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Abstract. We investigate the dynamical behaviour of debris ejected from the surface
of an asteroid, due to a generic - natural or artificial - surface process. We make an
extensive statistical study of the dynamics of particles flowing from the asteroid. We
observe different behaviours: particles which fall again on the asteroid surface, or rather
escape from its gravitational field or are temporary trapped in orbit around the asteroid.
The tests are made by varying different parameters, like the size of the asteroid, its
eccentricity, the angular velocity of the asteroid, the area-to-mass ratio of the debris.

We also extend the study to the case of a sample of binary asteroids with a mass
ratio equal to 10−3; we vary the distance of the moonlet from the asteroid, to see its
effect on the debris dynamics.

Our simulations aim to identify regions where the debris can temporarily orbit around
the asteroid or rather escape from it or fall back on the surface. These results give an
important information on where a spacecraft could be safely stay after the end of the
process which has produced the debris.

Keywords. Asteroid debris, temporary capture, escape orbits.

1. Introduction

During the last years space agencies have realized several robotic missions to asteroids.

In one case (up to now), the probe Philae (within the ESA Rosettamission) landed on the

surface of the comet 67P/Churymov-Gerasimenko, thus providing the first in situ analysis

of a comet. Among the future projects, space agencies started to envisage robotic, or

even manned, missions to collect asteroid material and bring it back on the Earth. These

projects might include a resurfacing of the asteroid, possibly due to ablation or other

disruptive actions. At the light of future possible space missions, the study of the fate

of the particles flowing from an asteroid has become of primary importance. However,

such investigation is complicated by the fact that very often asteroids have irregular

shapes, like those of the asteroids Castalia and Toutatis, which have been studied in [13],

[14]. An obvious complication consists in establishing a good model for the shape of the

asteroid, especially since it involves the computation of the main spherical harmonics

which provide the asteroid’s gravity field. On the other hand, the precision of the shape
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of the asteroid requires a large number of spherical harmonics, which in turn leads to

very elaborated equations of motion (see also [4]).

The study of the orbital dynamics around irregular asteroids ([11], [13], [14], [15]) has

shown the existence of a wide variety of behaviors, which - for our goals - we can group

into three main classes: escape, impact and capture orbits. It is worth mentioning that

the interplay of different forces, like the solar radiation pressure, the asteroid’s gravity

field, the solar attraction, has been investigated in [16] for dust particles ejected from the

asteroid after a cratering impact. The stability of asteroid’s ejecta has been analysed in

[6] as the distance from the asteroid increases, leading to the conclusion that there exists

a critical distance at which an abrupt transition between trapped and non trapped orbits

occurs.

In this work we concentrate on a model which takes inspiration from the asteroid

65803 Didymos, a typical minor body which could be a possible target of space missions.

However, some data have been necessarily modified to have significant effects on the

dynamics on suitable (i.e., not too long) time scales. Beside its intrinsic interest, it is

remarkable that Didymos has a moonlet at a relatively small distance. To encompass

both cases of a single asteroid and of a binary system, we introduce two different models:

the first one describes the motion of a particle under the influence just of the asteroid

and the second one takes into account the presence of a moonlet. Taking into account

these two models, we make an extensive statistical study as different parameters are

varied, most notably the size of the asteroid, its orbital eccentricity, the area-to-mass

ratio of the particle. We complement such study by the computation of the Lyapunov’s

exponents, which gives interesting information about the stability of the asteroid debris.

The results show that a careful investigation of the debris dynamics around the asteroid is

of seminal importance to decide where a spacecraft could be safely located, since it might

happen that the debris is (temporarily) trapped in some regions around the asteroid, thus

representing a concrete danger for the spacecraft (see also [2], [3], [5], [7], [10] for the

study of the dynamics of space debris around the Earth).

