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ringraziare anche molte altre persone, che sono qui all’IAC, o che ci sono state per un
po’ (ciao Manon!), e gli amici e compagni di Tor Vergata, che mi hanno subito, però,
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Introduction

The aim of this thesis is to present some existence, uniqueness and long-time behavior
results on the solutions to different kinds of fluid-dynamics models, achieved by means
of energy methods combined with the Fourier setting and, in some cases, with
paradifferential techniques.
In particular, here we investigate two main topics concerning fluid-dynamics: first we
consider multiphase models arising from mixture theory, and then we focus on a
semilinear hyperbolic approximation to more classical hydrodynamic equations, namely
the incompressible Navier-Stokes equations.
Multiphase models of an arbitrary number of constituents arising from mixture theory,
[65, 19, 20, 56, 57], present a wide range of applications, mainly in biological fields, as
tumor growth and vasculogenesis [3], biological tissues and porous media [32]. Mixture
theory models have been used to describe flows through biological tissues since the
sixties. In this context, the most general model takes into account few but essential
constituents, such as cells, extracellular matrix and liquid, but it can be generalized to
an arbitrary number of sub-populations of cells, and several components of the
extracellular matrix. These models are based on three main assumptions, [3].

• First, we assume that the components of the extracellular matrix constitute an
intricate network such that they all move together.

• Besides, the pressure gradient and the interaction forces involving the liquid are
much smaller than the other ones.

• The third assumption consists in assuming that cells mechanically respond to the
compression coming from the surrounding cells.

Starting from the ideas of mixture theory, these models are composed by balance
equations which essentially represent mass and momentum conservation. Although
mixture models are largely diffused, up to now the analytical theory has been mainly
developed in one space dimension, see for instance [38, 72, 79], and [41], while some
results about linear stability and numerical approximations were considered in [35].
As a matter of facts, our starting point in the analytical study of mixture theory was
the biofilms system presented in [27]. Although it has been adapted for modeling these
particular gel-like biological structures, called biofilms, by extending the role of the
physical coefficients and the source terms, this system can be seen as a general
multiphase model arising from mixture theory. A complete analytical study of the one
dimensional model presented in [27] is given here in Chapter 5. In more space
dimensions, there are many other difficulties which will be explained in details in the
following. Thus, without loss of generality, we will consider the simpler case of a fluid
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composed by two phases, a solid component denoted by B (for instance, Bacteria), and
a liquid one L, which comes from mass and momentum conservation and reads:

∂tB +∇ · (BvS) = ΓB,

∂tL+∇ · (LvL) = ΓL = −ΓB,

∂t(BvS) +∇ · (BvS ⊗ vS) + γ∇B +B∇P = (M − ΓL)vL −MvS ,

∂t(LvL) +∇ · (LvL ⊗ vL) + L∇P = −(M − ΓL)vL +MvS ,

∇ · (BvS + LvL) = 0,

(0.0.1)

where vS ,vL are the solid and liquid phase velocities, ΓB,ΓL are the source terms,
γ,M are experimental constants and P is the hydrostatic pressure. We will give more
details on the physical formulation in the following. Model (0.0.1) is a quasilinear
system whose hyperbolic part is given by the incompressible Euler equations. It is of
intermediate type between an incompressible system, since the average velocity
BvS + LvL is divergence free, and a compressible system, since the presence of ∇B,
i.e. the gradient of the compressible pressure term like the isentropic Euler equations.
A key role is played here by the inertial terms in the momentum equations. At some
point, in the general framework of mixture theory models, they are usually neglected in
order to simplify the analysis, see for instance [32]. We choose to keep the inertial
terms and study the fully hyperbolic problem. In fact, the inertial terms guarantee the
hyperbolicity of the system and the finite speed of propagation of the front. However,
this choice, together with the compressible and incompressible nature of the system,
introduce some analytical difficulties, which we will overcome by studying an
intermediate model in Chapter 6, and applying energy methods combined with
paradifferential techniques in Chapter 7. At the best of our knowledge, this is the first
existence and uniqueness result for local smooth solutions to mixture models in more
than one space dimension.
The second part of this thesis is focused on another completely different fluid-dynamics
model, which is included in the framework of the BGK - Bhatnagar, Gross and Krook -
approximations for hydrodynamic equations. These models were introduced by
Bhatnagar, Gross and Krook in the fifties as a continuous velocities simplification of
the Boltzmann equation. Precisely, that simplification occurs in terms of the collision
operator. Taking inspiration from the hydrodynamic limits of the scaled Boltzmann
equation, they have been intended as kinetic approximations to some hydrodynamic
systems. A general mathematical framework for BGK models was given in [16]. In the
last years, BGK models have been extended to the case of systems with discrete
velocities. This additional simplification provides semilinear hyperbolic approximations
for quasilinear systems, with applications to hydrodynamic equations. In the context of
semilinear approximations, it is worth mentioning the relaxation method and, among
several examples, we refer to the Jin-Xin approach introduced in [43]. However, a
more detailed presentation of the relaxation method can be found in [54], and it will be
discussed in the following. An important point to highlight is the intimate connection
between the relaxation method and the BGK approximation with discrete velocities.
Precisely, in one space dimension, the Jin-Xin approximation∂tu+ ∂xv = 0,

∂tv + λ2∂xu =
1

ε
(f(u)− v),

(0.0.2)
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for hyperbolic conservation laws

∂tu+ ∂xf(u) = 0, (0.0.3)

is equivalent, on behalf of a linear change of variables, to a two constant velocities
BGK model, see [59]. This is the reason why, at the beginning of the last part of the
thesis, we will focus on the diffusive Jin-Xin system, as a simplified version of the BGK
approximation for the Navier-Stokes equations which will be considered. In particular,
global existence, global in time convergence in the diffusive limit, and long-time behavior
for the solutions to the diffusive Jin-Xin system will be proved. These novel results are
based on the study of the Green function of the system and the energy method.
In the last part of the thesis, we consider the following BGK model for hydrodynamic
equations, from [23, 18]:

∂tfi +
λi
ε
· ∇xfi =

1

τε2
(Mi(U)− fi), (0.0.4)

where U =
∑

i fi = (ρ, ερu), ρ is the macroscopic approximating density, and u the
velocity field, namely the moments associated with the isentropic Euler equations. This
is a discrete velocities BGK model in the sense that λi, i = 1, · · · , L ≥ D + 1, are a
finite number of constant vectors. Moreover, as it is usual in the context of BGK
approximations, see [16], Mi(U) are the Maxwellian functions. Under some
compatibility conditions which will be explained later on, this BGK model formally
approximates the isentropic Euler equations in the hyperbolic limit τ going to zero,
[23], and the incompressible Navier-Stokes equations for ε which goes to zero, [23].
Actually, the hyperbolic limit of this system was also rigorously proved in [68]. Here we
study the diffusive limit from an analytical point of view. We state local in time
existence, uniqueness and convergence theorems of the smooth solutions to the BGK
model to the smooth solutions to the Navier-Stokes equations, which are the first
analytical results on this diffusive BGK approximation. We will discuss on the details
below. In the future, we aim to extend these results by applying the Green function
method for the diffusive Jin-Xin system mentioned before to this BGK model.
The connection between the two main parts of the thesis is represented by the
mathematical tools which have been used here in order to investigate these different
systems: the multiphase model on one hand, and the BGK approximation on the other
one. The key role is actually played by the classical energy method, here applied
through suitable symmetrizers, first combined with paradifferential techniques, and
then with dissipative properties and analysis of the Green function of the problem.
We end this paragraph by introducing an example on the energy method and the
related symmetrization techniques, which represent the main connection between the
different physical systems presented here. Consider the homogeneous wave equation
with constant velocity c = 1 in one dimension in space, as follows:{

∂tu+ ∂xv = 0,

∂tv + ∂xu = 0,

with initial data (u(0, x), v(0, x)) = (u0, v0), and take the L2(R) scalar product (·, ·)
with the unknown vector (u v). Denoting by ‖ ·‖ the associated norm, since u, v ∈ L2(R)
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implies that

∫
R

(u · v)x dx = 0, the resulting expression is the following:

1

2

d

dt
(‖u‖2 + ‖v‖2) = 0,

i.e.
‖u(t)‖2 + ‖v(t)‖2 = ‖u0‖2 + ‖v0‖2.

Now, let be
∂tu +A∂xu = 0, (0.0.5)

a symmetric system, i.e. A = AT . Taking the scalar product with u,

(A∂xu,u) =
1

2

∫
R
∂x(Au · u) dx = 0,

thanks to the symmetry property. Thus,

1

2

d

dt
‖u‖2 = 0.

Symmetry is not a necessary condition to get energy estimates, but, on the other hand,
there are some non-symmetric systems which do not admit energy estimates as the
ones before. For instance, we mention the Cauchy-Riemann system, see [8]. Another
less restrictive condition which allows to obtain energy estimates is the so-called
symmetrizability, i.e.: given a system as in (0.0.5), where A is not necessarily
symmetric, there exists a symmetric strictly positive matrix A0 such that
A0A = (A0A)T . This way, taking the scalar product of the symmetrized system

A0∂tu +A0A∂xu = 0

with u, we get the desired energy estimate, since

∫
(A0Au · u)x dx = 0. Actually, in

this constant coefficient case, symmetrizability is the optimal condition in order to
apply the energy method. For an extended discussion on this topic we refer to Chapter
2.
In the following, we provide a more detailed description of the results collected in this
thesis.

Part I: Models in mixture theory In the first part, we start by presenting a com-
plete analytical study in one space dimension of the multiphase model proposed in [27],

∂tB +∇ · (BvS) = ΓB,

∂tE +∇ · (EvS) = ΓE ,

∂tD +∇ · (DvS) = ΓD,

∂tL+∇ · (LvL) = ΓL,

∂t((1− L)vS) +∇ · ((1− L)vS ⊗ vS) = −(1− L)∇P − γ∇(1− L)

+ (M − ΓL)vL −MvS ;

∂t(LvL) +∇ · (LvL ⊗ vL) = −L∇P − (M − ΓL)vL +MvS ,

ΓB + ΓD + ΓE + ΓL = 0,

∇ · ((1− L)vS + LvL) = 0,

(0.0.6)
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composed by four different phases: Bacteria, Dead bacteria, Extracellular polymeric
matrix, and Liquid. The incompressibility condition in one space dimension, i.e. the
vanishing spatial derivative of the average velocity in the last equation of system
(0.0.6), allows to solve for the hydrostatic pressure P . Thus, we get a symmetrizable
quasilinear hyperbolic system and the classical theory in [52] provides a local existence
and uniqueness result for smooth solutions. We investigate the long-time behavior of
this 1D system by using the Nishida approach presented in [61] and developed in [39],
i.e. we define the functional

N2
l (t) := sup 0≤τ≤t ||w(τ)||2Hl(R) +

∫ t

0
||w(τ)||2Hl(R) dτ, (0.0.7)

for l = 0, 1, 2 and, by using the dissipative property of the system, we prove that, starting
from initial data close enough to the equilibrium point, the solutions are global in time
and they asymptotically converge towards the equilibrium. This result is based on [12].
This procedure does not work in the case of more than one space dimension, since in that
case we cannot solve for P, and we have to deal with the hydrostatic pressure of the Euler
type. In more space dimensions, even in the divergence free variable w = (1−L)vS+LvL,
the theory of symmetrizable hyperbolic systems does not apply and there are several
problems. Without loss of generality, we consider the two-phase system (0.0.1).

• First, dropping the pressure P, the remaining system is symmetrizable in the sense
of Friedrichs, and so the classical symmetrizer provides an energy functional which
should allow us to apply the energy method. The difficulty here is that the scalar
product induced by the classical symmetrizer does not preserve the orthogonality
of the gradient of the incompressible pressure with respect to the divergence free
averaged velocity w. Therefore, we cannot get rid of the incompressible pressure,
unlike the case of energy estimates in the Sobolev spaces for the incompressible
Euler equations, see for instance [9].

• Furthermore, it is not obvious how to get these estimates by using the elliptic
equation associated with the pressure P , as in [76]. In fact, because of the gradient
of the compressible pressure γ∇(1 − L), and the inertial terms of the momentum
equation, our hydrostatic pressure P does not possess enough regularity in space
to close the estimates.

In order to overcome these difficulties, in Part II we consider a model of a
compressible-incompressible fluid in several space dimensions, which can be seen as a
one phase reduction of the two phase model (0.0.1) and the more general biofilms
system (0.0.6). This single phase model contains the gradient of the incompressible
hydrostatic pressure, and also a compressible one, which depends on the density and
the velocity of the fluid itself. In fact, the coexistence of compressible and
incompressible pressure terms is one of the main features of system (0.0.1) and (0.0.6).
We prove the local well-posedness of this simplified model by applying three different
methods, all of them based on approximating equations. This part is based on [14].
The first approximation is obtained by applying the Leray projector P, i.e. the
projector onto the space of the divergence free vector field, and mollifiers, to the
compressible-incompressible model, see [9] for an application of this technique. In the
second case, we define a continuous version of the Chorin-Temam projection method,
[75], which is a singular perturbation system and requires well-prepared initial data.
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The last approximation is an application of the artificial compressibility method, [75].
The local in time convergence of the smooth solutions to these approximations to the
smooth solutions to the one phase system in the general multidimensional case is
proved by using energy methods and paradifferential calculus. Following this direction,
in Part II we are able to prove the convergence to system (0.0.1) of an adapted version
of one of the approximations used for the compressible-incompressible fluid discussed
before, made by the composition of some smoothing operators and the Leray projector
P. The main idea is as follows. First, we apply the projector onto the space of the
vectors such that the averaged velocity w is divergence free. Then, we consider the
paradifferential operator associated with the projected system (0.0.1), we notice that
its highest order part is a strongly hyperbolic operator of the first order, and therefore
it is possible to construct a Lax symmetrizer for it. The construction of this
symmetrizer is essentially based on the techniques developed in [55], which are
combined to some ideas in [34]. We point out that the main idea here is to symmetrize
the whole projected operator, rather than just to use the symmetrizer of the hyperbolic
part of (0.0.1). Using paradifferential calculus, we are able to establish some uniform
energy estimates and the convergence of this method to the unique local solution to
(0.0.1), as well as in the case of more general models deriving from mixture theory,
both in two space dimensions. This result is based on [13].

Research perspective In three space dimensions, system (0.0.1) and the more
general multiphase models deriving from mixture theory present some additional
analytical difficulties with respect to the two dimensional case. Precisely, in R3 the
principal symbol of the projected system loses its property of strong hyperbolicity, as
we will show later, and so we are not able to construct a Lax symmetrizer, according to
the definition given in [55]. However, in order to prove the well-posedness of the three
dimensional model, which numerically works well, as it is shown in [27], we could try to
apply some recent works by Métivier et al. that are based on a weaker notion of
symmetrizability.
Moreover, since our analytical study on system (0.0.1) has been made on the whole
space Rd, d = 1, 2, it would be interesting to investigate the case of a general bounded
domain, with homogeneous Neumann boundary conditions for the volume ratios
B,D,E,L, and no-flux boundary conditions for the velocities vS ,vL, which are the
natural boundary conditions used for the numerical tests, see [27]. It is important to
notice that in this case the boundary is characteristic, and so the classical theory does
not apply in a standard way.

Part II: BGK approximation for hydrodynamic equations In the framework
of fluid-dynamics systems, we consider a vector BGK - Bhatnagar, Gross, Krook -
model for hydrodynamic equations presented in [23], which is a singular perturbation
approximation inspired by the hydrodynamic limits of the Boltzmann equation (see
[5, 6, 24]) on one hand, and the relaxation approximation for the incompressible
Navier-Stokes equations, see for instance [22], on the other one. Unlike the Lattice
Boltzmann schemes, which are scalar velocities model of kinetic equations widely used
in computational physics, the vector BGK approximations associate every scalar
velocity with one vector of unknowns. This structure provides nice analytical
properties, in particular the natural compatibility with a mathematical entropy, which
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guarantees stability. The vector BGK model for hydrodynamic equations introduced in
[23] is given by the following semilinear hyperbolic system:

∂tfi +
λi
ε
· ∇xfi =

1

ε2τ
(Mi(ρ, ερu)− fi), (0.0.8)

where (t, x) ∈ R+ × RD, i = 1, · · · , L, and L ≥ D + 1. Moreover,

fi(t, x) = (f0
i , f

1
i , · · · , fDi ) : R+ × RD → RD+1,

Mi(t, x) = (M0
i ,M

1
i , · · · ,MD

i ) : R+ × RD → RD+1,

λi = (λi1, λi2, · · · , λiD) ∈ RD,
(0.0.9)

and

(ρ, ερu) =

L∑
i=1

fi ∈ U ⊂ RD+1.

Under some consistency conditions, this model formally converges to the isentropic
Euler equations in the hyperbolic limit τ → 0, and to the incompressible Navier-Stokes
equations in the parabolic limit ε→ 0. Moreover, assuming some additional hypothesis
on the Maxwellian functions Mi, in [78] and [68] the rigourous convergence, in the
hyperbolic limit, of the solutions to system (0.0.8) to the solutions to the isentropic
Euler equations was proved. On the diffusive limit in ε, the convergence, at the formal
level, to the solutions to the Navier-Stokes equations, and a zero order uniform energy
estimate were given in [23]. More precisely, assuming that, in a suitable functional
space,

ρε → ρ̂, uε → û, and
ρε − ρ̄
ε2

→ P̂ ,

under some consistency conditions of the BGK approximation with respect to the Navier-
Stokes equations, see [23], it can be shown that formally the couple (û, P̂ ) is a solution
to the incompressible Navier-Stokes equations. Here we improve the results on the
diffusive limit as follows. We provide a rigorous proof of this convergence in the Sobolev
spaces. In this context, we consider a five velocities vector BGK model on the two
dimensional torus for simplicity reasons. We briefly explain the main ideas. Rather than
the entropy function associated with the BGK approximation, whose explicit expression
is not known, we use a constant right symmetrizer Σ, weighted with respect to the
singular parameter ε, which provides some dissipative properties for the singular linear
part of the source term. More precisely, the symmetrized system in the unknown W =
C(f1, · · · , fL), with C a constant matrix, which reads

Σ∂tW +B1Σ∂xW +B2Σ∂yW = −LΣW +N(W), (0.0.10)

where B1Σ, B2Σ are symmetric, −LΣ is negative definite and singular in ε, and N
is the nonlinear part of the source term, is conservative-dissipative, according to the
definition given in [15]. Besides, the weights, in terms of the diffusive parameter ε,
of the symmetrizer, allow us to control the remaining nonlinear part N of the source.
This way, we are able to perform uniform energy estimates in the Sobolev spaces and
to get the convergence by compactness. This chapter is based on [11]. This kind of
convergence result of smooth solutions is local in time, and it holds for an interval of
time which depends on the Sobolev norm of the initial data. In the context of semilinear
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relaxation approximations, here we consider a singular parabolic scaling to the Jin-Xin
approximation for conservation laws, see [43]. The system reads{

∂tu+ ∂xv = 0,

ε2∂tv + λ2∂xu = f(u)− v.
(0.0.11)

In the one dimensional case, this system can be written as a very simple BGK model.
Thus, we study its smooth solutions and, by using an approach based on the Green
function, in the spirit of [15], we prove their global existence and we also investigate
their asymptotic behavior in the singular perturbation limit. We obtain, indeed, sharp
decay estimates in time to the solution to system (9.0.1) in the Sobolev spaces, which
are uniform with respect to the singular parameter. This provides the convergence to
the limit nonlinear parabolic equation{

∂tu+ ∂xv = 0

v = f(u)− λ2∂xu,
(0.0.12)

both asymptotically in time, and in the vanishing ε-limit. To this end, we perform an
crucial change of variables that highlights the dissipative property of the Jin-Xin system,
and provides a faster decay of the dissipative variable with respect to the conservative
one, which allows to close the estimates. Next, a deep investigation on the Green function
of the linearized system (9.0.1) and the related spectral analysis is provided, since explicit
expressions are needed in order to deal with the singular parameter ε. The dissipative
property of the diffusive Jin-Xin system, together with the uniform decay estimates
discussed above, and the Green function analysis combined with the Duhamel formula
provide our main result. This work can be seen as an intermediate step in order to
extend the results on the solutions to the BGK model for Navier-Stokes, and it is based
on [10].

Research perspective Here we proved the convergence of the solutions to the vector
BGK model to the solutions to the incompressible Navier-Stokes equations on the two
dimensional torus T2. It could be worth extending these results to the whole space and to
a general bounded domain with suitable boundary conditions, but new ideas are needed
to approach these cases. Rather than the more classical kinetic entropy method, here our
main tool was the use of a constant right symmetrizer, which provides the conservative-
dissipative form introduced in [15], and allows us to get higher order energy estimates.
Nevertheless, we do not have an estimate for the rate of convergence, in terms of the
difference ||uε−uNS ||s, with uε,uNS the velocity fields associated with the BGK system
and the Navier-Stokes equations respectively. Finally, since we obtained a local existence
result for general initial data in the Sobolev spaces, it would be interesting to investigate
the possibility to get a global in time result, with some assumptions of smallness on the
initial data. Taking inspiration from the study of the Green function of the singular
diffusive Jin-Xin system presented here, the idea is to adapt this technique to the vector
BGK model for Navier-Stokes.

Plan of the thesis This thesis is organized as follows.
Part I is devoted to the presentation of the backgrounds on modeling of multiphase
fluids on one hand, and the general analytical theory on hyperbolic systems on the
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other one. In particular, besides the notions of hyperbolicity and symmetrizability and
the related tools, we present a short review on paradifferential calculus in Chapter 2.
Pseudo and paradifferential tools and their strict relation with the energy method will
be important ingredients in the following. At the end of Chapter 2, we also provide a
local well-posedness result for first order paradifferential systems in Theorem 2.4.2.
More precisely, in this context we describe a standard way to construct a
Lax-symmetrizer for a system that satisfies some reasonable assumptions. The
procedure presented here comes from some ideas in [34] and [55]. In [34], the author
shows an energy method which is similar to the one presented here, but there are some
differences which require a different approach. In fact, [34] is the study of a particular
form of singular perturbation approximations, a sort of paradifferential version of the
singular approximation by Kleinerman and Majda in [47], and some points of that
theory are really based on the particular structure of those systems. On the other
hand, in [55] the energy estimates are obtained by assuming the existence of a
symmetrizer as in Definition 2.4.1 below. What it is worth pointing out is that the
general ideas of the symmetrization technique presented here are well-known, but, to
the author’s knowledge, they are not collected and written in this form in the
literature, though they are really useful for a lot of applications.
At the end of Part I we provide a presentation of dissipative hyperbolic systems. The
symmetrizers theory, rather than the more classical entropy approach, is used in order
to discuss these notions. To highlight the role of the dissipative mechanisms, in
Chapter 3 also the Shizuta-Kawashima condition is presented.

Part II, which is focused on multiphase models in mixture theory, is divided in three
chapters. The first one is devoted to the proof of existence, uniqueness and asymptotic
convergence to the equilibrium of the smooth solutions to the Cauchy problem in one
space dimension, with small initial data, associated with the mixture theory model
presented at the beginning of this part, and it is based on [12]. In the second part, i.e.
Chapter 6, we investigate the multidimensional case by studying an intermediate
model, which contains most of the analytical difficulties of the general d-dimensional
multiphase model. We prove the well-posedness of this intermediate model with three
different methods: the first one makes use of the Leray projector and related
paradifferential tools; besides, we show the convergence of both a continuous version of
the Chorin-Temam projection method, viewed as a singular perturbation
approximation, and the so-called artificial compressibility method, see [75]. These
results are based on [14]. At the end of this part, i.e. Chapter 7, we consider the two
dimensional version of the two-phase model and also the four phases model presented
at the beginning. More precisely, we prove the convergence of one approximation to
the two dimensional two-phase system, made by the composition of some smoothing
operators and the Leray projector, see [9] for different applications of this technique.
Thus, we get the local well-posedness of this multiphase model in two space
dimensions. The proof is based on the energy method combined with paradifferential
tools. Besides, the problems related to the three dimensional case in space are
discussed at the end of this chapter. These results are based on [13].

Part III consists of three chapters. In the first one we present the BGK approach and
its connection with the relaxation method. In Chapter 9, we consider the parabolic
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scaled version of the Jin-Xin approximation for scalar conservation laws introduced in
[43]. By studying the Green function associated with the system, we get some uniform
energy estimates which provide global existence and global in time convergence to the
limit system for small initial data, besides the analysis of the long time behavior of
these solutions. The study of the Jin-Xin model under the diffusion scalling comes
from [10]. The last chapter of this part is devoted to the presentation of the BGK
approximation for hydrodynamic equations introduced in [23]. By using the
symmetrizers theory combined with the dissipative property of the singular
approximation BGK system, we prove its convergence to the solutions to the
incompressible Navier-Stokes equations on the two dimensional torus, for a finite
interval of time. This result is based on [11].
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Backgrounds: hyperbolicity,
multiphase models and dissipation

15





Chapter 1

Multiphase models

The aim of this chapter is to recall briefly the general setting, the main assumptions,
and the physical derivation of models arising from mixture theory, see [65, 19, 20, 56, 57].
Consider a mixture of N constituents. In the following, we write the equations of balance
of mass

ρn(∂tφn +∇ · (φnvn)) = Γn,

momentum

ρn(∂t(φnvn) +∇ · (φnvn ⊗ vn)) = ∇ · T̃n +mn + Γnvn,

and energy

ρn(∂t(φnEn) +∇ · (φnEnvn)) = tr(T̃nLn)−∇ · qn + ΓnEn,

for the nth constituent, n = 1, · · · , N, where

• ρn is the density of the nth phase, assumed to be the same constant for every phase,

• φn(t, x) is the volume fraction of each constituent,

• vn(t, x) is the specific velocity,

• Γn(t, x) is the mass exchange rate between different phases,

• T̃n(t, x) is the partial stress tensor,

• mn(t, x) is the interaction force, which is related to interactions between different
phases across the interfaces,

• En is the specific internal energy,

• qn is the partial heat flux vector,

• Ln = ∇vn is the velocity gradient.

There is also an hypothesis on the volume fractions,

N∑
n=1

φn(t, x) = 1, (1.0.1)
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CHAPTER 1. MULTIPHASE MODELS

which means that the mixture is saturated, and no space is left. Besides, we assume the
conservation of the total mass, which is given by the following constraint

N∑
n=1

Γn(t, x) = 0, (1.0.2)

the conservation of the total momentum, i.e.

N∑
n=1

mn + Γnvn = 0, (1.0.3)

and the conservation of the total energy

N∑
n=1

Γn(En + vn · vn/2) + vn ·mn = 0. (1.0.4)

Now, summing the mass balance equations for n = 1, · · · , N, we get the following diver-
gence free constraint on the averaged velocity of the mixture

N∑
n=1

∇ · (φnvn) = 0, (1.0.5)

which is an incompressibility condition for the whole mixture. Furthermore, it will be
useful to consider the equations for the mixture as a whole

∂tρm +∇ · (ρmvm) = 0,

ρm(∂tvm + vm · ∇vm) = ∇ · Tm,

ρm(∂tEm + vm · ∇Em) = tr(
N∑
n=1

T̃nLn)−∇ · qm −
N∑
n=1

vn ·mn,

(1.0.6)

where

• ρm =
∑N

n=1 ρnφn is the density of the mixture,

• vm =
∑N

n=1

ρnφnvn
ρm

is the velocity of the mixture,

• Tm =
∑N

n=1 T̃n − ρnφnzn ⊗ zn is the tensor for the mixture as a whole and zn =
vn − vm is the diffusion velocity,

• Em =
∑N

n=1

ρnφnEn
ρm

is the “inner part” of the energy density of the mixture,

• qm =
∑N

n=1(qn + ρnφnEnzn) is the heat flux for the mixture.

The equations above have been obtained summing the N mass and momentum equations
and using the constraints above.
Following [32], we derive the general form of a mixture model, by considering a binary
mixture of a solid phase S and a liquid one L. Let us focus on the interaction forces
mS ,mL, where, hereafter, the suffixes S,L refer to the solid and the liquid phase
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respectively. Since we are in the isothermal case, assuming that the interaction forces
depend on the growth terms and the relative velocity and using (1.0.2), (1.0.3), then

mS = P∇φS +M(vL − vS) +
ΓS
2

(vL − vS),

mL = P∇φL +M(vS − vL) +
ΓL
2

(vS − vL),

(1.0.7)

where P is a pressure term, while M is an experimental constant. In (1.0.7), the second
terms represent the drag forces, while the third ones are the corrections with respect
to the Darcy law. Besides, it can be checked, see [32], that the relations before are
compatible with the Clausius-Duhem inequality, which, according to [66], represents the
second law of thermodynamics.
Now, we notice that (1.0.5) in the case of a binary mixture reads

φStr(LS) + φLtr(LL) + (vS − vL) · ∇φS = 0.

This equation indicates an indeterminacy, which is represented in the entropy inequality
by introducing a scalar multiplier λ. At this point, one needs restrictions, see again [32]
for more details, and then particular expressions for the Helmholtz free energy for the
solid and the liquid phase are derived. Finally, additional physical assumptions provide
the following expressions of the stress tensors:

T̃S = −φSPI + ρSφSTS ,

T̃L = −φLPI,
(1.0.8)

where TS is the excess stress tensor for the solid and P is the hydrostatic pressure. Let
us notice that the physical assumptions lead to an expression for the liquid stress tensor
that does not contain anything else except the hydrostatic pressure.
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Chapter 2

Hyperbolic systems and
paradifferential calculus

This chapter is dedicated to an introduction for the Cauchy problem for multidimensional
hyperbolic systems, which involves the use of energy estimates. First, following [69, 8],
we will provide some definitions and technical tools on the key concept of hyperbolicity.
In the context of energy methods, we will introduce the role of the so-called classical or
Friedrich symmetrizer for an hyperbolic system. Furthermore, following [1, 55, 8, 25,
74, 4], we will show how paradifferential symmetrizers and the related paradifferential
calculus can be used in order to get energy estimates. We point out that this survey
is far from being complete. Here we try to collect the results that will be useful in the
following. For a further discussion we refer to the works cited above.

2.1 Hyperbolic systems

Consider a N ×N system

∂tu +
d∑
j=1

Aj(t, x,u)∂xju = G(t, x,u) (2.1.1)

in d space dimensions, where t is the time variable and the unknown u ∈ RN depends
on the space-time variable (t, x) ∈ R× Rd. Here, the Aj are N ×N matrices, and G is
a source term. Expression (2.1.1) is the most general form of a multidimensional first
order system. However, for our purpose it is sufficient to restrict the attention to the
case of quasilinear systems, where the matrices Aj and the source G depend explicitly
just on the unknown variable u(t, x). Thus, here the most general form of first order
systems under consideration is given by

∂tu +

d∑
j=1

Aj(u)∂xju = G(u). (2.1.2)

It is worth recalling that, for smooth solutions, a system of conservation laws

∂tu +

d∑
j=1

∂xjFj(u) = G(u), (2.1.3)
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CHAPTER 2. HYPERBOLIC SYSTEMS AND PARADIFFERENTIAL CALCULUS

is equivalent to (2.1.2), where Aj(u) = ∇uFj(u). Systems of conservation laws have
several physical applications, such as the Euler equations of fluid dynamics, vehicular
and pedestrian traffic, see [28] for a further discussion.
In the following, our setting will be represented by the Sobolev spaces Hs(Rd), at least
with s > d

2 . Then, the definitions and the results below will be set in Hs(Rd).
First, let us consider the Cauchy problem for a linear constant coefficients system

∂tu +

d∑
j=1

Aj∂xju = f(t, x), u(0, x) = u0, (2.1.4)

where Aj are N × N constant matrices, and we assume G(t, x) = f(t, x). If u(t, ·)
belongs to C([0, T ], Hs(Rd)) for a fixed T > 0, we can apply the Fourier transform to
the previous equation, obtaining

∂tû + iA(ξ)û = f̂ , û(0, ξ) = û0,

where

A(ξ) =

d∑
j=1

ξjAj . (2.1.5)

Thus, the solution is given by

û(t, ξ) = e−itA(ξ)û0(ξ) +

∫ t

0
e−i(t−s)A(ξ)f̂(s, ξ) ds. (2.1.6)

Now, the point is to find conditions in order to have a tempered distribution in ξ on
the right hand side of equation (2.1.6), so obtaining the solution u by applying the
inversion formula of the Fourier transform. This fact depends on the behavior of e−tA(ξ)

for |ξ| → ∞.
The following lemma from [55] follows immediately.

Lemma 2.1.1. If the eigenvalues of A(ξ) are real for any ξ ∈ Rd, then the exponential
e−iA(ξ) presents at most a polynomial growth for |ξ| → ∞.

Thus, we introduce the definition of hyperbolic systems.

Definition 2.1.1. System (2.1.4) is hyperbolic if the matrix A(ξ) in (2.1.5) has real
eigenvalues for any ξ ∈ Rd.

From the Plancherel theorem, a necessary and sufficient condition for the well-posedness
of the Cauchy problem associated with (2.1.4) in Hs(Rd) is the following estimate, where,
hereafter, ‖ · ‖s indicates the Sobolev norm:

sup
t∈(0,T )

‖u(t)‖s ≤ CT ‖u0‖s,

for a constant CT depending on T . We introduce the following definition, see [55].

Definition 2.1.2. The linear system with constant coefficients (2.1.4) is strongly
hyperbolic if there exists a constant C such that, for any ξ ∈ Rd,

sup
ξ∈Rd
‖e−iA(ξ)‖ ≤ C,

or, equivalently, both these two conditions are satisfied:
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2.1. HYPERBOLIC SYSTEMS

• for any ξ ∈ Rd the eigenvalues of A(ξ) are real and semisimple;

• there exists a constant C such that, for any ξ ∈ Rd, the norm of the eigenprojectors
of A(ξ) is bounded by C.

Thus, from [55] we have the following theorem.

Theorem 2.1.1. If system (2.1.4) is strongly hyperbolic, then, for all u0 ∈ Hs(Rd)
and f ∈ L1([0, T ], Hs(Rd)), there exists a unique u which solves the Cauchy problem for
(2.1.4).

A particular class of strongly hyperbolic systems is represented by symmetric and sym-
metrizable hyperbolic systems.

Definition 2.1.3. System (2.1.4) is symmetric hyperbolic if Aj is self-adjoint for j =
1, · · · , d.

Definition 2.1.4. System (2.1.4) is symmetrizable if there exists a self-adjoint matrix
A0, positive definite, such that A0Aj is self-adjoint for j = 1, · · · , d. In this case, A0 is
a classical symmetrizer or Friedrich symmetrizer for the system.

The following theorem holds for symmetrizable hyperbolic systems, [55].

Theorem 2.1.2. If the system is hyperbolic symmetrizable, then it is strongly hyperbolic.

There is also another subclass of strongly hyperbolic systems, which is represented by
hyperbolic systems with constant multiplicities and, in particular, strictly hyperbolic
systems.

Definition 2.1.5. System (2.1.4) is hyperbolic with constant multiplicity if, for all
ξ 6= 0, A(ξ) has only real and semisimple eigenvalues with constant multiplicities.

Definition 2.1.6. System (2.1.4) is strictly hyperbolic if, for all ξ 6= 0, A(ξ) has N
distinct real eigenvalues.

From the previous definitions and [55], we have the following lemma.

Lemma 2.1.2. Hyperbolic systems with constant multiplicity, and, in particular, strictly
hyperbolic systems, are strongly hyperbolic.

Now, we return to the case of quasilinear systems in (2.1.2). Consider the symbol

A(u, ξ) =
d∑
j=1

ξjAj(u). (2.1.7)

Then the previous definitions on hyperbolicity apply to the linearized system

∂tu +

d∑
j=1

Aj(ū)∂xju = G(u), (2.1.8)

for any ū belonging to the domain under consideration. However, the strong
hyperbolicity of the linearized system above is not enough in order to guarantee the
well-posedness of the system. In this context, let us provide the following definition,
see [8].
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Definition 2.1.7. Let U be an open subset of RN . The quasilinear system (2.1.2) is
Friedrichs symmetrizable in U if there exists a C∞ symmetric matrix A0(u), positive
definite, such that A0(u)Aj(u) is symmetric for j = 1, · · · , d, and for all u ∈ U.

For instance, the isentropic Euler equations in terms of the pressure p and the velocity
v, namely 

∂tp+ v · ∇p+ γp∇ · v = 0,

ρ(∂tv + v · ∇v) +∇p = 0,

ρ = p1/γe−S0/γ ,

where γ, S0 are positive constants, can be written as a symmetrizable hyperbolic system
in the sense of Friedrichs. In this case, the system is symmetrized by the diagonal matrix

A0(u) = diag(1, γpρId),

where u = (p,v), Id is the d-dimensional identity matrix. This definition leads to the
following local well-posedness theorem, see [52].

Theorem 2.1.3. Let U be an open subset of RN . Assume that Aj(u), G(u) in (2.1.2)
are C∞ functions of the unknown u, and that system (2.1.2) is Friedrichs symmetrizable.
Consider the Cauchy problem associated with (2.1.2) and initial data u0 ∈ Hs(Rd), with
s > d

2 + 1. There exists a T > 0 such that there is a unique classical solution to this
problem u ∈ C1([0, T ]× Rd) ∩ C([0, T ], Hs(Rd)) ∩ C1([0, T ], Hs−1(Rd)).

Furthermore, there exists also another more extended version of symmetrizability. In
order to deal with, we need to introduce some preliminary tools on pseudo and
paradifferential calculus.

2.2 Pseudo and paradifferential tools

Following [1, 55, 74, 4], here we aim to provide a self-contained description of the main
tools on pseudo and paradiffential calculus. We limit ourselves to the arguments that
will be useful in the following, while, for an accurate discussion, we refer to [1, 55, 74, 4].

2.2.1 An introduction

The spatial Fourier transform p̂(ξ) of p(x) ∈ S(Rd) is given by

p̂(ξ) =

∫
Rd
p(x)e−ix·ξ dx.

Similarly, the inversion formula reads

p(x) = (2π)−d
∫
Rd
p̂(ξ)eix·ξ dξ.

Consider a multi-index with α = (αj)j=1,··· ,d and take the α derivative

Dαp(x) = (2π)−d
∫
Rd
ξαp̂(ξ)eix·ξ dξ,
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where Dα = Dα1
1 · · ·Dαn

n , and Dj = 1
i
∂
∂xj

. We associate the notation p(D) = Dα, to the

integral operator above. In a standard way, p(D) is said to be a differential operator
with symbol p(ξ) = ξα. More generally, a differential operator can also depend on the
spatial variable x. For instance, we can write a differential operator of order k in the
following form:

p(x,D) =
∑
|α|≤k

ak(x)Dα,

for some smooth coefficients aα(x). In this case, we say that the symbol associated with
the operator above is

p(x, ξ) =
∑
|α|≤k

aα(x)ξα,

and it acts on u ∈ S (the Schwartz space) in the following way:

p(x,D)u(x) = F−1
ξ→x(p(x, ξ)û(ξ)) = (2π)−d

∫
Rd
p(x, ξ)û(ξ)eix·ξ dξ.

However, differential operators are restricted to polynomial symbols. We can consider a
more general class of symbols by introducing the notion of pseudodifferential operators.
We look for a class of admissible functions p(x, ξ), which means that

• p(x, ξ) has a polynomial type behavior with respect to ξ, i.e.

|∂αξ p(x, ξ)| ≤ cαΛ(ξ)m−|α|,

for some m,

• the variation of p(x, ξ) with respect to x must be weak enough such that the
difference between the amplitude p(x, ξ) and the phase eix·ξ in the integral above
is preserved, i.e.

|∂αx p(x, ξ)| ≤ cαΛ(ξ)m,

where, hereafter, we set
Λ(ξ) = (1 + |ξ|2)1/2. (2.2.9)

This qualitative description leads to the following definition.

Definition 2.2.1. Let m ∈ R. Let Sm = Sm(Rd×Rd) be the set of p(x, ξ) ∈ C∞(Rd×Rd)
such that, for all α, β,

|∂βx∂αξ p(x, ξ)| ≤ cα,βΛ(ξ)m−|α|.

An element of Sm is called a symbol of order m. We also denote infinitely smooth
symbols with S−∞ = ∩mSm. The related operator acting on u ∈ S is

p(x,Dx)u(x) = F−1
ξ→x(p(x, ξ)û(ξ)) =

∫
eix·ξp(x, ξ)û(ξ) dξ. (2.2.10)

Example 2.2.1. Let p(ξ) an homogeneous function of degree m, i.e., for all
λ > 0, p(λξ) = λmp(ξ) which is C∞ for ξ 6= 0. If χ ∈ C∞0 (Rd), with

χ(ξ) =

{
1 for |ξ| ≤ 1,

0 for |ξ| > 1,

then p̃(ξ) = (1− χ(ξ))p(ξ) is a symbol of order m.
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Example 2.2.2. Let φ ∈ S. Then φ(ξ) is a symbol of order −∞.

Example 2.2.3. The function p(x, ξ) = eix·ξ is not a symbol.

We have the following elementary properties:

• if p ∈ Sm, then ∂βx∂αξ p ∈ Sm−|α|;

• if p ∈ Sm′ and q ∈ Sm′′ , then the composition pq ∈ Sm′+m′′ ;

• if p ∈ Sm, then p ∈ S′(R2d), i.e. the space of tempered distributions.

Now we introduce the notion of asymptotic sum, which will be useful in the context of
adjoint and composition operators.

Definition 2.2.2. Let pj ∈ Smj , j ∈ N, for a decreasing sequence mj → −∞. We write

p ∼
∑

pj ,

i.e. an asymptotic sum in the sense of the behavior for |ξ| → +∞, which means that,
for all k ≥ 0,

p−
k∑
j=0

pj ∈ Smk+1 .

The previous definition is based on the following lemma, see [1].

Lemma 2.2.1. (Borel) Let (bj)j∈N be a sequence of complex numbers. There exists
f(x) ∈ C∞(R) such that, ∀j f (j)(0) = bj , then it holds f(x) ∼

∑
bj
xj
j! when x→ 0.

Thus, we have:

Proposition 2.2.1. There exists p ∈ Sm0 such that p ∼
∑
pj.

2.2.2 Pseudodifferential operators in S and S′

Here we provide some results on pseudodifferential operators in the Schwartz space S

and the space of tempered distributions S′.

Proposition 2.2.2. If p(x,D) ∈ Sm and u ∈ S, then

p(x,D)u(x) = (2π)−d
∫
Rd
eix·ξp(x, ξ)û(ξ) dξ

defines a function of S.

We introduce the Schwartz kernel associated with a pseudodifferential operator acting
on the Schwartz space S. Let p(x, ξ) ∈ S−∞. For u ∈ S,

P (x,D)u(x) = (2π)−d
∫
Rd
eix·ξp(x, ξ)û(ξ) dξ

= (2π)−d
∫
Rd
u(y) dy

∫
Rd
ei(x−y)·ξp(x, ξ) dξ.
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Thus,

K(x, y) = (2π)−d
∫
Rd
ei(x−y)·ξp(x, ξ) dξ

is the Schwartz kernel associated with the operator p(x,D). If p(x,D) ∈ Sm, we extend
the previous formula as follows:

K(x, y) = (2π)−d(Fξ→xp)(x, y − x),

where Fξ→xp is the Fourier transform of p with respect to the variable ξ in S′(R2n), and,
by the inversion formula, one yields

p(x, ξ) = Fy→ξ[K(x, x− y)],

meaning that there is a bijection in S′(R2d) between symbols and operator kernels. This
is useful for what follows.

Adjoint operator Let p(x,D) be an operator acting on S. By definition, the adjoint
p∗(x,D) : S′ → S′ is such that, ∀u ∈ S′,∀v ∈ S,

(p(x,D)u, v) = (u, p∗(x,D)v).

Then, if p∗(x,D) exists, it is unique, thanks to a density argument. Clearly, if u ∈ S′

and v ∈ S as before, then
(u, v) = 〈u, v̄〉,

where 〈·, ·〉 is the duality bracket, and so

(p(x,D)u, v) = 〈p(x,D)u, v̄〉 = (u, p∗(x,D)v) = 〈u, p∗(x,D)v〉.

If p(x,D) =
∑
|α|≤m aα(x)Dα is a differential operator with slowly increasing coefficients,

it is easy to see that
(p(x,D)u, v) = (u, p∗(x,D)v),

where p∗v =
∑
|α|≤mD

α(āαv). More generally,

〈K(x, y)u(y), v(x)〉 = 〈p(x,D)u, v〉 = 〈u, p∗(x,D)v̄〉
= 〈ū, p∗(x,D)v̄〉
= 〈K∗(x, y)v̄(x), ū(y)〉,

namely

K∗(x, y) = K(x, y) = (2π)−d
∫
Rd
e−i(x−y)·ξp(x, ξ) dξ,

and

p∗(x, ξ) =

∫
Rd
K∗(x, x− y)e−iy·ξ dy

= (2π)−d
∫
Rd
eiy·(η−ξ)p̄(x− y, η) dydη

= (2π)−d
∫
Rd
e−iy·ηp̄(x− y, ξ − η) dydη.

