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Abstract. The Laplace resonance is a three-body dynamical configuration among the
Galileian satellites of Jupiter, involving the mean longitudes and the longitudes of per-
ijove of Io, Europa and Ganymede. Beside the classical Laplace resonance, there ex-
ists another well known dynamical configuration, to which we refer as the de Sitter
resonance, which differs from the Laplace resonance in the fact that the longitude of
Ganymede is fixed instead of rotating like in the Laplace resonance. The Galileian
satellites are characterized by a 2:1 ratio between the mean longitudes of Io-Europa and
Europa-Ganymede. We extend the study of the Laplace and de Sitter resonances to the
case in which the mean longitudes of the first two satellites are in a ratio k : j, while
those of the second and third satellites are in a ratio m : n with k, j,m, n ∈ Z+ and
|j − k|, |n−m| ≤ 2.

We describe the dynamics through a planar Hamiltonian model including the at-
traction of Jupiter, the mutual interactions of the satellites, the oblateness of Jupiter
(limited to the first two even degree zonal harmonic coefficients), and the gravitational
influence of the Sun and a fourth satellite (limited to the secular part),which we identify
with Callisto when dealing with the Jovian satellites.

In all case studies, we look at the dependence of the resonances on the variation
of some observed data, like the semimajor axes of the satellites, the eccentricities, the
masses and the oblateness coefficients. The results show that the libration of the Laplace
resonant angle is deeply affected by small variations of some quantities, most notably
the semimajor axes and the oblateness. Quite surprisingly, in several cases the standard
Laplace resonance of the Galileian satellites displays a regular behavior in comparison
to other resonances characterized by different mean longitude ratios, which instead show
a rather chaotic behavior even on short time scales. This result provides a motivation
to support why the Galileian satellites are found in the actual Laplace resonance. We
remark that the results on the other Laplace-like resonances can be of interest to explore
the dynamics of extra-solar planetary systems.

1. Introduction

The three inner Galileian satellites of Jupiter - Io, Europa, and Ganymede - are ob-

served to move in a particular dynamical configuration, which is commonly known as

the Laplace resonance, whose precise definition is the following. Let us denote by λIo,

λEu, λGa the mean longitudes of Io, Europa and Ganymede, and with ω̃Io, ω̃Eu, ω̃Ga
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their longitudes of perijoves. The Laplace resonance corresponds to commensurabilities

between such quantities, and precisely:

λIo − 2λEu + ω̃Io = 0

λIo − 2λEu + ω̃Eu = 180o

λEu − 2λGa + ω̃Eu = 0 . (1.1)

Let us introduce the Laplace angle associated to (1.1) as

ΦL ≡ λIo − 3λEu + 2λGa .

The condition ΦL = 180o implies that there can never be a triple conjunction of all

three satellites. Indeed, the Galileian satellites satisfy the condition ΦL = 180o up to a

libration with a small amplitude and period of about 2 071 days ([Lie97], [PCP18]).

The literature on the Laplace resonance is wide and encompasses both analytical the-

ories and numerical integrations. The former aim to build different models for the study

of the dynamics (see, e.g. [Lap05], [Sam21], [Mar66], [FM75], [Hen84], [Mal91], [SM97]),

while the latter focus on the long-term evolution of the Jovian moons to produce accurate

ephemerides (see, e.g., [Lie77], [MVMS02], [LDV04], [Kos09]).

The analytical theories for the dynamics of the Galileian satellites are often aimed to

outline specific features, without having to rely necessarily on numerical integrations.

Beside the monumental work of Laplace ([Lap05]), we quote [Sam21] which developed

an analytical theory to compute quite accurate ephemerides, [dS31] which constructed a

theory for the Laplace resonance, [Mar66] which used von Zeipel method to average the

short-period terms of the Hamiltonian and to solve the resulting differential equations

for the long-period effects, and [FM75] which - revisiting [Lap05] and [Tis96] - obtained

the complete first order solution by solving two separate sets of linear integro-differential

equations. It is also worth mentioning the works aimed to give an explanation of the

origin of the Laplace resonance, very often including tidal effects (see, e.g., [Yod79],

[Gre81], [Gre], [Hen83], [YP81], [Mal91]).

In this work, we consider three gravitationally interacting satellites, say S1, S2, S3,

moving on the same plane around a planet. The perturbative effects of a fourth satellite

and the Sun are also considered. We derive models obtained through a Hamiltonian

approach, which include some or all of the following contributions: the Keplerian attrac-

tion of Jupiter, the oblateness of the planet, the mutual interactions of the satellites, the

gravitational attraction of the fourth satellite and the Sun. The Hamiltonian setting per-

mits to construct models which allow to highlight the role of the different contributions.
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Moreover, beside the Laplace resonance, we will consider also variations of (1.1) with

different relations between mean longitudes and longitudes of perijoves. We will refer

to these relations as Laplace-like resonances (see the pioneer work [SM97]); they do not

occur in the Solar system, but may found applications in extra-solar planetary systems.

In the following sections, we concentrate on resonances which involve combinations of

the mean longitudes of the form jλIo − kλEu, mλEu − nλGa to which we will refer as

k : j&m : n resonance. In particular, we will consider 5 case studies: 2 : 1&2 : 1 (namely,

the standard Laplace resonance), 3 : 2&3 : 2, 2 : 1&3 : 2, 3 : 1&3 : 1, 2 : 1&3 : 1.

The Hamiltonian model for the Laplace resonance, including the Keplerian part, the

oblateness, the mutual interactions of the satellites, and the gravitational influence of

Callisto and the Sun, is presented in Section 2. Such Hamiltonian function is expanded

to second order in the eccentricities; beside this function, we introduce also the resonant

Hamiltonian.

In addition to resonances of the type (1.1), we also study a different equilibrium solu-

tion, which was discovered by de Sitter in [dS31], in which the perijove of Ganymede is

librating (see [BZ17], [BH16], [CPP18]), thus showing a different behavior with respect

to the standard Laplace resonance (1.1) in which the perijove of Ganymede is rotating.

The de Sitter solution is introduced in Section 3, using a suitable averaged simplified

model.

Using such models and definitions of Laplace and de Sitter resonances, in Section 4

we analyze the role of the different terms (precisely, the mutual gravitational influence

of the satellites, the oblateness, the attraction of the Sun and a fourth satellite) and

the sensitivity of the model to variations of the initial conditions or some parameters

(e.g., the semimajor axes of the satellites, the eccentricities, the masses, the oblateness

parameter, etc.). To analyze the dynamics we compute a chaos indicator known as Fast

Lyapunov Indicator, which provides evidence of the regular and chaotic behavior of the

dynamics.

The results show that the actual Laplace resonance is definitely sensitive to variations

of the semimajor axis of the inner satellites as well as to the oblateness parameter. This

means that an accurate knowledge of the orbital elements and of the physical parameters

is mandatory for an exact computation of the libration amplitude of the Laplace angle.

