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Introduction

Simulations of real world phenomena often require the solution of large scale
numerical problems and, equally often, the main computational tasks are
connected with computational problems involving large scale matrices.

The dimensions of the problems which have to be faced in this context,
typically consisting in the solution of systems of equations, make direct meth-
ods less affordable and hence iterative methods become more competitive.

Iterative methods could suffer of an extremely low rate of convergence
and/or high computational cost per step. For these reasons the employ-
ment of ad hoc efficiency improvement techniques becomes necessary. The
problem of devising a suitable efficiency improvement strategy for a given it-
erative method can be considered one of the core tasks in numerical analysis.
Taking a deeper look, one can consider these strategies as the instruments
which have made the simulation of real world phenomena effective and have
permitted to develop most of nowadays technologies.

The preconditioning of Krylov solvers for linear systems by means of
suitable approximations of the original matrix ([91, 84, 3, 2]) can be consid-
ered as one in the paradigm of efficiency improvement techniques and has
inspired much of the literature in the last fifty years. For this reason, the
problem of accurately approximating – in some sense – a given matrix with
a lower complexity one has become ubiquitous in numerical linear algebra.

Usually, the matrices of linear systems arising from applications exhibit
some kind of structure – more or less evident – which must be exploited in
order to produce the desired approximations. The task of producing accu-
rate and low complexity approximations corresponding to a given structure
has been the topic of an intense investigation in recent years and it has pro-
duced a constellation of elegant and useful mathematical results.

A class of remarkable results in this context are those connecting Toeplitz
structure – naturally related with shift-invariant phenomena – with Circu-
lant structure: under standard hypotheses, the operation of projecting a
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Toeplitz matrix onto the algebra of Circulant matrices produces a low com-
plexity approximation which is an ideal preconditioner for Krylov methods.
The projected matrix is able to catch the spectral distribution of the origi-
nal matrix very accurately when the dimension of the Toeplitz matrix grows.

More in detail (see [22] for an exhaustive survey on the topic), consider
f in the Banach space of all 2π periodic continuous real-valued functions on
[−π, π] equipped with the ‖ · ‖∞ norm, i.e.,

f(x) =
+∞∑

k=−∞
tke

ikx, tk =
1

2π

∫ π

−π
f(x)e−ikxdx,

and consider the associated Toeplitz matrix

[Tn(f)]ij = {ti−j} for i, j ∈ {0, . . . , n− 1}.

Define the algebra of Circulant matrices as

C := {Fd(z)FH , z ∈ Cn},

where d(z) := diag(zi, i = 1, . . . , n) and F is the Fourier matrix. The
Circulant algebra is a low complexity matrix algebra since the matrix vector
product Cx can be performed in O(n log(n)) FLoating point OPerations
(FLOPs) for all C ∈ C [84, 3, 22, 2]. Define, finally, CTn(f) as the projection
of Tn(f) onto C:

CTn(f) := argminX∈C‖X − Tn(f)‖F (1)

where ‖ · ‖F is the Frobenius norm. The following theorem holds:

Theorem 0.0.1. If f > 0, for all ε > 0 there exist M,N ∈ N such that, for
all n > N , at most M eigenvalues of the matrix C−1Tn(f)Tn(f)− I have larger

absolute value than ε, i.e., C−1Tn(f)Tn(f) have clustered spectra around 1.

In other words, under the hypothesis of Theorem 0.0.1, we can say that
the number of iterations needed to solve the positive definite linear sys-
tem Tn(f)x = b using the Conjugate Gradient method preconditioned with
CTn(f), is bounded from a constant independent from n, the size of the prob-
lem.

Projections onto Circulant and other low complexity matrix algebras
have been deeply investigated and profitably used in the last two decades
not only as preconditioners for linear systems solvers but even in connection
with regularization theory for ill–conditioned linear systems [62, 36, 49, 35].
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Observe that the operation of projecting a given matrix A ∈ Cn×n onto a
given algebra L of matrices simultaneously diagonalized by a fixed matrix U
unitary of low complexity, i.e., L := sdU = {Ud(z)UH , z ∈ Cn}, is defined
in general. It is then natural to try to understand which are the properties
inherited by the projected matrix LA, how these relate with the choice of
the subspace L – projections are well defined for arbitrary closed convex
subsets of a Hilbert space –, and in which applications the projected matrix
represents a satisfactory approximation of the original matrix.

More recently, projections onto low complexity matrix algebras have
been employed in connection with Quasi-Newton methods in solving the un-
constrained minimization problem for large scale smooth functions [40, 7].
The key observation, which justifies their use in this context, can be traced
in the remarkable fact that, in general, projecting a given Hermitian matrix
onto a generic sdU algebra, even if it does not provide an accurate approxi-
mation of its spectrum as in the Toeplitz–Circulant case, is able to produce,
in a precise sense, global spectral approximations. In most recent devel-
opments of the use of matrix projections in connection with minimization
algorithms [42, 27], it has been introduced the idea of adaptive low complex-
ity matrix algebras, i.e., low complexity spaces are constructed adaptively –
step by step – on the sequence of Hessian approximations produced by the
Quasi-Newton updating scheme in order to yield as more as possible accu-
rate approximations of these matrices and maintain a Quasi-Newton rate of
convergence.

The aim of this dissertation is to provide an up-to-date overview of tech-
niques and results connected with the general theory of projections onto
matrix algebras and of some applications where their use produces evident
computational benefits in gaining the efficiency of iterative methods. In
particular this dissertation collects and presents some new results obtained
by the author during his Ph.D. studies.

The Chapters 2,3,4 and 5 are extracted, sometimes verbatim, from the
following works:

• Chapter 2: Low complexity matrix projections preserving actions on
vectors. Cipolla S., Di Fiore C., Zellini P. , submitted for publication,
2017.

• Chapter 3: Regularizing properties of a class of matrices including
the Optimal and the Superoptimal preconditioners. Cipolla S., Di Fiore
C., Zellini P., submitted for publication, 2017.

• Chapter 4: Euler-Richardson method preconditioned by weakly stochas-
tic matrix algebras: a potential contribution to Pagerank computation.
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Cipolla S., Di Fiore C., Tudisco, F., Electronic Journal of Linear Al-
gebra, 2017(32): 254-272.

• Chapter 5: Updating Broyden Class-type descent directions by House-
holder adaptive transforms. Cipolla S., Di Fiore C., Zellini P., submit-
ted for publication, 2017.

More in detail the dissertation is structured as follows:

• Chapter 1: in the first part we review projection onto matrix spaces
from a general point of view and its properties. In the second part we
focus on sdU algebras and give a survey on some not so well known
results concerning the quality of the spectrum of the projected matrix
when regarded as a global approximant of the original one.

• Chapter 2: in this chapter we fully solve a problem originally intro-
duced in [27]. Given a symmetric positive definite matrix A ∈ Rn×n

and v ∈ Rn, find a low complexity unitary matrix U such that defin-
ing L = sdU , we have LAv = Av, where LA is the projection of A
onto L in Frobenius norm. Actually, by using the Arnoldi procedure
for Block-Krylov subspaces, we solve the above problem in the more
general case where v is replaced by a matrix V ∈ Rn×r. The solution
matrix U turns out to be real and can be written as the product of 2r
Householder matrices.

• Chapter 3: in this chapter given a positive definite matrix A ∈ Rn×n,
we introduce a class of matrices related to A obtained by suitably
combining projections of its powers onto algebras of matrices simul-
taneously diagonalized by a unitary transform. After a detailed theo-
retical study of some spectral properties of the matrices of this class
– which suggest their use as regularizing preconditioners –, we prove
that such matrices can be cheaply computed when the matrix A has
Toeplitz structure. We provide numerical evidence of the goodness of
the proposed approach in regularizing procedures.

• Chapter 4: in this chapter we address the efficient solution of M -
matrix linear system Mx = y, where M = I − τA, being A a column
stochastic matrix and τ a positive coefficient smaller than one. The
Pagerank centrality index on graphs is a relevant example where this
problem appears. Previous investigations have shown that the Euler-
Richardson (ER) method can be considered in order to approach the
Pagerank computation problem by means of preconditioning strate-
gies. In this work we observe indeed that the classic power method
can be embedded into the ER scheme, by means of a suitable simple
preconditioner. Therefore, we propose a new preconditioner based on
fast Householder transformations and the concept of low complexity
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weakly stochastic algebras, which gives rise to an effective alterna-
tive to the power method for large-scale sparse problems. We give
detailed mathematical reasonings for this choice and discuss the con-
vergence properties. Numerical tests performed on real-world datasets
are presented, showing the advantages given by the use of the proposed
Householder-Richardson method.

• Chapter 5: in this chapter we introduce and study a novel Quasi New-
ton minimization methods based on a Hessian approximation Broyden
Class-type updating scheme, where a suitable matrix B̃k is updated in-
stead of the current Hessian approximation Bk. We identify conditions
which imply the convergence of the algorithm and, if exact line search
is chosen, its quadratic termination. By a remarkable connection be-
tween the projection operation and Krylov spaces studied in Chapter
2, such conditions can be ensured using low complexity matrices B̃k
obtained projecting Bk onto algebras of matrices diagonalized by prod-
ucts of a constant number of Householder matrices adaptively chosen
step by step. Extended experimental tests show that the introduction
of the adaptive criterion considerably improves the performance of the
minimization scheme when compared with a non-adaptive choice and
confirm that the method could be particularly suitable to solve large
scale problems.
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Table of Notations

• “:=” means “by definition”.

• Cn×n, Rn×n are the set of n× n complex or real matrices.

• Cn, Rn are the set of length n complex or real vectors.

• In is the n× n identity matrix.

• If A ∈ Cn×n, tr (A) and det(A) are the trace and the determinant of
A.

• If A,B ∈ Cn×n, (A,B) := tr (AHB).

• If A ∈ Cn×n, ‖A‖F :=
√

tr (AHA) (Frobenius Norm).

• e is the vector of all ones.

• ej is the j-th vector of the canonical basis.

• If A ∈ Cn×n, we write A ≥ 0 (A > 0) if A is Hermitian positive
semi-definite (positive definite).

• If A ∈ Cn×n, we write A spd if A is real symmetric positive definite.

• If A ∈ Cn×n, λ(A) is the vector of the eigenvalues of A.

• λj(A) is the j-th entry of λ(A).

• λ(A) is the generic eigenvalue of A.

• If A is Hermitian positive definite, if not otherwise stated, the eigen-
values are ordered non-increasingly, i.e., λ1(A) ≥ · · · ≥ λn(A).

• If z ∈ Cn, d(z) is the diagonal matrix whose diagonal entries are the
elements of z.

• If A ∈ Cn×n, d(A) is the vector of the diagonal elements of A.

• If A ∈ Cn×n, χ(A) is the computational cost of the product A× vector.
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• If L ⊂ Cn×n, A ∈ Cn×n, we write LA for the projection of A onto L
in the Frobenius norm (if it is well defined).

• If U ∈ Cn×n unitary, we write sd U := {Ud(z)UH : z ∈ Cn}.

• If A ∈ Cn×n, µ2(A) is the condition number in the 2-norm of A.

• If A,B ∈ Cn×n, we write A ≈ B if they are similar.

• If A ∈ Cn×n, ρ(A) denotes the spectral radius of A.



Chapter 1

Matrix Projections: A
survey

The aim of this chapter is to survey important results concerning the prop-
erties that the projected matrices inherit from the original one.

1.1 Hilbert Spaces and Projections

In this section we recall some results concerning Hilbert spaces and projec-
tions. Even if in the following of this thesis we will use just spaces of finite
dimension – for which Pythagoras Theorem is fairly enough to speak about
projections –, we prefer to present here the theory in the greatest possible
generality in order to ease the work of the interested reader in generalizing
results contained in this section for spaces with infinitely many dimensions.
We borrow this section from [19] and refer there for the proofs of the results
stated in the following.

Theorem 1.1.1 (Hilbert’s Projection Theorem). Let H be a Hilbert space
with respect to a inner product ( , ) and K ⊂ H be a nonempty closed
convex set. Then for any x ∈ H there is a unique element Kx ∈ K, called
the orthogonal projection of x onto K, such that

‖x−Kx‖ = inf
y∈K
‖x− y‖, (1.1)

where ‖ ‖ is the norm induced by ( , ). Moreover, Kx is the unique solution
of the problem {

y ∈ K
(x− y, z − y) ≤ 0 for all z ∈ K.

(1.2)

Corollary 1.1.2. Let H be a Hilbert space and K ⊂ H a nonempty closed
convex set. Then

(x− y,Kx −Ky) ≥ ‖Kx −Ky‖2. (1.3)

13
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Corollary 1.1.3. Let M be a nonempty closed subspace of a Hilbert space
H. Then, for every x ∈ H, Mx is the unique solution of the problem{

y ∈M
(x− y, v) = 0 for all v ∈M.

(1.4)

Let us recall the following properties of Hilbert spaces:

• ifM is a subspace of H, then cl(M) is a subspace of H, where the clo-
sure is in the topology induced by the scalar product;

• for any subset A ⊂ H let us set

A⊥ = {x ∈ H s.t. (x, a) = 0 for all a ∈ A};

then, for any A,B ⊂ H we have

1. A⊥ is a closed subspace of H and cl(A)⊥ = A⊥;

2. A ⊂ B ⇒ B⊥ ⊂ A⊥;

3. (A ∪ B) = A⊥ ∩ B⊥;

Proposition 1.1.4. LetM be a nonempty closed subspace of a Hilbert space
H. Then the following statements hold:

1. For every x ∈ H there exists a unique pair (Mx,M⊥x ) ∈ M ×M⊥
such that x =Mx +M⊥x (Riesz Orthogonal Decomposition);

2. M(·) : H → H is linear and ‖Mx‖ ≤ ‖x‖ for all x ∈ H.

3. M(·) ◦M(·) =M(·), kerM(·) =M⊥(·), MH =M.

1.2 Projections onto general spaces of matrices

We borrow this section from [44] and refer there for the proofs of the results
stated in the following. Given a square matrix A ∈ Cn×n and L a linear
subspace of Cn×n of dimension m, we are interested in the elements of L
which best approximate A in some given norm. Consider the minimum
problem

min
X∈L
||X −A|| (1.5)

where || · || is a matrix norm in Cn×n. Let us remember that Cn×n with the
inner product

(A,A′) =
n∑

r,t=1

arta
′
rt = tr (AHA′), A,A′ ∈ Cn×n
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is a Hilbert space. This inner product induces the so-called Frobenius norm:

||A||2F =

n∑
r,t=1

artart =

n∑
r,t=1

|art|2 = tr (AHA).

Note that each linear subspace L is a closed subspace of Cn×n with respect
to || · ||F . We can hence apply results of Section 1.1.

Theorem 1.2.1. If the norm in (1.5) is the Frobenius norm, there exists a
unique matrix LA solving problem (1.5). The matrix LA, which is referred
to as the best least-squares (l.s. in short) fit to A from L, is equivalently
defined by the condition

(A− LA, X) = 0, ∀X ∈ L, (1.6)

i.e., LA is the unique element of L such that A− LA is orthogonal to L. If
L is spanned by the matrices Jk, k = 1, . . . ,m, then

LA =
m∑
k=1

[B−1L cL,A]kJk (1.7)

where BL is the m×m Hermitian positive definite matrix

[BL]ij =
n∑

r,t=1

[Ji]rt[Jj ]rt = (Ji, Jj), i, j = 1, . . . ,m (1.8)

and cL,A is the m× 1 vector whose entries are

[cL,A]i =
n∑

r,t=1

[Ji]rtart = (Ji, A), i = 1, . . . ,m (1.9)

(notice that BL and cL,A depend upon the choice of the Jk’s).

Proof. A direct proof for Theorem 1.2.1 is obtained by Corollary 1.1.3 and
using the identity:

||
m∑
k=1

zkJk −A||2F = zHBLz− 2 Re(zHcL,A) + ||A||2F , z ∈ Cm. (1.10)

In details, the previous identity with A = 0 and the linear independence of
the Jk imply that

zHBLz = ||
m∑
k=1

zkJk||2F > 0, ∀ z ∈ Cm, z 6= 0.
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Thus, BL is positive definite and the matrix

LA =

m∑
k=1

[B−1L cL,A]kJk

is well defined. Moreover, by (1.10), we have, for an “increment”
∑m

k=1 zkJk,

||LA+

m∑
k=1

zkJk−A||2F = ||LA−A||2F+zHBLz > ||LA−A||2F , ∀ z ∈ Cm, z 6= 0.

BL is usually known in literature as Gram matrix and its rank structure has
been investigated for fast algebras in [34].
We have, moreover, using Corollary 1.1.2 and Proposition 1.1.4, for every
subspace L ⊂ Cn×n and A,B ⊂ Cn×n, that

• tr (AHA) ≥ tr (LHALA) even if in general LHA /∈ L;

• tr ((A−B)H(LA − LB)) ≥ tr ((LA − LB)H(LA − LB)) ≥ 0.

Remark 1. If A is real and there exist real matrices Jk spanning L, then
also LA is real. In fact ReLA ∈ L and

||LA −A||2F = ||ReLA −A||2F + || ImLA||2F .

ImLA 6= 0 would imply that ReLA approximates A better than LA, which
is absurd. Observe, moreover, that A real ⇒ LA real is true in the more
general setting where L ⊆ L being L a subspace of Cn×n. The proof follows
by the uniqueness of the projection.

In the following, when we refer to minimum problem (1.5), we assume that
the norm is the Frobenius norm. The uniqueness result in Theorem 1.2.1
implies that possible symmetries of A are inherited by its best l.s. fit LA
under suitable assumptions on L, as is stated in the following lemma. The
symbol J is used to denote the reversion matrix [J ]ij = δi,n+1−j , i, j =
1, . . . , n.

Lemma 1.2.2. The following implications hold:

1. Assume XT ∈ L, ∀ X ∈ L (L is closed under transposition):
AT = ±A⇒ LTA = ±LA;

2. Assume JXTJ ∈ L, ∀ X ∈ L (L is closed under transposition
through the secondary diagonal):
AT = ±JAJ ⇒ LTA = ±JLAJ ;

3. Assume XH ∈ L, ∀ X ∈ L (L is closed under conjugate transposi-
tion):
AH = ±A⇒ LHA = ±LA;

Proof. see [44]
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1.3 Class V spaces and *-spaces

Definition 1. Define a space of class V, a space L of dimension n such
that there exists v ∈ Cn satisfying vTJk = eTk , k = 1, . . . , n, for n linearly
independent matrices Jk ∈ L.

As the Jk’s span L, the conditions vTJ ′k = eTk , J
′
k ∈ L, imply J ′k =

Jk, ∀ k, and the matrices Jk are uniquely determined. The matrix Lv(z) =∑n
k=1 zkJk for which

vTLv(z) = zT (1.11)

is referred to as the matrix of L whose v-row is zT . Notice that two matrices
of L with the same v row are equal and that Lv(ek) = Jk. If v is one of the
vectors of the canonical basis of Cn, say eh, then L is called an h-space.
In more intuitive terms, in a space of class V, the generic matrix is deter-
mined by a linear combination of its rows, whereas only one row (the h row)
is sufficient to define the generic matrix of a h-space.

Theorem 1.3.1. If L = {Md(z)M−1, z ∈ Cn} for a non-singular matrix
M , then L ∈ V. More specifically, for any fixed vector v such that [MTv]j 6=
0 ∀ j, the matrix Lv(z) is well defined and can be represented as:

Lv(z) = Md(MT z)d(MTv)−1M−1. (1.12)

Moreover, L is a h-space iff [M ]hj 6= 0, ∀ j.

Proof. The matrices

Jk := Md(MTek)d(MTv)−1M−1, k = 1, . . . , n

belong to L, satisfy the identities

vTJk = vTMd(MTek)d(MTv)−1M−1 =

eTkMd(MTv)d(MTv)−1M−1 = ek, k = 1, . . . , n,
(1.13)

and span L. For the last assertion notice that, if L is a h-space, then there
exists a zk such that eTk = eThMd(zk)M

−1, k = 1, . . . , n, and thus d(MTeh)
must be non-singular.

It is interesting to observe that the concept of non derogatority can be
characterized in terms of space of class V. Let {p(X)} denote the space of
polynomials p(X) in X with complex coefficients. The following theorem
holds:

Theorem 1.3.2. X is non-derogatory iff {p(X)} ∈ V.

Proof. see [44]
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Now a list of algebraic properties will be given in order to simplify the
analysis of the best least square fit LA to A from a space L of class V. In
the following let us denote by Pk the n × n matrices related to the Jk by
the identities eTi Pk = eTk Ji (or equivalently [Pk]i,j = [Ji]kj), 1 ≤ i, k ≤ n.
Observe that the matrices Pk can be written as

Pk =
n∑

m=1

emeTk Jm.

Lemma 1.3.3. Let L ∈ V. Let v ∈ Cn and Jk ∈ L be such that
vTJk = eTk , k = 1 . . . , n. Then:

1. JiX ∈ L, X ∈ Cn×n ⇒ JiX =
∑n

k=1[X]ikJk.

2. L is closed (under matrix multiplication) if and only if

JiJj =
n∑
k=1

[Jj ]ikJk, 1 ≤ i, j ≤ n, (1.14)

being the last condition equivalent to JiPk = PkJi 1 ≤ i, k ≤ n.

3. If L is closed, then Lv(Lv(z)T z′) = Lv(z′)Lv(z), z, z′ ∈ Cn.

4. If I ∈ L (Lv(v) = I) and L is closed, then X ∈ L is non-singular
iff ∃ z ∈ Cn such that zTX = vT ; in this case X−1 = Lv(z).

5. If L is commutative, then eTi Jj = eTj Ji (or [Jj ]ik = [Ji]jk), 1 ≤ i, j ≤
n, Ji = Pi, 1 ≤ i ≤ n, zTLv(z′) = z′TLv(z), z, z′ ∈ Cn, I ∈ L and
L is closed.

Proof. See [44]

Definition 2. Call *-space a subspace L of Cn×n spanned by Ji, i = 1, . . . , n,
linearly independent, subject to the following conditions:

I ∈ L and JHi Jj =

n∑
k=1

[Jk]ijJk, 1 ≤ i, j ≤ n. (1.15)

Lemma 1.3.4. Let L ∈ V (vTJk = eTk ). Then L is a *-space if:

1. L is commutative, JHi ∈ L, or/and

2. L is closed under matrix multiplication, JHi = αiJti , |αi| = 1,
t : {1, . . . , n} → {1, . . . , n} is a permutation, and I ∈ L.

Proof. See [44]
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Remark 2. Observe that if L is a sdU algebra (see Section 1.4), point 1.
of Lemma 1.3.4 holds; instead if L is a group algebra (see [45]) point 2. of
the same lemma holds.

The following proposition states some important properties of a *-space.
In particular, a *-space is a space of class V.

Lemma 1.3.5. Let L be a *-space. Then

1. vTJk = eTk , 1 ≤ k ≤ n, where v = [v1, . . . , vn]T is such that I =∑n
k=1 vkJk, thus L ∈ V.

2. L is closed under conjugate transposition (JHi ∈ L).

3. L is closed under matrix multiplication.

Proof. See [44]

Lemma 1.3.6. Let L be a *-space. Then BL ∈ L (BL defined in Theorem
1.2.1), in fact

BL =
n∑
k=1

PkP
H
k =

n∑
k=1

trJkPk =
n∑
k=1

trJkJk. (1.16)

Moreover, if LA is the best l.s. to A ∈ Cn×n from L, then

LA = Lv(B−1L cL,A) = Lv(cL,A)B
−1
L = B

−1
L Lv(cL,A). (1.17)

Proof. See [44]

Lemma 1.3.7. Let L satisfy Definition 2. Then ∀ z ∈ Cn,

zHLv(cL,A)z =
n∑
k=1

[PHk z]HA[PHk z]. (1.18)

Proof. See [44]

We can finally state the following theorem which gives precise informa-
tion about the spectrum of the projected matrix. In the following Theorem
1.3.8, for a real matrix X, Xs will denote the matrix 1

2(X + XT ), i.e., the
symmetric part of X.

Theorem 1.3.8. Let L be a subspace of Cn×n satisfying the conditions in
Definition 2. Let A ∈ Cn×n and LA be the best least squares fit to A from
L.

1. If A = AH , then LA = LHA and minλ(A) ≤ λ(LA) ≤ maxλ(A). As a
consequence LA is positive definite if A is positive definite.
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2. If A is real, then minλ(As) ≤ Re{λ}(LA) ≤ maxλ(As). Moreover, if
the Jk in Definition 2 are real (in this case LA is real), then (LA)s is
positive definite if As is positive definite.

Proof. Let M be a Hermitian matrix such that M2 = B
−1
L and consider the

matrix MLv(cL,A)M. As a consequence of 1.17, MLv(cL,A)M is similar to
LA. Then λ(LA) is an eigenvalue of MLv(cL,A)M , i.e. ∃ x ∈ Cn with
||x|| = 1 such that λ(LA) = xHMLv(cL,A)Mx; thus by Lemma 1.3.7

λ(LA) =

n∑
k=1

xHk Axk, xk = PHk Mx. (1.19)

Notice that the first identity in (1.16) implies

n∑
k=1

xHk xk = 1 =
n∑
k=1

[(Re xk)
T (Re xk) + (Im xk)

T (Im xk)].

