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ABSTRACT. We show that for a very wide class of Banach spaces of functions on [0,1] there are

intrinsic lower bounds for the essential spectral radius of the transfer operator associated to

piecewise smooth expanding maps. The class of Banach spaces studied includes any reason-

able space which permits discontinuities.

1. INTRODUCTION

Given a chaotic system with some degree of hyperbolicity it is natural to investigate the

statistical properties of the system. This involves finding and studying relevant invariant

measures, proving CLT, LLT, large deviations, estimating the decay of correlations, studying

zeta functions, etc. Study of the transfer operators associated to dynamical systems is a very

convenient and powerful way to investigate statistical properties. Such an idea goes back at

least to the use of the Koopman operator by von Neumann to prove the mean ergodic theo-

rem. Subsequently Sinai and others in the Russian school developed theory for the Koopman

operator acting on L2 and the connection with ergodicity and mixing (see e.g., [14]). Soon it

was realised that it was useful to study the adjoint of the Koopman operator and this object

became known as the transfer operator. Amongst this period of development is the work of

Lasota & Yorke [26], Ruelle [31], Keller [23, 22], Baladi & Keller [2], Keller & Liverani [24]. See

the books by Baladi [3, 4] for a more complete history and the notes of Liverani [28] for an

overview. In many cases the use of transfer operators was done by reducing the system to

symbolic dynamics and then using standard function spaces (see Bowen [8] and Parry and

Pollicott [30]). On the other hand, in some cases one could choose dynamically sensible

choices of Banach space on which to study the transfer operator without the need of coding

and potential loss of information. In the case of hyperbolic systems, as opposed to expand-

ing systems, this led to the need of anisotropic Banach spaces of distributions to match with

the distinctly different behaviour in different directions (see Blank, Keller, and Liverani[7],

Gouëzel and Liverani [20] and Baladi and Tsujii [5]). At present there are many different Ba-

nach spaces available for studying many different piecewise expanding maps [32] and the

approach has shown many great successes.

The spectrum of the transfer operator will consist of essential spectrum and a set of iso-

lated eigenvalues, The spectrum depends on the choice of Banach space. In order to be

useful for studying the system the essential spectrum radius needs to be smaller than the
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spectral radius. For some systems, those with high degree of regularity, there exists a choice

of Banach space so that the essential spectral radius is arbitrarily small. For example this

has been shown for smooth expanding maps in any dimension (see Collet and Isola [13],

Gundlach and Latushkin [21]) and pseudo Anosov diffeomorphisms by Faure, Gouëzel and

Lanneau [18]. This corresponds to being able to give a precise description of decay of cor-

relations in terms of resonances [18, Definition 1.1.]. Choosing a Banach space which is

larger than required can lead to the essential spectrum being large. For instance, studying

the transfer operator acting on Lp with 1 ≤ p <∞ an approximate eigenfunction argument

can be used to show that the spectrum of the transfer operator is the entire disc, i.e., the es-

sential spectrum is equal to the spectral radius [10, Footnote 8]. One direction of interest is

to identify the isolated points of spectrum (see [25, 11, 27] and references within). Indeed

the isolated points of spectrum can be shown to be essentially independent on the choice of

Banach space [6].

The focus of this present work is in the other direction, on the essential spectrum and

understanding if it can be reduced in a given situation. Showing that the essential spectral

radius is small is intimately connected with showing a large meromorphic extension of the

zeta function (see, e.g., [19, 4]).