The previous considerations lead to the following theorem, see [1].

Theorem 2.2.1. Let p(x, ξ) ∈ Sm, then p∗(x, ξ) ∈ Sm and

p∗(x, ξ) ∼
∑
α

1

α!
∂αξ D

α
x p̄(x, ξ).
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Composition of operators Let p1(x,D) and p2(x,D) be two different pseudodiffer-
ential operators. For u ∈ S,

p1(x,D)p2(x,D)u(x) = (2π)−d
∫
Rd
eix·ξp1(x, ξ) ̂p2(x, ξ)u(ξ) dξ,

where
̂p2(x, ξ)u(ξ) = (2π)−d

∫
Rd
e−iy·(ξ−η)p2(y, η)û(η) dξdηdy.

This means that, at least formally,

q(x, ξ) = (2π)−d
∫
Rd
e−i(x−y)(ξ−η)p1(x, η)p2(y, ξ) dydη. (2.2.11)

As in the adjoint before, here the composition q is a convolution in (y, η), for (x, ξ) fixed.
Thus, we have the following composition theorem, see [1].

Theorem 2.2.2. Let p1(x, ξ) ∈ Sm1 , p2(x, ξ) ∈ Sm2. Then,

p1(x,D)p2(x,D) = q(x,D),

with q(x, ξ) = p1(x, ξ) ◦ p2(x, ξ) ∈ Sm1+m2 in (2.2.2), and

q ∼
∑
α

1

α!
∂αξ p1D

α
xp2.

The following corollary, proved in [1], will be extremely useful in Section 7.

Corollary 2.2.1. Let p1(x, ξ) ∈ Sm1 , p2(x, ξ) ∈ Sm2 be symbols of two different
pseudodifferential operators. The commutator

[p1, p2] = p1p2 − p2p1 (2.2.12)

is an operator of order m1 +m2 − 1.

Remark 2.2.1. Let us point out that the statement of Corollary 2.2.1 follows directly
from the asymptotic sums given by the composition theorem 2.2.2, and it holds for scalar-
valued symbols. Actually, in more general cases, for instance in the case of matrix-valued
symbols, i.e.

p1(x, ξ) ∈ (Sm1(Rd × Rd))n×m, p2(x, ξ) ∈ (Sm2(Rd × Rd))m×k,

the commutator operator [p1, p2] has order m1 + m2 − 1 if the highest order terms of
the asymptotic sums associated with the compositions p1p2 and p2p1, i.e. p1(x, ξ)p2(x, ξ)
and p2(x, ξ)p1(x, ξ), commute with respect to the standard matrix product. Otherwise,
the order of the commutator is m1 +m2.

Action on Sobolev spaces From [1], we have the following theorems.

Theorem 2.2.3. If p(x, ξ) ∈ S0, then it defines an endomorphism of L2.

Theorem 2.2.4. If p(x, ξ) ∈ Sm, then, for s real and u ∈ Hs,

p : Hs → Hs−m, ‖p(x,D)u‖s−m ≤ C‖u‖s,

for a constant value C.
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Homogeneous symbols A symbol p(x, ξ) ∈ C∞(Rd×Rd−{0}), satisfying Definition
2.2.1 and homogeneous of degree m in ξ, is almost a symbol of a pseudifferential operator
of degree m, in the sense that the singularity at the origin has to be removed. To this end,
it is customary to introduce a cut-off function χ(ξ) ∈ C∞, vanishing in a neighbourhood
of the origin and such that χ(ξ) = 1 for |ξ| ≥ 1. This way, defining

p̃(x, ξ) = p(x, ξ)χ(ξ),

we get a symbol associated with a pseudodifferential operator of order m. Any other
regularized symbols differ from p̃ by an infinitely smooth symbol belonging to S−∞. The
class of homogeneous symbols of degree m will be denoted by Ṡm. From [8], we have the
following inequality for positive symbols.

Theorem 2.2.5. (Gårding inequality) If p ∈ Sm (p ∈ Ṡm) such that, for a positive
constant C,

p(x, ξ) + p(x, ξ)∗ ≥ CΛ(ξ)mId,

for all x ∈ Rd and |ξ| large, where p(x, ξ)∗ is the conjugate transpose of p(x, ξ) in the
sense of matrices, and Id is the d-dimensional identity matrix, then

Re(p(x,D)u, u) ≥ c1‖u‖2m/2 − c2‖u‖2m/2−1,

for some constants c1, c2 and u ∈ Hm/2.

Symbols satisfying spectral properties We just mention a special class of symbols
satisfying the following definition.

Definition 2.2.3. Consider p(x, ξ) ∈ Sm such that

∃δ > 0 : Fx→ηp(η, ξ) = 0 for |η| > δΛ(ξ),

i.e.
supp(Fx→ηp(η, ·)) ⊂ B(0, δΛ(ξ)),

where B(0, δΛ(ξ)) is the ball of center 0 and radius δΛ(ξ). This class of symbols will be
denoted by Σm.

These symbols with spectral localization will be useful in the context of paradifferential
calculus.
Notice that in Definition 2.2.1, we require the function p(x, ξ) to be infinitely smooth
in x, so the previous results are based on this assumption, which is clearly too much
restrictive if one wants to apply the pseudodifferential theory to get some results on a
given nonlinear problem. Thus, we need to relax this hypothesis, or, in other words, we
need to apply a regularization procedure to the functions which are not smooth enough
in x to be considered symbols. We aim to explain this in the following subsection.

2.2.3 Littlewood-Paley theory and dyadic decomposition

The main idea under the so-called dyadic decomposition is well explained in [25]. It is a
regularization procedure which consists in localizing the frequencies (with respect to the
spatial variable x of a function p(x, ξ), after taking its Fourier transform) by considering
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a decomposition of the frequency space into annuli of size 2q, where q is a natural
number. This kind of decomposition regularizes p(x, ·) ∈ S′ thanks to the behavior of
the tempered distributions with respect to differentiation, when their Fourier transform
in compactly supported (Paley-Wienier-Schwartz theorem). In particular, from [25] we
have the following result.

Theorem 2.2.6. Let λ1 < λ2 be two positive constants and take u ∈ L2. There exists a
positive constant C such that, for all integer k and, for a constant value r > 0,

if supp û ∈ B(0, λ1r), then sup
|α|=k

‖∂αu‖0 ≤ Ckrk‖u‖0,

if supp û ∈ C(0, λ1r, λ2r), then C−krk‖u‖0 ≤ sup
|α|=k

‖∂αu‖0 ≤ Ckrk‖u‖0,

where C(0, λ1r, λ2r) is the ring of center 0, short radius λ1 and long radius λ2.

Thus, the idea here is to write a function p(x, ξ) with limited smoothness in x as a
sum of (smooth) symbols, obtained, thanks to the Paley-Wienier-Schwartz theorem, by
localizing the frequencies as the spectral localization of Σ in Definition 2.2.3, and a
remainder of lower order.
Now, take ψ(ξ) ∈ C∞0 (Rn), 0 ≤ ψ ≤ 1, so that

ψ(ξ) =

{
1, |ξ| ≤ 1/2,

0, |ξ| ≥ 1.
(2.2.13)

Introduce φ(ξ) = ψ(ξ/2) − ψ(ξ), which is supported in 2−1 ≤ |ξ| ≤ 2, and, for all ξ,
setting φk(ξ) := φ(2−kξ),

ψ(ξ) +

∞∑
k=0

φk(ξ) = 1.

Now, let

S0u = ∆−1u = ψ(D)u, ∆ku = φk(D)u.

Then

u = S0u+
∞∑
k=0

∆ku,

where supp φk(ξ) ⊂ {2k−1 ≤ |ξ| ≤ 2k+1}. Besides, we denote by

Spu =

p−1∑
k=−1

∆ku

the partial sums. Notice that, by convention, ∆p = 0 for p ≤ −2 and Sp = 0 for p ≤ −1.
From [25], we have the following propositions.

Proposition 2.2.3. For s real, let u ∈ Hs(Rd) (S′(Rd)). Then

lim
p→∞

Spu = u,

in the sense of convergence for tempered distributions.
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Proposition 2.2.4. There exists a constant C such that, for s real and u ∈ Hs(Rd),

C−1‖u‖2s ≤
∑
q≥−1

22qs‖∆qu‖20 ≤ C‖u‖2s.

This last result allows us to define the norm

|u|s :=

( ∑
q≥−1

22qs‖∆qu‖20

)1/2

, (2.2.14)

which is equivalent to the usual Hs-norm. Moreover, the following is a useful theorem
from [25].

Theorem 2.2.7. Let (uq)q≥−1 be a sequence in S′(Rd) such that supp u0 ∈ B(0, R) for
a fixed R > 0, and supp uq ∈ 2qB(0, R). If the sequence δq = (2qs‖uq‖0) is square
integrable, then

u =
∑
q≥−1

uq ∈ Hs(Rd), and ‖u‖2s ≤ C

( ∑
q≥−1

δ2
q

)1/2

,

for a positive constant C.

2.3 Paradifferential operators

Paradifferential calculus comes from the regularization procedure applied to symbols
p(x, ξ) with limited regularity in the spatial variable x. It is customary to say that, after
smoothing the symbols, one obtains symbols associated with paradifferential operators.
We begin with the simplest case of symbols independent of ξ.

Paraproduct Given two tempered distribution u, v, we write

u =
∑
p≥−1

∆pu, v =
∑
q≥−1

∆qv,

and, formally, this yields

uv =
∑

p,q≥−1

∆pu∆qv.

This product can be written as

uv = Tuv + Tvu+R(u, v),

where the first term concerns the high frequencies of u compared with low frequencies
of v, the second addend represents the high frequencies of v against the low ones of u,
while the last term is made by the frequencies of u and v of the same size. Here, the
paraproduct of v by u is

Tuv =
∑
p≥2

∆pu

p−3∑
q=−1

∆qv =
∑
q≥2

Sq−2u∆qv,
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and the remainder is given by

R(u, v) =
∑
|p−q|≤2

∆pu∆qv.

When it is well-defined, the remainder term is the smoothest one. Precisely, the regu-
larity of R(u, v) is almost the one of u plus the one of v (see [8], Theorem C.9). More-
over, Tuv is a typical example of paradifferential operator of order 0.

Proposition 2.3.1. If u ∈ L∞, for all s real and v ∈ Hs, there exists C > 0 such that

‖Tuv‖s ≤ C‖u‖∞‖v‖s.

For a proof see [8, 55], where they also prove the following error estimate.

Proposition 2.3.2. For s > 0, there exists C > 0 such that, for u, v ∈ L∞ ∩Hs,

‖uv − Tuv‖s ≤ C‖u‖∞‖v‖s.

Besides, another useful result is proved in [55].

Proposition 2.3.3. If v ∈ L∞ and ∇u ∈ Hs−1, with s > 0, there exists a constant
C > 0 such that

‖uv − Tuv‖s ≤ C‖∇u‖s−1‖v‖∞.

Symbols with limited spatial smoothness Now, let us return to the more general
case of a function p(x, ξ), depending on both x, ξ and with limited regularity in x. We
state the following definition, see [55] for a further discussion.

Definition 2.3.1. Let m ∈ R and B ∈ S′ be a Banach space. We denote by ΓmB the space
of distributions p(x, ξ) on Rd × Rd that are C∞ in ξ, and such that, for all multi-index
α ∈ Nd, there exists a constant Cα such that

‖∂αξ p(·, ξ)‖B ≤ Λ(ξ)m−|α|.

Moreover, Σm
B is the subclass of functions σ(x, ξ) such that there exists 0 < δ < 1:

suppFx→ησ(η, ξ) ⊂ B(0, δΛ(ξ)).

Remark 2.3.1. For our purpose, we refer to the space B = Hs, s > d
2 + 1. As remarked

in [55], if B ⊂ L∞, then ΓmB ⊂ Γm0 and Σm
B ⊂ Σm

0 , where the subscript 0 refers to the
space L∞ equipped with the standard norm. Notice that the functions of Σm

B are such
that their spatial Fourier transform is compactly supported, then these functions are C∞

in x, and so they already are symbols. As a matter of facts, the smoothing procedure for
non regular symbols ΓmB works by associating any function p(x, ξ) ∈ ΓmB with a symbol
σ(x, ξ) ∈ Σm

B .

The smoothing procedure makes use of an admissible cut-off function to truncate the
spatial Fourier transform of functions in ΓmB .
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Definition 2.3.2. χ(η, ξ) ∈ C∞(Rd×Rd) is an admissible cut-off function if there exist
ε1, ε2, 0 < ε1 < ε2 < 1 such that

χ(η, ξ) =

{
1 if |η| ≤ ε1(1 + |ξ|),
0 if |η| ≥ ε2(1 + |ξ|),

and, for all (α, β) ∈ Nd × Nd, there exists Cα,β such that, for all (η, ξ)

|∂αη ∂
β
ξ χ(η, ξ)| ≤ Cα,β(1 + |ξ|)−|α|−|β|.

Example 2.3.1. If φ, ψ are as in the Littlewood-Paley decomposition above, then an
admissible cut-off function is

χ(η, ξ) =
∑
p≥0

ψ(22−pη)φ(2−pξ) =
∑
p≥0

ψp−2(η)φp(ξ).

The following proposition, see [8, 55], gives the smoothing procedure.

Proposition 2.3.4. Let χ be an admissible cut-off function. For any p(x, ξ) ∈ ΓmB ,
define

σp(x, ξ) = F−1
η→x(χ(x, ξ)) ?x p(x, ξ),

where ?x indicates the convolution operator with respect to the variable x. Then σp(x, ξ) ∈
Σm
B ⊂ Σm

0 . Moreover, if p(x, ξ) is at least Lipschitz in x, i.e. p(x, ξ) ∈ Γm1 , where the
subscript 1 refers to the space W 1,∞ in x, then the remainder p(x, ξ)− σp(x, ξ) ∈ Γm−1

0 .

It can be shown, see [8, 55], that the smoothing procedure does not depend on the
particular choice of the admissible function. Now, we can define the paradifferential
operator associated with p(x, ξ) ∈ ΓmB , which is just the pseudodifferential one that
comes from σp(x, ξ).

Definition 2.3.3. For p(x, ξ) ∈ ΓmB ⊂ Γm0 , given an admissible cut-off function χ(η, ξ),
the paradifferential operator Tp is defined by

Tpu(x) = (2π)−d
∫ d

R
eiξ·xσp(x, ξ)û(ξ) dξ.

Now, since σp ∈ Σm
0 ⊂ Sm, the previous results on pseudodifferential operators apply

here and they also extend to the case of matrix-valued symbols.

2.4 Hyperbolic systems and symbolic calculus

Now, we are ready to go back to the notion of symmetrizability for hyperbolic systems.
Consider again the quasilinear system in (2.1.2). From the previous section, we can now
associate a symbol,

A(u, ξ) =

d∑
j=1

ξjAj(u), (2.4.15)

to the first order operator in (2.1.2). Since the symbol also depends on the unknown
u(x) ∈ Hs(Rd), s > d

2 + 1, we need to apply the smoothing procedure in order to get
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the paradifferential operator TiA(u,ξ) associated with (2.4.15) and do calculations.
Nevertheless, as we have seen, operations with pseudo or paradifferential operators
reduce to calculations with the related symbols, in the spirit of the so-called symbolic
calculus.
First of all, from [55], we have the following useful error estimate.

Lemma 2.4.1. Let s > d
2 + 1 and u ∈ C([0, T ], H1(Rd)), Then, for j = 1, · · · , d, there

exists a constant C such that

‖[Aj(u)− TAj(u)]∂xju‖s ≤ C‖∇xAj(u)‖s−1‖u‖s.

Here we extend the previous definition of symmetrizability.

Definition 2.4.1. System (2.1.2) is said to be Lax-symmetrizable if there exists a matrix
S(u, ξ), homogeneous of degree 0 in ξ, with entries C∞ in (u, ξ) when ξ 6= 0 and such
that:

• S(u, ξ) is self-adjoint and positive definite,

• S(u, ξ)A(u, ξ) is self-adjoint.

Notice that the symbolic symmetrizer S(u, ξ) can be singular in ξ. This requires to apply
the regularization procedure discussed previously in paragraph Homogeneous symbols.
We have the following well-posedness result (see [55]).

Theorem 2.4.1. Let s > d
2 + 1, and consider the Cauchy problem associated with a

Lax-symmetrizable system (2.1.2), and initial data u0 ∈ Hs(Rd). Then, there exists a
time T > 0 such that this problem has a unique solution u ∈ C([0, T ], Hs(Rd)).

Construction of symbolic symmetrizers However, it is not so simple to find a
symmetrizer in practice. Here we describe a standard way to construct a
Lax-symmetrizer for a system that satisfies the assumptions below. The procedure
presented here comes from some ideas in [34] and [55]. In [34], the author shows an
energy method which is similar to the one presented here, but there are some
differences which require a different approach. In fact, [34] is the study of a particular
form of singular perturbation approximations, a sort of paradifferential version of the
singular approximation by Kleinerman and Majda in [47], and some points of that
theory are really based on the particular structure of those systems. On the other
hand, in [55] energy estimates are obtained by assuming the existence of a symmetrizer
as in Definition 2.4.1. What it is worth pointing out is that the general ideas of the
symmetrization technique presented here are well-known, but, to the author’s
knowledge, they are not collected and written in this form in the literature, though
they are really useful for a lot of applications.
Here we consider the most general case of a hyperbolic quasilinear system of the first
order

∂tu +B(u, D)u = G(u), (2.4.16)

where B(u, D) is “almost” a paradifferential operator of the first order, with matrix-
valued symbol of degree 1 in ξ, given by B(u, ξ) ∈ MN×N , and u(t, x) belonging to
a subdomain of RN , with (t, x) ∈ R × Rd. The word almost refers to the fact that,
since B(u, ξ) depends on the spatial variable x through u(t, x), we need to process the
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regularization procedure described in section Paradifferential operators in order to apply
the theory developed before. System (2.4.16) also covers the case of B(u, ξ) = iA(u, ξ),
where A(u, ξ) is the symbol in (2.4.15), associated with a classical quasilinear hyperbolic
system as in (2.1.2). However, we will discuss this and another important case at the
end of this section. Let us list here the assumptions that we require on system (2.4.16).

• The matrix-valued symbol B(u, ξ) ∈ MN×N in (2.4.16) is diagonalizable with
purely imaginary eigenvalues, namely

B(u, ξ) = V (u, ξ)iD(u, ξ)V −1(u, ξ),

where V (u, ξ) is the matrix with the eigenvectors on the columns, while iD(u, ξ)
is the diagonal matrix of the eigenvalues;

• the smoothed version, through an admissible cut-off function as in Proposition
2.3.4, of the matrix-valued symbol iD(u, ξ) + (iD(u, ξ))∗, where (iD(u, ξ))∗ is the
adjoint in the sense of matrices, is a bounded symbol belonging to (S0(Rd))N×N
for ξ ∈ Rd − {0};

• V (u, ξ) and V −1(u, ξ), which is the inverse in the sense of matrices, are bounded
matrix-valued symbols for ξ ∈ Rd − {0}.

The standard symmetrization procedure takes inspiration from the following formal
observation. Let S(u, ξ) := (V −1(u, ξ))∗V −1(u, ξ), where the adjoint and the inversion
are intended to be in the sense of matrices. Symbolically and formally, setting (·, ·)0 be
the standard L2 product, for u ∈ RN we write

(S(u, ξ)B(u, ξ)u,u)0 = ((V −1(u, ξ))∗V −1(u, ξ)B(u, ξ)u,u)0

= (V −1(u, ξ)B(u, ξ)u, V −1(u, ξ)u)0

= (V −1(u, ξ)V (u, ξ)iD(u, ξ)V −1(u, ξ)u, V −1(u, ξ)u)0

= (iD(u, ξ)V −1(u, ξ)u, V −1(u, ξ)u)0

= (iD(u, ξ)w,w)0,

where w = V −1(u, ξ)u. This formal calculation shows that S(u, ξ) is “almost” a
symbolic symmetrizer for the system, in the sense that it symmetrizes the
matrix-valued symbol A(u, ξ) in the sense of matrices, but we still have to deal with
the following two problems:

1. the singularity of S(u, ξ) in ξ = 0;

2. the positivity of the paradifferential operator associated with the symbol S(u, ξ)
with respect to the scalar product of Hs. Indeed, according to the
Gårding inequality in (2.2.5), this does not follow immediately from the
positivity, in the sense of matrices, of the matrix-valued symbol S(u, ξ), which is
guaranteed by the definition of S itself.

Remark 2.4.1. We point out that one could have to deal with the singularity in ξ = 0
also in the case of a symbolic symmetrizer. In fact, S(u, ξ) in Definition 2.4.1 is a
matrix-valued symbol homogeneous of degree zero and, as we have seen, homogeneous

35



CHAPTER 2. HYPERBOLIC SYSTEMS AND PARADIFFERENTIAL CALCULUS

symbols can have a singularity in ξ = 0. In paragraph Homogeneous symbols, we
mentioned a standard regularization procedure near to ξ = 0 that allows to solve this
problem. Moreover, also the Gårding inequality has to be handled here. In the case of
matrix-valued symbols, these kinds of processes are not so standard. In the following,
we will deal with this problem for systems satisfying the assumption above. For a
general symmetrizable system in the sense of Definition 2.4.1, this part is presented in
details in [55].

Taking inspiration from [55], we define the following matrix-valued symbol:

W (u, ξ) := (1− θλ(ξ))V −1(u, ξ), (2.4.17)

where
θλ(ξ)Id = θ(λ−1ξ)Id

for any fixed positive parameter λ and for any θ(ξ) ∈ C∞c (Rd), such that
θ = 1 for |ξ| ≤ 1,

0 ≤ θ ≤ 1 for 1 < |ξ| < 2,

θ = 0 for |ξ| ≥ 2.

We define the symbol:

S(u, ξ) = W ∗(u, ξ)W (u, ξ) + θ2
λ(ξ)Id, (2.4.18)

where W ∗ is the adjoint in the sense of matrices. Since we are working in the Sobolev
spaces and matrix (2.4.18) depends on x through u, we need to apply the regularization
technique described in paragraph Paradifferential operators in order to use symbolic
calculus tools. This leads to the following paradifferential symmetrizer:

Σ := (TW )∗TW + θ2
λ(D)Id, (2.4.19)

where (TW )∗ is the adjoint operator. By definition, Σ is self-adjoint, and

(Σu,u)0 = ‖TWu‖20 + ‖θλ(D)u‖20,

for any u ∈ L2(Rd). This norm is equivalent to the L2-norm, as it is proved in the
following Lemma.

Lemma 2.4.2. There exist constant values c̄, c such that, for every u ∈ L2(R2), we have

c‖u‖20 ≤ (Σu,u)0 ≤ c̄‖u‖20.

Proof. Since Σ in (2.4.19) is an operator of order 0, the right side inequality follows
directly from paradifferential properties (see [55]). We focus on the left one.
Let W1 := (1− θ(ξ))V −1(u, ξ) and W2 := (1− θ(ξ))V (u, ξ). By construction,

W2W1 = (1− θ(ξ))2Id.

Notice that, for λ ≥ 2,

(1− θλ(ξ))(1− θ(ξ)) = (1− θλ(ξ)).
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Definition (2.4.17) yields

(1− θ(ξ))(1− θλ(ξ))V −1(u, ξ)

= (1− θλ(ξ))V −1(u, ξ) =: W,

and

W2W = (1− θ(ξ))(1− θλ(ξ))Id = (1− θλ(ξ))Id.

From the composition theorem in Section 2, we have

TW2TW = (Id+R)(1− θλ(Dx)),

where R is a remainder of order less than or equal to -1. In particular,

‖(1− θλ(Dx))u‖0 ≤ c(W2)‖TWu‖0 + c(R)‖(1− θλ(Dx))u‖H−1 ,

for every u ∈ L2(R2). Now, recalling that Λ(ξ) = (1−∆(ξ))
1
2 , where ∆(ξ) is the symbol

of the Laplace operator,

‖(1− θλ(Dx))u‖H−1 = ‖(1− θλ(ξ))Λ−1(ξ)û‖0. (2.4.20)

From the definition of θλ(ξ), we also have (1 − θλ(ξ))Λ(ξ)−1 =
(1− θλ(ξ))

(1 + |ξ|2)1/2
≤ 1

λ
, and,

from (2.4.20),

‖(1− θλ(Dx))u‖H−1 ≤
1

λ
‖(1− θλ(Dx))u‖0.

This gives

‖(1− θλ(Dx))u‖0 ≤ c(W2)‖TWu‖0 +
c(R)

λ
‖(1− θλ(Dx))u‖0,

then we can choose the parameter λ ≥ 2 big enough such that c(R)
λ < 1. This way,

‖(1− θλ(Dx))u‖0 ≤ c(W2)‖TWu‖0.

Squaring, we have

‖u‖20 ≤ c(W2)‖TWu‖20 + ‖θλu‖20.

Now, we are ready to get energy estimates in the Sobolev spaces Hs(Rd), s > d
2 + 1. We

apply the operator Λs(D), whose symbol is Λs(ξ) = (1 + |ξ|2)s/2 and we take the time
derivative:

d

dt
(ΣΛsu,Λsu)0 = (∂tΣΛsu,Λsu)0 + 2Re(ΣΛs∂tu,Λ

su)0.

The first term of the right hand side,

∂tΣ = (T∂tW )∗TW + (TW )∗T∂tW ,
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is an operator of order 0, depending on ∂tu = −B(u, D)u +G(u). Thus,

|(∂tΣΛsu,Λsu)0| ≤ c(|∂tu|∞)‖u‖2s ≤ c(|u|∞, |∂xju|∞)‖u‖2s ≤ c(‖u‖s)‖u‖2s,

where inequalities above follow from Lemma 2.4.2 and the Sobolev embedding theorem.
Besides,

(ΣΛs∂tu,Λ
su)0 = −(ΣΛsTB(u,ξ)u,Λ

su)0 + (ΣΛsTG(u),Λ
su)0 +Q,

where

Q = (Λs[TB(u,ξ) −B(u, D)]u,Λsu)0 − (Λs[TG(u) −G(u)],Λsu)0.

From Section 2,
|Q| ≤ c(||u||s)||u||s

and, from the composition theorem in Section 2,

|(ΣΛsTG(u),Λ
su)0| ≤ c(‖u‖s)‖u‖s.

It remains to deal with

Re(ΣΛsTB(u,ξ)u,Λ
su)0 = Re(ΣTB(u,ξ)Λ

su,Λsu)0

+Re(Σ[Λs, TB(u,ξ)]u,Λ
su)0.

The composition theorem in Section 2 states that the commutator symbol

[Λs, TB(u,ξ)] =
∑
|α|≥0

∂αξ Λs(ξ)Dα
xB(u, ξ)− ∂αξ B(u, ξ)Dα

xΛs(ξ)

=
∑
|α|≥1

∂αξ Λs(ξ)Dα
xB(u, ξ)− ∂αξ B(u, ξ)Dα

xΛs(ξ),

due to the fact that Λs(ξ) = Λs(ξ)Id is diagonal, and so the term of degree 0

Λs(ξ)B(u, ξ)−B(u, ξ)Λs(ξ) = 0.

This means that operator [Λs, TB(u,ξ)] has order s, i.e., by the Sobolev embedding theo-
rem,

|Re(Σ[Λs, TB(u,ξ)]u,Λ
su)0| ≤ c(‖u‖s)‖u‖2s.

Finally, we have to deal with

Re(ΣTB(u,ξ)Λ
su,Λsu)0.

From the adjoint and composition theorems in Section 2, and by definition (2.4.18), the
matrix-valued symbol of degree 1 in the expansion of ΣTiB(u) is given by

(V −1(u, ξ))∗V −1(u, ξ)(1− θλ(ξ))2B(u, ξ) + θλ(ξ)2B(u, ξ).

By construction, as mentioned before,

B(u, ξ) = V (u, ξ)iD(u, ξ)V −1(u, ξ).
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We define
N := (V −1(u, ξ))∗iD(u, ξ)V −1(u, ξ)(1− θλ(ξ))2.

This way,

Re((V −1(u, ξ))∗V −1(u, ξ)B(u, ξ)(1− θλ(ξ))2) = N +N∗ = 0, (2.4.21)

where, again, the adjoint is intended to be in the sense of matrices. From the adjoint and
the composition theorems in Section 2, the symbol associated with the paradifferential
operator Re(ΣTiB(u,ξ)) has order less than or equal to 0 with respect to ξ, thanks to the
vanishing term of degree 1 in ξ in (2.4.21) in the asymptotic expansion related to the
composition. Thus,

|Re(ΣTB(u,ξ)Λ
su,Λsu)| ≤ c(‖u‖s)‖u‖2s.

Moreover,

|Re(iθλ(D)B(u, ξ)Λsu,Λsu)| ≤ ‖θλ(D)B(u, ξ)Λsu‖0‖Λsu‖0
≤
√

1 + 4λ2‖θλ(D)B(u, ξ)Λs−1u‖0‖Λsu‖0
≤ c(‖u‖s)‖u‖2s.

Putting them all together,

|Re(ΣTB(u,ξ)Λ
su,Λsu)0| ≤ c(‖u‖s)‖u‖2s,

and so
d

dt
(ΣΛsu,Λsu) ≤ c(‖u‖s)‖u‖2s. (2.4.22)

Energy estimate (2.4.22) implies, through a standard argument, for instance see [55],
local existence and uniqueness of the smooth solution to the Cauchy problem related to
system (2.4.16). Precisely, we state as follows.

Theorem 2.4.2. Let s > d
2 + 1. There exists a unique solution u ∈ C([0, T ], Hs(Rd)),

T > 0, with initial data u0 ∈ Hs(Rd), to system

∂tu +B(u, D)u = G(u),

satisfying the following assumptions:

• the matrix-valued symbol of the first order B(u, ξ) ∈MN×N is diagonalizable with
purely imaginary eigenvalues, namely

B(u, ξ) = V (u, ξ)iD(u, ξ)V −1(u, ξ);

• the smoothed version of iD(u, ξ) + (iD(u, ξ))∗ is a bounded symbol belonging to
(S0(Rd))N×N for ξ ∈ Rd − {0};

• V (u, ξ) and V −1(u, ξ) are bounded matrix-valued symbols for ξ ∈ Rd − {0}.

Though the assumptions listed above are more restrictive than symmetrizability in Def-
inition 2.4.1, they provide a standard procedure to construct an explicit symbolic sym-
metrizer, also in the case of a quasilinear first order system in (2.1.2). Thus, it is worth
mentioning the following result.
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Corollary 2.4.1. Let s > d
2 + 1. There exists a unique solution u ∈ C([0, T ], Hs(Rd)),

T > 0, to system

∂tu +

d∑
j=1

Aj(u)∂xju = G(u),

with initial data u0 ∈ Hs(Rd), if the matrix-valued symbol

A(u, ξ) =

d∑
j=1

ξjAj(u)

satisfies the assumptions of Theorem 2.4.2.

We end this section with an important observation. Theorem 2.4.2 applies also when
B(u, ξ) = B1(u, ξ)B2(u, ξ), i.e. the first order operator is given by the composition of
two or an arbitrary number of operators. In this case, in order to apply the construction
before, the assumptions in Theorem 2.4.2 have to be satisfied by the matrix-valued
product symbol B1(u, ξ)B2(u, ξ), which is the highest degree term in ξ in the asymptotic
sum related to the composition operator. For our purpose, it is interesting to consider
the projected system:

∂tu + P

d∑
j=1

Aj(u)∂xju = PG(u),

where P is any projector onto the space of u satisfying some properties. We ask for P
to be an operator of degree less than or equal to 0 in ξ.
For instance, in the following we will deal with the Leray projector, namely the projector
onto the space of the divergence free vector field. The Leray projector is homogeneous of
degree 0 in ξ, then it also requires the regularization procedure for homogeneous symbols
near ξ = 0, see Section 2. The following result will be useful in sections 6 and 7.

Corollary 2.4.2. Let s > d
2 + 1, and let P be the Leray projector, i.e. the projector

onto the space of the divergence free vector field. There exists a unique solution u ∈
C([0, T ], Hs(Rd)), T > 0, to system

∂tu + P
d∑
j=1

Aj(u)∂xju = PG(u),

with initial data u0 ∈ Hs(Rd), if the matrix-valued symbol

P(ξ)A(u, ξ) = P(ξ)

d∑
j=1

ξjAj(u)

satisfies the assumptions of Theorem 2.4.2.
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Chapter 3

The role of the dissipative
mechanism

According to the general theory on system of balance laws, see [28], system

∂tu +
d∑
j=1

Aj(u)∂xju = G(u), (3.0.1)

with initial data u(0, x) = u0(x), where (t, x) ∈ R+ × Rd and u ∈ RN , has a unique
local smooth solution if the initial data are smooth enough. In the general case, also for
smooth initial data, classical solutions may break down in finite time. Nevertheless, in
some cases, dissipative properties of the source term G(u) can prevent the formation of
singularities, at least for initial data small enough, in the sense of the norm of the Sobolev
spaces. A typical example is the Euler equations with damping, see [40, 61] for the one
dimensional case, and [71] for the three dimensional one. It is worth recalling that a very
useful ingredient in the framework of dissipative hyperbolic systems is represented by
the mathematical entropy associated to the system, whose definition in given in [39], and
the related entropy dissipation condition. We refer to [39, 15] for a detailed discussion.
Here we do not explore this theory, since in the following we do not have an explicit
entropy function for the systems that we are going to study. On the other hand, we will
consider the more general class of symmetrizable hyperbolic systems, and the dissipative
properties in the following will refer to these kinds of structures.

Assumption 3.0.1. Let (3.0.1) be a symmetrizable system with symmetrizer A0(u),
i.e., according to Chapter 2, A0(u) is symmetric and positive definite, and

A0(u)∂tu +

d∑
j=1

Ãj(u)∂xju = G̃(u) (3.0.2)

with Ãj(u) = (Ãj(u))T for j = 1, · · · , d, where Ãj(u) = A0(u)Aj(u), and G̃(u) =
A0(u)G(u).

The first very strong condition which prevents shock singularities is called totally dissi-
pative property.

Definition 3.0.1. System (3.0.1) is said to be totally dissipative if there exists an N×N
matrix D(u) such that:
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CHAPTER 3. THE ROLE OF THE DISSIPATIVE MECHANISM

• D(u) is strictly negative definite;

• G̃(u) = D(u)u.

With some modifications due to the particular context, this is essentially the dissipative
property satisfied by the one-dimensional hyperbolic system in Chapter 5. However, this
strong dissipative condition is verified just by very few physical systems. Another more
reasonable property is the partially dissipative condition.

Definition 3.0.2. System (3.0.1) is said to be partially dissipative if

G(u) =

(
0

q(u)

)
,

where 0 ∈ RN1 , q(u) ∈ RN2, with N1 +N2 = N , and

G̃(u) = B(u)u =

(
0 0

D1(u) D2(u)

)
u,

where 1
2(B(u) +B(u)T ) has N2 strictly negative eigenvalues.

However, partial dissipation is not enough to prevent the formation of singularities, see
[39] for a discussion on partially dissipative hyperbolic systems. We need to impose
another supplementary condition, which comes from the approach by Shizuta and
Kawashima, see [46, 70]. Although there are many equivalent formulations, the
so-called Shizuta-Kawashima condition for system (3.0.1) reads:

ker G′(ū) ∩

{
eigenspaces of

d∑
j=1

Aj(ū)ξj

}
= {0},

for every ξ ∈ R − {0}, and every ū belonging to a subdomain of RN , with G(ū) = 0.
This condition, which is satisfied by many physical systems, allows to prove a global
existence result for smooth solutions, for initial data that are small perturbations of the
equilibrium point, i.e. ū such that G(ū) = 0, see [39] for the one dimensional case, and
[78] for the general multidimensional one.
Assuming that ū = 0 is an equilibrium point with G(0) = 0, let us consider the linearized
version of system (3.0.1) with source G(u) = (0 q(u))T , i.e.

∂tu +
d∑
j=1

Aj∂xju = Bu, (3.0.3)

where Aj = A′j(0), and B = G′(0). In this context, we introduce the definition of
Conservative-Dissipative (C-D) form for a hyperbolic system.

Definition 3.0.3. Let us assume that system (3.0.3) is symmetric, i.e. Aj = ATj for
j = 1, · · · , d. It is said to be in conservative-dissipative (C-D) form if there exists a
strictly negative definite N2 ×N2 matrix D such that

B =

(
0 0
0 D

)
. (3.0.4)
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This definition implies that dissipation, represented by D, only acts on the last N2

components of u. We denote by u1, the so-called conservative variable, the first N1

components of u, and by u2, the dissipative variable, the last N2 components. Thanks
to the (C-D) structure, the dissipation acts on the dissipative variable u2, and then it
propagates somehow to the conservative one. Indeed, very sharp energy estimates can
be obtained by using the (C-D) form, see [15]. Thus, the (C-D) form results to be really
important to highlight the dissipative nature of a hyperbolic system. In particular, the
(C-D) form will be useful in Chapter 10.

The (C-D) form allows to establish an equivalent formulation of the (SK) condition, see
[15].

Theorem 3.0.1. Under condition (C-D), the Shizuta-Kawashima assumption (SK) is
equivalent to the following:

• there exists a matrix K = K(ξ) ∈ RN1×N2 such that, for every ξ ∈ Rd − {0},
K(ξ)A0 is a skew-symmetric matrix and

1

2
(K(ξ)A(ξ)A0 +A(ξ)A0K

T (ξ))− 1

2
(BA0 +A0B

T )

is strictly positive definite;

• if λ(z) is an eigenvalue of E(z) = B − iA(z), then Re(λ(iξ)) < 0 for every ξ ∈
Rd − {0};

• there exists c > 0 such that

Re(λ(iξ)) ≤ −c |ξ|
2

1 + |ξ|2

for every ξ ∈ Rd − {0}.

Consider a constant right symmetrizer for system (3.0.3).

Definition 3.0.4. A right symmetrizer for system (3.0.3) is a positive definite
symmetric matrix A0 such that, if u = A0w in (3.0.3), it holds

A0∂tw +
d∑
j=1

Ãj∂xjw = B̃w,

where Ãj = AjA0 for j = 1, · · · , d are symmetric, and B̃ = BA0.

It is possible to define a standard change of variables to put a right symmetrizable system
as in (3.0.3) in (C-D) form. This method is presented in [15]. To this end, a preliminary
step is to find a right symmetrizer A0, which highlights the dissipative properties of a
right symmetrizable system as

∂tu +

d∑
j=1

Aj∂xju =

(
0 0
D1 D2

)
u.
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Precisely, we look for a right symmetrizer A0 such that, by changing variable u = A0w,
the previous system reads

A0∂tw +
d∑
j=1

Ãj = B̃w =

(
0 0
0 D

)
w,

with Ãj = ÃTj , where Ãj = AjA0, B̃ = BA0, and D is strictly negative definite. This
property will be essential in Chapter 10. Notice that, in Definition 3.0.3, A0 is replaced
by the identity matrix. This means that the symmetrized system before is not exactly in
(C-D) form. However, there exists a change of variables, described in [15], starting from
a system as the one before, to put it in the standard (C-D) form. This procedure will
be discussed in Chapter 9, where the (C-D) form will wear a crucial role. Let us point
out the role of right symmetrizers in the context of partially dissipative mechanisms of
systems of high dimensions. This is clear once we applied the right product BA0, where

B =

(
0 0
D1 D2

)
, and A0 =

(
a1 a2

aT2 b2

)
is a general symmetrizer, with a1 ∈ MN1×N1 , a2 ∈ MN1×N2 , b1 ∈ MN2×N2 . Thanks to
the right product, the first N1 lines of the resulting matrix are vanishing too, i.e.

BA0 =

(
0 0

D̃1 D̃2

)
,

where D̃1, D̃2 depend on a1, a2, b1, b2, and so we can find a1, a2, b1, b2 such that(
0 0

D̃1 D̃2

)
=

(
0 0
0 D

)
,

with D negative definite. Notice that the vanishing N1 lines cannot be obtained by a
left product, namely a classical left symmetrizer. At least for systems of a huge amount
of equations, right rather than left symmetrizers provide a simple way to highlight the
conservative-dissipative properties of systems.
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Part II

Models in mixture theory

45





Chapter 4

A multiphase model for the
growth of biofilms

Models arising from mixture theory, see [65], have been introduced in their general
formulation in Section 1, and they are used in many fields, as tumor growth and
vasculogenesis in [3], biological tissues and porous media in [32]. In particular, among
several applications, we refer to the model proposed in [27], which describes biological
structures called biofilms, namely complex gel-like aggregations of microorganisms like
bacteria, algae, protozoa and fungi, embedded in a self-produced polymeric matrix
called EPS. This model has been derived by applying the theory of mixture models in
Section 1 to four different phases: bacteria, dead bacteria, extracellular polymeric
matrix, and the liquid phase, with respective volume fractions B,D,E,L. Here, all the
phases were assumed to have the same constant density ρB = ρD = ρE = ρL = 1.
Recalling that, from mixture theory, there is no stress in the momentum equation for
the liquid phase besides the hydrostatic pressure, an additional physical assumption
has been performed on the excess stress tensor for the solid phases in (1.0.8), i.e.∑

φ 6=L
φTφ = ΣI,

where Σ is a monotone decreasing scalar function depending on the solid phases B +
D + E = 1− L, i.e.

Σ = −γ(1− L), (4.0.1)

where γ is an experimental constant value. This model satisfies the following equations:

∂tB +∇ · (BvS) = ΓB,

∂tD +∇ · (DvS) = ΓD,

∂tE +∇ · (EvS) = ΓE ,

∂tL+∇ · (LvL) = ΓL,

∂t((1− L)vS) +∇ · ((1− L)vS ⊗ vS) + γ∇(1− L) + (1− L)∇P
= (M − ΓL)vL −MvS ,

∂t(LvL) +∇ · (LvL ⊗ vL) + L∇P = −(M − ΓL)vL +MvS ,

(4.0.2)

together with the saturation condition

B +D + E + L = 1, (4.0.3)
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and the conservation of the total mass

ΓB + ΓE + ΓD + ΓL = 0, (4.0.4)

where vφ,Γφ are respectively the velocities and the source terms for φ = B,D,E,L,
and ∇P is the incompressible pressure. The mass constraint in (4.0.4) states that the
mixture is closed, namely there is no net production of mass for the mixture. According
to [27], the reaction terms are given by:

ΓB = kBBL− kDB,
ΓD = αkDB − kND,
ΓE = kEBL− εE.

