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Abstract. We consider the dynamics of a point-mass object,
e.g. a small satellite, around a primary rigid body, e.g. a planet.
We assume that the planet is oblate and axially symmetric with
respect to the vertical axis. Revisiting a procedure described in
[19], we make use of the first integrals (the energy and the projec-
tion of the angular momentum on the vertical axis), so to reduce
the problem to the study of a one-dimensional, time-dependent
Hamiltonian system. Such Hamiltonian depends upon control pa-
rameters, which represent the coefficients of the zonal terms of the
gravitational potential. We provide the explicit expressions of the
most relevant terms of the expansion of the potential in spherical
harmonics. Averaging over the fast angles one obtains a one-
dimensional system. A Poincaré map of such Hamiltonian is also
introduced. We discuss the conditions under which the Hamilton-
ian (or the mapping) satisfies the twist condition, which is needed
in KAM theory to ensure the existence of rotational invariant sur-
faces. A qualitative description of the dynamics in the twist and
non-twist regimes is performed; it is based on the analysis of the
equilibrium solutions and on the occurrence of bifurcations as the
parameters are varied.
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1. Introduction

A reliable formulation of satellite dynamics requires the introduc-

tion of a model in which the central body is not considered just as
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a point-mass. Therefore, it is convenient to assume that the central

object, hereafter the planet, is a rigid body with oblate shape and

axial symmetry with respect to the vertical axis. We assume that

the satellite and the planet interact just through the gravitational

force and we neglect the influence due to other bodies as well as tidal

torques that may arise from the non-rigidity of the planet. The model

which describes the oblate planet problem is governed by a Hamil-

tonian function, which can be conveniently expressed in terms of the

Delaunay action-angle variables (see, e.g., [3]). According to a proce-

dure described in [19] (see also [13], [18], [23], [24]), the Hamiltonian

can be reduced by using the first integrals of motion given by the en-

ergy and the projection of the angular momentum on the vertical axis.

Using such integrals and averaging over the fast angle (i.e., the mean

anomaly), one is led to consider a one-dimensional, time-dependent

Hamiltonian function in action-angle variables, where the action G is

related to the eccentricity of the orbit, while the angle g represents

the argument of perigee. Correspondingly, one can introduce a dis-

crete mapping as the Poincaré map of the Hamiltonian at multiples

of 2π.

The averaged reduced Hamiltonian can be decomposed in the form

(compare with (2.12) below)

K(G, g; L̃,H) = K0(G;H) + εK1(G, g; L̃,H) ,

where L̃, H are the first integrals, K0 represents the integrable Hamil-

tonian, K1 is the perturbing function which is multiplied by a param-

eter ε (depending on the so-called zonal coefficients Jk of the gravi-

tational potential), that we assume to be small ([17]). If only J2 is

considered, then the problem is usually called the J2-problem.

The oblate planet problem (or its variant - the J2-problem) can

be used for the description of the artificial satellite dynamics, but
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it has also received attention in various contexts, since it has been

analyzed as a bench test of different aspects in Dynamical Systems and

Astrodynamics. Most notably, we mention the use of this model in

connection to the proof of its non-integrability based on Lerman ([8])

or Ziglin ([16]) theorems, the global structure of the reduced phase

space ([10]), the analysis of collision orbits ([22]), the investigation of

periodic solutions ([4, 18, 19]). Particular values of a control parameter

(the inclination) lead to a model which paves the way to the study of

the non-twist dynamics that has been carefully investigated in different

examples (see, e.g., [11, 26, 29, 31]. Finally, an application of KAM

theory is given, e.g., in [19] by applying Moser’s small twist theorem;

the oblate planet model is also taken as an appropriate example to

prove the existence of invariant curves within the non-twist regime

(see, e.g., [12, 15]).

Rather than being interested in the orbital propagation of the satel-

lite, we concentrate on the qualitative and geometrical aspects of the

model, especially by looking at the behavior of the dynamics as some

control parameters are varied. In particular, we analyze the problem

under non-degenerate and degenerate conditions, precisely the twist

and non-twist conditions (see, e.g., [11, 12, 26, 27, 29]), and in such

cases we study the occurrence of bifurcations of equilibria (see, e.g.,

[7, 14, 28]).