Given the huge availability of different Banach spaces and the unlimited creative possi-

bility it is natural to ask if, in a given situation, there is a chance of finding a better Banach

space in order to reduce the essential spectral radius. As hinted above, if the Banach space

is too large the essential spectral radius is large. On the other hand the Banach space must

be sufficiently large in order to be useful, typically one would want it to include at least all

smooth observables. It was shown by B., Canestrari & Jain [10] that, for the case of smooth

interval maps with discontinuities, the essential spectrum is large for a very large class of ob-

servables (see [9] for a higher dimensional extension). The only requirement on the Banach

space (apart from containing C ∞ and being invariant under the dynamics) was that it had to

be continuously embedded in L∞. This, as already noted in that work, is unfortunate since

there are many spaces, for example Besov spaces (see Arbieto and S. [1], S. [32] and Nakano

and Sakamoto [29]) and Sobolev spaces (see Thomine [34]) which seem like a reasonable

choices but are not embedded in L∞. Discontinuities are natural in physical systems (e.g.

see Chernov and Markarian [12]) but, additionally, it can be argued that some physically rel-

evant observables are unbounded and such should therefore be permitted in the analysis.

Rectifying this gap is a major motivation in the present work.

Here, we will show that for a broad class of Banach spaces of observables, satisfying fairly

minimal conditions — in particular, allowing simple discontinuities in the observables — the

action of the transfer operator has a large essential spectral radius. These classes of Banach

spaces are sufficiently general to include unbounded observables.

In Theorem A we give conditions which imply that Besov space is embedded in a given

Banach space and also derive a lower estimate for the essential spectral radius. Theorem B

applies to linear expanding maps and again gives a lower bound for the essential spectral

radius but with weaker assumptions on the Banach space. On the other hand, Theorem C
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requires an assumption of the topological pressure in order to give a lower bound (an as-

sumption that holds for C∞ maps). In Theorem D we apply the ideas to the case where

the norm is natural (defined in Section 2.2) and we obtain a lower estimate on the essential

spectral radius.

Let I = [0,1] and

T : ∪i Ii → I

where {Ii }i is a finite partition of I by open intervals, and T : Ii → T (I i ) extends to a C 1 dif-

feomorphism on I i . Then the transfer operator L with respect to the is a bounded operator

acting on L1(I ). Denote by r (L,L1(I )) its spectral radius.

1.1. Growth of derivatives and topological entropy. Let

P k = {I k
i }i

be the intervals of monotonicity of T k . Let

θk
i = sup

x∈I k
i

1

|D f k (x)| .

Notice thatΘk (β) =∑
i (θk

i )β is sub-multiplicative,Θk+ j (β) ≤Θk (β)Θ j (β), so we can define

Θ∞(β) = lim
k

(Θk (β))1/k .

Remark 1.1.1. An easy upper bound is

Θ∞(β) ≤ #P 1 lim
k

(
sup
x∈I

1

|D f k (x)|β
)1/k

.

If T is continuous one can be more precise

Θ∞(β) ≤ ehtop (T ) lim
k

(
sup
x∈I

1

|D f k (x)|β
)1/k

.

Here htop (T ) is the topological entropy of T . If T is an C 1+β expanding map on the circle we

observe that

lim
k

(
sup
x∈I

1

|D f k (x)|β
)1/k = e−βM ,

where

M = inf
µi nv.pr ob.T

∫
ln |D f | dµ.

Indeed in this case

Θ∞(β) = ePtop (−β ln |D f |),

where Ptop (φ) denotes the topological pressure of φ.
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2. MAIN RESULTS

2.1. Lower bound for essential spectrum radius. Discontinuities of a dynamical system is

a serious obstruction for small essential spectrum radius of the transfer operator L acting on

Banach spaces of bounded functions (see B., Canestrari and Jain [10]). Here we are going to

see that if the transfer operator acts on a space of functions B that contains the simplest of

discontinuous functions, and satisfies a basic norm estimate, then B is indeed quite large

and its essential spectrum cannot be small.

Given s ∈ (0,1), let B s
1,1 be the classical space of Besov function on the interval I . Denote

by |A| the Lebesgue measure of the set A.

Theorem A. Suppose that

- The map T : Ii → T (I i ) extends to a C 1+β diffeomorphism on I i , for every i , with β> 0.