The birth of new cells depends on the quantity of liquid available in the neighborhood of
the point, that is why the birth term in ΓB is a product between the volume fraction B of
active cells and the volume fraction L of liquid. This way, the mass production term ΓB
is the difference between a birth term and a death term, where the second is proportional
to the fraction B of bacteria, with rate kD. The death term in the expression of ΓB
gives rise to a creation term for the mass exchange rate of the dead cells ΓD, with a
proportional coefficient α, since a part of the active cells goes into liquid when the cell
dies. In ΓD, we also find a natural decay of dead cells with a constant decay rate kN .
The EPS is produced by active cells in presence of liquid, and then the production term
will be proportional to BL, where kE is the growth rate of EPS. There is also a natural
decay of EPS with rate ε. Finally, we choose ΓL in order to enforce condition (4.0.4). See
again [27] for more details. Actually, system (4.0.2) is part of a general class of problems
arising from mixture theory, see [65, 19, 20, 31], which have been introduced in Section
1 and present the coehexistence of the hydrostatic pressure and a compressible pressure
term. For instance, consider a simplified version of the model in [27], composed of just
two constituents, a solid phase B, which stands for “bacteria”, but it can represents a
general solid component, and a liquid phase L:



∂tB +∇ · (BvS) = ΓB,

∂tL+∇ · (LvL) = ΓL,

∂t(BvS) +∇ · (BvS ⊗ vS) + γ∇B +B∇P = (M − ΓL)vL −MvS ,

∂t(LvL) +∇ · (LvL ⊗ vL) + L∇P = −(M − ΓL)vL +MvS ,

B + L = 1,

ΓB + ΓL = 0,

(4.0.5)

where vS , vL are the velocities of the solid and the liquid phase respectively, and γ,M
are experimental constants. In (4.0.5), the momentum equations for the solid and the
liquid phases are different: in the first one, γ∇B is the excess stress tensor, while, as
explained in Section 1 and in [32, 3], there is no excess stress tensor for the liquid part.
Summing the first and the second equation, using the two last conditions in (4.0.5), and
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setting L = 1−B, yields:

∂tB +∇ · (BvS) = ΓB,

∂tvS + vS · ∇vS +
γ∇B
B

+∇P =
(M + ΓB)(vL − vS)

B
,

∂tvL + vL · ∇vL +∇P =
M(vS − vL)

(1−B)
,

∇ · (BvS + (1−B)vL) = 0,

(4.0.6)

where the last equation,
∇ · (BvS + (1−B)vL) = 0, (4.0.7)

namely the divergence free condition of the averaged velocity of the mixture, represents
incompressibility of the mixture as a whole. Let us point out that the equation for the
solid phase velocity vS presents a pressure term composed of two parts, an incompressible
pressure, ∇P, and the compressible one, γ∇B

B = γ∇log(B). Actually, system (4.0.6) is
just the two-phase case of the multiphase model in (4.0.2), where the three “solid” species
are lumped together.
In the following, first we provide a complete analytical study of the model in (4.0.2)
in one space dimension, with a proof of global existence and uniqueness of smooth
solutions for initial data that are small perturbation of the unique non-trivial equilibrium
point, and an investigation on the long time behavior of these solutions. As a matter of
facts, the analytical study of model (4.0.2) in more than one space dimension is much
more difficult, also at the level of existence and uniqueness of local smooth solutions.
A detailed analysis on these difficulties will be presented in Section 6, where we also
consider a simplified version of the two-phase model (4.0.5) in the general d-dimensional
case in space. Indeed, in Section 6 we aim to understand the right method to study
the original model (4.0.2) or, without loss of generality, the two-phase system (4.0.5),
by studying the well-posedness of a density dependent fluid of the incompressible Euler
equations type, which also presents an additional compressible pressure, in the spirit of
γ∇B
B in (4.0.6). Finally, in Section 7, we apply, with some technical modifications, the

first method of Section 6, which makes use of paradifferential techniques, and so we are
able to get the well-posedness of system (4.0.6) in two dimensions in space. In the end,
the arguments will be briefly generalized to the case of the multiphase model in (4.0.2).
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Chapter 5

A multiphase model in one space
dimension

Here we provide a first analytical study in one space dimension of the multiphase
model (4.0.2), originally introduced in the general d-dimensional case in Chapter 4.
This chapter is based on [12]. The one dimensional system reads:

∂tB + ∂x(BvS) = ΓB,

∂tE + ∂x(EvS) = ΓE ,

∂tD + ∂x(DvS) = ΓD,

∂tL+ ∂x(LvL) = ΓL,

∂t((1− L)vS) + ∂x((1− L)v2
S) = −(1− L)∂xP − γ∂x(1− L)

+ (M − ΓL)vL −MvS ;

∂t(LvL) + ∂x(Lv2
L) = −L∂xP − (M − ΓL)vL +MvS ,

(5.0.1)

where the reaction terms are

ΓB = kBBL− kDB,
ΓE = kEBL− εE,
ΓD = αkDB − kND,
ΓL = −(ΓB + ΓE + ΓD),

(5.0.2)

and ΓL follows from the total mass constraint (4.0.4).
The equations of system (5.0.1) can be written in a more simplified form. First, thanks
to the saturation condition (4.0.3),

L = 1− (B +D + E),

and so the equation for the liquid volume fraction L is no more necessary. Furthermore,
summing the equations for B,E,D,L in (5.0.1) and using again the volume constraint
(4.0.3), we get an incompressibility condition on the averaged velocity, which is the
following:

∂x((1− L)vS + LvL) = 0. (5.0.3)

Moreover, the one dimensional space setting, together with equation (5.0.3), allows us
to solve for vL, namely

vL =
L− 1

L
vS . (5.0.4)
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Now, summing the fifth and the sixth equation of system (5.0.1) and using equality
(5.0.4), we can finally solve for ∂xP, i.e.

∂xP = −γ∂x(1− L)− ∂x

(
1− L
L

v2
S

)
. (5.0.5)

Setting v := vS , further simplifications and the previous results lead to write system
(5.0.1) in the following form:

∂tB + ∂x(Bv) = ΓB,

∂tE + ∂x(Ev) = ΓE ,

∂tD + ∂x(Dv) = ΓD,

∂tv + ∂x

[
(3L− 2)v2

2L
+ γ(L+ log(1− L))

]
=

ΓL −M
L(1− L)

v = Γv,

(5.0.6)

while the velocity for the liquid phase vL and the pressure term P are given by (5.0.4) and
(5.0.5) respectively. As we will see in details in Section 5.1, system (5.0.6) is hyperbolic
symmetrizable, and so, at least for results concerning the local existence and uniqueness
of smooth solutions, the standard theory, see Section 2, applies. On the other hand, here
we aim to provide a complete analytical study of this model in one space dimension,
which also encloses an investigation on the long time behavior of the solution to the
Cauchy problem. To this end, according to their physical meanings, in Section 5.2 we
establish some reasonable conditions on the parameters of the model, which provide
a dissipation property for the system. In Section 5.3, the dissipative property of the
source allows us to prove that the solutions to the Cauchy problem for initial data
that are small perturbation of the equilibrium point are actually global in time, and
they decay exponentially to the equilibrium itself. The main tool here was the use of the
Nishida functional, see [61]. Let us point out that the reformulation (5.0.6) of the original
system in (5.0.1), where the incompressible pressure no more appears, is strictly related
to the one dimensional nature of the problem. Actually, in more space dimensions that
simplification no more occurs, and, as we will see in the next two chapters, the analytical
study of the multiphase model results to be much more difficult, also at the level of the
local in time existence of smooth solutions.

5.1 Hyperbolicity and symmetrizability

Let us set
u = (B,E,D, v),

and let us rewrite system (5.0.6) in compact form

∂tu +A(u)∂xu = G(u), (5.1.7)

with

A(u) =


v 0 0 B
0 v 0 E
0 0 v D

η η η (3L−2)
L v

 , (5.1.8)
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where

η :=
γL

(1− L)
− v2

L2
, (5.1.9)

and

G(u) = (ΓB,ΓE ,ΓD,Γv). (5.1.10)

It easy to see that a Friedrich symmetrizer for system (5.1.7) is given by

A0(u) =


η 0 0 0

0 Bη
E 0 0

0 0 Bη
D 0

0 0 0 B

 , (5.1.11)

namely system (5.1.7) is symmetrizable hyperbolic in the following domain

W =

{
u = (B,E,D, v) ∈ [0, 1]3 × R : η > 0

}

=

{
u = (B,E,D, v) ∈ [0, 1]3 × R : − γ1/2L3/2

(1− L)1/2
< v <

γ1/2L3/2

(1− L)1/2

}
,

(5.1.12)

where L = 1 − (B + E + D). This yields the following symmetrized compact form of
system (5.1.7):

A0(u)∂tu +A1(u)∂xu = A0G(u), (5.1.13)

where A1(u) = A0A(u), and A0(u), G(u) are given by (5.1.11) and (5.1.10)
respectively. Now, the standard theory on symmetrizable hyperbolic systems, see
Section 2, guarantees the existence and uniqueness of local smooth solutions for the
Cauchy problem associated to problem (5.1.7)-(5.1.8)-(5.1.10).

5.2 Dissipation property

Here we want to show that, under some reasonable assumptions on the physical
parameters, system (5.0.6) is totally dissipative, according to Definition 3.0.1. In the
following, we adapt the definition of totally dissipative hyperbolic system to the case of
symmetrizable systems.

Definition 5.2.1 ((D)-Condition). Consider a general one-dimensional n × n
hyperbolic symmetrizable system in the compact formulation (5.1.7), where
u ∈ Ω ⊆ Rn, Ω is a convex open subset of the domain of symmetrizability W , and
A(u), G(u) are smooth enough. Assume that Ω contains a unique equilibrium point ū
for (5.1.7), such that G(ū) = 0. Then, system (5.1.7) is totally dissipative in Ω if there
exists a matrix D = D(u, ū) ∈Mn×n such that, for every u ∈ Ω:

• G(u) = D(u, ū)(u− ū);

• A0D(u, ū) is strictly negative definite.
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Let us check the dissipation property of system (5.0.6). First of all, we determine the
expression of the point where the source term vanishes, i.e. the equilibrium point ū.
Setting

B̄ =

(
1− kD

kB

)/(
1 +

αkD
kN

+
kDkE
εkB

)
,

then

ū =


B̄
Ē
D̄
v̄

 = B̄


1

kEkD
εkB
αkD
kN
0

 =
kB − kD

kB(1 + αkD
kN

+ kDkE
εkB

)


1

kEkD
εkB
αkD
kN
0

 . (5.2.14)

Since the volume fractions B̄, Ē, D̄, L̄ take positive values, from (5.2.14) we have to
assume

kB > kD. (5.2.15)

Let us point out that inequality (5.1.12), which describes the region of hyperbolic
symmetrizability of system (5.0.6), is satisfied if u is close enough to the equilibrium
point ū. For this reason, in the following we will take the initial datum u0 in a convex
and compact neighborhood of the equilibrium point ū. To this end, we set

Ω = Br(ū),

for a fixed r > 0. According to (D)-Condition, we consider G(u) in (5.1.10) and we
write

G(u) = D(u, ū)(u− ū),

with

D(u, ū) =


−BkB −BkB −BkB 0

kE(L− B̄) −ε(Ē+L̄)
L̄

−B̄kE 0

αkD 0 −kN 0

0 0 0 ΓL−M
L(1−L)

 .

In order to prove that system in (5.1.13)- (5.1.11)-(5.1.8)- (5.1.10) satisfies
(D)-Condition in Ω = Br(ū), we show the strict negativity of matrix A0D(ū, ū) by

using the Routh-Hurwitz conditions on (A0D)+(A0D)T

2 , see[58]. From (5.2.14),

A0(ū) =


kDγ

(kB−kD) 0 0 0

0 εkBγ
kE(kB−kD) 0 0

0 0 kNγ
α(kB−kD) 0

0 0 0 B̄

 ,

and

D(ū, ū) =


−B̄kB −B̄kB −B̄kB 0

kE(L̄− B̄) −ε− B̄kE −B̄kE 0
αkD 0 −kN 0

0 0 0 − k2BM

kD(kB−kD)

 .
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Thus, (
(A0D) + (A0D)T

2

)
(ū, ū) =

γ

kB − kD

·


−B̄kBkD kB

2 [ε(L̄− B̄)− kDB̄] kD
2 [kN − B̄kB] 0

kB
2 [ε(L̄− B̄)− kDB̄] − εkB(ε+kEB̄)

kE
− εkBB̄

2 0
kD
2 [kN − B̄kB] − εkBB̄

2 −k2N
α 0

0 0 0 − k2BMB̄

γkD(kB−kD)

 .

Consider the 3× 3 matrix which contains the main diagonal of the original 4× 4 matrix.
Its characteristic polynomial is

P (λ) = λ3 + a1λ
2 + a2λ+ a3, (5.2.16)

where the coefficients ai (i = 1, 2, 3) are real. We establish the conditions on the ai, such
that the zeros of P (λ) have Reλ < 0. The necessary and sufficient conditions for this are
the Routh-Hurwitz conditions [58]. For the cubic equation in (5.2.16), they are given by
the following inequalities:

[RH]


a1 > 0;

a3 > 0;

a1a2 − a3 > 0.

(5.2.17)

In our case, the coefficients of (5.2.16) are the following:

a1 = B̄kBkD +
ε2kB
kE

+ εkBB̄ +
k2
N

α
;

a2 =
ε2B̄k2

BkD
kE

+
εB̄kBk

2
N

α
+
B̄kBkDk

2
N

α
+
B̄kBkD(εB̄kB + εkD + kDkN + ε2)

2

+
ε2kBk

2
N

αkE
−
B̄2k2

B(k2
D + ε2)

2
−
k2
D(k2

N + ε2)

4
;

a3 =
ε2B̄k2

Bk
2
DkN

2kE
+
ε2B̄k2

BkDk
2
N

αkE
+
εB̄kBkDk

2
N (B̄kB + ε+ kD)

2α

+
εB̄kBk

2
DkN (ε+ B̄kB)

4
−
εB̄kBkD(εB̄kBkN + εB̄kBkD + kDk

2
N )

4

−
ε2kBk

2
D(k2

N + B̄2k2
B)

4kE
−
k2
N (ε2k2

D + ε2B̄2k2
B + B̄2k2

Bk
2
D)

4α
.

(5.2.18)
Now, we can state our result.

Proposition 5.2.1. Assume that (5.2.15) holds. Then, if [RH] condition is verified
for a1, a2, a3 in (5.2.18), system (5.0.6) satisfies (D)-Condition, and so it is totally
dissipative in a neighborhood of its equilibrium point.

Now, the first condition of (5.2.17) is always satisfied, since a1 in (5.2.17) is positive. In
particular, the last two conditions of (5.2.17) hold for ε, α, kB, kD, kE , kN in the following
table:
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Table 5.1: A list of (dimensional) parameters.
Param. Value Unit of meas. Indications

kB 8 · 10−6 1/sec Bact. growth rate

kE 3 · 10−6 1/sec EPS growth rate

kD 2 · 10−7 1/sec Bact. death rate

kN 1 · 10−6 1/sec Dead cells consumption

ε 1.25 · 10−7 1/sec EPS death rate

α 0.25 dimensionless coeff. liquid dead-cells

This is a list of parameters in [27], with kE = 3 · 10−6.

More generally, if we take a real parameter a, we can restrict our attention to the class
of coefficients such that

ε = 1.25 · 10−7 ' 10−7, kN = 10aε, , kE = 100aε, kD = 2aε, kB = 80aε.

By this reduction, the third condition of (5.2.17) gives a second degree polynomial
inequality that can be easily solved, and it holds true for a in a precise interval of the
real line. Moreover, it can be seen that the second condition in (5.2.17) is also verified
in the same interval.

5.3 Global existence of smooth solutions for small initial
data and asymptotic behavior

Now, we prove that the solution to the Cauchy problem associated to (5.0.6) with initial
datum in a small neighborhood of the equilibrium point is actually global in time. To
this end, we take inspiration from the proof of global existence of smooth solutions for
partially dissipative hyperbolic systems with a convex entropy in [39]. However, we point
out that in [39] the authors make use of a convex dissipative mathematical entropy and
the so called Shizuta-Kawashima condition, see [46]. On the contrary, in our proof we do
not use any of these last two properties, since the totally dissipative structure of system
(5.0.1), (D)-Condition, allows us to get the energy estimates which provide the global
existence result by means of the Nishida functional, see [61]. Besides, we are able to
prove that the global solution decays exponentially in time to the unique equilibrium
point of system (5.0.6).
Let us state now our main result.

Theorem 5.3.1. Consider system (5.0.6) and its unique equilibrium point ū in (5.2.14),
and assume that (5.2.15) holds. If this system satisfies (D)-Condition, there exists a
positive constant δ < r such that, if ||u0− ū||2 ≤ δ, then there is a unique global solution
u with initial datum u0, which verifies

u− ū ∈ C([0,+∞), H2(R)) ∩ C1([0,+∞), H1(R)),

and

sup 0≤t<+∞ ||u(t)− ū||22 +

∫ +∞

0
||u(τ)− ū||22 dτ ≤ C(δ)||u0 − ū||2,
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where C(δ) is a positive constant. Moreover, the global solution u decays exponentially
in time to the equilibrium point ū, i.e.

||u(t)− ū||H2(R) ≤ C1e
−βt||u0 − ū||H2(R), t > 0, (5.3.19)

where C1, β are positive constants.

According to (D)-Condition, we consider a neighborhood Ω = Br(ū) of the equilibrium
point ū. Let us introduce the following translation:

w := u− ū.

Then, system (5.1.13) reads

A0(w + ū)∂tw +A1(w + ū)∂xw = A0G(w + ū). (5.3.20)

In order to prove that the solution to the Cauchy problem associated to (5.0.6) is global
in time, we follow the approach proposed in [61], see also [46] and [39], and we introduce
the functional

N2
l (t) := sup 0≤τ≤t ||w(τ)||2l +

∫ t

0
||w(τ)||2l dτ, (5.3.21)

for l = 0, 1, 2.

Proposition 5.3.1. Let T > 0, and assume that there exists a local smooth solution w
to the Cauchy problem associated to system (5.0.6) in [0, T ]. Then, there exists ε > 0
and C > 0 such that, if N2(T ) ≤ ε,

N2
2 (T ) ≤ C(N2

2 (0) +N3
2 (T )). (5.3.22)

The existence and uniqueness of a local smooth solution to system (5.0.6) with initial
datum u0 ∈ H2(R) is guaranteed by the theory on quasilinear symmetrizable hyperbolic
systems, see Section 2. Besides, the first part of Theorem 5.3.1 follows directly from
Proposition 5.3.1, see [39], [61], so providing, for a constant value c, the uniform estimate

N2(T ) ≤ cN2(0). (5.3.23)

In order to prove Proposition 5.3.1 above, we need the following two lemmas.

Lemma 5.3.1. If N2(T ) ≤ ε ≤ δ
α , where α is the Sobolev embedding constant, then

N2
0 (T ) ≤ C1(N2

2 (0) +N3
2 (T )). (5.3.24)

Usually, to state an estimate as (5.3.24), a function of convex entropy is used, but here,
in our proof of Lemma 5.3.1, we do not use anything but the dissipative property of
system (5.0.6).

Proof. Using (D)-Condition and (5.3.20), let us consider system (5.0.6) in the following
symmetric form:

A0(w + ū)∂tw +A1(w + ū)∂xw = A0(w + ū)D(w + ū, ū)w.
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In the previous equation, the new reaction term is

D1(w, ū) := A0(w + ū)D(w + ū, ū).

Therefore, we have

A0(w + ū)∂tw +A1(w + ū)∂xw = D1(w, ū)w. (5.3.25)

We have the following identities:

(A0(w + ū)∂tw,w) =
1

2
∂t(A0(w + ū)w,w)− 1

2
(∂tA0(w + ū)w,w); (5.3.26)

(A1(w + ū)∂xw,w) =
1

2
∂x(A1(w + ū)w,w)− 1

2
(∂xA1(w + ū)w̄,w). (5.3.27)

We consider (5.3.25) and take the inner product with w, which yields

(A0(w + ū)∂tw,w) + (A1(w + ū)∂xw,w) = (D1(w, ū)w,w). (5.3.28)

Using the identities (5.3.26) and (5.3.27) in (5.3.28), we obtain

1

2
∂t(A0(w + ū)w,w) +

1

2
∂x(A1(w + ū))w,w)

=
1

2
(∂tA0(w + ū)w,w) +

1

2
(∂xA1(w + ū)w,w) + (D1(w, ū)w,w).

Therefore, if we integrate equality (5.3.28) over R× [0, T ], we have

1

2

∫
R

(A0(w(T ) + ū)w(T ),w(T )) dx − 1

2

∫
R

(A0(w(0) + ū)w(0),w(0)) dx

=

∫ T

0
dt

∫
R

([
1

2
∂tA0(w + ū) +

1

2
∂xA1(w + ū) +D1(w, ū)

]
w,w

)
dx =: I.

To estimate I, we use (5.3.25) in the following form:

∂tw = −A(w + ū)∂xw +D(w, ū)w.

Then
∂tA0(w + ū) = A′0(w + ū)∂tw,

and
∂tA0(w + ū) = A′0(w + ū)(−A(w + ū)∂xw +D(w, ū)w).

Then, we have

I = −
∫ T

0
dt

∫
R

1

2
((A′0A(w + ū)∂xw,w),w) dx

+

∫ T

0
dt

∫
R]

1

2
((A′1(w + ū)∂xw,w),w) dx

+

∫ T

0
dt

∫
R
D1(w, ū) dx+

∫ T

0
dt

∫
R

1

2
(A′0D(w, ū)w̄ ·w,w) dx.
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Then
1

2

∫
R

(A0(w(T ) + ū)w(T ),w(T )) dx −
∫ T

0
dt

∫
R

(D1(w, ū) dx

=
1

2

∫
R

(A0(w(0) + ū)w(0),w(0)) dx +

∫ T

0
dt

∫
R

1

2
((A′1(w + ū)∂xw,w),w) dx

+

∫ T

0
dt

∫
R

1

2
((A′0D(w, ū)w,w),w)−

∫ T

0
dt

∫
R

1

2
((A′0A(w + ū)∂xw),w,w) dx.

(5.3.29)
From (D)-Condition, D1 is negative definite and since A0, A

′
1, A

′
0D,A

′
0A are bounded

in a neighborhood of the equilibrium point ū, we have

c

2
||w(T )||20 + c1

∫ T

0
||w(t)||20 dt

≤ c2

2
||w(0)||20 +

c3

2

∫ T

0
dt

∫
R
|∂xw||w|2 dx+

c4

2

∫ T

0
dt

∫
R
|∂xw||w|2 dx

+
c5

2

∫ T

0
dt

∫
R
|w||w|2 dx

≤ c2

2
||w(0)||20+

c6

2
sup
t∈[0,T ]

|∂xw(t)|∞
∫ T

0
dt ||w||20+

c5

2
sup
t∈[0,T ]

|w(t)|∞
∫ T

0
dt ||w||20. (5.3.30)

The embedding of H1 in L∞, where α is the Sobolev embedding constant, yields

|w|∞ ≤ α||w||H1 = α(||w||0 + ||∂xw||0).

Thus, from the definition of the functional N2(t) in (5.3.21), we have

|∂xw|∞ ≤ α(||∂xw||0 + ||∂xxw||0) ≤ N2(T ),

and

|w|∞ ≤ α(||w||0 + ||∂xw||0) ≤ N2(T ).

The last term in (5.3.30) is estimated by

c2

2
N2

2 (0) +
c6

2
N3

2 (T ) +
c5

2
N3

2 (T ).

So, using (5.3.30), we have

||w(T )||20 +

∫ T

0
||w(t)||20 dt ≤ C1(N2

2 (0) +N3
2 (T )).

Let us now estimate the first and second order derivatives.
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Lemma 5.3.2. If N2(T ) ≤ ε ≤ δ
α , then, for l = 1, 2,

sup 0≤t≤T ||w(t)||2l +

∫ T

0
||w(t)||2l dt ≤ C(N2

2 (0) +N3
2 (T )).

Proof. Apply the first space derivative to system (5.3.20) and take the inner product
with ∂xw, which provides

∂x(A0(w + ū)∂tw +A1(w + ū)∂xw) · ∂xw = [∂x(A0D)w + (A0D)∂xw] · ∂xw. (5.3.31)

We have the following identities:

∂x(A0(w + ū)∂tw) · ∂xw =
1

2
∂t((A0(w + ū)∂xw) · ∂xw)− 1

2
(∂tA0∂xw) · ∂xw

+(∂xA0∂tw) · ∂xw;

∂x(A1(w + ū)∂xw) · ∂xw =
1

2
∂x((A1(w + ū)∂xw) · ∂xw) +

1

2
(∂xA1∂xw) · ∂xw.

If we integrate equality (5.3.31) over R and use the previous identities, the term

∂x((A1(w + ū)∂xw) · ∂xw)

vanishes, and then we have

1

2

d

dt

∫
R

(A0(w + ū)∂xw) · ∂xw dx−
∫
R

((A0D)∂xw) · ∂xw dx

=

∫
R

{
1

2
∂tA0∂xw− ∂xA0∂tw−

1

2
∂xA1∂xw

}
· ∂xw + (∂x(A0D)w) · ∂xw dx. (5.3.32)

To estimate the right-end side of (5.3.32), we use (5.3.20) in the following form:

∂tw = −A∂xw +Dw.

Then

∂tA0 = A′0∂tw = A′0(−A∂xw +Dw).

Thus, equality (5.3.32) is

1

2

d

dt

∫
R

(A0(w + ū)∂xw) · ∂xw dx−
∫
R

((A0D)∂xw) · ∂xw dx

=

∫
R
−1

2
((A′0A∂xw, ∂xw), ∂xw) +

1

2
(A′0∂xwA∂xw, ∂xw) +

1

2
(A′0Dw∂xw, ∂xw) dx

−1

2
((A0A

′∂xw, ∂xw), ∂xw) +

∫
R

(A0D
′(∂xw)w, ∂xw) dx. (5.3.33)
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Using (5.3.33), we have

||∂xw(T )||20 +

∫ T

0
||∂xw(t)||20 dt

≤ C1(ε)

(
||∂xw(0)||20 +

∫ T

0

∫
R
|∂xw|2|∂xw| dxdt

)

≤ C1(ε)

(
||∂xw(0)||20 + ( sup

t∈[0,T ]
|w(t)|∞ + sup

t∈[0,T ]
|∂xw(t)|∞)

∫ T

0
||∂xw(t)||20 dt

)
. (5.3.34)

In the same way, we perform the second space derivative of (5.3.25) and take the inner
product with ∂xxw, which provides

∂xx(A0∂tw +A1∂xw) · ∂xxw = ∂xx(A0Dw) · ∂xxw. (5.3.35)

We have the following identities:

∂xx(A0∂tw) · ∂xxw

=
1

2
∂t((A0∂xxw) · ∂xxw)− 1

2
(∂tA0∂xxw) · ∂xxw

+2(∂xA0∂xtw) · ∂xxw + (∂xxA0∂tw) · ∂xxw; (5.3.36)

∂xx(A1(W)∂xw) · ∂xxw

=
1

2
∂x((A1∂xxw) · ∂xxw) +

3

2
(∂xA1∂xxw) · ∂xxw + (∂xxA1∂xw) · ∂xxw. (5.3.37)

If we integrate (5.3.35) over R and we use the previous identities (5.3.36)-(5.3.37), the
term

∂x((A1∂xxw) · ∂xxw)

vanishes.

This way, we have

1

2

d

dt

∫
R

(A0∂xxw) · ∂xxw dx−
∫
R

(A0D∂xxw, ∂xxw) dx

=

∫
R

{
1

2
∂tA0∂xxw− 2∂xA0∂xtw− ∂xxA0∂tw

}
· ∂xxw dx

−
∫
R

{
3

2
∂xA1∂xxw + ∂xxA1∂xw

}
· ∂xxw + (∂xx(A0D)w, ∂xxw) + ((A0D)∂xw, ∂xxw) dx
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=

∫
R

{
− 1

2
(A′0A∂xw, ∂xxw) +

1

2
(A′0Dw, ∂xxw) + (A′0∂xwA

′∂xw, ∂xw)

+
1

2
A′0∂xwA∂xxw− 2(A′0∂xwD

′∂xw,w)− 2A′0∂xwD∂xw−A′0∂xxwDw

−(A0A
′′∂xw · ∂xw, ∂xw)− (A0A

′∂xxw, ∂xw) + (A′0D
′∂xxw,w)

}
· ∂xxw dx.

Then,

||∂xxw(T )||20 +

∫ T

0
||∂xxw(t)||20 dt

≤ C2(ε)

{
||∂xxw(0)||20 +

∫ T

0

∫
[0,1]

(|∂xw|2 + |∂xxw|2)(|∂xw|+ |w|+ |∂xw|) dxdt

}

≤ C2(ε)

{
||∂xxw(0)||20 + ( sup

t∈[0,T ]
|w|∞+ sup

t∈[0,T ]
|∂xw|∞)

∫ T

0
(||∂xw(t)||20 + ||∂xxw(t)||20) dt

}
.

(5.3.38)

Now, Lemma 5.3.1 and Lemma 5.3.2 prove inequality (5.3.22). Then, Proposition 5.3.1
follows immediately.
It remains to study the asymptotic behavior of the solution. Let us set

E(t) =
1

2
||w(t)||22. (5.3.39)

Taking the time derivative of (5.3.29) and using the embedding of H2(R) in L∞(R), we
have

1

2

d

dt
||w(t)||20 + c1||w(t)||20 ≤ c2||w(t)||2||w(t)||20. (5.3.40)

Taking the time derivative of (5.3.34), we obtain, in the same way, the estimate on the
first derivative of w,

1

2

d

dt
||∂xw(t)||20 + c3||∂xw(t)||20 ≤ c4||w(t)||2||∂xw(t)||20. (5.3.41)

Finally, from the time derivative of (5.3.38) and using Morrey’s Theorem, we have the
second order estimate

1

2

d

dt
||∂xxw(t)||20 + c5||∂xxw(t)||20 ≤ c6||w(t)||2||∂xxw(t)||20. (5.3.42)

Summing (5.3.40), (5.3.41) and (5.3.42), from (5.3.39) we have

∂tE + µE ≤ νE3/2, (5.3.43)

where µ = c1 + c3 + c5 and ν = c2 + c4 + c6.
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Now, we take the initial datum small enough such that

E(0) <

(
γ

ν

)2

,

for some 0 < γ < min{µ, ν}. Thus,

νE3/2 < γE,

at least for a small interval of time and, by using (5.3.43),

∂tE ≤ (γ − µ)E,

while (5.3.19) follows directly from the Gronwall inequality, taking β = µ− γ.
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Chapter 6

A density dependent
compressible-incompressible Euler
model in several space dimensions

Here, we consider a fluid described by the following equations in Rd :
∂tρ+∇ · (ρv) = 0,

∂tv + v · ∇v + f(ρ, v)∇ρ+∇P = 0,

∇ · v = 0,

(6.0.1)

with initial data

ρ(0, x) = ρ0(x), v(0, x) = v0(x) such that ∇ · v0(x) = 0, (6.0.2)

where f(ρ, v) is a scalar function of (ρ, v) ∈ Rd+1. This section is based on [14]. System
(6.0.1) describes the motion of a nonhomogeneous, also called density-dependent, fluid.
The nonnegative scalar function ρ is the density of the fluid, v ∈ Rd its velocity, and P
is the incompressible hydrostatic pressure generated by the divergence free constraint.
The term f(ρ, v)∇ρ is a slight generalization of a compressible pressure. This system
is intended as a toy model for a general class of problems presented in (4.0.5). More
generally, many problems characterized by the interaction between compressible and
incompressible pressure terms, where the compressible part can be generalized replacing
γlog(B) in (4.0.5) with a function φ(B) only depending on the solid phase B, arise from
mixture theory and are similar to system (4.0.5), as, for instance, models of biofilms
[27] in (4.0.2), tumor growth [3] and organic tissues and vasculogenesis [32]. A complete
analytical study of the one dimensional model in (4.0.5) is given in [12]. As a matter
of facts, in more space dimensions, model (4.0.5) presents several analytical difficulties,
which we are trying to understand by studying a simplified version. In order to do this,
the first idea would be to consider a model where the solid phase B and the liquid L
have the same transport velocity v = vS = vL, whose equation contains a compressible
pressure term. These assumptions give the following model:

∂tρ+∇ · (ρv) = 0,

∂tv + v · ∇v +∇φ(ρ) +∇P = 0,

∇ · v = 0,

(6.0.3)

65



CHAPTER 6. A COMPRESSIBLE-INCOMPRESSIBLE MODEL

where ρ is the density of the fluid and φ(ρ) a general compressible pressure. It can be
checked that the techniques developed in this paper in the following continue to work on
it, but there is also a more trivial way to proceed. Namely, by defining a new pressure
Q := P + φ(ρ), model (6.0.3) can be reduced to

∂tρ+∇ · (ρv) = 0,

∂tv + v · ∇v +∇Q = 0,

∇ · v = 0,

P = Q− φ(ρ),

(6.0.4)

which is just the homogeneous incompressible Euler equations plus a transport
equation for the density variable and can be solved separately, see [49]. So, since there
is a too simple way to solve (6.0.4), we are going to study (6.0.1), which is a
mathematical generalization of model (6.0.3), endowed with most of the analytical
difficulties of (4.0.5). Let us compare system (6.0.1) with the density-dependent
incompressible Euler equations

∂tρ+∇ · (ρv) = 0,

∂tv + v · ∇v + ∇P
ρ = 0,

∇ · v = 0,

(6.0.5)

which have been studied by many authors, see for instance J. E. Marsden [53], H. Beirão
da Veiga [7], A. Valli [76] & R. Danchin [29]. Let us remark that, in [76], Valli and
Zajaczkowski have studied model (6.0.5) by using an approximating system where the
divergence of the velocity field vanishes in a similar way with respect to to the Chorin-
Temam projection method in [75]. Although model (6.0.1) looks quite similar to (6.0.5),
most of the ideas used to solve it do not apply to our system. In fact, consider the
elliptic equation for the pressure term

∆P +∇ · (f(ρ, v)∇ρ)) = −
d∑

i,j=1

∂xivj∂xjvi,

which is obtained by applying the divergence free operator to the velocity equation in
(6.0.1). By contrast with what happens for system (6.0.5), the pressure term P in (6.0.1)
does not gain one more space derivative of regularity with respect to the other unknowns
ρ, v, and we are not able to get energy estimates. Besides, even the vorticity method from
[7] does not seem to work for (6.0.1) and (4.0.5), so we have to proceed in a different way.
Here, we establish the well-posedness of system (6.0.1), using an approximation based
on the projection onto the space of the divergence free velocity field and paradifferential
calculus. Besides, we show the convergence of a new singular perturbation approximation
that can be considered as a continuous version of the projection method in [75], which
turns out to work also on the homogeneous incompressible Euler equations. We point
out that our proof of convergence of the second approximation can be adapted with
slight modifications to prove the convergence of the classical fractional step of Chorin-
Temam projection method [75], so providing a constructive approximation to system
(6.0.1). To have a complete view, we briefly show that also the more classical artificial
compressibility method in [75] works on system (6.0.1). In Remarks 6.1.2, 6.2.3 and 6.3.3,
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we see that these three kinds of approximations do not work on the density dependent
Euler equations (6.0.5), showing, this way, the deep analytical dissimilarity among these
two models.

First of all, we notice that, by using the divergence free condition ∇ · v = 0, the mass
balance equation of (6.0.1) yields

∂tρ+ v · ∇ρ = 0,

and system (6.0.1) reads:
∂tρ+ v · ∇ρ = 0,

∂tv + v · ∇v + f(ρ, v)∇ρ+∇P = 0,

∇ · v = 0.

(6.0.6)

Now, let u = (ρ, v) and FP = (0,∇P ). System (6.0.6) can be written in the following
compact formulation: {

∂tu +
∑d

j=1Aj(u)∂xju + FP = 0,

∇ · v = 0,
(6.0.7)

with initial data (6.0.2)

u(0, x) = u0(x) = (ρ0(x), v0(x)), (6.0.8)

where, in the two dimensional case

A1(u) =

 v1 0 0
f(u) v1 0

0 0 v1

 , A2(u) =

 v2 0 0
0 v2 0

f(u) 0 v2

 , (6.0.9)

and, in the general d-dimensional case, for j = 1, · · · , d,

Aj(u) =


vj 0 0 · · · 0

δ1jf(u) vj 0 · · · 0
δ2jf(u) 0 vj · · · 0
· · · · · · · · · vj · · ·

δdjf(u) 0 0 · · · vj

 . (6.0.10)

Remark 6.0.1. As we will see later, in order to apply the techniques in the last two
sections, we need to stay far away from the vacuum, i.e. ρ(t, x) 6= 0 for every time t
and x ∈ Rd. This way, ρ cannot belong to L2(Rd), while the translated variable ρ − ρ̄,
with ρ̄ an arbitrary positive constant, does. For this reason, choosing a constant value
ρ̄, in the following we are going to use the variable ρ − ρ̄ to get a translated version
of system (6.0.7). The analytical motivations of the translation are discussed at the
beginning of Section 6.2, anyway in Section 6.1 we can also admit ρ̄ = 0. We notice
that the non-vanishing density variable is a condition also required by the general system
(4.0.5), where the density ρ is replaced with the volume fraction of the solid phase S and
the compressible pressure is γ∇S

S .
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Taking into account Remark 6.0.1, first of all we make a slight modification of system
(6.0.7), defining

ρ̃ := ρ− ρ̄, ū := (ρ̄, 0), and ũ = (ρ̃, ṽ) := u− ū = (ρ− ρ̄, v),

with ρ̄ > 0. By this change of variable, the Cauchy problem (6.0.7)-(6.0.8) reads:{
∂tũ +

∑d
j=1Aj(ũ + ū)∂xj ũ + FP = 0,

∇ · v = 0,
(6.0.11)

with initial data
ũ(0, x) = ũ0(x) = (ρ0 − ρ̄, v0), (6.0.12)

where ρ0, v0 are defined in (6.0.2). Now, we provide the definition of classical local
solutions to system (6.0.1), with initial data (6.0.2).

Definition 6.0.1. Let m > [d/2] + 1 be fixed, m ∈ N. The term (ρ, v, P ), with ρ > 0,
is a classical solution to the Cauchy problem (6.0.6) - (6.0.2) if, fixed a constant value
ρ̄ > 0, there exists T > 0 such that ũ = (ρ − ρ̄, v) belongs to C([0, T ], Hm(Rd)) ∩
C1([0, T ], Hm−1(Rd)), ∇P belongs to C([0, T ], Hm−1(Rd)), and (ũ, P ) solve{

∂tũ +
∑d

j=1Aj(ũ + ū)∂xj ũ + (0,∇P ) = 0,

∇ · v = 0,

with initial data in (6.0.12) belonging to Hm(Rd).

In the next three sections, we will prove the existence and uniqueness of the solution to
(6.0.6)-(6.0.2), according to Definition 6.0.1, by using three different techniques.

6.1 Well-posedness via the Leray projector

This section is devoted to the proof of existence and uniqueness of the local solution
to (6.0.1)-(6.0.2), by using the so called Leray projector and related paradifferential
calculus. Following [9], first of all we approximate the translated version (6.0.11) of
system (6.0.7) by a standard regularization, using mollifiers Jε, which we define here.

Definition 6.1.1. Let Φ(x) ∈ C∞0 (Rd) be any positive, radial function such that∫
Rd Φ dx = 1. Fix ε > 0, and let jε = 1

εd
Φ(x/ε). The mollification Jεw of functions

w ∈ L2(Rd) is defined by

Jεw(x) = (jε ∗w)(x) =
1

εd

∫
Rd

Φ

(
x− y
ε

)
w(y) dy. (6.1.13)

Now, we regularize (6.0.11) using mollifiers, and we get the following approximating
system: {

∂tũ
ε +

∑d
j=1 JεAj(Jε(ũ

ε + ū))∂xjJεũ
ε + (0,∇P ε) = 0,

∇ · vε = 0,
(6.1.14)

with initial data
ũε0(x) = ũ0(x) = (ρ0(x)− ρ̄, v0(x)) (6.1.15)
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in (6.0.12). Here, the idea is to eliminate the pressure term ∇P ε in (6.1.14), by applying
the projector operator onto the space of the divergence free vectors, which is known
as the Leray projector, to the equation for the velocity vε in (6.1.14). Precisely, since
system (6.1.14) is written in terms of the unknown ũε = (ρε − ρ̄, vε), and we will work
in the framework of the Sobolev spaces, we are looking for an operator P̃ that projects
any vector ũε = (ρε − ρ̄, vε) ∈ Hs(Rd) onto the space

V s := {(ρ− ρ̄, v) ∈ Hs(Rd) : ∇ · v = 0}. (6.1.16)

It results that P̃ is a generalization of the Leray projector, i.e.

P̃ =

(
1 0
0 P

)
, (6.1.17)

where 0 is the d-dimensional null vector and P is the standard Leray projector, whose
symbol is given by

P(ξ) = (Pij(ξ))i,j=1,··· ,d, where Pij(ξ) = δij(ξ)−
ξiξj
|ξ|2

, (6.1.18)

defined in [4]. Now, we want to apply the operator P̃ in (6.1.17) to the approximating
system (6.1.14)-(6.1.15). Notice that, since ∇ · vε = 0 in (6.1.14), then ũε ∈ V s by
definition (6.1.16), i.e.

P̃ũε = (ρε − ρ̄, vε) = ũε.

Then, applying P̃ to (6.1.14)-(6.1.15), we get

∂tũ
ε +

d∑
j=1

P̃(JεAj(Jε(ũ
ε + ū))∂xjJεũ

ε) = 0, (6.1.19)

with the same initial data in (6.1.15). Notice also that now the divergence free condition
∇ · vε = 0 in (6.1.14) is implicitly contained in (6.1.19), which can be treated as an
hyperbolic system of the first order. We prove the following theorem.

Theorem 6.1.1. (Local existence of the approximating solution to the first type
approximation) Let ũε0 as in (6.1.15) be belonging to V s defined in (6.1.16), with
s > d/2 + 1. Then, for every ε > 0, there exists a time T , independent of ε, such that
system (6.1.19) has a unique solution ũε = (ρε − ρ̄, vε) ∈ C1([0, T ], V s).

Proof. First of all, we show that existence and uniqueness follow from the Picard theorem
(see [9]). Then, we prove that the time of local existence Tε can be bounded from below
by a time T > 0, which is independent of ε. System (6.1.19) reduces to an ordinary
differential equation:

∂tũ
ε = F ε(ũε), ũε|t=0 = ũε0(x),

where

F ε(ũε) = −
d∑
j=1

P̃(JεAj(Jε(ũ
ε + ū))∂xjJεũ

ε). (6.1.20)
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Notice that Jεũ
ε and Jε(ũ

ε+ ū) are C∞ functions and, from [8, 55], P is associated to an
analytic pseudodifferential operator of order 0, modulo an infinitely smooth remainder,
then

F ε : V s → V s.

In order to apply the Picard theorem, we have to prove that F ε(ũε) in (6.1.20) is Lipschitz
continuous. To do this, we take two vectors ũ1, ũ2. In the following, we omit the index ε
in the unknown functions, where there is no ambiguity. Let cS be the Sobolev embedding
constant. Then

||F ε(ũ1)− F ε(ũ2)||0 ≤
d∑
j=1

||P̃JεAj(Jε(ũ1 + ū))∂xjJεũ1 − P̃JεAj(Jε(ũ2 + ū))∂xjJεũ2||0

≤
d∑
j=1

{||[P̃JεAj(Jε(ũ1 + ū))− P̃JεAj(Jε(ũ2 + ū))]∂xjJεũ1||0

+ ||P̃JεAj(Jε(ũ2 + ū))∂xjJε(ũ1 − ũ2)||0}

=
d∑
j=1

{∣∣∣∣∣
∣∣∣∣∣P̃
[∫ 1

0

d

dr
(JεAj(rJε(ũ1 + ū) + (1− r)Jε(ũ2 + ū))) dr

]
∂xjJεũ1

∣∣∣∣∣
∣∣∣∣∣
0

+ c(|Jε(ũ2 + ū)|∞)||∂xjJε(ũ1 − ũ2)||0

}

=

d∑
j=1

{∣∣∣∣∣
∣∣∣∣∣P̃
[∫ 1

0
(JεAj(rJε(ũ1 + ū) + (1− r)Jε(ũ2 + ū)))′dr

]
Jε(ũ1 − ũ2) ∂xjJεũ1

∣∣∣∣∣
∣∣∣∣∣
0

+ c(|Jε(ũ2 + ū)|∞)||∂xjJε(ũ1 − ũ2)||0

}

≤
d∑
j=1

{c(|Jε(ũ1,2 + ū)|∞, |∂xjJεũ1|∞)(||Jε(ũ1 − ũ2)||0 + ||∂xjJε(ũ1 − ũ2)||0)}

≤ c(|Jε(ũ1 + ū)|∞, |Jε(ũ2 + ū)|∞, |∇Jεũ1|∞)||Jε(ũ1 − ũ2)||1

≤ c(cS , ||ũ1||s, ||ũ2||s, ρ̄)||ũ1 − ũ2||1,

where the last inequality follows from Moser estimates and properties of mollifiers.
Taking the α (|α| ≤ s) derivative, we have

||Dα(F ε(ũ1)− F ε(ũ2))||0

≤
d∑
j=1

||Dα(P̃JεAj(Jε(ũ1 + ū))∂xjJεũ1 − P̃JεAj(Jε(ũ2 + ū))∂xjJεũ2)||0

≤
d∑
j=1

{||P̃Dα[(JεAj(Jε(ũ1 + ū))− JεAj(Jε(ũ2 + ū)))∂xjJεũ1]||0
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+||P̃Dα(JεAj(Jε(ũ2 + ū))∂xjJε(ũ1 − ũ2))||0}

≤ cS
d∑
j=1

{||P̃Ds(JεAj(Jε(ũ1 + ū))− JεAj(Jε(ũ2 + ū)))||0|∂xjJεũ1|∞

+|P̃[JεAj(Jε(ũ1 + ū))− JεAj(Jε(ũ2 + ū))]|∞||Ds∂xjJεũ1||0

+||P̃Ds(JεAj(Jε(ũ2 + ū)))||0|∂xjJε(ũ1 − ũ2)|∞

+|P̃JεAj(Jε(ũ2 + ū))|∞||Ds∂xjJε(ũ1 − ũ2)||0}

= cS

d∑
j=1

{∣∣∣∣∣
∣∣∣∣∣P̃Ds

[∫ 1

0

d

dr
(JεAj(rJε(ũ1 + ū) + (1− r)Jε(ũ2 + ū))) dr

]∣∣∣∣∣
∣∣∣∣∣
0

|∂xjJεũ1|∞

+

∣∣∣∣∣P̃
∫ 1

0

d

dr
(JεAj(rJε(ũ1 + ū) + (1− r)Jε(ũ2 + ū))) dr

∣∣∣∣∣
∞

||Ds∂xjJεũ1||0

+||P̃Ds(JεAj(Jε(ũ2 + ū)))||0|∂xjJε(ũ1 − ũ2)|∞

+|P̃JεAj(Jε(ũ2 + ū))|∞||Ds∂xjJε(ũ1 − ũ2)||0

}

= cS

d∑
j=1

{∣∣∣∣∣
∣∣∣∣∣P̃Ds

[∫ 1

0
dr(JεAj(rJε(ũ1 + ū) + (1− r)Jε(ũ2 + ū)))′Jε(ũ1 − ũ2)

]∣∣∣∣∣
∣∣∣∣∣
0

|∂xjJεũ1|∞

+

∣∣∣∣∣P̃
∫ 1

0
dr(JεAj(rJε(ũ1 + ū) + (1− r)Jε(ũ2 + ū)))′Jε(ũ1 − ũ2)

∣∣∣∣∣
∞

||Ds∂xjJεũ1||0

+||P̃Ds(JεAj(Jε(ũ2 + ū)))||0|∂xjJε(ũ1 − ũ2)|∞

+|P̃JεAj(Jε(ũ2 + ū))|∞||Ds∂xjJε(ũ1 − ũ2)||0

}

≤ c(cS , ||ũ1||m, ||ũ2||m, ρ̄, ε−1)||Ds(ũ1 − ũ2)||0

= c(cS , ||ũ1||m, ||ũ2||m, ρ̄, ε−1)||ũ1 − ũ2||s, (6.1.21)

where, once again, the last inequality follows from Moser estimates and properties of
mollifiers, as we can see in the following remark.
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Remark 6.1.1. Define G(ũ2) := P̃Jε[Aj(Jε(ũ2 + ū)) − Aj(ū)]. Then, G(0) = 0. Ap-
plying Theorem C. 12 in [8] to G(ũ2), we have

||P̃Ds(JεAj(Jε(ũ2 + ū)))||0 = ||P̃Ds(JεAj(Jε(ũ2 + ū))− JεAj(ū)) + P̃Ds(JεAj(ū))||0

= ||P̃[Ds(JεAj(Jε(ũ2 + ū))− JεAj(ū))]||0 ≤ c(|ũ2|∞)||ũ2||s ≤ c(cS ||ũ2||s)||ũ2||s.