To be more precise, we analyze the oblate plane model when a rele-

vant quantity, represented by the second derivative of the unperturbed

Hamiltonian, is varied. Precisely, when such derivative is different

from zero, the system is non-degenerate or, equivalently, the Poincaré

map satisfies the twist condition; for the values at which such deriva-

tive is zero, we say that the system is degenerate or that the map is

non-twist. Non-degeneracy and twist conditions are required to prove
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the celebrated Kolmogorov-Arnold-Moser (hereafter, KAM) theorem

([20], [1], [25]), which allows one to show the existence of rotational

invariant surfaces, with the property that they are graphs over the

angle coordinate. It can be easily shown that the oblate planet prob-

lem becomes non-twist at specific values of the inclination. For such

values, the dynamics presents a behavior quite different from the twist

case, with the occurrence of so-called meandering tori, which are not

graphs over the angle variables.

Beside showing twist and non-twist behaviors, the model we con-

sider offers also another interesting feature, precisely the occurrence

of bifurcations of equilibria as a control parameter is varied: in the

present setting, the role of control parameter is played by the asym-

metric coefficient J3. By varying this parameter, we observe the birth

or annihilation of periodic orbits, either in the twist and non-twist

regimes. In summary, due to its twofold intrinsic interest, we propose

the oblate planet problem as a paradigmatic model in which it is pos-

sible to study two different interrelated aspects: the twist/non-twist

regimes and the occurrence of bifurcations.

This paper is organized as follows. In Section 2 we revisit the

method used in [19] to introduce the oblate planet model and we give

an explicit approximated expression of the potential; we also discuss

the twist condition as a function of the orbital elements. In Section 3

we draw some conclusions on the existence of invariant surfaces. A

qualitative description of the dynamics is provided in Section 4, where

we compute the equilibrium positions and we analyze bifurcation phe-

nomena as the control parameters are varied.
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2. The oblate planet model

We consider a satellite subject to the gravitational influence of a

rigid oblate planet. We assume that the mass of the satellite is negli-

gible with respect to that of the planet (for example, the satellite is a

spacecraft). After introducing the potential function in Section 2.1, we

revisit a method described in [19], which allows us to reduce the equa-

tions of motion to a one-dimensional, time-dependent Hamiltonian

model. The method makes use of the first integrals of motion, namely

the energy and the projection of the angular momentum on the ver-

tical axis. Then, the equations of motion are conveniently expressed

in terms of the mean anomaly (Section 2.2); such equations can be

integrated over a period to obtain the Poincaré map (see Section 2.3).

In particular, we consider the system (and the map) obtained after av-

eraging over the fast variable (see Section 2.4). The twist properties

of such mapping are discussed in Section 2.5.

2.1. The potential. Let us consider an inertial reference frame (O, x, y, z),

whose origin coincides with the center of mass of the planet, the z axis

is aligned with the polar axis, while the x and y axes lie on the equato-

rial plane to form an oriented frame. Denoting by r⃗ and v⃗ the position

and velocity vectors of the satellite, we have

dr⃗

dt
= v⃗ ,

dv⃗

dt
= −∇V ,

where V denotes the potential energy. We assume that the planet is

axially symmetric with respect to the z axis. Thanks to this assump-

tion, the potential energy V = V (x, y, z) can be expanded in terms of

the Legendre polynomials as

V (x, y, z) = −µ

r
+ µ

∞∑
j=2

Jj
Re

rj+1
Pj

(z
r

)
, (2.1)
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where r = r(x, y, z) is the Euclidean norm of r⃗, µ ≡ kM is taken

in normalized units (k denotes the gravitational constant, while M

stands for the mass of the planet) and Re is the equatorial radius

of the planet. We normalize the units of distance so that Re = 1.

The quantities Jj in (2.1) are constants which depend on the mass

distribution of the planet, while the functions Pj are the Legendre

polynomials of degree j. The term corresponding to j = 1 in the series

expansion (2.1) is missing, due to the fact that the center of mass of the

planet coincides with the origin of the inertial frame. Since the planet

is not spherically symmetric, the angular momentum is not constant.