- The Lebesgue measure m on I is T -invariant.

- The transfer operator L associated with T , with respect to the Lebesgue measure m,

preserves a Banach space of functions B that is continuously embedded in L1(I ) and

the operator L : B → B is bounded.

- There are C ≥ 0 and s ∈ (0,1) such that for every interval J ⊂ I we have that 1J ∈ B and

(2.1.2) ||1J ||B ≤C |J |1−s

Then the Besov space B s
1,1 is continuously embedded in B. If furthermore s <β we have

ress(T,B) ≥ 1/Θ∞(1− s)

and every λ ∈Cwith |λ| < 1/Θ∞(1− s) is an eigenvalue of L on B with an infinite dimensional

eigenspace.

In the piecewise linear case, we can weaken the assumption and still obtain a lower bound

for the essential spectrum radius.

Theorem B. Suppose that

- The Lebesgue measure m on I is T -invariant.

- T is linear on each branch and it has k branches.

- The transfer operator L associated with T , with respect to the Lebesgue measure m,

preserves a Banach space of functions B that is continuously embedded in L1(I ) and

the operator L : B → B is bounded.

- There is C ≥ 0 such that for every interval J ⊂ I we have that 1J ∈ B and

(2.1.3) ||1J ||B ≤C .

Then

ress(L,B) ≥ 1/k

and every λ ∈ C which satisfies |λ| < 1/k is an eigenvalue of L on B with an infinite dimen-

sional eigenspace.

Theorem C. Suppose that
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- The Lebesgue measure m on I is T -invariant.

- T is piecewise C r+1 and expanding, for some r > 0, Markovian with k branches, all of

them onto, and

(2.1.4) Ptop (−(r +1)log |DT |) < 1

k
.

- The transfer operator L associated with T , with respect to the Lebesgue measure m,

preserves a Banach space of functions B that is continuously embedded in L1(I ) and

the operator L : B → B is bounded.

- There is C ≥ 0 such that for every interval J ⊂ I we have that 1J ∈ B and

(2.1.5) ||1J ||B ≤C .

Then

ress(L,B) ≥ 1

k
.

Remark 2.1.6. Condition (2.1.4) is satisfied

- for every T that is piecewise expanding C r+1 and Markovian with k branches, and

sup
x∈I

1

|DT (x)|r < 1

k
.

- for every T that is piecewise expanding C∞ and Markovian with k branches, provided

r is large enough.

Remark 2.1.7. Every C r Markovian expanding map, r > 1, with only full branches, is con-

jugate by a C r conjugacy with a C r Markovian expanding map that preserves the Lebesgue

measure, so this assumption is not strong.

Remark 2.1.8. Note that if Lφ = λφ with φ ∈ B \ {0} and ψ(x) = φ(x)/|φ(x)| if φ(x) ̸= 0, and

ψ(x) = 0 otherwise, then ∫
ψ◦T nφ dm =λn

∫
|φ| dm,

so λ-eigenvectors are obstructions for decay of correlations faster than |λ|.
2.2. Natural spaces of functions. Conditions (2.1.2) and (2.1.3) appear challenging to ver-

ify. However, most Banach function spaces on R discussed in the literature exhibit good

behaviour with respect to translation and scaling, which will significantly aid our analysis.

Almost Homogeneity and invariance by translations. We will say that a pseudo-norm n(·)
on a space of functions on the interval I is purely natural if there is t ∈R and C > 0 such that

if u : R→R is an invertible affine transformation and φ : I →C satisfies

u−1(supp φ) ⊂ I

then φ◦u ∈ B and
1

C
|u′|t n(φ) ≤ n(φ◦u) ≤C |u′|t n(φ).

The parameter t will be called the degree of homogeneity of u.
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A pseudo-norm n is called natural it is a finite sum of purely natural pseudo-norms, that

is, there are purely natural pseudo-norm ni , with i ≤ j , and degree of homogeneity ti such

that

(2.2.9) n(φ) = ∑
i≤ j

ui (φ).