This conclusion leads to a careful choice of the model, if one aims to get an accurate

prediction of the libration amplitude, also in view of future space missions (e.g., the

mission JUICE - JUpiter ICy moons Explorer - planned for lunch in 2022). In addition,
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we found a characterization of the Laplace resonance in which the Galileian satellites

are located, since it results to be much less chaotic with respect to the other resonances

(3 : 2&3 : 2, 2 : 1&3 : 2, 3 : 1&3 : 1, 2 : 1&3 : 1). This result provides evidence that the

actual configuration of the Galileian satellites is indeed the most likely to occur.

2. Hamiltonian model

We consider three point-mass satellites, say S1, S2, S3, orbiting on the same plane

around a central planet P and with masses m1, m2, m3. We denote by aj, ej, λj, ω̃j,

respectively, the semimajor axis, eccentricity, mean longitude, and longitude of periapsis

of the satellite Sj, j = 1, 2, 3. We assume that the semimajor axes are such that a1 <

a2 < a3 and that the satellites are subject to the following forces:

(H0) the Keplerian attraction of the planet;

(H1) the mutual interactions among the satellites S1, S2, S3;

(H2) the oblateness of the central planet;

(H3) the gravitational attraction of the Sun;

(H4) the gravitational influence of a fourth satellite which moves outside the orbit of

S3.

We assume that the osculating orbital elements belong to a collisionless domain, which

means that for all values of the orbital elements considered in this paper, collisions will not

occur. With such hypotheses, we proceed to write the Hamiltonian function describing

the contributions (H0)-(H4). To this end, we need to introduce, as follows, the position

vectors in different reference frames:

(i) r̃1, r̃2, r̃3 denote the position vectors of S1, S2, S3 in an inertial reference frame

with fixed origin O. We denote by r̃ij = r̃j − r̃i the mutual distances;

(ii) r1, r2, r3 denote the position vectors of S1, S2, S3 in a reference frame with axes

parallel to the inertial frame, but origin coinciding with the center of mass of the

planet.

With this notation, we introduce the so-called Jacobi position vectors ρ
j
, j = 1, 2, 3,

defined as

ρ
j

= r̃j −
1∑j−1

k=0mk

j−1∑
k=0

mkr̃k ,

where m0 is the mass of the planet and r̃0 its position vector in the inertial frame. The

Jacobi position vectors are the natural coordinates to study the motion of a system like

that of the Galileian satellites. However, we will see that at a low order approximation,
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it will suffice to express the Hamiltonian using planetocentric elements. Introducing the

adimensional mass parameter

κj =
mj

Mj

, j = 1, 2, 3

with M1 = m0 +m1, M2 = M1 +m2, M3 = M2 +m3, we have:

ρ
1

= r̃01

ρ
2

= r̃02 − κ1ρ1
ρ
3

= r̃03 − κ1ρ1 − κ2ρ2 . (2.1)

2.1. Hamiltonian HKep - Keplerian part. The Keplerian part describing the inter-

action between the satellites S1, S2, S3 with the planet, apart a constant term, can be

written as

HKep = −GM1µ1

2a1
− GM2µ2

2a2
− GM3µ3

2a3
, (2.2)

where G represents the gravitational constant and

µ1 =
m0m1

M1

, µ2 =
M1m2

M2

, µ3 =
M2m3

M3

.

2.2. Hamiltonian Hint - mutual satellites’ interactions. Let us denote by ∆jk the

absolute value of the distance vector between Sj and Sk. Then, the Hamiltonian describ-

ing the mutual interactions between the satellites can be written as the sum of the direct

part H ′int and the indirect part H ′′int:

Hint = H ′int +H ′′int , (2.3)

where (see [Mal91], see also [dS31], [SM97])

H ′int = −Gm1m2

∆12

− Gm2m3

∆23

− Gm1m3

∆13

= − Gm1m2

|ρ
2
− (1− κ1)ρ1|

− Gm2m3

|ρ
3
− (1− κ2)ρ2|

− Gm1m3

|ρ
3
− (1− κ1)ρ1 + κ2ρ2|

(2.4)

and

H ′′int = −Gm2(
m0

∆02

− M1

ρ2
)− Gm3(

m0

∆03

− M2

ρ3
)

= −GM1m2(
m0/M1

|ρ
2

+ κ1ρ1|
− 1

ρ2
)− GM2m3(

m0/M3

|ρ
3

+ κ1ρ1 + κ2ρ2|
− 1

ρ3
) (2.5)

with ρj = |ρ
j
| and ∆02 = |ρ

2
+ κ1ρ1| = |̃r2− r̃0|, ∆03 = |ρ

2
+ κ1ρ1 + κ2ρ2| = |̃r3− r̃0|. To

distinguish between resonant, non-resonant, and secular terms, we need to express the

Hamiltonian in terms of the elliptic elements and to perform an expansion of H ′int and
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H ′′int, as it is shown in Sections 2.2.1 and 2.2.2 below. The resonant Hamiltonian will

then be given in Section 2.2.3.

2.2.1. Expansion of the direct part H ′int. We start by noticing that from (2.1) it follows

that

ρ
2
− (1− κ1)ρ1 = r̃02 − r̃01

ρ
3
− (1− κ2)ρ2 = r̃03 − r̃02

ρ
3
− (1− κ1)ρ1 + κ2ρ2 = r̃03 − r̃01 ,

so that (2.4) can be expressed in planetocentric coordinate vectors as

H ′int = − Gm1m2

|̃r02 − r̃01|
− Gm2m3

|̃r03 − r̃02|
− Gm1m3

|̃r03 − r̃01|
. (2.6)

Next, we expand in a formal way each of the three terms at the right hand side of (2.6)

and then we truncate to a suitable order in the eccentricity. This leads to the following

approximation:

− Gmimj

|̃r0j − r̃0i|
' −Gmimj

aj
R(i,j)
D , i < j ,

where R(i,j)
D denotes the expansion up to the second order in the eccentricity of the term

aj
|r̃0j−r̃0i|

. For self-consistency, following [MD99] we report in Appendix A the explicit

expression of the function R(i,j)
D .

2.2.2. Expansion of the indirect part H ′′int. Using (2.5), let us write H ′′1 as

H ′′int = H
(a)
int +H

(b)
int ,

where

H
(a)
int = −GM1m2 (

m0/M1

|̃r02|
− 1

ρ2
) ,

H
(b)
int = −GM2m3 (

m0/M2

|̃r03|
− 1

ρ3
) .