The last inequality (6.1.21) implies that, for fixed ε, F ε is locally Lipschitz continuous
on any open set

UM = {ũε ∈ V s : ||ũε||s < M}.

By using the Picard theorem, there exists the unique solution ũε ∈ C1([0, Tε),U
M ) for

any Tε > 0.

Now, we show that the time of existence Tε is bounded from below by a strictly positive
time T that is independent of ε. Let P̃ be the analytic - modulo an infinitely smooth
remainder, see [8, 55, 74] - pseudodifferential operator defined in (6.1.17), and, according
to the notations in [55], let TiA be the paradifferential operator so defined

TiA :=

d∑
j=1

TAj∂xj , (6.1.22)

where TAj = TAj(Jε(ũε+ū)) is the paradifferential operator related to the symbol
Aj(Jε(ũ

ε + ū)), for j = 1, · · · , d, according to Section 2. There is also another way to

define TiA, i.e. we consider the symbolic matrix A(ξ,u) :=
∑d

j=1Aj(u)ξj

=



∑d
j=1 vjξj 0 0 · · · 0

f(u)ξ1
∑d

j=1 vjξj 0 · · · 0

f(u)ξ2 0
∑d

j=1 vjξj · · · 0

· · · · · · · · ·
∑d

j=1 vjξj · · ·
f(u)ξd 0 0 · · ·

∑d
j=1 vjξj

 , (6.1.23)

and we indicate with TiA the paradifferential operator associated to the regularized
version of the symbol iA(ξ,u), evaluated in Jε(ũ

ε + ū), with A(ξ,u) in (6.1.23). Now,
we write (6.1.19) as

∂tũ
ε + P̃JεTiAJεũ

ε = −

[
d∑
j=1

P̃(JεAj(Jε(ũ
ε + ū))∂xjJεũ

ε)− P̃JεTiAJεũ
ε

]
. (6.1.24)

Let Λ = (1−∆)
1
2 , where ∆ is the Laplace operator. From (6.1.24), we have

1

2

d

dt
||ũε||2s = (Λs∂tũ

ε,Λsũε)0 = −Re(ΛsP̃JεTiAJεũε,Λsũε)0 +Q, (6.1.25)

with

Q :=
d∑
j=1

(ΛsP̃(Jε[TAj(Jε(ũε+ū)) −Aj(Jε(ũε + ū))]∂xjJεu
ε),Λsũε)0.
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Lemma 7.2.3 in [55] states that

||
d∑
j=1

[TAj(Jε(ũε+ū)) −Aj(Jε(ũε + ū))]∂xjJεũ
ε||s ≤ c(||ũε||s, ρ̄)||Jεũε||s,

then, we have the following estimate:

|Q| ≤ c(||ũε||s)||ũε||2s.

It remains to discuss the first term of the right hand side of (6.1.25), which is

Re(ΛsP̃JεTiAJεũ
ε,Λsũε)0.

We need the following Lemma.

Lemma 6.1.1. The operator ΛsP̃, with P̃ in (6.1.17), commutes with the diagonal
matrix with mollifiers Jε entries.

Proof. The symbols associated to ΛsP̃ and Jε are both Fourier multipliers, which com-
mute (see [55]).

Now, by using Lemma 6.1.1, we have

(ΛsP̃JεTiAJεũ
ε,Λsũε)0 = (ΛsP̃TiAJεũ

ε,ΛsJεũ
ε)0

= (P̃TiAΛsJεũ
ε,ΛsJεũ

ε)0 + ([Λs, P̃TiA]Jεũ
ε,ΛsJεũ

ε)0.

Since the symbol of Λs is ∆s(ξ)Id, where Id is the d + 1 dimensional identity matrix,
the commutation rule (see [55], [34], [8], [74]) implies that [Λs,PTiA] is an operator of
order less than or equal to s, i.e.

([Λs, P̃TiA]Jεũ
ε,ΛsJεũ

ε)0 ≤ ||[Λs, P̃TiA]Jεũ
ε||0||ΛsJεũε||0 ≤ c(||ũε||s)||ũε||2s.

It remains to deal with Re(P̃TiAΛsJεũ
ε,ΛsJεũ

ε)0. From Proposition 1.10 in [34], the
symbol associated to the composition P̃TiA is made by a sum, in the α multi-index, of
terms

∂αξ P̃
φ
(ξ)Dα

x (iAφ(ξ, Jε(ũ
ε + ū))),

where P̃
φ
(ξ) and Aφ(ξ, Jε(ũ

ε + ū)) are the regularized versions of the symbols P̃(ξ),
A(ξ, Jε(ũ

ε + ū)), through the standard Littlewood-Paley decomposition, see Section 2,
and Dx = 1

i ∂x. Apart from |α| = 0, the others are terms of order less than or equal to

0, namely the symbol related to the operator P̃TiA can be written as

P̃
φ
(ξ)iAφ(ξ, Jε(ũ

ε + ū)) +Rα, (6.1.26)

where Rα is a remainder of order less than or equal to 0. Now, taking a generic vector
u = (ρ, v), from (6.1.17), (6.0.9), and (6.0.10) we have

P̃A(ξ,u) =

 v1ξ1 + v2ξ2 0 0

0
ξ22
|ξ|2 (v1ξ1 + v2ξ2) − ξ1ξ2

|ξ|2 (v1ξ1 + v2ξ2)

0 − ξ1ξ2
|ξ|2 (v1ξ1 + v2ξ2)

ξ21
|ξ|2 (v1ξ1 + v2ξ2)

 ,
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in the two dimensional case, while, in the general d-dimensional case, we have

P̃A(ξ,u) =
d∑
j=1

vjξj



1 0 0 0 · · · 0

0 1− ξ21
|ξ|2 − ξ1ξ2

|ξ|2 − ξ1ξ3
|ξ|2 · · · − ξ1ξd

|ξ|2

0 − ξ1ξ2
|ξ|2 1− ξ22

|ξ|2 − ξ2ξ3
|ξ|2 · · · − ξ2ξd

|ξ|2

0 − ξ1ξ3
|ξ|2 − ξ2ξ3

|ξ|2 1− ξ23
|ξ|2 · · · − ξ3ξd

|ξ|2

· · · · · · · · · · · · · · ·
0 − ξ1ξd

|ξ|2 − ξ2ξd
|ξ|2 − ξ3ξd

|ξ|2 · · · 1− ξ2d
|ξ|2


. (6.1.27)

Since P̃A(ξ,u) in (6.1.27) is a symmetric symbolic matrix, it follows that

Re(iPA(ξ,u)) = 0.

Then, by using (6.1.26), we have

Re(PTiAΛsJεũ
ε,ΛsJεũ

ε)0 ≤ c(||ũε||s, ρ̄)||ũε||2s. (6.1.28)

Putting it all together in (6.1.25), we get

d

dt
||ũε||2s ≤ c(||ũε||s, ρ̄)||ũε||2s. (6.1.29)

Let Tε be the maximum time of existence of the solution to system (6.1.19)-(6.1.15).
We want to show that there exists a time T > 0, which is independent of ε, such that
T ≤ Tε for every ε > 0. From the statement of Theorem 6.1.1, there exists a constant
M such that ||ũε0||s ≤ M . Fixed a constant value M̃ > M, let T ε0 ≤ Tε be a positive
time such that the smooth solution ũε verifies

sup 0≤τ≤T ε0 ||ũ
ε(τ)||s ≤ M̃. (6.1.30)

By (6.1.29), we get

||ũε(t)||s ≤ ||ũε0||sec(M̃,ρ̄)t (6.1.31)

for t ∈ [0, T ε0 ]. Let T, with 0 < T ≤ T ε0 , be such that

Mec(M̃,ρ̄)T ≤ M̃.

This yields

T ≤
log(M̃M )

c(M̃, ρ̄)
. (6.1.32)

Since M,M̃, ρ̄ are independent of the parameter ε, estimate (6.1.32) implies that T is

independent of ε and ũε is uniformly bounded provided that T ≤
log(M̃M )

c(M̃, ρ̄)
.

We also need a uniform bound for the time derivatives ∂tũ
ε(t), which is easily obtained

from (6.1.19) and (6.1.30). Thus, we have

||∂tũε(t)||s−1 ≤ c(M,M̃, ρ̄) for t ∈ [0, T ]. (6.1.33)
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6.1.1 Convergence to the compressible-incompressible model
- I method

This section is devoted to the proof of the following theorem:

Theorem 6.1.2. Let ũ0 = (ρ0 − ρ̄, v0) be the translated initial data in (6.0.12), ũ0

belonging to Hm(Rd), with m > [d/2] + 1 integer. There is a positive time T , such that
there exists the unique ũ ∈ C([0, T ], Hm(Rd)) ∩ C1([0, T ], Hm−1(Rd)) and a function
P such that ∇P ∈ C([0, T ], Hm−1(Rd)) which solve (6.0.11). The solution (ũ, P ) to
(6.0.11) is the limit of the sequence of the solutions to the approximating system (6.1.14)
with initial data (6.1.15).

Proof. Let us consider the uniform bounds that we have just proved in (6.1.30) and
(6.1.33):

sup 0≤t≤T ||ũε||m ≤M1, (6.1.34)

and

sup 0≤t≤T ||∂tũε||m−1 ≤M2, (6.1.35)

for fixed constant values M1,M2. Now, we need the following Lemma.

Lemma 6.1.2. The sequence of the solutions to the approximating system (6.1.19)-
(6.1.15) is a Cauchy sequence in C([0, T ], L2(Rd)).

Proof. For ε, ε′ > 0, let ũε, ũε
′

two solutions to (6.1.19)-(6.1.15). We have

1

2

d

dt
||ũε − ũε

′ ||20

+

d∑
j=1

(P̃(JεAj(Jε(ũ
ε + ū)∂xjJεũ

ε − Jε′Aj(Jε′(ũε
′
+ ū)∂xjJε′ũ

ε′), ũε − ũε
′
)0

=
1

2

d

dt
||ũε − ũε

′ ||20 +

d∑
j=1

{(P̃[(Jε − Jε′)Aj(Jε(ũε + ū))∂xjJεũ
ε], ũε − ũε

′
)0

+(P̃[Jε′(Aj(Jε(ũ
ε + ū))−Aj(Jε(ũε

′
+ ū)))∂xjJεũ

ε], ũε − ũε
′
)0

+(P̃[Jε′(Aj(Jε(ũ
ε′ + ū))−Aj(Jε′(ũε

′
+ ū)))∂xjJεũ

ε], ũε − ũε
′
)0

+(P̃[Jε′Aj(Jε′(ũ
ε′ + ū))∂xj (Jε − Jε′)ũε], ũε − ũε

′
)0

+(P̃[Jε′Aj(Jε′(ũ
ε′ + ū))∂xjJε′(ũ

ε − ũε
′
)], ũε − ũε

′
)0

=
1

2

d

dt
||ũε − ũε

′ ||20 + I1 + I2 + I3 + I4 + I5.

Here,

|I1| ≤ c(M1) max{ε, ε′}||ũε − ũε
′ ||0,

where the last inequality follows from the Sobolev embedding theorem and from (6.1.34).
For I3, I4 we get a similar estimate, while

|I2| ≤ c(M1)||ũε − ũε
′ ||20.
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In order to estimate I5, we use the paradifferential techniques, as done before to get the
energy estimates. Then, by using (6.1.22), we write

I5 = Re(P̃Jε′TiA(Jε′ (ũ
ε′+ū))

Jε′(ũ
ε − ũε

′
), ũε − ũε

′
)0

+

d∑
j=1

(P̃[Jε′(Aj(Jε′(ũ
ε′ + ū))− T

Aj(Jε′ (ũ
ε′+ū))

)∂xjJε′(ũ
ε − ũε

′
)], ũε − ũε

′
)0 = I ′5 + I ′′5 .

(6.1.36)
The first term of (6.1.36) can be estimated through the same argument that leads to
(6.1.28). This way

|I ′5| ≤ c(M1)||ũε − ũε
′ ||20.

Now, applying Lemma 7.1.5 in [55] and using again (6.1.34), we get

||
d∑
j=1

(Aj(Jε′(ũ
ε′ + ū))− T

Aj(Jε′ (ũ
ε′+ū))

)∂xjJε′(ũ
ε − ũε

′
)||0 ≤ c(M1)||ũε − ũε

′ ||0.

Thus, the symmetric property of P̃, the divergence free condition of ũε, ũε
′
, and the

Cauchy-Schwarz inequality imply that

|I ′′5 | ≤ c(M1)||ũε − ũε
′ ||20.

Putting it all together, we have

d

dt
||ũε − ũε

′ ||0 ≤ c(M1)(max{ε, ε′}+ ||ũε − ũε
′ ||0),

and so, since ũε(0, x) = ũε
′
(0, x) in (6.1.15), by the Gronwall inequality

sup
t∈[0,T ]

||ũε − ũε
′ ||0 ≤ c(M1, T ) max{ε, ε′}.

Lemma 6.1.2 implies that there exists ũ? ∈ C([0, T ], L2(Rd)) such that

ũε → ũ? in C([0, T ], L2(Rd)) as ε→ 0.

Furthermore, by using (6.1.34) together with the interpolation lemma in Sobolev spaces,
see [9], for m′ < m we get

ũε → ũ? in C([0, T ], Hm′(Rd)) as ε→ 0. (6.1.37)

Next, from (6.1.34), ũε is uniformly bounded in L2([0, T ], Hm(Rd)), so there exists a
subsequence such that

ũε ⇀ ũ? in L2([0, T ], Hm(Rd)).

Besides, for fixed t ∈ [0, T ], ũε(t) is uniformly bounded in Hm(Rd), so ũ?(t) is bounded
in Hm(Rd) and this fact, together with ũ? ∈ L2([0, T ], Hm(Rd)), implies that ũ? ∈
L∞([0, T ], Hm(Rd)).
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Now, let ψ ∈ C∞c ((0, T )) and φ = (ρ, v) so that v ∈ V 0 = {v ∈ L2(Rd) | ∇ · v = 0} with
compact support. The weak formulation of system (6.1.19) is

∫
0
−ψ′(t)(ũε, φ)0 dt+

d∑
j=1

∫
0
ψ(t)(PJεAj(Jε(ũ

ε + ū))∂xjJεũ
ε, φ)0 dt = 0. (6.1.38)

Passing to the limit in (6.1.38) and using (6.1.37), we get

∫
0
−ψ′(t)(ũ?, φ)0 dt+

d∑
j=1

∫
0
ψ(t)(PAj(ũ

? + ū)∂xj ũ
?, φ)0 dt = 0,

i.e.

∂tũ
? +

d∑
j=1

P(Aj(ũ
? + ū)∂xj ũ

?) = 0 (6.1.39)

in the sense of distributions, and so ũ? ∈ Lip([0, T ], Hm−1(Rd)). Moreover, from (6.1.39)
and the Helmholtz-Hodge decomposition theorem, there exists

∇P ? ∈ L∞([0, T ], Hm−1(Rd)),

such that

∂tũ
? +

d∑
j=1

Aj(ũ
? + ū)∂xj ũ

? = (0,−∇P ?). (6.1.40)

Next, by using (6.1.35) and passing to a subsequence, we have ∂tũ
ε ⇀∗ ∂tũ

? in
L∞([0, T ], Hm−1(Rd)). Besides, (6.1.34) and (6.1.35) yield

sup 0≤t≤T ||∇P ε||m−1 ≤ c(M1,M2),

and then

∇P ε ⇀∗ ∇P ? in L∞([0, T ], Hm−1(Rd)).

Now, we want to show that ũ? ∈ C([0, T ], Hm
w (Rd)) Since ũ? ∈ C([0, T ], Hm′(Rd)), then

ũ? ∈ C([0, T ], Hm′
w (Rd)), i.e., for all ε > 0, for all φ′ ∈ H−m′(Rd), there exists δ > 0 such

that, for |h| < δ,

|(ũ?(t+ h)− ũ?(t), φ′)−m′,m′ | ≤
ε

2
.

Moreover, the density of H−m
′ ⊂ H−m (m′ < m) implies that, for all ε > 0 and for all

φ ∈ H−m(Rd), there exists φ′ ∈ H−m′(Rd) such that

||φ− φ′||−m ≤
ε

4M1
,

where M1 is the uniform bound in (6.1.34). Putting it all together, we get

|(ũ?(t+ h)− ũ?(t), φ)−m,m|

≤ |(ũ?(t+ h)− ũ?(t), φ− φ′)−m,m|+ |(ũ?(t+ h)− ũ?(t), φ′)−m′,m′ |
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≤ 2M1||φ− φ′||−m + |(ũ?(t+ h)− ũ?(t), φ′)−m′,m′ | ≤ ε,

namely ũ? belongs to C([0, T ], Hm
w (Rd)). Putting it all together, we have

ũ? ∈ L∞([0, T ], Hm(Rd)) ∩ Lip([0, T ], Hm−1(Rd)) ∩ Cw([0, T ], Hm(Rd)),

and

∇P ? ∈ L∞([0, T ], Hm−1(Rd)) ∩ Cw([0, T ], Hm−1(Rd)).

The additional regularity ũ ∈ C([0, T ], Hm(Rd))∩C1([0, T ], Hm−1(Rd)) can be achieved
in a standard way, following [9]. We sketch the proof. First, it is sufficient to prove
that ũ? ∈ C([0, T ], Hm(Rd)), since the regularity C1([0, T ], Hm−1(Rd)) follows directly
from (6.1.40). Moreover, we only need to prove the continuity of ũ? in the strong norm
|| · ||m at the time t = 0, in fact the same argument can be adapted to any other time
T̃ , 0 ≤ T̃ ≤ T . Furthermore, since system (6.1.40) is time reversible, it is sufficient to
prove just the right continuity at time t = 0 in the strong norm || · ||m. From (6.1.34),
passing to a subsequence, we have

lim sup
ε→0

||ũε||m ≥ ||ũ?||m.

Moreover, from (6.1.31),

||ũε||m ≤ ec(M̃,ρ̄)t||ũε0||m.

This implies

sup
0≤t≤T

||ũε||m − ||ũε0||m ≤ ec(M̃,ρ̄)T ||ũε0||m − ||ũε0||m.

Last estimates give

lim sup
t→0+

||ũ?||m ≤ ||ũ0||m.

Now, since ũ? ∈ Cw([0, T ], Hm(Rd)),

lim inf
t→0+

||ũ?||m ≥ ||ũ0||m.

In particular,

lim
t→0+

||ũ?(t)||m = ||ũ0||m.

Then, the strong right continuity at t = 0 is proved.

Remark 6.1.2. This kind of approximation does not work on system (6.0.5), since ∇Pρ
is not a gradient and it cannot be eliminated by applying the projector operator to the
system.

6.1.2 Uniqueness

We end this section with the proof of uniqueness of the solution to the Cauchy problem
(6.0.11)-(6.0.12).

Theorem 6.1.3. There is a unique solution ũ to problem (6.0.11)-(6.0.12) in the space
L∞([0, T ], Lip(Rd) ∩ L2(Rd)).
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Proof. According to Definition 6.0.1, let ũ1, ũ2 and P1, P2 be two solutions to system
(6.0.11), with initial data (6.0.12). We have

∂t(ũ2 − ũ1) +
d∑
j=1

{Aj(ũ2 + ū)∂xj (ũ2 − ũ1) + (Aj(ũ2 + ū)−Aj(ũ1 + ū))∂xj ũ1}

+(0,∇P2 −∇P1) = 0. (6.1.41)

Applying the operator P̃ to (6.1.41), we get

∂t(ũ2 − ũ1) +
d∑
j=1

P̃{Aj(ũ2 + ū)∂xj (ũ2 − ũ1) + (Aj(ũ2 + ū)−Aj(ũ1 + ū))∂xj ũ1} = 0.

As done before, we write the paradifferential version of the previous equation

∂t(ũ2 − ũ1) + P̃TiA(ξ,ũ2+ū)(ũ2 − ũ1) + P̃(TiA(ξ,ũ2+ū) − TiA(ξ,ũ1+ū))ũ1

= P̃[TiA(ξ,ũ2+ū) −
2∑
j=1

Aj(ũ2 + ū)∂xj ](ũ2 − ũ1)

+P̃[TiA(ξ,ũ2+ū) − TiA(ξ,ũ1+ū) −
d∑
j=1

(Aj(ũ2 + ū)−Aj(ũ1 + ū))∂xj ]ũ1.

We set w := ũ2 − ũ1 and take the scalar product with w. From [55] and (6.1.22) we
have

|(P̃(TiA(ξ,ũ2+ū) − TiA(ξ,ũ1+ū))ũ1, ũ2 − ũ1)0|

= |(P̃
d∑
j=1

(TAj(ũ2+ū) − TAj(ũ1+ū))∂xj ũ1, ũ2 − ũ1)0|

= |(F−1{[
∑
α

∂αξ P̃
χ
(ξ)

d∑
j=1

(Dα
xA

χ
j (ũ2 + ū)−Dα

xA
χ
j (ũ1 + ū))]F(∂xj ũ1)}, ũ2 − ũ1)0|

≤ c(|∇ũ1|∞)||ũ2 − ũ1||20,

where F is the Fourier transform, and P̃
χ
Aχj , j = 1, · · · , d are the regularized versions of

P̃, Aj , through the standard Littlewood-Paley decomposition, see Section 2. Thus, we
obtain

d

dt
||w||20 ≤ c(|ũ1|∞, |ũ2|∞, |∇ũ1|∞, |∇ũ2|∞)||w||20,

i.e. w = 0, since ũ1(0, x) = ũ2(0, x) = ũ0 = (ρ0(x)− ρ̄, v0(x)) in (6.0.12).
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6.2 The continuous projection approximation

First of all, we want to point out that, although it involves again the use of the Leray
projector, the idea inside this other kind of approximation is quite different from that
discussed before. Roughly speaking, the main feature is that we will use the projector
operator as a singular source term. The divergence of the velocity field vanishes as long
as the parameter ε goes to zero and this is the reason why this approximation can be
viewed as a continuous version of the Chorin-Temam projection method. Moreover, the
proof below can be adapted with slight modifications to the classical discrete version of
the projection method, providing a constructive solution to system (6.0.1). Now, let us
go back to the original system (6.0.1). Unlike (6.0.9), (6.0.10), we consider the compact
formulation of system (6.0.1), where the mass balance equation is

∂tρ+∇ · (ρv) = 0.

This way, we need to redefine the matrices Aj , j = 1, · · · , d in (6.0.7). Namely, now we
have

A1(u) =

 v1 ρ 0
f(u) v1 0

0 0 v1

 , A2(u) =

 v2 0 ρ
0 v2 0

f(u) 0 v2

 (6.2.42)

in the two dimensional case, and, in the general d-dimensional case

Aj(u) =


vj δ1jρ δ2jρ · · · δdjρ

δ1jf(u) vj 0 · · · 0
δ2jf(u) 0 vj · · · 0
· · · · · · · · · vj · · ·

δdjf(u) 0 0 · · · vj

 (6.2.43)

for j = 1, · · · , d. First, let us neglect for a while the incompressible pressure term FP . It
is easy to check that (6.0.7) with Aj in (6.2.43) is a Friedrichs symmetrizable hyperbolic
system, whose classical symmetrizer is the diagonal (d+ 1)× (d+ 1) matrix

A0(u) = diag

(
f(u)

ρ
, 1, 1, · · · , 1

)
, (6.2.44)

and

A0Aj =


f(u)vj
ρ δ1jf(u) δ2jf(u) · · · δdjf(u)

δj1f(u) vj 0 · · · 0
δj2f(u) 0 vj · · · 0
· · · · · · · · · vj · · ·

δjdf(u) 0 0 · · · vj

 ,

for j = 1, · · · d.

Remark 6.2.1. We point out that, for A0(u) to be a classical symmetrizer, we need
ρ, f(u) > 0. The second one will be an assumption, as we are going to precise in the
following, while here we discuss the first one. Taking into account the density equation
in (6.0.6), it can be seen that, if the initial datum ρ0 in (6.0.2) does not vanish for
all x ∈ Rd, then, under some standard assumptions of regularity, ρ(t, x) cannot vanish
too, as we will see a posteriori. However, we are going to translate again the density
variable, as done in the previous section, but here, unlike Section 6.1, see Remark 6.0.1,
we assume ρ̄ > 0.
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Applying the symmetrizer A0(u) to the compact system (6.0.7), with Aj , j = 1, · · · , d
in (6.2.42), (6.2.43), we get the symmetric formulation

A0(u)∂tu +

d∑
j=1

A0Aj(u)∂xju +A0(u)FP = 0.

We want to focus on the fact that

A0(u)FP = diag

(
f(u)

ρ
, 1, 1, · · · , 1

)
· (0,∇P ) = (0,∇P ) = FP , (6.2.45)

namely the A0-scalar product preserves the gradient function ∇P and this is the
reason why, in the following, we will be able perform classical energy estimates, despite
the presence of the gradient of the incompressible pressure or, equivalently, the Leray
projector. Thus, (6.2.45) yields

A0(u)∂tu +
d∑
j=1

A0Aj(u)∂xju + FP = 0.

To get uniform energy estimates, f(u) has to satisfy some properties, then here we
provide the definition of admissible scalar functions f(u).

Definition 6.2.1. The scalar function f(u) in (6.0.7) is an admissible function if

• f(u) is strictly positive;

• ∇vf(u) = α(ρ, |v|)v, where α is a positive and continuous scalar function, only
depending on the density ρ and the norm |v| of the velocity field.

An example of an admissible function is given by

f(u) = f̄ + β(ρ, v2), f̄ + β(ρ0, v
2
0) ≥ 0,

where f̄ is a constant value and ∇vβ(ρ, v2) = 2∂v2β(ρ, v2)v, with ∂v2β(ρ, v2) ≥ 0.

Following [9] and [75], we look for a suitable approximation to system (6.0.1), which is:

A0(Jεu
ε)∂tu

ε +
d∑
j=1

JεA0Aj(Jεu
ε)∂xjJεu

ε + (0,∇P ε) = 0,

where uε = (ρε, vε), Aj , j = 1, · · · , d in (6.2.42), (6.2.43), A0 in (6.2.44), and vε is no
more divergence free. We choose the approximating sequence ∇P ε so that, for each fixed
ε, ∇P ε is proportional to the gradient part of vε. Namely, using the Helmholtz-Hodge
decomposition theorem, we can set

vε = Pvε + ε∇P ε.

This way,

∇P ε =
(I− P)vε

ε
.
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Then, the approximating system becomes

A0(Jεu
ε)∂tu

ε +

d∑
j=1

JεA0Aj(Jεu
ε)∂xjJεu

ε = −(0,
(I− P)vε

ε
), (6.2.46)

with initial data

ρε0(x) = ρ0(0, x), vε0(0, x) = v0(x) + εv1
0(x), (6.2.47)

with ρ0, v0 in (6.0.2) and v1
0(x) ∈ Hm(Rd).

Remark 6.2.2. Similarly to the incompressible limit of the Euler equations in [52], [47],
the ”slightly compressible” form of the initial data in (6.1.15) guarantees the uniform
bound of the time derivative of vε in the L2-norm, as we will see later.

According to Remark 6.2.1, as done in (6.0.11), we translate the approximating system
(6.2.46) and the related initial data (6.2.47). Setting ũε = (ρ̃ε, ṽε) = (ρε− ρ̄, vε), we get

A0(Jε(ũ
ε + ū))∂tũ

ε +
d∑
j=1

JεA0Aj(Jε(ũ
ε + ū))∂xjJεũ

ε = −(0,
(I− P)vε

ε
), (6.2.48)

with
ũε0 = (ρ̃ε0, ṽ

ε
0) = (ρε0 − ρ̄, vε0), (6.2.49)

and ρε0, v
ε
0 in (6.2.47). We prove the following theorem.

Theorem 6.2.1. (Local existence of approximating solutions for the second approxima-
tion) Let ũε0 = (ρ̃ε0, ṽ

ε
0) ∈ Hm(Rd) as in (6.2.49) and m ∈ N, with m > [d/2] + 1. Then,

for any ε > 0, there exists a time T , independent of ε, such that system (6.2.48) has a
unique solution ũε = (ρ̃ε, ṽε) ∈ C1([0, T ], Hm(Rd)).

Proof. Once applied the Picard theorem in [9], we get uniform energy estimates to
start the compactness tools. Comparing to Section 6.1 , here we just have to consider
F ε2 (ũε) = (0, (I−P)vε

ε ). Then

||F ε2 (ũ1)− F ε2 (ũ2)||m = (0,
||(I− P)(ṽ1 − ṽ2)||m

ε
) ≤ (0,

1

ε
||ṽ1 − ṽ2||m) ≤ 1

ε
||ũ1 − ũ2||m.

Putting it all together, we get

||F ε(ũ1)− F ε(ũ2)||m ≤ c(||ũ1||m, ||ũ2||m, ρ̄, ε−1)||ũ1 − ũ2||m.

Thus, for fixed ε, F ε is locally Lipschitz continuous on any open set

UM = {ũε ∈ Hm(Rd) : ||ũε||m < M}.

From the Picard theorem, there exists the unique solution ũε ∈ C1([0, Tε),U
M ), for any

Tε > 0. Now, we need a uniform bound on ũε in the higher Hm-norm. From (6.2.48),
we have

∂tũ
ε = −

d∑
j=1

A−1
0 JεA0Aj(Jε(ũε + ū))∂xjJεũ

ε −

(
0,

(I− P)vε

ε

)
.
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Taking the α-derivative for |α| ≤ m, we get

∂tD
αũε +

d∑
j=1

A−1
0 JεA0Aj(Jε(ũε + ū))∂xjD

αJεũ
ε +

(
0,

(I− P)Dαvε

ε

)
= Fα, (6.2.50)

where

Fα = −
d∑
j=1

[Dα(A−1
0 JεA0Aj(Jε(ũε + ū))∂xjJεũ

ε)−A−1
0 JεA0Aj(Jε(ũε + ū))∂xjD

αJεũ
ε].

Multiplying (6.2.50) by Dαũε through the A0 inner product (A0·, ·)0, where A0 is the
symmetrizer in (6.2.44), we obtain

1

2

d

dt
(A0(Jε(ũ

ε + ū))DαJεũ
ε, DαJεũ

ε)0 +
1

ε
((I− P)Dαvε, Dαvε)0

=
1

2
(∂tA0(Jε(ũ

ε + ū))DαJεũ
ε, DαJεũ

ε)0 +
d∑
j=1

(∂xj (A0Aj(Jε(ũ
ε + ū))DαJεũ

ε, DαJεũ
ε)0

+(A0(Jε(ũ
ε + ū))Fα, D

αũε)0.

This implies that

1

2

d

dt
(A0(Jε(ũ

ε + ū))DαJεũ
ε, DαJεũ

ε)0 +
1

ε
((I− P)Dαvε, Dαvε)0

≤ c(|ũε|∞, |∇ũε|∞, ρ̄)||Dαũε||20 + c(|ũε|∞)||Fα||0||Dαũε||0,

where we are able to control 1
2(∂tA0(Jε(ũ

ε + ū))DαJεũ
ε, DαJεũ

ε)0 thanks to the prop-
erties of f(u) in Definition 6.2.1. Now,

||Fα||0

=

∣∣∣∣∣
∣∣∣∣∣

d∑
j=1

[Dα(A−1
0 JεA0Aj(Jε(ũε + ū))∂xjJεũ

ε)−A−1
0 JεA0Aj(Jε(ũε + ū))∂xjD

αJεũ
ε]

∣∣∣∣∣
∣∣∣∣∣
0

≤
d∑
j=1

{|D(A−1
0 JεA0Aj(ũε + ū))|∞||Dm−1∂xjJεũ

ε||0

+||Dm(A−1
0 JεA0Aj(ũε + ū))||0|∂xjJεũε|∞}

and then, using Remark 6.1.1,

≤ c(|ũε|∞, |∇ũε|∞, ρ̄)||Dmũε||20.

Thus, we have

1

2

d

dt
(A0(Jε(ũ

ε + ū))DαJεũ
ε, DαJεũ

ε)0 +
1

ε
((I− P)Dαvε, Dαvε)0 (6.2.51)
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≤ c(|ũε|∞, |∇ũε|∞, ρ̄)||Dmũε||20.

Notice that the Helmholtz-Hodge decomposition theorem provides a positive sign for the
source term in the left hand side of (6.2.51), i.e.

1

ε
((I− P)Dαvε, Dαvε)0 =

1

ε
((I− P)Dαvε, Dα((I− P)vε + Pvε))0 =

1

ε
||(I− P)vε||20.

Summing up to |α| ≤ m, we have

d

dt

∑
|α|≤m

(A0(Jε(ũ
ε + ū))DαJεũ

ε, DαJεũ
ε)0 ≤ c(|ũε|∞, |∇ũε|∞, ρ̄)||ũε||2m.

Since A0 is positive definite and using the properties of mollifiers, last estimate yields

d

dt
||ũε||2m ≤ c(ũε|∞, |∇ũε|∞, ρ̄)||ũε||2m. (6.2.52)

As seen in the previous section, estimate (6.2.52) gives

||ũε(t)||m ≤M for t ∈ [0, T ]. (6.2.53)

To obtain a uniform bound for the time derivatives ∂tũ
ε in the low norm L2, we take

the time derivative of equation (6.2.48) and let

wε := ∂tũ
ε = (∂tρ

ε, ∂tv
ε).

Then, we have

∂tw
ε +

d∑
j=1

A−1
0 JεA0Aj(Jε(ũ

ε + ū))∂xjJεw
ε +

d∑
j=1

(A−1
0 JεA0Aj(Jε(ũ

ε + ū)))′Jεw
ε∂xjJεũ

ε

= −

(
0,

(I− P)∂tv
ε

ε

)
.

Taking the (A0·, ·)0 inner product with wε, we get

1

2

d

dt
(A0(Jε(ũ

ε + ū))wε,wε)0 +
||(I− P)∂tv

ε||20
ε

=
1

2
((A0(Jε(ũ

ε+ ū)))′Jεw
ε ·wε,wε)0 +

1

2

d∑
j=1

((A0Aj(Jε(ũ
ε+ ū)))′∂xjJεũ

ε ·Jεwε, Jεw
ε)0

+
d∑
j=1

(A0(A−1
0 JεAj(Jε(ũ

ε + ū)))′Jεw
ε∂xjJεũ

ε,wε)0.

We obtain
d

dt
(A0(Jε(ũ

ε + ū))wε,wε)0 ≤ c(|ũε|∞, |∇ũε|∞, ρ̄)||wε||20.
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From (6.2.53), we have

d

dt
(A0(Jε(ũ

ε + ū))wε,wε)0 ≤M ||wε||20,

i.e.

||wε(t)||20 ≤ ||wε(0)||20eMt,

and

||∂tũε(t)||20 ≤ ||∂tũε(0)||20eMt.

Then, ∂tũ
ε is uniformly bounded in L2(Rd) for each t ∈ [0, T ], provided that ||wε(0)||20 =

||∂tũε(0)||20 is uniformly bounded in ε. This is guaranteed by the structural conditions
on the initial data in (6.2.47). In fact, from (6.2.48), we have

∂εt ũ
ε(0) = −

d∑
j=1

A−1
0 JεA0Aj(Jε(ũ

ε
0 + ū))∂xjJεũ

ε
0 −

(
0,

(I− P)vε0
ε

)
.

By using (6.2.47),

vε0(x) = v0(x) + εv1
0(x),

with ∇ · v0(x) = 0, namely Pv0 = v0 and 1
ε (I− P)v0 = 0, and so

∂tũ
ε(0) = −

d∑
j=1

A−1
0 JεA0Aj(Jε(ũ

ε
0 + ū))∂xjJεũ

ε
0 − (I− P)v1

0(x).

Thus, since ∂tũ
ε(0) in uniformly bounded in Hm(Rd), we have

||∂tũε(t)||0 ≤M.

Similarly, we get

||∂tũε(t)||m−1 ≤M. (6.2.54)

6.2.1 Convergence to the compressible-incompressible system
- II method

We prove the following theorem.

Theorem 6.2.2. Let ũ0 = (ρ̃0, ṽ0) be the translated initial data in (6.0.12),
ũ0 ∈ Hm(Rd) with m > [d/2] + 1. There is a positive time T , such that there exists the
unique ũ ∈ C([0, T ], Hm(Rd)) ∩C1([0, T ], Hm−1(Rd)) and an incompressible pressure P
such that ∇P ∈ C([0, T ], Hm−1(Rd)) which solve (6.0.11). The solution (ũ, P ) to
(6.0.11) is the limit of the sequence of the solutions to the approximating system
(6.2.48) with initial data (6.2.49).

Proof. The first part is completely analogous to Section 3. We start from some facts:

ũε → ũ? as ε→ 0 in C([0, T ], Hm′(Rd)) with m′ < m,
ũε ⇀ ũ? as ε→ 0 in L2([0, T ], Hm(Rd)),
ũ? ∈ L∞([0, T ], Hm(Rd)) ∩ C([0, T ], Hm

w (Rd)).
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From (6.2.48), (6.2.53) and (6.2.54), we have

sup 0≤t≤T
1

ε
||(I− P)vε||m−1 ≤M,

i.e. ||(I − P)vε||m−1 → 0 as ε → 0 and, since vε → ṽ? in C([0, T ], Hm′(Rd)), then
Pṽ? = ṽ?, namely

∇ · ṽ? = 0.

Next, let ψ ∈ C∞c ((0, T )) and φ = (ρ, v) so that v ∈ V 0 = {v ∈ L2(Rd) | ∇ · v = 0} with
compact support. Writing a weak formulation of system (6.2.48), we have∫ T

0
−ψ′(t)(ũε, φ)0 dt+

d∑
j=1

∫ T

0
ψ(t)(A−1

0 JεA0Aj(Jε(ũ
ε + ū))∂xjJεũ

ε, φ)0 dt

= −
∫ T

0
ψ(t)

(
(I− P)vε

ε
, v

)
0

dt.

Since (I − P)vε is a gradient for every ε, the right hand side of last equality vanishes,
then∫ T

0
−ψ′(t)(ũε, φ)0 dt+

d∑
j=1

∫ T

0
ψ(t)(A−1

0 JεA0Aj(Jε(ũ
ε + ū))∂xjJεũ

ε, φ)0 dt = 0.

(6.2.55)
As done before, passing to the limit in (6.2.55), we obtain∫ T

0
−ψ′(t)(ũ?, φ)0 dt+

d∑
j=1

∫ T

0
ψ(t)(Aj(ũ

? + ū)∂xj ũ
?, φ)0 dt = 0.

This yields ∂tũ
ε ⇀∗ ∂tũ

? in L∞([0, T ], Hm−1(Rd)) and equation (6.1.39), i.e.

∂tũ
? +

d∑
j=1

P(Aj(ũ
? + ū)∂xj ũ

?) = 0.

This way, we get the additional regularity ũ? ∈ Lip([0, T ], Hm−1(Rd)) and the existence
of ∇P ? ∈ L∞([0, T ], Hm−1(Rd)) such that

∂tũ
? +

d∑
j=1

Aj(ũ
? + ū)∂xj ũ

? = (0,−∇P ?).

Thus, ũ? ∈ L∞([0, T ], Hm(Rd)) ∩ Lip([0, T ], Hm−1(Rd)) ∩ Cw([0, T ], Hm(Rd)) is a weak
solution to (6.0.11)-(6.0.12). The last part of the proof of Section 6.1 yields ũ? belonging
to C([0, T ], Hm(Rd)) ∩ C1([0, T ], Hm−1(Rd)) and P ? ∈ C([0, T ], Hm(Rd)).

Remark 6.2.3. This approximation for the density-dependent incompressible Euler
equations (6.0.5) in the two-dimensional case is:

∂tu
ε + Jε

 vε1 0 0
0 vε1 0
0 0 vε1

 ∂xJεu
ε + Jε

 vε2 0 0
0 vε2 0
0 0 vε2

 ∂yJεu
ε +

(
0,

(I− P)vε

ερε

)
= 0,
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where uε = (ρε, vε). The scalar product of the α-derivative of the singular term against
the α-derivative of the velocity field has no more a positive definite sign, then this method
does not work in a simple way on (6.0.5).

6.3 The artificial compressibility method

Following [75], we consider another kind of approximation of system (6.0.1), based on
a family of perturbed system, which, in order to approximate the divergence constraint
∇ · v = 0, contains the following artificial equation for the pressure term P ε:

ε2∂tP
ε +∇ · vε = 0.

We consider the artificial state equation

P ε = P0 + εP̃ ε,

where P0 is constant. Without loss of generality, we take P0 = 1. Setting uε :=
(ρε, P̃ ε, vε), the approximating system reads:

∂tρ
ε +∇ · (ρεvε) = 0,

∂tP̃
ε + ∇·vε

ε = 0,

∂tv
ε + vε · ∇vε + f(ρε, vε)∇ρε + ∇P̃ ε

ε = 0,

(6.3.56)

with the following initial data as in (6.2.47):

ρε0(x) = ρ0(0, x), vε0(0, x) = v0(x) + εv1
0(x), (6.3.57)

where ρ0, v0 are the initial data (6.0.2) of the original problem (6.0.1).

Remark 6.3.1. Although it is needed, we do not make explicitly the translation of
(6.3.56) to simplify the notation.

Again, we can write system (6.3.56) in the compact form:

∂tu
ε +

d∑
j=1

Aj(u
ε)∂xju

ε = 0, (6.3.58)

with initial data
uε0 = (ρε0, P̃

ε
0 , v

ε
0), (6.3.59)

where the function P̃ ε0 is arbitrarily chosen, provided that P̃ ε0 ∈ Hm(Rd), and ρε0, v
ε
0 in

(6.3.57). The matrices Aj(u
ε) have the following structural form:

Aj(u
ε) = Ãj(u

ε) +
A0
j

ε

for j = 1, · · · , d. In the two dimensional case, we have

A1(uε) = Ã1(uε) +
A0

1

ε
=


vε1 0 ρε 0
0 0 0 0

f(uε) 0 vε1 0
0 0 0 vε1

+


0 0 0 0
0 0 1

ε 0
0 1

ε 0 0
0 0 0 0

 ,
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A2(uε) = Ã2(uε) +
A0

2

ε
=


vε2 0 0 ρε

0 0 0 0
0 0 vε2 0

f(uε) 0 0 vε2

+


0 0 0 0
0 0 0 1

ε
0 0 0 0
0 1

ε 0 0


and, in the general d-case, for j = 1, · · · , d,

Aj(u
ε) = Ãj(u

ε) +
A0
j

ε

=



vεj 0 δ1jρ
ε δ2jρ

ε · · · · · · δdjρ
ε

0 0 0 · · · · · · · · · 0
δ1jf(uε) 0 vεj 0 · · · · · · 0

δ2jf(uε) 0 0 vεj · · · · · · 0

· · · · · · · · · · · · vεj · · ·
· · · · · · · · · · · · · · · vεj · · ·

δdjf(uε) 0 0 · · · · · · · · · vεj



+



0 0 0 · · · · · · 0

0 0
δ1j
ε

δ2j
ε · · · δdj

ε

0
δ1j
ε 0 0 · · · 0

0
δ2j
ε 0 · · · · · · 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · δdj

ε 0 · · · · · · · · ·


.

