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SMOOTH ANOSOV FLOWS: CORRELATION SPECTRA AND STABILITY
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ABSTRACT. By introducing appropriate Banach spaces one can study the spec-

tral properties of the generator of the semigroup defined by an Anosov flow.

Consequently, it is possible to easily obtain sharp results on the Ruelle reso-

nances and the differentiability of the SRB measure.

1. INTRODUCTION

In the last years there has been a growing interest in the dependence of the
SRB measures on the parameters of the system. In particular, G.Gallavotti [11]
has argued the relevance of such an issue for nonequilibrium statistical mechan-
ics.

On a physical basis (linear response theory) one expects that the average be-
havior of an observable changes smoothly with parameters. Yet the related rigor-
ous results are limited and the existence of irregular dependence on parameters
(think, for example, of the quadratic family) shows that, in general, smooth de-
pendence must be properly interpreted to have any chance to hold.

The only cases in which some simple rigorous results are available are smooth
uniformly hyperbolic systems and some partially hyperbolic systems. In par-
ticular, Ruelle [24] has proved differentiability and has provided an explicit (in
principle computable) formula for the derivative in the case of SRB measures for
smooth hyperbolic diffeomorphisms. Subsequently, D.Dolgopyat has extended
such results to a large class of partially hyperbolic systems [8]. More recently
Ruelle has obtained similar results for Anosov flows [26]. Ruelle’s proofs of the
above results use the classical thermodynamic formalism and precise structural
stability results which, although reasonably efficient for diffeomorphisms, pro-
duce a quite cumbersome proof in the case of flows. It should also be remarked
that much of the results concerning statistical properties of dynamical systems
are related to the analytical properties of the Ruelle zeta function [23, 1]. In the
context of Anosov flows such properties have been first elucidated by Pollicott in
[22].
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In more recent years, several authors have attempted to put forward a differ-
ent approach to the study of hyperbolic dynamical systems based on the direct
study of the transfer operator (see [1] for an introduction to the theory of trans-
fer operators in dynamical systems). Starting with [28, 5] it has become clear that
it is possible to construct appropriate functional spaces such that the statistical
properties of the system are accurately described by the spectral data of the op-
erator acting on such spaces. The recent papers [19, 18, 12, 2, 3, 20, 9, 7, 21, 4, 13],
have shown that such an approach yields a simpler and far-reaching alternative
to the more traditional point of view based on Markov partitions.

In this paper we present an application of these methods to the aforemen-
tioned issue: the differentiability properties of the SRB measure for Anosov flows.
Not only are the formulae in [24] easily recovered, but higher differentiability is
obtained as well, making rigorous some of the results in [25]. In addition, the
method naturally yields precise information on the structure of the Ruelle reso-
nances, extending the results in [22, 27].

Note that the same strategy can be used to prove differentiability (and obtain
in principle computable formulae) for many other physically relevant quantities
(at least for C ∞ flows) such as: Ruelle’s resonances and eigendistributions, the
variance in the central limit theorem (diffusion constant), the rate in the large
deviations. Also, a slight generalization of the present approach that considers
transfer operators with real potential would apply to general Gibbs measures.
This would allow, for example, to obtain an easy alternative proof of the results
in [17].

The key reason for the straightforwardness of the present approach is that,
once the proper functional setting is established, the usual formal manipula-
tions to compute the derivative are rigorously justified, making the argument
totally transparent.

The spaces used here are the ones introduced in [12] although similar results
could, most likely, be obtained by using the spaces introduced in [3, 4].

Recently some new results have been obtained on the stability of mixing [10].
It would be interesting to investigate the relationship between such qualitative
results and the quantitative theory in this paper.

Finally, it should be remarked that the approach of the present paper is based
on the study of the resolvent, rather than the semigroup, in the spirit of [20]. Nev-
ertheless, a recent paper by M.Tsujii [29] has shown that it is possible to intro-
duce Banach spaces that allow the direct study of the semigroup, although this
is limited to the case of suspensions over an expanding endomorphism. Such
an approach yields much stronger results. To construct similar spaces for flows
and, possibly, other classes of partially hyperbolic systems is one of the current
challenges of the field.

The plan of the paper is as follows: Section 2 details the systems we consider,
introduces the norms we use and the corresponding Banach spaces, and it states
the results. In Section 3 we precisely define the Banach spaces relevant for our
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approach and study some of their properties. In Section 4 we look at the prop-
erties of the transfer operator in this setting and discuss the spectral decompo-
sition of its generator. In Section 5 we give results on the behavior of the part
of the spectrum close to the imaginary axis, and in Section 6 we discuss specifi-
cally the behavior of the SRB measure as the dynamical system is perturbed, in
the course of which the Ruelle formula for the derivative is established. In Sec-
tion 7 the main dynamical inequalities are proven for the transfer operator while
in Section 8 the corresponding inequalities are established for the resolvent of
the generator of the flow. The paper also includes an appendix in which some
necessary technical (but intuitive) facts are proven.

REMARK 1.1. In the present paper we will use C to designate a generic constant
depending only on the Dynamical Systems (M ,Tt ), while Ca,b,... will be used for
a generic constant depending also on the parameters a,b, . . . . Accordingly, the ac-
tual numerical value of C may vary from one occurrence to the next.

Acknowledgements. C.L., wishes to thank Sébastien Gouëzel and David Ruelle
for many helpful suggestion and comments. In addition we are indebted to the
anonymous referee for pointing out a considerable number of imprecisions and
making several precious suggestions.

2. STATEMENTS AND RESULTS

Let us consider the C ∞ d-dimensional compact Riemannian manifold M

and the Anosov flow Tt ∈ Diff (M ,M ). In other words the following conditions
are satisfied.