So inequalities in points 1. and 2. of Theorem 1.3.8 hold. Moreover, if
A = AH , then by Lemma 1.2.2, LA = LHA .
Now assume that A and the Jk are real and that zTAsz > 0 ∀ z ∈ Rn, z 6=
0. Then the matrix M can be chosen real and, by Lemma 1.3.7, we have

zTMLv(cL,A)Mz =

n∑
k=1

[P Tk Mz]TA[P Tk Mz], ∀ z ∈ Rn.

This identity implies that the matrix (LA)s is positive definite because, by
(1.17), (LA)s = M(MLv(cL,A)M)sM

−1.

1.4 An insight of projection onto sdU algebras

1.4.1 Majorization and doubly stochastic matrices

We borrow this section from [4] and refer there for the proofs of the results
stated in the following. Let us start giving some definitions.

Definition 3. Let x, y ∈ Rn. We say that y “majorizes” x and we write
x ≺ y if

1. x1 ≥ x2 ≥ · · · ≥ xn , y1 ≥ y2 ≥ · · · ≥ yn;

2.
∑k

i=1 xi ≤
∑k

i=1 yi for all 1 ≤ k ≤ n;

3.
∑n

i=1 xi =
∑n

i=1 yi.

Definition 4. We will say that S ∈ Rn×n is “ doubly stochastic” if

1. Sij ≥ 0 for all i, j ∈ {1, . . . , n};
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2. Se = e and eTS = eT being e = (1, . . . , 1)T .

Definition 5. T : Rn → Rn is a T -transform if there exists 0 ≤ t ≤ 1 and
j, k ∈ {1, . . . , n} such that

Ty = (y1, . . . yj−1, tyj+(1−t)yk, yj+1, . . . , yk−1, (1−t)yj+tyk, yk+1, . . . , yn)T .

Observe that T = tI + (1 − t)Qjk, being Qjk the permutation matrix which
permutes the components j and k of a given vector. Observe, moreover, that
if T is a T -transform, then it is a doubly stochastic matrix.

Theorem 1.4.1. S ∈ Rn×n is doubly stochastic if and only if Sy ≺ y for
all y ∈ Rn.

Proof. Let us suppose that S is doubly stochastic. Define x := Sy. Let
us suppose, moreover, y1 ≥ · · · ≥ yn and x1 ≥ · · · ≥ xn, otherwise we
can consider P1y, P2x and P2SP

−1
1 (being P1 and P2 permutation matrices

chosen such that P1x and P2y have non increasing components). Let us
define, for any fixed k, tj :=

∑k
i=1 sij ∈ [0, 1]. Observe that

∑n
j=1 tj =∑n

j=1

∑k
i=1 sij = k since S is doubly stochastic. We have

k∑
i=1

xi =

k∑
i=1

n∑
j=1

sijyj =

n∑
j=1

tjyj

and thus

k∑
j=1

xj −
k∑
j=1

yj =

n∑
j=1

tjyj −
k∑
j=1

yj =

n∑
j=1

tjyj −
k∑
j=1

yj + yk(k −
n∑
j=1

tj) =

k∑
j=1

(yj − yk)(tj − 1) +

n∑
k+1

tj(yj − yk) ≤ 0,

i.e.,
∑k

i=1 xi ≤
∑k

i=1 yi for all 1 ≤ k ≤ n. Moreover, being eTx = eTSy we
have x ≺ y.
For the reverse implication let us suppose Sy ≺ y for all y ∈ Rn. Since
Sej ≺ ej for all j = {1, . . . , n} we have sij ≥ 0 for all i, j ∈ {1, . . . , n}
and

∑n
i=1 sij = 1 for all j ∈ {1, . . . , n}. Moreover, being Se ≺ e we have∑n

i=1(Se)i = 1 and 0 ≤ (Se)i ≤ 1 for all i ∈ {1, . . . , n}, i.e., Se = e.

Lemma 1.4.2. If x ≺ y, then x can be obtained from y by successive
applications of a finite number of T -transforms.

Proof. By induction on the dimension. We assume that x 6= y. If n = 2 we
have x1 ≤ y1 and x1 + x2 = y1 + y2, thus y1 ≥ x1 ≥ x2 ≥ y2. Therefore,
there exists t ∈ [0, 1] s.t. x1 = ty1 + (1− t)y2 and hence x2 = (1− t)y1 + ty2,
i.e., the thesis holds. Let us suppose that the thesis holds for n − 1. Since
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x ≺ y we have xn ≥ yn and hence y1 ≥ x1 ≥ · · · ≥ xn ≥ yn. Choose k such
that yk ≤ x1 ≤ yk−1 and write x1 = ty1 +(1− t)yk for some t ∈ [0, 1]. Let us
define moreover T1 := tI+(1− t)Q1k, being Q1k the matrix which permutes
the components 1 and k of any given vector, and

x′ := (x2, . . . , xn), y′ := (y2, . . . , yk−1, (1− t)y1 + tyk, yk+1, . . . , yn).

Since y2 ≥ · · · ≥ yk−1 ≥ x2 ≥ · · · ≥ xk−1 ≥ xk ≥ · · · ≥ xn, for every
2 ≤ m ≤ k−1, it holds

∑m
j=2 xj ≤

∑m
j=2 yj . For k ≤ m ≤ n we have instead

m∑
j=2

yj =
k−1∑
j=2

yj + [(1− t)y1 + tyk] +
m∑

j=k+1

yj =

m∑
j=1

yj − x1 ≥
m∑
j=1

xj − x1 =

m∑
j=2

xj ,

being the last inequality an equality when m = n since x ≺ y. We
proved x′ ≺ y′. By induction hypothesis there exists a finite number of
T -transformations T̃2, . . . , T̃r ∈ R(n−1)×(n−1) such that x′ = (T̃r · · · T̃2)y′.
Defining

Ti :=


1 0 · · · 0
0
... T̃i
0


for every i = 2, . . . , r, we have

(Tr · · ·T1)y = (T̃r · · · T̃2)(x1,y′)T = (x1,x
′)T = x.

Corollary 1.4.3. If x ≺ y, then there exists a doubly stochastic matrix S
such that x = Sy for some doubly stochastic matrix S.

Proof. By Lemma 1.4.2 observing that a finite product of T -transforms is
doubly stochastic.

Lemma 1.4.4. If x ≺ y, then x is in the convex hull of all vectors obtained
permuting the coordinates of y.

Proof. By Lemma 1.4.2 observing that the product of finite number of T -
transforms is a convex combination of permutation matrices.

As a consequence of the above results, we obtain Theorem 1.4.5 here
below:

Theorem 1.4.5. The following conditions are equivalent:
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1. x ≺ y;

2. x is obtained from y by a finite number of T -transforms;

3. x is in the convex hull of all vectors obtained permuting the coordinates
of y;

4. x = Sy for some doubly stochastic matrix S.

Theorem 1.4.6 (Schur’s Theorem). If B ∈ Cn×n is a Hermitian matrix,
then, defining b ∈ Rn as the vector of diagonal elements of B ordered in non
increasing order, we have b ≺ λ(B).

Proof. By spectral theorem we have B = UDλU
H where U = (uij)i,j∈{1,...,n}

is a unitary matrix. For every i ∈ {1, . . . , n} we have

bii = eTi Ud(λ)UHei =

n∑
j=1

uijuijλj =
n∑
j=1

pijλj ,

being P = (pij)i,j∈{1,...,n} := U ◦U a doubly stochastic matrix, i.e., b = Pλ.
Thesis follows from Theorem 1.4.5.

Theorem 1.4.7 (Cauchy Interlacing Property, [63]). If B ∈ Cn×n is a
Hermitian matrix partitioned as follows:

B =

[
B11 C
CH B22

]
where B11 ∈ Ck×k and B22 ∈ C(n−k)×(n−k), then we have

λi+n−k(B) ≤ λi(B11) ≤ λi(B) for all i ∈ {1, . . . , k}. (1.20)

Proof. Consider x1, . . . ,xn ∈ Cn an orthonormal set of eigenvectors of B
and ŷ1, . . . , ŷk ∈ Ck an orthonormal set of eigenvectors of B11. For ev-

ery j ∈ {1, . . . , k} define yj := [ŷj ,0]T ∈ Cn. Define, moreover, S
(i)
1 =

span{y1, . . . ,yi} and S
(i)
2 = span{xi, . . . ,xn}. Since dim(S

(i)
1 )+dim(S

(i)
2 ) =

i + (n − i + 1) there exists a unitary vector y 6= 0 ∈ S
(i)
1

⋂
S
(i)
2 of the

form y = [ŷ,0]T where ŷ ∈ span{ŷ1, . . . , ŷi}. Since for all unitary v̂ ∈
span{ŷ1, . . . , ŷi} it holds λi(B11) ≤ v̂HB11v̂ ≤ λ1(B11) and
for all unitary v ∈ span{xi, . . . ,xn} it holds λn(B) ≤ vHBv ≤ λi(B), we
have

λi(B11) ≤ ŷTB11ŷ = yTBy ≤ λi(B). (1.21)

Analogously defining S
(i)
1 = span{yi, . . . ,yk} and S

(i)
2 = span{x1, . . . ,xi+n−k}

we have
λi(B11) ≥ ŷTB11ŷ = yTBy ≥ λi+n−k(B). (1.22)
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Theorem 1.4.8. Let us suppose x ≺ y. Then for any convex function
φ : Rn → Rn it holds

∑n
i=i φ(xi) ≤

∑n
i=i φ(yi).

Proof. Since x ≺ y, using Theorem 1.4.5 there exists a doubly stochastic
matrix S s.t. x = Sy. We have that

n∑
i=1

φ(xi) ≤
n∑
i=1

n∑
j=1

sijφ(yj) =

n∑
j=1

φ(yj).

Observe that even the reverse implication holds. See [4] for more details.

1.4.2 Projection onto sdU algebras

In this section we will summarize some results connected with the projection
of Hermitian matrices onto sdU spaces.
Define, for a given unitary matrix U ∈ Cn×n, the associated sdU algebra as

L := sdU := {Ud(z)UH s.t. z ∈ Cn}. (1.23)

As we observed in Remark 2, an sdU algebra is a ∗-space, hence results of
Section 1.3 can be applied. Before continuing, observe that one can obtain
points 1. and 2. in Theorem 1.3.8, in the more specific case when L is a
sdU algebra, using the identities uHk LAuk = uHk Auk, uk = Uek. These
identities follow from the equality

LA = Ud([UHAU ]kk, k = 1, . . . , n)UH (1.24)

found as a simple consequence of the fact that || · ||F is unitary invariant. In
particular the following theorem holds:

Theorem 1.4.9. Let L = sdU and let B ∈ Cn×n. Then

1. LB = Ud(zB)UH where [zB]i = [UHBU ]ii, i = 1, . . . , n; in particular
zxyT = d(UHx)UTy, where x, y ∈ Cn.

2. If B ∈ Rn×n then LB ∈ Rn×n provided that L is spanned by real
matrices, or more generally, whenever the conjugate of the space L is
included in L, i.e L ⊂ L (L is closed under conjugation).

3. If B = B∗, then LB = (LB)∗ and minλ(B) ≤ λ(LB) ≤ maxλ(B)
where λ(X) is the spectrum of X. Therefore LB is Hermitian positive
definite whenever B is Hermitian positive definite.

4. tr (LB) = tr (B);

5. if B is Hermitian, then λ(LB) ≺ λ(B);

6. ([103]) if B is Hermitian and φ is convex, then
∑n

i=1 φ(λi(LB)) ≤∑n
i=1 φ(λi(B));
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7. ([103]) if B is Hermitian and φ is convex monotonic non decreasing,
then

∑k
i=1 φ(λi(LB)) ≤

∑k
i=1 φ(λi(B)) for all k ∈ {1, . . . , n};

8. If B Hermitian positive definite, then det(B) ≤ det(LB) where the
equality holds iff U diagonalizes B.

9. ([84]) Define theK-condition number forB asK(B) = ( tr (B)/n)n/(det(B)).
Then

K(L−1B B) = min
X∈L, X Hermitian positive definite

K(X−1B).

Proof. 1. Observe that since the Frobenius norm is unitary invariant we
have

min
X∈L
‖X −B‖F = min

z∈Cn
‖d(z)− UHBU‖F .

The second part follows from direct computation.
2. and 3. see Remark 1 and Theorem 1.3.8.
4. Using 1. and observing that λ(LB) is obtained arranging in a non
increasing order the set

{(UHBU)ii for i = 1, . . . , n}.

5. Define the matrix B̃ := UHBU . From Theorem 1.4.6 we have b̃ ≺ λ(B)
where b̃ are the diagonal elements of B̃ arranged in non increasing order.
Thesis follows using point 2., i.e., λ(LB) = b̃.

6. From Theorem 1.4.8 using point 3.

7. Define Uk as the matrix obtained by by the first k columns of U . Define

B̃k := UHk BUk ∈ Ck×k

and b̃k as the diagonal elements of B̃k arranged in non increasing order. We
have b̃k ≺ λ(Bk) from Theorem 1.4.6, hence, using Theorem 1.4.8, it holds

k∑
i=1

φ((b̃k)i) ≤
k∑
i=1

φ(λi(Bk)) ≤
k∑
i=1

φ(λi(B)),

where the last inequality follows from Theorem 1.4.7 and from the mono-
tonicity of φ.

8. Use point 1. and the Hadamard’s inequality for the determinant of
UHBU :

det(B) = det
(
UHBU

)
≤

n∏
i=1

(UHBU)ii = det(LB). (1.25)
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Assume that in the above equation (1.25) the equality holds and assume
by contradiction that (UHBU)ts 6= 0 for a pair of indexes t, s ∈ {1, . . . , n},
where t 6= s. Assume, moreover, without loss of generality that (UHBU)ss ≥
(UHBU)tt. Then there exists a Givens transformation Q s.t.

((UQ)HBUQ)ii =


(UHBU)ii for i 6= t, s;

(UHBU)ss + δ;

(UHBU)tt − δ;
(1.26)

with

δ =

√
|(UHBU)ts|2 +

((UHBU)ss − (UHBU)tt
2

)2
−|(U

HBU)ss − (UHBU)tt|
2

> 0,

obtained from the equation ((UQ)HBUQ)st = 0. But then we have

det(B) ≤
n∏
i=1

((UQ)HBUQ)ii <

n∏
i=1

(UHBU)ii,

which is a contradiction.

9.

K(X−1B) = K(d(z)−1UHBU) =
(∑n

i=1(U
HBU)ii/zi
n

)n∏n
i=1 zi

det(B)
.

Thanks to the inequality between the arithmetic and geometric means (which

says that for any non-negative real numbers {xi}ni=1 it holds
(∑n

i=1 xi
n

)n
≥∏n

i=1 xi and equality holds iff x1 = · · · = xn), we have

(∑n
i=1(U

HBU)ii/zi
n

)n n∏
i=1

zi ≥
n∏
i=1

(UHBU)ii

⇔ K(L−1B B) ≥
∏n
i=1(U

HBU)ii
det(B)

.

(1.27)

In (1.27) equality holds iff (UHBU)11/z1 = · · · = (UHBU)nn/zn, condition
satisfied by z = [. . . , (UHBU)ii, . . . ]

T .



Chapter 2

Low complexity matrix
projections preserving
actions on vectors

2.1 Introduction

The projection onto algebras of matrices simultaneously diagonalized by
unitary transforms U

L := sd U = {Ud(z)UH : z ∈ Cn},

has been used profitably in the last twenty or thirty years as a core instru-
ment in order to speed up, through preconditioning techniques, iterative
methods for linear systems Ax = b where A is a symmetric positive definite
matrix (spd for short) [44, 102, 37, 96], [66, Chap. 5]. The main idea con-
nected with these spaces could be traced in the key observation that very
often the matrices corresponding to linear systems arising from applications
exhibit some special structures and thus can be naturally approximated in
low complexity spaces L of matrices of the form sdU . By a low complexity
space L we mean a space such that for any A ∈ L the cost of a matrix vector
product Ax for any x ∈ Rn and the number of memory allocations sufficient
to store A are much less than n2. In particular LA, the projection of A onto
such L = sd U , has revealed to produce approximations of the spectrum
of A good enough (see in particular [102, 101]) to speed up preconditioned
iterative solvers of Ax = b without increasing the time per step and the
space complexity.

Recently [40, 7, 43, 39], projection onto low complexity matrix algebras
have been also used in order to reduce the computational cost of BFGS
method [82] for the unconstrained minimization of a function f : Rn → R.
In these low complexity BFGS-type methods, a sequence of spd matrices
{Bk}k∈N satisfying the Secant-Equation (Bksk−1 = yk−1, where sk−1 =

27
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xk − xk−1, yk−1 = ∇f(xk) − ∇f(xk−1)) is iteratively generated defin-
ing Bk as a rank-2 correction of LBk−1

(instead of Bk−1) and the line
search is performed along the corresponding sequence of descent directions
dk = −B−1k ∇f(xk). In earlier papers on this subject, the successful use
of matrix algebras sd U tool was mostly connected with the fact that the
approximations {LBk}k∈N of the spd matrices {Bk}k∈N generated by BFGS-
type scheme, preserve some global information about the spectrum of Bk (i.e.
trace and determinant, see Theorem 1.4.9). This fact permits to establish
global convergence results for a corresponding Non Secant class of low com-
plexity BFGS-type algorithms where the descent directions are of the form
dk = −L−1Bk∇f(xk). Notice that in such papers, the matrix algebra L (and
hence the unitary matrix U) was fixed during all the execution of the al-
gorithm. More recently, in [41, 39] it has been pointed out, accordingly to
some experimental evidences, that in order to improve the efficiency in low
complexity BFGS-type methods, an adaptive choice of the matrix algebra L
can be exploited, i.e. at each step a matrix algebra L(k) = sdUk (and hence
a unitary matrix Uk) can be produced in order to guarantee that the matrix

L(k)Bk retains as much as possible information from Bk. Moreover, in [27],
it has been observed that the possibility of changing the algebra L at each
step can be used in order to guarantee the global convergence of Secant low
complexity BFGS-type methods. This can be achieved by requiring, apart
the global approximation of the spectrum of Bk by LBk , the coincidence
of LBk and Bk along the given direction sk. We are able to obtain such a
point-wise property only by changing the space L at each step. To this aim
the following problem was introduced in [27] :

Problem 1. Given a spd matrix B ∈ Rn×n and a vector v ∈ Rn, find a low
complexity unitary matrix L such that defining L = sdL, we have

LBv = Bv. (2.1)

In this paper we obtain a general result (Theorem 2.3.1) which in particular
gives a full solution of Problem 1 and of its multi-direction generalization :

Problem 2. Given a symmetric matrix B ∈ Rn×n and V ∈ Rn×r such
that V TV = Ir, find a low complexity unitary matrix L such that, defining
L = sdL, we have

LBV = BV. (2.2)

Observe that the cost of the construction of the unitary low complexity
matrix L and of the projection LB (where L = sdL) in Problem 2, is justified
by the possibility to exploit LB as a low complexity approximation of B.
This approximation should be able to capture in LB two characteristics of
the operator B: its spectral information and its action along a fixed set of
directions defined by V . The proof of the main result in Section 2.3, which
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gives a solution of Problem 2, uses the fact that the Arnoldi method for
finding an orthonormal basis of a Krylov subspace permits to highlight the
essential informational content of the action of B on a fixed set of directions.
In this paper we show how this highlighting leads to the definition of a special
low complexity space L = sdL such that the projection ofB onto L allows us
to gain the two required characteristics. A key instrument to construct the
unitary L is given by a remarkable new result concerning the Householder
matrices (see Section 2.2.1). More precisely L turns out to be the product
of a number of Householder matrices depending on the dimension of V .

Even if Problem 1 has been introduced in connection with an optimiza-
tion framework (see [27, 30] and Chapter 5), where the aim was to define
new efficient minimization procedures, we believe that the general results
presented in this chapter have their own theoretical interest and can have
applications in other fields of computational mathematics. For the sake of
completeness let us point out that a problem similar to Problem 2 has been
tackled in [106, 105, 79, 52] in relation to preconditioning problems, but
using different techniques.

2.2 Preliminaries: Block-Arnoldi

Given A ∈ Rn×n, V1 ∈ Rn×r such that V T
1 V1 = Ir consider the following

generalized Krylov space

Km(A, V1) := Km(A, V1e1) + · · ·+Km(A, V1er)

where Km(A,v) = span{v, Av, . . . , Am−1v} denotes the usual Krylov space
of order m. Consider, moreover, the following Block-Arnoldi procedure :

Input: A ∈ Rn×n, V1 ∈ Rn×r

1 for j = 1, . . . ,m do
2 Wj := AVj ;
3 for i = 1, . . . , j do
4 Hij := V T

i Wj ;
5 Wj := Wj − ViHij ;

6 end
7 Wj := QjRj (Qj orthogonal , Rj upper triangular) ;
8 Set Vj+1 := Qj and Hj+1,j := Rj ;

9 end
Algorithm 1: Block-Arnoldi

The following Lemma 2.2 (see [92, 93, 61]) could be considered as a con-
densed summary of basic properties on the output of the Block-Arnoldi
method.

Lemma 2.2.1. Let us define

Um := [V1, . . . , Vm],
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Hm := (Hij)1≤i,j≤m, Hij := 0, i > j + 1

constructed considering the output of Algorithm 1, and let Em be the mr× r
matrix whose columns coincide with the last r columns of Imr. If none of the
upper triangular matrices {Hj+1,j}j=1,...,m−1 are singular, then the columns
of Um form an orthonormal basis of Km(A, V1). Moreover, the following
relations hold:

AUm = UmHm + Vm+1Hm+1,mE
T
m; (2.3)

Hm = UTmAUm. (2.4)

In particular, about the output of the Block-Arnoldi method, a natural block
generalization of a well known polynomial vector identity (see Lemma 3.1
in [90]), is stated in the following Lemma 2.3. Note that such block identity
(2.5) is related with the approximation of the action on V1 of the exponential
of A [76].

Lemma 2.2.2. Let Um and Hm be defined as in Lemma 2.2.1. Then for
any polynomial pj of degree j ≤ m− 1 the following equality holds:

pj(A)V1 = Umpj(Hm)

[
Ir

0(m−1)r,r

]
. (2.5)

Proof. Analogous of that of Lemma 3.1 in [90], defining the orthogonal pro-
jector onto Km(A, V1) as πm = UmU

T
m .

Before concluding, as already pointed out in the Introduction, observe that
thanks to Lemma 2.2.2 the Block-Arnoldi procedure represents a computa-
tional strategy for compressing the action of the matrix A on V1 in a small
number of parameters whenever r is small. These parameters, suitably re-
arranged, will lead to an ad-hoc low complexity space L = sdL where the
projection LA inherits the informational content related to the action A on
V1 (see Theorem 2.3.1).

2.2.1 Householder Matrices

Given a vector p 6= 0 ∈ Rn define

H(p) := In −
2

‖p‖2
ppT .

By extension, if p = 0, we will write H(p) to denote the identity matrix.

Remark 3. Consider two vectors v, z ∈ Rn. From direct computation one
can check that defining p = v − ‖v‖‖z‖z with z 6= 0, we have

H(p)v =
‖v‖
‖z‖

z.
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The following Lemma 2.2.3 is a generalization of an analogous in [41].

Lemma 2.2.3. Consider W = [w1| . . . |ws] ∈ Rn×s and V = [v1| . . . |vs] ∈
Rn×s such that s ≤ n, W TW = V TV . Then there exist h1, . . . ,hs ∈ Rn

and an orthogonal matrix U = H(hs) · · ·H(h1) product of s Householder
matrices such that

Uwi = vi for all i ∈ {1, . . . , s}.

If s = n we have hn = 0, i.e. H(hn) = I, or H(hn) = H(vn).

Proof. By induction on s.
For s = 1 use Remark 3. Assuming the thesis true for s− 1, let us prove it
for s. Set Ui = H(qi)Q where Q is an orthogonal matrix and

qi := Qwi − vi for i ∈ {1, . . . , s}.

Since Uiwi = vi for i ∈ {1, . . . , s} for any choice of Q, thesis will be proved
if there exists an orthogonal matrix Q such that q1 = · · · = qs =: q, i.e.

Q(w1 −wi) = v1 − vi for i ∈ {2, . . . , s}.

In fact in this case U1 = · · · = Us would be the required matrix U . Thesis
follows from inductive hypothesis defining

W1 = [w1 −w2| . . . |w1 −ws] ∈ Rn×(s−1),

V1 = [v1 − v2| . . . |v1 − vs] ∈ Rn×(s−1)

and observing that W T
1 W1 = V T

1 V1. Note that the vector q can be chosen
such that ‖q‖22 = 2.
For the second part of the thesis observe that if Q = H(hn−1) · · ·H(h1) is
the orthogonal matrix such that Qwi = vi for i = 1, · · · , n − 1 we have
Qwn = kvn, k = ±1 (V is an orthonormal basis of Rn and Q orthogonal).
If k = −1 it is enough to consider U = H(vn)Q.