Remark 2.2.10. Many norms and pseudo-norms of spaces of function of an interval are nat-

ural. The sup norm, the Lp norms, the p-bounded variation pseudo-norm, the Hölder norm,

C k norms, Sobolev norms and Besov norms.

A nice application of the previous results is

Theorem D. Suppose that

- T is piecewise C r+1 and expanding acting on the interval I = [0,1], for some r > 0,

Markovian with k branches, all of them onto, and

(2.2.11) Ptop (−(r +1)log |DT |) < 1

k
.

- The Lebesgue measure m on I is T -invariant.

- B is a Banach space of functions continuously embedded in L1(I ) whose norm || · ||B is

natural.

- The transfer operator L of T with respect to the Lebesgue measure m keeps a Banach

space of functions B invariant, and L : B → B is a bounded operator with spectral gap.

- For every interval J ⊂ I we have that 1J ∈ B.

Then one of the following cases occurs

I. There is C > 0 such that
1

C
≤ ||1P ||B ≤C

for every interval P ⊂ I , and

ress(L,B) ≥ 1/k.

II. There is s ∈ (0,1) and C > 0 such that

1

C
|P |1−s ≤ ||1P ||B ≤C |P |1−s

for every interval P ⊂ I , the Besov space B s
1,1 is continuously embedded in B and

ress(L,B) ≥ 1

Θ∞(1− s)
.

Remark 2.2.12. Both cases occur. If B represents the space of bounded variation functions

on I and T (x) = 2x mod 1 on I = [0,1], then we are in Case I. On the other hand, if we

consider B s
1,1 with s ∈ (0,1), we are in Case II (see Nakano and Sakamoto [29] and S. [32]).

Furthermore, note that if B ⊂ L∞, we must be in case I, as B s
1,1 includes unbounded functions.
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3. PRELIMINARIES

3.1. p-bounded variation. Let J = [a,b] ⊂ I . The p-variation of a function ψ : I → C on the

interior of J is

vp (ψ, J ) = sup(
n∑

i=0
|φ(xi+1)−φ(xi )|p )1/p ,

where the sup runs over all possible finite increasing sequences

a < x0 < x1 < ·· · < xn−1 < xn < b.

Lemma 3.1.13. The pseudo-norm vp has the following properties properties

• vp is invariant with respect to continuous change of coordinates: if u : P → J is a home-

omorphism then

vp (φ, J ) = vp (φ◦u,P ).

• if J1 and J2 are intervals such that J1 ∩ J2 is just a point then

v p
p (ψ, J1)+ v p

p (ψ, J2) ≤ v p
p (ψ, J1 ∪ J2).

3.2. Besov space B s
1,1(I ). Given s ∈ (0,1), consider the space of all functions ψ ∈ L1(I ) that

can be written as

(3.2.14) ψ=
∞∑

n=0
cn |Qn |s−11Qn ,

where this series converges in L1(I ) and Qn are subintervals of I . If we endow B s
1,1 with the

norm

|φ|B s
1,1(I ) = inf

∑
n
|cn |,

where the infimum runs over all possible representations, B s
1,1 is a Banach space.

Those spaces were introduced by de Souza [16]. There are indeed many way to describe

this space (see de Souza [17]). In particular it coincides with the classical Besov spaces

B s
1,1(I ). The proof of the following proposition is quite simple.

Proposition 3.2.15. Let B be as in the Theorem A. There is a continuous embedding of B s
1,1 in

B, that is, B s
1,1 ⊂ B and there is C such that

||φ||B ≤C ||φ||B s
1,1

.

Proposition 3.2.16. Given 1/p > s there is C ≥ 0 such that the following holds. For every

function ψ : I → C that vanish outside a closed interval J and vp (ψ, J ) <∞ we have that ψ ∈
B s

1,1(I ) and

|ψ−m(ψ, J )1J |B s
1,1(I ) ≤C |J |1−s vp (ψ, J ).