In practical computations, it is convenient to express the inverse of ρ2, ρ3 in planetocentric

elements, which can be done by making suitable approximations, as we are going to

explain. Indeed, we have:

1

ρ2
=

1

|̃r02|
+ κ1

r̃01 · r̃02
|̃r02|3

+O(κ21) ,

where

r̃01 · r̃02 = |̃r01| |̃r02| cos γ12
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and where γ12 is the angle formed by the radius vectors r̃01 and r̃02. The expansion of

cos γ12 to second order in the eccentricities is given by the following expression:

cos γ12 = (1− e21 − e22) cos(λ1 − λ2) + e1e2 cos(2λ1 − 2λ2 − ω̃1 + ω̃2)

+ e1e2 cos(ω̃1 − ω̃2) + e1 cos(2λ1 − λ2 − ω̃1)− e1 cos(λ2 − ω̃1)

+ e2 cos(λ1 − 2λ2 + ω̃2)− e2 cos(λ1 − ω̃2) +
9

8
e21 cos(3λ1 − λ2 − 2ω̃1)

− e21
8

cos(λ1 + λ2 − 2ω̃1) +
9

8
e22 cos(λ1 − 3λ2 + 2ω̃2)

− e22
8

cos(λ1 + λ2 − 2ω̃2)− e1e2 cos(2λ1 − ω̃1 − ω̃2)

− e1e2 cos(2λ2 − ω̃1 − ω̃2) . (2.7)

Neglecting terms of order of κ21, we can write

H
(a)
int = −Gm1m2

|̃r02|
(−1− |̃r01|

|̃r02|
cos γ12) .

In a similar way, we have:

1

ρ3
=

1

|̃r03|
+ κ1(1− κ2)

r̃01 · r̃03
|̃r03|3

+ κ2
r̃02 · r̃03
|̃r03|3

+O(κ21, κ
2
2, κ1κ2) .

Note that we can write

r̃01 · r̃03 = |̃r01| |̃r03| cos γ13 ,

r̃02 · r̃03 = |̃r02| |̃r03| cos γ23 ,

where the expansions of cos γ13, cos γ23 are the same as (2.7) with an obvious replacement

of the indexes. The expansion of H
(b)
int to second order in κ1, κ2 becomes:

H
(b)
int = −Gm1m3

|̃r03|
(−1− |̃r01|

|̃r03|
cos γ13) − G

m2m3

|̃r03|
(−1− |̃r02|

|̃r03|
cos γ23) .

Hence, we obtain

H ′′int = −Gm1m2

|̃r02|
(−1− |̃r01|

|̃r02|
cos γ12)− G

m1m3

|̃r03|
(−1− |̃r01|

|̃r03|
cos γ13)

− Gm2m3

|̃r03|
(−1− |̃r02|

|̃r03|
cos γ23) . (2.8)
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We consider an expansion of the three terms of H ′′int in (2.8) to second order in the

eccentricities; each term will be approximated as follows:

− Gmimj

r̃0j
(−1− |̃r0i|

|̃r0j|
cos γij) '

− Gmimj

aj

ai
aj
{(−1 +

1

2
e2i +

1

2
e2j) cos(λj − λi)− eiej cos(2λj − 2λi − ω̃j + ω̃i)

− ei
2

cos(λj − 2λi + ω̃i) +
3

2
ei cos(λj − ω̃i)− 2ej cos(2λj − λi − ω̃j)

− 3

8
e2j cos(λj − 3λi + 2ω̃i)−

e2i
8

cos(λi + λj − 2ω̃i) + 3eiej cos(2λi − ω̃i − ω̃j)

− 1

8
e2j cos(λi + λj − 2ω̃j) +

27

8
e2j cos(3λj − λi − 2ω̃j)} .

2.2.3. The resonant Hamiltonian Hres
int . As we will see in Section 3, we are interested in

resonant motions involving specific linear combinations with integer coefficients of the

mean longitudes. More precisely, we will be interested in terms involving the combina-

tions kλ1 − jλ2, mλ2 − nλ3 with k, j,m, n ∈ Z+. In this case, we say that the system

satisfies a j : k & m : n resonance. Since we consider the expansion of the perturbing

function up to second order in the eccentricities, the resonant Hamiltonian takes the

following form:

Hres
int = −

3∑
i,j=1

Gmimj

aj

{
Asec0 (a, e, ω̃) + Ares1 (a, e, ω̃) cos(kλ1 − jλ2 + ω̃1)

+ Ares2 (a, e, ω̃) cos(kλ1 − jλ2 + ω̃2) + Ares3 (a, e, ω̃) cos(kλ1 − jλ2 + 2ω̃1)

+ Ares4 (a, e, ω̃) cos(kλ1 − jλ2 + 2ω̃2) + Ares5 (a, e, ω̃) cos(kλ1 − jλ2 + ω̃1 + ω̃2)

+ Ares6 (a, e, ω̃) cos(mλ2 − nλ3 + ω̃2) + Ares7 (a, e, ω̃) cos(mλ2 − nλ3 + ω̃3)

+ Ares8 (a, e, ω̃) cos(mλ2 − nλ3 + 2ω̃2) + Ares9 (a, e, ω̃) cos(mλ1 − nλ2 + 2ω̃3)

+ Ares10 (a, e, ω̃) cos(mλ2 − nλ3 + ω̃2 + ω̃3)
}
,

where we denote for short a = (a1, a2, a3) and similarly for e, ω̃, and where Asec0 , Ares1 , ...,

Ares10 are functions of the orbital elements, whose expressions can be obtained from the

expansion of the perturbing function given in Appendix A.

2.3. Hamiltonian Hobl - oblateness of the planet. As we will see in Section 4, the

effect of the oblateness of the planet on a Laplace-like resonance might be very important

and therefore it must be definitely included in the Hamiltonian. We will limit ourselves

to the secular parts, thus depending only on the even degree zonal harmonic coefficients

J2k, k ≥ 1. Typically, one has a smallness relation between the harmonic coefficients,
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such that J2 � J4 � J6 � ... Therefore we reduce to consider only the effects of J2 and

J4. Denoting by b the mean radius of the planet, the secular Hamiltonian Hobl including

the effect of the oblateness is given, e.g. in [Mal91], and has the following expression:

Hobl = − GM1µ1

2a1
[J2(

b

a1
)2(1 +

3

2
e21)−

3

4
J4(

b

a1
)4(1 +

5

2
e21)]

− GM2µ2

2a2
[J2(

b

a2
)2(1 +

3

2
e22)−

3

4
J4(

b

a2
)4(1 +

5

2
e22)]

− GM3µ3

2a3
[J2(

b

a3
)2(1 +

3

2
e23)−

3

4
J4(

b

a3
)4(1 +

5

2
e23)] . (2.9)

2.4. Hamiltonian HSun and Hsat - interactions with the Sun and a fourth satel-

lite. The gravitational interaction with the Sun and with a fourth satellite, orbiting

externally to S3, will be modeled just by retaining the secular part of the Hamiltonians

describing such effects. Let us introduce a suffix σ such that σ = Sun means that the

elements are associated to the Sun and σ = sat means that the elements are referred to

the fourth satellite. Then, the Hamiltonian reads as

Hσ = −Gm1mσ

aσ
{1

2
b
(0)
1/2(

a1
aσ

)− 1 +
1

8

a1
aσ
b
(1)
3/2(

a1
aσ

)(e21 + e2σ)}

− Gm2mσ

aσ
{1

2
b
(0)
1/2(

a2
aσ

)− 1 +
1

8

a2
aσ
b
(1)
3/2(

a2
aσ

)(e22 + e2σ)}

− Gm3mσ

aσ
{1

2
b
(0)
1/2(

a3
aσ

)− 1 +
1

8

a3
aσ
b
(1)
3/2(

a3
aσ

)(e23 + e2σ)} (2.10)

with HSun referring to the Sun and Hsat to the fourth satellite.