System (6.3.58) is Friedrichs-symmetrizable by the (d+ 2)× (d+ 2) - symmetrizer

A0(uε) = diag

(
f(uε)

ρε
, 1, 1, · · · , 1

)
.

Remark 6.3.2. We point out that here we need just the first assumption of Definition
6.2.1 on f(u).

Now, looking at the matrices Aj for j = 1, · · · , d, we notice that they satisfy the
structural conditions required by Majda and Klainerman in [52] and [47] to prove the
convergence of the compressible Euler equations to the incompressible ones. Moreover,
the initial data (6.3.59) associated to system (6.3.58) are consistent with respect to the
hypothesis of ’slightly compressible initial data’ in [52]. Then, the proof in [52] can be
adapted to this context, providing us a result of existence and uniqueness of the
solution to (6.0.1)-(6.0.2) in the Sobolev spaces, as in the previous sections.

Remark 6.3.3. Applying the artificial compressibility method to system (6.0.5), we
obtain an approximation system whose matrices and the related Friedrichs symmetrizer
do not satisfy the assumptions stated in [52]. For instance, in the two-dimensional case,
setting uε := (ρε, P̃ ε, vε), we have the system

∂tu
ε +


vε1 0 0 0
0 0 1

ε 0
0 1

ερε vε1 0

0 0 0 vε1

 ∂xu
ε +


vε2 0 0 0
0 0 0 1

ε
0 0 vε2 0
0 1

ερε 0 vε2

 ∂xu
ε = 0,
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where the singular parts of the matrices above are not constant.
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Chapter 7

A multiphase model in two space
dimensions

Although mixture models are largely diffused, up to now the analytical theory has
been mainly developed in one space dimension, see for instance [38], [72], [79], and [41],
while some results about linear stability and numerical approximations were considered
in [35]. Moreover, a complete analytical study of the one dimensional biofilms model
(4.0.2) and the related two phases system (4.0.6), with the proof of the global existence
and uniqueness of the smooth solution and the analysis of its asymptotic behavior for
initial data, that are small perturbations of the equilibrium point, were given in
Section 5, which is based on [12]. Let us recall that, in the one dimensional case, the
incompressibility condition (1.0.5) allows us to solve for the incompressible pressure
∇P in (5.0.1), obtaining (5.0.5) and (5.0.4). Besides, the remaining system (5.0.6) is
symmetrizable hyperbolic (see [52], [8] [74]), and so the standard theory applies. On
the other hand, in several space dimensions there is not a simple way to deal with the
term ∇P , since the incompressibility inequality is given by (4.0.7). In order to work
using a divergence free formulation, we define

w := BvS + (1−B)vL

and we could try to apply classical methods used for incompressible fluids, see [75], [52],
[76], and [9], which are essentially based on the projection of the velocity field onto the
space of the divergence free vectors.
However, in our case, even in the divergence free variables, there are some difficulties.
The first one is given by the interaction between the Friedrichs symmetrizer of the
hyperbolic part of system (4.0.6) and the gradient of the incompressible pressure term.
Actually, the scalar product induced by the classical symmetrizer does not preserve
the orthogonality of the gradient of the incompressible pressure with respect to the
divergence free average velocity. This happens since the symmetrizer and the pressure
part of the system do not commute and, moreover, their commutator is still a first order
operator, see Section 7.2 below. Therefore, we cannot get rid of the incompressible
pressure, unlike in the case of the incompressible Euler equations, see for instance [49].
Furthermore, it is not obvious how to get useful energy estimates in Sobolev spaces
for system (4.0.6), since our hydrostatic pressure does not possess enough regularity in
space. In fact, looking at the elliptic equation for the pressure P , which is obtained
applying the divergence operator to the momentum equations in system (4.0.6), we have
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∆P = −
d∑
j=1

d∑
i=1

∂xjwi∂xiwj −∇ · ∇ · (B(1−B)z ⊗ z)− γ∆B, (7.0.1)

where z := vS − vL. Let us compare (7.0.1) with the elliptic equation for the pressure
PE of the incompressible Euler equations with velocity vE , see [49], namely

∆PE = −
d∑
j=1

d∑
i=1

∂xjv
E
i∂xiv

E
j . (7.0.2)

Starting from velocity fields w, z in (7.0.1) and vE in (7.0.2) with the same Hs regularity
for some s > [d/2] + 1, our pressure P in (7.0.1) is only in Hs, while PE in (7.0.2) is in
Hs+1. So, because of this lack of regularity, which is due not only to the inertial term
∇ · (B(1−B)z ⊗ z), but also to the compressible pressure term γ∇B, we are unable to
close the energy estimates for system (4.0.6).

For all these reasons, the different approaches used for incompressible fluids do not work
for (4.0.6). For instance, even if the numerical simulations in [27], which use the Chorin-
Temam projection method [75], seem to yield some reliable results, we do not know how
to prove any rigorous convergence result for this approximation scheme in this case. In
fact, while the L2-norm of the projected solution is estimated step by step by the L2-
norm of the non-projected vector, thanks to the Hodge decomposition theorem [75], this
property no more holds for the scalar product induced by the symmetrizer and so we are
unable to control the energy estimates. This structural difficulty is also the reason why
the singular perturbation approximation in [15], which can be viewed as a continuous
version of the projection method, does not work for system (4.0.6). Also, we are not able
to prove the convergence of the approximation used by Valli & Zajazckowski in [76]
to solve the incompressible Euler equations, since, again, we cannot get the necessary
energy estimates from the elliptic equation (7.0.1). For completeness, we notice that
the same holds for the artificial compressibility method of Temam in [75], since there is
no classical symmetrizer for the related approximating compressible system and the Lax
symmetrizer that we have found does not satisfy the assumptions required in studying
singular perturbations approximations, as in [34].

In spite of these negative remarks, in the following we prove the convergence of one
approximation to system (4.0.6), made by the composition of some smoothing operators
and the Leray projector, see [9] and [15] for different applications of this technique.
This section is based on [13]. Here, the main idea is as follows. First, we apply the
projector onto the space of the vectors such that the averaged velocity w is divergence
free. Then, we consider the paradifferential operator associated to the projected system
(4.0.6), we notice that its highest order part is a strongly hyperbolic operator of the first
order, and therefore it is possible to construct a Lax symmetrizer for it (see Section 2).
The construction of this symmetrizer is essentially based on the techniques explained in
Section 2, developed in [55], which are combined to some ideas in [34]. We point out
that, the main point here is to symmetrize the whole projected operator, rather than just
use the symmetrizer of the hyperbolic part of (4.0.6). Using paradifferential calculus, we
are able to establish some uniform energy estimates and the convergence of this method
to (4.0.6), as well as in the case of the more general model (4.0.2), both in two space
dimensions.
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In the following, we discuss the general setting and the main properties of the two phases
system (4.0.6) in two space dimensions. Section 7.2 is devoted to the well-posedness of
our approximation, using an approach based on paradifferential calculus, and a proof
of its convergence. Section 7.3 is dedicated to the explanation of the failure of some
more classical approaches to first order models of incompressible fluids with respect to
the paradifferential one. In Section 7.4, we show how to apply the arguments of Section
7.2 to the more general system (4.0.2), always in two space dimensions. Finally, in
Section 7.5 we discuss the difficulties we have found to extend these results to the three
dimensional case.

7.1 Basic formulation

Let u = (B, vS , vL). System (4.0.6) can be written in the following compact form:{
∂tu +

∑d
j=1Aj(u)∂xju + FP = G(u),

∇ · (BvS + (1−B)vL) = 0,
(7.1.3)

where the term FP is given by the gradient of the hydrostatic incompressible pressure

FP = (0,∇P,∇P ), (7.1.4)

and the source term has the following expression

G(u) = (ΓB,ΓvS ,ΓvL), (7.1.5)

where

ΓB = B(kB(1−B)− kD), ΓvS = (M+ΓB)(vL−vS)
B , ΓvL = M(vS−vL)

(1−B) , (7.1.6)

and kB, kD,M are experimental constants. The initial data related to (7.1.3) are the
following:

u(0, x) = u0(x) = (B0(x), vS0(x), vL0(x)) such that ∇ · (B0vS0 + (1−B0)vL0) = 0.
(7.1.7)

Although most of the calculations in this first section hold in the general d-dimensional
case, we limit our consideration only to the two dimensional case. In one space dimension,
in fact, system (7.1.3) is a particular version of that already discussed in [12], while
in three space dimensions there are some structural problems that lead to technical
difficulties, as we will see in Section 6. Setting d = 2, system (7.1.3) reads{

∂tu +A1(u)∂xu +A2(u)∂yu + FP = G(u),

∇ · (BvS + (1−B)vL) = 0,
(7.1.8)

with Fp in (7.1.4), G(u) in (7.1.5) and the initial data u0 in (7.1.7). The flux matrices
are:

A1(u) =


vS1 B 0 0 0
γ
B vS1 0 0 0
0 0 vS1 0 0
0 0 0 vL1 0
0 0 0 0 vL1

 , A2(u) =


vS2 0 B 0 0
0 vS2 0 0 0
γ
B 0 vS2 0 0
0 0 0 vL2 0
0 0 0 0 vL2

 .

(7.1.9)
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Assumption. From (7.1.9), (7.1.5) and (7.1.6) the terms B and (1−B) cannot vanish.
Then, we take 0 < B < 1.

Remark 7.1.1. The assumption above is quite natural, in fact, from the mass balance
equation for B in (4.0.6), if the initial data B0 (and 1−B0) in (7.1.7) does not vanish for
all x ∈ Rd, then, under some standard assumptions of regularity, B(t, x) (and 1−B(t, x))
cannot vanish too. However, this will be proved a posteriori.
In the following, we prove that, fixing a constant value B̄ and taking B0 such that
B0 − B̄ ∈ Hs(R2), with s > [d/2] + 1 = 2, then
(B − B̄, vS) ∈ C([0, T ], Hs(R2)) ∩ C1([0, T ], Hs−1(R2)).

As discussed in Remark 7.1.1, system (7.1.8) is singular in B = 0, then the unknown B
cannot belong to L2(R2). In order to work in the natural setting of the Sobolev spaces,
we make a slight modification. From the form of the source term G in (7.1.5)–(7.1.6),
the admissible equilibrium point of system (4.0.6) is the following:

ū = (B̄, v̄S , v̄L) = (1− kD
kB

, v̄, v̄), (7.1.10)

where v̄ is a two dimensional constant vector arbitrarily chosen. Taking v̄ = 0, we have

ū = (B̄,0,0). (7.1.11)

In this section, to simplify the presentation, we define the translated system, which will
be considered in Section 3. Let

ũ = (B̃, ṽS , ṽL) := u− ū,

with ū in (7.1.11). Then, we will study the following system:{
∂tũ +

∑2
j=1Aj(ũ + ū)∂xj ũ + FP = G(ũ + ū),

∇ · ((B̃ + B̄)ṽS + (1− (B̃ + B̄))ṽL) = 0,
(7.1.12)

with initial data
ũ(0, x) = ũ0 = u0 − ū, (7.1.13)

and u0 in (7.1.7). We provide now the definition of classical local solutions to (4.0.6).

Definition 7.1.1. Let s > 2 be fixed. The function ũ = (B̃, ṽS , ṽL) is a classical solution
to system (7.1.3), if ũ ∈ C([0, T ], Hs(R2)) ∩ C1([0, T ], Hs−1(R2)) for any time T > 0,
and ũ solves system (7.1.12) in the classical sense, with initial data ũ0 ∈ Hs(R2) in
(7.1.13), where P is a function such that ∇P ∈ C([0, T ], Hs−1(R2)).

In the remainder of this section, we take into account the translation, but we just omit
the tilde to simplify the notations. Now, in order to deal with the divergence free vector
field, we change variables. Define

w := BvS + (1−B)vL, z := vS − vL, (7.1.14)

and let φ(u) be the diffeomorphism so defined

v = (B,w, z) = φ(u) = (B,BvS + (1−B)vL, vS − vL). (7.1.15)
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System (7.1.8), can be written in the following compact form:{
∂tv +

∑2
j=1 Ãj(v)∂xjv + F̃P = G̃(v);

∇ · w = 0,
(7.1.16)

with initial data

v(0, x) = v0(x) = (B0(x), w0(x), z0(x)) such that ∇ · w0 = 0, (7.1.17)

where

Ãj(v) = (φ′Ajφ
′−1)(φ−1(v)), for j = 1, 2, G̃(v) = (φ′Gφ′−1)(φ−1(v)),

and
F̃P = (0,∇P,0).

Explicitly,

Ã1(v) =


w1 + z1(1− 2B) B 0 B(1−B) 0
γ + z2

1(1− 2B) w1 +Bz1 0 2Bz1(1−B) 0
z1z2(1− 2B) Bz2 w1 Bz2(1−B) Bz1(1−B)

γ
B − z

2
1 z1 0 w1 + z1(1− 2B) 0

−z1z2 0 z1 0 w1 + z1(1− 2B)

 ,

Ã2(v) =


w2 + z2(1− 2B) 0 B 0 B(1−B)
z1z2(1− 2B) w2 Bz1 Bz2(1−B) Bz1(1−B)
γ + z2

2(1− 2B) 0 w2 +Bz2 0 2Bz2(1−B)
−z1z2 z2 0 w2 + z2(1− 2B) 0
γ
B − z

2
2 0 z2 0 w2 + z2(1− 2B)

 ,

while

G̃(v) = (ΓB,0,
−z(M + ΓB(1−B))

B(1−B)
),

with ΓB in (7.1.6). Let us define the generalized projector operator:

P(ξ) :=

 1 0 0
0 P 0
0 0 1

 , (7.1.18)

where P is the standard Leray projector, namely the projector onto the divergence free
vector valued functions. If we apply the operator P to system (7.1.16), with the aim of
eliminating ∇P , we get

∂tv +

2∑
j=1

PÃj(v)∂xjv = PG̃(v), (7.1.19)

since PF̃P = (0,P∇P,0) = 0 by definition, and

Pv = (B,Pw, z) = (B,w, z),

by the divergence free condition ∇ · w = 0.
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7.1.1 A new formulation

Taking inspiration from our preliminary work [15], we aim to propose a different
symmetrization strategy for our problem, to be able to estimate correctly the pressure
term. We apply first the operator P to system (7.1.16). Notice that the initial datum
does not change by projection, since the initial average velocity w0 is already a
divergence free vector and then, applying P to (7.1.17), we have

Pv0(x) = (B0(x),Pw0(x), z0(x)) = (B0(x), w0(x), z0(x)).

Moreover, PF̃P = (0,P∇P,0) = 0, and the divergence free constraint∇·w = 0 in (7.1.16)
is implicitly contained in system (7.1.19). We consider the paradifferential version of
system (7.1.19):

∂tv + PTiÃ(ξ,v)v = PTG̃(v) +
d∑
j=1

[PTÃj(v) −PÃj(v)]∂xjv− [PTG̃(v)−PG̃(v)], (7.1.20)

where, from [55],

TiÃ(ξ,v) =

2∑
j=1

TÃj(v)∂xjv (7.1.21)

is the paradifferential operator associated to the x-dependent matrix symbol

iÃ(ξ,v) =

2∑
j=1

iξjÃj(v) =

2∑
j=1

iξjÃj(v(t, x)), (7.1.22)

and similarly for G̃(v) and TG̃(v). As we will see in details in the next section, in (7.1.20)
there is only one operator of order 1, which is PTiÃ(ξ,v). We want now to show that
we can apply Theorem 2.4.2 and the corollary above to this operator. From Section 2,
the symbol associated to the composition is made by the sum over the multi-index α of
terms of type

∂αξ PDα
x Ã(ξ,v),

where Dx = 1
i ∂x. The expansion above implies that there is only one term of degree 1

in ξ, which is given for |α| = 0, namely P(ξ)Ã(ξ,v). Thus, the symbol of PTiÃ(ξ,v) can
be written as

P(ξ)iÃ(ξ,v) +R(ξ,v)

= i


(w + (1− 2B)z) · ξ Bξ1 Bξ2 B(1−B)ξ1 B(1−B)ξ2

ξ2(1−2B)µ1
|ξ|2

ξ2µ2
|ξ|2

−ξ2µ3
|ξ|2

B(1−B)ξ2µ4
|ξ|2

−B(1−B)ξ2µ5
|ξ|2

−ξ1(1−2B)µ1
|ξ|2

−ξ1µ2
|ξ|2

ξ1µ3
|ξ|2

−B(1−B)ξ1µ4
|ξ|2

B(1−B)ξ1µ5
|ξ|2

γξ1
B − z1(z · ξ) z · ξ 0 (w + (1− 2B)) · ξ 0
γξ2
B − z2(z · ξ) 0 z · ξ 0 (w + (1− 2B)z) · ξ


+R(ξ,v), (7.1.23)
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where R(ξ,v) is a remainder of order less than or equal to 0, and

µ1 := (z · ξ)(ξ2z1 − ξ1z2),

µ2 := (w · ξ)ξ2 +Bξ1(ξ2z1 − ξ1z2),

µ3 := (w · ξ)ξ1 +Bξ2(ξ2z1 − ξ1z2),

µ4 := z2(ξ2
2 − ξ2

1) + 2z1ξ1ξ2,

µ5 := z1(ξ2
1 − ξ2

2) + 2z2ξ1ξ2.

The eigenvalues of PÃ(ξ,v) are the following:

λ1 = 0, λ2 = (w −Bz) · ξ, λ3 = (w + (1−B)z) · ξ,

λ4/5 = (w + (1− 2B)z) · ξ ±
√

(1−B)∆2. (7.1.24)

Its eigenvectors are the columns of V (ξ,v)

=



B|ξ|(w−Bz)·ξ
∆1

0 0 −B|ξ|
√

1−B√
∆2

B|ξ|
√

1−B√
∆2

p1
|ξ|∆1

(1−B)ξ2
|ξ|

−Bξ2
|ξ|

Bξ2(ξ1z2−ξ2z1)
√

1−B
|ξ|
√

∆2

−Bξ2(ξ1z2−ξ2z1)
√

1−B
|ξ|
√

∆2

p2
|ξ|∆1

−(1−B)ξ1
|ξ|

Bξ1
|ξ|

−Bξ1(ξ1z2−ξ2z1)
√

1−B
|ξ|
√

∆2

Bξ1(ξ1z2−ξ2z1)
√

1−B
|ξ|
√

∆2
ξ1
|ξ|

−ξ2
|ξ|

−ξ2
|ξ|

ξ1
|ξ|

ξ1
|ξ|

ξ2
|ξ|

ξ1
|ξ|

ξ1
|ξ|

ξ2
|ξ|

ξ2
|ξ|


,

(7.1.25)
where p1 = p1(ξ,v), p2 = p2(ξ,v) are polynomial functions of degree 3 in ξ depending
on v, and

∆1 := (1−B)(z · ξ)2 − γ|ξ|2 + (w · ξ)(z · ξ), ∆2 := γ|ξ|2 −B(z · ξ)2. (7.1.26)

Its inverse matrix V −1(ξ,v)

=



0 −ξ1∆1

|ξ|∆3

−ξ2∆1

|ξ|∆3
0 0

ξ1z2−ξ2z1
|ξ|

ξ2
|ξ|

−ξ1
|ξ|

−Bξ2
|ξ|

Bξ1
|ξ|

−ξ1z2+ξ2z1
|ξ|

−ξ2
|ξ|

ξ1
|ξ|

−(1−B)ξ2
|ξ|

(1−B)ξ1
|ξ|

−
√

∆2

2B|ξ|
√

1−B
ξ1q1

2|ξ|∆3

√
(1−B)∆2

ξ2q1

2|ξ|∆3

√
(1−B)∆2

ξ1
2|ξ|

ξ2
2|ξ|

√
∆2

2B|ξ|
√

(1−B)

ξ1q2

2|ξ|∆3

√
(1−B)∆2

ξ2q2

2|ξ|∆3

√
(1−B)∆2

ξ1
2|ξ|

ξ2
2|ξ|


, (7.1.27)

where q1 = q1(ξ,v), q2 = q2(ξ,v) are polynomial functions of degree 3 in ξ and

∆3 := (1− 3B(1−B))(z · ξ)2 + (w · ξ)2− γ(1−B)|ξ|2 + 2(1− 2B)(w · ξ)(z · ξ). (7.1.28)

Proposition 7.1.1. Under the following assumptions

∆1 6= 0, ∆2 > 0 and ∆3 6= 0 for ξ 6= (0, 0),

the first order operator of system (7.1.20) is strongly hyperbolic.

Proof. Considering the symbolic matrix (7.1.23) and the related eigenvalues in (7.1.24)
and eigenvectors in (7.1.25), it follows by the definition of strong hyperbolicity, see
[55].
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Proposition 7.1.2. Under the following conditions

2γ > (1−B)|z|2 + (w · z),
γ2 > γ(1−B)|z|2 + γ(w · z) +

w1z22
4 +

w2z21
4 ,

γ > B|z|2,
2γ > B|z|2,
2γ(1−B) > (1− 3B(1−B))|z|2 + 2(1− 2B)(w · z) + |w|2,
γ2(1−B)2 > γ(1−B)((1− 3B(1−B))|z|2 + |w|2 + 2(1− 2B)(w · z))
((3B(1−B)− 1)z2

1 + 2w1z1(1− 2B) + w2
1)((1− 3B(1−B))z2

2

+2w2z2(1− 2B) + w2
2) + ((1− 3B(1−B))z1z2

+(1− 2B)(w1z2 + w2z1) + w1w2)2,

the value ξ = (0, 0) is a strict maximum, minimum and maximum point for ∆1,∆2 and
∆3 respectively and ∆1|ξ1=ξ2=0 = ∆2|ξ1=ξ2=0 = ∆3|ξ1=ξ2=0 = 0. Therefore, Proposition
7.1.1 is verified.

Proposition 7.1.3. For any v = (B,w, z) in a small neighborhood of the equilibrium
point v̄ = φ(ū), with φ in (7.1.15) and ū in (7.1.11), the first order operator of system
(7.1.20) is strongly hyperbolic.

Proof. It follows directly from Proposition 7.1.2 and Proposition 7.1.1.

As we pointed out in the Introduction, the main problem with our original system
(7.1.16) is that it is difficult to give for it a direct energy estimate, since, as we will see in
Section 4 in details, the pressure term is not well behaved against both the symmetrizers
of the first order hyperbolic part, the classical one and the Lax one, that work only on
the hyperbolic part of system (7.1.16), disregarding the pressure. However, we just
proved that system (7.1.19) is strongly hyperbolic near the equilibrium point v̄ = φ(ū),
in (7.1.11), and so we can construct an appropriate symmetrizer for this system, which
in this case is forced to be a paradifferential operator. Our construction in the following
is essentially based on the techniques developed in [55], which are combined to the ideas
in [34] and adapted to our specific operator.

7.2 Main result

In this section we prove a local existence result in the Sobolev spaces for the Cauchy
problem associated to (7.1.20). To the best of our knowledge, such a result is not
explicitly stated in all the relevant works about paradifferential calculus. For instance,
in the lecture notes [55], only linear and quasi-linear equations of differential operators
are considered, while in [34] the discussion is extended to evolution equations of
pseudodifferential operators, but the proof makes use of some particular structural
characteristics that our system does not satisfy. Therefore, we give our proof of
existence and uniqueness of the solution to the Cauchy problem associated to the
translated version of (7.1.20). We state here our main result. Since we will work in
Sobolev spaces, we define

V s := {v = (B,w, z) ∈ Hs(R2)|∇ · w = 0}.
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Theorem 7.2.1. Let ṽ0 := v0 − v̄, with v0 in (7.1.17), v̄ = φ(ū) in (7.1.11), and
ṽ0 ∈ V s with s > 2. There is a positive time T , such that there exists the unique
ṽ ∈ C([0, T ], V s)∩C1([0, T ], V s−1) and a function P such that ∇P ∈ C([0, T ], Hs−1(R2))
which solve {

∂tṽ +
∑2

j=1 Ãj((ṽ + v̄))∂xj ṽ + F̃P = G̃((ṽ + v̄)),

∇ · w̃ = 0.
(7.2.29)

The solution (ṽ, P ) to (7.2.29) is the limit of the sequence of the solutions to the
approximating system (7.2.30) below, with initial data (7.2.31).

The proof follows by combining in a classical ways, see for instance [9], Theorem 7.2.2
and 7.2.4 below. First, following [9], we write our approximation to system (7.2.29) via
a regularization of the operator and the Picard iterations. Namely, let Jε be a standard
mollifier, then solve{

∂tṽ
ε +

∑2
j=1 JεÃj(Jε(ṽ

ε + v̄))∂xjJεṽ
ε + F̃ εP = JεG̃(Jε(ṽ

ε + v̄)),

∇ · w̃ε = 0,
(7.2.30)

where F̃ εP = (0,∇P ε,0), the initial data are

ṽε(0, x) = ṽε0(x) = (B̃ε
0, w̃

ε
0, z̃

ε
0) = ṽ0 := v0 − v̄, (7.2.31)

and ṽ0 as in Theorem 7.2.1. We apply now P to (7.2.30) to get the projected version

∂tṽ
ε +

2∑
j=1

PJεÃj(Jε(ṽ
ε + v̄))∂xjJεṽ

ε = PJεG̃(Jε(ṽ
ε + v̄)), (7.2.32)

with initial data in (7.2.31).

Theorem 7.2.2. (Local existence of the approximating solution) Let ṽε0 = (B̃ε
0, w̃

ε
0, z̃

ε
0) ∈

V s in (7.2.31), with s > 2. Then, for every ε > 0, there exists a time T , independent of
ε, such that system (7.2.32) has a unique solution ṽε = (B̃ε, w̃ε, z̃ε) ∈ C1([0, T ], V s).

Proof. First, we show that existence and uniqueness follow from the Picard theorem (see
[9]). System (7.2.32) can be reduced to an ordinary differential equation

∂tṽ
ε = F ε(ṽε), ṽε(0, x) = ṽε0(x),

where

F ε(ṽε) = −
2∑
j=1

PJεÃj(Jε(ṽε + v̄))∂xjJεṽ
ε + PJεG̃(Jε(ṽ

ε + v̄)) =: F ε1 (ṽε) + F ε2 (ṽε).

(7.2.33)
Notice that Jεṽ

ε and Jε(ṽ
ε + v̄) are C∞ functions and, from [55], P is associated to an

analytic pseudo-differential operator of order 0, modulo an infinitely smooth remainder,
so that

F ε : V s → V s.

In order to apply the Picard theorem, we have to prove that F ε(ṽε) in (7.2.33) is Lipschitz
continuous. To do this, we take two vectors ṽ1, ṽ2 in V s. In the following, we omit the
index ε in the unknown functions, where there is no ambiguity. We state the following
theorem proved in [8].
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Theorem 7.2.3. If F ∈ C∞(R), F (0) = 0, and s > d
2 , then there exists a continuous

function C : [0,∞)→ [0,∞) such that, for all u ∈ Hs(Rd),

‖F (u)‖s ≤ C(‖u‖∞)‖u‖s.

It is straightforward here to prove that

||F ε1 (ṽ1)− F ε1 (ṽ2)||s ≤ c(cS , ||ṽ1||s, ||ṽ2||s, B̄, ε−1)||ṽ1 − ṽ2||s, (7.2.34)

where cS is the Sobolev embedding constant and the last inequality follows from Moser
estimates and properties of mollifiers. Similarly, we have

||F ε2 (ṽ1)− F ε2 (ṽ2)||s ≤ c(cS , ||ṽ1||s, ||ṽ2||s, B̄)||ṽ1 − ṽ2||s. (7.2.35)

From (7.2.34) and (7.2.35) we have that, for fixed ε, F ε is locally Lipschitz continuous
on any open set

UM = {ṽε ∈ V s : ||ṽε||s < M}.

Then, the Picard theorem provides a unique solution ṽε ∈ C1([0, Tε),U
M ) for any Tε > 0.

Now, we want to show that the time of existence Tε is bounded from below by any
strictly positive time T that is independent of ε.

According to (7.1.20), from (7.2.32) we have

∂tṽ
ε + PJεTiÃ(ξ,Jε(ṽ

ε+v̄))Jεṽ
ε =

2∑
j=1

PJε[TÃj(Jε(ṽε+v̄)) − Ãj(Jε(ṽ
ε + v̄))]∂xjJεṽ

ε

+PJεTG̃(Jε(ṽ
ε+v̄)) −PJε[TG̃(Jε(ṽ

ε+v̄)) − G̃(Jε(ṽ
ε + v̄))]. (7.2.36)

From Lemma 2.4.1 in Section 2, properties of mollifiers and the Leray projector, we get

||PJε{[TÃj(Jε(ṽε+v̄)) − Ãj(Jε(ṽ
ε + v̄))]∂xjJεṽ

ε}||s ≤ c(||ṽε||s, B̄)||ṽε||s, and

||PJε{TG̃(Jε(ṽ
ε+v̄)) − G̃(Jε(ṽ

ε + v̄))}||s ≤ c(||ṽε||s, B̄)||ṽε||s.
(7.2.37)

Then, we can focus on the paradifferential part of (7.2.36), which is

∂tṽ
ε + JεPTiÃ(ξ,Jε(ṽ

ε+v̄))Jεṽ
ε − JεPTG̃(Jε(ṽ

ε+v̄)).

From (7.1.23), we know that the symbolic matrix associated to the composition

PTiÃ(ξ,Jε(vε+v̄))

can be written as

P(ξ)iÃ(ξ, Jε(ṽ
ε + v̄)) +R,

where P(ξ)Ã(ξ, Jε(ṽ
ε + v̄)) is the symbolic part of degree 1, while R is a remainder of

order less than or equal to 0. Now, by construction

P(ξ)Ã = V DV −1, (7.2.38)
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with D the diagonal matrix of the eigenvalues of PÃ in (7.1.24), namely

(V −1)∗V −1PÃ = (V −1)∗DV −1

is symmetric. This way, we set

W (ξ, Jε(ṽ
ε + v̄)) := (1− θλ(ξ))V −1(ξ, Jε(ṽ

ε + v̄)), (7.2.39)

with V −1(ξ, Jε(ṽ
ε + v̄)) in (7.1.27). Now, following Métivier in [55], we define

θλ(ξ)Id = θ(λ−1ξ)Id, (7.2.40)

for any fixed parameter λ and for any θ(ξ) ∈ C∞c (R2) such that 0 ≤ θ ≤ 1 for 1 < |ξ| < 2,
θ = 1 for |ξ| ≤ 1 and θ = 0 for |ξ| ≥ 2. We define the regularized symmetrizer

Σ := (TW )∗TW + θ2
λ(Dx)Id, (7.2.41)

where (TW )∗ is the adjoint of the paradifferential operator TW associated to (7.2.39).
Thus, by construction, Σ in (7.2.41) is symmetric. Moreover,

(Σu,u)0 = ||TWu||20 + ||θλ(Dx)u||20, (7.2.42)

for every u ∈ L2(R2). In order to get energy estimates, an important element is the
equivalence of (7.2.42) with respect to the L2-norm, i.e.

c||u||20 ≤ (Σu,u)0 ≤ c̄||u||20,

for some c, c. This is proved in Lemma 2.4.2, which is an adapted version of Lemma
7.1.6 in [55], where we replace the square root of a more general Lax -symmetrizer with
V −1 in (7.1.27).

Now, we are ready to get energy estimates. Applying Λs and the symmetrizer (7.2.41)
to (7.2.36), we have

d

dt
(ΣΛsṽε,Λsṽε)0 = (∂tΣΛsṽε,Λsṽε)0 + 2(ΣΛs∂tṽ

ε,Λsṽε)0. (7.2.43)

The operator of the first term of the right-hand side,

∂tΣ = (T∂tW )∗TW + (TW )∗T∂tW ,

has order 0 and depends on ∂tṽ
ε, i.e.

|(∂tΣΛsṽε,Λsṽε)0| ≤ c(|∂tṽε|∞)||ṽε||2s ≤ c(|ṽε|∞, |∂xj ṽε|∞)||ṽε||2s ≤ c(||ṽε||s)||ṽε||2s,

where the inequalities follow from (7.2.36) and the Sobolev embedding theorem. The
last term of (7.2.43) yields

(ΣΛs∂tṽ
ε,Λsṽε)0 = −Re(ΣΛsPJεTiÃ(ξ,Jε(ṽ

ε+v̄))Jεṽ
ε,Λsṽε)0

+(ΣΛsPJεTG̃(Jε(ṽ
ε+v̄)),Λ

sṽε)0 +Qε,

where
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Qε =

2∑
j=1

(ΛsPJε[TÃj(Jε(vε+v̄)) − Ãj(Jε(v
ε + v̄))]∂xjJεv

ε,Λsṽε)0

−(ΛsPJε[TG̃(Jε(vε+v̄)) − G̃(Jε(v
ε + v̄))],Λsṽε)0.

From (7.2.37),
|Qε| ≤ c(||ṽε||s)||ṽε||s

and, from the composition theorem in Section 2,

|(ΣΛsPJεTG̃(Jε(ṽ
ε+v̄)),Λ

sṽε)0| ≤ c(||ṽε||s)||ṽε||s.

It remains to deal with

Re(ΣΛsPJεTiÃ(ξ,Jε(ṽ
ε+v̄))Jεṽ

ε,Λsṽε)0 = Re(ΣJεΛ
sPTiÃ(ξ,Jε(ṽ

ε+v̄))Jεṽ
ε,Λsṽε)0

= Re(ΣΛsPTiÃ(ξ,Jε(ṽ
ε+v̄))Jεṽ

ε,ΛsJεṽ
ε)0 +Re([Σ, Jε]Λ

sPTiÃ(ξ,Jε(ṽ
ε+v̄))]Jεṽ

ε,Λsṽε)0

= Re(ΣPTiÃ(ξ,Jε(ṽ
ε+v̄))Λ

sJεṽ
ε,ΛsJεṽ

ε)0 +Re([Σ, Jε]PTiÃ(ξ,Jε(ṽ
ε+v̄))Λ

sJεṽ
ε,Λsṽε)0

+Re(Σ[Λs,PTiÃ(ξ,Jε(ṽ
ε+v̄))]Jεṽ

ε,ΛsJεṽ
ε)0. (7.2.44)

In the last term of the expression above, from Section 2, the symbol of the commutator
[Λs,PTiÃ(ξ,Jε(ṽ

ε+v̄))] is given by

∑
|α|≥0

[
∂αξ ΛsDα

x (
∑
|β|≥0

∂βξ PiDβ
xÃ)− ∂αξ (

∑
|β|≥0

∂βξ PiDβ
xÃ)Dα

xΛs

]
,

where
∑
|β|≥0 ∂

β
ξ PiDβ

xÃ is the symbol of the composition PTiÃ. Since Λs(ξ) only depends
on the parameter ξ, the sum can be written as

Λs(
∑
|β|≥0

∂βξ PiDβ
xÃ)− (

∑
|β|≥0

∂βξ PiDβ
xÃ)Λs +

∑
|α|>0

∂αξ ΛsDα
x (
∑
|β|≥0

∂βξ PiDβ
xÃ).

Now, since Λs = (1 + |ξ|2)
s
2 Id, then

Λs(
∑
|β|≥0

∂βξ PiDβ
xÃ)− (

∑
|β|≥0

∂βξ PiDβ
xÃ)Λs = 0,

namely the commutator [Λs,PTiÃ(Jε(ṽ
ε+v̄))] has order less than or equal to s, and

|(Σ[Λs,PTiÃ(ξ,Jε(ṽ
ε+v̄))]ṽ

ε,Λsṽε)0| ≤ c(||ṽε||s)||ṽε||2s.

In a similar way, the commutator of the middle term of (7.2.44) has the following
expansion:

[Σ, Jε] = ΣJε − JεΣ +
∑
|α|>0

Dα
ξ JεD

α
xΣ,
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and, since Jε = jε(ξ)Id, it results that ΣJε − JεΣ = 0. Then, the commutator [Σ, Jε]
has order less than or equal to −1 and, since PTiÃ(ξ,Jε(ṽ

ε+v̄)) has order 1, from the
composition theorem in Section 2 we have

([Σ, Jε]PTiÃ(ξ,Jε(ṽ
ε+v̄))Λ

sṽε,Λsṽε)0 ≤ c(||ṽε||s)||ṽε||2s.

It remains to consider the last first of (7.2.44). From (7.2.41), Σ = (TW )∗TW + θ2
λ(Dx),

and, from Section 2 and the definition of the symbolic matrix W in (7.2.39), the symbol
of degree 1 in the expansion of ΣPTiÃ(ξ,Jε(ṽ

ε+v̄)) is given by

(V −1)∗V −1PiÃ(ξ, Jε(ṽ
ε + v̄))(1− θλ(ξ))2 + θ2

λ(ξ)PiÃ(ξ, Jε(ṽ
ε + v̄)).

By construction, from (7.1.25) and (7.1.27), we have

PiÃ(ξ, Jε(ṽ
ε + v̄)) = V iDV −1(ξ, Jε(ṽ

ε + v̄)),

where D(ξ, Jε(ṽ
ε + v̄)) is the diagonal matrix (7.2.38) of the real terms (7.1.24), and

(V −1)∗V −1PiÃ(ξ, Jε(ṽ
ε + v̄))(1− θλ(ξ))2 = (V −1)∗iDV −1(ξ, Jε(ṽ

ε + v̄))(1− θλ(ξ))2.

We define

N := (V −1)∗iDV −1(ξ, Jε(ṽ
ε + v̄))(1− θλ(ξ))2.

Then

Re(i(V −1)∗V −1PÃ(ξ, Jε(ṽ
ε + v̄))(1− θλ(ξ))2) = N +N∗ = 0.

The second addend of the symbolic symmetrizer (7.2.41) gives

|Re(iθ2
λ(Dx)PÃ(ξ, Jε(ṽ

ε+ v̄))Λsṽε,Λsṽε)0| ≤ ||θλ(Dx)PÃ(ξ, Jε(ṽ
ε+ v̄))Λsṽε||0||Λsṽε||0.

From (7.2.40), we get

||θλ(Dx)PÃ(ξ, Jε(ṽ
ε + v̄))Λsṽε||0 ≤

√
1 + 4λ2||θλ(Dx)PÃ(ξ, Jε(ṽ

ε + v̄))Λsṽε||H−1

≤ 3λ||PÃ(ξ, Jε(ṽ
ε + v̄))Λsṽε||H−1 ≤ c(||ṽε||s)||ṽε||s.

This way,

|Re(ΣPTiÃ(Jε(ṽ
ε+v̄))Λ

sJεṽ
ε,ΛsJεṽ

ε)0| ≤ c(||ṽε||s)||ṽε||2s,

and, putting it all together, we have

d

dt
(ΣΛsṽε,Λsṽε)0 ≤ c(||ṽε||s)||ṽε||2s. (7.2.45)

Let Tε be the maximum time of existence of the solution to system (7.2.30). We want
to show that there exists a time T > 0, which is independent of ε, such that T ≤ Tε
for every ε > 0. From Theorem 7.2.2, there exists a constant M such that ||ũε0||s ≤ M .
Fixed a constant value M̃ > M, let T ε0 ≤ Tε be a positive time such that the smooth
solution ṽε verifies

sup 0≤τ≤T ε0 ||ṽ
ε(τ)||s ≤ M̃.
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From (7.2.45), we get

||ṽε(t)||s ≤ ||ṽε0||sec(M̃)t

for t ∈ [0, T ε0 ]. Let T, with 0 < T ≤ T ε0 , be such that

Mec(M̃)T ≤ M̃.

This holds if

T ≤
log(M̃M )

c(M̃)
. (7.2.46)

Since M,M̃ are independent of the parameter ε, estimate (7.2.46) implies that the time
T is independent of ε and (ṽε)ε≥0 is uniformly bounded provided that inequality (7.2.46)
holds.

7.2.1 Uniqueness

We can establish a uniqueness result in space larger than one where we are going to
prove the existence of the solutions.

Theorem 7.2.4. There is a unique solution ṽ to problem (7.2.29) in the space

Lip([0, T ], Lip(R2)|∇ · w = 0) ∩ L∞([0, T ], V 0).

Proof. According to Definition 7.1.1, let ṽ1, ṽ2 be two solutions to system (7.1.1), with
the respective pressure terms P1, P2 and the same initial data ṽ1(0, x) = ṽ2(0, x) = ṽ0.
From (7.1.19), we have

Σ(ṽ2 + v̄)∂t(ṽ2 − ṽ1) +
2∑
j=1

Σ(ṽ2 + v̄)PTÃj(ṽ2+v̄)∂xj (ṽ2 − ṽ1)

+Σ(ṽ2 + v̄)
2∑
j=1

[PÃj(ṽ2 + v̄)−PTÃj(ṽ2+v̄)]∂xj (ṽ2 − ṽ1)

= Σ(ṽ2 + v̄)G̃(ṽ2 + v̄)− Σ(ṽ1 + v̄)G̃(ṽ1 + v̄)

+[Σ(ṽ1 + v̄)−Σ(ṽ2 + v̄)]∂tṽ1 +
2∑
j=1

[Σ(ṽ1 + v̄)PTÃj(ṽ1+v̄) −Σ(ṽ2 + v̄)PTÃj(ṽ2+v̄)]∂xj ṽ1

+

2∑
j=1

[Σ(ṽ1 + v̄)PÃj(ṽ1 + v̄)− Σ(ṽ2 + v̄)PÃj(ṽ2 + v̄)]∂xj ṽ1

+
2∑
j=1

[Σ(ṽ2 + v̄)PTÃj(ṽ2+v̄) − Σ(ṽ1 + v̄)PTÃj(ṽ1+v̄)]∂xj ṽ1.

As done before, this provides the following estimate:

d

dt
(Σṽ1 − ṽ2, ṽ1 − ṽ2)0 ≤ c||ṽ1 − ṽ2||20, (7.2.47)

namely ṽ1 = ṽ2 = 0, since (ṽ1 − ṽ2)(0, x) = ṽ1(0, x)− ṽ2(0, x) = 0, where the constant
value c in (7.2.47) only depends on |ṽ|∞, |∂tṽ|∞ and |∇ṽ|∞.
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7.3 Some failed attempts

Let us consider system (7.1.8) in the old variables u. Looking at (7.1.9), it is easy to find
a diagonal matrix that symmetrizes the first order part A1(u)∂xu, A2(u)∂yu of system
(7.1.8). The Friedrichs (or classical) symmetrizer is

S0(u) = diag(γ/B,B,B, (1−B), (1−B)). (7.3.48)

The existence of this symmetrizer for A1(u), A2(u) implies that, disregarding the
pressure term, system (7.1.8) is hyperbolic. Nevertheless, that classical symmetrizer is
not useful to close some energy estimates, since we have to deal also with the
incompressible pressure term FP = (0,∇P,∇P ). In fact, in the Sobolev spaces Hs(R2)
with s > 2, when we take the s-derivative of system (7.1.8) and multiply by ∇su in
order to get energy estimates, the right-hand side of the equation contains the
following scalar product in L2(R2):

(S0(u)∇sFP ,∇su)0 = ((0, B∇s+1P, (1−B)∇s+1P ), (∂sxB,∇svS ,∇svL))0

= (B∇s+1P,∇svS)0 + ((1−B)∇s+1P,∇svL)0.

Unfortunately, taking u ∈ Hs(R2), the pressure term P has not enough regularity, as
shown by the elliptic equation (7.0.1), and then we are unable to close our estimates.
Besides, the symmetrizer (7.3.48) depends on the variable u, whose components do
not depend explicitly on the average velocity BvS + (1 − B)vL, which is, instead, the
divergence free vector field associated to (7.1.8). Then, we can try to use the new
variables in (7.1.14), i.e.

w := BvS + (1−B)vL, z := vS − vL,

so setting v = (B,w, z). As we noticed in Section 2, passing to the new variable v,
the fourth equation of (4.0.6) yields ∇ · w = 0, which is exactly the incompressibility
condition for the mixture as a whole. Moreover, the equation for the average velocity w,
which is

∂tw + w · ∇w +∇ · (B(1−B)z ⊗ z) + γ∇B +∇P = 0,

contains the gradient of the incompressible pressure ∇P alone, without multiplication
by any phase volume fraction, while the equation for the relative velocity z,

∂tz + w · ∇z + z · ∇w + z · ∇((1−B)z)−Bz · ∇z +
γ∇B
B

= −z(M + ΓB(1−B))

B(1−B)
,

is free from the incompressible pressure. In the new variables v, we get the compact
system (7.1.16), that can be written as

∂tv + TiÃ(ξ,v)v = TG̃(ξ,v) + [TiÃ(ξ,v) −
2∑
j=1

Ãj(v)∂xj ]v + [G̃(v)− TG̃(v)],

with TiÃ(ξ,v) in (7.1.21). The symbolic matrix Ã(ξ,v) in (7.1.22) has the following
eigenvalues: 

λ1 = λ2 = (w −Bz) · ξ,
λ3 = (w + (1−B)z) · ξ,
λ4 = (w + (1−B)z) · ξ −√γ|ξ|,
λ5 = (w + (1−B)z) · ξ +

√
γ|ξ|.