Here

m(ψ, J ) = 1

|J |
∫

J
ψ dm.

Note that C does not depend on J.
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Proof. We do a argument similar to the proof of Proposition 16.3 in S. [33]. Let Dk be the

partition of J by intervals of length |J |/2−k . Then

ψ= lim
k
ψk ,

in L1(m), where

ψk = ∑
P∈Dk

m(ψ,P )1P .

Note that

ψ0 = 1

|J |
∫

J
ψ dm.

We claim that sequence converges in B s
1,1. Indeed

ψk+1 −ψk

= ∑
P∈Dk+1

m(ψ,P )1P − ∑
Q∈Dk

m(ψ,Q)1Q

= ∑
Q∈Dk

∑
P∈Dk+1

P⊂Q

(m(ψ,P )−m(ψ,Q))1P

and

|m(ψ,P )−m(ψ,Q)| ≤ 2vp (ψ,Q),

so ∑
k≥0

|ψk+1 −ψk |B s
1,1(I )

≤ ∑
k≥0

∑
Q∈Dk

|Q|1−s4vp (Q)

≤4
∑
k≥0

( ∑
Q∈Dk

|Q|
(1−s)p

p−1
) p−1

p
( ∑

Q∈Dk

v p
p (Q)

)1/p

≤ 4
∑
k≥0

( ∑
Q∈Dk

|Q|1+
1−sp
p−1

) p−1
p

( ∑
Q∈Dk

v p
p (Q)

)1/p

≤C |J |1−s vp (Q).

□

4. PROOF OF THE MAIN RESULTS

Proof of Theorem A. Let ψ ∈ L∞(I ), with ψ ̸= 0 and Lψ= 0. Note that

|ψ◦T ℓ|Lp (I ) ≤ |ψ|L∞

for every p ∈ [1,∞]. Given z ∈C with |z| < 1, define

(4.1.17) hz =
∞∑
ℓ=0

zℓψ◦T ℓ ∈ Lp (I ), wi th p ∈ [1,∞].

Let

Fℓ = {φ◦T ℓ : φ ∈ L∞(I ) and Lφ= 0}.
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Then Fℓ are mutually orthogonal on L2(I ) (see de Lima and S. [15]). In particular hz ̸= 0

since

{ψ◦T ℓ}ℓ

is an orthogonal set in L2(I ). Since m is T -invariant we have that L(φ ◦ T ) = φ for every

φ ∈ L∞(I ), and an easy calculation shows that

Lhz = zhz .

That is a classical construction of eigenvalues of L (see Collet and Isola[13]) and indeed it

shows that every |z| < 1 is an eigenvalue of L with an infinite dimensional eigenspace on

Lp (I ), for every p ∈ [1,∞].

Since T is piecewise C 1+β we can choose disjoint closed intervals I1, I2 ⊂ I and β-Hölder

functions φi : Ji →R, i = 1,2, such that

ψ=φ11J1 −φ21J2 ∈ L∞(I ),

v1/β(φi , Ji ) <∞,

and Lψ= 0, withψ ̸= 0. Indeed note that the set of all possible suchψ is infinite dimensional.

We have that

(φ j 1I j )◦T k =∑
i
φ j ◦T k 1Qk

i
,

where Qk
i ⊂ I k

i is an interval mapped by T k monotonically to a sub-interval of I j . In particu-

lar

|Qk
i | ≤ θk

i ,

sup
i

sup
k

v1/β(φi ◦T k ,Qk
i ) <∞,

In the last estimate we used Lemma 3.1.13. Since β> s, due Proposition 3.2.16 we have

|ψ◦T k |B s
1,1

≤C
∑

i
(θk

i )1−s =CΘk (1− s).