However, assuming axial symmetry of the planet, the projection H of

the angular momentum on the z axis is constant. Another integral

of motion is given by the total energy H̃, which is assumed to be

negative, thus providing bounded unperturbed trajectories. No other

integral of motion can be determined, except for particular choices of

the coefficients Jj; for example, when Jj = 0 for any j, then the model

reduces to Kepler’s problem. Next, we write (2.1) as

V (x, y, z) = UKep(x, y, z) + U(x, y, z) ,

where the Keplerian potential is UKep = −µ
r
and we have introduced

the perturbative potential given by

U (x, y, z) ≡ −µ
∞∑
j=2

Jj
1

rj+1
Pj

(z
r

)
. (2.2)

2.2. A reduced system of equations. We denote the orbital el-

ements as follows: a is the semimajor axis, e the eccentricity, i the

inclination, ℓ the mean anomaly, g the argument of perigee and h the

longitude of the ascending node. Setting n the mean motion, accord-

ing to Kepler’s third law, we have n2a3 = µ.
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Following [19], we make use of the first integrals to describe the

oblate planet model by a non–autonomous, one–dimensional Hamil-

tonian function. To this end, we introduce the Delaunay action vari-

ables defined in terms of the orbital elements as

L = (µa)
1
2 , G = L

(
1− e2

) 1
2 , H = G cos i , (2.3)

while the conjugated angles are ℓ, g, h. We notice that H represents

the integral given by the projection of the angular momentum on the

vertical axis, while the energy coincides with the Hamiltonian function,

that we express as

H̃(L,G,H, ℓ, g) = − µ2

2L2
− U (L,G,H, ℓ, g) , (2.4)

where the function U in (2.2) is now expressed in terms of the Delaunay

variables. We fix the integrals as H = α for some α ∈ R, H̃ = β for

some β ∈ R. Following [19], we solve the equation H̃(L,G, α, ℓ, g) =

β to obtain L = K̃(G,α, ℓ, g, β) for some function K̃, so that we

can consider the Hamiltonian H̃ as depending just on G, ℓ, g and

parametrized by α, β.

Finally, we consider ℓ instead of t as an independent variable to

obtain the equations

dg

dℓ
=

∂H̃
∂G

∂H̃
∂L

,
dG

dℓ
= −

∂H̃
∂g

∂H̃
∂L

, (2.5)

where H̃ = H̃
(
K̃ (G,α, ℓ, g, β) , G, α, ℓ, g

)
. The final step consists in

differentiating H̃
(
K̃ (G,α, ℓ, g, β) , G, α, ℓ, g

)
= β with respect to the

variables G and g to obtain

∂H̃

∂L

∂K̃

∂G
+

∂H̃

∂G
= 0 ,

∂H̃

∂L

∂K̃

∂g
+

∂H̃

∂g
= 0 . (2.6)
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Setting

K(G, g, ℓ;α, β) ≡ K̃(G,α, ℓ, g, β)− µ

(−2β)
1
2

(2.7)

and using (2.5), (2.6), we obtain

dg

dℓ
= −∂K(G, g, ℓ;α, β)

∂G
,

dG

dℓ
=

∂K(G, g, ℓ;α, β)

∂g
. (2.8)

We remark that the quantities α, β cannot be arbitrary, but they must

satisfy the inequalities

0 ≤ α ≤ µ

(−2β)
1
2

.

2.3. The Poincaré map. Let us introduce a new variable L̃ through

the equation −β = µ2/2L̃2. By using the energy integral and the

Hamiltonian defined by the equation (2.4), we get

µ2

2L̃2
=

µ2

2L2
+ U (L,G, ℓ, g, α) ,

that we can invert to obtain L in terms of L̃, hence of β. Following

[18], we can reduce to the study of the Poincaré mapping associated

to (2.8), described by the equations

G(2π) = G(0) +

∫ 2π

0

∂K

∂g
(G(ℓ), g(ℓ), ℓ;α, β) dℓ

g(2π) = g(0)−
∫ 2π

0

∂K

∂G
(G(ℓ), g(ℓ), ℓ;α, β) dℓ ,

(2.9)

where (G(0), g(0)) denote the initial conditions. Given the depen-

dence of K on the variables (G, g, ℓ), we need to express U in terms of

such variables, as described in the following section where an averaged

approximation of the potential is considered.