(7.3.49)
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They are real, then, as long as we neglect the incompressible pressure F̃P , the remaining
system in (7.1.16) is hyperbolic, as the symmetrizable system (7.1.8) in the old variable
u. Moreover, the eigenvectors of (7.1.22) are the columns of

U(ξ,u) =



0 0 0 − B√
γ

B√
γ

−(1−B) 0 −Bξ2
|ξ|

B(γξ1−z1
√
γ|ξ|)

γ|ξ|
B(γξ1+z1

√
γ|ξ|)

γ|ξ|

0 −(1−B) Bξ1
|ξ|

B(γξ2−z2
√
γ|ξ|)

γ|ξ|
B(γξ2+z2

√
γ|ξ|)

γ|ξ|
1 0 −ξ2

|ξ|
ξ1
|ξ|

ξ1
|ξ|

0 1 ξ1
|ξ|

ξ2
|ξ|

ξ2
|ξ|


, (7.3.50)

while its inverse matrix is

U−1(ξ,u) =


z1 −1 0 B 0
z2 0 −1 0 B

ξ2z1−ξ1z2
|ξ|

−ξ2
|ξ|

ξ1
|ξ|

−(1−B)ξ2
|ξ|

(1−B)ξ1
|ξ|

−
√
γ|ξ|+B(z·ξ)

2B|ξ|
ξ1

2|ξ|
ξ2

2|ξ|
(1−B)ξ1

2|ξ|
(1−B)ξ2

2|ξ|√
γ|ξ|−B(z·ξ)

2B|ξ|
ξ1

2|ξ|
ξ2

2|ξ|
(1−B)ξ1

2|ξ|
(1−B)ξ2

2|ξ|

 . (7.3.51)

Since (7.3.50) and (7.3.51) are bounded for each ξ ∈ R2 − {0}, the regularized the
symbolic matrix

S̃(ξ,v) := (U−1(1− θλ(ξ)))∗U−1(ξ,v)(1− θλ(ξ)) + θ2
λ(ξ)Id (7.3.52)

can be associated to a Lax symbolic symmetrizer TS̃ , as done before in Section 3.
Therefore, the hyperbolic part of (7.1.16) is symmetrizable. Unfortunately, again, the
mere existence of a symmetrizer is not enough to get energy estimates for system
(7.1.16), since we have to deal with the incompressible pressure term and then, by
definition, with the projector operator in (7.1.18). As a matter of fact, the interaction
between the symbolic symmetrizer TS̃ and the gradient of the pressure term ∇P gives
structural problems. The operators TS̃ and the projector P in (7.1.18) do not commute
and their commutator does not improve on the order of the original symbols. By
construction, S symmetrizes A(ξ,v) in (7.1.22), then we write (7.1.19) as

∂tv +
2∑
j=1

Ãj(v)∂xjv +
2∑
j=1

[Ãj ,P]∂xjv = PG̃(v)

and we apply TS̃ to its paradifferential formulation. Unfortunately, from (7.1.18),

(7.1.22) and (7.1.21), the first term of the symbolic commutator in
∑2

j=1[Ãj ,P]∂xjv
contains the following term of degree 1 in ξ:

Ã(ξ,v)P(ξ)−P(ξ)Ã(ξ,v),

then the commutator between Ã(ξ,v) and P is still a symbol of degree 1, and it is not
symmetrized by S. On the other hand, if at first we symmetrize the system by using the
paradifferential operator TS̃ , the pressure gives the term TS̃F̃P , which is still an operator
of the first order. After that, when we project the equation by applying P to it, the
latter term reads

PTS̃F̃P = [TS̃ ,P]F̃P ,

106



7.4. THE ORIGINAL BIOFILMS SYSTEM: A MULTI-SOLID-PHASES MODEL

whose symbol contains the smoothed version of the following term of degree 1 in ξ:

SP(0, iξ1P, iξ2P, 0, 0)

=
i

2|ξ|2
(P (z · ξ)(2ξ2

1 + 3ξ2
2), 0, 0, P ξ1(2Bξ2

1 + 3Bξ2
2 − ξ2

2), P ξ2(2Bξ2
1 + 3Bξ2

2 − ξ2
2)),

which is still a first order operator, then neither we are able to get energy estimates
because of the lack of regularity of P , as discussed before and shown in (7.0.1), nor to
get rid of the pressure term P by using the projector operator P.
To be complete, we point out that system (7.1.8) in the new variable v = (B,w, z) has
also a classical symmetrizer (see Section 2), given by

A0(v) =


γ
B + |z|2 −z1 −z2 0 0
−z1 1 0 0 0
−z2 0 1 0 0

0 0 0 B(1−B) 0
0 0 0 0 B(1−B)

 , (7.3.53)

which is strictly positive for z small enough and under some assumptions on B,
discussed in Remark 7.1.1, then its positivity is verified in a small neighbourhood of
the admissible equilibrium point (7.1.11) in the variables v in (7.1.15). Anyway, again,
the classical symmetrizer (7.3.53) is not compatible with the projector operator
(7.1.18), in the sense that the scalar product induced by the classical symmetrizer does
not preserve the orthogonality between the gradient of the incompressible pressure ∇P
and the divergence free average velocity w, i.e.

(A0(v)F̃P ,v)0 6= 0, while (FP ,v)0 = (∇P,w)0 = 0,

and the resulting incompatibility can be seen by arguing as for the Lax symmetrizer TS̃ .

7.4 The original biofilms system: a multi-solid-phases
model

We consider system (4.0.2), which can be written as



∂tB +∇ · (BvS) = ΓB := kBBL− kDB,
∂tD +∇ · (DvS) = ΓD := αBkD − kND,
∂tE +∇ · (EvS) = ΓE := BLkE − εE,
∂tvS + vS · ∇vS + γ∇(B+D+E)

(B+D+E) +∇P = ΓvS := (M+ΓB+ΓD+ΓE)(vL−vS)
B+D+E ,

∂tvL + vL · ∇vL +∇P = ΓvL := M(vS−vL)
1−(B+D+E) ,

∇ · ((B +D + E)vS + (1− (B +D + E))vL) = 0,

B +D + E + L = 1,

(7.4.54)

where kB, kD, kE , kN , α, ε are experimental constants. Now, PÃ(ξ, Jε(ṽ
ε + v̄)) has the

following eigenvalues:

λ1 = 0,
λ2 = (w −Bz) · ξ,
λ3 = λ4 = λ5 = (w + (1−B)z) · ξ,
λ6/7 = (w + (1−B − ν)) · ξ ±

√
(1− ν)(γ|ξ|2 − ν(z · ξ)2).

(7.4.55)
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Besides, the eigenvectors are the columns of V (ξ, Jε(ṽ
ε + v̄))

q11
|ξ|∆1

0 1 −1 0 B|ξ|∆4

∆2

−B|ξ|∆4

∆2
q21
|ξ|∆1

0 −1 0 0 D|ξ|∆4

∆2

−D|ξ|∆4

∆2
q31
|ξ|∆1

0 0 1 0 E|ξ|∆4

∆2

−E|ξ|∆4

∆2
q41
|ξ|∆1

(1−ν)ξ2
|ξ| 0 0 −νξ2

|ξ|
−ξ2∆5

|ξ|∆2

ξ2∆5

|ξ|∆2
q51
|ξ|∆1

−(1−ν)ξ1
|ξ| 0 0 νξ1

|ξ|
ξ1∆5

|ξ|∆2

−ξ1∆5

|ξ|∆2
ξ1
|ξ|

−ξ2
|ξ| 0 0 −ξ2

|ξ|
ξ1
|ξ|

ξ1
|ξ|

ξ2
|ξ|

ξ1
|ξ| 0 0 ξ1

|ξ|
ξ2
|ξ|

ξ2
|ξ|


, (7.4.56)

where

q11 = q11(ξ, Jεṽ
ε, v̄), q21 = q21(ξ, Jεṽ

ε, v̄), q31 = q31(ξ, Jεṽ
ε, v̄), q41 = q41(ξ, Jεṽ

ε, v̄),

q51 = q51(ξ, Jεṽ
ε, v̄)

are polynomial functions of degree 3 in the ξ variable, ∆1 in (7.1.26), and
ν := B +D + E,

∆2 := γ|ξ|2 − (B +D + E)(z · ξ)2,

∆4 :=
√

(1− ν)∆2,

∆5 := (ξ1z2 − ξ2z1)ν∆4,

while V −1(ξ, Jε(ṽ
ε + v̄))

=



0 0 0 −ξ1
|ξ|
√

1−ν
−ξ2
|ξ|
√

1−ν 0 0

0 0 0 ξ2
|ξ|

−ξ1
|ξ|

−ξ2ν
|ξ|

ξ1ν
|ξ|

−D
ν

B+E
ν

−D
ν 0 0 0 0

−E
ν

−E
ν

B+D
ν 0 0 0 0

0 0 0 −ξ2
|ξ|

ξ1
|ξ|

−(1−ν)ξ2
|ξ|

(1−ν)ξ1
|ξ|√

γ

2ν
√

1−ν

√
γ

2ν
√

1−ν

√
γ

2ν
√

1−ν
ξ1

2|ξ|(1−ν)
ξ2

2|ξ|(1−ν)
ξ1

2|ξ|
ξ2

2|ξ|
−√γ

2ν
√

1−ν
−√γ

2ν
√

1−ν
−√γ

2ν
√

1−ν
ξ1

2|ξ|(1−ν)
ξ2

2|ξ|(1−ν)
ξ1

2|ξ|
ξ2

2|ξ|


.

Since V and V −1 are bounded for each ξ ∈ R2 − {0}, we can apply the arguments
developed for system (4.0.6) to the complete case (7.4.54).

7.5 An open problem: the three dimensional two phases
model

The three dimensional case contains structural difficulties that we are not able to solve.
In three space dimensions, if we project the main operator we obtain

PÃ(ξ,v) = P(ξ)(Ã1(v)ξ1 + Ã2(v)ξ2 + Ã3(v)ξ3), (7.5.57)
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with the following eigenvalues:

λ1 = 0,
λ2 = λ3 = (w −Bz) · ξ,
λ4 = λ5 = (w + (1−B)z) · ξ,
λ6/7 = (w + (1− 2B)z) · ξ ±

√
(1−B)∆2,

(7.5.58)

where ∆2 = γ|ξ|2−B(z ·ξ)2. To simplify the discussion, the matrix with the eigenvectors
on the columns, V (ξ,v), has been calculated in the equilibrium point (7.1.10) v̄ =
(B̄, w̄, z̄) = (B̄,0,0), with B̄ = 1− kD

kB
. We have

V (ξ,v) =
1

|ξ|



0 0 0 0 0 B̄
√

1−B̄
γ |ξ| −B̄

√
1−B̄
γ |ξ|

−(1− B̄)ξ1 ξ2(1− B̄) ξ3(1− B̄) −B̄ξ2 −B̄ξ3 0 0
−(1− B̄)ξ2 −(1− B̄)ξ1 0 B̄ξ1 0 0 0
−(1− B̄)ξ3 0 −(1− B̄)ξ1 0 B̄ξ1 0 0

ξ1 −ξ2 −ξ3 −ξ2 −ξ3 ξ1 ξ1

ξ2 ξ1 0 ξ1 0 ξ2 ξ2

ξ3 0 ξ1 0 ξ1 ξ3 ξ3


.

(7.5.59)
For ξ1 = 0, we get

0 0 0 0 0 B̄
√

1−B̄
γ |ξ| −B̄

√
1−B̄
γ |ξ|

0 (1− B̄)ξ2 (1− B̄)ξ3 −B̄ξ2 −B̄ξ3 0 0
−(1− B̄)ξ2 0 0 0 0 0 0
−(1− B̄)ξ3 0 0 0 0 0 0

0 −ξ2 −ξ3 −ξ2 −ξ3 0 0
ξ2 0 0 0 0 ξ2 ξ2

ξ3 0 0 0 0 ξ3 ξ3


.

(7.5.60)
The second and the third columns of (7.5.60), namely the eigenvectors of the second and
the third coincident eigenvalues in (7.5.58), degenerate in the same vector when ξ1 = 0.
This happens also to the fourth and the fifth columns of (7.5.60), i.e. the fourth and the
fifth coincident eigenvalues in (7.5.58). For this reason, in the three dimensional case
the symbol PÃ(ξ,v) in (7.5.57) loses the property of strong symmetrizability and related
microlocal symmetrizability, according to the definitions given in [55].
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Chapter 8

Introduction to the BGK models

This chapter is devoted to the presentation of the BGK models, which are a class of
kinetic approximations to hyperbolic and parabolic systems. The present introduction
is based on [16, 59]. These BGK models were introduced by Bhatnagar, Gross and Krook
as a modified version of the Boltzmann equation, characterized by a simplification of the
collision operator. Later, these models have been generalized in order to approximate
different systems. Originally, they presented continuous velocities, see [64], but there
exists also a subclass of discrete velocities BGK models. Here we will focus on discrete
velocities BGK approximations. The main advantage of this approach is to deal with
semilinear systems, in the spirit of the relaxation approximation, see [59, 22, 36]. Let us
define the general framework of these systems.
Consider a general system of conservation laws,

∂tu +

d∑
j=1

∂xjFj(u) = 0, (8.0.1)

where (t, x) ∈ R × Rd, u(t, x) belongs to a convex subset U ∈ RN , and Fj , j = 1, · · · d
are given smooth functions. We assume that there exists an entropy for system (8.0.1),
i.e. a function η : U→ R such that there exist function gj : U→ R satisfying

∇ugj = (F ′j)
T∇uη, j = 1, · · · , d.

Notice that to guarantee the existence of an entropy, we need to prove the previous
condition, namely the differential form (∇uη)F ′j has to be exact. This is true if η′′F ′j is
symmetric. Moreover, if the entropy η is strictly convex, η′′ defines a scalar product on
the Sobolev spaces which symmetrizes system (8.0.1) in the classical sense, see Chapter
2. Then, let E be a non-empty set of convex entropies for (8.0.1). Assume also that E is
separable. A BGK model reads as follows

∂tfi + λi · ∇xfi =
1

ε
(Mi(u)− fi), i = 1, · · · , L, (8.0.2)

where ε > 0 is the parameter of the singular approximation, L ≥ d and, for i = 1, · · · , L,

fi(t, x) = (f1
i , · · · , fNi ) : R× Rd → RN ,

λi = (λ1
i , · · · , λdi ),

Mi(u) = (M1
i , · · · ,MN

i ) : RN → RN .
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Here we set

u =

L∑
i=1

fi,

while Mi(u) are the so-called Mawxellian functions. In order to have the consistency
of the BGK approximation with respect to the limit system (8.0.1), we have to assume
some compatibility conditions,

L∑
i=1

Mi(u) = u, (8.0.3)

L∑
i=1

λijMi(u) = Fj(u), j = 1, · · · , d. (8.0.4)

Remark 8.0.1. We point out that BGK models have been used also to approximate
parabolic systems. In this case, in order to get the second order derivative in the limit,
additional compatibility conditions on the Maxwellian functions are needed. We remind
to [2, 17] for a detailed discussion.

An important feature of these approximation is the existence, under some reasonable
conditions, of a kinetic entropy. Set Di := {Mi(u) : u ∈ U}.

Definition 8.0.1. A kinetic entropy for system (8.0.2) is a convex function H(f) =∑L
i=1Hi(fi), with Hi : Di → R, such that

• H(M(u)) = η(u) for every u ∈ U;

• H(M(uf )) ≤ H(f), where uf :=
∑L

i=1 fi ∈ U, fi ∈ Di.

This property provides an energy inequality which gives robustness for the scheme.
Indeed, it is easy to see that, multiplying the BGK system (8.0.2) by ∇fiHi(fi), we
obtain

∂tH(f) +
d∑
j=1

∂xj

(
L∑
i=1

λijHi(fi)

)
≤ 0.

In order to state the existence result for kinetic entropies due to Bouchut, see [16], we
need to introduce some preliminary notions. Let us define the space of Maxwellians

Mε = {M : U→ RLN | ∀η ∈ E, ∀i : (M ′i)
T η′′ is symmetric everywhere in U},

and the convex cone of nondecreasing Maxwellians

Mε
+ = {M : U→ RLN | ∀η ∈ E, ∀i : (M ′i)

T η′′ ≥ 0 everywhere in U}.

We also introduce the notion of microscopic entropy, i.e.

H̃(u) =

L∑
i=1

H̃i(u) =

L∑
i=1

Hi(Mi(u)).

Thus, the first condition in Definition 8.0.1 can be written as

H̃(u) = η(u).

As mentioned before, here we present a characterization of kinetic entropies proved in
[16].
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Theorem 8.0.1. Let U be an open set of RN , and M ∈ C1(U). We assume that:

• for η in a dense subset of E, η′′ > 0 and ∇uη(U) is convex;

• for i = 1, · · · , L, Mi is a C1 diffeomorphism from U onto the convex open subset
Di defined above.

Then, the existence of convex functions (H)η∈E satisfying Definition 8.0.1 and such that
H̃(u) defined above is C1(U) is equivalent to

M ∈Mε
+.

Moreover, if this holds, then

∀u ∈ U,∀i : ∇uH̃i = (M ′i)
T∇uη.

In order to use in practice the previous result, we present an important characterization
of the space of the positive Maxwellians Mε

+, see [16].

Proposition 8.0.1. Consider and open subset U ∈ RN . Assume E contains at least
a strictly convex entropy η0, and M ∈ Mε

+ belongs to C1(U). Then, for all u ∈ U,
and i = 1, · · · , L, the Jacobian matrix M ′i is diagonalizable (and thus has only real
eigenvalues). Moreover, M ∈Mε

+ if and only if

∀u ∈ U,∀i = 1, · · · , L : σ(M ′i) ⊂ [0,∞),

where σ is the spectrum.

The BGK models come from the ideas of kinetic approximations for compressible
flows. They are inspired by the hydrodynamic limits of the Boltzmann equation: see
[5, 6, 24] for the limit to the compressible Euler equations, and see [30, 33] for the
incompressible Navier-Stokes equations. In this regard, one of the main directions has
been the approximation of hyperbolic systems with continuous or discrete velocities
BGK models, as in [21, 43, 59, 16, 64]. Similar results have been obtained for
convection-diffusion systems under the diffusive scaling [50, 17, 48, 2]. In the
framework of the BGK approximations, one of the first important contributions was
given in computational physics by the so- called Lattice-Boltzmann methods, see for
instance [73, 77]. Under some assumptions on the physical parameters, LBMs
approximate the incompressible Navier-Stokes equations by scalar velocities models of
kinetic equations, and a rigorous mathematical result on the validity of these kinds of
approximations was proved in [44]. Other partially hyperbolic approximations of the
Navier-Stokes equations were developed in [22, 63, 37, 36]. The vector BGK systems
studied here are a combination of the ideas of discrete velocities BGK approximations
and LBMs. They are called vector BGK models since, unlike the LBMs [73, 77], they
associate every scalar velocity with one vector of unknowns. As we metioned before,
another fruitful property of vector BGK models is their natural compatibility with a
mathematical entropy, [16], which provides a nice analytical structure and stability
properties.
In the context of semilinear relaxation approximations, in Chapter 9 we consider a
singular parabolic scaling to the Jin-Xin approximation for conservation laws, see [43].
In the one dimensional case, this system can be written as a very simple BGK model.
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Thus, we study its smooth solutions, and, by using an approach based on the Green
function associated with the system, in the spirit of the work in [15], we also
investigate their asymptotic behavior in the singular perturbation limit. This work can
be seen as an introduction to a more complex problem, which is studied in Chapter 10.
The work of the Chapter 10 takes its roots in [23, 18], where vector BGK
approximations for the incompressible Navier-Stokes equations were introduced. We
prove a rigorous local in time convergence result for the smooth solutions to the vector
BGK system to the smooth solutions to the Navier-Stokes equations. A further
investigation would be to try to apply the study of the Green function of the scaled
Jin-Xin system in Chapter 9 to the vector BGK model in Chapter 10, in order to
extend the local in time result for smooth solutions.

116



Chapter 9

The Jin-Xin model under the
diffusion scaling: uniform
asymptotic and convergence
estimates

We consider the following scaled version of the Jin-Xin approximation for systems of
conservation laws in [43]: {

∂tu+ ∂xv = 0,

ε2∂tv + λ2∂xu = f(u)− v,
(9.0.1)

where λ > 0 is a positive constant, u, v depend on (t, x) ∈ R+×R and take values in R,
while f(u) : R → R is a Lipschitz function such that f(0) = 0, and f ′(0) = a, with a a
constant value. The diffusion limit of this system for ε→ 0 has been studied in [42, 17],
where the convergence to the following equations is proved:{

∂tu+ ∂xv = 0

v = f(u)− λ2∂xu.
(9.0.2)

From [59, 17], it is well-known that system (9.0.1) can be written in BGK formulation,
[16], by means of the linear change of variables:

u = f ε1 + f ε2 , v =
λ

ε
(f ε1 − f ε2 ). (9.0.3)

Precisely, the BGK form of (9.0.1) reads:
∂tf

ε
1 +

λ

ε
∂xf

ε
1 =

1

ε2
(M1(u)− f ε1 ),

∂tf
ε
2 −

λ

ε
∂xf

ε
2 =

1

ε2
(M2(u)− f ε2 ),

(9.0.4)

where the so-called Maxwellians are:

M1(u) =
u

2
+
εf(u)

2λ
, M2(u) =

u

2
− εf(u)

2λ
. (9.0.5)
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According to the theory on diffusive limits of the Boltzmann equation and related BGK
models, see [33, 67], we take some fluctuations of the Maxwellian functions as initial
data for the Cauchy problem associated with system (9.0.1). Namely, given a function
ū0(x), depending on the spatial variable, we assume

(u(0, x), v(0, x)) = (u0, v0) = (ū0, f(ū0)− λ2∂xū0), (9.0.6)

indeed perturbations of the Maxwellians, as it is clear by expressing the initial data
(9.0.6) through the change of variables (9.0.3), i.e.

(f ε1 (0, x), fε2 (0, x)) =

(
M1(ū0)− ελ

2
∂xū0, M2(ū0) +

ελ

2
∂xū0

)
, (9.0.7)

where the fluctuations are given by ±ελ
2
∂xū0.

System (9.0.1) is the parabolic scaled version of the hyperbolic relaxation approximation
for systems of conservation laws, the Jin-Xin system, introduced in [43] in 1995. This
model has been studied in [60, 26, 43], and the hyperbolic relaxation limit has been
investigated. A complete review on hyperbolic conservation laws with relaxation, and
a focus on the Jin-Xin system is presented in [54]. By means of the Chapman-Enskog
expansion, local attractivity of diffusion waves for the Jin-Xin model was established in
[26]. In [51], the authors showed that, under some assumptions on the initial data and
the function f(u), the first component of system (9.0.1) with ε = 1 decays asymptotically
towards the fundamental solution to the Burgers equation, for the case of f(u) = αu2/2.
Besides, [62] is a complete study of the long time behavior of this model for a more
general class of functions f(u) = |u|q−1u, with q ≥ 2. The method developed in [62] can
be also extended to the multidimensional case in space, and provides sharp decay rates.
Here we study the parabolic scaled version of the system studied in [62], i.e. (9.0.1),
and we consider a more general function f(u) = au + h(u), where a is a constant, and
h(u) is a quadratic function. We point out that only the case a = 0 has been handled
in [62], and in many previous works as well. In accordance with the theory presented in
[15] on partially dissipative hyperbolic systems, we are able to cover also the case a 6= 0.
Furthermore, besides the aymptotic behavior of the solutions, here we are interested in
studying the diffusion limit, for vanishing ε, of the Jin-Xin system, which is the main
improvement of the present chapter with respect to the results achieved in [15]. Indeed,
because of the presence of the singular parameter, we cannot approximate the analysis
of the Green function of the linearized problems, as the authors did in [15], and explicit
calculations in that context are needed.
The diffusive Jin-Xin system has been already investigated in the following works below.
In [42], initial data around a traveling wave were considered, while in [17] the authors
write system (9.0.1) in terms of a BGK model, and the diffusion limit is studied by using
monotonicity properties of the solution. In all these cases, u, v are scalar functions. For
simplicity, here we also take scalar unknowns u, v. However, our approach, which takes
its roots in [15], can be generalized to the case of vectorial functions u, v ∈ RN . As
mentioned before, the novelty of the present chapter consists in dealing with the singular
approximation and, in the meanwhile, with the large time asymptotic of system (9.0.1),
which behaves like the limit parabolic equation (9.0.2), without using monotonicity
arguments. We obtain, indeed, sharp decay estimates in time to the solution to system
(9.0.1) in the Sobolev spaces, which are uniform with respect to the singular parameter.
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This provides the convergence to the limit nonlinear parabolic equation (9.0.2) both
asymptotically in time, and in the vanishing ε-limit. To this end, we perform an crucial
change of variables that highlights the dissipative property of the Jin-Xin system, and
provides a faster decay of the dissipative variable with respect to the conservative one,
which allows to close the estimates. Next, a deep investigation on the Green function of
the linearized system (9.0.1) and the related spectral analysis is provided, since explicit
expressions are needed in order to deal with the singular parameter ε. The dissipative
property of the diffusive Jin-Xin system, together with the uniform decay estimates
discussed above, and the Green function analysis combined with the Duhamel formula
provide our main result. Consider the following equation

∂twp + a∂xwp + ∂xh(wp)− λ2∂xxwp = 0, (9.0.8)

and the definition below, where ‖ · ‖m stands for the Hm(R) Sobolev norm and H0(R) =
L2(R),

Em = max{‖u0‖L1 + ε‖v0 − au0‖L1 , ‖u0‖m + ε‖v0 − au0‖m}.

Our main result is stated here.

Theorem 9.0.1. Let wp be the solution to the nonlinear equation (9.0.8) with sufficiently
smooth initial data

wp(0) = u(0) = u0,

where u0 in (9.0.6) is the initial datum for the Jin-Xin system (9.0.1). For any µ ∈
[0, 1/2), if E1 is sufficiently small with respect to (1/2 − µ), then we have the following
decay estimate:

‖Dβ(u(t)− wp(t))‖0 ≤ Cεmin{1, t−1/4−µ−β/2}E|β|+4, (9.0.9)

with C = C(E|β|+σ) for σ large enough.

Once we identified the right scaled variable to study system (9.0.1), (u, ε2v), which are
expressed at the beginning of Section 9.1, and we found the strategy, discussed in Section
9.1 and 9.2, to achieve the so-called conservative-dissipative (C-D) form in [15] for our
model, our approach essentially relies on the method developed in [15], with substantial
differences listed here.

• We need an explicit Green function analysis of the linearized system rather than
expansions and approximations, in order to deal with the singular parameter ε.
The analysis performed in first part of Section 9.3 is as precise as it is possible.

• Some estimates in [15] rely on the use of the Shizuta-Kawashima (SK) condition,
introduced in Chapter 3, and recalled here. Consider a linear first order system
in compact form: ∂tu + A∂xu = Gu. Passing to the Fourier transform, define
E(iξ) = G− iAξ. The (SK) condition states that, if λ(z) is an eigenvalue of E(z),

then Re(λ(iξ)) ≤ −c |ξ|
2

1+|ξ|2 , for some constant c > 0 and for every ξ ∈ R − {0}.
As it can be seen in (9.3.57), these eigenvalues for the compact linearized system
in (C-D) form (9.2.22) of system (9.0.1) have different weights in ε. Thus, we
cannot simply apply the (SK) condition to estimate the remainders in paragraph
Remainders in between as the authors did in [15], since the weights in ε are essential
to deal with the singular nonlinear term in the Duhamel formula (9.4.66). Again,
a further analysis is needed.
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• Differently from [15], we are not assuming to have a global in time solution,
uniformly bounded in ε, for our singular system. The uniform global existence
follows implicitly from the uniform asymptotic estimates in our calculations.

• The coupling between the convergence to the limit equation (9.0.2) for vanishing
ε and for large time in the last section is the main novelty of the present chapter,
and new ideas are needed to get this result.

This chapter is based on [10].

9.1 General setting

First of all, we write system (9.0.1) in the following form:
∂tu+

∂x(ε2v)

ε2
= 0,

∂t(ε
2v) + λ2∂xu = f(u)− ε2v

ε2
.

(9.1.10)

The unknown variable is u = (u, ε2v), in the spirit of the scaled variables introduced in
[11], which are the right scaling to get the conservative-dissipative form discussed below.
Here we write f(u) = au+ h(u), where a = f ′(0), and system (9.1.10) reads

∂tu+
∂x(ε2v)

ε2
= 0,

∂t(ε
2v) + λ2∂xu = au+ h(u)− ε2v

ε2
.

(9.1.11)

Equations (9.1.11) can be written in compact form:

∂tu +A∂xu = −Bu +N(u), (9.1.12)

where

A =

(
0

1

ε2

λ2 0

)
, −B =

(
0 0

a − 1

ε2

)
, N(u) =

(
0

h(u)

)
. (9.1.13)

In particular, −Bu is the linear part of the source term, while N(u) is the remaining
nonlinear one, which only depends on the first component of u = (u, ε2v). Now, we
look for a right constant symmetrizer Σ for system (9.1.12), which also highlights the
dissipative properties of the linear source term. Thus, we find

Σ =

(
1 aε2

aε2 λ2ε2

)
. (9.1.14)

Taking w such that

u =

(
u
ε2v

)
= Σw =

(
(Σw)1

(Σw)2

)
, where w =

(
w1

w2

)
=


uλ2 − aε2v

λ2 − a2ε2

v − au
λ2 − a2ε2

 ,

(9.1.15)
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system (9.1.12) reads

Σ∂tw +A1∂xw = −B1w +N((Σw)1), (9.1.16)

where

A1 = AT1 = AΣ =

(
a λ2

λ2 aλ2ε2

)
, −B1 = −BΣ =

(
0 0
0 a2ε2 − λ2

)
,

N((Σw)1) =

(
0

h(w1 + aε2w2)

)
. (9.1.17)

By using the Cauchy inequality we get the following lemma.

Lemma 9.1.1. The symmetrizer Σ is definite positive. Precisely

1

2
‖w1‖20 +ε2‖w2‖20(λ2−2a2ε2) ≤ (Σw,w)0 ≤ ‖w1‖20(1+aε2)+‖w2‖20(a+λ2)ε2. (9.1.18)

Notice that from the theory on hyperbolic systems, [52], the Cauchy problem for (9.1.16)
with initial data w0 in Hm(R), m ≥ 2, has a unique local smooth solution wε for each
fixed ε > 0. We denote by T ε the maximum time of existence of this local solution
and, hereafter, we consider the time interval [0, T ∗], with T ∗ ∈ [0, T ε) for every ε. In
the following, we study the Green function of system (9.1.16), and we establish some
uniform energy estimates and decay rates of the smooth solution to system (9.1.16).

9.1.1 The conservative-dissipative form

In this section, we introduce a linear change of variable, so providing a particular
structure for our system, the so-called conservative-dissipative form (C-D) defined in
[15]. The (C-D) form allows to identify a conservative variable and a dissipative one for
system (9.0.1), such that in the following a crucial faster decay of the dissipative
variable is observed. Thanks to this change of variables, we are able indeed to handle
the case a 6= 0 in (9.1.11). Hereafter, (·, ·) denotes the standard scalar product in
L2(R), and ‖ · ‖m is the Hm(R)-norm, for m ∈ N, where H0(R) = L2(R).

Proposition 9.1.1. Given the right symmetrizer Σ in (9.1.14) for system (9.1.12),
denoting by

w̃ = Mu =


1 0

−aε√
λ2 − a2ε2

1

ε
√
λ2 − a2ε2

u =


u

ε(v − au)√
λ2 − a2ε2

 , (9.1.19)

system (9.1.12) can be written in (C-D) form defined in [15], i.e.

∂tw̃ + Ã∂xw̃ = −B̃w̃ + Ñ(w̃1), (9.1.20)

where

Ã =


a

√
λ2 − a2ε2

ε

√
λ2 − a2ε2

ε
−a

 , B̃ =

 0 0

0
1

ε2

 , Ñ(w̃1) =


0

h(w̃1)

ε
√
λ2 − a2ε2

 .

(9.1.21)
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9.2 The Green function of the linear partially dissipative
system

We consider the linear part of the (C-D) system (9.1.20)-(9.1.21) without the tilde for
simplicity,

∂tw +A∂xw = −Bw. (9.2.22)

We want to apply the approach developed in [15], to study the singular approximation
system above. The main difficulty here is to deal with the singular perturbation param-
eter ε. We consider the Green kernel Γ(t, x) of (9.2.22), which satisfies{

∂tΓ +A∂xΓ = −BΓ,

Γ(0, x) = δ(x)I.
(9.2.23)

Taking the Fourier transform Γ̂, we get{
d
dt Γ̂ = (−B − iξA)Γ̂,

Γ̂(0, ξ) = I.
(9.2.24)

Consider the entire function

E(z) = −B − zA =


−az −z

√
λ2 − a2ε2

ε

−z
√
λ2 − a2ε2

ε
az − 1

ε2

 . (9.2.25)

Formally, the solution to (9.2.24) is given by

Γ̂(t, ξ) = eE(iξ)t =
∞∑
n=0

(−B − iξA)n. (9.2.26)

Since E(z) in (9.2.25) is symmetric, if z is not exceptional we can write

E(z) = λ1(z)P1(z) + λ2(z)P2(z),

where λ1(z), λ2(z) are the eigenvalues of E(z), and P1(z), P2(z) the related eigenprojec-
tions, given by

Pj(z) = − 1

2πi

∮
|ξ−λj(z)|<<1

(E(z)− ξI)−1 dξ, j = 1, 2.

Following [15], we study the low frequencies (case z = 0) and the high frequencies (case
z =∞) separately.

Case z = 0 The total projector for the eigenvalues near to 0 is

P (z) = − 1

2πi

∮
|ξ|<<1

(E(z)− ξI)−1 dξ. (9.2.27)
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Besides, it has the following expansion, see [45],

P (z) = P0 +
∑
n≥1

znPn(z), (9.2.28)

where P0 is the eigenprojection for E(0)− ξI = −B − ξI, i.e.

P0 = − 1

2πi

∮
|ξ|<<1

(−B − ξI)−1 dξ =: Q0 =

(
1 0
0 0

)
, Pn(z) = − 1

2πi

∮
R(n)(ξ) dξ,

(9.2.29)
with R(n) the n-th term in the expansion of the resolvent (9.2.30). Here Q0 is the
projection onto the null space of the source term, while we denote by Q− = I − Q0

the complementing projection, and by L−, L0 and R−, R0 the related left and right
eigenprojectors, see [45, 15], i.e.

L− = RT− =
(

0 1
)
, L0 = RT0 =

(
1 0

)
,

Q− = R−L−, Q0 = R0L0.

On the other hand, from [45],

R(ξ, z) = (E(z)− ξI)−1 = (−B − zA− ξI)−1 = (−B − ξI)−1
∞∑
n=0

(Az(−B − ξI)−1)n

= (−B − ξI)−1 +
∑
n≥1

(−B − ξI)−1zn(A(−B − ξI)−1)n

= R0(ξ) +
∑
n≥1

R(n)(ξ),

i.e.
R(n) = zn(−B − ξI)−1(A(−B − ξI)−1)n. (9.2.30)

Since a neighborhood of z = 0 is considered, at this point the authors in [15] take the
first two terms of the asymptotic expansion of the total projector (9.2.28), so obtaining
an expression with a remainder O(z2). We cannot approximate the projector in the
same way, since we need to check the singular terms in ε. Thus, we perform an explicit
spectral analysis for the Green function of our problem. First of all,

A(−B − ξI)−1 =


−a
ξ

−ε
√
λ2 − a2ε2

1 + ε2ξ

−
√
λ2 − a2ε2

εξ

aε2

1 + ε2ξ

 , (9.2.31)

which is diagonalizable, i.e.

A(−B − ξI)−1 = V DV −1,

where D is the diagonal matrix with entries given by the eigenvalues, and V is the matrix
with the eigenvectors on the columns. Explicitly, setting

� := a2 + 4ε2λ2ξ2 + 4λ2ξ, (9.2.32)
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we have

D = diag

{
−a±

√
�

2ξ(1 + ε2ξ)

}
, V =


ε(a+

√
� + 2aε2ξ)

2(1 + ε2ξ)
√
λ2 − a2ε2

ε(a−
√
� + 2aε2ξ)

2(1 + ε2ξ)
√
λ2 − a2ε2

1 1

 ,

(9.2.33)

V −1 =


(1 + ε2ξ)

√
λ2 − a2ε2

ε
√
�

−a+
√
�− 2aε2ξ

2
√
�

−(1 + ε2ξ)
√
λ2 − a2ε2

ε
√
�

a+
√
� + 2aε2ξ

2
√
�

 . (9.2.34)

This way, denoting by

♦1 = a−
√
� + 2aε2ξ, ♦2 = a+

√
� + 2aε2ξ, 41 = − a+

√
�

2ξ(1 + ε2ξ)
, 42 = − a−

√
�

2ξ(1 + ε2ξ)
,

with � in (9.2.32), from (9.2.30) we have

R(n) = zn(−B − ξI)−1(A(−B − ξI)−1)n = zn(−B − ξI)−1(V DnV −1)

= zn


♦14n

2 − ♦24n
1

2
√
�ξ

−ε
√
λ2 − a2ε2

�
(4n

1 −4n
2 )

−ε
√
λ2 − a2ε2

�
(4n

1 −4n
2 ) − ε2

2(1 + ε2ξ)
√
�

(♦24n
2 − ♦14n

1 )

 .

The matrix above is completely bounded in ε, and so we can approximate the expression
of the total projector (9.2.28) up to the second order. To this end, we consider the
previous expression of R(n) for n = 0, 1, 2, we apply the integral formula (9.2.29) and we
obtain

P (z) =

 1 +O(z2) −εz
√
λ2 − a2ε2 + εO(z2)

−εz
√
λ2 − a2ε2 + εO(z2) ε2z2(λ2 − a2ε2) + ε2O(z3)

 . (9.2.35)

Now, we consider the left L(z) and the right R(z) eigenprojectors of P (z), i.e.

P (z) = R(z)L(z), L(z)R(z) = I

L(z)P (z) = L(z), P (z)R(z) = R(z).

We can limit ourselves to the second order approximation, according to (9.2.35). Then,
we consider

P̃ (z) =

 1 −εz
√
λ2 − a2ε2

−εz
√
λ2 − a2ε2 ε2z2(λ2 − a2ε2)

 , (9.2.36)

and, by applying the conditions above, we obtain

L̃(z) =
(

1 −εz
√
λ2 − a2ε2

)
, R̃(z) =

(
1

−εz
√
λ2 − a2ε2

)
,
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where

P̃ (z) = R̃(z)L̃(z), L̃(z)R̃(z) = 1 + ε2O(z2),

P̃ (z)R̃(z) = R̃(z) + ε2O(z2), L̃(z)P̃ (z) = L̃(z) + ε2O(z2),
(9.2.37)

and so

P (z) = P̃ (z) +O(z2), R(z) = R̃(z) +O(z2), L(z) = L̃(z) +O(z2).

Let us point out that further expansions of L(z), R(z) are not singular in ε too, since
the weights in ε of these vectors come from (9.2.35). Precisely, one can see that Lε(z)
depends on ε as follows:

Lε(·) =
(

1 O(ε)
)

= [R(·)ε]T .

Now, by using the left and the right operators, we decompose E(z) in the following way,
see [15],

E(z) = R(z)F (z)L(z) +R−(z)F−(z)L−(z), (9.2.38)

where L−(z), R−(z) are left and right eigenprojectors of P−(z) = I − P (z), while

F (z) = L(z)E(z)R(z), F−(z) = L−(z)E(z)R−(z).

We use the approximations of L(z), R(z) above, and so

F (z) = (L̃(z)+O(z2))(−B−Az)(R̃(z)+O(z2)) = −az+(λ2−a2ε2)z2 +O(z3). (9.2.39)

We study F−(z). Matrix (9.2.35) and the definition above imply that

P−(z) =

 O(z2) zε
√
λ2 − a2ε2 + εO(z2)

zε
√
λ2 − a2ε2 + εO(z2) 1 + ε2O(z2)

 , (9.2.40)

and, approximating again,

L−(z) = L̃−(z) +O(z2) =
(
zε
√
λ2 − a2ε2 1

)
+O(z2),

R−(z) = R̃−(z) +O(z2) =

(
zε
√
λ2 − a2ε2

1

)
+O(z2).

Thus,

F−(z) = L̃−(z)(−B −Az)R̃−(z) +O(z2) = − 1

ε2
+ az +O(z2). (9.2.41)

This yields the proposition below.

Proposition 9.2.1. We have the following decomposition near z = 0:

E(z) = F (z)P (z) + E−(z), (9.2.42)

with F (z) in (9.2.39), P (z) in (9.2.35), E−(z) = R−(z)F−(z)L−(z), and F−(z) in
(9.2.41).
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Case z = ∞ We consider E(z) = −B − Az = z(−B/z − A) = zE1(1/z) and, setting
z = iξ and ζ = 1/z = −iη, with ξ, η ∈ R, we have E1(ζ) = −A− ζB

=


−a −

√
λ2 − a2ε2

ε

−
√
λ2 − a2ε2

ε
a− ζ

ε2

 =


−a −

√
λ2 − a2ε2

ε

−
√
λ2 − a2ε2

ε
a+

iη

ε2

 .

Since E1(ζ) is symmetric, we determine the eigenvalues and the right eigenprojectors,

−A− ζB = λE1
1 (ζ)R1(ζ)RT1 (ζ) + λE1

2 (ζ)R2(ζ)RT2 (ζ),

such that, for j = 1, 2, RTj (ζ)Rj(ζ) = I. The following expression for the eigenvalues of
E1(iη) is provided

λE1
1,2(z) =

iη

2ε2
±
√

4ε2λ2 + 4aηε2i− η2

2ε2
,

and it is simple to prove that both the corresponding eigenvalues of E(z), which can
be obtained multiplying λE1

1 (z) and λE1
2 (z) above by z = iξ = i/η, have a strictly

negative real part in the high frequencies regime (|ζ| = |η| << 1) and in the vanishing
ε limit. Moreover, setting δ1,2 =

√
8ε2λ2 + 2ζ2 − 8aε2ζ ± (−2ζ

√
µ+ 4aε2√µ), where

µ = 4ε2λ2 + ζ2 − 4aε2ζ, the normalized right eigenprojectors are given by:

R1(ζ) =
1

δ1

 (2aε2 − ζ) +
√
µ

2ε
√
λ2 − a2ε2

 , R2(ζ) =
1

δ2

 (2aε2 − ζ)−√µ

2ε
√
λ2 − a2ε2

 .

The eigenprojectors are bounded in ε, even for ζ near zero. Thus, we can approximate
the total projector of E1(ζ) = −A− ζB in a more convenient way, i.e. we decompose

A = λ1R1R
T
1 + λ2R2R

T
2 ,

where λ1 = λ/ε, λ2 = −λ/ε, and the corresponding eigenprojectors

R1 =
1√
2λ


√
λ2 − a2ε2

(λ− aε)

√
λ− aε

 , R2 =
1√
2λ

 −
√
λ2 − a2ε2

(λ+ aε)

√
λ+ aε

 .

Now, by considering the total projector for the family of eigenvalues going to λj = ±λ/ε
as ζ ≈ 0, we obtain the following approximations:

F1j(ζ) = −λjI + ζRTj (−B)Rj +O(ζ2). (9.2.43)

Explicitly,

F11(ζ) = −λ
ε
− (λ− aε)ζ

2λε2
+O(ζ2), F12(ζ) =

λ

ε
− (λ+ aε)ζ

2λε2
+O(ζ2). (9.2.44)

Since E(z) = zE1(1/z), we multiply F1(ζ) = F1(1/z) by z and, for |z| → +∞,

λ1(z) = −λ
ε
z − λ− aε

2λε2
+O(1/z), λ2(z) =

λ

ε
z − λ+ aε

2λε2
+O(1/z), (9.2.45)

while the projectors are

Pj(z) = RjR
T
j +O(1/z), j = 1, 2. (9.2.46)
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Remark 9.2.1. Notice that the term O(1/z) in (9.2.45) could be singular in ε. However,
from the previous discussion, the eigenvalues of E(z) have a strictly negative real part.
This implies that the coefficients of the even powers of z in (9.2.45) have a negative sign,
while the others are imaginary terms. Thus, eλ1,2(z) are bounded in ε.