Two important observations are in order here:

1. Lemma 2.2.3 can be used to produce an orthogonal matrix U =
H(hs) · · ·H(h1) having among its columns s given orthonormal vectors
vi for i ∈ {1, . . . , s} (just take wi = eki) and the proof of Lemma 2.2.3
represents a concrete computational procedure of cost O(s(s−1)n) (see
Lemma 2.2.5) for finding the vectors h1, . . . ,hs. In particular we have
a procedure (alternative to the classic one obtained through triangu-
lar decomposition by Householder reflections) of cost O(n3) for finding
the vectors h1, . . . ,hn such that

V = H(hn) · · ·H(h1),

where V is any orthogonal fixed matrix.
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2. Matrix algebras of the form L = sdU where U = H(hs) · · ·H(h1)
is an orthogonal matrix and s << n, are low complexity matrix al-
gebras since the structure of U can be exploited in order to perform
the matrix-vector product Ud(z)UTv in O(sn) FLOPs (whenever the
vector z is given). See also Lemma 2.2.4 below.

Lemma 2.2.4. Consider an orthogonal matrix U of the form U = H(hs) · · ·H(h1),
then for any vector v ∈ Rn the matrix vector product Uv can be written as

Uv = v −
s∑
i=1

hTi qi−1hi, where

q0 = v and qi := qi−1 − hTi qi−1hi = v −
i∑

j=1

hTj qj−1hj .

(2.6)

Proof. Let us preliminarily observe that formula (2.6) for the qi can be easily
proved. The thesis holds for s = 1. Assuming the thesis true for s− 1, let
us prove it for s. Consider U = H(hs) · · ·H(h1). From inductive hypothesis
we have

H(hs−1) · · ·H(h1)v = v −
s−1∑
i=1

hTi qi−1hi

from which we obtain

H(hs)(v −
s−1∑
i=1

hTi qi−1hi) = v −
s−1∑
i=1

hTi qi−1hi − hTs (v −
s−1∑
i=1

hTi qi−1hi)hs.

The result follows observing that

v −
s−1∑
i=1

hTi qi−1hi = v −
s−2∑
i=1

hTi qi−1hi − hTs−1qs−2hs−1 = qs−1.

Remark 4. Evidently once the coefficients hTi qi−1 for i ∈ {1, . . . , s} are
known O(sn) multiplications are sufficient to compute the matrix vector
product Uv in (2.6). Observe, moreover, that the coefficients hTi qi−1 for i ∈
{1, . . . , s} in (2.6) can be computed in O(s2) once the quantities

hTi v for i ∈ {1, . . . , s}, and hTi hj for i 6= j ∈ {1, . . . , s}

are known (this last observation will be useful in Proposition 2.3.2 ).

A non recursive version of Lemma 2.2.3, more implementation-oriented, is
stated in the following
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Lemma 2.2.5. Consider W = [w1| . . . |ws] ∈ Rn×s and V = [v1| . . . |vs] ∈
Rn×s such that s ≤ n, W TW = V TV . Then there exist h1, . . . ,hs ∈ Rn

and an orthogonal matrix U = H(hs) · · ·H(h1) product of s Householder
matrices such that

Uwi = vi for all i ∈ {1, . . . , s}.

The vectors hi for i ∈ {1, . . . , s} can be obtained by setting :

hi = (−1)s−i[H(hi−1) · · ·H(h1)(ws−i+1 −ws−i)− (vs−i+1 − vs−i)],

hi := (
√

2/‖hi‖2)hi
(2.7)

(where we set w0 = v0 = 0). The computational cost is :

[s(s−1)n+s(2n+1)] mult. +[(s(s+2)−2)n+s(n−1)] add. +s sq. roots.

Observe that when wi = eki for i = 1, . . . , s, it is possible to save (s −
1)n mult. and (3s− 2)n add..

2.3 Main Result

Theorem 2.3.1. Let A ∈ Rn×n be a symmetric matrix. For every fixed
integers m and r with 1 ≤ m ≤ n, mr ≤ n and for any V1 ∈ Rn×r such
that V T

1 V1 = Ir, there exists an orthogonal matrix L ∈ Rn×n such that if
L = sdL and LA is the best approximation of A in L, then

pj(LA)V1 = pj(A)V1 (2.8)

for any polynomial pj of degree j ≤ m− 1.

Proof. Consider the matrices Um and Hm constructed from Algorithm 1
applied to Km(A, V1) (observe that the first r columns of Um form V1).
From Lemma 2.2.2 with j = 1 we have

AV1 = UmHmU
T
mUm

[
Ir

0(m−1)r,r

]
.

From (2.4), the last equality becomes

AV1 = UmQQ
TUTmAUmQQ

TUTmV1 (2.9)

for any orthogonal matrix Q ∈ Rmr×mr. In particular, being UTmAUm sym-
metric, in (2.9) we can choose Q as the orthogonal matrix which diagonalizes
UTmAUm, i.e.

AV1 = UmQ


x1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 xmr

QTUTmV1, (2.10)
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where xi = eTi Q
TUTmAUmQei for i = 1, . . . ,mr. Consider now the matrix

L = [UmQe1| . . . |UmQemr|gmr+1| . . . |gn]

where {grm+1, . . . ,gn} is an orthonormal basis for

< UmQe1, . . . , UmQemr >
⊥ = < Ume1, . . . , Umemr >

⊥, (2.11)

set L = sdL and consider LA the best approximation of A in L. In order
to prove that LA satisfies (2.8) it is sufficient to prove that

LjAV1 = AjV1 for 0 ≤ j ≤ m− 1. (2.12)

Of course, (2.12) is true for j = 0. The equality LAV1 = AV1 follows
observing that using the first formula in Theorem 1.4.9 we have

LAV1 = (
n∑
i

(LTAL)iiLei(Lei)
T )V1

= (
mr∑
i

xi(UmQei)(UmQei)
T )V1 = AV1

(2.13)

where in the second equality we take into account that gTi V1 = 0T for
i ∈ {mr + 1, . . . , n} (see (2.11) and (2.10)). Suppose now (2.12) true for
all j ≤ m− 2 and let us prove it for j = m− 1. From inductive hypothesis
and Lemma 2.2.2 we have

Lm−1A V1 = LALm−2A V1 = LAAm−2V1 = LAUmHm−2
m

[
Ir

0(m−1)r,r

]
.

From direct computation, we have LAUm = UmHm and thus, using (2.11)
and the definition of Q, we have

LAUmHm−2
m

[
Ir

0(m−1)r,r

]
= UmH

m−1
m

[
Ir

0(m−1)r,r

]
= Am−1V1

where the last equality follows using again Lemma 2.2.2. Hence (2.12) holds
also for j = m− 1.

Thanks to Lemma 2.2.3, given A ∈ Rn×n symmetric and V1 ∈ Rn×r,
V T
1 V1 = I, one can realize concretely the procedure introduced in the proof

of Theorem 2.3.1 to obtain L and LA such that (2.8) holds.

Proposition 2.3.2. The matrix LA of Theorem 2.3.1 can be constructed by
the following steps:

1. Apply the Block-Arnoldi procedure, Algorithm 1, to Km(A, V1) in order
to obtain the matrices Um and Hm = UTmAUm of Lemma 2.2.1. This
step requires O(mrχ(A)+m(m+ 1)r2n+mC1) arithmetic operations,
where C1 is the computational cost of a QR decomposition of n × r
matrix.
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2. Produce sufficiently accurate matrices Q (orthogonal) and D (diago-
nal) such that QTHmQ = D.

3. By using Lemma 2.2.3, compute h1, . . . ,hmr such that

H(hmr) · · ·H(h1)

[
Imr

0n−mr,mr

]
= UmQ,

and set L = H(hmr) · · ·H(h1). This step requires O(mr(mr − 1)n)
arithmetic operations.

4. Set L = sdL and compute (LTAL)ii for i = mr + 1, . . . , n (for i =
1, . . . ,mr we have (LTAL)ii = Dii), and observe that

LA = Ld(((LTAL)ii)
n
i=1)L

T

satisfies (2.8). This last step requires mrχ(A) + O(mrn) arithmetic
operations.

Proof. For the computational cost needed to perform point 3. consider the
first observation after Lemma 2.2.3 and Lemma 2.2.5.
Instead, concerning point 4., observe that using Lemma 2.2.4 and the sym-
metry of A we have :

eTj L
TALej = eTj Aej − 2

mr∑
i=1

hTi qi−1e
T
j Ahi +

mr∑
i,l=1

hTi qi−1h
T
l ql−1h

T
i Ahl

for all j ∈ {1, . . . , n}. The computational cost estimation follows from Re-
mark 4 observing that hTi ej for i ∈ {1, . . . , rm} and j ∈ {1, . . . , n} do not
require FLOPs to be computed.

The following Corollary states the cost of solving the original Problem 2 by
using the procedure indicated in Theorems 2.3.1 and Proposition 2.3.2 in
the cases r = 1 and r = 2.

Corollary 2.3.3. Consider A ∈ Rn×n and V1 ∈ Rn×r. The computational
cost to produce an orthogonal matrix U and LA such that LAV1 = AV1,
where L = sdU is : O(n) + 2χ(A) when m = 2, r = 1 and O(n) + 4χ(A)
when m = 2, r = 2.

Before concluding this section let us stress once more that Problem 2
with r = 1 has been introduced in [27] in order to guarantee the conver-
gence of Secant low complexity BFGS-type minimization schemes originally
introduced in [40] (where it was proved the convergence of a Non Secant
version). This result has been recently generalized to Broyden-Class-type
methods, see [30] and Chapter 5 for more details. Interestingly enough, the
above mentioned papers [40] and [27] suggest that the Secant Equation is
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not a necessary ingredient for the convergence – and perhaps for the defini-
tion – of quasi-Newton methods, in striking contrast to [82, p.24] [33, p.54]
and [13, p.223] where the Secant Equation seems to be a necessary require-
ment of Quasi-Newton methods (and is even called quasi-Newton Equation).

2.4 Numerical Results

In the following Table 2.1 we present some numerical results confirming the
effectiveness of the construction presented in Proposition 2.3.2. In particular
we will focus our attention on the case m = 3, r = 1, using some matrices
from [31] and V1 ∈ Rn generated randomly.

Table 2.1: Numerical results for m = 3, r = 1

Name Dimension µ2(A) spd ‖AjV1 − LjAV1‖2

plat362 362 2.178223e+ 11 yes
j = 1 6.0561e− 15
j = 2 2.6162e− 15

1138 bus 1138 8.572646e+ 06 yes
j = 1 1.4353e− 10
j = 2 2.4170e− 06

ex4 1601 2.386583e+ 03 no
j = 1 8.0444e− 14
j = 2 8.0444e− 14

can 1072 1072 1.214866e+ 35 no
j = 1 1.2807e− 12
j = 2 3.5074e− 11

Observe that, as the experiment 1138 bus shows, further investigation
should be devoted in order to analyze the numerical stability issues con-
nected to the proposed construction, to better understand, for example,
why the accuracy deteriorates so consistently in this particular example.

2.5 Useful remarks and future works

In this section we present some useful applications and possible research
problems related with the result stated in Theorem 2.3.1. An application to
numerical optimization is described more in detail in the next Chapter 5.

1)[Generic V1] Observe that if V1 ∈ Rn×r has maximum rank but V T
1 V1 6=

Ir, in order to find the matrix algebra L = sdU such that LjAV1 = AjV1 for
0 ≤ j ≤ m− 1, it is sufficient to consider the matrix algebra L = sdU such
that LjAQ = AjQ for 0 ≤ j ≤ m− 1, being V1 = QR (QR decomposition).

2) [Projections which preserve eigenvectors] Consider V1 ∈ Rn×r such
that V T

1 V1 = Ir and AV1 = V1d(λ) where λ ∈ Rr. Consider now any
orthogonal L having r columns coinciding with those of V1, then, defining
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L = sdL, it is easy to verify that we have

LAV1 = V1d(λ) (2.14)

(such L can be constructed as the product of r Householder matrices).

Note that (2.14) represents a block generalization of an analogous formula
used in [26] in order to precondition Euler-Richardson method for solving
stochastic linear systems where the matrix algebra L = sdU has been chosen
such that eTLA = eTA = eT (being A a column stochastic matrix).

3) [The generated ideal] Given B ∈ Rn×n and V1 ∈ Rn×r such that
V T
1 V1 = Ir, adopting an algebraic-geometric point of view, if we try to

tackle directly Problem 2 (i.e. find L = sdU such that LBV1 = BV1), we
should seek a matrix U of the form

U = (I − xsx
T
s ) . . . (I − x1x

T
1 ),

satisfying the following system of nr + s polynomial equations :
Ud((UTBU)ii)U

TV1 −BV1 = 0

‖x1‖2 = 2
...

‖xs‖2 = 2

(2.15)

If we denote now by I the ideal generated by such system and by Za(I) the
corresponding affine algebraic set, from Theorem 2.3.1 with m = 2 we have
Za(I) 6= ∅ when s = 2r and hence, from Hilbert Nullstellenstaz-weak form
([78]), we can conclude I 6= (1) in C[x1, . . . ,xs]. Observe that if we consider,
instead of an orthogonal matrix a unitary matrix, (2.15) is not longer an
algebraic variety. Nevertheless, we suspect that an analogous result could
hold if the construction presented in Section 2.3 could be extended to the
complex case and if we suitably increase the number of unknowns in (2.15).

4) [Projections with fixed columns] Observe that if we form V1 ∈ Rn×r

using a subset of the canonical basis in Theorem 2.3.1, then projections
will have the same columns of the original matrix. Of course, in order
to obtain a good approximation in Frobenius norm of the original matrix,
a straightforward choice of the columns to be preserved in the projection,
would be to choose those of maximum 2-norm. Nevertheless, we believe that,
in order to make choices which produce more accurate approximations, in
this context, ideas from the theory of pseudo-skeleton approximation and
maximal volume from [57, 58, 59], would be extremely useful.

5) [Eigenvalues approximation] In the particular case of A spd matrix,
the Kantorovich inequality [63] could represent a measure of the accuracy
of the extremal eigenvalues of the projection LA as approximations of the
extremal eigenvalues of A. To fix ideas consider m = 2 in Theorem 2.3.1.
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From the Kantorovich inequality we have that

(λ1(A) + λn(A))2

4λ1(A)λn(A)
≥ eTi V

T
1 A

2V1ei

(eTi V
T
1 AV1ei)

2
for all i ∈ {1, . . . , r}.

Considering L = sdL such that LAV1 = AV1, we have

(λ1(A) + λn(A))2

4λ1(A)λn(A)
≥ (λ1(LA) + λn(LA))2

4λ1(LA)λn(LA)
≥

eTi V
T
1 L2AV1ei

(eTi V
T
1 LAV1ei)2

=
eTi V

T
1 A

2V1ei

(eTi V
T
1 AV1ei)

2

for all i ∈ {1, . . . , r} which, of course, is not guaranteed to hold for the
projection on a generic matrix algebra L = sdU for the vectors in V1 (the
first inequality follows using Theorem 1.4.9). A suitable choice of V1 could
maximize the last ratio producing in this way a good approximation of the
extremal eigenvalues of A. Finally, observe that if one form V1 using the
eigenvectors corresponding to the maximal and minimal eigenvalues of A we
obtain, for all v ∈ Rn,

vTA2v

(vTAv)
≤ (λ1(A) + λn(A))2

4λ1(A)λn(A)
=

(λ1(LA) + λn(LA))2

4λ1(LA)λn(LA)
.



Chapter 3

Regularizing properties of a
class of matrices including
the optimal and the
superoptimal preconditioners

3.1 Introduction

Optimal circulant preconditioners have been introduced in [20] and studied
in [21, 102]. Superoptimal circulant preconditioners have been introduced
in [102] and studied [24, 36]. In this paper we introduce a class of matri-
ces which include the optimal and the superoptimal preconditioners. We
prove that the matrices in such a class share, in an enhanced form, some
good properties of the superoptimal matrix [36, 49, 35], particularly useful
when exploited as regularizing preconditioners [62]. We prove moreover, that
the proposed preconditioners can be computed cheaply when the coefficient
matrix of the linear system has Toeplitz structure. Finally, we exhibit ex-
perimental results confirming the goodness of the proposed preconditioners
when employed as regularizing preconditioners.

3.2 Main Results

In this section we introduce and study a class of matrices parametrized
by the natural numbers. Theorem 3.2.3 represents the main result in this
section and generalize an analogous result obtained in [25] involving the op-
timal and the superoptimal preconditioners. Let us introduce the following
theorem by Ostrowski (Theorem 4.5.9 [63]):

Proposition 3.2.1. Let A, S ∈ Cn×n with A Hermitian and S non sin-
gular. Let the eigenvalues of A, SAS∗ and SS∗ be arranged in nondecreas-

39
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ing order. Let σ1 ≥ · · · ≥ σn > 0 be the singular values of S. For each
k = 1, . . . , n, there is a positive real number θk ∈ [σ2n, σ

2
1] such that

λk(SAS
∗) = θkλk(A).

Lemma 3.2.2. For any Hermitian positive definite A ∈ Cn×n and unitary
U ∈ Cn×n we have :

d(U∗A2iU) ≥ d(U∗A2i−1
U)2, i ∈ N\{0}. (3.1)

Proof. By direct computation exploiting the equality

U∗A2iU = U∗A2i−1
UU∗A2i−1

U.

Definition 6. For any L = sd U and i ∈ N define

P(i)(A) := L
1

2i−1

A2i
L−1A . (3.2)

Observe that choosing i = 0 in equation (3.2) we obtain the optimal pre-
conditioner introduced in [20], choosing instead i = 1 we obtain the super-
optimal preconditoner introduced in [102]. We can consider for this reason
P(i)(A) as a possible extension of the above mentioned preconditioners.

Remark 5. From Lemma 3.2.2 we have

d(U∗A2iU)
1

2i−1 ≥ d(U∗A2i−1
U)

1

2i−2

or equivalently
P(i)(A) ≥ P(i−1)(A) for i ∈ N\{0}, (3.3)

and hence, for i ∈ N it holds

max
k

λk(P(i)(A)) ≥ max
k

λk(P(i−1)(A)),

min
k
λk(P(i)(A)) ≥ min

k
λk(P(i−1)(A)).

(3.4)

Observe, moreover, that applying repeatedly Lemma 3.2.2 it follows that

d(U∗A2iU) ≥ · · · ≥ d(U∗AU)2
i

and hence
d(U∗AU)−1d(U∗A2iU)

1

2i ≥ In×n. (3.5)

Remark 6. Observe that using Theorem 3.1 in [49], P(i)(A) are the solu-
tions of the following optimization problem:

P(i)(A) := arg min
X∈L
‖AX − LA2L

− 1

2i−1

A2i
‖. (3.6)
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The choice of the matrices LA2L
− 1

2i−1

A2i
in the optimization problem (3.6) is

justified by the following theorem:

Theorem 3.2.3. Given an Hermitian positive definite A ∈ Cn×n, for any
i ∈ N\{0} we have that

λk((P(i)(A))−1A) ≤ λk((P(i−1)(A))−1A) k = 1, . . . , n. (3.7)

Proof.

(P(i)(A))−1A = (P(i)(A))−1P(i−1)(A)(P(i−1)(A))−1A

= L
− 1

2i−1

A2i
L

1

2i−2

A2i−1L
− 1

2i−2

A2i−1 LAA

≈ d(U∗A2iU)−
1

2i−1 d(U∗A2i−1
U)

1

2i−2 d(U∗A2i−1
U)−

1

2i−2 d(U∗AU)U∗AU

≈ DMD

where
D = d(U∗A2iU)−

1

2i d(U∗A2i−1
U)

1

2i−1

and

M = d(U∗A2i−1
U)−

1

2i−1 d(U∗AU)
1
2U∗AUd(U∗AU)

1
2d(U∗A2i−1

U)−
1

2i−1 .

From (3.1) we have Dii ∈ (0, 1] and hence thesis follows from Theorem 3.2.1
where S = D and A = M , observing that

M ≈ (P(i−1)(A))−1A.

Corollary 3.2.4. For every k = 1, . . . , n, there exist λ∞↓k and λ∞↑k such
that

lim
i→∞

λk((P(i)(A))−1A) = λ∞↓k , (3.8)

lim
i→∞

λk(P(i)(A
−1)A) = λ∞↑k . (3.9)

Proof. Observe that using Theorem 1.4.9 we have

λ(L
1

2i−1

A2i
) ∈ [λn(A2i)

1

2i−1 , λ1(A
2i)

1

2i−1 ] = [λn(A)2, λ1(A)2]

and hence

λ(P(i)(A)) ∈ [
λn(A)2

λ1(A)
,
λ1(A)2

λn(A)
]. (3.10)

Thesis follows from Bolzano-Weierstrass theorem observing that

λ((P(i)(A))−1A) ∈ [
λn(A)2

λ1(A)2
,
λ1(A)2

λn(A)2
]
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and observing that, from Theorem 3.2.3, λk((P(i)(A))−1A) is a monotoni-
cally decreasing sequence for each k = 1, . . . , n.

For the second part, applying Theorem 3.2.3 to the inverse matrix A−1,
we obtain

λk((P(i)(A
−1))−1A−1) ≤ λk((P(i−1)(A

−1))−1A−1) k = 1, . . . , n

and hence

λk(P(i)(A
−1)A) ≥ λk(P(i−1)(A

−1)A) k = 1, . . . , n. (3.11)

Observe that (3.11) is now a monotonic increasing sequence and thesis fol-
lows as in the previous case.

Remark 7. Observe that using Proposition 3.2.1, Lemma 3.2.2 and analo-
gous techniques to those in Theorem 3.2.3 and Corollary 3.2.4, it is possible
to prove that also the sequences {λk(P(i)(A)A)}i∈N are monotonic increasing
and convergent for every k = 1, . . . , n. Interestingly enough, using P(i)(A)
and (P(i)(A))−1 it is possible to produce, in some cases, a better approxima-
tion of A−1. To this extent observe that

min
a,b∈R

‖(aP(i)(A) + b(P(i)(A))−1)A− I‖F

has a non trivial solution, namely a, b are obtained solving, under suitable
hypotheses, the following linear system[

tr (A2(P(i)(A))2) tr (A2)

tr (A2) tr (A2(P(i)(A))−2)

] [
a
b

]
=

[
tr (A(P(i)(A)))

tr (A(P(i)(A))−1)

]
.

(3.12)

The following Theorem 3.2.6 gives a more accurate bound of λ(P(i)(A))
if compared to the bound contained in (3.10). First let us introduce the
following lemma :

Lemma 3.2.5. If A ∈ Cn×n is an Hermitian positive definite matrix then,
defining M = maxk Akk, we have

|Re{Ahk}| ≤M and | Im{Ahk}| ≤M for all h, k ∈ {1, . . . , n}.

Proof. For h 6= k chose the vectors x1 = eh−ek, x2 = eh+ek, x3 = ıeh−ek,
x4 = ıeh+ek and use the fact that x∗lAxl for l = 1, 2, 3, 4 are strictly positive
scalars.

Theorem 3.2.6. For every i ∈ N we have

σ(P(i)(A)) ⊂ [βmin, C(i)βmax], (3.13a)

µ2(P(i)(A)) ≤ min{µ2(A)3, (2n− 1)
1

2i−1 µ2(A)
1

2i−2 µ2(LA)}, (3.13b)

being βmin = mink(U
∗AU)kk, βmax = maxk(U

∗AU)kk and C(i) ≥ 1 a suitable
constant.
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Proof. For the first part, to ease the notation, define

B := U∗AU and X(i) := d(B)−2
i−2

(B2i−1
)d(B)−2

i−2
.

It can be easily checked that P 2i−1

(i) (A) = Ud(X(i)d(B)2
i−1
X(i))U

∗ and that

β2
i−1

min X
2
(i) ≤ X(i)d(B)2

i−1
X(i) ≤ β2

i−1

maxX
2
(i). (3.14)

From (3.14) it follows that

βmind(X2
(i))

1

2i−1 ≤ d(X(i)d(B)2
i−1
X(i))

1

2i−1 ≤ βmaxd(X2
(i))

1

2i−1

where d(X(i)d(B)2
i−1
X(i))

1

2i−1 are the eigenvalues of P(i)(A). To complete
the proof define M(i) := maxk(X(i))kk. We have that

1 ≤ (X2
(i))

1

2i−1

kk ≤ (M2
(i) + 2M2

(i)(n− 1))
1

2i−1 for all k ∈ 1, . . . , n, (3.15)

where the first inequality follows observing that (X2
(i))kk ≥ (X(i))

2
kk and

(3.5), the second inequality follows instead from Lemma 3.2.5. Define

C(i) := (M2
(i)(2n− 1))

1

2i−1 . (3.16)

For the second part let us bound the constant M(i). Observe that if we
consider the spectral norm ‖ · ‖2 we have for i ∈ N that

M(i) ≤ ρ(X(i)) = ρ(d(B)−2
i−1
B2i−1

) ≤ ‖d(B)−2
i−1‖2‖B2i−1‖2 ⇒

(M(i))
1

2i−1 ≤ ‖d(B)−2
i−1‖

1

2i−1

2 ‖B2i−1‖
1

2i−1

2 =
λ1(A)

βmin
,

(3.17)

and hence

1 ≤ C(i) ≤ (
λ1(A)

βmin
)

1

2i−2 (2n− 1)
1

2i−1 . (3.18)

Observe finally that from (3.18) we have limi→∞C(i) = 1.