So if |z| < 1/Θ∞(1− s) we have that hz ∈ B s
1,1 ⊂ B . Consequently

ress(T,B) ≥ 1/Θ∞(1− s)

and

ress(T,B s
1,1) ≥ 1/Θ∞(1− s).

□

Proof of Theorem B. We use the same notation as in the proof of Theorem A. Since T is lin-

ear on each branch we can choose disjoint intervals I1 and I2 in I and positive constants c1

and c2 such that ψ = c11I1 − c21I2 ∈ L∞(I ), Lψ = 0 and ψ ̸= 0. In this case ψ ◦T k is a linear

combinations of characteristic functions of intervals. So for |z| < 1/k we have

(4.1.18) hz =
∞∑
ℓ=0

zℓψ◦T ℓ.
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indeed converges in B since

|ψ◦T ℓ|B ≤C kℓ.

So ress(L,B) ≥ 1/k. □

Proof of Theorem C. Suppose, for the sake of contradiction, that

(4.1.19) ress(L,B) < 1/k.

Since T is a piecewise C r+1 markovian map, by Collet and Isola [13] (see also Baladi [3])

we have that

ress(L,C r (I )) = exp(Ptop (−(r +1)log |DT |)) < 1

k
.

Let z ∈C be such that

(4.1.20) max{exp(Ptop (−(r +1)log |DT |)),ress(L,B)} < |z| < 1

k
.

In particular there is a finite dimensional subspace E ⊂ C r (I ) and a closed subspace F ⊂
C r (I ) such that

i. E and F are Ln-invariant for every n > 0.

ii. r (Ln ,F ) < |z|n for every n > 0.

iii. B = E ⊕F

and there is a finite dimensional subspace Ê ⊂ B and a closed subspace F̂ ⊂ B such that

iv. Ê and F̂ are Ln-invariant for every n > 0.

v. r (Ln , F̂ ) < |z|n for every n > 0.

vi. B = Ê ⊕ F̂

Let P n be the partition of I by the intervals of monotonicity of T n and F n ⊂ B be the

space of functions that are constant of each element of P n . Note that if Ln0F n0 ⊂C r (I ).

Claim A. If n0 > dimE +dim Ê + 1 then there is ψ ∈ F n0 that is not constant, ψ ∈ F̂ , and

Ln0ψ ∈ F .

Let πE ,πF be the orthogonal projections associated with the decomposition C r (I ) = E ⊕F ,

and πÊ ,πF̂ be the orthogonal projections associated with the decomposition B = Ê ⊕ F̂ . De-

fine

H : F n0 → E ⊕ Ê

as H(ψ) = (πE (Ln0ψ),πÊ (ψ)). If n0 > dimE +dim Ê +1 we have that dimK er H ≥ 2, so it con-

tains a non-constant function. This finishes the proof of the claim. Choose n0 and ψ as in

Claim A.

Claim B. For every n > 0 we have that

(4.1.21) hz,n =
∞∑
ℓ=0

zℓnψ◦T ℓn

converges in B and

Lnhz,n = znhz,n +Lnψ.



DISCONTINUOUS OBSERVABLES AS AN OBSTRUCTION FOR SMALL ESSENTIAL SPECTRAL RADIUS 11

Moreover for large n we have that the image of hz,n is a Cantor set (up to a countable set).

Note that ψ◦T ℓ is a linear combination of characteristic functions of intervals and we have

(4.1.22) hz,n =
∞∑
ℓ=0

zℓnψ◦T ℓn .

indeed converges in B since by (2.1.5)

|ψ◦T ℓ|B ≤C kℓ.

One can easily check that

(4.1.23) −z−nψ= hz,n ◦T n − z−nhz,n ,

and hz,n is the unique bounded function that is a solution of such cohomological equation.

Let

I = {y ∈C : ψ= y in some P ∈P n0 }.

Since ψ is not constant we have that #I ≥ 2. For every q ∈I define the affine map

φq,n : C→C

given by

φq,n(u) = z−nu − z−n q.

