In order to obtain l-uniform bounds on the speed and the curvatures,
we describe the submanifolds as

{
(ψl(xln+1(t), t)ω, xln+1(t))

}
, with ψ(·, t)

smooth pro�le functions and ω ∈ Sn−1 ⊂ {xn+1 = 0}; we will denote by
a prime mark the derivatives with respect to xn+1. Omitting the explicit
dependence on t and the index l, the value λ of the n−1 principal curvatures
in the radial directions and the axial curvature µ are computed as:

λ =
1

ψ
[
1 + (ψ′)

2
] 1

2

(3.5.1)

µ =
−ψ′′[

1 + (ψ′)
2
] 3

2

; (3.5.2)

we observe that the convexity of the surfaces implies −ψ′′ ≥ 0. The evolution
of the pro�le functions is given by:

∂ψ

∂t
= − 1

ψ
f

(
1, . . . , 1,− ψ′′ψ

1 + (ψ′)2

)
; (3.5.3)

the nonnegative quantity R = − ψ′′ψ

1+(ψ′)2
is the pinching function µ

λ ; with

a small abuse of notation, we will denote f(R) the function f(1, . . . , 1, R).
Inspired by the argument in [11], we show that R ≤ 1 along the �ow, for
all l, so the axial curvature cannot exceed the radial one. We already know
maxRl ≥ 1, since the symmetries of the hypersurfaces force R = 1 at the
tips for all l and t. Since ψ is smooth, we have:

∂R

∂t
=
−(∂tψ)′′ψ − ψ′′∂tψ

1 + (ψ′)2
+

2ψ′′ψ′ψ(∂tψ)′

[1 + (ψ′)2]2

We compute the spatial derivatives of (3.5.3):

(∂tψ)′ =
−(f(R))′

ψ
+
ψ′f(R)

ψ2

(∂tψ)′′ = −(f(R))′′

ψ
+
ψ′′f(R)

ψ2
+

2ψ′(f(R))′

ψ2
− 2(ψ′)2f(R)

ψ3

and (f(R))′ = ḟR′, (f(R))′′ = f̈(R′)2 + ḟR′′. From the equations above we
obtain

∂R

∂t
=
ḟR′′ + f̈R′′

1 + (ψ′)2
− 2ψ′(1−R)

ψ(1 + (ψ′)2)

(
R′ḟ − fψ′

ψ

)
(3.5.4)
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At a spatial maximum, R′ = 0 and R′′ ≤ 0, so there holds

∂(maxR)

∂t
≤ 2(ψ′)2f(R)

ψ2(1 + (ψ′)2)
(1−R)

If maxRl was greater than 1 on any M l
t0 , the equation above would imply

maxRl > 1 on M l
t for all −T l ≤ t ≤ t0, which is clearly in contradiction

with our choice of initial data; so R ≤ 1 and µ ≤ λ for all times on the
sequence of �ows. Corollary 2 of Theorem 14 in [8] provides a l-uniform lower
bound on the speed depending only on the compact K and the bound on
al; the assumptions of the Corollary are equivalent, in the axially symmetric
setting, to f(0, 1, . . . , 1) > 0 and (3b) (or they follow trivially from f ≥ H
if f is convex). We observe that f(λ, . . . , λ, µ) ≥ c implies the lower bound
λ ≥ c thanks to homogeneity and R ≤ 1. A l-uniform upper bound on
the speed can be obtained as in Theorem 8 of [8], since inverse-concavity
grants Ḟ (W 2) ≥ F 2, as in Lemma 5 in the same article (a convex speed is
inverse-concave on the positive cone). Due to our assumptions, we obtain
uniform upper bounds for λ and µ, that thus remain in the same compact
subset ΓK ⊂ Γ for every l along the �ow. As Ḟ is zero-homogeneous, there
holds bKId ≤ Ḟ ≤ BKId where BK , bK are the maximum and minimum
respectively of Ḟ on Sn ∩ ΓK ; the system is then l-uniformly parabolic on
each K.