THE OBLATE PLANET PROBLEM 9

2.4. The averaged problem. Due to the assumption of axial sym-

metry, we limit to consider the so–called zonal harmonics in the ex-

pansion of the potential ([2]). Therefore, U in (2.2) can be written as

U = V20 + V30 + ..., where the terms Vj0 are defined by

Vj0 =
µ

a(L̃)j+1

j∑
p=0

Fj0p (i (G,H))
∞∑

q=−∞

Gjpq(e(G, L̃))Hj0pq (g, ℓ) ,

(2.10)

where a = a(L̃) = L̃2/µ, e = e(G, L̃) =

√
1−G2/L̃2, i = i (G,H) =

arccos (H/G), while the expressions of the functions Fjmp, Gjpq, Hjmpq

are recalled in Appendix A.

In the expansion (2.10) we consider only the terms with q = 2p− j,

since we are just interested to terms of U with zero average with

respect to ℓ. After tedious computations, we obtain the following

expressions for V20 and V30, which provide the potential U truncated

to the first two terms, namely U = V20 + V30 with

V20 = J2µ
4L̃−3G−3

(
3

4

H2

G2
− 1

4

)
,

V30 = 2 J3µ
5L̃−3G−5 sin (g)

(
15

16

H2

G2
− 3

16

)(
1− H2

G2
− G2

L̃2
+

H2

L̃2

) 1
2

.

(2.11)

Notice that the secular terms appear only in the functions Vj0 with

j even. From the relations (2.7) and (2.11), we obtain the following

expression for the Hamiltonian K, averaged with respect to ℓ:

K(G, g; L̃,H) = J2µ
2G−3

(
3

4

H2

G2
− 1

4

)
+ 2 J3µ

3G−5 sin (g)

(
15

16

H2

G2
− 3

16

)(
1− H2

G2
− G2

L̃2
+

H2

L̃2

) 1
2

.

(2.12)
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Finally, we can give an explicit form to the Poincaré map (2.9) asso-

ciated to the averaged model and we can introduce the following map

M : R × T → R × T truncated up to first order in J3, where G0, g0

denote the solutions at time t = 0, while G1, g1 are the solutions at

t = 2π:

G1 = G0 + 2πJ3 Fg (G0, g0)

g1 = g0 − 2π [J2γ (G1) + J3FG (G1, g0)] ; (2.13)

in the above expressions, the functions γ, Fg and FG are defined by

following the relations:

γ(G1) =
3

4

µ2

G4
1

(1− 5
H2

G2
1

) , (2.14)

Fg (G0, g0) = 2 µ3G−5
0 cos (g0)

3

16

(
5
H2

G2
0

− 1

)(
1− H2

G2
0

− G2
0

L̃2
+

H2

L̃2

) 1
2

(2.15)

and

FG (G1, g0) = 2 µ3 sin (g0)

(
15

16

1

G6
1

− 105

16

H2

G8
1

)(
1− H2

G2
1

− G2
1

L̃2
+

H2

L̃2

) 1
2

+ 2 µ3 sin (g0)

(
15

16

H2

G7
1

− 3

16

1

G5
1

)(
1− H2

G2
1

− G2
1

L̃2
+

H2

L̃2

)− 1
2
(
H2

G3
1

− G1

L̃2

)
.

Remark 1. We underline that in the second equation of (2.13) we

have inserted the iterated value of the G–variable, say G1; this allows

to obtain a better preservation of the area of the mapping M up to

O(J2
3 ), as it can be easily checked by computing the determinant of the

Jacobian of the mapping.

2.5. The twist condition. An important feature of the map (2.13)

is the behavior of the function (2.14). Precisely, the map is said to

satisfy the twist condition, if γ′(G) > 0 in the domain where the

map is considered. Such condition is an essential requirement for the
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application of KAM theory ([20], [1], [25]) on the existence of invariant

curves (see Section 3). On the other hand, maps which do not satisfy

the twist condition admit a peculiar dynamics, which includes curves

which are not graphs (the so-called meandering curves). Note that,

in the following computation instead of considering the iterated value

G1 for the variable G in the equation for g (compare with Remark 1),

we consider the original variable G0 (see also Remark 2 below). Given

the expression (2.14) with G0 in place of G1, we have

γ′ (G0) =
3

2

µ2

G5
0

(2− 15
H2

G2
0

) . (2.16)

We say that the map M satisfies the twist condition, if G0 is such

that

γ′(G0) ̸= 0 . (2.17)

As already remarked in [19], the twist condition is violated for γ′(G0) =

0, namely whenever H2/G2
0 = 2/15 or cos2 i = 2/15, which holds for

i = 68o.583 or i = 111o.417; we shall refer to such values as the non–

twist inclinations. As we shall see in Section 3, we need to exclude

such critical values in order to guarantee the persistence of rotational

invariant curves by means of KAM theory.