This work is organized as follows. In Section 2 we present the equations of motion

of the debris under the gravitational influence of the asteroid, the Sun and the solar

radiation pressure. The case of an asteroid with a small moon is also considered. The

experiments’ settings, including the shape of the asteroid and the generation of the initial

conditions of the test particles, are provided in Section 3. The results are presented in
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Section 4, where we distinguish between temporary trapped orbits, escaping trajectories

and particles falling back on the asteroid’s surface. The case of a binary asteroid is

analysed in Section 5. Some conclusions are drawn in Section 6.

2. The model

We consider an asteroid with mass mA moving on a Keplerian orbit around the Sun

with mass mS; we denote by µA = GmA, µS = GmS the corresponding gravity constants

with G the gravitational constant. We assume that the asteroid has an ellipsoidal shape

and that it rotates around an internal spin axis with angular velocity ω. Let (S, I, J,K)

be an inertial reference frame centred in the Sun and let (A, i, j, k) be an asteroid body

frame centred in the barycentre A of the asteroid (see Figure 1). The latter frame is

more convenient to study the dynamics of a debris particle in the neighbourhood of the

asteroid. The debris D is considered as a particle of mass md, much smaller than that of

the primaries (asteroid and Sun); we assume that the debris moves in the gravitational

field of the asteroid, subject to the interaction with the Sun and to the solar radiation

pressure.

Figure 1. A debris D under the gravitational influence of an asteroid A
and the Sun S.

2.1. The equations of motion under the Sun-asteroid attraction. We denote by

δr the relative distance between the debris and the asteroid (compare with Figure 1) and

by u the debris-Sun unit vector. The equations of motion of the debris can be written as

(see [12])

δr̈ + 2ω ∧ δṙ + ω ∧ (ω ∧ δr) = −µA
δr

δr3
+ µS (

rA
r3A

− rd
r3d
) +

∂U

∂(δr)
+ FSRP (rd)u , (2.1)
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where rA and rd are, respectively, the position vectors of the asteroid and the debris with

respect to the Sun, U is the gravitational potential of the asteroid, where the gravity

field of the asteroid is expressed as the sum of a spherical field plus higher order terms

due to the ellipsoid shape of the asteroid. Explicit expressions for U as well as for the

components of the equations of motion (2.1) are given in Appendix A. Finally, the term

FSRP (rd) denotes the solar radiation pressure, which depends on the distance rd from the

Sun through the expression

FSRP (rd) = CrSSRP (
r1AU

rd
)2
Ad

md

, (2.2)

where Cr is the reflectivity coefficient, SSRP is the solar radiation pressure at distance1 1

AU, r1AU is the equivalent of the astronomical unit in kilometres, Ad is the cross section

area of the debris.

The Keplerian motion of the asteroid with respect to the Sun is governed by the

equation

δr̈ = −µS

r3A
rA . (2.3)

Equations (2.1) and (2.3), together with (2.2), are integrated in parallel to give the motion

of the debris, while the asteroid moves around the Sun.

2.2. Equations of motion with a small moon. We also consider the case in which

a moonlet orbits around the asteroid. In this case we need to modify the equations of

motion (2.1) as follows:

δr̈ + 2ω ∧ δṙ + ω ∧ (ω ∧ δr) = −µA
δr

δr3
+ µS (

rA
r3A

− rd
r3d
) +

∂U

∂(δr)
+ FSRP (rd)u+ fp(δr) ,

where the term fp has been introduced in order to consider the perturbative effects due to

another massive body, precisely a moonlet orbiting the asteroid. The explicit expression

of such term is the following:

fp(δr) = µm

(
rd−moon

r3d−moon

− rm
r3m

)
,

where µm is the gravity constant of the asteroid’s moon, rm is the position of the moon

with respect to the asteroid reference frame, rd−moon = rm − δr is the position vector of

the debris with respect to the moon.

1We recall that 1 AU (Astronomical Unit) corresponds to about 150 million km.
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3. Experimental setup

In this Section we provide a description of the physical and dynamical assumptions on

the asteroid (see Section 3.1) and we specify how the flow of particles originating from

the asteroid is taken (see Section 3.2). The initial conditions of the moonlet are given in

Section 3.3.