Proposition 9.2.2. We have the following decomposition near z =∞:

E(z) = λ1(z)P1(z) + λ2(z)P2(z), (9.2.47)

with λ1(z), λ2(z) in (9.2.45), and P1(z),P2(z) in (9.2.46).

9.3 Green function estimates

Green function estimates near z = 0 We associate to (9.2.39) the parabolic equa-
tion

∂tw + a∂xw = (λ2 − a2ε2)∂xxw.

We can write the explicit solution

g(t, x) =
1

2
√

(λ2 − a2ε2)πt
exp

{
− (x− at)2

4(λ2 − a2ε2)t

}
. (9.3.48)

This means that, for some c1, c2 > 0,

|g(t, x)| ≤ c1√
t
e−(x−at)2/ct, (t, x) ∈ R+ × R, ∀ε > 0. (9.3.49)

Now, recalling Proposition 9.2.1 and considering the approximation P̃ (z) in (9.2.36) of
the total projector P (z) in (9.2.35),

eE(z)t = ĝ(z)P̃ (z) +R−(z)eF−(z)tL−(z) + R̂1(t, z),

where ĝ(z) = −az− (λ2− ε2a2)z2, and R1(t, x) is a remainder term, we take the inverse
of the Fourier transform of

K̂(z) = ĝ(z)P̃ (z), (9.3.50)

which yields the expression of the first part of the Green function near z = 0, i.e.

K(t, x) =


g(t, x) ε

√
λ2 − a2ε2

(
dg(t, x)

dx

)

ε
√
λ2 − a2ε2

(
dg(t, x)

dx

)
ε2(λ2 − a2ε2)

(
d2g(t, x)

d2x

)
 . (9.3.51)

Here, K̂(t, ξ) is the approximation of Γ̂(t, ξ) in (9.2.26) for |ξ| ≈ 0. Thus, for ξ ∈ [−δ, δ]
with δ > 0 sufficiently small, we consider the following remainder term

R1(t, x) =
1

2π

∫ δ

−δ
(eE(iξ)t − eK̂(t,ξ)t)eiξx dξ

=
1

2π

∫ δ

−δ
eiξ(x−at)−ξ

2(λ2−a2ε2)t(eO(ξ3t)P (iξ)− P̃ (iξ)) dξ

+
1

2π

∫ δ

−δ
R−(iξ)eF−(iξ)tL−(iξ)eiξx dξ.

(9.3.52)
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We need an estimate for the remainder above. First of all, from (9.2.41) and (9.2.40),∣∣∣∣∣ 1

2π

∫ δ

−δ
R−(iξ)eF−(iξ)tL−(iξ)eiξx dξ

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

2π

∫ δ

−δ
P−(iξ)e(−1/ε2+aiξ+O(ξ2))teiξx dξ

∣∣∣∣∣
≤ Ce−t/ε2

for some constant C. Following [15],

|eO(ξ3t)P (iξ)− P̃ (iξ)| = |z3|te2µ|z|2t
(

O(1) O(ε)|z|
O(ε)|z| O(ε2)|z|2

)
,

for a constant µ > 0. This way,

R1(t, x) = e−(x−at)2/(ct)
(

O(1)(1 + t)−1 O(ε)(1 + t)−3/2

O(ε)(1 + t)−3/2 O(ε2)(1 + t)−2

)
.

Green function estimates near z = ∞ We associate to (9.2.45) the following
equations:

∂tw +
λ

ε
∂xw = −λ− aε

2λε2
w, ∂tw −

λ

ε
∂xw = −λ+ aε

2λε2
w.

We can write explicitly the solutions

g1(t, x) = δ(x− λt/ε)e−(λ−aε)t/(2λε2), g2(t, x) = δ(x+ λt/ε)e−(λ+aε)t/(2λε2).

Thus,
|gj(t, x)| ≤ Cδ(x± λt/ε)e−ct/ε2 , j = 1, 2.

We determine the Fourier transform of the Green function for |z| going to infinity,

K̂(t, ξ) = exp

{
− iλtξ

ε
− (λ− aε)t

2λε2

}
P1(∞) + exp

{
i
λtξ

ε
− (λ+ aε)t

2λε2

}
P2(∞). (9.3.53)

This way, from Proposition 9.2.2, the remainder term here is

R2(t, x) =
1

2π

∫
|ξ|≥N

(eE(iξ)t − K̂(t, ξ))eiξx dξ, and (9.3.54)

|R2| ≤
1

2π

∣∣∣∣∣
∫
|ξ|≥N

eiξ(x−λt/ε)−(λ−aε)t/(2λε2) · (eO(1)t/(iξ)+O(1)t/ξ2P1(iξ)− P1(∞)) dξ

∣∣∣∣∣
+

1

2π

∣∣∣∣∣
∫
|ξ|≥N

eiξ(x+λt/ε)−(λ+aε)t/(2λε2) · (eO(1)t/(iξ)+O(1)t/ξ2P2(iξ)− P2(∞)) dξ

∣∣∣∣∣.
Following [15] and thanks to Remark 9.2.1,

|R2(t, x)| ≤ Ce−ct/ε2
[∣∣∣∣∣
∫
|ξ|≥N

eiξ(x±λt/ε)

ξ
dξ

∣∣∣∣∣+

∫
|ξ|≥N

1

ξ2
dξ

]
≤ Ce−ct/ε2 .
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Remainders in between Until now, we studied the Green function of the linearized
diffusive Jin-Xin system for z ≈ 0, which yields the parabolic kernel K̂ in (9.3.50), and
for z ≈ ∞, so obtaining K̂ in (9.3.53). In these two cases, we also provided estimates for
the remainder terms:

• R1 in (9.3.52) for the parabolic kernel K for |ξ| ≤ δ, with δ sufficiently small;

• R2 in (9.3.54) for the transport kernel K for |ξ| ≥ N, with N big enough.

It remains to estimate the last remainder terms, namely the parabolic kernel K for
|ξ| ≥ δ, t ≥ 1, the transport kernel K for |ξ| ≤ N, and the kernel E(z) for δ ≤ |ξ| ≤ N.

Parabolic kernel K(t, x) for |ξ| ≥ δ, δ << 1 Let us define

R3(t, x) =
1

2π

∫
|ξ|≥δ

K̂(t, ξ)eiξx dξ. (9.3.55)

Thus, from (9.3.50), for t ≥ 1,

|R3(t, x)| ≤ C

∣∣∣∣∣
∫
|ξ|≥δ

eiξ(x−at)e−(λ2−a2ε2)ξ2tP̃ (iξ) dξ

∣∣∣∣∣
≤ Ce−t/C√

t

(
O(1) O(ε)
O(ε) O(ε2)

)
.

Transport kernel for |ξ| ≤ N Set

R4(t, x) =
1

2π

∫
|ξ|≤N

K̂(t, ξ)eiξx dξ, (9.3.56)

and, from (9.3.53),

|R4(t, x)| ≤ Ce−(λ+|a|ε)t/(2λε2)
∑∣∣∣∣∣

∫ N

−N
eiξ(x±λt/ε)dξ

∣∣∣∣∣
≤ Ce−ct/ε2 min

{
N,

1

|x± λt/ε|

}
.

Kernel E(z) for δ ≤ |ξ| ≤ N Finally, we set

R5(t, x) =
1

2π

∫
δ≤|ξ|≤N

eE(iξ)teiξtdξ.

The eigenvalues of E(iξ) = −iξA−B are expressed here:

λ1/2 =
1

2ε2

(
− 1±

√
1− 4ε2(iaξ + λ2ξ2)

)
=

−2(aiξ + λ2ξ2)

1±
√

1− 4ε2(aiξ + λ2ξ2)
. (9.3.57)

By using the Taylor expansion for ε ≈ 0,

λ1 = − aiξ + λ2ξ2

1− ε2(aiξ + λ2ξ2)
, λ2 = − 1

ε2
.
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Explicitly, denoting by

4 =
√

1− 4ε2ξ(λ2ξ + ia), �1 = −1 +4+ 2iaξε2, �2 = 1 +4− 2iaξε2,

one can find that eE(iξ)t

=


eλ2t

24
�1 +

eλ1t

24
�2 − iξε

√
λ2 − a2ε2(eλ1t − eλ2t)

4

− iξε
√
λ2 − a2ε2(eλ1t − eλ2t)

4
eλ1t

24
�1 +

eλ2t

24
�2

 ,

where �1 = −1 +4 = −2ε2ξ(λ2ξ + ia) +O(ε2) = O(ε2), �2 = 1 +4 = O(1),

and, in terms of the singular parameter ε, this yields

eE(iξ)t =

 O(1)(eλ1t + eλ2t) O(ε)(eλ1t − eλ2t)

O(ε)(eλ1t − eλ2t) eλ1tO(ε2) +O(1)eλ2t

 .

Putting the calculations above all together and integrating in space with respect to the
Fourier variable for δ ≤ |ξ| ≤ N, we get

|R5(t, x)| ≤ C

 O(1)e−t/C O(ε)e−t/C

O(ε)e−t/C O(ε2)e−t/C +O(1)e−t/ε
2

 . (9.3.58)

From (9.3.52), (9.3.54), (9.3.55), (9.3.56), (9.3.58), we denote the remainder by

R(t) = R1(t) +R2(t) +R3(t) +R4(t) +R5(t). (9.3.59)

The estimates above provide the following lemma.

Lemma 9.3.1. Let Γ(t, x) be the Green function of the linear system (9.2.22). We have
the following decomposition:

Γ(t, x) = K(t, x) + K(t, x) +R(t, x),

with K(t, x),K(t, x), R(t, x) in (9.3.51), (9.3.53) and (9.3.59) respectively. Moreover,
for some constant c, C,

• |K(t, x)| ≤ e−(x−at)2/(ct)
(

O(1)(1 + t)−1 O(ε)(1 + t)−3/2

O(ε)(1 + t)−3/2 O(ε2)(1 + t)−2

)
;

• |K(t, x)| ≤ Ce−ct/ε2 ;

•
|R(t)| ≤ e−(x−at)2/(ct)

(
O(1)(1 + t)−1 O(ε)(1 + t)−3/2

O(ε)(1 + t)−3/2 O(ε2)(1 + t)−2

)
+

(
O(1) O(ε)
O(ε) O(ε2)

)
e−ct + Id e−ct/ε

2
.

.
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Decay estimates Let us consider the solution to the Cauchy problem associated with
the linear system (9.2.22) and initial data w0,

ŵ(t, ξ) = Γ̂(t, ξ)ŵ0(ξ) = eE(iξ)tŵ0(ξ).

By using the decomposition provided by Lemma 9.3.1, we get the following theorem.

Theorem 9.3.1. Consider the linear system in (9.2.22), i.e.

∂tw +A∂xw = −Bw,

and let Q0 = R0L0 and Q− = R−L− as before, i.e. the eigenprojectors onto the null
space and the negative definite part of −B respectively. Then, for any function w0 ∈ L1∩
L2(R,R), the solution w(t) = Γ(t)w0 to the related Cauchy problem can be decomposed
as

w(t) = Γ(t)w0 = K(t)w0 + K(t)w0 +R(t)w0.

Moreover, for any index β, the following estimates hold:

‖L0D
βK(t)w0‖0 ≤ C min{1, t−1/4−|β|/2}‖L0w0‖L1

+ Cεmin{1, t−3/4−|β|/2}‖L−w0‖L1 ,
(9.3.60)

‖L−DβK(t)w0‖0 ≤ Cεmin{1, t−3/4−|β|/2}‖L0w0‖L1

+ Cε2 min{1, t−5/4−|β|/2}‖L−w0‖L1 ,
(9.3.61)

‖DβK(t)w0‖0 ≤ Ce−ct/ε
2‖Dβw0‖0, (9.3.62)

‖L0D
βR(t)w0‖0 ≤ C min{1, t−1/4−|β|/2}‖L0w0‖L1

+ Cεmin{1, t−3/4−|β|/2}‖L−w0‖L1

+ Ce−ct‖L0w0‖L1 + Cεe−ct‖L−w0‖L1 + Ce−ct/ε
2‖w0‖L1 ,

(9.3.63)

‖L−DβR(t)w0‖0 ≤ Cεmin{1, t−3/4−|β|/2}‖L0w0‖L1

+ Cε2 min{1, t−5/4−|β|/2}‖L−w0‖L1

+ Cεe−ct‖L0w0‖L1 + Cε2e−ct‖L−w0‖L1 + Ce−ct/ε
2‖w0‖L1 .

(9.3.64)

Proof. From Lemma 9.3.1, for some constants c, C > 0, and for an index β, it holds

‖DβK(t)w0‖0 ≤ Ce−ct/ε
2‖Dβw0‖0. (9.3.65)

On the other hand, the hyperbolic kernel (9.3.50) can be estimated as

|L0K̂(t)w0| ≤ Ce−c|ξ|
2t(|L0ŵ0|+ ε|ξ||L−ŵ0|),

|L−K̂(t)w0| ≤ Ce−c|ξ|
2t(ε|ξ||L0ŵ0|+ ε2|ξ|2|L−ŵ0|).
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This yields

‖L0K(t)w0‖20 ≤ C
∫ ∞

0

∫
S0

e−2c|ξ|2t(|L0ŵ0(ξ)|2 + ε2|ξ|2|L−ŵ0(ξ)|2) dζdξ

≤ C min{1, t−1/2}‖L0ŵ0‖2∞ + Cε2 min{1, t−3/2}‖L−ŵ0‖2∞
≤ C min{1, t−1/2}‖L0w0‖2L1 + Cε2 min{1, t−3/2}‖L−w0‖2L1 ,

and

‖L−K(t)w0‖20 ≤ C
∫ ∞

0

∫
S0

e−2c|ξ|t(ε2|ξ|2|L0ŵ0(ξ)|2 + ε4|ξ|2|L−ŵ0(ξ)|2) dζdξ

≤ Cε2 min{1, t−3/2}‖L0w0‖2L1 + Cε4 min{1, t−5/2}‖L−w0‖2L1 .

Besides, for every β we multiply by ξ2β the integrand and we get

‖L0D
βK(t)w0‖0 ≤ C min{1, t−1/4−|β|/2}‖L0w0‖L1

+ Cεmin{1, t−3/4−|β|/2}‖L−w0‖L1 ,

‖L−DβK(t)w0‖0 ≤ Cεmin{1, t−3/4−|β|/2}‖L0w0‖L1

+ Cε2 min{1, t−5/4−|β|/2}‖L−w0‖L1 .

The estimates for R(t) are obtained in a similar way.

9.4 Decay estimates and convergence

Consider the local solution w to the Cauchy problem associated with (9.1.20), where we
drop the tilde, and initial data w0. The solution to the nonlinear problem (9.1.20) can
be expressed by using the Duhamel formula

w(t) = Γ(t)w0 +

∫ t

0
Γ(t− s)(N(w1(s))−DN(0)w1(s)) ds

= Γ(t)w0 +

∫ t

0
Γ(t− s)

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds t ∈ [0, T ∗].

(9.4.66)

From (9.2.29) and the formulas below, we recall that w1 = L0w = (1 − L−)w is the
conservative variable, while w2 = L−w is the dissipative one. We remind the Green
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function decomposition given by Lemma 9.3.1. For the β-derivative,

Dβw(t) = DβK(t)w(0) + K(t)Dβw(0) +R(t)Dβw(0)

+

∫ t/2

0
DβK(t− s)R−L−

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds

+

∫ t

t/2
K(t− s)R−DβL−

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds

+

∫ t

0
K(t− s)Dβ

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds

+

∫ t/2

0
DβR(t− s)R−L−

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds

+

∫ t

t/2
R(t− s)R−DβL−

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds

= DβK(t)w(0) + K(t)Dβw(0) +R(t)Dβw(0)

+

∫ t/2

0

(
DβK12(t− s)
DβK22(t− s)

)
h(w1(s))

ε
√
λ2 − a2ε2

ds

+

∫ t

t/2

(
K12(t− s)
K22(t− s)

)
Dβ h(w1(s))

ε
√
λ2 − a2ε2

ds

+

∫ t

0
K(t− s)Dβ

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds

+

∫ t/2

0

(
DβR12(t− s)
DβR22(t− s)

)
h(w1(s))

ε
√
λ2 − a2ε2

ds

+

∫ t

t/2

(
R12(t− s)
R22(t− s)

)
Dβ h(w1(s))

ε
√
λ2 − a2ε2

ds.

Notice that, from (9.3.51), K12,K22 are of order ε and ε2 respectively, and the same
holds for

R12 = O(ε)(1 + t)−3/2e−(x−at)2/ct +O(ε)e−ct +O(1)e−ct/ε
2
,

R22 = O(ε2)(1 + t)−2e−(x−at)2/ct +O(ε2)e−ct +O(1)e−ct/ε
2
.

From the assumptions above, f(u) = f(w1) = aw1 + h(w1), where h(w1) = w2
1h̃(w1) for

some function h̃(w1). Thus, by using the estimates of Theorem 9.3.1, and recalling that
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‖ · ‖m = ‖ · ‖Hm(R), for m = 0, 1, 2, (H0 = L2), we have, for j = 1, 2,

‖w(t)‖m ≤ C min{1, t−1/4}‖w0‖L1 + Ce−ct/ε
2‖w0‖m

+ C

∫ t

0
min{1, (t− s)−3/4}(‖w2

1h̃(w1)‖L1 + ‖w2
1h̃(w1)‖m) ds

+ C

∫ t

0
e−c(t−s)‖w2

1h̃(w1)‖m ds

+ C

∫ t

0

1

ε
e−c(t−s)/ε

2‖w2
1h̃(w1)‖m ds.

For m big enough,

‖w(t)‖m ≤ C min{1, t−1/4}‖w0‖L1 + Ce−ct/ε
2‖w0‖m

+

∫ t

0
min{1, (t− s)−3/4}C(|w1|∞)‖w1‖2m ds

+

∫ t

0
e−c(t−s)C(|w1|∞)‖w1‖2m ds

+

∫ t

0

1

ε
e−c(t−s)/ε

2
C(|w1|∞)‖w1‖2j ds.

From (9.1.19), we recall that w =

 w1

w2

 =


u

ε(v − au)√
λ2 − a2ε2

 , and so, for m = 2,

‖u(t)‖2 + cε‖v(t)− au(t)‖2 ≤ C min{1, t−1/4}(‖u0‖L1 + cε‖v0 − au0‖L1)

+ e−ct/ε
2
(‖u0‖2 + cε‖v0 − au0‖2)

+

∫ t

0
min{1, (t− s)−3/4}C(|u|∞)‖u‖22 ds

+

∫ t

0
e−c(t−s)C(|u|∞)‖u‖22 ds

+

∫ t

0

1

ε
e−c(t−s)/ε

2
C(|u|∞)‖u‖22 ds.

Let us denote by

Em = max{‖u0‖L1 + ε‖v0 − au0‖L1 , ‖u0‖m + ε‖v0 − au0‖m}, (9.4.67)

where, according to (9.0.6), v0 = f(u0)− λ2∂xu0, and

M0(t) = sup
0≤τ≤t

{max{1, τ1/4}(‖u(τ)‖2 + ε‖v(τ)− au(τ)‖2)}. (9.4.68)

The first term of the right hand side of the estimate above gives

C min{1, t−1/4}(‖u0‖L1 + cε‖v0 − au0‖L1) + Ce−ct/ε
2
(‖u0‖2 + cε‖v0 − au0‖2)

≤ C min{1, t−1/4}E2.
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Besides,
C(|u|∞)‖u‖22 ≤ C(|u|∞) min{1, s−1/2}(M0(s))2.

Thus,

‖u(t)‖2 + ε‖v(t)− au(t)‖2 ≤ C min{1, t−1/4}E2

+ (M0(t))2

∫ t

0
e−c(t−s)c(|u|∞) min{1, s−1/2} ds

+ (M0(t))2

∫ t

0

1

ε
e−c(t−s)/ε

2
c(|u|∞) min{1, s−1/2} ds

+ (M0(t))2

∫ t

0
c(|u|∞) min{1, (t− s)−3/4}min{1, s−1/2} ds.

From the Sobolev embedding theorem,

c(|u(s)|∞) ≤ c(‖u(s)‖2) ≤ C min{1, s−1/4}M0(s) ≤ CM0(s).

This way,

‖u(t)‖2 + ε‖v(t)− au(t)‖2 ≤ C min{1, t−1/4}E2

+ C(M0(t))3

∫ t

0
e−c(t−s) min{1, s−1/2} ds

+ C(M0(t))3

∫ t

0

1

ε
e−c(t−s)/ε

2
min{1, s−1/2} ds

+ C(M0(t))3

∫ t

0
min{1, (t− s)−3/4}min{1, s−1/2} ds.

Notice that

1

ε

∫ t

0
e−c(t−s)/ε

2
min{1, s−1/2} ds = εe−ct/ε

2

∫ t/ε2

0
ecτ min{1, ε

√
τ} dτ

≤ εe−ct/ε2
∫ t/ε2

0
ecτ dτ

=
ε

c
[1− e−ct/ε2 ]

≤ Cε.

By using this inequality in the estimate above,

‖u(t)‖2 + ε‖v(t)− au(t)‖2 ≤ C min{1, t−1/4}E2

+ C(M0(t))3

∫ t

0
e−c(t−s) min{1, s−1/2} ds

+ εC(M0(t))3

+ C(M0(t))3

∫ t

0
min{1, (t− s)−3/4}min{1, s−1/2} ds.

By applying usual lemmas on integration, as Lemma 5.2 in [15], we get the following
inequality

M0(t) ≤ C(E2 + (M0(t))3).
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Then, if E2 is small enough,
M0(t) ≤ CE2,

i.e.
‖u(t)‖2 + ε‖v(t)− au(t)‖2 ≤ C min{1, t−1/4}E2. (9.4.69)

By arguing as before and following [15], we have the proposition below.

Proposition 9.4.1. The following estimates hold, with C a constant independent of ε,

‖Dβw(t)‖0 ≤ C min{1, t−1/4−|β|/2}E|β|+3/2, (9.4.70)

‖Dβw2(t)‖0 ≤ C min{1, t−3/4−|β|/2}E|β|+3/2, (9.4.71)

‖Dβ∂tw(t)‖0 ≤ C min{1, t−3/4−|β|/2}E|β|+5/2, (9.4.72)

‖Dβ∂tw2(t)‖0 ≤ C min{1, t−5/4−|β|/2}E|β|+7/2. (9.4.73)

Remark 9.4.1. Notice that the estimates for the partial derivative in time of the solution
(9.4.72), (9.4.73) are uniform in ε thanks to the particular form of the initial data
(9.0.7). In fact, these estimates can be obtained by applying again the Duhamel formula
as before and, similarly to (9.4.69), we get a bound for ‖Dβ∂tw(t)‖0 which depends on
‖Dβ∂tw|t=0‖. This norm is not singular in ε thanks to the particular form of the initial
data, as it is shown below. The initial data satisfy (9.0.6), i.e.

v0 = f(u0)− λ2∂xu0 = au0 + h(u0)− λ2∂xu0.

In terms of the (C-D)-variable w,u = w1,

v = aw1 +

√
λ2 − a2ε2

ε
w2,

this gives the following relation:
√
λ2 − a2ε2

ε
w0

2 = h(w0
1)− λ2∂xw

0
1 (9.4.74)

Using (9.4.74) in system (9.1.20), this yields

∂tw1|t=0 = −a∂xw0
1 −
√
λ2 − a2ε2

ε
∂xw

0
2,

∂tw2|t=0 = −
√
λ2 − a2ε2

ε
∂xw

0
1 + a∂xw

0
2 +

λ2

ε
√
λ2 − a2ε2

∂xw
0
1

=
a2ε√

λ2 − a2ε2
∂xw

0
1 + a∂xw

0
2.

In terms of the original variable,∂tw1|t=0 = −∂xf(ū0) + λ2∂xxū0,

∂tw2|t=0 =
aε√

λ2 − a2ε2
(∂xf(ū0)− λ2∂xxū0).
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Convergence in the diffusion limit and asymptotic behavior We perform the
one dimensional Chapman-Enskog expansion. Recalling that

w1 = u, w2 = ud,

where u is the conservative variable and ud is the dissipative one, system (9.1.20) is

∂t

(
u
ud

)
+A∂x

(
u
ud

)
=

(
0

q(u)

)
,

with A in (9.1.21) and q(u) = −w2

ε2
+

h(w1)

ε
√
λ2 − a2ε2

. We consider the following nonlinear

parabolic equation

∂tu+ a∂xu+ ∂xh(u)− (λ2 − a2ε2)∂xxu = ∂xS,

where

S = ε
√
λ2 − a2ε2{∂tud − a∂xud}. (9.4.75)

The homogeneous equation is

∂twp + a∂xwp + ∂xh(wp)− (λ2 − a2ε2)∂xxwp = 0, (9.4.76)

and associated Green function is provided here

Γp(t) = K11(t) + K̃(t) + R̃(t),

with K11 in (9.3.51). We take the difference between the conservative variable u = w1

and wp,

Dβ(u(t)− wp(t)) =

∫ t/2

0
DβD(K11(t− s) + R̃(t− s))(h(wp(s))− h(u(s))) ds

+

∫ t/2

0
DβD(K11(t− s) + R̃(t− s))S(s) ds

+

∫ t

t/2
D(K11(t− s) + R̃(t− s))Dβ(h(wp(s))− h(u(s)) + S(s)) ds

+

∫ t

0
K̃(t− s)DβD(h(wp(s))− h(u(s)) + S(s)) ds.

(9.4.77)
By using (9.4.70), (9.4.71), (9.4.73), we have

‖DβS‖0 ≤ Cεmin{1, t−5/4−β/2}Eβ+1.

Let us define, for µ ∈ [0, 1/2),

m0(t) = sup
τ∈[0,t]

{max{1, τ1/4+µ}‖u(τ)− wp(τ)‖0}. (9.4.78)
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For β = 0,

‖u(t)− wp(t)‖0 ≤ CE1m0(t)

∫ t

0
min{1, (t− s)−3/4}min{1, s−1/2−µ} ds

+ CεE3

∫ t

0
min{1, (t− s)−3/4}min{1, s−1} ds

+ C(E1m0(t) + εE4)

∫ t

0
e−c(t−s) min{1, s−5/4} ds

≤ C min{1, s−1/4−µ}(E1m0(t) + εE1 + εE4 + (1/2− µ)−1E1m0(t)),

i.e., if E1 is small enough,
m0(t) ≤ CεE4. (9.4.79)

Similarly, it can be proved by induction that if, for γ < β, defining

mβ(t) = sup
τ∈[0,t]

{max{1, τ1/4+µ+β/2}‖Dβ(u(τ)− wp(τ))‖0}, (9.4.80)

and assuming mγ(t) ≤ C(µ)εEγ+4, then

‖Dβ(h(u(s))− h(wp(s)))‖0 ≤ C min{1, t−1/2−µ−β/2}(C(µ)Eβ+1Eβ+3 + E1mβ(t)).

Using this inequality, (9.4.75) and (9.4.79) in (9.4.77), finally we get

mβ(t) ≤ C(µ)εEβ+4,

which ends the proof of Theorem 9.0.1.
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Chapter 10

A BGK model for hydrodynamic
equations

We want to study the convergence of a singular perturbation approximation to the
Cauchy problem for the incompressible Navier-Stokes equations on the d dimensional
torus Td: {

∂tu
NS +∇ · (uNS ⊗ uNS) +∇PNS = ν∆uNS ,

∇ · uNS = 0,
(10.0.1)

with (t, x) ∈ [0,+∞)× Td, and initial data

uNS(0, x) = u0(x), ∇ · u0 = 0. (10.0.2)

Here uNS and ∇PNS are respectively the velocity field and the gradient of the pressure
term, and ν > 0 is the viscosity coefficient. This chapter is based on [11].

We consider a semilinear hyperbolic approximation, called vector BGK model, [23, 18],
to the incompressible Navier-Stokes equations (10.0.1). The general form of this
approximation is as follows:

∂tf
ε
l +

λl
ε
· ∇xf εl =

1

τε2
(Ml(ρ

ε, ερεuε)− f εl ), (10.0.3)

with initial data

f εl (0, x) = M̄ ε
l (ρ̄, ερ̄u0) = M ε

l (ρ̄, ερ̄u0) + εg(∇u0), u0 in (10.0.2), l = 1, · · · , L,
(10.0.4)

where f εl and M ε
l take values in Rd+1, with the Maxwellian functions M ε

l Lipschitz
continuous, λl = (λl1, · · · , λld) are constant velocities, and L ≥ d + 1. The M̄ ε

l are the
perturbed Maxwellian functions, which will be expressed later, where g is the first order
correction of the Maxwellians in the Chapman-Enskog expansion. Moreover, ρ̄ > 0 is
a given constant value, and ε and τ are positive parameters. Denoting by fl

ε
j ,Ml

ε
j , for

j = 0, · · · , d, the d+ 1 components of f εl ,M
ε
l for each l = 1, · · · , L, let us set

ρε =

L∑
l=1

fl
ε
0(t, x) and qεj = ερεuεj =

L∑
l=1

fl
ε
j(t, x). (10.0.5)
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In [23, 18], the convergence of the solutions to the vector BGK model introduced above
to the solutions to the incompressible Navier-Stokes equations is studied numerically.
More precisely, assuming that, in a suitable functional space,

ρε → ρ̂, uε → û, and
ρε − ρ̄
ε2

→ P̂ ,

under some consistency conditions of the BGK approximation with respect to the Navier-
Stokes equations, see [23], it can be shown that the couple (û, P̂ ) is a solution to the
incompressible Navier-Stokes equations. The aim of this chapter is to provide a rigorous
proof of this convergence in the Sobolev spaces.
We focus on the two dimensional case in space. Following [23], let us set d = 2, L = 5,
and

wε = (ρε,qε) = (ρε, qε1, q
ε
2) = (ρε, ερεuε1, ερ

εuε2) =

5∑
l=1

f εl ∈ R3. (10.0.6)

Fix λ, τ > 0 and let ε > 0 be a small parameter, which is going to zero in the singular
perturbation limit. Thus, we get a five velocities model (15 scalar equations):

∂tf
ε
1 + λ

ε∂xf
ε
1 = 1

τε2
(M1(wε)− f ε1 ),

∂tf
ε
2 + λ

ε∂yf
ε
2 = 1

τε2
(M2(wε)− f ε2 ),

∂tf
ε
3 − λ

ε∂xf
ε
3 = 1

τε2
(M3(wε)− f ε3 ),

∂tf
ε
4 − λ

ε∂yf
ε
4 = 1

τε2
(M4(wε)− f ε4 ),

∂tf
ε
5 = 1

τε2
(M5(wε)− f ε5 ).

(10.0.7)

Here the Maxwellian functions Mj ∈ R3 have the following expressions:

M1,3(wε) = awε ± A1(wε)

2λ
, M2,4(wε) = awε ± A2(wε)

2λ
, M5(wε) = (1− 4a)wε,

(10.0.8)
where

A1(wε) =

 qε1
(qε1)2

ρε + P (ρε)
qε1q

ε
2

ρε

 , A2(wε) =

 qε2
qε1q

ε
2

ρε

(qε2)2

ρε + P (ρε)

 , (10.0.9)

P (ρε) = ρε − ρ̄, (10.0.10)

and

a =
ν

2λ2τ
, (10.0.11)

where ν is the viscosity coefficient in (10.0.1). In the following, our main goal is to
obtain uniform energy estimates for the solutions to the vector BGK model (10.0.7)
in the Sobolev spaces and to get the convergence by compactness. In [23, 18], an L2

estimate was obtained by using the entropy function associated with the vector BGK
model, whose existence is proved in [16]. However, there is no explicit expression for the
kinetic entropy, so we do not know the weights, with respect to the singular parameter,
of the terms of the classical symmetrizer derived by the entropy, see [39] for the one
dimensional case and [15, 44] for the general case. For this reason, the existence of an
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entropy is not enough to control the higher order estimates. Moreover, our pressure
term is given by (10.0.10) and it is linear with respect to ρε, so the estimates in [23, 18]
no more hold. To solve this problem, we use a constant right symmetrizer, whose
entries are weighted in terms of the singular parameter in a suitable way. Besides, the
symmetrization obtained by the right multiplication provides the conservative-dissipative
form introduced in Chapter 3. The dissipative property of the symmetrized system holds
under the following hypothesis.

Assumption 10.0.1 (Dissipation condition). We assume the following structural con-
dition:

0 < a <
1

4
.

Finally, we point out that Assumption 10.0.1 is a necessary condition, also in the case
of nonlinear pressure terms, for the existence of a kinetic entropy for the approximating
system, see [16].

10.1 General framework

Let us set

U ε = (f ε1 , f
ε
2 , f

ε
3 , f

ε
4 , f

ε
5 ) ∈ R3×5,

and let us write the compact formulation of equations (10.0.7)-(10.0.4), which reads

∂tU
ε + Λ1∂xU

ε + Λ2∂yU
ε =

1

τε2
(M(U ε)− U ε), (10.1.12)

with initial data

U ε0 = f εl (0, x) = M̄ ε
l (ρ̄, ερ̄u0) = M ε

l (ρ̄, ερ̄u0) + εg(∇u0), l = 1, · · · , 5, (10.1.13)

where M̄ ε
l are the perturbed Maxwellian functions, with M ε

l the Maxwellians in (10.0.8),
and

g(∇u0) =


−aλτ∂xw0

−aλτ∂yw0

aλτ∂xw0

aλτ∂yw0

0

 , w0 = (ρ̄, ερ̄u0), (10.1.14)

Λ1 =


λ
ε Id 0 0 0 0
0 0 0 0 0

0 0 −λ
ε Id 0 0

0 0 0 0 0
0 0 0 0 0

 , Λ2 =


0 0 0 0 0

0 λ
ε Id 0 0 0

0 0 0 0 0

0 0 0 −λ
ε Id 0

0 0 0 0 0

 ,

Id is the 3× 3 identity matrix, and

M(U ε) = (M ε
1 (wε),M ε

2 (wε),M ε
3 (wε),M ε

4 (wε),M ε
5 (wε)). (10.1.15)
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10.1.1 Conservative variables

We define the following change of variables:

wε =
∑5

l=1 f
ε
l , mε = λ

ε (f ε1 − f ε3 ), ξε = λ
ε (f ε2 − f ε4 ), kε = f ε1 + f ε3 , hε = f ε2 + f ε4 .

(10.1.16)
This way, the vector BGK model (10.0.7) reads:

∂tw
ε + ∂xm

ε + ∂yξ
ε = 0;

∂tm
ε + λ2

ε2
∂xk

ε = 1
τε2

(A1(wε)
ε −mε),

∂tξ
ε + λ2

ε2
∂yh

ε = 1
τε2

(A2(wε)
ε − ξε),

∂tk
ε + ∂xm

ε = 1
τε2

(2awε − kε),
∂th

ε + ∂yξ
ε = 1

τε2
(2awε − hε).

(10.1.17)

We make a slight modification of system (10.1.17). Set w̄ = (ρ̄, 0, 0) and

wε ? := wε − w̄ = (wε1 − ρ̄, wε2, wε3), kε ? = kε − 2aw̄, hε ? = hε − 2aw̄. (10.1.18)

In the following, we are going to work with the modified variables. System (10.1.17)
reads: 

∂tw
ε ? + ∂xm

ε + ∂yξ
ε = 0;

∂tm
ε + λ2

ε2
∂xk

ε ? = 1
τε2

(A1(wε ?+w̄)
ε −mε),

∂tξ
ε + λ2

ε2
∂yh

ε ? = 1
τε2

(A2(wε ?+w̄)
ε − ξε),

∂tk
ε ? + ∂xm

ε = 1
τε2

(2awε ? − kε ?),
∂th

ε ? + ∂yξ
ε = 1

τε2
(2awε ? − hε ?).

(10.1.19)

Notice from (10.0.9) that

A1(wε) =

 qε1
(qε1)2

ρε + ρε − ρ̄
qε1q

ε
2

ρε

 =

 wε ?2
(wε ?2 )2

wε ?1 +ρ̄ + wε ?1
wε ?2 wε ?3
wε ?1 +ρ̄

 = A1(wε ? + w̄),

and, similarly,

A2(w?) =

 qε2
qε1q

ε
2

ρε

(qε2)2

ρε + ρε − ρ̄

 =

 wε ?3
wε ?2 wε ?3
wε ?1 +ρ̄

(wε ?3 )2

wε ?1 +ρ̄ + wε ?1

 = A2(wε ? + w̄).

Hereafter, we will omit the apexes ε ? for wε ?, kε ?, hε ?, and the apex ε for mε, ξε, when
there is no ambiguity.
Let us define the 15× 15 matrix

C =


Id Id Id Id Id
ελId 0 −ελId 0 0

0 ελId 0 −ελId 0
ε2Id 0 ε2Id 0 0

0 ε2Id 0 ε2Id 0

 , (10.1.20)
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and set
W = (w, ε2m, ε2ξ, ε2k, ε2h) := CU − (w̄, 0, 0, 0, 0). (10.1.21)

Thus, we can write the translated system (10.1.19) in the compact form

∂tW +B1∂xW +B2∂yW =
1

τε2
(M̃(W )−W ), (10.1.22)

with initial conditions
W0 = CU0 − (w̄, 0, 0, 0, 0), (10.1.23)

where U0 is given by (10.1.13),

B1 = CΛ1C
−1, B2 = CΛ2C

−1,

B1 =


0 1

ε2
Id 0 0 0

0 0 0 λ2

ε2
0

0 0 0 0 0
0 Id 0 0 0
0 0 0 0 0

 , B2 =


0 0 1

ε2
Id 0 0

0 0 0 0 0

0 0 0 0 λ2

ε2

0 0 0 0 0
0 0 Id 0 0

 , (10.1.24)

and
M̃(W ) = CM(C−1W ) = CM(U).

Here,

1

τε2
(M̃(W )−W ) =

1

τ



0
A1(w+w̄)

ε − ε2m
ε2

A2(w+w̄)
ε − ε2ξ

ε2

2aw − ε2k
ε2

2aw − ε2h
ε2


=

1

τ



0

1
ε

 w2
w2

2
w1+ρ̄ + w1

w2w3
w1+ρ̄

− ε2m
ε2

1
ε

 w3
w2w3
w1+ρ̄

w2
3

w1+ρ̄ + w1

− ε2ξ
ε2

2aw − ε2k
ε2

2aw − ε2h
ε2



=
1

τ



0 0 0 0 0

1
ε

 0 1 0
1 0 0
0 0 0

 − 1
ε2
Id 0 0 0

1
ε

 0 0 1
0 0 0
1 0 0

 0 − 1
ε2
Id 0 0

2aId 0 0 − 1
ε2
Id 0

2aId 0 0 0 − 1
ε2
Id


W +

1

τ



0

1
ε


0
w2

2
w1+ρ̄

w2w3
w1+ρ̄



1
ε


0

w2w3
w1+ρ̄

w2
3

w1+ρ̄


0
0
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=: −LW +N(w + w̄), (10.1.25)

where −L is the linear part of the source term of (10.1.22), while N is the remaining
nonlinear one. Thus, we can rewrite system (10.1.22) as follows:

∂tW +B1∂xW +B2∂yW = −LW +N(w + w̄). (10.1.26)

10.2 The weighted constant right symmetrizer and the
conservative-dissipative form

According to the theory of semilinear hyperbolic systems, see for instance [52, 8], we need
a symmetric formulation of system (10.1.26) in order to get energy estimates. However,
we are dealing with a singular perturbation system, so any symmetrizer for system
(10.1.26) is not enough. In other words, we look for a symmetrizer which provides a
suitable dissipative structure for system (10.1.26). In this context, notice that the first
equation of system (10.1.26) reads

∂tw + ∂xm+ ∂yξ = 0,

i.e. the first term of the source vanishes, and w is a conservative variable. We want to
take advantage of this conservative property, in order to simplify the algebraic
structure of the linear part of the source term. To this end, rather than a classical
Friedrichs left symmetrizer, see again [52, 8], we look for a right symmetrizer for
(10.1.26), which allows to get the conservative-dissipative form introduced in Chapter
3. More precisely, the right multiplication easily provides the conservative structure in
[15], while the dissipation is proved a posteriori. Besides, the symmetrizer Σ presents
constant ε-weighted entries and this allows us to control the nonlinear part N of the
source term (10.1.25) of system (10.1.26). To be complete, we point out that the
inverse matrix Σ−1 is a left symmetrizer for system (10.1.26), according to Chapter 2.
However, the product −Σ−1L is a full matrix, so the symmetrized version of system
(10.1.26), obtained by the left multiplication by Σ−1, does not provide the
conservative-dissipative form in Chapter 3.
Let us explicitly write the symmetrizer

Σ =


Id εσ1 εσ2 2aε2Id 2aε2Id
εσ1 2λ2aε2Id 0 ε3σ1 0
εσ2 0 2λ2aε2Id 0 ε3σ2

2aε2Id ε3σ1 0 2aε4Id 0
2aε2Id 0 ε3σ2 0 2aε4Id

 , (10.2.27)

where

σ1 =

 0 1 0
1 0 0
0 0 0

 and σ2 =

 0 0 1
0 0 0
1 0 0

 . (10.2.28)

It is easy to check that Σ is a constant right symmetrizer for system (10.1.26) since,
taking B1, B2 and L in (10.1.24) and (10.1.25) respectively,

B1Σ = ΣBT
1 , B2Σ = ΣBT

2 ,
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−LΣ =

(
0 0

0T −L̃

)

=
1

τ


0 0 0 0 0
0 −2λ2aId+ σ2

1 σ1σ2 (2a− 1)εσ1 2aεσ1

0 σ1σ2 −2λ2aId+ σ2
2 2aεσ2 (2a− 1)εσ2

0 (2a− 1)εσ1 2aεσ2 2a(2a− 1)ε2Id 4a2ε2Id
0 2aεσ1 (2a− 1)εσ2 4a2ε2Id 2a(2a− 1)ε2Id

 .

(10.2.29)

Now, we define the following change of variables:

W = ΣW̃ = Σ(w̃, ε2m̃, ε2ξ̃, ε2k̃, ε2h̃), (10.2.30)

with W in (10.1.21). System (10.1.26) reads:

Σ∂tW̃ +B1Σ∂xW̃ +B2Σ∂yW̃ = −LΣW̃ +N((ΣW̃ )1 + w̄), (10.2.31)

where (ΣW̃ )1 is the first component of the unknown vector ΣW̃ . Now, we want to show
that Σ in (10.2.27) is strictly positive definite. Thus,

(ΣW̃ , W̃ )0 = ||w̃||20 + 2λ2aε6(||m̃||20 + ||ξ̃||20) + 2aε8(||k̃||20 + ||h̃||20) + 2(ε3σ1m̃, w̃)0

+ 2(ε3σ2ξ̃, w̃)0 + 4aε4(k̃ + h̃, w̃)0 + 2ε7(σ1k̃, m̃)0 + 2ε7(σ2h̃, ξ̃)0

= ||w̃||20 + 2λ2aε6(||m̃||20 + ||ξ̃||20) + 2aε8(||k̃||20 + ||h̃||20) + I1 + I2 + I3 + I4 + I5.

Taking two positive constants δ, µ and by using the Cauchy inequality, we have:

I1 = 2ε3[(m̃2, w̃1)0 + (m̃1, w̃2)0] ≥ −δε6||m̃2||20 −
||w̃1||20
δ − δε6||m̃1||20 −

||w̃2||20
δ ;

I2 = 2ε3[(ξ̃3, w̃1)0 + (ξ̃1, w̃3)0] ≥ −δε6||ξ̃3||20 −
||w̃1||20
δ − δε6||ξ̃1||20 −

||w̃3||20
δ ;

I3 = 4aε4[(k̃, w̃)0 + (h̃, w̃)0] ≥ −2aµ||w̃||20 − 2aε8

µ ||k̃||
2
0 − 2aµ||w̃||20 − 2aε8

µ ||h̃||
2
0;

I4 = 2ε7[(k̃2, m̃1)0 + (k̃1, m̃2)0] ≥ − ε8

δ ||k̃2||20 − δε6||m̃1||20 − ε8

δ ||k̃1||20 − δε6||m̃2||20;

I5 = 2ε7[(h̃3, ξ̃1)0 + (h̃1, ξ̃3)0] ≥ − ε8

δ ||h̃3||20 − δε6||ξ̃1||20 − ε8

δ ||h̃1||20 − δε6||ξ̃3||20.