Now we consider the polar coordinate representation, so M l
t is described

as a graph on Sn for t ∈ K; we have radial functions rl : Sn × [−T l, 0)→ R,
and M l

l = graph(rl(·, t)). From what we have shown, the radial functions
are uniformly bounded from both sides on each subinterval of times and so

are the support functions centered in the origin ul =
rl√

(rl)2 + |∇rl|2
.

In these coordinates, the second fundamental form is related to the radial
function as:

hij =
r

v
(σij + ηiηj − ηij) (3.5.5)

where η = log r, σij is the standard metric on Sn and the subscripts stand
for covariant derivatives with respect to the Levi-Civita connection of the
sphere. Since r, hij and the derivatives ηi are bounded on K, the second
derivatives of r are also bounded on K independently of l. The last two
bounds show the parabolicity of the system and of the related equation for
the radial function (derived in [2], see also [31]):

∂rl

∂t
= −vlF̃ l(W l) (3.5.6)
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where vl =

√
(rl)2 + |∇rl|2

rl
and F̃ l is the function associated to F l and

de�ned on the negative cone such that F̃ l(A) = F l(−A). The above PDE is
parabolic since in polar coordinates W is expressed as

hij =
1

rv

{
δij +

[
−σik +

ηifk

v2

]
ηjk

}
(indices are raised using the spherical metric tensor).
Krylov-Safonov theory gives then Hölder estimates of order 2 for the solu-
tion of (3.0.1) under our assumptions on the speed and standard arguments
provide uniform bounds on the derivatives of all orders on each K.

As all the bounds are uniform in l, the sequence of radial functions ul

admits a converging subsequence on each compact subinterval of times. By
choosing a sequence ti → −∞ of times, we construct the family of nested
compact sets Ki = [ti,−1

i ]; we can then obtain a limit radial function r∞

de�ned on (−∞, 0) by precompactness on the sets Ki and a diagonal argu-
ment. We construct the desired ancient solution M∞t as spherical graph of
the function r∞: as r∞ is the limit of a subsequence which is bounded on
each Ki, the diameter of the submanifold is also bounded at each time and
the evolving hypersurface is compact; the same holds for (strict) convexity,
recalling (3.5.5). This solution cannot be a shrinking sphere, as the ratio
a∞

b∞
is equal to 2 at t = −1.
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Chapter 4

Ancient solutions of expansive

curvature �ows

In this last chapter we will analyse ancient solutions of inverse �ows by
curvature functions. In general, inverse curvature �ows are geometric �ows
whose speeds are given by the reciprocal of curvature functions:

∂ϕ

∂t
(x, t) =

ν

F
(x, t) (4.0.1)

for ϕ : M × [T1, T2] → Rn+1 a time-dependent immersion, where F is
a p-homogeneous function of the principal curvatures satisfying properties
(H1)�(H2) described in the previous chapter. In order for the system to be
parabolic, the speed must be directed as the outer normal vector, so the evo-
lution has an expanding character; geometric isotropy properties also hold.

Expansive �ows (4.0.1) having homogeneity equal to one are a boundary
case dividing two categories of evolution with a complementary behaviour,
as described in [33]. The totally umbilic spheres in Euclidean space evolve
by homotetic expansion; the evolution equation of the radius R(t) under a
speed of homogeneity p 6= 1 starting from time 0 is given by:

R(t) =

(
(1− p)
np

t+R(0)1−p
) 1

1−p
, (4.0.2)

while for p = 1 the dilation rate is exponential and the spherical radius is
R(t) = R(0)e

t
n . It is thus evident that for p ∈ (0, 1] the �ow of spheres exists

for all times t > 0, while the solution blows up in �nite time if p > 1, so
there exists T > 0 such that

lim sup
t→T

|ϕ(x, t)| = +∞ .
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In [32, 33] Gerhardt proved convergence of suitably rescaled solutions of
(4.0.1) for a concave F to round spheres for all homogeneities, provided the
starting submanifold is starshaped if p ∈ (0, 1] or strictly convex if p > 1 (for
p = 1, Urbas [72] proved independently the same result). He also assumed
the speed vanishes on ∂Γ+ in the last case.