2.5. Complete and resonant Hamiltonians. In the following sections we will con-

sider two Hamiltonians, both composed by the contributions given in Sections 2.1-2.4.

Following [CPP18], we express such Hamiltonians in modified Delaunay variables defined

as

Li = µi
√
GMiai , P̃i = Li

(
1−

√
1− e2i

)
, (2.11)

which admit the conjugate angles λi and pi = −ω̃i. Notice that for small eccentricities

we can approximate P̃i with P̃i =
e2iLi

2
. The two Hamiltonians are defined as follows:

(Hcomp) The first Hamiltonian, say Hcomp, consists of the sum of the different contri-

butions HKep + Hint + Hobl + HSun + Hsat with HKep as in (2.2), Hint as in (2.3) (with

H ′int, H
′′
int expanded up to second orders in the eccentricity as in Section 2.2.1, 2.2.2),

Hobl as in (2.9), HSun and Hsat as in (2.10). Hence, we can shortly write Hcomp as

Hcomp(L1, L2, L3, P̃1, P̃2, P̃3) = HKep +Hint +Hobl +HSun +Hsat .
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(Hres) The second Hamiltonian is obtained by retaining in Hcomp only the resonant

terms as in Section 2.2.3; we refer to such Hamiltonian as Hres. The terms in Hres vary

according to the specific resonance under study.

3. Laplace and de Sitter-like resonances

The actual Laplace resonance among the Galileian satellites involves a commensura-

bility of the mean motions and a locking of the relative precession of the periapsis of Io

and Europa. We underline the well-known fact that in the present Laplace resonance

the periapsis of Ganymede is not locked. This is an important feature that distinguishes

the Laplace resonance from another equilibrium configuration, known as the de Sitter

resonance ([BZ17], [BH16], [CPP18], [SM97]). The difference between the two resonances

is that in the de Sitter resonance the periapsis of Ganymede is locked.

Notwithstanding the fact that the Galileian satellites actually move in the Laplace

resonance, it is nevertheless interesting to investigate the dynamics of the de Sitter res-

onance; even more, it is interesting to generalize both Laplace and de Sitter resonances

by considering commensurability relations different from (1.1). This is indeed the con-

tent of this Section, in which the definitions of Laplace and de Sitter resonances are

extended to the more general case. Indeed, the generalized resonances will be called of

type j : k&m : n, when they involve the following combinations of the mean longitudes:

jλ1 − kλ2, mλ2 − nλ3. In the next subsections, we will limit to consider low-order reso-

nances, precisely with indexes j, k, m, n, such that |j−k|, |m−n| ≤ 2. In particular, we

will consider the following three resonances: j : (j−1)&n : (n−1), j : (j−2)&n : (n−2),

j : (j − 1)&n : (n− 2) (see Sections 3.1, 3.2, 3.3).

3.1. Resonance j : (j − 1)&n : (n − 1). The expansion of the perturbing function

contains the following angles, which are relevant for the study of the j : (j−1)&n : (n−1)

resonance:

q̃1 = jλ2 + (1− j)λ1 − ω̃1

q̃2 = jλ2 + (1− j)λ1 − ω̃2

q̃3 = nλ3 + (1− n)λ2 − ω̃3

q̃4 = nλ3 + (1− n)λ2 − ω̃2 . (3.1)

Since the system is 6–dimensional, two more angles should be introduced, but they do

not enter the resonant Hamiltonian, which contains - as said before - only q̃1, ..., q̃4.
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Hence, the additional angles q̃5, q̃6 are cyclic. We define the Laplace angle ΦL as the

quantity q̃4 − q̃2, namely

ΦL ≡ nλ3 + (1− n− j)λ2 − (1− j)λ1 ,

which provides a link between the mean longitudes of the three satellites.

We notice that for the present resonance the leading terms of the expansion of the

perturbing function involving q̃1, q̃2, q̃3, q̃4 are of first order in the eccentricity. According

to the previous distinction between Laplace and de Sitter resonances, we characterize a

de Sitter-like resonance as an equilibrium solution in the variables q̃1, q̃2, q̃3, q̃4. On the

other hand, a Laplace-like resonance is characterized by the fact that q̃3 rotates, instead

of being a stationary solution.

Notice that the Galileian satellites Io, Europa, and Ganymede satisfy the resonance

j : (j−1)&n : (n−1) with j = n = 2 and their initial conditions are such that q̃1 = q̃4 = 0,

q2 = −180o. As a consequence, we obtain the following relation between the longitudes

of perijoves of Io and Europa:

q̃1 − q̃2 = ω̃2 − ω̃1 = 180o .

3.2. Resonance j : (j−2)&n : (n−2). For such resonance, the relevant angles appearing

in the expansion of the perturbing function are the following:

q̃1 = jλ2 + (2− j)λ1 − 2ω̃1

q̃2 = jλ2 + (2− j)λ1 − ω̃1 − ω̃2

q̃3 = nλ3 + (2− n)λ2 − ω̃2 − ω̃3

q̃4 = nλ3 + (2− n)λ2 − 2ω̃2

q̃5 = jλ2 + (2− j)λ1 − 2ω̃2

q̃6 = nλ3 + (2− n)λ2 − 2ω̃3 . (3.2)

We notice that we have four independent angles, since q̃5 and q̃6 can be expressed as

q̃5 = 2q̃2 − q̃1, q̃6 = 2q̃3 − q̃4. The Laplace angle is defined as

ΦL ≡ nλ3 + (2− n− j)λ2 − (2− j)λ1 .

We notice that in this case the leading terms of the expansion of the perturbing function

are of the second order in the eccentricity. A de Sitter-Like resonance corresponds to an

equilibrium solution in the variables q̃1, q̃2, q̃3, q̃4, while in the Laplace-like solution the

angle q̃3 circulates.
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3.3. Resonance j : (j − 1)&n : (n − 2). The expansion of the perturbing function

contains the following angles, which are relevant for the j : (j−1)&n : (n−2) resonance:

q̃1 = jλ2 + (1− j)λ1 − ω̃1

q̃2 = jλ2 + (1− j)λ1 − ω̃2

q̃3 = nλ3 + (2− n)λ2 − ω̃2 − ω̃3

q̃4 = nλ3 + (2− n)λ2 − 2ω̃2

q̃5 = nλ3 + (2− n)λ2 − 2ω̃3 . (3.3)

Since the system is 6-dimensional, an additional angle q̃6 should be introduced, which is

in fact cyclic for the resonant Hamiltonian. We can easily see that q̃5 = 2q̃4 − q̃3, which

means that the independent coordinates are q̃1, q̃2, q̃3, q̃4. The Laplace angle is defined

as

ΦL ≡ nλ3 + (2− n− 2j)λ2 − (2− 2j)λ1 .

The leading terms of the expansion of the perturbing function contain powers of first and

second order in the eccentricity. A de Sitter-like resonance corresponds to an equilibrium

solution of the coordinates q̃1, q̃2, q̃3, q̃4, while in the Laplace-like resonance the angle q̃3

rotates.