CONDITION 1. T satisfies the following

T0 = Id,

Tp ◦Tq = Tp+q for each p, q ∈R.

That is Tt is a flow.

CONDITION 2. At each point x ∈M there exists a splitting of tangent space TxM =

E s (x)⊕E f (x)⊕E u (x). The splitting is continuous and invariant with respect to Tt .
E f is one-dimensional and coincides with the flow direction. In addition, for each
ν ∈ E f , DTtν= 0 =⇒ ν= 0 and there exist λ> 0 such that

‖DTtν‖≤ e−λt ‖ν‖ for each ν ∈ E s and t ≥ 0,

‖DT−tν‖≤ e−λt ‖ν‖ for each ν ∈ E u and t ≥ 0.

That is the flow is Anosov.1

1In general one can have a Ce−λt instead of e−λt in the first two inequalities, yet it is al-

ways possible to change the Riemannian structure in order to have C = 1 by losing a little bit

of hyperbolicity (e.g., define 〈v, w〉L :=
∫L
−L e−2λ′|s|〈DTt v,DTt w〉ds with λ′ < λ and L such that

Ce(λ′−λ)L < 1).
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A smooth flow naturally defines a related vector field V . Often the vector field
is a more fundamental object than the flow, we will thus put our smoothness
requirement directly on the vector field.

CONDITION 3. We assume V ∈C r+1, r > 1.2 This implies Tt ∈C r+1.

To study the statistical properties of such systems it is helpful to study the
action of the dynamics on distributions. To this end let us define Lt : D′

r+1 →

D′
r+1 by3

(2.1) 〈Lt h,ϕ〉 := 〈h,ϕ◦Tt〉, for all ϕ ∈C
r+1.

It is easy to see that the Lt are continuous.

REMARK 2.1. Given the standard continuous embedding4 i : C r
!→ D′

r we can,
and we will, view functions as distributions. In particular, if h ∈ C r , then it can
be viewed as the density of the absolutely continuous measure ih. In such a case a
simple computation shows that, setting

(2.2) L̃t h := [h det(DTt )−1]◦T −1
t ,

gives iL̃t =Lt i. Formula (2.2) provides a more common expression for the trans-
fer operator.

Unfortunately it turns out that the spectral properties of Lt on the above
spaces bear no clear relation to the statistical properties of the system. To estab-
lish such a connection in a fruitful way it is necessary to introduce Banach spaces
that embody in their inner geometry the key properties of the system (that is, hy-
perbolicity).

The first step is to define appropriate norms on C ∞(M ,C) and then take the
closure in the relative topology. The exact definition of the norms can be found
in Section 3, yet let us give here a flavor of the construction.

For each p ∈N, q ∈ R+, consider a set Σ of manifolds of roughly uniform size
and close to the strong stable manifolds and let V be the set of smooth vector
fields (see Section 3 for precise definitions). For each W ∈ Σ, v1, . . . , vp ∈ V and

ϕ ∈C
p+q
0 (W,C) we can then define linear functionals on C ∞(M ,C)5 by

$W,v1,...,vp ,ϕ(h) :=

∫

W
ϕv1 · · ·vph

and the dual ball by

Up,q :=
{
$W,v1,...,vp ,ϕ |W ∈Σ, |ϕ|

C
q+p
0

≤ 1, |vi |C q+p ≤ 1
}

.

2The reason for such a condition, instead of the more natural r > 0, is purely technical and rests

in the limitation p ∈N for the spaces B
p,q used in the following. Most likely it could be removed

either using the spaces in [3] or generalizing the present spaces.
3In the following we will use 〈h,ϕ〉 and h(ϕ) interchangeably to designate the action of the

distribution h on the smooth function ϕ.
4If g , f ∈C r , then 〈i f , g〉 :=

∫
M f g .

5Here, and in the following, the integrals are meant with respect to the induced Riemannian

metric. Moreover, given a vector field v and a function h, by vh or v(h) we mean the Lie derivative

of h along v .
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We can finally define the seminorms and norms we are interested in:

‖h‖−p,q := sup
$∈Up,q

$(h) ∀p ∈N, q ∈R+

‖h‖p,q := sup
n≤p

‖h‖−n,q ∀p ∈N, q ∈R+.
(2.3)

We define the spaces Bp,q := C ∞(M ,C)
‖·‖p,q

. Note that these spaces are equiv-
alent to the ones defined in Section 2 of [12], the only difference being in their
use: there they depend on the stable cone of an Anosov diffeomorphism, here
they depend on the strong stable cone of an Anosov flow. Consequently we will
often refer to results proved in [12].

A first relevant property of the spaces Bp,q was proved in [12, Lemma 2.1]:

LEMMA 2.2. ‖ ·‖p−1,q+1 ≤Cp,q‖ ·‖p,q for each p ∈N∗ and q ∈R+. In addition, the

unit ball of Bp,q is relatively compact in Bp−1,q+1.

It is easy to show that Lt : Bp,q →Bp,q , with p +q ≤ r , is a bounded strongly
continuous semigroup (Lemma 4.2); it is also uniformly bounded in t (Lemma
4.1). Accordingly, by general theory, the generator X of the semigroup is a closed
operator. Clearly, the domain D(X ) ⊃C r+1(M ,C) and, restricted to C r+1(M ,C),
X is the action of the adjoint of the vector field defining the flow, that is

(2.4) X h =−V (h)−h divV ∈C
r .