We speci�cally consider general �ows of the form

∂ϕ

∂t
(x, t) =

ν

H
p
k
k

(x, t) (4.0.3)

where Hk is the k-th Mean Curvature and p > 1. We will prove rigidity
results for this class of speeds akin to those proved for contractive �ows; we
underline that the usual de�nition and properties of ancientness are not well
de�ned in the range (0, 1), as from (4.0.2) one deduces that the radius of a
sphere blows up in �nite time in the past. For p = 1 the spheres provide an
example of eternal solution. We establish the following result:

Theorem 12. Let Mt be a convex closed ancient solution of (4.0.3) with
p > 1 such that the following conditions are satis�ed for all times:

1. the principal curvatures are uniformly pinched: there exists C ≥ 1 such
that λn

λ1
≤ C holds for all t ∈ (−∞, 0);

2. Mt is uniformly starshaped with respect to 0:
u(x, t) = 〈ϕ(x, t), ν(x, t)〉 ≥ ε|ϕ(x, t)| for some constant ε ≤ 1;

3. the second fundamental form has polynomial growth: there exists s > 0

such that lim
t→−∞

maxH
1
k
k (t)

|t|s
= 0.

Then Mt is a shrinking sphere.

The conditions on the solution are more restrictive than those in [33], but
we observe that we need to assume strict convexity: the k-th mean curvatures
do not belong to the class directly covered in the results by Gerhardt, since
they do not vanish approaching the boundary of the positive cone, if k 6= n,
and convexity is generally not preserved under an inverse �ow by a concave
function.

We will prove Theorem 12 by an argument similar to the one we used
for Gaussian Curvature Flow in the previous chapter. We will introduce a
monotonic quantity to state that the sphericity of the submanifold is actually
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increasing along the �ow, and, intuitively, it is "increasing fast enough to
have already reached a critical point from the beginning", on an in�nitely
long interval of time.

4.1 The k-th isoperimetric ratio

The quantity in question is the k-th isoperimetric ratio of the convex body
Ωt enclosed by Mt (we will often omit the subscript t):

Ik(Ω) =

(∫
Hk−1dµ

)n+1

|Ω|n+1−k (4.1.1)

which is invariant under rescaling. We will show the ratio is decreasing
along the �ow; this will allow us to conclude, since the critical points of the
functional Ik are standard spheres, as soon as we establish precompactness
for the solution and that lim inf

t→−∞
d
dtIk(Ωt) = 0.

Lemma 13. If Mt is a solution of (4.0.3), then Ik(Ωt) is nonincreasing.

Proof. We will prove that the derivative of the isoperimetric ratio is nega-
tive. We will use the following notation (as in Burago-Zalgaller [18], with an
ambient space of dimension n+ 1):

Vn−i(M) =
1

(n+ 1)
(
n
i

) ∫
M
Hidµ =

1

(n+ 1)
(
n
i

) |Mn−i|dµ i = 1, . . . , n

so that

Vn =
1

n+ 1
|M |

Ik(Ω) =
|Mn−k+1|n+1

V n−k+1
n+1

and we also �x Vn+1 = |Ω|, V0 = ωn+1 = |Bn(1)|.
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We have, using the same computations as in Bertini-Sinestrari [13]:

∂|Mn−k+1|
∂t

=

∫
∂tHkdµ+

∫
Hk∂tdµ =

=

∫
∂Hk−1

∂hji

∂hji
∂t

dµ+

∫
Hk−1

H

H
p
k
k

dµ

=

∫
∂Hk−1

∂hji

[
∇j∇i

(
−H

p
k
k

)
−H

p
k
k h

j
mh

m
i

]
dµ

+

∫
Hk−1

H

H
p
k
k

dµ

As

∂Hk−1

∂hji
hjmh

m
i = HHk−1 − kHk;

∇i∂Hk

∂hji
= 0,

integrating by parts we have:

d|Mn−k+1|
dt

= k

∫
Hk

H
p/k
k

dµ (4.1.2)