Before concluding this section, let us observe that an analogous bound
to (3.13a) was derived in [36] for the superoptimal preconditioner, and hence
Theorem 3.2.6 could be considered as an extension of Theorem 3.4 in [36].

Observe, moreover, that (3.13b) could be particularly relevant if the
matrix algebra L = sdU is chosen such that µ2(LA) << µ2(A) (see Ap-
pendix for a way to construct such L). In fact, once such L is available,

the corresponding sequence of preconditioners P(i)(A) = L
1

2i−1

A2i
L−1A must be,

by (3.13b), such that µ2(P(i)(A)) ≈ µ2(LA) when i ∈ N is sufficiently large.
Thus it is possible to introduce and use preconditioners P(i)(A) which satisfy
property (3.7) – a property which favors regularizing properties (see Section
3.4) –, without resulting in a significant deterioration of the condition num-
ber.
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Remark 8. It is possible to compute directly limi→∞ P(i)(A). To this end

let us define uk := Uek for k = 1, . . . , n and write uk =
∑n

j=1 α
(k)
j vj where

Avj = λj(A)vj. We have

lim
s→+∞

(ukA
suk)

1
s = lim

s→+∞
(
n∑
j=1

(α
(k)
j )2λj(A)s)

1
s = λ(1)(A),

and hence,

lim
i→+∞

P(i)(A) = Ud(b)U∗ where b = [
λ1(A)2

(U∗AU)1
, . . . ,

λ1(A)2

(U∗AU)n
]. (3.19)

3.3 The Toeplitz Case

“When using superoptimal preconditioners in practice, one obviously should
be assured that there is a way to compute them sufficiently quickly ([102])”.

In this section we will prove that, when T is a Toeplitz matrix and
C = sd F where F is the Fourier matrix (i.e. C is the algebra of circulant
matrices), the preconditioners P(i)(T ) can be computed cheaply for moderate
values of i ∈ N.

3.3.1 An insight into Toeplitz and Toeplitz-like structures

Let us start introducing some notations, definitions and results. What fol-
lows in this subsection is entirely borrowed from [71] and hence we refer
there for further details and proofs.

Definition 7. Define the displacement ∇Z(A) of A ∈ Cn×n with respect to
Z ∈ Cn×n as

∇Z(A) := A− ZAZ∗,

and the rank of ∇Z(A) the displacement rank of A. Define, moreover,
Toeplitz-like matrices as those matrices with small displacement rank.

Definition 8. For r ≥ rank(∇Z(A)) we call a pair of matrices (G,B) where
G, B ∈ Cn×r generator for A if

∇Z(A) := A− ZAZ∗ = GB∗.

If we consider

Z =


0
1 0

. . .
. . .

1 0

 ,
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then the matrix A can be reconstructed from generators as

A = T (G,B) :=
n−1∑
k=0

ZkGB∗(Z∗)k. (3.20)

If we denote by gj , bj ∈ Cn respectively the columns of G, B for j =
1, . . . , r, we can rewrite (3.20) as

A = T (G,B) =

r∑
k=1

L(gj)U(b∗j ), (3.21)

where U(x) and L(x) are the triangular Topelitz matrices

L(x) =


x0 0 · · · 0

x1 x0
. . .

...
...

. . .
. . . 0

xn−1 · · · x1 x0

 , U(x) =


x0 x1 · · · xn−1

0 x0
. . .

...
...

. . .
. . . x1

0 · · · 0 x0

 .

Observe, moreover, that if T ∈ Cn×n is the Toeplitz matrix Tij = ti−j for
i, j ∈ {0, . . . , n − 1} we have that rank(∇Z(T )) = 2 and a set of minimal
generator is

G =


t0 1
t1 0
...

...
tn−1 0

 , B =


1 0
0 t−1
...

...
0 t−(n−1)

 .

Lemma 3.3.1. Let T be a Toeplitz matrix. Then T s is a Toeplitz-like
matrix of displacement rank at most 2s for any integer s ≥ 1. Letting
(G,B) denote the generators for T , a sequence of (non-minimal) generators
(G1, B1), . . . , (Gs, Bs) for T, . . . , T s is given by

G1 = G, Gi+1 = [P iGG P i−1G G . . . G − PGe1 . . . − P iGe1], (3.22)

B1 = B, Bi+1 = [B PBB . . . P iBB P iBe1 . . . PBe1], (3.23)

for i = 1, . . . , s−1, where PG := (Z−I)T (Z−I)−1 and PB := (Z−I)T ∗(Z−
I)−1. Moreover

e1 ∈ range(G1) ⊂ . . . range(Gs) and e1 ∈ range(B1) ⊂ . . . range(Bs).

Corollary 3.3.2. Let T ∈ Cn×n be a Toeplitz matrix, then a set of genera-
tors for the monomial T, . . . , T s can be computed with O(sn log2(n)) opera-
tions.

Proof. Applying (Z − I)−1 to a vector amounts simply to computing the
vector of its cumulative sums and the application of Z − I to a vector can
be evaluated with n− 1 subtractions. The multiplication of Toeplitz matrix
by a vector can be performed in O(n log(n)).
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3.3.2 Projecting the powers of Toeplitz matrices onto the
Circulant Algebra

Let us start recalling Theorem 5.1 and Corollary 1 in [102]:

Theorem 3.3.3. Let M = LR ∈ Cn×n, where

L =


l0 0 · · · 0

l1 l0
. . .

...
...

. . .
. . . 0

ln−1 · · · l1 l0

 , R =


r0 r1 · · · rn−1

0 r0
. . .

...
...

. . .
. . . r1

0 · · · 0 r0

 . (3.24)

Then, defining

sk(M) :=
∑

i−j=kmod n

mij where i, j, k ∈ {0, . . . , n− 1}, (3.25)

we have 
s0
s1
...

sn−1

 = P


rn−1
rn−2

...
r0

+ L


0

rn−1
...

(n− 1)r1

 (3.26)

where

P =



ln−1 2ln−2 · · · (n− 1)l1 nl0

0 ln−1
. . .

. . . (n− 1)l1
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 2ln−2

0 · · · · · · 0 ln−1


. (3.27)

Remark 9. From direct computation sk(M) = tr(QkM).

Corollary 3.3.4. If M = LR as in Theorem 3.3.3, then the values sk for 0 ≤
k ≤ n− 1, can be computed in O(n log2(n)) operations.

Theorem 3.3.5. Given T ∈ Cn×n a Toeplitz matrix, then

argminC∈C‖T s − C‖F (3.28)

can be computed in O(2sn log2(n)) operations.

Proof. It is well known that any matrix C ∈ C, can be written in the form

C =
n−1∑
k=0

cjQ
j (3.29)
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where

Q =


0 1 · · · 0

0
. . .

. . .
...

...
. . .

. . . 1
1 · · · 0 0

 ,

and that CT s =
∑n−1

j=0 αjQ
j where αj = [B−1c]j , Bi,j = (Qi, Qj) and cj =

(Qj , T s) for i, j = 1, . . . , n− 1.
Observe, moreover, that from Lemma 3.3.1 we have

T s =

2s∑
i=1

L(gsi )U(bsi )

being gsi , bsi for i = 1, . . . , 2s, the columns of the generators (Gs, Bs) of T s.
Thesis follows from the linearity of the trace, Theorem 3.3.3 and Remark
9.

3.4 Experimental results and Conclusions

3.4.1 Experimental Results

In [36, 35, 49] it has been proved that when C = sdF (F Fourier matrix) and
A is a Toeplitz matrix, under suitable hypotheses, the spectrum of P(1)(A)
stays bounded from below. In these papers, this particular feature of the
superoptimal preconditioner, has been profitably exploited in order to use
P(1)(A) as a regularizing preconditioner for A since it provides an approx-
imation of the matrix which ignores some “bad” frequencies corresponding
to small eigenvalues. From Remark 5 and Theorem 3.2.3 it is easy to un-
derstand that the same good properties hold for the class of preconditioners
P(i)(A) presented in this chapter, allowing us to infer that such class of pre-
conditioners presents the same regularizing behaviour of the superoptimal
preconditioner.

In this section some preliminary numerical experiences are carried on.
Such experiments confirm that the preconditioners proposed in Section 3.2
could be suitably employed as regularizing preconditioners for the conjugate
gradient method (see [36, 62, 49, 35]).

We focus on the solution of the system Ax = g where A ∈ Rn×n is
severely ill conditioned and g ∈ Rn is contaminated by noise. With the
same choices made in [49], the matrix algebra chosen is C = sdF , the
dimension of the system A is set to n = 50 and the solution vector is the
sum of two different “impulses”: the j−th component of the solution vector
f is

fj = 0.5 k0.1(xj + 0.9) + k0.05(xj − 0.8), xj = −2 +
4

n+ 1
(j + 1),
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where the points xj are equally distributed in [−2, 2] and kσ(t) denotes the
Gaussian distribution

kσ(t) :=
1

2
√
πσ

e−
t2

4σ .

The right hand side vector g is the sum of g = Af and the noise component
η, that is g = g + η, where η comes from a normal distribution with zero
mean and deviation α‖g‖. The matrix A is the symmetric real Toeplitz
matrix

Ar,s = ar−s =

{
4
51 k0.15(xr − xs) if |r − s| ≤ b, b ≤ n,
0, otherwise .

(3.30)

Table 3.1: Experimental Results

b = 8, µ2(A) = 8.36× 105 b = 30, µ2(A) = 2.98× 1014

i km.e. ‖f − xkm.e.‖/‖f‖ i km.e. ‖f − xkm.e.‖/‖f‖

α = 10−3

1 3 0.339173 1 4 0.328979
2 11 0.323669 2 11 0.318053
3 16 0.330664 3 16 0.327823
4 16 0.336834 4 16 0.334599
5 16 0.339157 5 16 0.337059

α = 10−2

1 1 0.427361 1 1 0.424058
2 3 0.408945 2 3 0.408333
3 7 0.405855 3 7 0.404537
4 10 0.407286 4 11 0.405856
5 12 0.409811 5 12 0.409198

α = 10−1

1 1 1.000000 1 1 1.000000
2 1 0.609964 2 1 0.607666
3 1 0.634762 3 1 0.634365
4 2 0.599344 4 2 0.598570
5 2 0.608385 5 2 0.608331

We remark that we have not addressed the important problem of deciding
when to stop the PCG method. We perform 50 iterations of the PCG for
every preconditioner and, in Table 3.1, we report the iteration km.e such that
the corresponding Relative Restoration Error (RRE), i.e., ‖f − xkm.e.‖/‖f‖,
is minimal. In Figure 3.1 we plot the input signal, the noisy signal and the
best reconstructed solution.

3.4.2 Conclusions

As Table 3.1 shows, a higher regularization level and better filtering capa-
bilities for the noise space are obtained in correspondence of higher values
of i for the preconditioner P(i)(A). We can hence infer that the class of
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the regularizing preconditioners proposed in this chapter could be suitably
employed even when critical conditions are registered, i.e., high noise level
or excessive ill-conditioning. In fact, even in these unfavorable conditions,
satisfactory reconstruction performances can be obtained, as it is clear in
Figure 3.1.

3.5 Appendix

Given A positive definite, for any L = sdU we have that µ2(LA) ≤ µ2(A).
In this Appendix we show that, performing no more than O(n2) FLOPs,
one can define a matrix algebra L = sdU such that µ2(LA) is as small
as desired, completing hence the observation started after Theorem 3.2.6.
Moreover, even if we are aware that in literature such kind of result already
exists, we prefer to repeat here the proof in order to keep explicit track of
the connections with matrix algebras framework. It can be easily proved
that, given

A =

[
a c
c b

]
, a, b, c ∈ R, with a < b, and any z ∈ (a, b),

there exist α, β ∈ R such that α2 + β2 = 1 and[
α −β
β α

] [
a c
c b

] [
α β
−β α

]
=

[
az cz
cz bz

]
, with |cz| > |c|, and az, bz such that

a < az ≤ bz < b, az−a = b−bz, and az = z ( bz = z ) if z ∈
(
a,
a+ b

2

]
( z ∈

[a+ b

2
, b
)

)

(note that aa+t = ab−t, ba+t = bb−t, ca+t = cb−t, ∀ t ∈ (0, b− a)). Of course,
an analogous result can be stated if a > b.

Thus, if A =

[
a c
c b

]
, a, b, c ∈ R, a 6= b, then, by a Givens sim-

ilarity transformation, we can cluster the diagonal entries a and b of A
as much as we want, maintaining their order; or, equivalently, given any
z ∈ (min{a, b},max{a, b}), we can cluster the diagonal entries a and b of A
so to make equal to z the one of them nearer to z.

Let A be an arbitrary n×n symmetric matrix with real entries. Assume
that [A]ii 6= [A]jj for some i 6= j (i.e. we suppose that the equalities [A]11 =
[A]22 = . . . = [A]nn are not all verified).

Set A0 = A and, for k = 0, 1, . . ., define the n× n matrix Ak+1 from the
n× n matrix Ak as follows:
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(1) Choose i, j such that [Ak]ii <
tr (A)
n < [Ak]jj .

(2) If tr (A)
n − [Ak]ii ≤ [Ak]jj − tr (A)

n , then introduce the n × n Givens
matrix Gk+1 such that

[GTk+1AkGk+1]ii = [Ak]ii+
( tr (A)

n
−[Ak]ii

)
and [GTk+1AkGk+1]jj = [Ak]jj−

( tr (A)

n
−[Ak]ii

)
,

otherwise, introduce the n× n Givens matrix Gk+1 such that

[GTk+1AkGk+1]jj = [Ak]jj−
(

[Ak]jj−
tr (A)

n

)
and [GTk+1AkGk+1]ii = [Ak]ii+

(
[Ak]jj−

tr (A)

n

)
.

After k̂ steps (note that k̂ ≤ n−1−d where d ≥ 0 is the number of diagonal

entries of A equal to tr (A)
n ), this procedure yields a matrix

GTk̂ · · ·G
T
2 G

T
1 AG1G2 · · ·Gk̂ =


tr (A)
n

∗ · ∗
∗ tr (A)

n
· ·

· ·
. . . ∗

∗ · ∗ tr (A)
n


with diagonal entries all equal to tr (A)

n .
If Uk = G1G2 · · ·Gk and Lk = sdUk, then the eigenvalues of (Lk)A =

Ukdiag([UTk AUk]ss)U
T
k satisfy the following inequalities

min
s

[UTk AUk]ss ≤ min
s

[UTk+1AUk+1]ss, max
s

[UTk+1AUk+1]ss ≤ max
s

[UTk AUk]ss,

lk+1 ≤ lk := max
s

[UTk AUk]ss −min
s

[UTk AUk]ss,

lk̂ = 0, (Lk̂)A =
tr (A)

n
I.

In particular, if A is positive definite, we have

µ2((Lk̂)A) = 1 ≤ µ2((Lk+1)A) ≤ µ2((Lk)A) ≤ µ2((L0)A) ≤ µ2(A),

where L0 = sd I.
Of course, if in step (1) we require that [Ak]ii is the smallest among

the [Ak]ss smaller than tr (A)
n , and [Ak]jj is the greatest among the [Ak]ss

greater than tr (A)
n , then

(i) the sequence lk decreases as fast as possible;
(ii) if A is positive definite, the sequences lk and µ2((Lk)A) decrease as

fast as possible.
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Figure 3.1: b = 30. Left column : true and noisy signals for α = 10−3,
α = 10−2 and α = 10−1.
Right column : best reconstructed signals.
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Chapter 4

Euler-Richardson method
preconditioned by weakly
stochastic matrix algebras: a
potential contribution to
Pagerank computation

4.1 Introduction

Markov chains are used to model many different real world systems which
evolve in time. When the total number of states which the system may
occupy is finite, the chain is typically well represented by a column stochastic
matrix S. The state of equilibrium is described by the ergodic distribution
p, defined as the solution of the eigenproblem Sp = p. Under suitable
hypotheses on S, as for instance irreducibility, the solution p is unique and
entry-wise positive. The problem of computing such p is one of the crucial
issues in Markov processes analysis.

The power method is one of the simplest iterative schemes that converges
to the solution p (provided that the eigenvalues of S different from one have
absolute value smaller than one). The rate of convergence of such method is
well known to be proportional to the magnitude of the subdominant eigen-
value of S. Due to its simplicity and its well understood limit behavior,
this method is often used in practice, especially for large-scale unstructured
problems.

Examples of growing interest in recent literature are connected with the
analysis of complex networks, where, the pattern of the edges of the network
is used for localizing important nodes or group of nodes. Many important
models, based on matrices or functions of matrices and describing certain
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features of the network, are related with a random walk defined on the graph
and thus exploit extremal eigenvectors and eigenvalues of such matrices (see
f.i. [50, 51, 81, 83, 86, 88]). A popular example to which we are particularly
interested in is the centrality index problem on graphs known as Pagerank
problem ([1] for instance). In that case the web surfer moves randomly on
the web graph W = (V,E) and the importance of each node in V is given
by the ergodic distribution w = Gw of the random walk defined on W by
the Google engine web matrix G (see Section 4.1.2 for more details). The
dimension of w in that case is the number of web pages that populate the
World Wide Web, thus w roughly has 109 entries. The power method can be
performed on G in a relatively cheap way by means of the transition matrix
of the graph, which is typically sparse. On the other hand, the original
formula by Brin and Page [11] defines the same Pagerank vector w as the
solution of a linear system whose coefficient matrix is a M-matrix and, as a
consequence, the ergodic Pagerank distribution w can be computed either
by solving the eigenproblem or by solving such linear system. Thus one can
use any linear system solver to approximate w, and several approaches have
been investigated and compared to the power method, e.g. [32, 53, 54, 99].
Although such methods sometimes have a convergence rate greater than the
one achieved by the power method, they are often more demanding in terms
of memory storage and number of operations per step.

The equivalence between the eigenproblem Sp = p and a linear system
problem holds in general for a large set of stochastic matrices, not only the
Google matrix. Indeed, it has been observed in [98] that, if S is a column
stochastic matrix having at least one full row, then 1 is a simple and dom-
inant eigenvalue of S, the ergodic distribution Sp = p is well defined and
p is also solution of a M-matrix linear system problem associated to S. In
this work we propose a class of simple iterative schemes, named precondi-
tioned Euler-Richardson, to solve such linear system. These methods can
be seen as a subset of the class of stationary iterative methods often intro-
duced in terms of a splitting of the coefficient matrix, [77, 104] e.g. Here we
observe that this kind of methods provides a natural generalization of the
power method and of the well known Jacobi iterative scheme, which corre-
spond to two particular choices of the preconditioner. Then we introduce
the concept of weakly stochastic matrix algebra in order to define a new fast
and efficient preconditioner, based on Householder unitary transformations.
We discuss the relation among the new preconditioned method, the original
power method and the Jacobi iterations by providing, in particular, an anal-
ysis of the convergence and a number of results on the spectral radius of the
respective iteration matrices. Finally we present several numerical tests on
synthetic datasets and matrices coming from real-world models. Although
the proposed Householder preconditioner does not preserve the nonnegativ-
ity of the entries of the original matrix and despite we cannot provide an
exhaustive convergence theorem when the coefficient matrix is not assumed
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symmetric, the analysis made in Section 4.5 and the experiments proposed in
Section 4.6 show that the Householder preconditioner reduces significantly
the number of iterations without significantly affecting the computational
cost nor the memory storage. Thus it stands as a preconditioned version of
the power method, well suited for large-scale stochastic M-matrix problems
with sparsity structure.

4.1.1 Notational Remarks

In this section we change slightly the notation as follows: for an integer
n, the linear space of square n × n real matrices is denoted by Mn. The
symbols O and I denote the zero and the identity matrices, respectively. A
matrix is called nonnegative (resp. positive), if its entries are nonnegative
(resp. positive) numbers, in symbols A ≥ O (resp. A > O); for real matrices
A,B we write A ≥ B if A − B ≥ O; the cone of nonnegative matrices is
denoted by M+

n , the one of nonnegative vectors by Rn+.
We use the reverse magnitude ordering

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)| .

When a matrix A satisfies the equality ATe = e, we say that A is a weakly
(column) stochastic matrix. If both A and AT are weakly stochastic we
say that A is doubly weakly stochastic. Note that a nonnegative weakly
stochastic matrix is a stochastic matrix in the standard sense, that is a
matrix having the set of discrete probability distributions as an invariant.
Finally we will not denote anymore vectors by bold letters.

4.1.2 A generalization of the Pagerank linear system formu-
lation

We say that M ∈Mn is a (column) stochastic M-matrix if it can be decom-
posed as M = I − τA, with A ≥ O, ATe = e and 0 < τ < 1. We let SKn

denote the set of such matrices, namely

SKn = {I − τA | τ ∈ (0, 1), A ≥ O, ATe = e}.

If S ∈Mn is any stochastic matrix having at least one full row we say that
S belongs to Σn,

Σn = {A ∈Mn : A ≥ O,ATe = e,maxi minj aij > 0} .

The following theorem is a collection of results proved in [89, 98]. It shows
that the two sets of matrices SKn and Σn are strictly related.

Given S stochastic (nonnegative, weakly stochastic) define τ(S) ∈ R+

and yS ∈ Rn+ as

τ(S) = 1−
n∑
i=1

min
j=1,...,n

sij , (yS)i = min
j=1,...,n

sij
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and, for nonzero τ(S), let AS ∈Mn be

AS = τ(S)−1(S − yS eT) .

Theorem 4.1.1.

• Let S be a stochastic matrix. The quantity τ(S) belongs to the interval
[0, 1] and τ(S) ≥ |λ|, ∀λ ∈ λ(S) \ {1}.

• Let S ∈ Σn and p be the ergodic distribution of S (i.e. p ≥ 0, p 6= 0,
Sp = p, pTe = 1). Then τ(S) ∈ [0, 1), yS 6= 0, (I−(S−ySeT))p = yS.
If moreover τ(S) > 0 then I − (S − ySeT) = I − τ(S)AS with τ(S) ∈
(0, 1), AS ≥ 0 and AS stochastic (by columns), that is, I−(S−ySeT ) ∈
SKn.

• Let M = I−τA ∈ SKn, y ≥ 0 nonzero and let x be such that Mx = y.
Define ỹ = (1− τ)/(yTe)y and x̃ = (1− τ)/(yTe)x. Then

S := ỹeT + τA ∈ Σn, (4.1)

τ(S) ∈ [0, τ ] ⊂ [0, 1), and x̃ is the ergodic distribution of S (i.e x̃ ≥
0, x̃ 6= 0, Sx̃ = x̃, x̃Te = 1).

If S ∈ Σn, then the theorem above shows that the eigen problem Sp = p
can be solved by solving the linear system (I − τ(S)AS)x = yS , and vice-
versa, if M ∈ SKn, then the solution of Mx = y is a multiple of the ergodic
distribution p = Sp (where S is obtained from M = I − τA through (4.1) ).

It is worth noting that this generalizes to any matrix S ∈ Σn a famous
property of the Google’s Pagerank index, where the particular structure of
the problem allows to recast the stationary distribution problem in terms of
a linear system problem [72]. Let us observe to conclude, that in general,
if an eigenvalue is known, then computing its eigenvector always reduces to
solving some consistent linear system; what is interesting in the connection
with the Pagerank, as the theorem above shows, is the possibility to find
such a system with a nonsingular matrix.
Let W = (V,E) be the direct graph where nodes correspond to web-pages
and edges to hyperlinks between pages. The Pagerank index vector p of W
is the solution of the equation

Gp = p (4.2)

where G = αTT + (1−α)veT is the Google engine web matrix, T is the row
stochastic transition matrix of W , v is a real positive personalization vector
such that vTe = 1 and 0 < α < 1. Due to the huge dimension of G, several
algorithms essentially based on the power method have been proposed to
compute the stationary distribution of (4.2). However the original formula
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by Brin and Page [72] defines the Pagerank vector p as the solution of a
M-matrix linear system of the type

γ(I − αT )Tp = v γ ∈ R . (4.3)

In fact, such system follows immediately from (4.2), by the particular form
of G, but can be also recovered by means of Theorem 4.1.1, as we show now:

Since maxi minj(G)ij ≥ (1 − α) maxi vi > 0 we deduce that G ∈ Σn

and p = (I − τ(G)AG)−1yG. For the sake of simplicity, suppose that each
column of T has at least one zero entry. Then τ(G) = 1−

∑
i minj(G)ij = α,

yG = (1 − α)v and AG = α−1(G − yGeT) = TT. This shows, indeed, that
p is both the solution of the eigenvector problem (4.2) and of the Pagerank
linear system (4.3), with γ = (1− α)−1.

4.1.3 The Euler-Richardson method

We assume from now on that any random walk considered is described by
a stochastic matrix S ∈ Σn. We discuss a method which computes the
solution of the eigenproblem p = Sp by solving the associated stochastic
M-matrix linear system. By virtue of Theorem 4.1.1 the two problems are
equivalent, so for the sake of clarity and generality we always assume that
a stochastic M-matrix M ∈ SKn and a nonnegative vector y ≥ 0 are given,
and we are interested in the solution of the equation Mx = y.