3.1. Nominal case. We consider an asteroid with triaxial shape; as a first case study,

we take the semi-axes of the ellipsoid equal to a = 5 km, b = 3.65 km, c = 2.45 km. This

choice amounts to have that the moments of inertia I1, I2, I3 are such that the equatorial

oblateness of the ellipsoid is (I2 − I1)/I3 ≃ 0.3047, while the second order coefficient of

the gravity field is J2 ≃ 1/2(2I3 − I1 − I2)/R
2
p ≃ 0.2089 (see Appendix A), where Rp is

the mean radius of the ellipsoid.

As a prototype asteroid we consider an object which is similar in size and in the orbital

elements to the asteroid 65803 Didymos, located at 1.64 AU with an eccentricity of circa

0.3839 and with a reduced inclination to the ecliptic about equal to 3.41o. Its estimated

diameter amounts to 0.75 km, but in the forthcoming discussion we will consider a larger

asteroid to enhance its effects on the nearby particles. Didymos has a moonlet with an

orbital period of 11.9 hr and moving at a distance from the asteroid’s centre equal to a

little more than three times the radius of Didymos.

As mentioned before, Didymos and its moonlet will serve as inspiration for the forth-

coming study. Indeed, in the following simulations, the semi-major axis of the Keplerian

orbit of the asteroid around the Sun is taken equal to 2.4599 108 km, while the eccen-

tricity is fixed as e = 0.3836, and the inclination as 0.0595 rad. The argument of the

perihelion is equal to g = 1.2783 rad, the longitude of the ascending node is fixed to

Ω = 5.5719 rad, while the true anomaly θ is taken as θ = 0. We assume that the asteroid

rotates around its shortest physical axis with angular velocity equal to 2.83 10−4 rad/s;

we also assume that the spin-axis is perpendicular to the orbit plane, thus neglecting the

obliquity of the asteroid’s rotation.

Beside the above nominal conditions, a number of test cases were considered by varying

the following parameters:

(i) we modify the shape of the asteroid and take its longest axis equal to a = 10 km;

this choice corresponds to consider a much more oblate body with asphericity

parameter equal to (I2 − I1)/I3 ≃ 0.7649 and with J2 ≃ 0.5067;
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(ii) we modify the trajectory of the asteroid and take it on a circular orbit around

the Sun;

(iii) we consider different rotational states by taking a fraction, say 1/k, of the angular

velocity (precisely, we take k = 1, ..., 10);

(iv) we consider different values of the area-to-mass ratio, say 0.01, 0.005, 0.001, with

a reflectivity coefficient equal to 1.3 (comprehensive of reflection and diffraction).

For each value of the rotational velocity and the area-to-mass ratio, a number of samples

equal to 36 000 units was generated on the surface of the asteroid; they were taken from

different locations and different velocities at the initial time. The orbit of each particle

was then propagated up to 1 year.

3.2. Particle’s initial conditions. The ejection of the particle from the surface of the

asteroid is realized taking an initial velocity vp composed by two parts:

vp = vt + vℓn . (3.1)

The tangential component vt is given by the rotation of the asteroid around the smallest

axis:

vt = Ωa ∧ rs ,

where Ωa is the angular velocity of rotation of the asteroid and rs denotes the initial

position of the particle on the surface of the asteroid. As for the second component in

(3.1), it is obtained by considering a fraction of the excess velocity, which allows to insert

the debris into an escape trajectory ([13]):

vℓ = ke

(
− n · vt +

√
(−n · vt)2 + 2UKep − vt · vt

)
, (3.2)

where ke represents the fraction of the excess velocity (it is a number between 0 and 1),

n denotes the unit vector which is normal to the surface at rs, UKep is the 2-body gravity

potential at the position rs, namely UKep = µA/(δr) with δr = |δr|.
We remark that the limit angular velocity, say Ωlim, is computed as

Ωlim =

√
2µA

a3

at which the particles leaving the asteroid have zero energy, thus ensuring that the

particles departing from the surface are not directly injected into an escape orbit. Then,

denoting by Ω = |Ω|, we consider the fractions

Ω =
1

k
Ωlim (3.3)

for k = 1, ..., 10.
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In order to generate samples of particles flowing from different directions, we rotate

randomly the second component in (3.1) around the normal direction with angles between

−π/2 and π/2.