Remark 2. The twist quantity (2.16) was obtained by assuming in

(2.14) to have the function at G0 and not at G1. If instead we consider

γ = γ(G1) with G1 as a function of G0 through the first of (2.13), we

obtain:

∂

∂G0

[γ (G1 (G0))] =
∂

∂G1

[γ (G1 (G0))]

(
1 + 2πJ3

∂

∂G0

[Fg (G0, g0)]

)
,

where

∂

∂G1

[γ (G1 (G0))] =
3

2

µ2

G5
1

(2− 15
H2

G2
1

) (2.18)
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and

∂

∂G0

[Fg (G0, g0)] =

= 2µ3 cos(g0)

(
15

16

1

G6
0

− 105

16

H2

G8
0

)(
1− H2

G2
0

− G2
0

L̃2
+

H2

L̃2

) 1
2

+ 2µ3 cos(g0)

(
15

16

H2

G7
0

− 3

16

1

G5
0

)(
1− H2

G2
0

− G2
0

L̃2
+

H2

L̃2

)− 1
2
(
H2

G3
0

− G0

L̃2

)
.

Note that, since we used the iterated variable G1 in (2.14) and since

we considered the expression of the oblate potential up to orders pro-

portional to J3, the expression of the twist functions (2.16) and (2.18)

differ slightly (as far as J3 is small). However, since the quantities

in (2.14) and (2.15) are zero for the same values of the initial incli-

nation, this means that the same happens for the quantities in (2.14)

and (2.18).

3. Invariant curves

The model described by (2.12), or equivalently (2.13), shows differ-

ent features, according to whether the twist or non-twist condition is

satisfied. Under the assumption that (2.17) holds, then we can find

KAM invariant curves, which are characterized by a frequency satisfy-

ing the Diophantine condition. Precisely, let us consider the mapping

M in (2.13), defined on a manifold D ≡ V ×T with V ⊂ R open. We

assume that the frequency ω satisfies the Diophantine condition

| ω
2π

q + p|−1 ≤ ν |q|τ , p ∈ Z , q ∈ Z\{0}

for some ν ≥ 1, τ ≥ 1. Then, we have the following definition of KAM

invariant curve.

Definition 3. A KAM curve for (2.13) with Diophantine frequency

ω is an invariant curve, described parametrically by an embedding P :
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T → D, which satisfies the invariance equation

M◦ P (θ) = P (θ + ω) . (3.1)

Provided that the twist condition is satisfied, then for suitable val-

ues of the parameters we have plenty of KAM rotational curves, whose

existence is guaranteed by KAM theory ([20], [1], [25], see also [21], [6]

and references therein). Following the proof described in [21], the exis-

tence of KAM manifolds can be shown using an a-posteriori approach.

In short, starting with an approximate solution P0 which satisfies the

invariance equation (3.1) up to an error term E0 = E0(θ), say

M◦ P0(θ)− P0(θ + ω) = E0(θ) ,

assuming the twist condition (2.17), if the norm of E0 is sufficiently

small, then there exists a solution Pe which satisfies (3.1) exactly and

such that the norm of Pe − P0 (on a smaller domain compared to

the domain on which P0 is defined) is bounded by the norm of E0,

multiplied by suitable powers of the Diophantine constant ν and by

the inverse of the parameter which measures the domain loss. We refer

to [21] for complete details (see also [5] for an extension of the proof to

some dissipative systems, like the case of a satellite around an oblate

primary and subject to a tidal torque).

An important consequence of the KAM theory within the present

model is that, by proving the existence of two invariant curves, we

obtain a confinement between those invariant manifolds. In fact, any

motion between any two invariant curves will always remain trapped

between the invariant manifolds. Notice that due to (2.3) such con-

finement is indeed a bound on the eccentricity between the values

corresponding to the trapping invariant curves.

When the non-twist condition is violated, we have the appearance

of different phenomena (see, e.g., [11], [14]). For example, there might
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exist several rotational invariant curves and periodic orbits with the

same frequency. Then, it might happen that a parameter change gives

rise to bifurcations of orbits with the same frequency, which generate

either a collision, an annihilation or rather a separatrix reconnection.