3.4. Phase portraits of Laplace and de Sitter resonances. Following [dS31], the

de Sitter resonant configuration is obtained by studying the equilibrium points of a

simplified model of the satellite’s interactions. The detailed procedure can be found

in [CPP18] to which we refer for details. Here, for completeness, we give the general

idea, which is based on the following analysis of a simplified model. The original 8

degrees of freedom (hereafter DOF) system is reduced by translational symmetry to a

6 DOF system. By transforming to resonant angular variables as in Sections 3.1, 3.2,

3.3, one recognizes that two variables are cyclic, thus obtaining a 4 DOF system. By

means of a Lie transformation, one can construct a resonant normal form to describe

the reduced dynamics around the equilibrium. To this end, the 4 DOF Hamiltonian

is expanded around the equilibrium up to second order in the momenta and retaining

at most up to second-order terms in the eccentricities. Through a nearly-integrable

canonical transformation, one computes a resonant normal form, which eventually yields

a 1 DOF Hamiltonian. This system admits an elliptic fixed point, to which we refer

as the de Sitter equilibrium. The 1 DOF phase space is then composed by the de

Sitter equilibrium surrounded by librational curves; going farther from the equilibrium,
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2 : 1&2 : 1 3 : 2&3 : 2 2 : 1&3 : 2 3 : 1&3 : 1 2 : 1&3 : 1
q1 2λ2 − λ1 − ω̃1 3λ2 − 2λ1 − ω̃1 2λ2 − λ1 − ω̃1 3λ2 − λ1 − 2ω̃1 2λ2 − λ1 − ω̃1

q2 2λ2 − λ1 − ω̃2 3λ2 − 2λ1 − ω̃2 2λ2 − λ1 − ω̃2 3λ2 − λ1 − ω̃1 − ω̃2 2λ2 − λ1 − ω̃2

q3 2λ3 − λ2 − ω̃3 3λ3 − 2λ2 − ω̃3 3λ3 − 2λ2 − ω̃3 3λ3 − λ2 − ω̃2 − ω̃3 3λ3 − λ2 − ω̃2 − ω̃3

q4 3λ2 − 2λ3 − λ1 5λ2 − 2λ1 − 3λ3 λ1 − 4λ2 + 3λ3 4λ2 − 3λ3 − λ1 − ω̃1 + ω̃2 3λ2 − 3λ3 − λ1 + ω̃2

q5 λ1 − λ3 λ1 − λ3 λ1 − λ3 λ1 − λ3 λ1 − λ3
q6 λ3 λ3 λ3 λ3 λ3

Table 1. Angular coordinates for the different resonances.

the trajectories become rotational (compare with Figure 1). We notice that the actual

Laplace resonance among the Galileian satellites corresponds to a rotational trajectory

in which the angle ω̃3 ranges between 0o and 360o.

In the following we will analyze the resonances 2 : 1&2 : 1, 3 : 2&3 : 2, 2 : 1&3 :

2, 3 : 1&3 : 1, 2 : 1&3 : 1. In such cases, the initial data corresponding to the de

Sitter-like equilibrium can be computed as follows. According to [CPP18], we consider

the Hamiltonian given by the Keplerian part HKep, the mutual satellites’ interactions

Hint, limited to first order in the eccentricity, and the Hamiltonian Hobl describing the

oblateness of the planet. Generalizing the results of [Hen84], [Mal91], we introduce the

resonant angle variables q1, ..., q6 as defined in Table 1, which are slightly modified with

respect to the variables (3.1), (3.2), (3.3), and we denote by P1, ..., P6 the corresponding

momenta.

The transformed Hamiltonian HTR becomes of the following form:

HTR = HTR(P1, ..., P6, q1, ..., q4) ;

since q5, q6 are cyclic, the corresponding momenta P5, P6 are integrals of motion, thus

leading to a 4-DOF Hamiltonian system.

A de Sitter-like equilibrium corresponds to a stable stationary solution of Hamilton’s

equations associated to HTR. Precisely, let us write P4 as

P4 = P 4 + δP4 ,

where P 4, P5 = P 5, P6 = P 6 can be computed from the initial data. Finally, we solve

the system of equations

∂HTR

∂Pj
= 0 ,

∂HTR

∂qj
= 0 , j = 1, ..., 4 ,

to get P 1, P 2, P 3, δP4, which correspond to the de Sitter-like equilibrium. We will refer

to these values as the de Sitter initial data; they will be compared in Section 4 to other
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kinds of initial data. The phase space portraits in the planes (q3, P3) given in Figure 1

show different features with the equilibrium located at q3 = 0 or q3 = π. The resonances

2 : 1&2 : 1, 3 : 2&3 : 2, 2 : 1&3 : 2 (which are computed with initial data q1 = 0,

q2 = q3 = q4 = π) show an equilibrium at q3 = π; on the contrary, the equilibrium is

located at q3 = 0 for the 3 : 1&3 : 1 resonance (with initial data q1 = q4 = π, q2 = q3 = 0)

and for the 2 : 1&3 : 1 resonance (with initial data q1 = q3 = 0, q2 = q4 = π).

4. Sensitivity to variations of elements and parameters

The behavior of the different resonances as some data, like semimajor axes, eccen-

tricities, and masses, are varied, is an important indicator of the probability of finding

Galileian-like satellites in a Laplace-like resonance. Such analysis is the content of this

Section, where we study in detail the case of the 2 : 1&2 : 1 resonance, namely the

classical resonance that occurs within the Galileian satellites of Jupiter; hence, all values

of the parameters and initial data will pertain to the system Io-Europa-Ganymede as

the satellites, to Jupiter as the planet with the further attraction of Callisto and the

Sun. The other cases will refer to a virtual system formed by Io, Europa, Ganymede,

but formally residing in the other resonances. Again a fourth satellite and the Sun are

added to get a model close to the observed Galileian satellites’ system.

4.1. Resonance 2 : 1&2 : 1. The 2 : 1&2 : 1 Laplace resonance of the Galileian satellites

is characterized by the following relations:

λ1 − 2λ2 + ω̃1 = 0

λ1 − 2λ2 + ω̃2 = 180o

λ2 − 2λ3 + ω̃2 = 0 . (4.1)

We will base our computations on a model limited to the resonant Hamiltonian Hres;

later we will analyze the complete Hamiltonian and compare it with the resonant one

(see Section 2.5). To analyze the dependence of the resonance upon the initial conditions

and parameters, we let some quantities vary, e.g. a1, a2, a3, m1, e1, etc. Let us generically

denote by η one of such quantities. We say that η varies around ηc within a range of size

δ, if the following values are considered:

η = ηc (1− δ k
3

) , k = −3, ..., 3 . (4.2)

The choice of taking k between −3 and 3 is obviously arbitrary and it is motivated by

the need of displaying a reasonable number of curves in the following figures.
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Figure 1. Phase space in the (q3, P3) plane: upper left resonance 2 : 1&2 :
1, upper right resonance 3 : 2&3 : 2, middle left resonance 2 : 1&3 : 2,
middle right resonance 3 : 1&3 : 1, bottom resonance 2 : 1&3 : 1.
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The panels of Figure 2 shows the variation of the Laplace angle with time, say ΦL =

ΦL(t) defined in Sections 3.1, 3.2, 3.3, over a time span of 10 years; the three panels of

Figure 2 show three different choices of the initial conditions as we explain below. In

each panel, the semimajor axis of the inner satellite, say S1 is varied around the observed

value of Io, namely (see (4.2))

a1 = aIo(1− 10−4
k

3
) , k = −3, ..., 3 , (4.3)

where aIo is given in Table 2 (we refer to aIo, aEu, aGa, respectively, as the effective

semimajor axes of Io, Europa, Ganymede as in Table 2; same notation is used for the

masses and eccentricities).