The trajectory of the particle is then propagated forward in time. The propagation

stops in the case in which the particle falls back and impacts on the surface of the asteroid.

On the contrary, the particle is considered to leave the orbit of the asteroid, when its

Keplerian energy is positive (which implies that the particle has an orbital eccentricity

greater than zero).

3.3. Moonlet initial conditions. The Moon around the asteroid is placed on a circular

orbit with initial condition at distance rm along the axis xhill of the reference frame

(xhill, yhill, zhill) with origin at the barycentre of the asteroid, xhill along the orbital radius,

zhill along the orbital angular momentum and y
hill

to form a right-handed reference frame.

The initial velocity of the moonlet, say vm, is taken as

vm =

(√
µA

rm
zhill

)
× (rm xhill) .

The moonlet is assumed to be a sphere with radius Rm obtained by rescaling the radius

RA of the asteroid through the formula

Rm =
(mm

mA

) 1
3
RA ,

where mm denotes the mass of the moonlet. When dealing with the binary system,

asteroid-moon, we shall only consider the case with a = 5 km.

4. Temporary capture and escape orbits

In this section we analyse the behaviour of the debris particles generated from the

surface of the asteroid. In Section 4.1 we present some simulations providing the dis-

tribution of particles which fall back on the asteroid (the majority), those which escape

from the gravitational attraction of the minor body (an almost negligible fraction) and

the percentage of debris. In Section 4.2 we present some features of the dynamics ob-

tained through the computation of the largest Lyapunov exponent, whose definition is

briefly recalled in Appendix B.

4.1. Evolution of the debris. We consider an asteroid with semi-axes a, b, c, where

b, c are fixed, precisely b = 3.65 km, c = 2.45 km, while we consider two cases for the

larger semi-axis, namely a = 5 km and a = 10 km. We study the case when the asteroid

is on a circular orbit, e = 0, and when it is on an elliptic orbit with e = 0.3836. We take
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different rates of rotation by varying k in (3.3) as k = 1, ..., 10. Finally, we consider a

particle with different values of the area-to-mass ratio: A/m = 0.001, 0.005, 0.01 m2/kg.

Moreover, we take 100 values of ke in (3.2) varying between 0.001 and 1.

The simulations on the evolution of the ejected particles are performed over one orbital

period of the asteroid around the Sun, equal to 770 days.

Figure 2 provides the cumulative distribution of the surviving particles as a function

of the distance from the asteroid. Different rotation rates are considered. Whenever the

eccentricity and the area-to-mass ratio are small (Figure 2, top left panel), the particles

are distributed at different distances from the asteroid. For example, for k = 1 about 90%

of the particles are found at distance less than 200 km. For large eccentricities and/or

large area-to-mass ratios, most of the surviving particles are found closer to the asteroid.

Indeed, the bottom left panel of Figure 2 shows that 90% of the surviving particles are

found below 300 km from the asteroid, while increasing the area-to-mass ratio (Figure 2,

bottom right panel), the same percentage of particles is located below 180 km.

Next, we analyze in Figure 3 the case in which the biggest axis of the ellipsoidal shape

of the asteroid is increased to a = 10 km.