The preconditioned Euler-Richardson method (briefly, PER method) for
the solution of Mx = y is the stationary iterative scheme based on the
splitting M = P − (P −M) and defined by the following sequence ([104]
e.g.)

xk+1 = P−1y + (I − P−1M)xk, k = 0, 1, 2, 3, . . . (4.4)

where P is a suitable nonsingular preconditioner. The iteration matrix of
such method is evidently I − P−1M , thus we write

H(P ) = I − P−1M

to denote such matrix, underlining the dependence upon the chosen precon-
ditioner P . Since the eigenvalues of any M ∈ SKn have positive real part,
the standard Euler-Richardson method (ER), obtained by setting P−1 = ωI

inside (4.4), is convergent for all ω ∈ (0,min 2Re(λi)
|λ2i |

) and its rate of conver-

gence is optimized by setting ω0 = arg minω∈R ρ(H(ωI)). This is the sim-
plest iterative method and it may not be the best choice in terms of efficiency.
However, its simplicity allows its easy implementation for problems that are
unstructured and have huge dimension, as for instance the Pagerank prob-
lem. In particular, as for the power method, the ER scheme requires only
one real vector to store the data. Moreover, the analysis made throughout
this paper shows that (4.4) can be seen as a preconditioned power method.
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This opens the way to a number of further investigations and improvements,
as, for instance, the variety of techniques proposed to speed-up the power
method for Pagerank computation can be potentially applied to (4.4) (e.g.
extrapolation [9, 10, 12, 69] or structural adaptive mathods [60, 67, 68]).
More precisely, when M ∈ SKn, one can show that ω0 = 1 (see e.g. [99,
Thm. 4.2]). It is therefore easy to realize that, if M = I− τ(S)AS is defined
as in Theorem 4.1.1, then the ER, with ω = 1, and the power methods are
very close. In particular, we show in the sequel that there exists a simple
choice Ppm for the preconditioner P in (4.4) that gives rise exactly to the
same convergent sequence as the one defined by the power method applied
to the original eigenproblem Sp = p. To this aim we initially devote Section
4.2 to define and investigate the concept of weakly stochastic matrix algebra,
then we show that the power method preconditioner Ppm is indeed defined
in terms of such algebras. In Section 3 we consider a new preconditioner
chosen in a suitable weakly stochastic and low complexity Householder al-
gebra, giving rise to a competitive method that can be implemented with
linear memory storage allocation (two real vectors) and with the same order
of operations per step of the power method. Besides its direct application
to the iterative scheme (4.4), the analysis made in Sections 4.2 and 4.4 pro-
vides a number of interesting relations among matrix algebras, stochastic
and nonnegative matrices, and in our opinion it is of self interest.

4.2 Low complexity matrix subspaces

Let us start recalling some facts in order to simplify the reading of the fol-
lowing sections.
Given J1, . . . , Jm ∈Mn linearly independent, the subspace L = span(J1, . . . , Jm)
is said to be of low complexity if for any L ∈ L, the order of complexity
required to multiply L times a vector or to solve a linear system with L as
coefficient matrix, is much less then O(n2) (tipically O(n log n), see examples
in Section 4.2.2). A preconditioner for (4.4) can thus be chosen inside L. A
popular choice for P ∈ L is the so called optimal fit preconditioner obtained
by projecting the coefficient matrix over L. For any given matrix X ∈Mn,
we write LX to denote its projection over L. Note that, by definition of
projection, one has that ‖LX − X‖F ≤ ‖Y − X‖F , for any Y ∈ L, being
‖ · ‖F the Frobenius norm. A possible representation of LX is as follows

LX =
∑m

i=1(B
−1c)iJi (4.5)

where B is the Gram matrix bij = (Ji, Jj) and c is the vector ci = (Ji, X). Of
course the number of arithmetic operations required to identify such LX in L
should be “not too large”, that is the linear system Bx = c should be easily
solvable. It is shown in [34, 44] that, under suitable hypotheses on L, the
matrix B is in L itself or belongs to other low complexity classes, and thus
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the projection LX can be obtained with a small amount of computations
whenever L is of low complexity. Typical examples of such spaces are the
algebras of matrices simultaneously diagonalized by a unitary transform,
henceforth briefly called sdU spaces. Fixed any unitary matrix U ∈ Mn,
any such a space is denoted by sdU and is defined by

U = sdU = {Ud(λ)UH | λ ∈ Cn} .

Any U = sdU is an n-dimensional matrix algebra, thus a commutative set
of matrices closed under addition, multiplication and inversion. Moreover,
the following further representation for UX holds for U = sdU :

UX = Ud((UHXU)ii i = 1, . . . , n)UH (4.6)

where, for a matrix M , d(M) denotes the diagonal matrix with diagonal
entries m11, . . . ,mnn. As I ∈ sdU , the linearity of the projection operator
implies that UM = I − τUA, for any M ∈ SKn. Therefore the problem of
defining a preconditioner for (4.4) reduces to the problem of identifying the
projection of the nonnegative and weakly stochastic matrix A, and solving
low complexity systems with I − τUA as coefficient matrix.

Note that in many cases, if UA is a weakly stochastic matrix, then UM is
invertible. Indeed if ‖A‖2 ≤ 1, and this is true at least for all A ≥ O which
are stochastic and normal, then, using the Cauchy-Schwartz inequality, we
get

ρ(UA) = max
i=1,...,n

|uTi Aui| ≤ max
‖x‖2=1

|xTAx| ≤ max
‖x‖2=1

‖Ax‖2 = ‖A‖2 ≤ 1 ,

where ui are the columns of U , defining U . Thus UM = I − τUA is evidently
invertible.

Next Section 4.2.1 contains a theorem characterizing the sdU spaces U
such that A weakly stochastic implies UA weakly stochastic as well. Then
in Section 4.4.1 we show that Ppm can be defined in terms of such spaces,
and finally we introduce a new sdU space where to select a different pre-
conditioner for (4.4).

4.2.1 Weakly stochastic matrix algebras

This subsection is devoted to characterize the sdU matrix algebras U which
preserve the weakly stochasticity of A, when projecting A on them. For a
vector u such that uTU has no zero entries, define the map Lu : Cn −→ U
that associates to a vector x the matrix Lu(x) of U such that uTLu(x) = xT.
As uTU has no zero entries, it is not difficult to see that Lu is a well defined
bijection, for any sdU matrix algebra U = sdU . However, it is worth
pointing out that the class of spaces for which the operator Lu is a well
defined bijection contains properly the set of sdU spaces (see [44]). A direct
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computation shows that the following representation of Lu(x) ∈ U = sdU
holds

Lu(x) = Ud(UTx)d(UTu)−1UH (4.7)

Definition 9. If there exists a column of U which has all constant entries
then we call U = sdU a weakly stochastic sdU matrix algebra.

The reason of such name is made evident by the following Theorem 4.2.1
which completely characterizes those sdU spaces U with the property that
the projection over U of a weakly stochastic matrix, is still weakly stochastic.

Theorem 4.2.1. Let U = sdU for some unitary U , and let u be any vector
such that uTU has no zero entries. The following statements are equivalent

1. There exists an index k s.t. the kth column of U has constant entries

2. eeT ∈ U

3. For any vector x ∈ Cn, it holds Lu(x)e = Lu(x)Te =
(
xTe/uTe

)
e

4. For any matrix A ∈Mn, it holds UAe = UT
Ae = 1

n(eTAe)e

In particular if A or AT are weakly stochastic then UA is doubly weakly
stochastic.

Proof. (1)=⇒(2) Let Di be the diagonal rank one matrix whose only nonzero
entry is (Di)ii = eTe. The rank one matricesRi = UDiU

H = (eTe)(Uei)(Uei)
H

clearly all belong to U , and in particular Rk = eeT ∈ U . (2) =⇒ (3) Since
Lu is a bijection and since eeT ∈ U , we have Lu(e) = eeT/eTu. Thus
formula (4.7) implies

eT
(
eTu
eTx

)
Lu(x) =

(
eTu
eTx

)
xTLu(e) =

(
eTu
eTx

)(
xTe
eTu

)
eT = eT ,

that is Lu(x)Te = (xTe/uTe)e, for any x ∈ Cn. Now using the hypothesis
eeT ∈ U and the fact that matrices in U commute, we have the equality
Lu(x)eeT − eeTLu(x) = O implying that Lu(x)e =

(
xTe/eTu

)
e. (3) =⇒

(4) Since UA ∈ U , there exists a vector zA ∈ Cn such that UA = Lu(zA). It
is enough to show that eTu/eTzA = n/eTAe. Matching the representations
(4.7) and UA = Ud(UHAU)UH we get zTA = uTUd(UHAU)UH . Thus since
UHe = αek, with |α|2 = 1/n, it holds

zTAe = αuTUek(U
HAU)kk = uTe(UHAU)kk = uTe

(
eTAe/n

)
.

(4)=⇒(1) The eigenvectors of any matrix L ∈ U = sdU are the columns of
U . The fact that e is an eigenvector of UA for any A ∈ Mn, implies that
there exists k such that Uek = αe, with |α|2 = 1/n.
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4.2.2 Examples

Low complexity matrix algebras have been studied extensively in relatively
recent years in the context of preconditioning, displacement and optimiza-
tion, see e.g. [23, 34, 38, 37, 44, 100, 101] and the references therein. Among
the best known matrix algebras developed in past literature, we recognize
several weakly stochastic matrix algebras. For the sake of completeness, we
briefly discuss some relevant examples in the following. Other examples can
be found among the Hartley-type algebras and the matrix algebras associ-
ated with trigonometric transforms, see [5, 6, 8] e.g. In particular, it is not
difficult to observe that the Hartley [5] and the τ11 [8] algebras are weakly
stochastic.

Circulants

The discrete Fourier transform is realized through the action of the Fourier

matrix Fn = 1/
√
n
(
e(2πi(ij)/n)

)n−1
i,j=0

. It is easy to check that Fn is unitary

and that Fne1 = e/
√
n, that is, the first column of Fn is constant. The

matrix algebra C = sd (Fn) is usually referred to as the circulant algebra.
If Σ is the modulo-n shift backward matrix

Σ =


1

. . .

1
1


then {I,Σ ,Σ 2, . . . ,Σn−1} is a basis for C and this basis is made by nonneg-
ative and mutually orthogonal matrices. It follows that the computation of
the projection CA only requires additive operations among the entries of A.

Haar

The discrete Haar transform is realized through the action of the Haar
matrix Wn, which can be described recursively in terms of two matrices
Qn and Dn. Let S1 = Q1 = D1 = 1, then for n = 2, 4, 8, . . . , 2m let
Sn = d

(
1/
√

2, 1, . . . , 1
)

and

Qn =

[
eeT1 Qn/2
Qn/2 −eeT1

]
, Dn =

[
Dn/2Sn/2 0

0 Dn/2Sn/2

]
.

Thus the Haar matrix is given by

Wn = QnDn =

[
1√
n
eeT1 Wn/2Sn/2

Wn/2Sn/2 − 1√
n
eeT1

]
Other equivalent definitions of this matrix can be found in the literature

([55] e.g.) obtained by permuting rows and columns of Wn. Using the
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proposed construction, it is not difficult to check that such Wn is unitary,
that its first column is (1/

√
n)e and that its multiplication times a generic

vector can be performed very cheaply. The generated algebra W = sd (Wn)
is called Haar matrix algebra.

Eta

Consider the matrix U defined as follows:

Ui,1 = 1/
√
n,

Uij =
√

2
n

{
cos
(
(2i−1)(j−1)π

n

)
+ sin

(
(2i−1)(j−1)π

n

)}
, j = 2, . . . , dn2 e

Ui,n
2
+1 = (−1)i−1

√
n

, if n is even

Uij =
√

2
n

{
cos
(
(2i−1)(j−1)π

n

)
+ sin

(
(2i−1)(j−1)π

n

)}
, j = bn2 + 2c, . . . , n

for i = 1, . . . , n. The matrix U is unitary and real, moreover Ue1 = 1√
n
e.

As a consequence, setting η = sdU , we obtain a weakly stochastic sdU low
complexity matrix algebra (see [6, 44, 94, 95] for the fast sine-cosine trans-
forms used in the computations involving U). For the sake of completeness
let us recall the following representation [6]: η = Cs + JCs where Cs is the
algebra of symmetric circulant matrices and J is the reverse identity matrix,
(J)ij = 1 if i+j = n+1, and (J)ij = 0 otherwise. It follows that any matrix
A in η is symmetric and persymmetric and satisfies the cross-sum rule

ai−1,j + ai+1,j = ai,j−1 + ai,j+1, i, j = 1, . . . , n

with border conditions a0,i = a1,n+1−i, i = 1, . . . , n. See also [44, 34, 100]
and the references therein.

Hadamard

The Sylvester-Hadamard orthogonal matrix of order n = 2m is defined re-
cursively by the rule Hm = H1 ⊗Hm−1, where

H1 =

[
1 1
1 −1

]
and ⊗ is the Kronecker product. As the first column of H1 has all ones
entries, we immediately see that the first column of Hm has constant entries
as well. The associated unitary matrix is 1√

2
mHm and the associated matrix

algebra sd ( 1√
2
mHm) is therefore a weakly stochastic sdU algebra. The

Hadamard matrix has relevant applications both in statistics, where it is
used f.i. to uncover the dependencies in a multivariable data set, and in
error correcting codes theory. We refer to [107] for a detailed description of
applications and properties of the Hadamard matrix.
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4.3 Preserving the nonnegativity of the entries

As the original matrix A is both nonnegative and weakly stochastic, one
ideally would like to have LA both nonnegative and weakly stochastic. The
following theorem characterizes the subspaces L which preserve the nonneg-
ativity of a matrix A, when projecting A onto them.

Definition 10. We say that L is a nonnegative matrix space if LA ≥ O for
any A ≥ O, i.e. if the projection A 7→ LA preserves the cone of nonnegative
matrices.

Theorem 4.3.1. L is a nonnegative matrix space if and only if L has a
basis of orthonormal nonegative matrices.

Proof. It is straightforward to see that if L has a basis of orthogonal non-
negative matrices, then L is a nonnegative space. Let π : Mn → L be
the projection operator. If L is a nonnegative matrix space, we have that
π(M+

n ) ⊆M+
n , that is the projection leaves the cone of nonnegative matrices

invariant. For the sake of simplicity let us consider the vectorization opera-
tor which realizes the standard isomorphism betweenMn and Rn

2
. We have

vec(M+
n ) ≡ Rn2

+ , Π = vec(π) ∈M+
n2 and λ(Π) = {0, 1}. The multiplicity of

1 = ρ(Π) is the dimension of L. If dim(L) = 1 then the proof is trivial. If
dim(L) = k > 1 then ρ(Π) is not simple; thus, due to the Perron-Frobenius
theorem, Π is reducible and there exists a permutation matrix Q ∈ M+

n2

such that

QΠQT = Π1 ⊕ · · · ⊕Πk ⊕N

where each Πi is irreducible and N is nilpotent. Therefore there exist k
positive vectors x1, . . . , xk such that Πixi = xi. Let x̃i be the embedding
of xi into Rn

2
, obtained by filling xi with zero entries, and set yi = QTx̃i.

Then Πyi = yi and yTi yj = 0 for i = 1, . . . , k and any j 6= i. Finally note
that, if Yi ∈Mn is the matrix such that yi = vec(Yi), we have Yi ≥ O, Yi ∈ L
and (Yi, Yj) = yTi yj so that Y1, . . . , Yk is a basis for L made by orthogonal
nonnegative matrices.

It is immediate to note that the algebra of diagonal matrices D = sd I is
a nonnegative matrix space. If we define the preconditioner for PER as the
projection ofM onD then we have P = DM = d(M) and the method in (4.4)
coincides with the Jacobi iterative scheme. The convergence properties of
such method are well known (see for instance [77, 104]). We analyze them in
more details in Section 4.5, taking into account the structure of the matrices
M ∈ SKn. Despite its simple formulation and cheap implementation, the
diagonal preconditioner does not preserve the weakly stochasticity of the
original matrix. This has two drawbacks: on the one hand the use of P =
DM in (4.4) has a less clear relation to the power method, since the power
method preconditioner Ppm is weakly stochastic, as we will show in the next
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section; on the other hand, the numerical implementations in Section 4.6
show that the property of being weakly stochastic ensures faster convergence.

To our knowledge, if we exclude the multilevel generalizations, the only
low complexity matrix algebra satisfying the hypothesis of both Theorems
4.2.1 and 4.3.1 is the circulant algebra. The use of a circulant preconditioner
in this context has been analyzed in details in [99]. Although the analysis
in [99] shows a reduction of the number of iterations with respect the classic
power method, the use of the circulant algebra requires one Fourier trans-
form and two complex vectors to be stored per each step. In Section
4.4.3 we will introduce a new preconditioner based on a weakly stochastic
matrix algebra diagonalized by a suitable Householder transform. We pro-
pose a convergence analysis of PER with such novel preconditioner under
the assumption that A is symmetric. Although an exhaustive convergence
analysis for the more realistic case where A is generic is still missing, we
point out that the low memory storage and the linear order of operations
per step required by the new technique make it effectively applicable also
when the dimension of the problem is huge. This is further highlighted by
the numerical tests proposed in Section 4.6.

4.4 The choice of the preconditioner

In this section we show that the power method preconditioner Ppm for the
PER scheme is a matrix belonging to a class of weakly stochastic sdU
matrix algebras. Then we develop a new matrix algebra defined in terms of
Householder unitary transformations, leading to a new cheap preconditioner
for PER. In the subsequent sections we analyze the convergence of PER
method and we provide numerical evidences of the advantages obtained by
using the new Householder preconditioner.

4.4.1 The power method embedded into a PER iterative
scheme

Recall that the unpreconditioned Euler-Richadson method is obtained by
chosing P = I. Given M = I−τA ∈ SKn, the power method preconditioner
Ppm for the solution of Mx = y, instead, is the following rank-one correction
of the identity matrix

Ppm = I − τ

n
eeT .

We observe that Ppm belongs to any weakly stochastic sdU matrix
algebra. In other words such preconditioner belongs to the intersection
∩{ sdU | U has a constant column}. Indeed, let U be any unitary ma-
trix such that Uek has constant entries, and consider the diagonal matrix
D = d(1, . . . , 1, 1−τ, 1, . . . , 1), where 1−τ lies in the k-th diagonal position,
then Ppm = UDUH . It is worth noting that this is somehow analogous to the
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property shown in point 2 of Theorem 4.2.1. Indeed observe that, as for the
projection UM = I − τLA, the matrix Ppm has the structure Ppm = I − τE,
where E is the weakly stochastic matrix E = eeT/n which indeed belongs
to any weakly stochastic sdU algebra. Note moreover that

P−1pm = I +

(
τ

1− τ

)
eeT

n
. (4.8)

In view of Theorem 4.1.1 we can show the connection between the PER
method applied to M ∈ SKn and the power method for the ergodic distri-
bution of a Markov chain described by S ∈ Σn.

Theorem 4.4.1. Given S ∈ Σn let τ(S), AS and yS be defined as before
Theorem 4.1.1. When the preconditioner is P = Ppm, the PER method for
the solution of Mx = (I − τ(S)AS)x = yS coincides with the power method
applied to S.

Proof. Let {xk} be the sequence defined by the PER method (4.4). By
Theorem 4.1.1 and the formula above, it follows that yTSe = 1 − τ(S) and
P−1pme = (1− τ(S))−1e. As a consequence we observe that eTxk = 1 implies

eTxk+1 = eTP−1pmyS + eT(I − P−1pmM)xk = 1 .

Therefore we can assume that the entries of the initial x0 sum up to 1, and
that eTxk = 1 for all k ≥ 0. We have

xk+1 = P−1pmyS + (I − P−1pmM)xk

= yS +
τ(S)

n
e+ xk −Mxk −

eTMxk
1− τ(S)

τ(S)

n
e

= yS + τ(S)ASxk

and, by Theorem 4.1.1, S = τ(S)AS + ySe
T, therefore xk+1 = Sxk, and the

proof is complete.

Let |λ1(X)| ≥ · · · ≥ |λn(X)| be the eigenvalues of a matrix X. As S ∈
Σn, by Theorem 4.1.1, we have |λ2(S)| < 1 and, by the well known behavior
of the power method, we have that xk converges to the solution of Mx = yS
as O(|λ2(S)|k). However, a different bound can be observed by using the
equivalence shown in Theorem 4.4.1 as indeed we will show in Section 4.5
that xk converges to x as O(τ(S)k|λ2(AS)|k). Note that S ∈ Σn implies,
by Theorem 4.1.1, that τ(S) < 1 and AS is stochastic too, thus |λ2(S)| <
1 and τ(S)|λ2(AS)| < 1. However in several cases (for instance if AS is
primitive, i.e. AkS > O for some integer power k > 0), one has |λ2(AS)| < 1,
thus τ(S)|λ2(AS)| < τ(S) whereas |λ2(S)| ≤ τ(S), thus suggesting that
τ(S)|λ2(AS)| could provide a better bound on the convergence rate.
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4.4.2 The Householder weakly stochastic matrix algebra

Let U be any weakly stochastic sdU algebra. The power method is ob-
tained by applying PER and choosing P inside U as the matrix with the
following eigenvalues: 1 − τ , with multiplicity one, and 1 with multiplicity
n− 1. To improve the performances of the power method, we define a new
preconditioner by replacing the eigenvalues 1 with the spectrum of the pro-
jection UM of M onto U . Note that the eigenvalue 1 − τ is an invariant,
that is 1 − τ ∈ λ(UM ) for any weakly stochastic sdU algebra U . In fact,
as ATe = e implies UT

Ae = e, we have UT
Me = (I − τUA)Te = (1 − τ)e.

Also note that UM minimizes the distance ‖X − M‖F among the ma-
trices X ∈ U , being ‖X‖F =

√
(X,X) the Frobenius norm. Therefore

‖UM −M‖F ≤ ‖Ppm −M‖F for any weakly stochastic sdU space U , and
the inequality is strict up to trivial cases. This motivates the choice P = UM ,
in place of the classic P = Ppm, to improve the performances of the method.

The example spaces shown in Section 4.2.2 are defined in terms of fast
transformations U whose space and time complexities are O(n log n). In
order to keep the complexity of the PER iterations as low as possible, we
define a weakly stochastic sdU algebra diagonalized by a Householder trans-
formation. As we prove in the next section this allows us to keep the time
and space complexity per step linear in n. It is worth mentioning that,
due to their linear computational complexity, matrix algebras diagonalized
by Householder unitary transforms have been already involved in a number
of applications. In particular they have been recently used to define com-
petitive iterative optimization algorithms, whose space and time per step
complexity is O(n), c.f. [27, 41]. Let us introduce a linear space H of the
form

H = {H(w)d(z)H(w) | z ∈ Cn}, H(w) = I − 2wwH , ‖w‖ = 1

whereH(w) is a Householder unitary matrix such thatH(w)ek =
(
eiθ/
√
n
)
e,

for some θ ∈ R. We shall observe that all the Householder matrices of
this kind are of the form H(w±), where w+ and w−, are two suitable
vectors in Rn. We firstly look at the k-th column of H(w), and we get
(I − 2wwH)ek = ek − 2w(wHek) =

(
eiθ/
√
n
)
e. Therefore

2wk w = ek −
eiθ√
n
e. (4.9)

The k-th component of the above equality implies 2wkwk = 1 −
(
eiθ/
√
n
)
,

so that wk 6= 0, θ ∈ {0, π}, and thus |wk|2 = (1 ± 1/
√
n)/2. As a conse-

quence the k-th entry of w is given by either of the two following formulas,
corresponding to θ = 0 and θ = π, respectively:

wk =

(√
n− 1

2
√
n

)1/2

eiφ, or wk =

(√
n+ 1

2
√
n

)1/2

eiφ, φ ∈ R .
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Writing now the j-th component of (4.9) for j 6= k we obtain an analogous
formula also for the other entries of w:

wj = − eiφ
√

2 4
√
n
√√

n− 1
, or wj =

eiφ
√

2 4
√
n
√√

n+ 1
, φ ∈ R .

The previous relations can be written in compact form, showing that any
vector w such thatH(w) defines a weakly stochastic algebra is either w = w+

φ

or w = w−φ , where

w−φ = eiφ·β−n (
√
nek+e), w+

φ = eiφ·β+n (
√
nek−e), β±n =

1
√

2 4
√
n
√√

n∓ 1
.

This finally shows an explicit formula for all the possible weakly stochastic
Householder algebras. Note indeed that the Householder matrices H(w+

φ )

and H(w−φ ) do not depend on φ ∈ R therefore, setting w± = w±0 , we see

that H(w+) and H(w−) are the only two Householder matrices which define
a weakly stochastic sdU algebra. They are both real unitary matrices and
such that H(w±)ek = (±1/

√
n)e.

4.4.3 The Householder PER method

We use the notation

χ(B) = computational cost of the product B × vector .

It is not difficult to check that, when P = UM and U = sdU , the overall
computational cost of the PER method for the solution of Mx = y, M =
I − τA ∈ SKn, is

χ(A) + χ(U) + χ(UH) +O(n) (4.10)

for each step, plus a preprocessing phase which is required essentially for the
computation of the eigenvalues λ1, . . . , λn of UA, and whose computational
complexity highly depends on the chosen U as, by (4.6), λi = (UHAU)ii.