In the left panel of Figure 2 we consider the angles corresponding to the position given

by the NASA’s Spice toolkit1 at the epoch J2000:

λ
(0)
j = M

(0)
j + ω

(0)
j + Ω

(0)
j , ω̃

(0)
j = ω

(0)
j + Ω

(0)
j , j = 1, 2, 3 , (4.4)

where the mean anomaly M
(0)
j , the argument of perijove ω

(0)
j , the longitude of the ascend-

ing node Ω
(0)
j are given in Table 3. Since we take the observed (and not the theoretical)

initial data, the resonance relations (4.1) are satisfied only approximately.

As for the momenta (see (2.11)), we define the initial values through the following

relations:

L
(0)
1 =

m1√
1 + m1

m0

√
a
(0)
1 P̃

(0)
1 =

m1

2
√

1 + m1

m0

√
a
(0)
1 (e

(0)
1 )2

L
(0)
2 =

m2(1 + m1

m0
)√

1 + m1

m0
+ m2

m0

√
a
(0)
2 P̃

(0)
2 =

m2(1 + m1

m0
)

2
√

1 + m1

m0
+ m2

m0

√
a
(0)
2 (e

(0)
2 )2

L
(0)
3 =

m3(1 + m1

m0
+ m2

m0
)√

1 + m1

m0
+ m2

m0
+ m3

m0

√
a
(0)
3 P̃

(0)
3 =

m3(1 + m1

m0
+ m2

m0
)

2
√

1 + m1

m0
+ m2

m0
+ m3

m0

√
a
(0)
3 (e

(0)
3 )2 .

(4.5)

We will refer to (4.4)-(4.5) as the SPICE initial data.

In the middle panel of Figure 2 we consider another set of initial values for the angles,

so that the relations (4.1) are exactly satisfied:

λ
(0)
1 = 180o , λ

(0)
2 = 0 , λ

(0)
3 = 0 ,

ω̃
(0)
1 = 180o , ω̃

(0)
2 = 0 , ω̃

(0)
3 = 180o , (4.6)

1https : //naif.jpl.nasa.gov/naif/toolkit.html
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Satellite a (km) e m (kg)
Io 4.2203882986903 · 105 4.7208185639340 · 10−3 8.933 · 1022

Europa 6.7125250305998 · 105 9.8185368937703 · 10−3 4.797 · 1022

Ganymede 1.0705037596264 · 106 1.4579323465886 · 10−3 1.482 · 1023

Callisto 1.8827839962701 · 106 7.4398613187732 · 10−3 1.076 · 1023

Table 2. Semimajor axis, eccentricity and mass of the Galileian satellites.

Satellite M ω̃ Ω
Io 3.3518221411689 · 102 2.4307741374309 · 102 1.6168077294496 · 102

Europa 3.4542003028421 · 102 1.8009776174179 · 102 48.941394451402
Ganymede 2.7727673067818 · 102 72.912113692461 2.3160572382619 · 102

Table 3. SPICE initial data of the mean anomaly M , argument of perjove
ω, longitude of the ascending node Ω (in degrees) of the first three Galileian
satellites.

while the momenta are fixed as in (4.5). We refer to the choice (4.5)-(4.6) as the Laplace

initial data. As a further choice of the initial values, we proceed as follows: while keeping

the data for the angles as in (4.6), we select the initial values of the momenta in the

right panel of Figure 2, as the values that correspond to the de Sitter resonance. These

data are given by the computations described in Section 3, which yield the initial values

of the quantities P1, ..., P6. We then multiply P3 by a factor 10, so to take an initial

value which does not correspond exactly to the equilibrium, although still belonging to

the libration region around the de Sitter equilibrium. We refer to this choice of the initial

conditions as the de Sitter initial data.

We specify that, beside the values provided in Tables 2 and 3, we take the masses of the

planet and the Sun as mP = 1.8986 · 1027 kg, mSun = 1.9885 · 1030 kg, the mean radius of

the planet as b = 71492 km, the planet-Sun distance as aPS = 7.4281042937352 · 108 km

and the values of the first two zonal harmonic coefficients as J2 = 1.478 · 10−2 and

J4 = −5.87 · 10−4. With this choice we have identified the planet with Jupiter, since all

data correspond to those of Jupiter.

From the left and middle panels of Figure 2, we infer that a variation of the semimajor

axis of S1 provides drastic changes in the behavior of the Laplace angle with excursions

even larger than 20o, although there is not much difference by taking SPICE and Laplace

initial data (compare Figure 2 left and middle). When we are close to the de Sitter

equilibrium, then a change in a1 does not provoke any substantial variation of the Laplace

angle (Figure 2, right panel, where all curves overlap to the accuracy of the plot). These
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Figure 2. Resonance 2 : 1&2 : 1. Time evolution of the Laplace angle
ΦL corresponding to an integration of 10 years with a1 varied around aIo
within a range of size 10−4. Left: SPICE initial data. Middle: Laplace
initial data. Right: de Sitter initial data.

results make clear that an accurate knowledge of the initial value of the semimajor axis of

the inner satellite is mandatory to obtain a proper evaluation of the libration’s amplitude

of the Laplace angle of the actual Galileian satellites (compare with [PCP18]).

The effect of varying the semimajor axes of S2 and S3 (in our case coinciding with

Europa and Ganymede) is similar and it is shown in Figure 3, where the left panel refers

to the variation of a2, while the right panel to that of a3 (the initial conditions are those

of the middle panel of Figure 2, namely Laplace initial data). The effect of the variation

of a2 is more important than that of a1 and definitely of a3, a result that we could have

expected, since S2 is in resonance with both S1 and S3.

Beside the Laplace angle, we look next at the variation of the other elements. The

changes of semimajor axes and eccentricities as the reference value of a1 varies are given in

Figure 4, top panels, which make it evident that the semimajor axes and eccentricities are

not heavily affected by changes of a1, when compared to the effect on the Laplace angle.