A comparison between Figures 2 and 3 shows that the increase of the largest asteroid

radius provokes a spreading of the particles. For example, taking circular orbits and

A/m = 0.001 km/m2 (Figures 3, top left panel), then most of the particles are found

between 200 and 400 km. Such interval decreases (to 80 − 220 km) as the eccentricity

and the area-to-mass ratio gets larger as in Figure 3, bottom right panel.

The overall survival rate at the end of one orbital period is synthetically shown in

Figure 4, for a = 5 km (top panels), a = 10 km (bottom panels), e = 0 (left panels),

e = 0.3836 (right panels) and different values of the area-to-mass ratio. The typical

behaviour is that the survival rate is higher for larger values of A/m, thus showing that

the solar radiation pressure perturbs the trajectories of the particles in such a way that

a higher number evolves into non-impacting particles. Also the eccentricity helps to

increase the survival, since it allows the trajectories to avoid an impact, soon after their

ejection. Finally, the non-homogeneous gravity field affects the temporary capture of the

particles, which are closer to the asteroid. In general, one finds more surviving particles

on the long period for the case a = 5 km, while for a = 10 km the survival rate is higher

during the first 50 days.

4.2. A dynamical exploration through Lyapunov exponents. To get information

about the stability of the particles surviving in orbit around the asteroid, we proceed
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Figure 2. Statistics after one orbit for an asteroid with a = 5 km. Top
panels: e = 0, left A/m = 0.001 kg/m2, right A/m = 0.01 kg/m2. Bottom
panels: e = 0.3836, left A/m = 0.001 kg/m2, right A/m = 0.01 kg/m2.

to compute the maximum Lyapunov exponent (see, e.g., [1]) for different values of k,

say k = 1, ..., 10. The results on the Lyapunov exponents are complemented by a direct

analysis of the orbital elements - semimajor axis, eccentricity, inclination - as a function

of time (see Figure 5).

First, we show the survival rate as a function of k after a period of 10 000 days (see

Figure 5) for a = 5 km (continuous line) and a = 10 km (dashed line); we also consider

different values of the eccentricity and the area-to-mass ratio. As it is natural to expect,

most of the particles fall back on the asteroid or rather escape from it. The situation is

slightly better in the case a = 10 km and when the eccentricity is bigger; moreover, a

larger number of particles survives when the effect of the solar radiation pressure is not

big.
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Figure 3. Statistics after one orbit for an asteroid with a = 10 km. Top
panels: e = 0, left A/m = 0.001 kg/m2, right A/m = 0.01 kg/m2. Bottom
panels: e = 0.3836, left A/m = 0.001 kg/m2, right A/m = 0.01 kg/m2.

At the light of the results of Figure 5, we proceed to illustrate the determination of

the Lyapunov’s exponents for the case k = 1, which is the only relevant one in Figure 5.

We performed several computations of the Lyapunov’s exponents as the quantities a, e,

A/m, k are varied. Among the different samples we analyzed, we present in Figure 6

the case of an asteroid with a = 5 km, e = 0.3836 and A/m = 0.005 kg/m2 (top

panels), which shows that after a (short) transient time the Lyapunov’s exponents seem

to tend to a finite positive value, thus denoting instability of several particles, although

the eccentricity and the inclination remain bounded (top middle and right panels of

Figure 6). When a = 10 km, e = 0.3836, A/m = 0.005 kg/m2 (Figure 6, bottom

panels), the number of unstable surviving particles increases, the Lyapunov’s exponents
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Figure 4. Survival rate at the end of one orbital period. Top panels:
a = 5 km, left e = 0, right e = 0.3836. Bottom panels: a = 10 km, left
e = 0, right e = 0.3836. Colour code: blue A/m = 0.001 kg/m2, red
A/m = 0.005 kg/m2, black A/m = 0.01 kg/m2.
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Figure 5. Survival rate after 10 000 days of propagation. Continuous line
a = 5 km, dashed line a = 10 km. Circles e = 0, asterisks e = 0.3836.
Colour code: blue A/m = 0.001 kg/m2, red A/m = 0.005 kg/m2, black
A/m = 0.01 kg/m2.
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tend again to a limiting value, but the eccentricity and the inclination vary on much

larger intervals.
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Figure 6. Case a = 5 km, e = 0.3836, A/m = 0.005 kg/m2: top left
Lyapunov exponent for k = 1, top middle eccentricity, top right inclination;
bottom left Lyapunov exponent for k = 1, bottom middle eccentricity,
bottom right inclination.