For example, in the integrable case J3 = 0, it is clear that the invariant

curves G = ±G0 have the same frequency. As it is well known, non-

twist maps exhibit also the appearance of meandering curves, which

are characterized by the fact that they are not graphs over the angle

variable. Some of these phenomena will appear in the qualitative

description provided in Section 4. We refer to [11], [26], [28], [31],

[29], [30], and references therein, for further details. For a formulation

of KAM theory for non-twist maps we refer, e.g., to [12], [15], [27].

4. Equilibrium solutions and bifurcations

In this Section we perform a qualitative analysis of the model de-

scribed in Section 2. First, we determine the equilibrium solutions

(see Section 4.1), which are characterized by a constant value of the

eccentricity and the argument of perihelion. Equilibrium profiles as-

sociated to the mapping (2.13) allow us to determine the location of

the equilibria and their evolution as the parameters are varied (see

Section 4.2). This analysis is further complemented and widened by

a study of the bifurcations of the equilibria, which is performed in

Section 4.3.

4.1. Equilibrium solutions. With reference to the mapping (2.13),

we proceed to compute the equilibrium points of the mapping, which

correspond to the solutions in which (G, g) are invariant, namely the

eccentricity and the argument of perihelion stay constant under the

effect of the J2 and J3 terms. This kind of trajectories are known in

satellite dynamics as frozen orbits ([9]).
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i) We observe that for G0 = G0 =
√
5α we obtain Fg(G0, g0) =

0 for any value of g0. This solution implies that G1 = G0

and that γ(G1) = 0. The condition on G0 means that the

inclination takes the values i = 63o.435 or i = 116o.565, to

which we will refer as the critical inclination values. To have

the invariance of the angular variable, we need to require that

FG(G0, g0) = 0, which is satisfied for g0 = 0 or g0 = π. In

conclusion, we obtain the following equilibrium points:

G0 =
√
5α , g0 = 0

G0 =
√
5α , g0 = π .

ii) Another equilibrium solution is obtained as follows. We ob-

serve that for g− = π
2
and g+ = 3

2
π we obtain Fg(G0, g±) = 0,

which implies that the action variable is kept fixed. On the

other hand, we look for the values of G1 (equivalently, G0),

such that

J2γ(G1) + J3FG(G1, g±) = 0 . (4.1)

The solutions (not necessarily unique) of (4.1) determine the

equilibrium points of the mapping (2.13). Notice that the equa-

tion (4.1) provides a relation between the eccentricity, the in-

clination and the semimajor axis.

4.2. Equilibrium profiles. We can infer several information from

the graph of the function

F(G1, g0) = −J2γ (G1)− J3FG (G1, g0) (4.2)

computed, for example, at the equilibrium position g0 = 3
2
π and for

fixed values of the quantities L̃, H. The zeros of F(G1,
3
2
π) provide

the values of the action, corresponding to the equilibrium solution
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g0 = 3
2
π. In Figure 1 we fix a value for J2 and we let the parameter

J3 increase, plotting the most significant cases:

(1) a transverse intersection with the horizontal axis (Figure 1, left

panel) corresponds to a single equilibrium point;

(2) a tangency, as in the middle panel of Figure 1, corresponds to

a case where the bifurcation threshold is reached;

(3) for higher values of J3, there appear three equilibria (right

panel of Figure 1).
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Figure 1. Equilibrium profiles for L̃ = 3, G0 = 2.8,

H = G0

√
2
15
, J2 = 10−2; left: J3 = 5 · 10−3, middle:

J3 = 8.83 · 10−3, right: J3 = 9.3 · 10−3.

This analysis, which is quite easy and computationally fast, pro-

vides a very good indication of the equilibrium positions, as it will be

confirmed by a more elaborated study presented in the next section.