Obviously, the spectral properties of the generator depend on the resolvent
R(z) = (zId − X )−1. It is well known (e.g., see [6]) that for uniformly bounded
semigroup (Lemma 4.1) the spectrum of X is contained in {z ∈ C : ℜ(z) ≤ 0}.
That is, for all z ∈C, ℜ(z) > 0, the resolvent R(z) is a well-defined bounded oper-
ator on Bp,q and, moreover,

(2.5) R(z) f =

∫∞

0
e−zt

Lt f d t .

The above facts allow us to establish several facts concerning the spectrum of
the generator.

THEOREM 1. For each p ∈N, q ∈R+, p +q ≤ r , the spectrum of the generator, act-
ing on Bp,q , in the strip 0 ≥ ℜ(z) > −min{p, q}λ consists only of isolated eigen-
values of finite multiplicity. Such eigenvalues correspond to the Ruelle resonances
(see Remark 2.3 for more details). In addition, the eigenspace associated to the
eigenvalue zero is the span of the SRB measures.6 The SRB measure is unique

6Here we adopt the following definition of SRB measure: a measure ν is SRB if there exists a

positive Lebesgue measure open set U such that ∀ϕ ∈C
0 and Lebesgue a.e. x ∈U

1

T

∫T

0
ϕ◦Tt (x)dt → ν(ϕ).

The above implies, in the present setting, all the usual properties of SRB measures (e.g., absolute

continuity along weak unstable manifold) that we do not detail as they will not be used in the

following. We will only use, at the end of the proof of Lemma 5.1, that the union of the basins of all

the SRB measures is of full Lebesgue measure, that is: for each continuous function the forward

ergodic average exists Lebesgue-a.s.
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iff the eigenvalue is simple and it is mixing iff zero is the only eigenvalue on the
imaginary axis.

The first statement is proven in Lemma 4.5, the second, and more, in Lemma
5.1. The above theorem extends the well-known results of Pollicott and Rugh
[22, 27] to higher regularity and higher dimension. Indeed we can connect the
above results to physically relevant quantities: the correlation spectrum.

If f , g ∈ C ∞ then one is interested in C f ,g (t ) :=
∫

g ◦Tt f −
∫

f
∫

g , where the
integral may be with respect to Lebesgue measure or the SRB measure depend-
ing on whether one is observing the system in equilibrium or out of equilibrium
starting from a properly prepared state.

REMARK 2.3. A typical piece of information that can be obtained on the quantity
C f ,g is its Fourier transform

Ĉ f ,g (i k) :=

∫∞

0
e−i ktC f ,g (t )d t =

∫(
g −

∫
g

)
R(i k) f .

The above results thus imply that the quantity Ĉ f ,g has a meromorphic extension
in the strip 0 ≥ ℜ(z) > −min{p, q}λ. In addition, in such a region, the poles (the
so-called Ruelle resonances) and their residues describe (and are described by)
exactly the spectrum of X . In particular this means that the spectral data of X
on the Banach spaces Bp,q are not a mathematics nicety but physically relevant
quantities.

Given such a spectral interpretation it is then easy to apply the perturbation
theory of [12] and obtain our other main result.

Let us consider a family of vector fields Vη := V +ηV1 ∈ C r+1, η ∈ (−1,1), and
the associated flow Tη,t . Suppose, for simplicity, that T0,t has a unique SRB mea-
sure. The issue is to show that Tη,t has a unique SRB measure µη as well, that
such a measure is a smooth function of η and finally to establish a formula for its
derivative.

Let us define µ(n)
η := dn

dηn µη. In Section 6 we prove the following.

THEOREM 2. There exists η0 > 0 such that, if the flow T0,t has a unique SRB mea-
sure, then the same holds for the flows Tη,t for |η| ≤ η0. Calling µη such an SRB

measure the function η 2→ µη belongs to C r−2([−η0,η0],B0,r ). In addition, for all
η ∈ [−η0,η0], n ≤ r −2 and ϕ ∈C r , we have the formula

µ(n)
η (ϕ) = lim

a→0+

∫∞

0
ne−atµ(n−1)

η (V1(ϕ◦Tη,t ))d t .

REMARK 2.4. The convergence of the integral in the above formula is far from ob-
vious and it is part of the statement of the Theorem. Notice that for n = 1 Theorem
2 yields Ruelle’s result [26] while, for n > 0, it makes rigorous some of the results in
[25]. In addition, if the operator Xη has a spectral gap (as may happen for geodesic
flows in negative curvature [19]), then from the proof of Theorem 2 it follows that
the above integral converges also for a = 0 and one has the formula

µ(n)
η (ϕ) =

∫∞

0
nµ(n−1)

η (V1(ϕ◦Tη,t ))d t .
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3. THE BANACH SPACES

To define the norms it is convenient to consider a fixed C r+1 atlas {Ui ,Ψi }N
i=1

such that ΨiUi = B (0,4δ) and ∪iΨ
−1
i (B (0,δ)) =M .7 In addition, we can require

D0Ψ
−1
i {(0,u,0) : u ∈ R

du } = E u(Ψ−1
i (0)), D0Ψ

−1
i {(s,0,0) : s ∈ R

ds } = E s (Ψ−1
i (0)),

and Ψ
−1
i ((s,u, t ))=TtΨ

−1
i ((s,u,0)).

Next we wish to define a set of (strong) stable leaves. For small enough ρ > 0,
large enough M > 0 and ξ ∈ B (0,δ) let us define

F := {F : B (0,3δ) ⊂R
ds →R

du+1 : F (0) = 0; |F |C 1 ≤ρ ; |F |C r ≤ M }.