5. A binary asteroid

We now assume that the asteroid has a small companion, say a moonlet of negligible

mass at distance rm from the barycentre of the asteroid. Beside the variation’s of the

asteroid’s larger axis, the eccentricity, the area-to-mass ratio, we perform several experi-

ments using different distances between the asteroid and the moonlet, say rm = 15, 25,

50, 100, 200 km. Figure 7 provides the cumulative distribution of the surviving particles

for different values of the parameters. From the top panels we observe that the effect of

the solar radiation pressure is to shrink the region where the particles can be found. In

particular, for A/m = 0.001 kg/m2, most of the particles are below 400 km, while for

A/m = 0.01 kg/m2 the particles are mainly found below 300 km.

The experiments show that the increase of the eccentricity further reduces the region

where the particles can be found; for example, setting e = 0.3836, and keeping the other
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Figure 7. A moonlet orbits the asteroid. Top panels rm = 15 km, e = 0:
left A/m = 0.001 kg/m2, right A/m = 0.01 kg/m2. Bottom panels: left
rm = 50 km, e = 0, A/m = 0.001 kg/m2; right rm = 200 km, e = 0.3836,
A/m = 0.01 kg/m2.

values as in the top right panel of Figure 7, the populated region decreases to 200 km

from the asteroid. When the distance of the moonlet increases, as in the bottom panels

of Figure 7, we notice that the moon tends to reduce its effect on the asteroid’s debris.

Indeed, the particles avoid the region close to the moon (Figure 7, bottom left panel),

unless the eccentricity and the area-to-mass ratio are increased to counterbalance the

effect of the moonlet (Figure 7, bottom right panel).

At high altitudes and without the moon, the gravitational influence of the Sun and

the effect of the solar radiation pressure perturb the trajectories of the particles, possibly

avoiding an impact with the asteroid. However, the presence of the moon breaks this

situation and leads some particles to impact with the moon itself.
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Figure 8. A moonlet orbits the asteroid, case a = 5 km, left e = 0,
right e = 0.3836. Colour code: blue rm = 15 km, red rm = 50 km,
black rm = 200 km; continuous line A/m = 0.001 kg/m2, dashed line
A/m = 0.005 kg/m2, dashed-dot line A/m = 0.01 kg/m2.

An overall picture of the survival rates is given in Figure 8, where the value a = 5 km

is considered, while the eccentricity is set to zero in the left panel and to e = 0.3836 in the

right panel. The plots summarize the results for different values of rm and A/m. From

Figure 8 we conclude that the region where the particles survive are mainly outside the

asteroid-moon distance. When the moon is close to the asteroid, its effect is essentially

to clean the space around the asteroid by most of the debris. In particular, the survival

increases as the moonlet is more distant. When the moon is very far from the asteroid,

then the statistics is close to that obtained by considering just the asteroid without the

moon. The solar radiation pressure perturbs the trajectories of the particles, so that a

higher number of particles avoids collision orbits, which might lead to an impact with

the asteroid. Also the eccentricity allows to increase the survival rate, since its effect

produces a perturbation of the trajectories, so that the particles will not impact soon

after their ejection.

6. Conclusions

We study the dynamics of debris flowing from the surface of an asteroid, making a

statistical study which leads to show different dynamical behaviors: an impact on the

asteroid, an ejection or rather a temporary capture. The experiments are made by varying

the most significative parameters, for example the shape of the asteroid, the eccentricity

of its orbit, the area-to-mass ratio. Beside getting results by integrating of the equations
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of motion, we compute the largest Lyapunov’s exponents to have information about the

stability of those particles, which survive - at least temporarily - around the asteroid.