So we can compute

dIk(Ω)

dt
=

1

|Ω|(n+1−k)2

(n+ 1)k|Mn−k+1|n|Ω|n−k+1

∫
Hk

H
p
k
k

dµ

−(n− k + 1)|Mn−k+1|n+1|Ω|n−k
∫

1

H
p
k
k

dµ


In the following computation we will temporarily neglect the denominator
of the previous equation, since it is always positive and it does not a�ect the
computation of the sign. We will estimate the integrals in the numerator
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using Jensen's inequality; if p > k we have:

−
∫ (

1

Hk

) p
k

=

−∫ (( 1

Hk

) p−k
k

) p
p−k

dµ


p−k
p

·

[
−
∫ (

1

Hk

) p
k

dµ

] k
p

≥ −
∫ (

1

Hk

) p−k
k

dµ · −
∫

1

Hk
dµ

which gives

dIk(Ω)

dt
≤ −
∫ (

1

Hk

) p
k
−1

dµ
[
k(n+ 1)|Mn

n−k+1|Ω|n−k+1|M |

− (n+ 1− k)|Mn−k+1|n+1|Ω|n−k|M |−
∫

1

Hk
dµ

]
In terms of the normalized mixed volumes:

dIk(Ω)

dt
≤
∫ (

1

Hk

) p
k
−1

dµ(n+ 1)n+1

(
n

k − 1

)n [
kV n

n−k+1V
n−k+1
n+1

− (n− k + 1)

(
n

k − 1

)
V n+1
n−k+1V

n−k
n+1 −

∫ (
1

Hk

)
dµ

]
As (

n

k − 1

)(
n

k

)−1

=
k

n− k + 1

and

−
∫ (

1

Hk

)
dµ ≥

(
−
∫
Hkdµ

)−1

=
Vn(

n
k

)
Vn−k

,

we have

dIk(Ω)

dt
≤
∫ (

1

Hk

) p
k
−1

dµ(n+ 1)n+1

(
n

k − 1

)n
kV n

n−k+1V
n−k
n+1

1

Vn−k

· [Vn−kVn+1 − Vn−k+1Vn]

and the last expression is nonpositive thanks to repeated applications of the
Newton inequalities: V 2

i ≥ Vi−1Vi+1. If k > p we can use the same procedure
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but we apply Jensen's inequality to:

−
∫ (

1

Hk

) p
k
−1

dµ ≤

−∫ (( 1

Hk

) p
k

) p−k
p

dµ


p

p−k

·

(
−
∫ (

1

Hk

) p
k
−1

dµ

) −k
p−k

obtaining

−
∫ (

1

Hk

) p
k
−1

dµ ≤ −
∫ (

1

Hk

) p
k

dµ · −
∫
Hkdµ

and then substituting as above; for k = p we just need

−
∫

1

Hk
dµ ≥

(
−
∫
Hkdµ

)−1

.

The k-isoperimetric ratio is thus nonincreasing along the �ow. We underline
that the relevant quantity [Vn−kVn+1 − Vn−k+1Vn] is zero if and only if the
hypersurface is a standard sphere.

4.2 Proof of Theorem 12

Following Gerhardt [33], we assume the solution is parametrized as a graph
over Sn, so we have Mt = graph(r(·, t)). The functions Θt0(t, r) denote the
radius at time t of the evolving sphere with radius r at the initial time t0.
We can immediately bound from above the inner and the outer radii of the
solution as the hypersurface is pinched, the �ow has an expansive character
and the following avoidance principle holds.

Theorem (Avoidance Principle for expansive �ows, [33]). IfMt0 is such that
there exist two constants r1, r2 with r1 < r(·, t0) < r2, then

Θt0(t, r1) < r(·, t)
r(·, t) < Θt0(t, r2)

and each inequality is valid as long as both functions are �nite.

This principle implies that the �ow remains enclosed in a spherical shell
in any compact subset [t0, t1] ⊂ (−∞, 0).

For t ∈ (−∞,−1), ρ−(t) and ρ+(t) are both �nite and strictly greater
than 0. Due to avoidance and the fact that the blow-up time only depends
on the initial radius, lim

t→−∞
ρ−(t) = 0 must hold, or we could include a sphere
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of a �xed diameter in the evolving submanifold at an arbitrarily small time
in the past, and this would blow up in the interior before the submanifold.