4.3. Bifurcation theory for a one degree-of-freedom system.

For a Hamiltonian system, low-dimensional invariant manifolds (ei-

ther equilibria, periodic orbits or invariant tori) organize the struc-

ture of the phase space. For one degree-of-freedom systems, the criti-

cal points of the Hamiltonian function identify the equilibria and the

invariant manifolds associated to the phase flow coincide with the
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level curves of the Hamiltonian. In the case in which this Hamil-

tonian stems from a reduction procedure associated to the existence

of one or more integrals of motion, the equilibria correspond to pe-

riodic orbits and the invariant curves to tori of the un-reduced sys-

tem. The number and nature of the critical points, as they are de-

termined by varying intrinsic and control parameters, provide infor-

mation about bifurcation phenomena, with either the birth or the

annihilation of periodic orbits. We start with a Hamiltonian as in

(2.12), say K = K(G, g; L̃,H; J2, J3) in the phase-plane (G, g), where

L̃, H are the intrinsic parameters and J2, J3 the control ones but,

since J3 determines the magnitude of the angle-dependent term, it

plays the role of perturbation control parameter. The variable G is

limited by Gmin ≤ G ≤ L, where Gmin can be zero or it can be deter-

mined by some physical constraints (see [7]). Therefore, the available

phase-space of the Hamiltonian system is represented by the cylinder

Γ ≡ {(G, g) ∈ R× T : Gmin ≤ G ≤ L , 0 ≤ g ≤ 2π} .

Whenever the perturbation parameter J3 is small, the flow in Γ is

a rotational set of lines almost parallel to the base of the cylinder

G = Gmin. Depending on the extent of the perturbation and the value

of the internal parameters L̃, H, critical points may appear in Γ: this

leads to the birth of libration islands and, in case, to the appearance

of stable and unstable manifolds. As mentioned in Section 4.1, to find

the critical points we have to solve the system of equations

∂K

∂G
= 0 ,

∂K

∂g
= 0 . (4.3)

The second equation is readily solved by g− = π/2 and g+ = 3/2π.

These two pairs of solutions, when inserted in the first of (4.3), give

the two equations:

F±(G) = 0 (4.4)
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with F±(G) = F(G, g±) and F as in (4.2). Then, we need to find the

roots of this pair of equations as functions of the parameters. Two

kind of bifurcation phenomena may happen:

(1) every time one of the roots enters into the cylinder Γ by vary-

ing the parameters, we have a new equilibrium of the reduced

problem (a periodic orbit in the original system), whose stable

or unstable nature can be assessed by studying the Hessian of

the Hamiltonian;

(2) at critical values of the parameters, the number of roots may

change, giving rise to the birth (or annihilation) of new critical

points.

Remark 4. The explicit solution of (4.4) is easy to find when the equa-

tions are linear or quadratic in G. For higher order or non-polynomial

equations, usually the presence of a small perturbation parameter al-

lows the determination of approximate solutions.

We present in Figure 2 an example of the computation of the con-

tour plots of the Hamiltonian (2.12), from which we infer the existence

of different equilibria and the occurrence of bifurcations. Moreover, for

small values of the perturbing parameter J3 we can compute analyti-

cally the values of the action G, which correspond to the equilibrium

solutions. The procedure is the following. LetG0 =
√
5H as above and

let g− = π/2, g+ = 3/2π be the values of g at the equilibria. Let us de-

compose K in (2.12) as K(G, g; L̃,H) = K1(G; L̃,H)+K2(G, g; L̃,H),

where K1 is the part proportional to J2 and K2 the term proportional

to J3. To find an approximate value of the root, we can apply the

Newton-Raphson method. Precisely, we start by defining the quanti-

ties

η± ≡ −
∂K2(G0,g±)

∂G
∂2K1(G0)

∂G2

.
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Then, the first-order (in J3) approximate solutions are given by

G± = G0 + η±

or, explicitly in terms of the parameters,

G± =
√
5H ± J3

J2

√
1− 5(H/L)2

5H
. (4.5)

The horizontal lines in the upper plots of Figure 2 correspond to the

values G± computed as in (4.5).

In particular, in the upper left plot of Figure 2 we have two stable

equilibria, whose action values lie on the lines G±, although the pre-

diction of the ordinate of the equilibria becomes less reliable as the

parameter J3 increases (compare with the upper right plot of Figure 2).

At J3 = 5 · 10−3 we still have a pair of equilibria (Figure 2, middle

left panel), but the tori below the lower equilibrium become more and

more distorted as J3 increases (middle right panel of Figure 2), until

a bifurcation value is reached and more equilibria appear. They are

produced in a saddle–centre bifurcation occurring at the bifurcation

value J3 = 8.83 · 10−3 as shown in the lower left panel of Figure 2.

We notice that for such value of J3 there appear meandering curves,

typical of the non-twist regime, around the equilibria at g+ = 3/2π.