Very tiny variations of the Laplace angle are provoked by a change ofm1 = mIo(1−10−1 k
3
)

and e1 = eIo(1 − 10−2 k
3
), k = −3, ..., 3, as shown in Figure 4, middle panels. The effect

of the variation of J2 is provided in the bottom panels of Figure 4, where on the left it is

J2 = JJup2 (1− 10−2 k
3
) and on the right it is J2 = JJup2 (1− 10−1 k

3
), where we recall that

JJup2 is the value of J2 for Jupiter. In the first case the behavior of the Laplace angle is

not much affected by the change of J2 (Figure 4, bottom left panel), while for a larger

variation of J2 there is a marked displacement by taking different values of J2 (Figure 4,

bottom right panel).

The results provided so far are based on the analysis of the resonant Hamiltonian Hres.

A comparison with the complete Hamiltonian, expanded to second order of the eccen-

tricities, is given in Figure 5. To highlight the similarities and discrepancies between the
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Figure 3. Resonance 2 : 1&2 : 1. Time evolution of the Laplace angle
corresponding to an integration of 10 years. Left: a2 is varied around aEu
within a range of size 10−4, Laplace initial data. Right: a3 is varied around
aGa within a range of size 10−4, Laplace initial data.

complete and resonant Hamiltonians, only the Keplerian part and the mutual satellites’

interactions have been considered, since we know that the effect of the oblateness is in-

trinsically relevant and it might produce discrepancies which might hidden the difference

between the behaviors of the complete and resonant Hamiltonians. Figure 5, left panel,

gives the comparisons of the Laplace angle, showing that the complete and resonant

Hamiltonians determine a similar behavior with the same period although with different

amplitudes. The middle panel of Figure 5 gives the semimajor axes of S1, S2, S3, show-

ing that the results associated to the resonant Hamiltonian are a sort of average of those

associated to the complete Hamiltonian. The eccentricities of S1, S2, S3 are given in the

right panel of Figure 5, showing a good agreement for S1, S3, while some discrepancies

appear for S2, whose eccentricity value is larger than that of the other satellites.

A measure of the contribution of the different terms of the Hamiltonian is given in

Figure 6. The integration of the complete Hamiltonian, now including all effects (i.e.,
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Figure 4. Resonance 2 : 1&2 : 1. Top: Time evolution of the difference
between the semimajor axis and the reference values given in Table 2 for the
3 satellites (left) and eccentricity of the 3 satellites (right), corresponding to
an integration of 10 years and for Laplace initial data with a1 varied around
aIo within a range of 10−4. Middle panels: time evolution of the Laplace’s
argument corresponding to an integration of 10 years and for Laplace initial
data with m1 varied around mIo within a range of 10−1 (left) and e1 varied
around eIo within a range of 10−2 (right). Bottom panels: time evolution
of the Laplace’s argument corresponding to an integration of 10 years and
for Laplace initial data with J2 varied around JJup2 within a range of 10−2

(left) and 10−1 (right).
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Figure 5. Resonance 2 : 1&2 : 1. Comparison between the resonant and
complete Hamiltonians: time evolution of the Laplace’s argument (left),
semimajor axis (middle) and eccentricity (right) corresponding to an inte-
gration of 10 years and for Laplace initial data.

Keplerian part, mutual interactions, oblateness, Sun and Callisto), yields the graph of the

Laplace angle in Figure 6, top left panel, while the resonant Hamiltonian gives the result

in the top right panel, which is - again - a sort of average behavior of that associated

to the complete Hamiltonian. Neglecting the effect of J4 in the resonant Hamiltonian as

in Figure 6, middle left panel, does not provoke significant changes, which are instead

very consistent when discarding the effect of J2 (beside that of J4) as in Figure 6, middle

right panel. This makes clear the role of the oblateness of the planet in shaping the

libration of the Laplace angle. Of little significance are the effects of the Sun and the

fourth satellite as it can be inferred by comparing the middle right and bottom left panels

of Figure 6. Finally, retaining just the secular terms of the mutual satellites’ interactions

of the Hamiltonian leads to a distortion of the libration curve, as it would have been

natural to expect.

4.2. Other resonances. To evaluate the likelihood of being in the actual Laplace res-

onance and to study the dynamics in alternative resonant configurations, we analyze

different case studies, corresponding to the 3 : 2&3 : 2, 2 : 1&3 : 2 resonances, both

containing terms of first order in the eccentricities, the 3 : 1&3 : 1 case, containing terms

of second order in the eccentricities, the 2 : 1&3 : 2 resonance, containing both first and

second order terms in the eccentricities. In all cases the semimajor axes are taken as

a1 = aIo, while a2, a3 are selected so to satisfy the resonant pair (namely k : j&m : n)

and finally we arbitrarily set a4 = 3a3.

To evaluate the sensitivity of the different resonances to variations of the semimajor

axis of the inner satellite, we compute the Fast Lyapunov Indicator ([FLG97]), hereafter

FLI, associated to the different semimajor axes corresponding to a1 = aIo(1 − δ k
3
),

k = −3, ..., 3, for typical values of the parameter δ. We recall that the FLI is obtained
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Figure 6. Resonance 2 : 1&2 : 1. Time evolution of the Laplace’s argu-
ment corresponding to an integration of 10 years and for Laplace initial
data; all effects are taken into account. Top left: complete Hamiltonian.
Top right: resonant Hamiltonian. Middle left: resonant Hamiltonian with-
out J4. Middle right: resonant Hamiltonian without J2 and J4. Bottom
left: resonant Hamiltonian without J2, J4, Sun and Callisto. Bottom right:
resonant Hamiltonian with only secular terms of the mutual satellites’ in-
teractions.

by integrating over a finite time the vector field and the variational equations, and by

taking the norm of the tangent vector over a finite time interval (see [FLG97]). In all

panels of Figures 7 and 8, showing the FLIs, we consider Laplace initial data.

In Figure 7 we give the variation of the Laplace angle on the plots of the left column

and the computation of the FLI in the right column. In some cases a regular behavior

of the Laplace angle was observed on a given time scale, followed by a chaotic one. To
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Figure 7. Left column: time evolution of the Laplace’s argument over
100 years with a1 varied around aIo within a range of 10−5; right column:
computation of the FLI over a time span equal to 36500 days. First row:
resonance 2 : 1&2 : 1, second row: resonance 3 : 2&3 : 2, third row: reso-
nance 2 : 1&3 : 2, fourth row: resonance 3 : 1&3 : 1, fifth row: resonance
2 : 1&3 : 1.
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highlight this phenomenon, in the second and third rows the time scale is limited to 10 000

days, why in all other plots it extends over 36 500 days. The upper panel refers to the

2 : 1&2 : 1 resonance, where a regular behavior is observed, both in terms of the variation

of the Laplace angle and the corresponding FLI. A different situation is observed for the

3 : 2&3 : 2 (second row) and 2 : 1&3 : 2 (third row) resonances, where the Laplace angle

is librating over a given interval of time (say, 8 000 days for the 3 : 2&3 : 2 resonance

and 5 000 days for the 2 : 1&3 : 2 resonance) with a relatively small value of the FLI,

followed by a strongly chaotic behavior characterized by large values of the FLI. In the

last two cases, 3 : 1&3 : 1 and 2 : 1&3 : 1, the behavior of the Laplace angle and of the

FLI denotes a chaotic dynamics, since the beginning of the integration.