One can rewrite (4.1.23) as

φψ(x),n ◦hz,n(x) = hz,n ◦T n(x).

Observe that the unique fixed point of φq,n is

xq,n = q

1− zn
,

and limn xq,n = q . Let R = 2di am I and choose q0 ∈I . If n > n0 is large enough

- We have

φ−1
q,n(B(q0,R)) ⊂ B(q0,R),

for every q ∈I ,

- φ−1
q1,n(B(q0,R)) and φ−1

q2,n(B(q0,R)) are disjoint for every q1, q2 ∈I with q1 ̸= q2.

In particular the map

Gn :
⋃

q∈I

φ−1
q,n(B(q0,R)) → B(q0,R)

defined by Gn(x) =φq,n(x) for x ∈φ−1
q,n(B(q0,R)), is a conformal expanding map and its max-

imal invariant set

Ωn = ⋂
ℓ>0

G−ℓ
n B(q0,R)

is a Cantor set. Let

ĥz,n : I →C
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be the bounded function defined by

ĥz,n(x) = lim
k
φ−1
ψ(x),n ◦φ−1

ψ(T n x),n ◦φ−1
ψ(T 2n x),n · · · ◦φ−1

ψ(T kn x),n
(q0) ∈Ωn ∩φ−1

ψ(x),n(B(q0,R))

Since T n has only full branches the image of ĥz,n is the Cantor setΩn . It is easy to see that

Gn ◦ ĥz,n(x) = ĥz,n ◦T n(x),

that is

φψ(x),n ◦ ĥz,n(x) = ĥz,n ◦T n(x),

so

−z−nψ= ĥz,n ◦T n − z−nĥz,n .

and consequently ĥz,n = hz,n .

Claim C. For n ≥ n0 we have that

wz,n =
∞∑
ℓ=1

z−ℓnLℓnψ

converges in B and C r (I ), and moreover

(4.1.24) Ln wz,n = zn wz,n −Lnψ.

Since Ln0ψ ∈ F ∩ F̂ the above series converges in B and C r (I ). It is easy to verify (4.1.24).

Claim D. For large n we have that hz,n +wz,n ̸= 0 and

(4.1.25) Ln(hz,n +wz,n) = zn(hz,n +wz,n).

The equality (4.1.25) is obvious. Note that due Claim B. we have that for large n the image

of hz,n is a Cantor set (up to a countable set), and the image of −wz,n is a (perhaps empty)

interval (up to a finite subset). So hz,n +wz,n ̸= 0 and zn is an eigenvalue of Ln . In particular

there is δ ∈C, with δn = 1, such that δz is an eigenvalue of L.

Since z can be an arbitrary complex number satisfying (4.1.20), Claim D. implies that

ress(Ln ,B) ≥ 1/kn and ress(L,B) ≥ 1/k. □

Proof of Theorem D. Since n(φ) = ||φ||B is natural, it can be written as in (2.2.9), where ui

there are purely natural pseudo-norm ni , with i ≤ j , and degree of homogeneity ti .

Given φ ∈ B , define

tmax(φ) = max{ti : ni (φ) > 0}.

Claim I. Let I be the family of all characteristic functions of intervals in I . Then tmax is

constant on I . Let tmax(I ) be the valued of tmax on I . There is C1 such that

1

C1
|Q|−tmax(I ) ≤ ||1Q ||B ≤C1|Q|−tmax(I )



DISCONTINUOUS OBSERVABLES AS AN OBSTRUCTION FOR SMALL ESSENTIAL SPECTRAL RADIUS 13

Given a interval Q ⊂ I there is an affine mapψ such thatψQ (Q) = I , with |ψ′| = |I |/|Q| = 1/|Q|,
so

1Q = 1I ◦ψ
and due the the almost homogeneity of the norm there is Ki > 0 such that