The stable-unstable pair of critical points displayed in the lower right

panel of Figure 2 shows the behavior for a non critical value of the

parameters, precisely for H = 0.5 and J3 = 10−3. We highlight that

Figure 2 presents two important phenomena typical of some dynami-

cal systems, precisely the transition from a twist to a non-twist regime

and the occurrence of bifurcations with the birth of new equilibria.

Unfortunately, it is not possible to provide an approximate analyti-

cal expression for the additional roots associated to the bifurcation

and, as a consequence, the estimate of the threshold value of J3 has

only been obtained numerically. The reason stays in the breakdown
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of the Newton-Raphson procedure for which is not possible to identify

a sensible seed solution.

A. Appendix: The gravitational potential

In polar coordinates (r, ϕ, λ) with origin at the center of mass of the

planet, the real solution of the Laplace equation r2∇2V (r, ϕ, λ) = 0 is

given by

V (r, ϕ, λ) =
∑
j,m

Vjm(r, ϕ, λ)

=
∞∑
j=0

j∑
m=0

µ

rj+1
Pjm (sin (ϕ)) [Cjm cos (mλ) + Sjm sin (mλ)] .

(A.1)

The quantities Pjm (sin (ϕ)) are the Legendre associate functions, de-

fined as

Pjm (sin (ϕ)) = cosm (ϕ)

[ j−m
2

]∑
t=0

Tjmt sin
j−m−2t (ϕ) ,

where the coefficients Tjmt are given by

Tjmt =
(−1)t (2j − 2t)!

2jt! (j − t)! (j −m− 2t)!
.

The constants Cjm and Sjm in (A.1) depend on the mass distribution

of the planet (see [17]). In particular, one has Ci0 = −Ji, where Ji

denote the coefficients entering the potential (2.2). It is convenient to

write the potential (A.1) using the orbital elements (a, e, i, ℓ, g, h) as

in [17]:

Vjm = µ
Rj

e

aj+1

j∑
p=0

Fjmp (i)
∞∑

q=−∞

Gjpq (e)Hjmpq (ℓ, g, h, θ) ,
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where θ denotes the sidereal time and Re is the equatorial radius of

the planet. The quantities Hjmpq are defined as

Hjmpq(ℓ, g, h, θ) = Cjm

[
cos

(
(j − 2p) g + (j − 2p+ q) ℓ+m (h− θ)

)]
+ Sjm

[
sin

(
(j − 2p) g + (j − 2p+ q) ℓ+m (h− θ)

)]
if j −m is even, or

Hjmpq(ℓ, g, h, θ) = −Sjm

[
cos

(
(j − 2p) g + (j − 2p+ q) ℓ+m (h− θ)

)]
+ Cjm

[
sin

(
(j − 2p) g + (j − 2p+ q) ℓ+m (h− θ)

)]
if j −m is odd. The expressions for Fjmp (i) are

Fjmp (i) =

min(p,[ j−m
2

])∑
t=0

(2j − 2t)!

t! (j − t)! (j −m− 2t)!22j−2t
sinj−m−2t (i)

×
m∑
s=0

(
m

s

)
coss (i)

∑
c

(
j −m− 2t+ s

c

)(
m− s

p− t− c

)
(−1)c−k ,

where the index c takes all values that do not nullify the binomial

coefficients.

Finally, we do not give the general expression of the quantities

Gjpq (e) since it is a long one and we rather limit to particular choices of

the index q, as needed for the computation of (2.11). Setting q = 2p−j,

we obtain the expressions

Gjp(2p−j) (e) =
1

(1− e2)j−
1
2

p′−1∑
d=0

(
j − 1

2d+ j − 2p′

)(
2d+ j − 2p′

d

)(e
2

)2d+j−2p′

,

where {
p′ = p per p ≤ j

2

p′ = j − p per p ≥ j
2
.
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Figure 2. Contour plots for L̃ = 3, G0 = 2.8, J2 =

10−2: top left H = G0

√
2
15
, J3 = 10−3; top right H =

G0

√
2
15
, J3 = 2 · 10−3; middle left H = G0

√
2
15
, J3 =

5 · 10−3; middle right H = G0

√
2
15
, J3 = 8.83 · 10−3;

bottom left H = G0

√
2
15
, J3 = 9.3 · 10−3; bottom right

H = 0.5, J3 = 10−3. The horizontal lines in the top
panels represent the analytical estimates of the values
of G corresponding to the equilibria.