Chaos indicators are essential tools to distinguish between regular and chaotic motions.

Hence, we explore the behavior of the resonances as the semimajor axis of the inner planet

has a wider variation with respect to Figure 7. The results of the computation of the

FLI for the different resonances is consistent with the expectation of an increase of chaos,

although at different levels, consistently with what we already found in Figure 7. The

results are shown in Figure 8, which confirm the higher sensitivity to variations of the

inner satellite semimajor axis, with the exception of the 2 : 1&2 : 1 resonance, which

displays a very limited chaotic behavior.

5. Laplace vs. de Sitter

As we mentioned in Section 3, the difference between the de Sitter and Laplace con-

figurations resides in the behavior of the angle q3, which librates in the de Sitter regime,

while it circulates in the Laplace regime. Hence, it is definitely interesting to analyze the

variation of q3 with time as some quantities are varied. It turns out that a special role is

played by the eccentricities of the satellites. In particular, Figure 9 shows the graph of

q3 over 10 years for a sample of resonances, precisely 2 : 1&2 : 1 (upper row), 2 : 1&3 : 2

(middle row), 3 : 1&3 : 1 (bottom row). In these plots the eccentricities are varied within

a range equal to 0.9 (e1 in the left panels, e2 in the middle panels, e3 in the right panels).

A comparison among the different panels of Figure 9 shows that the 2 : 1&2 : 1

resonance is regular to variations of e1, while it shows a change of behaviors from rotation

to libration when varying e2 and especially e3. As already noticed in Figures 7 and 8,

the other resonances show a very irregular behavior, with transitions from libration to

rotation for several values of the eccentricities and even within a single value of the
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Figure 8. FLI over a time span equal to 36500 days with a1 varied around
aIo within a range of 10−4 in the left column and 10−3 in the right column.
First row: resonance 2 : 1&2 : 1, second row: resonance 3 : 2&3 : 2, third
row: resonance 2 : 1&3 : 2, fourth row: resonance 3 : 1&3 : 1, fifth row:
resonance 2 : 1&3 : 1.
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Figure 9. Time evolution of the angle q3 over 10 years for eccentricities
varied within a range of 0.9 and Laplace initial data. Top panels: resonance
2 : 1&2 : 1, middle panels: resonance 2 : 1&3 : 2, lower panels: resonance
3 : 1&3 : 1. Left columns: e1 is varied around eIo, middle columns: e2 is
varied around eEu, right columns: e3 is varied around eGa.

parameters. This is reflected also by the behavior of the angle q3 for the 2 : 1&3 : 2 and

3 : 1&3 : 1 resonances.

Such behavior confirms that the most stable configuration, with respect to variations

of the parameters, is the 2 : 1&2 : 1 resonance, where the Galileian satellites are presently

located.

Appendix A. Expansion of the direct part of the perturbing function

Let b
(j)
s (α) denote the Laplace coefficients defined as b

(j)
s (α) = 1

π

∫ 2π

0
cos(jψ)dψ

(1−2α cosψ+α2)s
.

Their n-th derivatives Dnb
(j)
s can be computed recursively as

Db(j)s = s(b
(j−1)
s+1 − 2αb

(j)
s+1 + b

(j+1)
s+1 ) ,

Dnb(j)s = s(Dn−1b
(j−1)
s+1 − 2αDn−1b

(j)
s+1 +Dn−1b

(j+1)
s+1 − 2(n− 1)Dn−2b

(j)
s+1) .
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The expansion of R(i,j)
D of the direct term aj/|̃r0j − r̃0i| including only terms of second

order in the eccentricities (see Section 2.2.1) is given by ([MD99])

R(i,j)
D = −1 +

4∑
k=−4

R̃ij
D,k ,

where R̃ij
D,k is given by the following expression:

R̃ij
D,k = (1/2bk1

2
(αij)− 1/2(e2i + e2j)k

2bk1
2
(αij) + 1/4(e2i + e2j)αijDb

k
1
2
(αij)

+ 1/8(e2i + e2j)(αij)
2D2bk1

2
(αij)) cos(kλi − kλj) + (5/16e2i kb

k
1
2
(αij) + 1/4e2i k

2bk1
2
(αij)

− 1/8e2iαijDb
k
1
2
(αij)− 1/4e2i kαijDb

k
1
2
(αij) + 1/16e2i (αij)

2D2bk1
2
(αij)) cos(2λi + kλi − 2ω̃i − kλj)

+ (1/2eikb
k
1
2
(αij)− 1/4eiαijDb

k
1
2
(αij)) cos(λi + kλi − ω̃i − kλj)

+ (−(5/16)e2i kb
k
1
2
(αij) + 1/4e2i k

2bk1
2
(αij)− 1/8e2iαijDb

k
1
2
(αij)

+ 1/4e2i kαijDb
k
1
2
(αij) + 1/16e2i (αij)

2D2bk1
2
(αij)) cos(2λi − kλi − 2ω̃i + kλj)

+ (−(1/2)eikb
k
1
2
(αij)− 1/4eiαijDb

k
1
2
(αij)) cos(λi − kλi − ω̃i + kλj)

+ (1/4bk1
2
(αij)ej − 1/2kbk1

2
(αij)ej + 1/4αijDb

k
1
2
(αij)ej) cos(kλi + λj − kλj − ω̃j)

+ (1/4eikb
k
1
2
(αij)ej − 1/2eik

2bk1
2
(αij)ej − 1/4eiαijDb

k
1
2
(αij)ej

+ 1/2eikαijDb
k
1
2
(αij)ej − 1/8ei(αij)

2D2bk1
2
(αij)ej) cos(λi + kλi − ω̃i + λj − kλj − ω̃j)

+ (−(1/4)eikb
k
1
2
(αij)ej − 1/2eik

2bk1
2
(αij)ej − 1/4eiαijDb

k
1
2
(αij)ej

− 1/2eikαijDb
k
1
2
(αij)ej − 1/8ei(αij)

2D2bk1
2
(αij)ej) cos(λi − kλi − ω̃i + λj + kλj − ω̃j)

+ (1/4bk1
2
(αij)ej + 1/2kbk1

2
(αij)ej + 1/4αijDb

k
1
2
(αij)ej) cos(kλi − λj − kλj + ω̃j)

+ (1/4eikb
k
1
2
(αij)ej + 1/2eik

2bk1
2
(αij)ej − 1/4eiαijDb

k
1
2
(αij)ej

− 1/8ei(αij)
2D2bk1

2
(αij)ej) cos(λi + kλi − ω̃i − λj − kλj + ω̃j)

+ (−(1/4)eikb
k
1
2
(αij)ej + 1/2eik

2bk1
2
(αij)ej − 1/4eiαijDb

k
1
2
(αij)ej)

cos(λi − kλi − ω̃i − λj + kλj + ω̃j)

+ (−(1/8)ei(αij)
2D2bk1

2
(αij)ej) cos(λi − kλi − ω̃i − λj + kλj + ω̃j)

+ (1/4bk1
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