The pinching condition allows to conclude immediately that ρ+(t) also

converges to zero at negative in�nity. Denoting by Θ(t) =
{

1−p
np t

} 1
1−p

the

radius of the shrinking ancient sphere blowing up at T = 0 (which is assumed
to have "starting radius 0 at −∞"), there exist two constants such that

c1Θ(t) ≤ ρ−(t) ≤ Cρ+(t) ≤ c2Θ(t)

along the �ow. Using the avoidance principle again, we obtain

min
Sn

r(·, t) ≤ Θ(t) ≤ max
Sn

r(·, t),

immediately implying max
Sn

r ≤ cΘ(t) by comparison with the circumradius.

As the solution is uniformly starshaped by assumption, we have

v =
r

u
=
√

1 + |∇ log r|2Sn ≤
1

ε
, (4.2.1)

so the oscillation of each r(·, t) as a function on the sphere is bounded from
above indepentently of t and there holds the opposite inequality
min
Sn

r(·, t) ≥ cmax
Sn

r(·, t) ≥ cΘ(t).

The inequality (4.2.1) with the estimates above also yield uniform C1

bounds on r. We need to prove C2 bounds from above and thus deduce uni-
form parabolicity for (4.0.3), in order to trigger Krylov-Safonov and Schauder
theory and obtain compactness at −∞. To estimate the speed of the �ow
from above, we employ again Tso's technique as in the previous chapter.

Lemma 14. Let Mt be a closed convex ancient solution such that the as-

sumptions of Theorem 12 hold. Then H
p
k
k (·, t) ≥ C

Θ(t) for t ∈ (−∞, 0), for a
constant C.

Proof. We choose t0 ∈ (−∞,−1); eventually translating the hypersurface
we can assume the enclosing sphere of radius ρ+(t0) is centered in 0. We
consider the function:

q(x, t0) =
1

H
p
k
k (2ρ+(t0)− u)

.

The evolution equation for q reads (see, for example, [64]):

∂q

∂t
= Lq − 2

2ρ+ − u
〈∇q,∇u〉k

+ q2

[
(1− p) +

2ρ+p

kHk
(HHk − (k + 1)Hk+1)

]
(4.2.2)
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where L and 〈·, ·〉k are the elliptic operator and the scalar product induced by
contracting the connection with the derivative of the speed as in the previous
chapter. To derive (4.2.2) we also used the identity

∂Hk

∂hij
hilh

l
j = HHk − (k + 1)Hk+1.

As in the contractive case, the equation for Q(t) = sup
x∈Mt

q(x, t) then yields:

dQ

dt
≤ Q2[(1− p) +

2ρ+p

kHk
(HHk − (k + 1)Hk+1)] (4.2.3)

and comparison with the corresponding ODE as in (6) forces the term in
square brackets to be nonnegative on (−∞,−1). We have:

0 ≤ (1− p) +
2ρ+p

kHk
(HHk − (k + 1)Hk+1) =

= −(p− 1) +
2ρ+pH

k

[
1− (k + 1)Hk+1

HkH

]
≤ −(p− 1) +

2ρ+pH

k

as
(k+1)Hk+1

HkH
belongs to [0, 1]. So we have the estimate on H:

H ≤ (p− 1)k

2ρ+p
.

The lower estimate on ρ+ and the pinching condition then allow to conclude

λ1 >
C
Θ for a uniform C. Obviously, this implies H

− p
k

k ≤ CΘp.

We remark that the assumption of polynomial growth of the speed at
in�nity was not needed to prove this Lemma.

To conclude, we need to establish a bound on principal curvatures from
above. We consider the rescaled immersion ϕ̃(x, t) = ϕ(x, t)Θ−1(t); the
associated geometric quantities obviously satisfy ũ = Θ−1u, r̃ = Θ−1r, h̃ij =

Θhij , g̃ij = Θ−2gij , g̃
ij = Θ2gij (we are denoting rescaled quantities by a

tilde as usual). From the paragraph above, the support function and the

radial function are both uniformly bounded by constants and H̃
1
k
k ≥ C.