The Householder PER method (HPER in short) is obtained by project-
ing M over one of the two Householder sdU algebras introduced above. As
we can freely choose either w+ or w−, in what follows we set w = w+ and
assume for simplicity that the constant column of H(w) is the first one (i.e.
k = 1 in the construction of Section 4.4.2). Then we let H = sdH(w). Let
us briefly analyze the computational cost of HPER.

Set H(w) = I − 2wwT, where w = βn(
√
ne1 − e) and β2n = 1

2
1√

n(
√
n−1) .

We immediately see that χ(H(w)) = O(n). Therefore for this choice, even
if A is a sparse or a strongly structured matrix, the complexity per step of
HPER is dominated by χ(A) as the estimate (4.10) becomes χ(A) + O(n)
when U = H(w). Note that this is the same complexity required by the
standard power method iterations.
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Note that a preprocessing phase is required for the computation of the
diagonal entries of H(w)AH(w) (that is the eigenvalues of HA), as well as
to compute Aw, ATw and H(w)y = y + 2βn(n−1/2 − y1)w. Observe that

H(w)AH(w) = A− 2(AwwT + wwTA− 2γnww
T) (4.11)

where

γn = wTAw = nβ2n

(
(A)11 −

1√
n
− 1√

n
(Ae)1 + 1

)
. (4.12)

Therefore, from (4.11), we obtain the equalities

d(H(w)AH(w))ii = (A)ii − 2wi

(
(Aw)i + (wTA)i − 2γnwi

)
,

i = 1, . . . , n, which, together with (4.12), show that χ(A) operations are
sufficient to compute the diagonal entries of H(w)AH(w). We conclude
that the overall cost of the preprocessing phase is χ(A)+χ(AT)+O(n). Let
us point out that even in the worst case, when A is a general, non structured
and dense matrix, by the particular form of w, O(n2) additive operations
and O(n) multiplicative operations are sufficient to compute Aw and wTA.

4.5 Convergence analysis

In this section we analyze the convergence of the preconditioned Euler-
Richardson method applied to the linear system Mx = y when M ∈ SKn

and the preconditioner P is the optimal fit of M onto a matrix algebra sdU .
First of all we state the following simple but somewhat general theorem. We
shortly outline a possible proof.

Theorem 4.5.1. Let M ∈ SKn and L be a subspace of Mn such that I ∈ L
and A ≥ LA ≥ O, then ρ(H(LM )) < 1. That is the PER scheme (4.4) with
P = LM converges.

Proof. The linearity of the projection and the fact that I ∈ L imply that
LM = I − τLA. Since A ≥ LA ≥ O, the Perron-Frobenius theorem implies
ρ(LA) ≤ ρ(A) = 1. Thus LM is a M-matrix as well, and L−1M ≥ O. Moreover
clearly LM −M = τ(A − LA) ≥ O. We have as a consequence that both
H(LM ) and (I − H(LM ))−1 are nonnegative matrices. Indeed H(LM ) =
L−1M (LM−M) ≥ O and (I−H(LM ))−1 = M−1(LM−M+M) = M−1(LM−
M)+I ≥ O. Let ρ = ρ(H(LM )) and let z ≥ 0, z 6= 0 be such that H(LM )z =
ρz. We have that y = (I − H(LM ))−1z is nonzero and nonnegative, and
z = (1− ρ)(I −H(LM ))−1z = (1− ρ)y. But z is nonzero and nonnegative,
that is (1− ρ) > 0.
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It is worth noting that the theorem above is related with the concept of
regular splitting of M-matrices, see [104] e.g. In fact, under the hypothesis
of Theorem 4.5.1, letting N = LM −M , we observe that M = LM −N is a
regular splitting of M , that is N ≥ 0 and L−1M ≥ 0.

Corollary 4.5.2. Let M = I − τA ∈ SKn and let {J1, . . . , Jm} be a set of
nonnegative mutually orthogonal matrices such that

1. #{nonzero entries of Jk} = 1 for any k ∈ {1, . . . ,m}

2. I ∈ L = span{J1, . . . , Jm}

Then LM is invertible and the PER method with P = LM is convergent.

Proof. To prove this corollary we simply show that the hypothesis of the pre-
vious theorem are all satisfied. First of all, since J1, . . . , Jm are orthogonal
and nonnegative, L satisfies the hypothesis of Theorem 4.3.1 by construc-
tion, thus LA ≥ O.

Now, for any k ∈ {1, . . . ,m}, let (Jk)ik,jk be the unique nonzero element
of Jk. We can obviously assume (Jk)ik,jk = 1 without loosing generalities.
Then, in the notation of (4.5), we have B = I, ck = aik,jk and LA =∑

k aik,jkJk, implying that for any i ∈ {1, . . . , n} it holds

n∑
j=1

|(LA)ij | ≤
n∑
j=1

|(
m∑
k=1

aik,jkJk)ij | =
∑

j,k:(ik,jk)=(i,j)

|aik,jk | ≤
n∑
j=1

|ai,j |

and hence

ρ(LA) ≤ ‖LA‖∞ = max
i

n∑
j=1

|(LA)ij | ≤ max
i

n∑
j=1

|ai,j | ≤ ‖A‖∞ = 1 = ρ(A).

Therefore ρ(LA) ≤ ρ(A). It follows that LM = I − τLA is invertible and
L−1M ≥ O. Finally note that

(A− LA)ij =

{
aij ij /∈ {i1j1, . . . , imjm}
0 otherwise

which implies A ≥ LA. The thesis follows.

The set {e1eT1 , e2eT2 , . . . , eneTn} is a simple example of nonnegative ma-
trices satisfying the hypothesis of the corollary above. Their linear span is
the algebra of diagonal matrices D = sd I, the PER method applied with
P = DM coincides with the classic Jacobi method and it is well known to be
convergent (see [104] e.g.). Nonetheless the next Theorem 4.5.3 shows that
a more precise control on the rate of convergence can be achieved. Recall
that the classic unpreconditioned ER scheme is obtained for P = I and one
has ρ(H(I)) ≤ τ .
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Theorem 4.5.3. Let D = sd I be the algebra of diagonal matrices and

let M = I − τA ∈ SKn. If ε = arg max
{
λ ≥ 0 | mini aii ≥ 1−τλ

1−τ1+λ

}
, then

ρ(H(DM )) ≤ τ1+ε. In particular ρ(H(DM )) ≤ τ for any M ∈ SKn and if
mini aii ≥ (1 + τ)−1 then ρ(H(DM )) ≤ τ2.

Proof. By exploiting the entries of H = I −D−1M M we have

(H)ij =

{
τaij

1−τaii if i 6= j

0 if i = j
.

By Gershgorin localization theorem, the eigenvalues of H are contained in-
side the ball in C centered over the origin and with radiusR = maxi

∑
j 6=i(H)ij .

By using the identity
∑

j aij = 1 and by observing that aii ≥ 1−τε
1−τ1+ε

if and only if 1−aii
1−τaii ≤ τ ε, we get

∑
j 6=i(H)ij = τ 1−aii

1−τaii ≤ τ1+ε, thus

ρ(H) ≤ R ≤ τ1+ε.

Note that the preceding theorem shows that the larger are the diagonal
entries of A, the more likely ρ(H(DM )) is small.

For the sake of completeness let us point out that other examples of set
of matrices satisfying the hypothesis of Corollary 4.5.2 have been considered
in literature. For example the authors of [36] define the set of matrix spaces
(and matrix algebras) {U∆UH : ∆ ∈M(E)}, where U is a unitary matrix,
E ∈ {0, 1}n×n is a non-degenerate mask matrix, M(E) = {E ◦ A s.t. A ∈
Mn} and ◦ is the Hadamard entry-wise product. It is not difficult to observe
that any space L = M(E) indeed admits a basis of matrices {J1, . . . , Jm}
satisfying the hypothesis of the corollary. Of course, for such space L, the
matrix LM is LM = E ◦M .

4.5.1 Projecting over a weakly stochastic algebra

The results presented in this section give a further and more detailed intu-
ition on why, when M ∈ SKn, a preconditioner for (4.4) based on weakly
stochastic matrix algebras behaves well. We assume for the remaining part
of this section that any stochastic matrix A, defining the given stochastic
M-matrix M = I − τA ∈ SKn, has a simple dominant eigenvalue ρ(A) = 1.

Let U = sdU be a weakly stochastic matrix algebra. For a matrix
M = I − τA ∈ SKn we have UM = I − τUA = I − τUd(zA)UH (which we
assume invertible) and

H(UM ) = I − (I − τUd(zA)UH)−1(I − τA),

where zA is the vector whose entries are the eigenvalues of UA, ordered as
usual. Recall that the components of zA are the diagonal entries of UHAU .

We claim that, for any such algebra U , the spectrum of the iteration
matrix H(UM ) only depends on the eigenvalues λi(A) and λi(UA), for i 6= 1.
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In other words when the preconditioner is chosen projecting M over a weakly
stochastic algebra, the leading eigenvalues λ1(A) = λ1(UA) = 1 of A and its
projection, are not involved in the analysis of the convergence.

To this end let us observe that, since U is weakly stochastic, there exists
an index k ∈ {1, . . . , n} such that Uek has constant elements, that is Uek =
αe for some α ∈ C such that nαα = 1. Therefore the k-th entry of zA is

(zA)k = (UHAU)kk = eTkU
HAUek = αeTAUek = αeTUek = ααn = 1

Observe analogously that eTkU
H(I−τA)U = (1−τ)eTk , that is the k-th entry

of the k-th row of UHMU is 1 − τ and the remaining components are all
zeros. The same holds for UHUMU . It follows that the two matrices UHMU
and UHUMU have the same block structure, which we represent here when
k = 1 for easy of notation:

UHMU =

(
1− τ 0T

f I − τV HAV

)
, UHUMU =

(
1− τ 0T

0 I − τd(V HAV )

)
,

(4.13)
where V is the partial isometry given by the last n−1 columns of U and f is a
suitable n−1 vector. Of course, also UHH(UM )U= I − (UHUMU)−1(UHMU)
has the same structure.

Now consider the matrix A2 = A− qeT/
√
n, where q is any vector such

that q ≥ 0, qTe =
√
n. Also, let A = XJX−1 be the Jordan decomposition

of A. As ρ(A) = 1 is a simple eigenvalue of A, the k-th row of X−1 is
constant. That is eTkX

−1 = eT/
√
n and Jek = (JTek) = ek. Note moreover

that eTkX
−1q = 1. Then

X−1A2X = X−1
(
A− qeTkX−1

)
X = J −X−1qeTk =

(
1 0T

0 J̃

)
−
(

1 0T

q̃ O

)
(4.14)

where J̃ is the Jordan form of A besides the 1 × 1 block associated with
ρ(A), q̃ is the n−1 vector made by the entries of X−1q besides the k-th one,
and the right most block representation has been shown for the case where
k = 1, for notational convenience.

We deduce that, for any q ≥ 0 with qTe =
√
n, we have λ(A2) =

λ(X−1A2X) = λ(J̃) ∪ {0} = {λ(A) \ {1}} ∪ {0}. Moreover note that this
shows that the eigenvalues of A2 and V HAV coincide, besides 0. In fact
UHMU and X−1MX are similar and thus, comparing (4.13) and (4.14), the
blocks I − τV HAV and I − τ J̃ have same eigenvalues. The same holds for
the eigenvalues of UA2 and d(V HAV ). Therefore, for any weakly stochastic
algebra U , the spectrum of the iteration matrix H(UM ) of the PER method
(4.4), can be decomposed as

λ(H(UM )) = λ(I − (I − τUA2)−1(I − τA2))

which finally shows our claim.
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It is worth noting that the observations did so far apply to the choice
P = Ppm. Precisely, from (4.8) we get

H(Ppm) = I − P−1pmM = τ(A− eeT/n)

and therefore, choosing q = e/
√
n,

λ(H(Ppm)) = λ(τA− τ

n
eeT) = λ(τX−1AX − τ

n
X−1eeTX) = λ(τA2).

By using Theorems 4.1.1 and 4.4.1, we deduce a new upper-bound on the
convergence rate of the power method applied to S ∈ Σn. Namely we have
that the sequence Sxk converges to the ergodic distribution of S with a rate
of convergence bounded by O(τ(S)|λ2(AS)|), where τ(S) and AS are defined
in terms of S as in Theorem 4.1.1.

As a matter of fact, when the preconditioner in U is not Ppm, but instead
is chosen in U as the matrix with smaller Euclidean distance from M , we
cannot provide a theoretical control on the eigenvalues of I−(I−τUA2)−1(I−
τA2). However both intuition and numerical tests shown in Section 4.6
suggest that the spectral radius of H(UM ) is significantly smaller than the
one of H(Ppm).

For the sake of completeness, we observe that, when A is stochastic
nonnegative and symmetric, further results hold as stated in the follow-
ing Theorem 4.5.4, where the eigenvalues of W (symmetric) are ordered as
λ1(W ) ≥ · · · ≥ λn(W ).

Theorem 4.5.4. Let M = I − τA ∈ SKn be such that A is symmetric and
ρ(A) is simple. Let U = sdU be a weakly stochastic matrix algebra. Then

ρ(H(UM )) ≤ τ max

{
λ2(UA)− λn(A)

1− τλ2(UA)
,
λ2(A)− λn(UA)

1− τλn(UA)

}
Proof. To lighten the notation, we denote with M2 the matrix I − τA2,
where A2 is the matrix such that A = eeT/n+A2. Note that the symmetry
of A implies that both M and UM are positive definite matrices. In fact,
M is clearly real symmetric and λ(M) ∈ R+, whereas UM has the form
UM = Ud(UHMU)UH . Therefore the eigenvalues of UM are inside the
convex hull of λ(M), so they are real and positive, implying that UM is
positive definite. A known consequence of the Weyl’s inequalities states that,
for any two positive definite matrices X and Y , the following inequalities
hold (see for instance [4])

λn(X)λn(Y ) ≤ λn(XY ) ≤ λ1(XY ) ≤ λ1(X)λ1(Y ).

Collecting such inequalities, the considerations we did shortly above the
statement of this theorem, and the fact that λi(U−1M ) = λi(UM )−1 for any
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i ∈ {1, . . . , n}, we get

ρ(H(UM )) = max
{
λ1(U−1M2

M2)− 1, 1− λn(U−1M2
M2)

}
≤ max

{
λ2(M)

λn(UM )
− 1, 1− λn(M)

λ2(UM )

}
(4.15)

= τ max

{
λ2(UA)− λn(A)

1− τλ2(UA)
,
λ2(A)− λn(UA)

1− τλn(UA)

}
and the thesis follows.

In particular, under the same hypothesis of the theorem above, we have

ρ(H(UM )) <
2τ

1− τ
,

and hence if τ is small enough, precisely τ ≤ 1/3, then PER with P = UM
and A symmetric, converges for any choice of the weakly stochastic algebra
U .

4.6 Numerical comparisons

In this final section we present a number of numerical tests comparing the
behavior of three methods on several synthetic and real-world datasets. The
linear system solved is Mx = (I−τA)x = y where y is a random vector with
entries in [0, 1], τ = 0.9 and A is a stochastic matrix defined as follows. We
consider X, the adjacency matrix of the dataset, then we normalize it into
the associated transition matrix T = D−1X, being D the diagonal matrix
dii = eTi Xe. In order to force a lower bound on the diagonal entries, we
introduce a further parameter 0 < β < 1, and finally define the matrix A
as the convex combination A = βI + (1 − β)TT. The standard Pagerank
random walk is retrieved for β = 0. The methods are defined by different
choices of the preconditioner P in (4.4):

HPER. The Euler-Richardson method preconditioned via the optimal
fit P = HM , where H = sdH(w) is the Householder weakly stochas-
tic matrix algebra discussed in Section 4.4.3. This method consists of
a preprocessing phase in which the quantities βn, γn, Aw, H(w)y and
d(H(w)AH(w)) must be computed. The overall cost of this initial com-
putation is O(χ(A) + χ(AT)) + O(n). Then each step of the method is
performed by the recursive computations of xk+1 = H−1M y+ (I −H−1M M)xk,
each step requires O(χ(A)) +O(n) operations.

Jacobi. The Euler-Richardson method preconditioned with the diagonal
optimal fit matrix P = DM = I − τd(A). The rate of convergence is given
here by Theorem 4.5.3. Note that D can be seen as the span of n orthogonal
nonnegative rank-one matrices, and thus, accordingly with Theorem 4.3.1,
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both DA and D−1M maintain the nonnegativity of the entries. On the other
hand this choice for P does not ensure any stochasticity property of P−1,
in the general case. We recall that this method coincides with the standard
Jacobi iterations.

Power method. The Euler-Richardson method preconditioned with
the power method matrix Ppm defined as the following rank-one correction
of the identity Ppm = I − τ

nee
T. As discussed in Section 4.4.1, this method

coincides with the power method applied to the stochastic eigenproblem
Sp = p, where S is obtained from A as discussed in Theorem 4.1.1.

It is worth mentioning that both the Jacobi and the power methods
can count on a convergence theorem with an explicit upper bound on the
convergence rate. The spectral radius of the iteration matrix for the Jacobi
method is upper-bounded by τ1+ε, where ε is defined as in Theorem 4.5.3
and increases with the magnitude of the diagonal entries of A. We have
introduced the parameter β to appreciate the acceleration gained by this
method when the aii are close to 1.

Similarly the spectral radius of the iteration matrix for the power method
is upper-bounded by τ |λ2(A)|. Note that this convergence rate is linear in τ ,
but the method can be sensibly faster than the Jacobi one, when the second
eigenvalue of A is small. This property is essentially given by the use of a
weakly stochastic preconditioner.

Unfortunately we do not have an explicit convergence theorem for HPER
for non-symmetric problems. However note that the use of a weakly stochas-
tic preconditioner combines somehow the two previous convergence proper-
ties. In fact, on the one hand, as for the power method, the dominant
eigenvalue of A is deflated and does not influence the spectral radius of the
iteration matrix, on the other hand, as for the Jacobi scheme, the precon-
ditioner is related with the diagonal entries of the matrix UHAU , that is
similar to A. The tests that we present in the following show that HPER
goes faster than the Jacobi and power methods and, in particular, its con-
vergence rate increases with β (as the Jacobi iterations do) and increases
when the magnitude of the subdominant eigenvalue of A decreases (as for
the power method).

We point out that the choice τ = 0.9 has been done accordingly with
typical network applications, as for instance the Google’s Pagerank central-
ity. It is worth pointing out that the smaller is τ , the simpler is the problem,
thus we do not consider small values of τ in the following.

Tables 4.1, 4.2 show the results for a randomly generated binary matrix
X. The eigenvalues of X in this case cluster around the origin ([97, 99] e.g.).
As the value of β increases, the number of iterations shown is the median
over 10 tests. The HPER method significantly outperforms the other ones.
The subsequent Table 4.3 shows, instead, the behavior of the three methods
on a number of real world datasets. The test matrices considered are part
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Random matrix of order n = 107

β HPER Jacobi power method

#
it

er
a
ti

o
n

s 0.1 11 104 37

0.2 8 99 32

0.5 6 60 54

0.9 4 19 141

Table 4.1: The table shows the number of iterations required by the three methods to
achieve a precision of 10−7 on the residual ‖Mx− y‖, when β ranges from 0.1 to 0.9. The
coefficient matrix here is defined in terms of a random binary matrix of order 107. The
number of iterations shown is the median over 10 tests.

Random matrix of order n = 103, precision 10−7

β HPER Jacobi power method

#
it

er
a
ti

o
n

s 0.1 6 157 9

0.2 6 141 12

0.5 6 91 24

0.9 5 25 89

Random matrix of order n = 103, precision 10−10

β HPER Jacobi power method

#
it

er
a
ti

o
n

s 0.1 9 216 13

0.2 8 194 17

0.5 8 126 33

0.9 7 34 122

Random matrix of order n = 103, precision 10−13

β HPER Jacobi power method

#
it

er
a
ti

o
n

s 0.1 11 276 16

0.2 11 247 21

0.5 10 160 43

0.9 9 43 155

Table 4.2: The table shows the number of iterations required by the three methods to
achieve a precision of 10−7, 10−10, 10−13 on the residual ‖Mx− y‖, when β ranges from
0.1 to 0.9. The coefficient matrix here is defined in terms of a random binary matrix of
order 103. The number of iterations shown is the median over 10 tests.

of the University of Florida sparse matrix collection [31]. The matrices
considered are both symmetric (undirected) and unsymmetric (directed).
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Network n β
# iterations

HPER Jacobi power method

U
n

d
ir

ec
te

d Delaunay19 524 288 0.1 156 184 172

Delaunay21 2 097 152 0.2 178 206 221

Italy OSM 6 686 493 0.2 201 214 241

Europe OSM 50 912 018 0.2 159 167 186

D
ir

ec
te

d

Indian web crawl 1 382 908 0.2 187 209 235

Wikipedia 2006 3 148 440 0.1 159 177 175

Wikipedia 2007 3 566 907 0.1 157 178 173

LJournal 2008 5 363 260 0.1 154 192 185

Table 4.3: The table shows the number of iterations required by the three methods to
achieve a precision of 10−7 on the residual ‖Mx− y‖. Tests here have been made on real
world matrices of different sizes, and the value of β has been chosen between 0.1 and 0.2.
Tests for larger values of β (here omitted) show a significant acceleration of HPER over
the other two methods.



Chapter 5

Updating Broyden
Class-type descent directions
by Householder adaptive
transforms

5.1 Introduction

It is well known that the BFGS minimization method is competitive with
modified Newton-Raphson-type method, since each iteration of BFGS can
be performed with only O(n2) FLOPs and no Hessian evaluation is required.
In BFGS the search direction dk+1 is defined as −B−1k+1gk+1 where gk+1 =
∇f(xk+1) and Bk+1 is a rank-2 correction Φ(Bk, sk,yk) of the previous real
positive definite Hessian (spd) approximation Bk, defined in terms of the
two current difference vectors sk = xk+1−xk and yk = gk+1−gk, and such
that

Bk+1sk = yk. (5.1)

In order to minimize the computational complexity per iteration and the
memory required for implementation, it is proposed in [40, 43, 41, 42, 39]
to use a BFGS-type updating Hessian approximation formula of the form

Bk+1 = Φ(B̃k, sk,yk) (5.2)

where B̃k is a suitable approximation of Bk. This scheme is named LQN
in the particular case the matrix B̃k is chosen to be the projection LBk of
the matrix Bk in a matrix algebra L. Two possible classes of LQN are con-
sidered, the Secant LQN, satisfying the secant equation (5.1), and the Non
Secant LQN where dk+1 = −B̃−1k+1gk+1 with B̃k+1 not necessarily satisfy-
ing (5.1). The convergence property of NS LQN [40] and the experimental
observed gain of efficiency of the S LQN with respect to BFGS and to
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its limited memory version L-BFGS on some specific class of problems
[7, 17, 48], are due, essentially, to the simple fact that the projection LBk of
the matrix Bk in the space L approximate in a sufficiently accurate way –
under suitable hypotheses on the space L –, the spectral information of the
matrix Bk (see [102]). In [39, 41] it is observed that an adaptive choice of
L, i.e, using different algebras L(k) for each iteration k, could allow to pre-
serve more information from the original matrix Bk, and thus improve the
efficiency of LQN techniques. In [27] it is introduced a convergent L(k)QN
scheme and preliminary numerical experiences confirm the goodness of the
proposed approach when compared with LQN where L is fixed.

The main contribution of this work is twofold. On the one hand we ex-
tend the theoretical framework and the convergence theory developed in [27]
for S and NS BFGS-type techniques to the restricted Broyden Class-type
of quasi Newton methods (introduced here as a generalization of Broyden
Class [16]); in this extension it emerges that basic conditions for the conver-
gence are

tr B̃k ≤ trBk, det B̃k ≥ detBk, f ∈ C2, convex.

In fact these conditions are sufficient to ensure the convergence of NS and,
with a further condition (see (5.17)), allow to identify a class of convergent
S methods which has nonempty intersection with NS class. On the other
hand, considering a subset of this intersection characterized by the equality

B̃ksk = Bksk and showing that such equality can be imposed for B̃k = L(k)Bk ,
at a low cost (linear in n) and without any assumption on sk, we introduce a
basic class of L(k)QN methods (see Algorithm 4) which turn out to be a re-
finement of the class of L(k)QN considered in [27], where instead the weaker
condition σkL(k)sk = Bksk was considered and it was not yet clear if such
condition could be always imposed (for any possible sk). Moreover, devel-
oping a further adaptive criterion (see (5.57)) we produce a low complexity
convergent L(k)QN with quadratic termination property (see Algorithm 6).
We show that the used adaptive criteria can be satisfied by low complexity
algebras L(k) defined as the set sdUk of all the matrices simultaneously di-
agonalized by Uk = product of a constant number of Householder matrices,
depending only on the number of vectors on which we want that the action

of Bk is preserved by L(k)Bk . This implies, in particular, that the memory re-
quired to implement Algorithm 6 (or other possible low complexity versions
of Algorithm 4) can be considerably smaller that the memory required to im-
plement the L−BFGS method, which is a limited memory modification of
BFGS – where only a limited number m of pairs sj , yj , j = k, . . . , k−m+1
is used to define Bk+1 – suitable to solve large scale minimization problems
[82]. Note moreover that, in contrast with L−BFGS, in any Algorithm 4 at
each step it is stored, in an approximate way, the second order information
generated in all the previous steps of the algorithm.