Let Gx,F (ξ) := x + (ξ,F (ξ)) for each F ∈ F , and Σ̃ := {Gx,F : x ∈ B (0,δ),F ∈ F }. To
each i ∈ {1, . . . , N }, G ∈ Σ̃ we associate the leaf Wi ,G = {Ψ−1

i G(ξ)}ξ∈B (0,2δ), which

form our set of stable leaves Σ, and its reduced and enlarged version W ±
i ,G =

{Ψ−1
i G(ξ)}ξ∈B (0,(2±1)δ).
Integrating over such leaves we can define linear functionals on C r (M ,R).

More precisely, for each i ∈ {1, . . . , N }, s ∈N, G ∈ Σ̃, ϕ ∈C 0
0 (Wi ,G ,C) and C s vector

fields v1, . . . , vs defined in a neighborhood of W +
i ,G we define

$i ,G ,ϕ,v1,...,vs (h) :=

∫

Wi ,G

ϕ v1 · · ·vsh ∀ h ∈C
r (M ,C).

We use the above functionals to define a set that can be intuitively interpreted as
the unit ball of the dual of the space we wish to define. For p ∈N, q ∈R+, let8

Up,q :=
{
$i ,G ,ϕ,v1,...,vp

| 1 ≤ i ≤ N , G ∈ Σ̃, |ϕ|
C

q+p
0

≤ 1, |v j |C q+p ≤ 1,
}

.

The norms ‖·‖p,q are then defined in 2.3.

REMARK 3.1. Note that if h ∈C ∞(M ,C), q ∈R+ and p ∈N then ‖h‖p,q ≤ |h|C p .

We have the following characterization of Bp,q , see [12, Proposition 4.1].

LEMMA 3.2. The embedding i extends to a continuous injection from Bp,q to D′
q ⊂

D′, the distributions of order q.

REMARK 3.3. In the following we will often identify h and ih if this causes no
confusion.

4. THE TRANSFER OPERATOR

A first property of the transfer operators is detailed by the following lemma
whose proof is the content of Section 7.

LEMMA 4.1. If p ∈N, q ∈R+, p +q ≤ r , t ∈R+ and h ∈C r then

(4.1) ‖Lt h‖p,q ≤Cp,q‖h‖p,q .

7Here, and in the following, by C n we mean the Banach space obtained by closing C ∞ with

respect to the norm | f |C n := supk≤n | f (k)|∞2n−k . Such a norm has the useful property | f g |C n ≤

| f |C n |g |C n , that is (C n , | · |C n ) is a Banach algebra.

8By |v j |C q+p ≤ 1 we mean that there exists U =
◦

U ⊃ W +
i ,G

such that v j is defined on U and

|v j |C q+p (U ) ≤ 1.
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As an immediate consequence we have the following first result.

LEMMA 4.2. The operators Lt , restricted to Bp,q , form a bounded strongly con-
tinuous semigroup on the Banach space (Bp,q ,‖ ·‖p,q ).

Proof. For all h ∈Bp,q there exists, by definition, a sequence {hn} ⊂C r converg-
ing to h in the ‖ ·‖p,q norm. By Lemma 3.2 the sequence converges in the spaces
of distributions as well and, due to the continuity of Lt , {Lt hn} converges to
Lt h in D′

q . On the other hand, by Lemma 4.1, {Lt hn} is a Cauchy sequence

in Bp,q , hence it converges and, by Lemma 3.2 again, it must converge to Lt h.
Thus Lt h ∈Bp,q and

‖Lt h‖p,q ≤Cp,q‖h‖p,q ∀ h ∈B
p,q .

We have thus a semigroup of bounded operators. The strong continuity follows
from the fact that for all h ∈C r we have

lim
t→0

|Lt h −h|C r = lim
t→0

∣∣[h det(DTt )−1]◦T −1
t −h

∣∣
C r = 0.

Next, for h ∈Bp,q let {hn} ⊂C r be converging to h, then, using Remark 3.1,

‖Lt h −h‖p,q ≤ ‖Lt hn −hn‖p,q +Cp,q‖h −hn‖p,q

≤C A|Lt hn −hn|C r +Cp,q‖h −hn‖p,q .

Taking first n sufficiently large and then t small, one can make the right-hand
side arbitrarily small, that is limt→0 ‖Lt h −h‖p,q = 0 for all h ∈Bp,q .

In addition we have the following result, proved in Section 8.

LEMMA 4.3. If p ∈N, q ∈R+, p +q ≤ r , z ∈C, ℜ(z) = a > 0 then

‖R(z)n‖p,q ≤Cp,q a−n.

If λ′ ∈ (0,λ), p,n ∈N, q ∈R+ and z ∈C, a :=ℜ(z) ≥ a0 > 0 then

‖R(z)nh‖p,q ≤Cp,q,λ′ (a + p̄λ′)−n‖h‖p,q +a−nCp,q,λ′ ,a0
|z|‖h‖p−1,q+1,

where p̄ :=min{p, q}.

The above means that the spectral radius of R(z)∈ L(Bp,q ,Bp,q ), ℜ(z) = a > 0,
is bounded by a−1, and in fact equals it if z = a since

∫
R(z)h = a−1

∫
h im-

plies that a−1 is an eigenvalue of the dual. Since Lemma 4.3 implies that R(z)
is a bounded operator from Bp,q to itself and since Lemma 2.2 implies that a
bounded ball in the ‖ ·‖p,q norm is relatively compact in Bp−1,q+1, we obtain:

LEMMA 4.4. For each p ∈ N, q ∈ R+, p + q < r , and z ∈ C, ℜ(z) > 0 the operator
R(z) : Bp,q →Bp−1,q+1 is compact.

The above implies, via a standard argument [14], that the essential spectral
radius of R(z) is bounded by (a +λp̄)−1. This readily implies the following (see
[19, Section 2] if details are needed).