We also consider the effect of a small moonlet around the asteroid, which contributes

to clean the environment, especially when it is not too far from the asteroid.

The issues raised in the present work should be considered as a basis for the investi-

gation of asteroid’s ejecta, in the sense that the methods presented here are very general

and they can be implemented on specific cases. The results obtained in this paper suggest

that the role of some parameters is particularly relevant. For example, we notice that an

eccentric orbit of the asteroid helps to increase the survival rate, the same happens when

increasing the area-to-mass ratio.

A detailed study of the dynamical behaviour of impact ejecta will be of foremost

importance when designing a space mission to an asteroid; the techniques implemented

in this paper can be applied to specific space missions to analyse the dynamics of the

debris around the asteroid and to assess the possible effects of the debris on nearby

spacecraft.
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Appendix

A. The gravity potential

Following [9], the gravitational potential of an asteroid with mass mA and radius R

can be expressed as

U =
GmA

R

∞∑
n=1

n∑
m=0

(CnmVnm + SnmWnm) ,

where Vnm, Wnm can be derived through recursive relations. After expanding in Legendre

polynomials, one obtains the following formulae:

V00 =
R

r
, W00 = 0
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and

Vmm = (2m− 1)
(xR
r2

Vm−1,m−1 −
yR

r2
Wm−1,m−1

)
Wmm = (2m− 1)

(xR
r2

Wm−1,m−1 +
yR

r2
Vm−1,m−1

)
Vnm =

2n− 1

n−m

zR

r2
Vn−1,m − n+m− 1

n−m

R2

r2
Vn−2,m

Wnm =
2n− 1

n−m

zR

r2
Wn−1,m − n+m− 1

n−m

R2

r2
Wn−2,m ,

while Cnm, Snm are the spherical harmonic coefficients ([9]), which describe the mass

distribution of the asteroid.

Since we assume that the asteroid has an ellipsoidal shape with axes a, b, c, the

moments of inertia are I1 = mA(b
2 + c2)/5, I2 = mA(a

2 + c2)/5, I3 = mA(a
2 + b2)/5.

Therefore, we have that Snm = 0, due to the symmetry of the ellipsoid, and

C20 = −J2 =
1

mAR2

I1 + I2 − 2I3
2

, C22 =
1

mAR2

I2 − I1
4

.

According to [9], the components of the acceleration just due to the potential U , say

r̈U = (ẍU , ÿU , z̈U), in an asteroid-fixed coordinate system, are given by the expansions

ẍU =
∑
n,m

ẍ(U)
nm , ÿU =

∑
n,m

ÿ(U)
nm , z̈U =

∑
n,m

z̈(U)
nm , (A.1)

where the most relevant terms in the series expansion (A.1) are the following:

ẍ
(U)
20 = −GmA

R2
C20 V31

ÿ
(U)
20 = −GmA

R2
C20 W31

z̈
(U)
20 = −GmA

R2
C20 3C20 V30

and

ẍ
(U)
22 =

GmA

R2

1

2

(
− C22V33 + 2C22V31

)
ẍ
(U)
22 =

GmA

R2

1

2

(
− C22W33 − 2C22W31

)
z̈
(U)
22 =

GmA

R2

(
− C22V32

)
.
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B. The Lyapunov exponents

The Lyapunov exponent gives a measure of the chaotic character of the dynamics, as

it provides the divergence of nearby trajectories. For a phase space of dimension n, there

exist n Lyapunov exponents, although the largest one is the most significative.

A practical formula to compute the maximun Lyapunov exponent is the following ([8]):

χ(τ) ≡ lim
n→∞

1

nτ

n∑
k=1

ln
d(kτ)

d(0)
,

where τ denotes the time step and d(kτ) is the distance at time kτ between trajectories

at initial distance d(0).
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