79

In detail an outline of the paper is as follows. In Section 5.2.1 we intro-
duce the Broyden Class-type methods based on the parametric Hessian ap-
proximation updating formula Bk+1 = Φ(B̃k, sk,yk, φ) with Φ as in [16], see
(5.3) (observe that the BFGS-type methods are recovered choosing φ = 0).
In Section 5.3 we study conditions on the matrices B̃k that guarantee the
convergence of the restricted Broyden Class-type methods (φ ∈ [0, 1)) in the
Secant and Non Secant case (see Algorithm 2). Then, we focus our atten-
tion on BFGS-type schemes since a more transparent analysis is possible in
this case. In particular, in Section 5.4 we show that convergence conditions
on B̃k help BFGS-type to mimic the BFGS self correction properties. In
Section 5.5 we show that such convergence conditions can be imposed for

B̃k = L(k)Bk using low complexity algebras L(k). This result is a consequence
of a remarkable connection between the projection operation, Krylov spaces
and Householder matrices (see also [28]). In Section 5.6 we analyze condi-
tions on B̃k which guarantee the quadratic finite termination property for

BFGS-type schemes and we show that they can be satisfied for B̃k = L(k)Bk .
Finally in Section 5.7, using results from previous sections, we introduce a
convergent Secant L(k)QN method – of linear complexity per step –, that
coincides with BFGS on quadratic problems if exact line search is used,
i.e., it converges in a finite number of steps. In the same section, using
performance profiles [46] based on iterations and function evaluations, are
provided the results of numerical experiences on a large set of problems from
CUTEst [56]. These experiences indicate that the proposed Algorithm 6 can
outperform the previous LQN and L(k)QN algorithms studied in literature,
but that, in general, with respect to the probability of win, the L−BFGS
method can perform better. Nevertheless, we believe that the flexibility of
the adaptive L(k)QN methods in conjunction with the encouraging results
obtained in this chapter and further studies, can certainly make L(k)QN
methods a competitive alternative to L−BFGS.

5.2 Preliminaries

Let us notice, that in this chapter we will consider just real vectors and
matrices, so we will exchange the word ‘unitary’ with the word ‘orthogonal’
and the superscript ‘H’ (Hermitian) with the superscript ‘T ’ (transpose).

5.2.1 Broyden Class-type methods

Let us consider a function f : Rn → R where n ≥ 2.

In this paper we will study the following class of minimization methods
obtained generalizing the Broyden Class methods considered in [16]:
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Data: x0 ∈ Rn, g0 = ∇f(x0), B0 = B̃0 spd, d0 = −B−10 g0, k=0;
1 while gk 6= 0 do
2 xk+1 = xk + λkdk ; /* λk verifies conditions (5.4),

(5.5) */

3 sk = xk+1 − xk;
4 gk+1 = ∇f(xk+1);
5 yk = gk+1 − gk;

6 Bk+1 = Φ(B̃k, sk,yk, φ) ;

7

{
Define B̃k+1 spd, set dk+1 = −B̃−1k+1gk+1 (NS) ;

Set dk+1 = −B−1k+1gk+1, define B̃k+1 spd (S) ;

8 Set k := k + 1 ;

9 end
Algorithm 2: Broyden Class-type

where B̃k is an approximation of Bk and the updating formula is a general-
ization of the Broyden’s one, i.e.

Φ(B̃k, sk,yk, φ) = B̃k −
B̃ksks

T
k B̃k

sTk B̃ksk
+

yky
T
k

yTk sk
+ φ sTk B̃kskvkv

T
k . (5.3)

In (5.3) the vector vk is defined by

vk =
yk

yTk sk
− B̃ksk

sTk B̃ksk

and φ is a non negative parameter so that Φ(B̃k, sk,yk, φ) is spd whenever
B̃k is spd and yTk sk > 0. We assume that the step-length parameter λk is
chosen by an inexact line search satisfying the two Wolfe conditions

f(xk + λkdk) ≤ f(xk) + αλkg
T
k dk (5.4)

g(xk + λkdk)
Tdk ≥ βgTk dk (5.5)

where 0 < α < 1/2 and α < β < 1. Condition (5.5) implies yTk sk > 0.

Let us observe that in Algorithm 2 the matrices generating the descent
search directions dk+1 satisfy the Secant Equation in the S case. Instead in
the NS case such property is not necessarily fulfilled, i.e.

Bk+1sk = yk

whereas, in general
B̃k+1sk 6= yk.

In the following three remarks we collect some useful properties we will
use in Section 5.3.
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Remark 10. Observe that

tr (Bk+1) = tr (Φ(B̃k, sk,yk, φ)) = tr (B̃k) +
‖yk‖2

yTk sk
+ φ
‖yk‖2

yTk sk

sTk B̃ksk

yTk sk

−(1− φ)
‖B̃ksk‖2

sTk B̃ksk
− 2φ

yTk B̃ksk

yTk sk
.

(5.6)

Since φ sTk B̃ksk ≥ 0, the last term in (5.3) increases the eigenvalues, and
hence

det(Bk+1) ≥ det

(
B̃k −

B̃ksks
T
k B̃k

sTk B̃ksk
+

yky
T
k

yTk sk

)
= det(B̃k)

yTk sk

sTk B̃ksk

(for the last equality see [82]).

Remark 11. From (5.5) it follows that, using definitions in Algorithm 2,

yTk sk = gTk+1sk − gTk sk ≥ −(1− β)gTk sk (5.7)

from which we obtain

sTk B̃ksk

yTk sk
≤

sTk B̃ksk

(1− β)(−gTk sk)
=

λk
1− β

(5.8)

(sTk B̃ksk = sTk (−λkgk) in the NS case) and

sTkBksk

yTk sk
≤

sTkBksk

(1− β)(−gTk sk)
=

λk
1− β

(5.9)

(sTkBksk = sTk (−λkgk) in the S case).

Remark 12. Let us define f∗ to be the infimum of f . Using (5.4) we have
(in both NS and S methods)

N∑
k=0

sTk (−gk) =
N∑
k=0

−λkdTk gk

≤ 1

α

N∑
k=0

[f(xk)− f(xk+1)]

≤ 1

α
[f(x0)− f∗] <∞.

(5.10)

Then the sum converges for n→ +∞, from which we obtain

lim
k→+∞

sTk (−gk) = 0.

Notice that for φ ∈ [0, 1] we call the Broyden Class-type family “restricted”.
If B̃k = Bk for all k, then for φ = 0 and φ = 1 one obtains, respectively, the
BFGS and the DFP method [82].
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5.2.2 Assumptions for the function f

In Section 5.3, in order to obtain a convergence result for the Broyden Class-
type, we will do the following:

Assumption 1. The level set

D = {x ∈ Rn : f(x) ≤ f(x0)}

is convex, the function f(x) is twice continuously differentiable, convex and
bounded below in D and the Hessian matrix is bounded in D, i.e.

‖G(x)‖ ≤M. (5.11)

Remark 13. Observe that if Assumption 1 if fulfilled then the following
inequality (5.12) holds:

‖yk‖2

sTk yk
≤M, (5.12)

where sk and yk are the difference vectors produced by Algorithm 2. In fact,
if we define (see [16], [82]) the spd matrix

G =

∫ 1

0
G(xk + τsk)dτ,

then we have from standard analysis results,

yk = Gsk (5.13)

and hence if zk = G
1
2 sk,

‖yk‖2

sTk yk
=

sTkG
2
sk

sTkGsk
=

zTkGzk

zTk zk
≤ sup

τ ∈ [0,1]
‖G(xk + τsk)‖ ≤M. (5.14)

We recall that condition (5.12) on the Powell’s ratio is typically used to
prove the global convergence of BFGS method [87] and LQN methods [40].

5.3 Conditions for the convergence of the Secant
and Non Secant Broyden Class-type

The matrices which generate the descent directions in the S case exhibit
explicitly second order information (or, in other words, they satisfy the
secant equation). Moreover, in contrast with the limited memory versions
of Quasi-Newton methods, they store, in an approximate way, the second
order information generated in all the previous steps of the algorithm. In
this section we will prove that both S and NS versions of Algorithm 1 are
convergent if B̃k is suitably chosen.
The following result generalizes what proven in [27] for BFGS-type S meth-
ods using techniques and ideas from [16, 15] .
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Theorem 5.3.1. If the S version of Algorithm 2 with φ ∈ [0, 1) is applied
to a function that satisfies Assumption 1 and B̃k is chosen such that

tr B̃k ≤ trBk (5.15)

det B̃k ≥ detBk (5.16)

||Bksk||2

(sTkBksk)
2
≤ ||B̃ksk||2

(sTk B̃ksk)
2
. (5.17)

for all k, then
lim inf
k→∞

‖gk‖ = 0 (5.18)

for any starting point x0 and any positive definite matrix B0.

The main idea to prove Theorem 5.3.1 is to compare the third and fifth term
of (5.6). Let us define ψk

‖yk‖2

yTk sk

sTk B̃ksk

yTk sk
− 2

yTk B̃ksk

yTk sk
= ψk

‖B̃ksk‖2

sTk B̃ksk
(5.19)

so that (5.6) becomes

tr (Bk+1) = tr (B̃k) +
‖yk‖2

yTk sk
− (1− φ− ψkφ)

‖B̃ksk‖2

sTk B̃ksk
. (5.20)

Remark 14. Let us estimate the first term in (5.19). We have

‖yk‖2

yTk sk

sTk B̃ksk

yTk sk

sTk B̃ksk

‖B̃ksk‖2
≤M

(sTk B̃ksk)
2

yTk sk‖B̃ksk‖2

≤M
(sTkBksk)

2

yTk sk‖Bksk‖2
=
M(sTk (−gk))

2

yTk sk‖ − gk‖2

≤
M(sTk (−gk))

(1− β)‖ − gk‖2
,

(5.21)

where first inequality follows using (5.12), the second using (5.17) and last
inequality follows using (5.7).

Remark 15. Let us estimate the second term in (5.19). We have

|yTk B̃ksk|
yTk sk

sTk B̃ksk

‖B̃ksk‖2
≤
‖yk‖sTk B̃ksk
yTk sk‖B̃ksk‖

≤
√
MsTk B̃ksk√

yTk sk‖B̃ksk‖

≤
√
MsTkBksk√

yTk sk‖Bksk‖
=

√
M(sTk (−gk))√
yTk sk‖ − gk‖

≤

√
M(sTk (−gk))
√

1− β‖ − gk‖
,

(5.22)
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where the first inequality follows from Cauchy-Schwarz inequality, the second
from (5.17), the third from (5.12) and the fourth from (5.7).

We can now prove Theorem 5.3.1.

Proof. Arguing by contradiction, let us assume ‖gk‖ bounded away from
zero, i.e., there exists γ > 0 such that

‖gk‖ ≥ γ > 0. (5.23)

From Remark 12 we obtain

lim
k→∞

sTk (−gk)

‖ − gk‖2
= 0. (5.24)

Now we show that (5.24) leads to a contradiction, thus (5.23) cannot hold.
From (5.19), using Remark 14, Remark 15 and (5.24) we obtain

lim
k→∞

ψk = 0. (5.25)

Using (5.25), since φ ∈ [0, 1), we have that there exist an index s and
constants l1 > 0, l2 > 0 such that

l2 ≥ (1− φ− ψkφ) ≥ l1 > 0 for all k ≥ s. (5.26)

Then we can write (for j ≥ s), using (5.20),

trBj+1 ≤ trBs+

j∑
k=s

1

yTk sk
‖yk‖2−

j∑
k=s

1

sTk B̃ksk
‖B̃ksk‖2(1−φ−ψkφ), (5.27)

and hence

trBj+1 ≤ trBs +M(j + 1− s) ≤ c1(j + 2− s)

where c1 = max{ trBs,M} (the trace grows at most linearly for all j ≥ s).
Let us remember that, given n real positive numbers ai, it holds:

n∏
i=1

ai ≤
(∑n

i=1 ai
n

)n
(5.28)

from which we obtain:

detBj+1 =
n∏
i=1

νi(Bj+1) ≤
(∑n

i=1 νi(Bj+1)

n

)n
≤
(
c1(j + 2− s)

n

)n
.

(5.29)
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Let us note, moreover, that from (5.27), since Bj+1 is positive definite, we
have:

j∑
k=s

1

sTk B̃ksk
‖B̃ksk‖2(1− φ− ψkφ) ≤ trBs − trBj+1 +

j∑
k=s

1

yTk sk
‖yk‖2

≤ trBs +

j∑
k=s

1

yTk sk
‖yk‖2 ≤ c1(j + 2− s)

(5.30)

and applying once more (5.28) we have:

j∏
k=s

1

sTk B̃ksk
‖B̃ksk‖2(1− φ− ψkφ) ≤ (2c1)

j+1−s. (5.31)

From (5.16) and from direct calculation of the determinant we have:

detBj+1 ≥
sTj yj

sTj B̃jsj
det B̃j ≥

sTj yj

sTj B̃jsj
detBj ,

from which we obtain:

j∏
k=s

sTk yk

sTk B̃ksk
≤ detBj+1

detBs
. (5.32)

From (5.7) we have

(1− β)j+1−s ≤
j∏

k=s

sTk yk

−gTk sk
,

and hence

(1− β)j+1−s
j∏

k=s

‖gk‖2

sTk (−gk)
(1− φ− ψkφ)

≤
j∏

k=s

(1− φ− ψkφ)
‖ − λkgk‖2

sTk (−λkgk)
sTk yk

sTk (−λkgk)

=

j∏
k=s

(1− φ− ψkφ)
‖Bksk‖2

sTkBksk

sTk yk

sTk Bksk

≤
j∏

k=s

(1− φ− ψkφ)
‖B̃ksk‖2

sTk B̃ksk

sTk yk

sTk B̃ksk

≤ (2c1)
j+1−s

(
c1(j + 2− s)

n

)n 1

detBs
,

(5.33)
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i.e.
j∏

k=s

(1− φ− ψkφ)
‖gk‖2

sTk (−gk)
≤ cj+1−s

2 (5.34)

for a suitable constant c2, which is a contradiction since we supposed

lim
k→∞

sTk (−gk)

‖ − gk‖2
= 0.

We have hence proved that (5.18) holds.

Observe that (5.17) is in particular satisfied when B̃k is such that

B̃ksk = Bksk. (5.35)

In the next Sections 5.4 and 5.5 we will investigate some further consequences
of condition (5.35) and we will prove that it can be imposed by choosing
B̃k as the projection of Bk on algebras of matrices diagonalized by a fixed
number of orthogonal Householder transforms.
The following result generalizes what proven in [40] for BFGS-type NS
methods.

Theorem 5.3.2. If the NS version of Algorithm 2 with φ ∈ [0, 1) is
applied to a function that satisfies Assumption 1 and B̃k is chosen such that

tr B̃k ≤ trBk (5.36)

det B̃k ≥ detBk (5.37)

for all k, then
lim inf
k→∞

‖gk‖ = 0 (5.38)

for any starting point x0 and any positive definite matrix B0.

Proof. Proceed as in the proof of Theorem 5.3.1 noting that the hypothesis
(5.17) on B̃k is no longer necessary to obtain Remark 14 (see (5.21)), Remark
15 (see (5.22)) and (5.33), since in NS methods B̃ksk turns out to be equal
to −λkgk.

In Figure 5.1 we illustrate in a pictorial way the restricted Broyden Class-
type Secant and Non Secant methods satisfying the conditions tr B̃k ≤
trBk, det B̃k ≥ detBk and f ∈ C2, which appear basic in proving conver-
gence results for both classes of methods. At the moment only a subset of
the pictured Secant methods are certainly convergent, those satisfying the
surplus condition (5.17). Let us observe that in [27] we investigated BFGS-
type methods where σkB̃ksk = Bksk for some σk > 0, and thus verifying
condition (5.17). In the following we will focus on Broyden Class-type meth-
ods such that B̃ksk = Bksk, which form a subset of the intersection between
convergent S and NS, with the aim to define new efficient BFGS-type
algorithms.
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NS S

Secant methods satisfying (5.17)

[27]

Non Secant=Secant methods satisfying (5.35)

Figure 5.1: Restricted Broyden Class-type methods satisfying the conditions
on trace, determinant.

5.4 Self correcting properties implied by conver-
gence conditions

In this section, assuming φ = 0 in Algorithm 2, we will study how (5.35)
reverberate on self correcting properties of the algorithm.
There are experimental evidences (in the case the matrix B̃k is chosen in
some fixed matrix algebra L), that the S version of Algorithm 2 perform
better if compared with the NS one (see [7] and [17]). In this section we
will try to motivate theoretically this experimental observation by compar-
ing trBk+1 and det{Bk+1} produced by classic BFGS and Algorithm 2
when φ = 0. Observe moreover, that in [27] some preliminary experimental
experiences have shown that even if condition (5.35) is imposed in an approx-
imate way (i.e B̃ksk ≈ Bksk) performances of Algorithm 2 are competitive
with those of HQN , which, in turn, has been proved to be competitive with
L-BFGS on some neural networks problem (see [40, 7]).

Finally let us stress the fact that, even if “the Quasi-Newton updating
is inherently an overwriting process rather than an averaging process” (see
[14]), the following analysis will show how algorithms proposed in this chap-
ter exhibit an interaction between averaging and overwriting phases more
similar to BFGS than to L-BFGS (remember that the curvature informa-
tion constructed by BFGS are good enough to endow the algorithm with a
superlinear rate of convergence, see [82]).

Performing one step of the “classic” BFGS, one has

BBFGS
k+1 = ΦBFGS(Bk, sk,yk)

trBBFGS
k+1 = trBk−

‖Bksk‖2

sTkBksk
+
‖yk‖2

yTk sk

(5.39)
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det
(
BBFGS
k+1

)
= det(Bk)

yTk sk

sTkBksk
= det(Bk)

sTk (Gsk)

sTkBksk
(5.40)

from which it is clear that BFGS (and all updates in the restricted Broyden
class) “have a strong self correcting property with respect to the determi-
nant” (see [16] and Remark 10 for (5.40)). In particular curvatures of the
model are inflated or deflated (and hence corrected) accordingly to the ratio

sTk (Gsk)

sTkBksk
,

allowing the algorithm to compare the computed model with the true Hes-
sian. In fact, the above ratio is used to correct the spectrum of the operator
defining the descent direction at next step.

On the contrary, by performing one step of Algorithm 2 we obtain

Bk+1 = Φ(B̃k, sk,yk)

trBk+1 = tr B̃k−
‖B̃ksk‖2

sTk B̃ksk
+
‖yk‖2

yTk sk

det(Bk+1) = det(B̃k)
yTk sk

sTk B̃ksk
= det(B̃k)

sTk (Gsk)

sTk B̃ksk

(5.41)

from which it is clear that if B̃ksk is not suitably chosen, then the ratio

sTk (Gsk)

sTk B̃ksk
,

could not exhibit a reasonable behavior, making the algorithm not able to
self-correct bad estimated curvatures and hence loosing efficiency. In the
hypothesis (5.35), we have

Bk+1 = Φ(B̃k, sk,yk)

trBk+1 = tr B̃k−
‖Bksk‖2

sTkBksk
+
‖yk‖2

yTk sk

det(Bk+1) = det(B̃k)
yTk sk

sTkBksk
= det(B̃k)

sTk (Gsk)

sTkBksk

(5.42)

which is then a reasonable choice even under the self-correcting properties
point of view. Observe that if we choose B̃k = LBk , the error we introduce
contributes to inappropriately inflate the curvatures of the model because
by Theorem 1.4.9, even if tr B̃k = trBk, we have det(B̃k) ≥ det(Bk) (see
[74] and references therein for more information regarding the inappropriate
inflations problems affecting BFGS). Recall that by the same Theorem
1.4.9, det(B̃k) = det(Bk) iff U diagonalizes Bk. Thus, in order to reduce the
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inappropriate inflation of the curvatures of the model, U should be chosen,
in principle, besides of low complexity, as close as possible to a matrix which
diagonalizes Bk. So, the problem concerning the possibility to exploit B̃k in
order to improve such self correcting properties as much as possible remains
open.

5.5 How to ensure Secant convergence conditions
by low complexity matrices

In this section we will show that it is always possible to satisfy hypothesis
of Theorem 5.3.1 by a low complexity matrix B̃k. In particular, a matrix
B̃k satisfying (5.15), (5.16) and (5.35) will be explicitly constructed.

As noticed in Theorem 1.4.9, spectral conditions

tr (B̃k) ≤ tr (Bk),

det(B̃k) ≥ det(Bk),

on the approximation are always fulfilled when we choose

B̃k = LBk for some L = sdU.

Nevertheless, the condition

LBksk = Bksk. (5.43)

is not satisfied for a generic matrix algebra L and we have to face the fol-
lowing Problem 3, named Totally Non Linear Problem in [27]:

Problem 3. Given a spd matrix A ∈ Rn×n and a vector s ∈ Rn, find a low
complexity orthogonal matrix U such that defining L = sdU it holds

LAs = As. (5.44)

Observe that Problem 3 has been solved in [26] in the particular case
when s is an eigenvector of A with the aim to speed-up the Pagerank com-
putation by the preconditioned Euler-Richardson method. The following
Lemma 5.5.1 completely characterizes solution of Problem 3 in this case.

Lemma 5.5.1. If s is such that As = γs, for any unitary matrix L such
that s/‖s‖ is among its columns, defining L = sdL, it holds

LAs = As.

In particular L can be chosen as an orthogonal Householder matrix.



90

Proof. Consider an orthogonal L such that Lek = s/‖s‖ for some fixed
k ∈ {1, . . . , n}. From 1. in Theorem 1.4.9 we have LA = Ld(zA)LT being
zA = [. . . , (LTAL)ii, . . . ]

T and hence

LAs = (zA)ks =
sTAs

‖s‖2
s = γs = As. (5.45)

For the second part see Lemma 2.2.5 in Chapter 2.

By the following Theorem 5.5.3 we solve Problem 3 in the general case
and at the same time we shed light on algorithmic details necessary for the
construction of the solution. We note that in Chapter 2 ([28]) it has been
proved a more general result where the projection LA retains the action of
A on a set of vectors instead on a single one. Nevertheless, we repeat here
the proof in this particular case since it will be useful later in connection to
the optimization algorithms we will introduce and develop.

Let us begin recalling the well-known Arnoldi algorithm for finding an or-
thogonal basis of the Krylov subspace

Km(A,v) :=< v, Av, . . . , Am−1v > .

In what follows we will assume dimKm(A,v) = m.

Data: A, v1 := v/‖v‖2;
1 while j ≤ m do
2 Compute w := Avj ;
3 while i ≤ j do
4 Compute hi,j = (w,vi) ;
5 Compute w := w − hi,jvi ;

6 end
7 Compute hj+1,j := ‖w‖2 and vj+1 := w/hj+1,j ;

8 end
Algorithm 3: Arnoldi Algorithm

The above algorithm produces an orthonormal basis Vm = [v1, . . . ,vm] of
the Krylov subspace Km(A,v) such that

AVm = VmHm + hm+1,mvm+1e
T
m,

where the matrix Hm denotes the m × m upper Hessenberg matrix con-
sisting of the coefficients hi,j computed by the algorithm. From the above
observations we get

V T
mAVm = Hm. (5.46)

Moreover, the following lemma holds:
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Lemma 5.5.2 ([90]). Let A be any matrix and Vm, Hm the results of m steps
of the Arnoldi or Lanczos method applied to A. Then for any polynomial pj
of degree j ≤ m− 1 the following equality holds:

pj(A)v1 = Vmpj(Hm)e1. (5.47)

Theorem 5.5.3. Let A ∈ Rn×n be a symmetric matrix. For every fixed
integer m and 1 ≤ m ≤ n and for any s ∈ Rn there exists an orthogonal
matrix L ∈ Rn×n such that if L = sdL and LA is the best approximation of
A in L, then

pj(LA)s = pj(A)s (5.48)

for any polynomial pj of degree j ≤ m− 1. Moreover, the thesis is satisfied
also by any other orthogonal matrix having, among its columns, m particular
columns of L (see (5.51)).

Proof. Consider the matrices Vm and Hm constructed from Arnoldi Algo-
rithm applied to Km(A, s) (observe that the first column of Vm is v1 :=
s/‖s‖). From Lemma 5.5.2 with j = 1 we have

Av1 = VmHmV
T
mv1.

From (5.46) we can write

Av1 = VmQQ
TV T

mAVmQQ
TV T

mv1 (5.49)

for any orthogonal matrix Q. In particular, being V T
mAVm symmetric, we

can choose in (5.49) Q as the orthogonal matrix which diagonalizes V T
mAVm,

i.e.

Av1 = VmQ


x1 0 . . . 0

0
. . .

. . . 0

0
. . .