LEMMA 4.5. The spectrumσ(X ) of the generator is contained in the left half plane.
The set σ(X )∩Up̄λ′ := {z ∈ C | ℜ(z) > −p̄λ′} consists of, at most, countably many
isolated points of point spectrum with finite multiplicity.
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Thanks to the above result we can connect the spectral properties of the gen-
erator to the statistical properties of the flow. First of all, by the spectral decom-
position of closed operators on Banach spaces (see [15, Sections 3.6.4 and 3.6.7]),
if we select N isolated eigenvalues from the spectrum then

X = Xr +
N∑

j=1

(ζk j
Sk j

+Nk j
),

where the operators Sk , Nk , Xr commute, the Sk , Nk are finite rank and SkS j =

δk j Sk , Nk S j = δk j Nk and Nk is nilpotent. Finally, if the selected eigenvalues are
the ones with imaginary part in the interval [−L,L] for some L > 0, then Xr is a
closed operator with spectrum contained in the set {z ∈ C : ℜ(z) ≤ −pλ̄}∪ {z ∈

C : ℜ(z) ≤ 0 ; |Im(z)| > L}∪{0} where the eigenspace corresponding to zero is the
union of the ranges of the Sk .

5. THE PERIPHERAL SPECTRUM

Here we analyze the meaning of the spectrum on the imaginary axis.

LEMMA 5.1. The SRB measures belong to Bp,q , p+q ≤ r ; 0 ∈σ(X ) and it is simple
iff the SRB measure is unique. Moreover, the SRB measure is mixing iff 0 is the only
eigenvalue on the imaginary axis. Finally, σ(X )∩iR is a group and the associated
eigenfunctions are all measures absolutely continuous with respect to a convex
combination of the SRB measures.

Proof. If X h = i bh, then Lt h = ei bt h. On the other hand there cannot be Jordan

blocks, indeed if X f = i b f +h, then d
dt e−i btLt f = h, thus e−i btLt f = f + t h

which, since Lt is uniformly bounded (Lemma 4.1), is a contradiction.
Moreover we have9

(5.1) S̃b := lim
T→∞

1

T

∫T

0
e−i bt

Lt d t =

{
0 if i b is not an eigenvalue

Sk if i b = ζk

To prove the above note the following. If i b is not an eigenvalue,
∫T

0
e−i bt

Lt = lim
a→0

∫T

0
e−(a+i b)t

Lt = lim
a→0

[
R(a + i b)−

∫∞

T
e−(a+i b)t

Lt

]

= lim
a→0

[
R(a + i b)−e−(a+i b)T

LT

∫∞

0
e−(a+i b)t

Lt

]

= lim
a→0

(Id−e−(a+i b)T
LT )R(a + i b)

= (Id−e−i bT
LT )R(i b),

which is uniformly bounded in T . On the other hand if i b = ζk , then R(a + i b)=
(a + i b −ζk)−1Sk +R1(a + i b), where R1(z) is an analytic function in a neighbor-
hood of i b [15, 3.6.5 p. 180]. The result then follows by the same computations
as above.10

9The integral must be interpreted in the strong topology.
10For further use note that the convergence in (5.1) takes place not only in Bp,q , p > 0, where

we have nontrivial spectral information, but also in B0,q . To see this, first notice that Lemma
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Let ν be an SRB measure and let m be the Riemannian (Lebesgue) measure.
By definition (cf. footnote 6) there exists an open set A such that, for each ϕ ∈C 0

and Lebesgue a.e. x ∈ A, 1
T

∫T
0 ϕ◦Tt (x)d t → ν(ϕ). Thus, given h ∈C ∞, supph ⊂

A, m(h) = 1, ∀ϕ ∈C r by the Lebesgue Dominated Convergence and Fubini The-
orems

µh(ϕ) := S0h(ϕ)= lim
T→∞

∫

M

1

T

∫T

0
h(x)ϕ(Tt x)d t = ν(ϕ).

In view of Lemma 3.2, the above implies that µh = ν, that is ν ∈ Bp,q . In other
words the SRB measures belong to the space and are eigenfunctions correspond-
ing to the eigenvalue zero of X .

Next, let us define µ := S01. The inequality

|µ(φ)| ≤ lim
T→∞

1

T

∫T

0
m(|φ| ◦Tt )d t ≤ |φ|∞

shows that µ is a measure. In addition, if X h = i bh and S is the corresponding
projection, since C r is dense in Bp,q and SC r is finite-dimensional, it follows
that S Bp,q = S C r . Hence there exists f ∈C r such that h = S f . Accordingly,

(5.2)
∣∣h(ϕ)

∣∣=
∣∣S f (ϕ)

∣∣≤ lim
T→∞

∫

M

1

T

∫T

0
ϕLt | f | ≤ | f |∞µ(ϕ).

Therefore all the eigenfunctions corresponding to eigenvalues on the imaginary
axis are measures and such measures are absolutely continuous with respect to
µ and with bounded density.

Consequently, if X h = i bh, then h is a measure and there exists f ∈ L∞(M ,µ)
such that dh = f dµ. But then

f µ= h = e−i bt
Lt h = e−i bt

Lt f µ= e−i bt f ◦T−tLtµ= e−i bt f ◦T−tµ,

hence f ◦T−t = ei bt f µ-a.s.. The above argument shows that the peripheral spec-
trum of Lt on Bp,q is contained, with multiplicity, in the point spectrum of the
Koopman operator Ut f := f ◦T−t acting on L2(M ,µ). In fact, the two objects
coincide as we are presently going to see.