1

ki
|Q|−ti ni (1I ) ≤ ui (1Q ) ≤ Ki |Q|−ti ni (1I )

for every interval Q ⊂ I . It follows that tmax is constant on I . Note also that

||1Q ||B ≤ K −1
tmax

|Q|−tmax utmax (1I )+ ∑
ti<tmax

K −1
ti

|Q|−ti uti (1I )

≤ K −1
tmax

|Q|−tmax
(
utmax (1I )+ ∑

ti<tmax

K −1
ti

K −1
tmax

|Q|tmax−ti
uti (1I )

utmax (1I )

)
≤C |Q|−tmax ||1I ||B .

and the opposite inequality is obtained with a similar argument. This finishes the proof of

the claim.

Let Pk be the Markov partition of T k . Given an interval P ∈ P k+1, chose Q1,Q2 ∈ P k+2

such that Qi ⊂ P , with i = 1,2, and Q1 ̸=Q2. Define

aP = 1Q1

|Q1|
− 1Q2

|Q2|
.

Note that ∫
aP dm = 0.

Claim II. There is C > 0 and λ ∈ (0,1) such that for every P ∈P k we have

||aP ||B ≥Cλ−k .

Since L has spectral gap on B there is C ≥ 0, λ ∈ (0,1) such that for every function a ∈ B such

that ∫
a dm = 0,

we have

||Lk a||B ≤Cλk ||a||B ,

So given P ∈P k+1 we have

||Lk aP ||B ≤Cλk ||aP ||B ,

On the other hand since B is continuously embedded in L1(m) there is C > 0 such

||Lk aP ||B ≥C ||Lk aP ||L1(m) =C ||aP ||L1(m) = 2C > 0,

Consequently there is C > 0 such that

||aP ||B ≥Cλ−k .
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Claim III. We have tmax(I ) >−1.

It follows from Claim II. that for every P ∈P k+1 there is Q ∈P k+2, with Q ⊂ P , satisfying

|| 1Q

|Q| ||B ≥ C

2
λ−k .

Let

α= min
1

|DT | < 1.

Then

|Q| ≥αk+1,

It follows that

||1Q ||B ≥ C

2
λ−k |Q| ≥ C

2
α−k lnλ

lnα |Q| ≥C |Q|1−β,

with

β= lnλ

lnα
> 0.

Due Claim II. that implies 1+ tmax(I ) ≥β> 0.

Claim IV. We have tmax(I ) ≤ 0.

Suppose that tmax(I ) > 0. Let C1 be as in Claim I. Choose θ such that θ ∈ (0,1/4), θtmax(I ) ∈
(0,1/4) and such that

1

C1
θ−tmax(I ) > 2C1.

Let Qi = [xi , xi+1], with x0 = 0 and

|Qi | = θi

Then by Claim I

C1|Q0|−tmax(I ) ≥C1|[0, xk+1]|−tmax(I )

≥ ||1[0,xk+1]||B = ||
k∑

i=0
1[xi ,xi+1]||B

≥ ||1Qk ||B −
k−1∑
i=0

||1Qi ||B

≥ 1

C1
θ−ktmax(I ) −

k−1∑
i=0

C1θ
−i tmax(I )

≥ 1

C1
θ−ktmax(I ) −C1θ

−(k−1)tmax(I )
k−1∑
i=0

θi tmax(I )

≥ 1

C1
θ−ktmax(I ) −C1θ

−(k−1)tmax(I ) ≥C1θ
−(k−1)tmax(I ).

so if k is sufficiently large, we arrive at a contradiction. This concludes the proof of Claim IV.

Now we can conclude the proof of Theorem D. We know that −1 < tmax(I ) ≤ 0. If tmax(I ) = 0

we can apply Theorem C and obtain Case I. Otherwise we can take s = 1+ tmax(I ) ∈ (0,1).

The remaining conclusions follow from Theorem A.
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