145



CHAPTER 10. A BGK MODEL FOR HYDRODYNAMIC EQUATIONS

Thus, putting them all together,

(ΣW̃ , W̃ )0 ≥ ||w̃1||20

[
1− 2

δ
− 4aµ

]
+ ||w̃2||20

[
1− 1

δ
− 4aµ

]
+ ||w̃3||20

[
1− 1

δ
− 4aµ

]

+ ε6||m̃ε
1||20[2λ2a− 2δ] + ε6||m̃ε

2||20[2λ2a− 2δ] + ε6||m̃ε
3||20[2λ2a]

+ ε6||ξ̃ε1||20[2λ2a− 2δ] + ε6||ξ̃ε2||20[2λ2a] + ε6||ξ̃ε3||20[2λ2a− 2δ]

+ ε8||k̃1||20

[
2a− 2a

µ
− 1

δ

]
+ ε8||k̃2||20

[
2a− 2a

µ
− 1

δ

]
+ ε8||k̃3||20

[
2a− 2a

µ

]

+ ε8||h̃1||20

[
2a− 2a

µ
− 1

δ

]
+ ε8||h̃2||20

[
2a− 2a

µ

]
+ ε8||h̃3||20

[
2a− 2a

µ
− 1

δ

]
.

(10.2.32)

Now, we can prove the following lemma.

Lemma 10.2.1. If Assumption 10.0.1 is satisfied and λ is big enough, then Σ is strictly
positive definite.

Proof. From (10.2.32), we take


1 < µ < 1

4a ;

δ > max{ 2
1−4aµ ,

1
2a(1− 1

µ
)
};

λ >
√

δ
a .

(10.2.33)

Notice that we can choose the constant velocity λ as big as we need, therefore the third
inequality is automatically verified.
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Now, we consider the linear part −LΣ of the source term of (10.2.31). Thus,

τ(−LΣW̃ , W̃ )0 = −2λ2aε4(||m̃||20 + ||ξ̃||20) + 2a(2a− 1)ε6(||k̃||20 + ||h̃||20)

+ ε4||m̃1||20 + ε4||m̃2||20 + ε4||ξ̃1||20 + ε4||ξ̃3||20 + 2ε4(σ1σ2ξ̃, m̃)0

+ 2(2a− 1)ε5(σ1k̃, m̃)0 + 4aε5(σ1h̃, m̃)0 + 4aε5(σ2k̃, ξ̃)0

+ 2(2a− 1)ε5(σ2h̃, ξ̃)0 + 8a2ε6(h̃, k̃)0

= (−2λ2a+ 1)ε4(||m̃1||20 + ||m̃2||20 + ||ξ̃1||20 + ||ξ̃3||20)

− 2λ2aε4(||m̃3||20 + ||ξ̃2||20)

+ 2a(2a− 1)ε6(||k̃||20 + ||h̃||20) + J1 + J2 + J3 + J4 + J5 + J6.

Now, taking a positive constant ω and by using the Cauchy inequality, we have

J1 = 2ε4(ξ̃3, m̃2)0 ≤ ε4(||ξ̃3||20 + ||m̃2||20);

J2 = (4a− 2)ε5[(k̃2, m̃1)0 + (k̃1, m̃2)0] ≤ (1− 2a)

{
ε6

ω
(||k̃2||20 + ||k̃1||20)

+ ε4ω(||m̃1||20 + ||m̃2||20)

}
;

J3 = 4aε5[(h̃2, m̃1)0 + (h̃1, m̃2)0] ≤ 2a

{
ε6

ω
||h̃2||20 + ε4ω||m̃1||20 +

ε6

ω
||h̃1||20 + ε4ω||m̃2||20

}
;

J4 = 4aε5[(k̃3, ξ̃1)0 + (k̃1, ξ̃3)0] ≤ 2a

{
ε6

ω
||k̃3||20 + ε4ω||ξ̃1||20 +

ε6

ω
||k̃1||20 + ε4ω||ξ̃3||20

}
;

J5 = 2(2a− 1)ε5[(h̃3, ξ̃1)0 + (h̃1, ξ̃3)0] ≤ (1− 2a)

{
ε6

ω
||h̃3||20 + ε4ω||ξ̃1||20

+
ε6

ω
||h̃1||20 + ε4ω||ξ̃3||20

}
;

J6 = 8a2ε6(h̃, k̃)0 ≤ 4a2ε6{||h̃||20 + ||k̃||20}.

Putting them all together, we have

τ(−LΣW̃ , W̃ )0 ≤ ε4||m̃1||20[−2λ2a+ 1 + ω] + ε4||m̃2||20[−2λ2a+ 2 + ω]− 2λ2aε4||m̃3||20
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+ε4||ξ̃1||20[−2λ2a+1+ω]−2λ2aε4||ξ̃2||20+ε4||ξ̃3||20[−2λ2a+2+ω]+ε6||k̃1||20

[
2a(4a−1)+

1

ω

]

+ε6||k̃2||20

[
2a(4a−1)+

(1− 2a)

ω

]
+ε6||k̃3||20

[
2a(4a−1)+

2a

ω

]
+ε6||h̃1||20

[
2a(4a−1)+

1

ω

]

+ε6||h̃2||20

[
2a(4a− 1) +

2a

ω

]
+ ε6||h̃3||20

[
2a(4a− 1) +

(1− 2a)

ω

]
. (10.2.34)

This way, we obtain the following Lemma.

Lemma 10.2.2. If Assumption 10.0.1 is satisfied and λ is big enough, then the
symmetrized linear part of the source term −LΣ given by (10.2.29) is negative definite.

Proof. We need ω and λ satisfying:ω >
1

2a(1−4a) ;

λ >
√

2+ω
2a .

(10.2.35)

Recalling (10.2.33), we assume

λ > max

{√
δ

a
,

√
4a(1− 4a) + 1

4a2(1− 4a)

}
. (10.2.36)

Then, we take ω > 1
2a(1−4a) , which ends the proof.

10.3 Energy estimates

Here we provide ε-weighted energy estimates for the solution W ε to (10.1.26). Let us
introduce T ε the maximal time of existence of the unique solution W̃ ε for fixed ε to
system (10.2.31), see [52]. In the following, we consider the time interval [0, T ], with
T ∈ [0, T ε). Our setting is represented by the Sobolev spaces Hs(T2), with s > 3.

10.3.1 Zero order estimate

We assume the following condition.

Assumption 10.3.1. Let λ satisfies (10.2.36) and

λ >

√
5 + 1

a(1−4a)

4a
. (10.3.37)

Lemma 10.3.1. If Assumptions 10.0.1 and 10.3.1 are satisfied, then the following zero
order energy estimate holds:

||w̃(T )||20 + ε6(||m̃(T )||20 + ||ξ̃(T )||20) + ε8(||k̃(T )||20 + ||h̃(T )||20)

+

∫ T

0
ε4(||m̃(t)||20 + ||ξ̃(t)||20) + ε6(||k̃(t)||20 + ||h̃(t)||20) dt ≤ cε2(||u0||20 + ||∇u0||20)
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+c(||u||L∞([0,T ]×T2))

∫ T

0
||w̃(t)||20 + ε6(||m̃(t)||20 + ||ξ̃(t)||20) + ε8(||k̃(t)||20 + ||h̃(t)||20) dt.

(10.3.38)

Proof. We consider the symmetrized compact system (10.2.31) and we multiply W̃
through the L2-scalar product. Thus, we have:

1

2

d

dt
(ΣW̃ , W̃ )0 + (LΣW̃ , W̃ )0 = (N((ΣW̃ )1 + w̄), W̃ )0.

Integrating in time, we get:

1

2
(ΣW̃ (T ), W̃ (T ))0 +

∫ T

0
(LΣW̃ (t), W̃ (t))0 dt ≤

1

2
(ΣW̃ (0), W̃ (0))0

+

∫ T

0
|(N((ΣW̃ (t))1 + w̄), W̃ (t))0| dt. (10.3.39)

Consider (10.2.32) and let us introduce the following positive constants:

ΓΣ := 1− 4aµ− 2
δ , ∆Σ := 2(λ2a− δ) ΘΣ := 2a(1− 1

µ)− 1
δ . (10.3.40)

Similarly, from (10.2.34), we define:

∆LΣ := 2(λ2a− 1)− ω, ΘLΣ := 2a(1− 4a)− 1
ω . (10.3.41)

Thus, from (10.3.39), we get:

ΓΣ||w̃(T )||20 + ε6∆Σ(||m̃(T )||20 + ||ξ̃(T )||20) + ε8ΘΣ(||k̃(T )||20 + ||h̃(T )||20)

+
2

τ

∫ T

0
ε4∆LΣ(||m̃(t)||20 + ||ξ̃(t)||20) + ε6ΘLΣ(||k̃(t)||20 + ||h̃(t)||20) dt

≤ (ΣW̃0, W̃0)0 + 2

∫ T

0
|(N((ΣW̃ (t))1 + w̄), W̃ (t))0| dt. (10.3.42)

Notice that, from (10.2.30),

(ΣW̃0, W̃0)0 = (ΣΣ−1W0,Σ
−1W0)0 = (Σ−1W0,W0)0,

where W0 = W (0, x) = (w(0, x), ε2m(0, x), ε2ξ(0, x), ε2k(0, x), ε2h(0, x)), and, from
(10.1.16), (10.1.18) and the initial conditions (10.0.4),

w(0, x) = w0 − w̄ = (0, ερ̄u01, ερ̄u02);

m(0, x) = λ
ε (f10 − f30) = A1(w0)

ε − 2aλ2τ∂xw0

= (ρ̄u01, ερ̄u01
2 − 2aερ̄∂xu01, ερ̄u01u02 − 2aερ̄∂xu02);

ξ(0, x) = λ
ε (f20 − f40) = A2(w0)

ε − 2aλ2τ∂yw0

= (ρ̄u02, ερ̄u01u02 − 2aερ̄∂yu01, ερ̄u02
2 − 2aερ̄∂yu02);

k(0, x) = f10 + f30 − 2aw̄ = 2aw0 − 2aw̄ = 2a(0, ερ̄u01, ερ̄u02);
h(0, x) = f20 + f40 − 2aw̄ = 2aw0 − 2aw̄ = 2a(0, ερ̄u01, ερ̄u02).
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Besides, the explicit expression of the constant symmetric matrix Σ−1 is given by

Σ−1 =



1
1−4aId 0 0 −1

ε2(1−4a)
Id −1

ε2(1−4a)
Id

0 H1 0 1
ε3(1−4λ2a2)

σ1 0

0 0 H2 0 1
ε3(1−4λ2a2)

σ2
−1

ε2(1−4a)
Id 1

ε3(1−4λ2a2)
σ1 0 H3

1
ε4(1−4a)

Id
−1

ε2(1−4a)
Id 0 1

ε3(1−4λ2a2)
σ2

1
ε4(1−4a)

Id H4

 ,

(10.3.43)

where

H1 =


2a

ε2(4λ2a2−1)
0 0

0 2a
ε2(4λ2a2−1)

0

0 0 1
2λ2aε2

 ; H2 =


2a

ε2(4λ2a2−1)
0 0

0 1
2λ2aε2

0
0 0 2a

ε2(4λ2a2−1)

 ;

H3 =


4λ2a2−2λ2a+1

ε4(4a−1)(4λ2a2−1)
0 0

0 4λ2a2−2λ2a+1
ε4(4a−1)(4λ2a2−1)

0

0 0 2a−1
2aε4(4a−1)

 ;

H4 =


4λ2a2−2λ2a+1

ε4(4a−1)(4λ2a2−1)
0 0

0 2a−1
2aε4(4a−1)

0

0 0 4λ2a2−2λ2a+1
ε4(4a−1)(4λ2a2−1)

 .

It is easy to check that

(Σ−1W0,W0)0 = ρ̄2ε2‖u0‖20 +
2aρ̄2ε4

4λ2a2 − 1
(‖u0

2
1 − 2aλ2∂xu01‖20 + ‖u0

2
2 − 2aλ2∂yu02‖20)

+
ρ̄2ε4

2λ2a
(‖u01u02 − 2aλ2∂xu02‖20 + ‖u01u02 − 2aλ2∂yu01‖20)

≤ cε2(‖u0‖20 + ‖∇u0‖20),

and so, from (10.3.42) we get the following inequality:

ΓΣ||w̃(T )||20 + ε6∆Σ(||m̃(T )||20 + ||ξ̃(T )||20) + ε8ΘΣ(||k̃(T )||20 + ||h̃(T )||20)

+
2

τ

∫ T

0
ε4∆LΣ(||m̃(t)||20 + ||ξ̃(t)||20) + ε6ΘLΣ(||k̃(t)||20 + ||h̃(t)||20) dt

≤ cε2(‖u0‖20 + ‖∇u0‖20) + 2

∫ T

0
|(N((ΣW̃ (t))1 + w̄), W̃ (t))0| dt.

(10.3.44)

It remains to deal with the last term of (10.3.44). Recall that w = (ρ − ρ̄, ερu1, ερu2).
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From (10.1.25),

N((ΣW̃ )1 + w̄) = N(w + w̄) =
1

τ



0 0
u1w2

u1w3


 0

u2w2

u2w3


0
0



. (10.3.45)

Thus,

(N(w + w̄), W̃ )0 =
1

τ
{(u1w2, ε

2m̃2)0 + (u1w3, ε
2m̃3)0 + (u2w2, ε

2ξ̃2)0 + (u2w3, ε
2ξ̃3)0}

≤ 1

2τ
{||u1w2||20+ε4||m̃2||20+||u1w3||20+ε4||m̃3||20+||u2w2||20+ε4||ξ̃2||20+||u2w3||20+ε4||ξ̃3||20}

≤ c(||u||∞)||w||20 +
ε4

2τ
(||m̃||20 + ||ξ̃||20).

By definition (10.2.30), explicitly we have:

w = (ΣW̃ ε)1 = w̃ + ε3σ1m̃+ ε3σ2ξ̃ + 2aε4(k̃ + h̃), (10.3.46)

and so,

|(N(w+w̄), W̃ )0| ≤ c(||u||∞){||w̃||20+ε6(||m̃||20+||ξ̃||20)+ε8(||k̃||20+||h̃||20)}+ ε4

2τ
(||m̃||20+||ξ̃||20).

Putting them all together, (10.3.44) yields:

ΓΣ||w̃(T )||20 + ε6∆Σ(||m̃(T )||20 + ||ξ̃(T )||20) + ε8ΘΣ(||k̃(T )||20 + ||h̃(T )||20)

+
2

τ

∫ T

0
ε4∆LΣ(||m̃(t)||20 + ||ξ̃(t)||20) + ε6ΘLΣ(||k̃(t)||20 + ||h̃(t)||20) dt

≤ cε2(‖u0‖20 + ‖∇u0‖20) +

∫ T

0

ε4

τ
(||m̃(t)||20 + ||ξ̃(t)||20) dt

+c(||u||L∞([0,T ]×T2))

∫ T

0
||w̃(t)||20 + ε6(||m̃(t)||20 + ||ξ̃(t)||20) + ε8(||k̃(t)||20 + ||h̃(t)||20) dt.

(10.3.47)
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This gives:

ΓΣ||w̃(T )||20 + ε6∆Σ(||m̃(T )||20 + ||ξ̃(T )||20) + ε8ΘΣ(||k̃(T )||20 + ||h̃(T )||20)

+
1

τ

∫ T

0
ε4(2∆LΣ − 1)(||m̃(t)||20 + ||ξ̃(t)||20) + 2ε6ΘLΣ(||k̃(t)||20 + ||h̃(t)||20) dt

≤ cε2(‖u0‖20 + ‖∇u0‖20)

+c(||u||L∞([0,T ]×T2))

∫ T

0
||w̃(t)||20 + ε6(||m̃(t)||20 + ||ξ̃(t)||20) + ε8(||k̃(t)||20 + ||h̃(t)||20) dt,

(10.3.48)
where, by definition (10.3.41), 2∆LΣ− 1 = 4λ2a− 4− 2ω is positive thanks to condition
(10.3.37). This gives estimate (10.3.38).

10.3.2 Higher order estimates

Lemma 10.3.2. If Assumptions 10.0.1 and 10.3.1 are satisfied, then the following Hs

energy estimate holds:

||w̃(T )||2s + ε6(||m̃(T )||2s + ||ξ̃(T )||2s) + ε8(||k̃(T )||2s + ||h̃(T )||2s)

+

∫ T

0
ε4(||m̃(t)||2s + ||ξ̃(t)||2s) + ε6(||k̃(t)||2s + ||h̃(t)||2s) dt ≤ cε2(||u0||2s + ||∇u0||2s)

+c(||u ||L∞t Hs
x
)

∫ T

0
||w̃(t)||2s + ε6(||m̃(t)||2s + ||ξ̃(t)||2s) + ε8(||k̃(t)||2s + ||h̃(t)||2s) dt,

where, hereafter,

L∞t H
s
x := L∞([0, T ], Hs(T2)), for s ∈ R.

Proof. We take the |α|-derivative, 0 < |α| ≤ s, of the semilinear system given by
(10.1.26). As done previously, we get:

ΓΣ||Dαw̃(T )||20 + ε6∆Σ(||Dαm̃(T )||20 + ||Dαξ̃(T )||20) + ε8ΘΣ(||Dαk̃(T )||20 + ||Dαh̃(T )||20)

+
2

τ

∫ T

0
ε4∆LΣ(||Dαm̃(t)||20 + ||Dαξ̃(t)||20) + ε6ΘLΣ(||Dαk̃(t)||20 + ||Dαh̃(t)||20) dt

≤ cε2(||Dαu0||20 + ||Dα+1u0||20) + 2

∫ T

0
|Dα(N((ΣW̃ (t))1 + w̄), DαW̃ (t))0| dt.

(10.3.49)
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Now, from (10.3.45),

|(DαN(w + w̄), DαW̃ )0| ≤
1

τ
{|(Dα(u1w2), Dαε2m̃2)0|+ |Dα(u1w3), Dαε2m̃3)0|

+ |(Dα(u2w2), Dαε2ξ̃2)0|+ |Dα(u2w3), Dαε2ξ̃3)0|}

≤ 1

2τ
{||(Dα(u1w2)||20 + ||Dα(u1w3)||20

+ ||Dα(u2w2)||20 + ||Dα(u2w3)||20
+ ε4(||Dαm̃||20 + ||Dαξ̃||20)}

≤ c(||u||s)||w||2s +
ε4

2τ
(||m̃||2s + ||ξ̃||2s).

By using (10.3.46) we have:

|(DαN(w + w̄), DαW̃ )0| ≤ c(||u||s)(||w̃||2s + ε6(||m̃||2s + ||ξ̃||2s) + ε8(||k̃||2s + ||h̃||2s))

+
ε4

2τ
(||m̃||2s + ||ξ̃||2s).

Thus, from (10.3.49),

ΓΣ||w̃(T )||2s + ε6∆Σ(||m̃(T )||2s + ||ξ̃(T )||2s) + ε8ΘΣ(||k̃(T )||2s + ||h̃(T )||2s)

+
2

τ

∫ T

0
ε4(2∆LΣ − 1)(||m̃(t)||2s + ||ξ̃(t)||2s) + 2ε6ΘLΣ(||k̃(t)||2s + ||h̃(t)||2s) dt

≤ cε2(||u0||2s + ||∇u0||2s)

+ c(||u||L∞t Hs
x
)

∫ T

0
||w̃(t)||2s + ε6(||m̃(t)||2s + ||ξ̃(t)||2s) + ε8(||k̃(t)||2s + ||h̃(t)||2s) dt.

Remark 10.3.1. In the case s > 3 is not an integer, by using the pseudodifferential
operator λs(ξ) = (1 + |ξ|2)s/2 in the Fourier space, we get the same estimates in a
standard way.

Now, we need a bound in the Hs-norm for the original variable w = (ρ− ρ̄, ερu), which is
the first component of the unknown vector W in (10.1.21). By using estimate (10.3.49)
and definition (10.2.30), we can prove the following proposition.

Proposition 10.3.1. If Assumptions 10.0.1 and 10.3.1 are satisfied, then the following
estimate holds:

||w(t)||2s+ε6(||m̃(t)||2s+||ξ̃(t)||2s)+ε8(||k̃(t)||2s+||h̃(t)||2s) ≤ cε2(||u0||2s+||∇u0||2s)e
c(||u||L∞t Hsx

)t
,

and
||ρ(t)− ρ̄||2s

ε2
+ ||ρu(t)||2s ≤ c(||u0||2s + ||∇u0||2s)e

c(||u||L∞t Hsx
)t
, (10.3.50)

for t ∈ [0, T ε).
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Proof. The Gronwall inequality applied to (10.3.49) yields:

ΓΣ||w̃(t)||2s + ε6∆Σ(||m̃(t)||2s + ||ξ̃(t)||2s) + ε8ΘΣ(||k̃(t)||2s + ||h̃(t)||2s)

≤ cε2(||u0||2s + ||∇u0||2s)e
c(||u||L∞t Hsx

)t
.

(10.3.51)

Recalling (10.3.46),

w̃ = w − ε3σ1m̃− ε3σ2ξ̃ − 2aε4(k̃ + h̃).

Thus,

||w̃||2s = ||w||2s + ε6(||m̃1||2s + ||m̃2||2s + ||ξ̃1||2s + ||ξ̃3||2s) + 4a2ε8||k̃ + h̃||2s

− 2ε3(w, σ1m̃)s − 2ε3(w, σ2ξ̃)s − 4aε4(w, k̃ + h̃)s + 2ε6(σ1m̃, σ2ξ̃)s

+ 4aε7(σ1m̃, k̃ + h̃)s + 4aε7(σ2ξ̃, k̃ + h̃)s

= ||w||2s + ε6(||m̃1||2s + ||m̃2||2s + ||ξ̃1||2s + ||ξ̃3||2s) + 4a2ε8||k̃ + h̃||2s

+ Y1 + Y2 + Y3 + Y4 + Y5 + Y6.

(10.3.52)

Now, taking two positive constants η, ζ and using the Cauchy inequality, from (10.3.52)
we have:

Y1 = −2ε3(w, σ1m̃)s ≥ −
||w1||2s
η
− ε6η||m̃2||2s −

||w2||2s
η
− ε6η||m̃1||2s;

Y2 = −2ε3(w, σ2ξ̃)s ≥ −
||w1||2s
η
− ε6η||ξ̃3||2s −

||w3||2s
η
− ε6η||ξ̃1||2s;

Y3 = −4aε4(w, k̃ + h̃)s ≥
−2a

ζ
||w||2s − 2aζε8||k̃ + h̃||2s;

Y4 = 2ε6(m̃2, ξ̃3)s ≥ −ε6(||m̃ε
2||2s + ||ξ̃ε3||2s);

Y5 = 4aε7[(m̃2, k̃1 + h̃1)s + (m̃1, k̃2 + h̃2)s] ≥ −2aε6η||m̃2||2s −
2aε8

η
||k̃1 + h̃1||2s

− 2aε6η||m̃1||2s −
2aε8

η
||k̃2 + h̃2||2s;

Y6 = 4aε7[(ξ̃3, k̃1 + h̃1)s + (ξ̃1, k̃3 + h̃3)s] ≥ −2aε6η||ξ̃3||2s −
2aε8

η
||k̃1 + h̃1||2s

− 2aε6η||ξ̃1||2s −
2aε8

η
||k̃3 + h̃3||2s.

The left hand side of (10.3.51) and the previous calculations yield the following inequal-
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ity:

ΓΣ||w̃||2s + ε6∆Σ(||m̃||2s + ||ξ̃||2s) + ε8ΘΣ(||k̃||2s + ||h̃||2s) ≥ ΓΣ

[
1− 2

η
− 2a

ζ

]
||w1||2s

+ ΓΣ

[
1− 1

η
− 2a

ζ

]
(||w2||2s + ||w3||2s) + ε8θΣ(||k̃||2s + ||h̃||2s)

+ ε6(||m̃1||2s + ||ξ̃1||2s)[∆Σ + ΓΣ(1− η − 2aη)] + ε6(||m̃2||2s + ||ξ̃3||2s)[∆Σ + ΓΣ(−η − 2aη)]

+ ε6(||m̃3||2s + ||ξ̃2||2s)∆Σ + ε8||k̃1 + h̃1||2sΓΣ

[
4a2 − 2aζ − 4a

η

]

+ ε8ΓΣ(||k̃2 + h̃2||2s + ||k̃3 + h̃3||2s)

[
4a2 − 2aζ − 2a

η

]
.

(10.3.53)
Fixed β > 1, the Cauchy inequality yields ||k̃ + h̃||2s ≥ (1− 1

β )||k̃||2s + (1− β)||h̃||2s, then
the last term of (10.3.53) is bounded from below by the following expression:

ε8(||k̃1||2s + ||h̃1||2s)

[
ΘΣ + (1− 1/β)ΓΣ

[
4a2 − 2aζ − 4a

η

]]

+ε8(||k̃2||2s + ||k̃3||2s + ||h̃2||2s + ||h̃3||2s)

[
ΘΣ + (1− β)ΓΣ

[
4a2 − 2aζ − 2a

η

]]
. (10.3.54)

Thus, in order to get estimate (10.3.50), we require:

1− 2
η −

4a
ζ > 0;

∆Σ − ηΓΣ(1 + 2a) > 0;

ΘΣ + (1− 1/β)ΓΣ

[
4a2 − 2aζ − 4a

η

]
> 0;

ΘΣ + (1− β)ΓΣ

[
4a2 − 2aζ − 4a

η

]
> 0.

(10.3.55)

Recalling definition (10.3.40), ∆Σ = 2(λ2a− δ), and so the second inequality is satisfied
for λ big enough. Precisely, we take λ as in Assumption 10.3.1 and

λ >

√
δ

a
+
ηΓΣ(1 + 2a)

2a
.

Moreover, the first condition of (10.3.55) is verified if

η >
2ζ

ζ − 4a
, ζ > 4a . (10.3.56)
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Since ΘΣ and ΓΣ are positive, taking 1− β < 0, i.e. β > 1, the last inequality is verified
if

2aζ +
4a

η
− 4a2 > 0.

From (10.3.56),

2aζ +
4a

η
− 4a2 > 8a2 +

4a

η
− 4a2 = 4a2 +

4a

η
> 0,

then the last inequality in (10.3.55) holds under (10.3.56). Now, the third condition in
(10.3.55) is satisfied if

ζ <
ΘΣ

2aΓΣ(1− 1/β)
+ 2(a− 1/η).

Thus, if η >
1

a
, we can take

4a < ζ <
ΘΣ

2aΓΣ(1− 1/β)
, (10.3.57)

with η and ζ satisfying (10.3.56). In particular, we show that there exists β > 1 such
that:

4a <
ΘΣ

2aΓΣ(1− 1/β)
, i.e. 8a2ΓΣ(1− 1/β) < ΘΣ. (10.3.58)

From (10.3.40), ΓΣ = 1− 4aµ− 2
δ and, from Lemma 10.2.1, 0 < ΓΣ < 1. Thus, in order

to verify (10.3.58), we require:

8a2(1− 1/β) < ΘΣ,

which is automatically verified if 8a2 ≤ ΘΣ. Otherwise, it yields β <
8a2

8a2 −ΘΣ
.

Finally, since β > 1, we need

1 <
8a2

8a2 −ΘΣ
, i.e. ΘΣ > 0,

which is already satisfied thanks to Lemma 10.2.1.
This way, from (10.3.54), (10.3.51) and (10.3.55), we get some positive constants
Γ1

Σ,∆
1
Σ,Θ

1
Σ such that

Γ1
Σ||w(t)||2s + ε6∆1

Σ(||m̃(t)||2s + ||ξ̃(t)||2s) + ε8Θ1
Σ(||k̃(t)||2s + ||h̃(t)||2s)

≤ cε2(||u0||2s + ||∇u0||2s)e
c(||u||L∞t Hsx

)t
, (10.3.59)

and, in particular,

||w(t)||2s ≤ cε2(||u0||2s + ||∇u0||2s)e
c(||u||L∞t Hsx

)t
,

i.e.
||ρ(t)− ρ̄||2s

ε2
+ ||ρu(t)||2s ≤ c(||u0||2s + ||∇u0||2s)e

c(||u||L∞t Hsx
)t
. (10.3.60)

156



10.3. ENERGY ESTIMATES

Thus, we are able to prove that the time T ε of existence of the solutions to the vector
BGK scheme is bounded form below by a positive time T ?, which is independent of ε.

Proposition 10.3.2. There exist ε0 and T ? fixed such that T ? < T ε for all ε ≤ ε0. This
also yields, for ε ≤ ε0, the uniform bounds:

||u(t)||s ≤M, t ∈ [0, T ?], (10.3.61)

||ρ(t)− ρ̄||s ≤ εM, i.e. ||ρ(t)||s ≤ ρ̄|T2|+ εM, t ∈ [0, T ?], (10.3.62)

and

||ρu(t)||s ≤M(ρ̄|T2|+ εM), t ∈ [0, T ?]. (10.3.63)

Proof. Let u0 ∈ Hs+1(T2) and, from (10.0.4), recall that ρ0 = ρ̄. Then, there exists a
positive constant M0 such that ||u0||s+1 ≤M0, and

||ρ0u0||s+1 = ρ̄||u0||s+1 ≤ ρ̄M0 =: M̃0. (10.3.64)

Let M > M̃0 be any fixed constant, and

T ε0 := sup

{
t ∈ [0, T ε]

∣∣∣∣∣ ||ρ(t)− ρ̄||2s
ε2

+ ||ρu(t)||2s ≤M2, ∀ε ≤ ε0

}
. (10.3.65)

Notice that, from (10.3.65),

||ρ− ρ̄||∞ ≤ cS ||ρ− ρ̄||s ≤ cSMε, t ∈ [0, T ε0 ],

where cS is the Sobolev embedding constant, i.e.

ρ̄− cSMε ≤ ρ ≤ ρ̄+ cSMε, t ∈ [0, T ε0 ].

Taking ε0 such that ρ̄− cSMε0 >
ρ̄
2 , i.e. ρ̄ > 2cSMε0, we have

ρ >
ρ̄

2
, t ∈ [0, T ε0 ]. (10.3.66)

Now, since s > 3 = d
2 + 2,

||u||s ≤ ||ρu||s||1/ρ||s.

Moreover,

||1/ρ||s ≤ c

(
|T2|
ρ̄

+
||ρ||s
c(ρ̄)

)
≤ c1 + c2||ρ||s.

From (10.3.65),

||ρ||s ≤ c(|T2|ρ̄+Mε),

so

||1/ρ||s ≤ c1 + c2Mε,

and

||u||s ≤ cM(c1 + c2Mε).
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From (10.3.60),

||ρ(t)− ρ̄||2s
ε2

+ ||ρu(t)||2s ≤ cM2
0 e
c(M(c1+c2Mε))t, t ∈ [0, T ε0 ].

We take T ? ≤ T ε0 such that

cM2
0 e
c(M(c1+c2Mε0))T ? ≤M2,

i.e.

T ? ≤ 1

c(M(c1 + c2Mε0))
log(M2/(cM2

0 )) ∀ε ≤ ε0. (10.3.67)

This way,

||u(t)||s ≤ cM(c1 + c2Mε), t ∈ [0, T ?] and ||ρu||s ≤M ∀ε ≤ ε0. (10.3.68)

10.3.3 Time derivative estimate

In order to use the compactness tools, we need a uniform bound for the time derivative
of the unknown vector field.

Proposition 10.3.3. If Assumptions 10.0.1 and 10.3.1 hold, for M0 in (10.3.64) and
M in (10.3.61), we have:

||∂tw||2s−1 + ε6(||∂tm̃||2s−1 + ||∂tξ̃||2s−1) + ε8(||∂tk̃||2s−1 + ||∂th̃||2s−1)

≤ ε2c(||u0||s+1)ec(M)t ≤ ε2c(M0,M) in [0, T ?],

(10.3.69)

with T ? in (10.3.67). This also yields the uniform bound:

||∂t(ρ− ρ̄)||2s−1

ε2
+ ||∂t(ρu)||2s−1 ≤ c(||u0||s+1) ≤M2 in [0, T ?]. (10.3.70)

Proof. Let us take the time derivative of system (10.2.31). Defining Ṽ = ∂tW̃
ε, from

(10.1.25) we get:

∂tΣṼ + Λ̃1Σ∂xṼ + Λ̃2Σ∂yṼ = −LΣṼ + ∂tN((ΣW̃ )1 + w̄) = −LΣṼ + ∂tN(w + w̄),
(10.3.71)

where

∂tN(w + w̄) =
1

τ



0 0
2u1∂tw2 − εu2

1∂tw1

u2∂tw2 + u1∂tw3 − εu1u2∂tw1


 0

u2∂tw2 + u1∂tw3 − εu1u2∂tw1

2u2∂tw3 − εu2
2∂tw1


0
0


. (10.3.72)
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Taking the scalar product with Ṽ , we have:

1

2

d

dt
(ΣṼ , Ṽ )0 + (LΣṼ , Ṽ )0 ≤ |(∂tN(w + w̄), V )0|. (10.3.73)

Here,

|(∂tN(w + w̄), Ṽ )0| =
1

τ
|(2u1∂tw2 − εu2

1∂tw1, ε
2∂tm̃2)0

+(u2∂tw2 + u1∂tw3 − εu1u2∂tw1, ε
2∂tm̃3 + ε2∂tξ̃2)0

+(2u2∂tw3 − εu2
2∂tw1, ε

2∂tξ̃3)0| ≤ c(||u||∞)||∂tw||20 +
ε4

2τ
(||∂tm̃||20 + ||∂tξ̃||20).

Similarly to (10.3.48), we get:

ΓΣ||∂tw̃||20 + ε6∆Σ(||∂tm̃||20 + |||∂tξ̃||20) + ε8ΘΣ(||∂tk̃||20 + ||∂th̃||20)

+
1

τ

∫ T

0
(2∆LΣ − 1)ε4(||∂tm̃||20 + ||∂tξ̃||20) + 2ε6ΘLΣ(||∂tk̃||20 + ||∂th̃||20) dt

≤ cε2||∂tw|t=0||20

+c(||u||L∞([0,T ]×T2))

∫ T

0
||∂tw̃||20 + ε6(||∂tm̃||20 + ||∂tξ̃||20) + ε8(||∂tk̃||20 + ||∂th̃||20) dt.

Now, from the first equation given by (10.1.19),

∂tw|t=0 = −∂xm|t=0 − ∂yξ|t=0,

where, from (10.1.16), (10.0.4), and (10.0.9),

m|t=0 =
A1(w0)

ε
− 2aλ2τ∂xw0 = ρ̄

 u01

εu0
2
1 − 2aλ2ε∂xu01

εu01u02 − 2aλ2ε∂xu02

 ,

ξ|t=0 =
A2(w0)

ε
− 2aλ2τ∂yw0 = ρ̄

 u02

εu01u02 − 2aλ2τε∂yu01

εu0
2
2 − 2aλ2τε∂yu02

 .

By definition of w in (10.0.6), ∂tw|t=0 = (∂tρ|t=0, ε∂t(ρu)|t=0). This implies that

∂tρ|t=0 = −ρ̄(∇ · u0) = 0,

since u0 is divergence free. This way,

∂tu|t=0 = −∂x
(

u0
2
1 − 2aλ2τ∂xu01

u01u02 − 2aλ2τ∂xu02

)
− ∂y

(
u01u02 − 2aλ2τ∂yu01

u0
2
2 − 2aλ2τ∂yu02

)
.
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Thus,

ΓΣ||∂tw̃||20 + ε6∆Σ(||∂tm̃||20 + |||∂tξ̃||20) + ε8ΘΣ(||∂tk̃||20 + ||∂th̃||20)

+
1

τ

∫ T

0
(2∆LΣ − 1)ε4(||∂tm̃||20 + ||∂tξ̃||20) + 2ε6ΘLΣ(||∂tk̃||20 + ||∂th||20) dt

≤ cε2(||u0||20 + ||∇u0||20 + ||∇2u0||20)

+c(M)

∫ T

0
||∂tw̃||20 + ε6(||∂tm̃||20 + ||∂tξ̃||20) + ε8(||∂tk̃||20 + ||∂th̃||20) dt,

where the last inequality follows form the Sobolev embedding theorem and from
(10.3.61).
Similarly, taking the |α|-derivative, for |α| ≤ s− 1, of (10.3.71) and multiplying by DαṼ
through the scalar product, we get:

1

2

d

dt
(ΣDαṼ , DαṼ )0 + (LΣDαṼ , DαṼ )0 ≤ |(Dα∂tN(w + w̄), DαV )0|,

where

|(Dα∂tN(w + w̄), DαṼ )0| =
1

τ
|(Dα(2u1∂tw2 − εu2

1∂tw1), ε2∂tD
αm̃2)0

+(Dα(u2∂tw2 + u1∂tw3 − εu1u2∂tw1), ε2∂tD
αm̃3 + ε2∂tD

αξ̃2)0

+(Dα(2u2∂tw3 − εu2
2∂tw1), ε2∂tD

αξ̃3)0|

≤ c(||u||s−1)||∂tw||2s−1 +
ε4

2τ
(||∂tm̃||2s−1 + ||∂tξ̃||2s−1)

≤ c(M)||∂tw||2s−1 +
ε4

2τ
(||∂tm̃||2s−1 + ||∂tξ̃||2s−1),

where the last inequality follows from (10.3.61). Finally, we obtain:

ΓΣ||∂tw̃||2s−1 + ε6∆Σ(||∂tm̃||2s−1 + ||∂tξ̃||2s−1) + ε8ΘΣ(||∂tk̃||2s−1 + ||∂th̃||2s−1)

+
1

τ

∫ T

0
(2∆LΣ − 1)ε4(||∂tm̃||2s−1 + ||∂tξ̃||2s−1) + ε6ΘLΣ(||∂tk̃||2s−1 + ||∂th̃||2s−1) dt

≤ cε2(||u0||2s−1 + ||∇u0||2s−1 + ||∇2u0||2s−1)

+c(M)

∫ T

0
||∂tw̃||2s−1 + ε6(||∂tm̃||2s−1 + ||∂tξ̃||2s−1) + ε8(||∂tk̃||2s−1 + ||∂th̃||2s−1) dt.

(10.3.74)

Lemma 10.3.3. If Assumption 10.0.1 and 10.3.1 hold, then there exists a positive
constant c such that:

||∂tw||2s−1 ≤ c(||∂tw̃||2s−1 + ε6(||∂tm̃||2s−1 + ||∂tξ̃||2s−1) + ε8(||∂tk̃||2s−1 + ||∂th̃||2s−1)).
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Proof. The proof of Proposition 10.3.1 can be adapted here with slight modifications.

We end the proof by applying the Gronwall inequality to (10.3.74) and using Lemma
10.3.3.

10.4 Convergence to the Navier-Stokes equations

Now we state our main result.

Theorem 10.4.1. Let s > 3. If Assumptions 10.0.1 and 10.3.1 hold, there exists
a subsequence W ε = (wε ?, ε2mε, ε2ξε, ε2kε ?, ε2hε ?), with wε ? = (ρε − ρ̄, ερεuε) and
ρ̄ > 0, of the solutions to the vector BGK model (10.1.22) with initial data (10.1.23)
and u0 ∈ Hs+1(T2) in (10.0.2), such that

(ρε,uε)→ (ρ̄,uNS) in C([0, T ?], Hs′(T2)),

with T ? in (10.3.67), s−1 < s′ < s, and where uNS is the unique solution to the Navier-
Stokes equations in (10.0.1), with initial data u0 above and PNS the incompressible
pressure. Moreover,

∇(ρε − ρ̄)

ε2
⇀? ∇PNS in L∞t H

s−3
x .

Proof. First of all, consider the previous bounds in (10.3.61), (10.3.62), (10.3.63) and
(10.3.70):

sup
t∈[0,T ?]

||ρε − ρ̄||s
ε

≤M, sup
t∈[0,T ?]

||∂t(ρε − ρ̄)||s−1

ε
≤M1, (10.4.75)

sup
t∈[0,T ?]

||ρεuε||s ≤ N, sup
t∈[0,T ?]

||∂t(ρεuε)||s−1 ≤ N1, (10.4.76)

where M,M1, N,N1 are positive constants. The Lions-Aubin Lemma in [9] implies that,
for s− 1 < s′ < s,

ρε → ρ̄ strongly in C([0, T ?], Hs′(T2)),

and there exists m? such that

mε = ρεuε →m? strongly in C([0, T ?], Hs′(T2)).

Notice also that uε =
mε

ρε
, where

1/ρε → 1/ρ̄ strongly in C([0, T ?], Hs′(T2)),

since we can take ρ̄ such that ρε > ρ̄
2 as in (10.3.66). Then

uε =
mε

ρε
→ m?

ρ̄
=: u? strongly in C([0, T ?], Hs′(T2)).

Now, consider system (10.1.19) in the following formulation:

∂tw
ε + ∂xm

ε + ∂yξ
ε = 0;

ε∂tm
ε + λ2

ε ∂xk
ε = 1

τ (A1(wε+w̄)
ε2

− mε

ε ),

ε∂tξ
ε + λ2

ε ∂yh
ε = 1

τ (A2(wε+w̄)
ε2

− ξε

ε ),

ε∂tk
ε + ε∂xm

ε = (2awε−kε)
τε ,

ε∂th
ε + ε∂yξ

ε = (2awε−hε)
τε ,

. (10.4.77)
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From (10.4.77) and 2aλ2τ = ν as in (10.0.11), it follows that{
mε = A1(wε+w̄)

ε − ν∂xwε + ε2λ2τ2(∂txk
ε + ∂xxm

ε)− ε2τ∂tm
ε;

ξε = A2(wε+w̄)
ε − ν∂ywε + ε2λ2τ2(∂tyh

ε + ∂yyξ
ε)− ε2τ∂tξ

ε.

Substituting the expansions above in the first equation of (10.4.77), we get the following
equation:

∂tw
ε +

∂xA1(wε + w̄)

ε
+
∂yA2(wε + w̄)

ε
− ν∆wε

= ε2τ∂txm
ε + ε2τ∂tyξ

ε − ε2λ2τ2(∂txxk
ε + ∂xxxm

ε + ∂tyyh
ε + ∂yyyξ

ε).

We recall that W ε = ΣW̃ ε by definition (10.2.30), with W ε, W̃ ε in (10.1.21) and (10.2.30)
respectively. This yields:

wε = w̃ε + ε3σ1m̃
ε + ε3σ2ξ̃

ε + 2aε4k̃ε + 2aε4h̃ε;

ε2mε = εσ1w̃
ε + 2aλ2ε4m̃ε + ε5σ1k̃

ε;

ε2ξε = εσ2w̃
ε + 2aλ2ε4ξ̃ε + ε5σ2h̃

ε;

ε2kε = 2aε2w̃ε + ε5σ1m̃
ε + 2aε6k̃ε;

ε2hε = 2aε2w̃ε + ε5σ2ξ̃
ε + 2aε6h̃ε.

(10.4.78)

From (10.3.69), (10.3.50)-(10.3.68) and (10.4.78) it follows that, for a fixed constant
value c > 0,

τε2||∂txmε + ∂tyξ
ε − λ2τ(∂txxk

ε + ∂xxxm
ε + ∂tyyh

ε + ∂yyyξ
ε)||s−3 = O(ε2),

then ∥∥∥∥∥∂twε +
∂xA1(wε + w̄)

ε
+
∂yA2(wε + w̄)

ε
− ν∆wε

∥∥∥∥∥
s−3

= O(ε2). (10.4.79)

The last two equations and the previous bounds (10.4.75) and (10.4.76) yield:∥∥∥∥∥∂t(ρεuε) +∇ · (ρεuε ⊗ uε) +
∇(ρε − ρ̄)

ε2
− ν∆(ρuε)

∥∥∥∥∥
s−3

= O(ε), (10.4.80)

and, in particular,
||∇(ρε − ρ̄)||s−3

ε2
≤ c,

i.e. there exists ∇P ? ∈ L∞t Hs−3
x such that

∇(ρε − ρ̄)

ε2
⇀? ∇P ? in L∞t H

s−3
x .

Moreover, since ρε → ρ̄ and uε → u? in C([0, T ?], Hs′(T2)), from ||∂t(ρεuε)||s−1 ≤ N1

as in (10.4.76), it follows also that

∂t(ρ
εuε) ⇀? ρ̄∂tu

? in L∞t H
s−3
x ,
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while
∇ · (ρεuε ⊗ uε) ⇀? ρ̄∇ · (u? ⊗ u?) in L∞t H

s−3
x .

Thus, from (10.4.80) we have the weak? convergence in L∞t H
s−3
x , i.e.

∂t(ρ
εuε)+∇·(ρεuε⊗uε)+

∇(ρε − ρ̄)

ε2
−ν∆(ρεuε) ⇀? ρ̄

(
∂tu

?+∇·(u?⊗u?)+
∇P ?

ρ̄
−ν∆u?

)
.

On the other hand, the first equation of (10.4.79) yields

∂t(ρ
ε − ρ̄) +∇ · (ρεuε)− ν∆(ρε − ρ̄) = O(ε2). (10.4.81)

Notice that ||∂t(ρε − ρ̄)||s−1 = O(ε) and ||∆(ρε − ρ̄)||s−2 = O(ε) thanks to (10.4.75),
while ρε → ρ̄ and uε → u? in C([0, T ?], Hs′(T2)). This way, from (10.4.81) we finally
recover the divergence free condition

∇ · u? = 0.
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