Let t ∈R+ and f ∈ L2(M ,µ) such that Ut f = ei bt f . Note that, since Ut | f | = | f |,
the sets {x ∈M : | f (x)| ≤ L} are µ-a.s. invariant. Thus we can consider, without
loss of generality, the case f ∈ L∞(M ,µ). By the Lusin Theorem and the density
of C r in C 0, for each ε > 0 there exists fε ∈ C r , | fε|∞ ≤ | f |∞, such that µ(| fε −

4.1 implies ‖S0h‖0,q ≤ Cq‖h‖0,q for each h ∈ B1,q , hence S0 has a unique continuous extension

to B0,q . Next, consider h ∈ B0,q . There exists {hn } ⊂ B1,q such that limn→∞‖h −hn‖0,q = 0.

Moreover, by Lemma 4.1, ‖T−1 ∫T
0 Lt (hn −h)‖0,q ≤Cq‖h −hn‖0,q . Thus

limsup
T→∞

∥∥∥∥
1

T

∫T

0
Lt h −S0hn

∥∥∥∥
0,q

≤Cq‖h −hn‖0,q .

To conclude note that the range of S0 is finite-dimensional, hence there exists a convergent sub-

sequence S0hn j , let h̄ be the limit, then, taking the limit j ↑∞ follows S0h = h̄ and

lim
T→∞

∥∥∥∥
1

T

∫T

0
Lt h −S0h

∥∥∥∥
0,q

= 0.
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f |) ≤ ε. Next, let us define, for each f ∈ L2(M ,µ), R ′(z) f :=
∫∞

0 e−ztUt f . A direct
computation shows that R(z)( f µ) = (R ′(z) f )µ, R ′(1+ i b) f = f and ‖ fεµ‖0,q ≤

C | f |∞. Accordingly, Lemma 4.3 implies

‖R(1+ i b)n( fεµ)‖p,q ≤Cp,q,λ′ ,ε(1+λ′)−n +Cp,q,λ′ | f |∞|1+ i b|,

µ(| f −R ′(1+ i b)n fε|) ≤µ(R ′(1)n | f − fε|) =µ(| f − fε|) ≤ ε.

For each ε we choose nε such that ‖R(1+ i b)nε( fεµ)‖p,q ≤ 2Cp,q,λ′ | f |∞|1+ i b|, so

Lemma 2.2 implies that the set Ξ := {R(1+ i b)nε( fεµ)} is compact in Bp−1,q+1.
Let us consider a convergent subsequence ε j , and let µ f ∈Bp−1,q+1 be the limit.
Then for all ϕ ∈C p+q ,

f µ(ϕ) =µ( f ϕ) = lim
j→∞

µ(R ′(1+ i b)
nε j fε j ·ϕ) = lim

j→∞
[R(1+ i b)

nε j fε j µ](ϕ) =µ f (ϕ).

The fact that the spectrum is an additive subgroup of iR then follows from
well-known facts about positive operators [6, Section 7.4].

To conclude it suffices to prove that all the eigenfunctions of zero are SRB
measure. First of all, since the range of S0 is finite-dimensional, S0B

0,q+p =

S0B
p,q , C 0 is dense in B0,p+q , and remembering Footnote 10 we have S0C

0 =

S0B
p,q . Hence for each ν ∈ Bp,q there exists f ∈ C 0 such that ν = S0 f . On

the other hand, setting f± := max{± f ,0} ∈ C 0, ν± := S0 f± are invariant positive
measures and ν= ν+−ν−, thus the range of S0 has a base of positive probability
measures. Next, we can assume, without loss of generality, that ν is an ergodic
probability measure for {Tt }.11 Then, for each φ ∈C 0, φ≥ 0, such that

∫
M

f φ= 1,
we can define νφ := S0(φ f ). By a computation similar to (5.2), νφ is a probability
measure absolutely continuous with respect to ν, hence, by ergodicity, ν = νφ.

Then for each φ ∈ C 0, φ> 0, and ϕ ∈C q , since Lebesgue a.e. point has forward
ergodic average (see footnote 6),

∫

M

f φ[ϕ+−ν(ϕ)] :=

∫

M

f φ

[
lim

T→∞

1

T

∫T

0
ϕ◦Tt −ν(ϕ)

]

= lim
T→∞

1

T

∫

M

f φ

∫T

0
[ϕ−ν(ϕ)]◦Tt

=S0( f φ)(ϕ−ν(ϕ))

∫

M

f φ= (ν(ϕ−ν(ϕ))

∫

M

f φ= 0.

Taking the sup over φ, the above yields
∫
M

f |ϕ+ − ν(ϕ)| = 0 Accordingly, for
Lebesgue almost every point in the support of f the forward average of ϕ is ν(ϕ),
that is ν is SRB.

11If not, then consider any invariant set A of positive ν measure. Since ν must be absolutely

continuous with respect to µ, then the set will have positive µ measure and IdA
dν
dµ is an eigenvec-

tor of Ut for each t > 0. Hence, by the previous discussion, IdAν∈Bp,q . By the quasicompactness

it follows that there may be only finitely many such A, hence the claim.
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6. DIFFERENTIABILITY OF THE SRB MEASURES

It is possible to state precise results on the dependence of the eigenfunction
on a parameter of the system. To give an idea of the possibilities let us analyze,
limited to Anosov flows, a situation discussed by Ruelle in [26].

Calling Lη,t the transfer operator associated to the flow Tη,t , Xη its generator

and setting Rη := (zId−Xη)−1, it follows that the SRB measure µη is an eigenfunc-

tion of Rη(a) corresponding to the eigenvalue a−1. Taking Xη = X +ηX1 one can
prove, by induction,

(6.1) Rη(a) =
n∑

k=0

ηk [R0(a)X1]k R0(a)+ηn+1[R0(a)X1]n+1Rη(a).