. . . 0
0 . . . 0 xm

QTV T
mv1, (5.50)

where xi = eTi Q
TV T

mAVmQei for i = 1, . . . ,m. Consider now the matrix

L = [VmQe1| . . . |VmQem|qm+1| . . . |qn] (5.51)

where {qm+1, . . . ,qn} is an orthonormal basis for

< VmQe1, . . . , VmQem >⊥=< Vme1, . . . , Vmem >⊥, (5.52)

set L = sdL and consider LA the best approximation of A in L.

In order to prove that LA satisfies (5.48) it is sufficient to prove that

LjAv1 = Ajv1 for 0 ≤ j ≤ m− 1. (5.53)
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Of course, (5.53) is true for j = 0. The equality LAv1 = Av1 follows
observing that using the first formula in Theorem 1.4.9 we have

LAv1 = (
n∑
i

(LTAL)iiLei(Lei)
T )v1

= (
m∑
i

xi(VmQei)(VmQei)
T )v1 = Av1

(5.54)

where in the second equality we take into account that qTi v1 = 0T for
i ∈ {m+ 1, . . . , n} (see (5.52)) and (5.51).

Suppose now (5.53) true for all indexes j ∈ [1, k], k ≤ m− 2, and let us
prove it for j = k+ 1. From inductive hypothesis and Lemma 5.5.2 we have

Lk+1
A v1 = LALkAv1 = LAAkv1 = LAVmHk

me1.

From direct computation using (5.52) and the definition of Q, we have
LAVm = VmHm and thus

LAVmHk
me1 = VmH

k+1
m e1 = Ak+1v1,

where the last equality follows using again Lemma 5.5.2. Hence (5.53) holds
also for j ∈ [1, k + 1].

Corollary 5.5.4. Solutions U of Problem 3 are obtained by using Theo-
rem 5.5.3 for m = 2, j = 1. Observe that just two of the columns of
such orthogonal matrices U are uniquely determined (they are suitable lin-
ear combinations of the vectors s and As), and hence one of such U can be
chosen as the product of two Householder matrices that can be determined
by performing two matrix-vector products involving A plus O(n) FLOPs.

Proof. See the proof of Theorem 5.5.3 and Lemma 2.2.5 in Chapter 2.

5.5.1 Convergent L(k)QN scheme

In order to impose (5.43) for each k, an adaptive choice of the space L =
sdU is necessary. Any method obtained in this way will be called L(k)QN
extending the notation LQN introduced in [40] to denote the BFGS-type
methods with B̃k = LBk being L fixed. As a result of what discussed in
Section 5.3 and in the first part of this section we report here the following
Algorithm 4 which can be considered a refinement and an extension of the
scheme proposed in [27]:
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Data: x0 ∈ Rn, B0 = I spd, toll, d0 = −g0, k = 0;
1 while gk 6= 0 do
2 xk+1 = xk + λkdk ; /* λk verifies (5.4), (5.5) */

3 sk = xk+1 − xk;
4 yk = gk+1 − gk;

5 /* Definition of L(k) := sdUk s.t. L(k)Bksk = Bksk: */

6 if ‖Bksk − skBksk
‖sk‖2

sk‖ < toll then

7 apply Lemma 5.5.1;
8 else
9 apply Lemma 5.5.4;

10 end

11 Bk+1 = Φ(L(k)Bk , sk,yk, φ) ;

12 Compute dk+1 = −B−1k+1gk+1;

13 Set k := k + 1 ;

14 end

Algorithm 4: A convergent L(k)QN

5.5.2 Computational Complexity

The computational complexity of Algorithm 4 is O(n) in space and time.
This follows observing that

L(k+1)
Bk+1

= L(k+1)

L(k)Bk

− L(k+1)

L(k)
Bk

sks
T
k
L(k)
Bk

sT
k
L(k)
Bk

sk

+ L(k+1)
yky

T
k

yT
k
sk

+ (φ sTkL
(k)
Bk

sk)L
(k+1)

vkv
T
k

,

i.e.,

λ(L(k+1)
Bk+1

) = d(UTk+1Bk+1Uk+1)

= d(UTk+1L
(k)
Bk
Uk+1 − UTk+1

L(k)Bksks
T
kL

(k)
Bk

sTkL
(k)
Bk

sk
Uk+1)+

+ d(UTk+1

yky
T
k

yTk sk
Uk+1 + (φ sTkL

(k)
Bk

sk)U
T
k+1vkv

T
k Uk+1).

(5.55)

Notice that the above equality is an extension of an eigenvalues updating
formula obtained in [40] where L(k) ≡ L for all k. Since Uk and Uk+1 can be
chosen as the product of one or two Householder matrices (see Lemma 5.5.1,
Lemma 5.5.4), the right hand side of the above expression can be computed
in O(n) FLOPs using Proposition 3.2 in [28]. In particular, using Remark
2 in [28], the worst case computational cost per step can be estimated in
16n+O(1).
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5.6 The quadratic finite termination property

In literature it has been studied which Quasi-Newton methods terminate
in a finite number of steps when applied to quadratic functions (quadratic
finite termination), see [70, 80] and references therein. In this section, ex-
tending the analogous result obtained in [70] for L-BFGS, we will introduce
conditions on B̃k (see (5.57)) which endow the S BFGS-type methods with
the quadratic finite termination property. Before continuing let us observe
that the notation of this section is not consistent with that of the previous
Section 5.5. We prefer to adopt this notation here in order to be consistent
with the existing literature.

Let us consider a spd matrix A and the problem

min
x∈Rn

f(x) where f(x) :=
1

2
xTAx− xTb. (5.56)

In order to solve Problem (5.56) consider the following Algorithm 5 (which
is the S version of Algorithm 2 where we use the exact line search and where
we set Hk = B−1k , H̃k = B̃−1k and φ = 0):

Data: x0 ∈ Rn, g0 = Ax0 − b, H̃0 = H0 spd, d0 = −H0g0, k=0;
1 while gk 6= 0 do
2 xk+1 = xk + λkdk ; /* λk := arg minλ f(xk + λdk) */

3 sk = xk+1 − xk;
4 gk+1 = Axk+1 − b;
5 yk = gk+1 − gk;
6 ρk = 1/sTk yk ;

7 Define H̃k spd ;

8 Hk+1 = (I − ρkskyTk )H̃k(I − ρkyksTk ) + ρksks
T
k ;

9 Set dk+1 = −Hk+1gk+1;
10 Set k := k + 1 ;

11 end
Algorithm 5: BFGS-type for quadratic problems

Theorem 5.6.1. Let us consider Algorithm 5. If

H̃kgk+1 = βkH0gk+1 for some βk 6= 0, (5.57)

then we have:
gTk+1sj = 0 for all j = 0, . . . , k; (5.58)

sTk+1Asj = 0 for all j = 0, . . . , k; (5.59)

span{s0, . . . , sk+1} = span{H0g0, . . . ,H0gk+1}; (5.60)

Proof. By induction. The case k = 0 can be easily verified. Let us suppose
the thesis true for k = 0, . . . , k̂ − 1 and prove it for k = k̂. Let us prove
(5.58): gT

k̂+1
sk̂ = 0 since we are using exact line search; if j < k̂ we have

gT
k̂+1

sj = gT
k̂
sj + yT

k̂
sj = gT

k̂
sj + sT

k̂
Asj = 0 (5.61)
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by induction hypothesis. To prove (5.59) observe that for j < k̂

sT
k̂+1

Asj = −λk̂+1g
T
k̂+1

Hk̂+1yj =

− λk̂+1g
T
k̂+1

((I − ρk̂sk̂y
T
k̂

)H̃k̂(I − ρk̂yk̂s
T
k̂

) + ρk̂sk̂s
T
k̂

)yj =

− λk̂+1g
T
k̂+1

H̃k̂yj = −βk̂λk̂+1g
T
k̂+1

H0yj = 0

(5.62)

where the third equality follows observing that gT
k̂+1

sk̂ = 0 and that sT
k̂
yj =

0 for j < k̂ by induction hypothesis; the fourth equality follows by (5.57);
the last equality follows observing that, since gT

k̂+1
sî = 0 for all j = 0, . . . , k̂

and span{s0, . . . , sk̂} = span{H0g0, . . . ,H0gk̂} by induction hypothesis, it
holds that

gT
k̂+1

H0gj = 0 for all j = 0, . . . , k̂. (5.63)

Now let us consider the case j = k̂. Since sk̂+1 = −λk̂+1Hk̂+1gk̂+1, by
direct computation using the expression of Hk̂+1, it can be verified that

sT
k̂+1

Ask̂ = sT
k̂+1

yk̂ = 0. Let us prove now (5.60): we have

sk̂+1 = −λk̂+1Hk̂+1gk̂+1 = −λk̂+1H̃k̂gk̂+1 + λk̂+1ρk̂y
T
k̂
H̃k̂gk̂+1sk̂ =

− βk̂λk̂+1H0gk̂+1 + λk̂+1ρk̂y
T
k̂
H̃k̂gk̂+1sk̂

(5.64)

and hence

span{H0g0, . . . ,H0gk̂+1} = span{s0, . . . , sk̂+1}

since span{H0g0, . . . ,H0gk̂} = span{s0, . . . , sk̂} and {s0, . . . , sk̂+1} are lin-
early independent since they are A-conjugate.

Corollary 5.6.2. If the spd matrix H̃k satisfy hypothesis of Theorem 5.6.1,
then Algorithm 5 generates the same iterates as the Conjugate Gradient
method preconditioned with H0 and hence it converges in at most n steps.

Proof. Analogous to the proof of Corollary 2.3 in [70], observing that under
hypothesis of Theorem 5.6.1 conditions (5.58), (5.59) and (5.60) hold for
Algorithm 5.

Interestingly enough, using the above corollary it can be shown that the
iterates of Algorithm 5 coincide with those from BFGS and L-BFGS since
they all coincide with the Preconditioned Conjugate Gradient (see [80, 70]).
We can now prove that the convergence condition (5.35) and the quadratic
termination condition (5.57) can be verified simultaneously if H̃k = L−1Bk
provided that H0 in (5.57) is a multiple of the identity.
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Lemma 5.6.3. For any pair of vectors sk, gk+1, and any spd matrix Bk,
there exists a low complexity orthogonal matrix L(k) and hence a matrix
algebra L(k) = sdL(k) such that

L(k)Bksk = Bksk,

L(k)Bkgk+1 = αkgk+1 for some αk 6= 0.
(5.65)

Thus, it is well defined a L(k)QN version of Algorithm 5, with H̃k = L−1Bk ,
convergent in at most n steps, provided that H0 is a multiple of the identity.

Proof. For the sake of simplicity we use in the following the symbols L and
L in place of L(k) and L(k). Case Bksk = γsk.
From Theorem 5.6.1 we have gTk+1sk = 0. Any orthogonal matrix L which
has among its columns sk/‖sk‖ and gk+1/‖gk+1‖ is such that, defining L =
sdL, LBk satisfies conditions in (5.65) (the columns of L are eigenvectors
of any matrix in L). One of such orthogonal matrix L can be constructed
as the product of two Householder matrices (see Lemma 2.2.5 and see [28]
for more details).
Case Bksk 6= γsk.
Any matrix L in (5.51) satisfies LBksk = Bksk if L = sdL; it is then enough
to consider a matrix L in (5.51) where gk+1/‖gk+1‖ is chosen to be one of
the vectors qi (see the proof of Theorem 5.5.3 with m = 2 and sk, Bk in the
roles of s and A, respectively). Observe that this can be done since, from
Theorem 5.6.1, gTk+1sk = 0 = gTk+1gk (see (5.63)) and since the first two
columns of L are suitable linear combinations of sk and Bksk = −λkgk. A
matrix L with the required properties can be constructed as the product of
three Householder matrices (see Lemma 2.2.5 and see [28] for more details).

5.7 A convergent L(k)QN method with quadratic
termination property

The L(k)QN scheme that we consider in this section, combines the results
obtained in Section 5.3 for the Secant scheme with φ = 0 and in Section 5.6

for quadratic termination, setting in both B̃k = L(k)Bk . In particular it com-
bines the convergence result stated in Theorem 5.3.1 for general non linear
problems with the quadratic termination result obtained in Theorem 5.6.1.
The main motivation for this choice can be traced in the key observation
that in this way the resulting method coincides, as already pointed out in
Section 5.6, with BFGS and L-BFGS when applied on quadratic problems
using exact line search.
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5.7.1 The proposed method

Data: x0 ∈ Rn, B0 = I spd, d0 = −g0, k = 0;
1 while gk 6= 0 do
2 xk+1 = xk + λkdk ; /* λk verifies (5.4), (5.5) */

3 sk = xk+1 − xk;
4 yk = gk+1 − gk;

5 if ‖Bksk − skBksk
‖sk‖2

sk‖ < toll then

6 Define gk+1 as the projection of gk+1 on < sk >
⊥ ;

7 else
8 Define gk+1 as the projection of gk+1 on < sk, Bksk >

⊥ ;
9 end

10 Define L(k) := sdUk s.t. L(k)Bksk = Bksk and

L(k)Bkgk+1 = αkgk+1;

11 Bk+1 = L(k)Bk −
L(k)Bk

sks
T
k L

(k)
Bk

sTk L
(k)
Bk

sk
+

yky
T
k

yTk sk
;

12 Compute dk+1 = −B−1k+1gk+1;

13 Set k := k + 1 ;

14 end

Algorithm 6: A convergent L(k)QN method with quadratic termination
property verified if exact line search is used.

Remark 16. Observe that the existence of a matrix L(k)Bk satisfying condi-
tions at line 10 of Algorithm 6 can be proved using techniques analogous to
those used in the proof of Lemma 5.6.3. In particular the required orthogo-
nal matrices Uk can be constructed as the product of two or three orthogonal
Householder matrices depending if condition at line 5 of Algorithm 6 is sat-
isfied or not.

5.7.2 Computational Complexity

The computational complexity of Algorithm 6 is O(n) in space and time.
This follows using equation (5.55) with φ = 0. In fact we have

λ(L(k+1)
Bk+1

) = d(UTk+1Bk+1Uk+1) =

d(UTk+1L
(k)
Bk
Uk+1 − UTk+1

L(k)Bksks
T
kL

(k)
Bk

sTkL
(k)
Bk

sk
Uk+1 + UTk+1

yky
T
k

yTk sk
Uk+1).

Since Uk and Uk+1 can be chosen as the product of two or three Householder
matrices (see Lemma 5.6.3 and Remark 16), the right hand side of the above
expression can be computed in O(n) FLOPs using Proposition 3.2 in [28].
In particular, using Remark 2 in [28], the worst case computational cost per
step can be estimated in 36n+O(1).
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5.7.3 Numerical Results

We have used performance profiles (see [46]) in order to investigate the
numerical behavior of Algorithm 4 with φ = 0 (refinement of the method
introduced in [27]) when compared with Algorithm 6, and Algorithm 6 when
compared with DQN [17], HQN [7, 40] and L-BFGS with M = 30 [75].
The latter method, that has been implemented by the Poblano toolbox [47],
has a computational complexity per step analogous to Algorithm 6; however
it requires more memory space to be implemented. We have tested the
algorithms on a set of medium/large scale problems from CUTEst [56] (see
Table 5.1), using the line-search routine provided by Poblano, i.e., the Moré-
Thuente cubic interpolation line search (which implements the Strong-Wolfe
conditions) enforcing the reproducibility of our results. In order to make a
fair comparison we have used for all the algorithms the same stopping criteria
as those from Poblano. We have used the following parameters where the
names of the variables are the same as those from Poblano:

LineSearch_xtol =1e-15;

LineSearch_ftol =1e-4;

LineSearch_gtol =0.9;

LineSearch_stpmin =1e-15;

LineSearch_stpmax =1e15;

LineSearch_maxfev =20;

StopTol =1e-6;

MaxIters =10000;

MaxFuncEvals =50000;

RelFuncTol =1e-20;

LineSearch ftol=α in (5.4) and LineSearch gtol=β in (5.5).
Let us point out that, as in Poblano, the successful termination is achieved
when ‖gk‖2/n ≤ StopTol being n the dimension of the problem. In the
following Figures 5.2 and 5.3 the caption ‘L(k)QN’ will indicate Algorithm
4 and ‘L(k)QN(q.t.)’ (quadratic termination) will indicate Algorithm 6.

5.7.4 Conclusions

In this chapter we have proposed novel optimization schemes L(k)QN ob-
tained generalizing the updates in the restricted Broyden class by means of
projections of the Hessian approximations Bk on adaptive low complexity
matrix algebras, and, in particular, we have studied in detail a new BFGS-
type method. Even if it is known that finite quadratic termination is not
relevant for general Quasi-Newton methods [70], the numerical results pre-
sented in Section 5.7.3 confirm that exploiting the adaptivity of the spaces
where to choose the approximations B̃k of Bk also in order to endow the
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Figure 5.2: Performance profiles for Algorithm 4 when compared with Al-
gorithm 6 on a set of 99 problems from CUTEst [56]. LineSearch ftol=1e-4;
LineSearch gtol=0.9;

BFGS-type method with this property, considerably improves the perfor-
mances of the basic L(k)QN scheme in Algorithm 4 (see Figure 5.2), which
is a convergent refinement of the methods considered in [27]. As numerical
results confirm, the introduction of such adaptive choice of the matrix al-
gebras L(k), permits to show, moreover, that existing fixed algebras LQN
methods, HQN and DQN , can be overcome (see Figure 5.3). Concerning
the results obtained comparing our L(k)QN method with L-BFGS, even
if the comparison on this set of problems is unfavorable for the method we
propose with respect to the probability of win (see Figure 5.3), it is im-
portant to note that DQN and HQN have been proved to be competitive
with L-BFGS on some real world problems (see [7, 17, 48]). For the above
reasons further investigation urges in order to understand if the method we
propose could be a valid competitor of L-BFGS on those problems where
large values of the parameter M must be chosen in order to guarantee sat-
isfactory performances (see also [64]). However, let us point out that the
increasing performances of our L(k)QN schemes on general problems with
respect to [40, 27] (see Figure 5.2 and 5.3) are encouraging because one
guesses that certainly exist and deserve investigation more valuable criteria
for the choice at each step of the algebra L(k) where to project the matrix
Bk; thus L(k)QN could really become competitive with L−BFGS.
It is clear that L(k)QN methods should be also compared with the class of
nonlinear conjugate gradient methods. Moreover, it would be important to
understand if the matrices generated by means of our Quasi Newton-type
updates could be useful as preconditioners for nonlinear conjugate gradient
methods as in [18]. Of course, further investigation should be devoted, in
future, in order to understand if the Broyden Class-version of Algorithm
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6 can produce better performances for φ ∈ (0, 1). Last but not least, it
could be interesting to understand if the results presented in this chapter
can be extended to the modified BFGS method for non-convex functions
as in [73].
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Table 5.1: Problem Set

Prob Dim. N.Z.
1] ARGLINA 200 20100
2] ARGLINB 50 1275
3] ARGLINC 100 4851
4] ARGTRIGLS 200 20100
5] ARWHEAD 5000 9999
6] BA-L1LS 57 438
7] BDQRTIC 1000 4990
8] BOX 10000 39994
9] BOXPOWER 10000 29997
10] BROWNAL 1000 500500
11] BROYDN3DLS 10000 29997
12] BROYDN7D 5000 17497
13] BROYDNBDLS 10000 69979
14] BRYBND 10000 69979
15] CHAINWOO 10000 19999
16] COSINE 10000 19999
17] CRAGGLVY 5000 9999
18] CURLY10 1000 10945
19] CURLY20 1000 20790
20] CURLY30 1000 30535
21] DECONVU 63 1111
22] DIXMAANA 3000 8999
23] DIXMAANB 3000 8999
24] DIXMAANC 3000 8999
25] DIXMAAND 3000 8999
26] DIXMAANE 3000 8999
27] DIXMAANF 3000 8999
28] DIXMAANG 3000 8999
29] DIXMAANH 3000 8999
30] DIXMAANI 3000 8999
31] DIXMAANJ 3000 8999
32] DIXMAANK 3000 8999
33] DIXMAANL 3000 8999
34] DIXMAANM 3000 8999
35] DIXMAANN 3000 8999
36] DIXMAANO 3000 8999
37] DIXMAANP 3000 8999
38] DIXON3DQ 10000 19998
39] DQDRTIC 5000 5000
40] DQRTIC 5000 5000
41] EDENSCH 2000 3999
42] EIGENALS 110 6105
43] EIGENBLS 2550 3252525
44] EIGENCLS 2652 3517878
45] ENGVAL1 5000 9999
46] EXTROSNB 1000 1999
47] FLETCBV2 100 199
48] FLETCBV3 100 199
49] FLETBV3M 10000 19999

Prob Dim. N.Z.
50] FLETCHBV 10000 19999
51] FLETCHCR 1000 1999
52] FMINSRF2 15625 77377
53] FMINSURF 15625 122078125
54] FREUROTH 5000 9999
55] GENHUMPS 5000 9999
56] GENROSE 500 999
57] HILBERTB 50 1275
58] HYDC20LS 99 1125
59] INDEFM 10000 29997
60] INTEQNELS 502 125252
61] JIMACK 3549 118824
62] LIARWHD 10000 19999
63] MANCINO 100 5050
64] MODBEALE 20000 39999
65] MOREBV 1000 2997
66] MSQRTALS 4900 12007450
67] MSQRTBLS 4900 12007450
68] NCB20 5010 99821
69] NCB20B 5000 99810
70] NONCVXU2 10000 39987
71] NONCVXUN 100 386
72] NONDIA 10000 19997
73] NONDQUAR 10000 29997
74] NONMSQRT 4900 173950
75] OSCIPATH 500 999
76] PENALTY1 1000 500500
77] PENALTY2 100 5050
78] POWELLSG 10000 20000
79] POWER 10000 50005000
80] QUARTC 10000 10000
81] SBRYND 1000 6979
82] SCHMVETT 10000 29997
83] SCOSINE 10000 19999
84] SENSORS 1000 500500
85] SINQUAD 100 199
86] SPARSINE 100 1232
87] SPARSQUR 10000 159494
88] SPMSRTLS 10000 43326
89] SROSENBR 10000 15000
90] SSBRYBND 5000 34979
91] TESTQUAD 1000 1000
92] TOINTGSS 10000 29997
93] TOINTPSP 50 165
94] TOINTQOR 50 165
95] TQUARTIC 5000 9999
96] TRIDIA 5000 9999
97] VARDIM 100 5050
98] VAREIGVL 5000 12502500
99] WOODS 10000 17500
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Figure 5.3: Performance profiles for Algorithm 6 when compared with DQN,
HQN and L-BFGS with M = 30 on a set of 99 problems from CUTEst
[56]. LineSearch ftol=1e-4; LineSearch gtol=0.9;



Chapter 6

Conclusions and Future
Works

In this thesis we have shown how suitable projections onto low complexity
matrix algebras can produce evident computational benefits in gaining the
efficiency of iterative methods when used in order to solve different problems.
Nevertheless, we strongly believe that further research should be carried on,
not only in order to better clarify some aspects of the techniques and the re-
sults contained in the previous chapters, but mainly in order to broaden their
field of applicability. In particular, in addition to the possible investigations
pointed out at the end of the previous chapters, a further possible line of re-
search can be identified in the introduction of ad-hoc low complexity matrix
algebras in order to preconditioning more general linear systems than those
introduced in Chapter 4. To this end, consider B ∈ Cn×n and denote by Un

the set of unitary matrices of dimension n. With the aim of defining precon-
ditioners with better clustering capabilities (see [101]) than those obtained
as simple projections onto matrix algebras, called optimal preconditioners,
in [102] the superoptimal preconditioner has been introduced, i.e., obtained
as

min
X∈L invertible

‖I −X−1B‖F . (6.1)

As pointed out in [23], if B is Hermitian, then the solution of the above
problem can be expressed as X = LB2L−1B . Even if the superoptimal pre-
conditioner provides a cluster of the eigenvalues of Hermitian positive defi-
nite Toeplitz matrices – as pointed out in [24] –, in general it holds that (see
[25]):

λk((LB2L−1B )−1B) ≤ λk(L−1B B) k = 1, . . . , n. (6.2)

The inequality in (6.2) represents a non desirable behavior for the super-
optimal operator, when used as preconditioner, since it does not guarantee
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an improvement in the condition number of the preconditioned matrix with
respect to the optimal operator.
Different approaches can be devised in order to produce good preconditioners
using projections onto low complexity matrix algebras. For example, the fact
that point 9. in Theorem 1.4.9 holds for every space L = sdU suggests that
to construct a suitable preconditioner for a given Hermitian positive definite
matrix B, one could consider the following problem:

min
U∈Un, U low complexity

K(L−1B B), (6.3)

where, of course, if the minimization is performed in Un without any further
constraints, the minimum is realized by the unitary matrix which diago-
nalizes B and K(L−1B B) = 1. The same approach could be considered
substituting the K-condition number with the 2-norm condition number.
Finally, observe that using results in [101, 85], another possible approach
to define a meaningful preconditioner, could be to search for the solution of
the problem

min
U∈Un, U low complexity

rank(LB −B). (6.4)

Of course, in all the above reasonings, one could investigate the use of low
complexity matrix spaces more general than sdU spaces or, using analogous
techniques to those introduced in [29], one can consider, instead of LB,
suitable combination of projections of the powers of B.
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