Lemma 15. In the assumptions of Theorem 12, there exists a constant C

such that H̃k

p
k ≤ C.

62



Proof. We de�ne the family of functions w = log(H̃k

p
k ) + λr̃ where λ is a

parameter to be de�ned later. As in [49], we will estimate the derivative of
this function to prove an upper bound on the principal curvatures directly
on the rescaled immersion. This is where we need the additional assumption

on the speed; we state the argument for F = H
p
k
k , but we underline that it

is valid for any concave p-homogeneous F with the same assumptions on the
growth at −∞.

The evolution equation for w gives:

∂w

∂t
= Lw +

Θp−1

np

(
p− λ

2
r̃

)
+ λΘp−1

(p+ 1)

vH̃
p
k
k

− r̃

2np


Let H̃k

− p
k =

eλr̃

ew
If λ > λ0 = 4p

min r̃ , the �rst bracket is negative and we

can conclude for W (t) = max
M̃t

w(x, t):

dW

dt
≤ −λΘp−1

4np
+
λΘp−1

eW

(
(p+ 1)eλr̃ − (min r̃)eW

2np

)
(4.2.4)

We suppose by contradiction that lim sup
t→−∞

max H̃
p
k
k = +∞. This obviously

implies the same for the function W and lim sup
t→−∞

W = +∞ holds for any

λ > λ0. Then, there exists a sequence of times going to −∞ such that
W explodes along the sequence; we can thus �nd a t0(λ) such that, at t0,
min r̃

2np
ew > (p + 1)eλmax r̃ and (4.2.4) implies

dW

dt
< 0. As W is decreasing

forward in time, again (4.2.4) also implies
dW

dt
< 0 and W (t) > W (t0) on

the whole hal�ine (−∞, t0). Using the explicit expression of Θ, we have:

dW

dt
≤ −λΘp−1

4np
= − λ

4(p− 1)|t|
.

We can now integrate on a �xed subinterval [t, t0], obtaining

W (t)−W (t0) ≥ λ

4(p− 1)
(log |t| − log |t0|)

for any λ > λ0; then, for any λ, it holds

lim inf
t→−∞

W (t)

log |t|
≥ λ

4(p− 1)
.
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But we observe

lim inf
t→−∞

W (t)

log |t|
= lim inf

t→−∞

max(log H̃k

p
k + λr̃)

log |t|

= lim inf
t→−∞

max(log H̃k

p
k )

log |t|
≤ lim inf

t→−∞

logC|t|sp

log |t|
= sp

holds for arbitrary λ ≥ λ0 thanks to our assumptions. We obtain a contra-
diction by choosing λ > 4sp(p− 1).

We have demonstrated that the rescaled inverse speed H̃
p
k
k is uniformly

bounded from above; by uniform pinching, the rescaled system is uniformly
parabolic, as the derivative of H̃k with respect to the curvature is a polyno-
mial of homogeneity k − 1 in the λ̃i. Thus, we can apply parabolic theory
and conclude as in the case of contractive Gaussian Curvature Flow. We ob-
serve that the isoperimetric ratio of the rescaled solution Ik(Ω̃) is uniformly
bounded and thus the same holds for Ik(Ω) due to the scaling invariance of

this functional. For compactness, every sequence M̃tj , with tj → −∞ ad-

mits a subsequence converging to a limit M̃∞. Uniform C2 estimates hold, so
there exists an ε > 0 such that Ik(Ω̃t) and its derivatives are uniformly close

to their value on M̃−∞ for t ∈ [tj − ε, tj + ε]. The derivative d
dtI

k(Ω̃∞) must
then be zero, or it would be uniformly negative on a set of in�nite measure,
contradicting the boundedness of the ratio. Thus [Vn−kVn+1 − Vn−k+1Vn]
vanishes asymptotically, and we already remarked this implies the limit is a
sphere. Ik(Ωtj ) thus converges to the spherical value, assumed on the limit.
By monotonicity, the ratio must be constant and equal to its minimum on
the rescaled �ow, so M̃t (and Mt) is a sphere for every time.
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