In addition, we know that a−1 is an isolated eigenvalue of Rη(a). We can thus ap-

ply the perturbation theory developed in [12, Section 8] to the operator Rη(a),12

where we choose Bs := Bs,q+r−1−s with q ∈ (0,1) and s ∈ {0, . . . ,r −1}. It follows
that there exists η0 > 0 such that µη ∈C r−2((−η0,η0),B0). Moreover

d n

dηn
µη

∣∣∣
η=0

∈B
r−1−n .

We use the natural normalization µη(1) = 1 so that µ(n)
η (1) = 0. We can thus dif-

ferentiate the equation Xηµη = 0, n ≤ r −2 times with respect to η, obtaining13

(6.2) Xηµ
(n)
η +nX1µ

(n−1)
η = 0.

From [15, 3.6.5 p. 180] and remembering that there are no Jordan blocks we have
that Rη(z) = z−1S0,η+Qη(z) where Qη(z) is analytic in a neighborhood of zero
and S0,η is the spectral projection associated to the eigenvalue zero. In addition,

Rη(z)Xη = Rη(z)(Xη− z)+ zRη(z) =−Id+ zRη(z).

Therefore

(6.3) lim
z→0

Rη(z)Xηµ
(n)
η =−µ(n)

η +S0,ηµ
(n)
η =−µ(n)

η ,

where we have used that S0,ην(φ) = µη(φ) ·ν(1) and so S0,ηµ
(n)
η = 0. Combining

equations (6.2) and (6.3) we may write

µ(n)
η = lim

z→0
nRη(z)X1µ

(n−1)
η = lim

a→0+

∫∞

0
ne−at

Lη,t X1µ
(n−1)
η d t .

This completes the proof of Theorem 2.

REMARK 6.1. Note that the perturbation theory in [18] and [12] allows to investi-
gate, by similar arguments, also the behavior of the other eigenvalues of Xη, with
the related eigenspaces, outside the essential spectrum.

12Such a theory applies since Rη(a) satisfies a uniform Lasota–Yorke inequality, (6.1) allows to

estimate the closeness of R0(a) and Rη(a) in the appropriate norms and since the Xη are bounded

operators from B
p,q to B

p−1,q+1. In particular this means that the domain of Xη, viewed as a

closed operator on Bp,q , contains Bp+1,q−1.
13Remembering again that X , X1 are a bounded operators from Bp,q to Bp−1,q+1, we can

exchange X0, X1 with the derivative with respect to η provided that n ≤ r −2.
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7. LASOTA–YORKE TYPE INEQUALITIES—THE TRANSFER OPERATOR

Here we prove Lemma 4.1. But first let us introduce some convenient nota-
tion.

REMARK 7.1. We will use the notation
∏n

i=1 vi to write the action of many vector
fields. That is

n∏

i=1

vi h := v1 . . . vnh.

Note that this suggestive notation does not mean that the vector fields commute.

Let W ∈ Σ, 0 < n ≤ p , and let v1, . . . , vn be C q+n vector fields defined on a

neighborhood of W + with |vi |C q+n ≤ 1, and ϕ ∈ C
n+q
0 (W ) with |ϕ|C n+q (W ) ≤ 1.

We need to estimate ∫

W
v1 . . . vn(Lt h) ·ϕ.

The basic idea is to decompose each vi as a sum vi = w u
i +w

f
i +w s

i where w s
i

is tangent to W , w
f
i points in the flow direction and w u

i is “almost” in the strong
unstable direction. We will state precisely what we mean by “almost” in Lemma
7.4. The w s

i may then be dealt with by an integration by parts and then noting

that w u
i , w

f
i are not expanded by DT−t allows us to conclude.

We wish to look at the problem locally and so we use a partition of unity as
given in the following lemma ([12, Lemma 3.3]):

LEMMA 7.2. For any admissible leaf W and t ∈ R
+, there exist leaves W1, . . . ,W$,

whose number $ is bounded by a constant depending only on t , such that

1. T−t (W ) ⊂
⋃$

j=1 W −
j .

2. T−t (W +) ⊃
⋃$

j=1 W +
j .

3. There exists a constant C (independent of W and t ) such that a point of
T−t W + is contained in at most C sets Wj .

4. There exist functions ρ1, . . . ,ρ$ of class C r+1 and compactly supported on
W −

j such that
∑
ρ j = 1 on T−t (W ), and |ρ j |C r+1 ≤C .

REMARK 7.3. Note that the construction in Lemma 7.2 can be easily modified to
ensure that there exists c > 0 such that for all t ∈ R+ and |s − t | ≤ cδ, the leaves
TsWi and the partition ρi ◦T−s still satisfy properties (1–4).

Given some index j , we will estimate

(7.1)

∣∣∣∣

∫

Tt (Wj )
v1 . . . vn(Lt h) ·ϕ ·ρ j ◦T−t

∣∣∣∣ .

The needed decomposition of vi is given by the following lemma whose proof
can be found in Appendix A:

LEMMA 7.4. Fix λ′ ∈ (0,λ). Let v be a vector field on a neighborhood of W + with
|v |C a ≤ 1, a ≤ r and t ∈R+. Then there exists c > 0 such that, for each j , there exists
a neighborhood U j of

⋃
s∈[t−cδ,t+cδ] Tt (W +

j ) and C a(U j ) vector fields w f , w u and

w s satisfying, for all |s − t | ≤ cδ:
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a. if x ∈ Ts(Wj ) then v(x) = w s(x)+w f (x)+w u(x).
b. if x ∈ Ts(Wj ) then w s(x) is tangent to Ts (Wj ).

c. if x ∈ Ts(Wj ) then w f (x) is proportional to the flow direction V .

d. |w s |C a (Uj ) ≤Ct , |w u|C a (Uj ) ≤Ct and |w f |C a (Uj ) ≤Ct .
e. |w s ◦Ts |C a (Wj ) ≤C .

f. |(T ∗
s w u)|C a (T−sUj ) ≤C e−λ′s and |w f ◦Ts |C a (T−sUj ) ≤C ,

where (T ∗
t w u) =DTt (x)−1w u(Tt x) is the pullback of w u by Tt .

The fundamental remark in the following computations is that, since the com-
mutator of two C n+q vector fields is a C n+q−1 vector field, if we exchange two
vector fields, the difference consists of terms with n − 1 C n−1+q vector fields,
hence it can be bounded by Cn,q‖Lt h‖−n−1,q . For each j in (7.1) we can then

write w s
1 + w

f
1 + w u

1 instead of v1 since they agree on Tt Wj . After that we can
commute such vector fields with the vector fields v j , j ∈ {2, . . . ,n}, as explained
above. At this point we can decompose v2 and so until (7.1) is bounded by

∑

σ∈{s, f ,u}n

∣∣∣∣

∫

Tt (Wj )
wσ1

1 . . . wσn
n (Lt h) ·ϕ ·ρ j ◦T−t

∣∣∣∣+Cn,q,t‖Lt h‖−n−1,q .

Take σ ∈ {s, f ,u}n , and let k = #{i | σi = s} and l = #{i | σi = f }. Let π be a
permutation of {1, . . . ,n} such that π{1, . . . ,k}= {i | σi = s} and π{n − l +1, . . . ,n} =
{i | σi = f }. Therefore

∣∣∣∣

∫

Tt (Wj )
wσ1

1 . . . wσn
n (Lt h) ·ϕ ·ρ j ◦T−t

∣∣∣∣≤
∣∣∣∣∣

∫

Tt (Wj )

k∏

i=1

w s
π(i )

n−l∏

i=k+1

w u
π(i )

n∏

i=n−l+1

w
f
π(i )(Lt h) ·ϕ ·ρ j ◦T−t

∣∣∣∣∣+Cn,q,t‖Lt h‖−n−1,q .

By definition w
f
i

(g ) =αi V (g ), where αi ∈C n+q , so w
f
i

(g ) =−αi X g −αi g divV ,
where X , for the time being, is defined by (2.4). The terms coming from taking
derivatives of the αi or the terms involving the divergence of the vector fields
are bounded by the ‖ · ‖−n−1,q . In particular ‖X l h‖−

n−l ,q
≤ ‖h‖−n,q +Cn,q‖h‖n−1,q .

Hence, setting ᾱ := (−1)l ∏k+l
i=k+1απ(i ), for k > 0 we have

(7.2)

∣∣∣∣

∫

Tt (Wj )
wσ1

1 . . . wσn
n (Lt h) ·ϕ ·ρ j ◦T−t

∣∣∣∣≤
∣∣∣∣∣

∫

Tt (Wj )

k∏

i=1

w s
π(i )

n−l∏

i=k+1

w u
π(i )X l (Lt h) ·ϕ ·ρ j ◦T−t · ᾱ

∣∣∣∣∣+Cn,q,t‖Lt h‖n−1,q .

Next, we integrate by parts with respect to the vector fields w s
π(i ). These vector

fields are tangent to the manifold W , hence
∫

W w s
π(i ) f ·g =−

∫
W f ·w s

π(i )g+
∫

W f g ·

div w s
π(i ). Since w s

π(i ) is C q+n and the manifold W is C r+1 with a C r+1 volume
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form, the divergence terms are bounded by Cn,q,t‖Lt h‖n−1,q . This yields

∣∣∣∣

∫

Tt (Wj )
wσ1

1 . . . wσn
n (Lt h) ·ϕ ·ρ j ◦T−t

∣∣∣∣

≤

∣∣∣∣∣

∫

Tt (Wj )

n−l∏

i=k+1

w u
π(i )X l (Lt h) ·

k∏

i=1

w s
π(i )(ϕ ·ρ j ◦T−t · ᾱ)

∣∣∣∣∣+Cn,q,t‖Lt h‖n−1,q .

By Lemma 7.4 it follows that
∏k

i=1 w s
π(i )(ϕ ·ρ j ◦T−t · ᾱ) is a C q+n−k test function

while only n−k vector fields act on Lt h. Thus the above integral can be bounded
by the ‖ ·‖n−1,q norm unless k = 0.

Next we need to analyze the case k = 0 in more detail. For each h ∈ C r ,
X l Lt h =Lt X l h = (X l h)◦T−t det(DTt )−1◦T−t .14 If we differentiate det(DTt )−1◦

T−t we obtain terms bounded by Cn,q,t‖X l Lt h‖n−l−1,q+1 ≤ Cn,q,t‖Lt h‖n−1,q .
Hence

∣∣∣∣

∫

Tt (Wj )
wσ1

1 . . . wσn
n (Lt h) ·ϕ ·ρ j ◦T−t

∣∣∣∣

≤

∣∣∣∣∣

∫

Tt (Wj )

n−l∏

i=1

w u
π(i )(X l h)◦T−t ·ϕ ·

[
ρ j ·det(DTt )−1]◦T−t · ᾱ

∣∣∣∣∣+Cn,q,t‖Lt h‖n−1,q .

Let w̄ u
i (x) = DTt (x)−1w u

i (Tt x). This is a vector field on a neighborhood of W +
j .

We can then write the above integral as

∫

Tt (Wj )

(
n−l∏

i=1

w̄ u
π(i )X l h

)

◦T−t ·ρ j ◦T−t ·det(DTt )−1 ◦T−t · ᾱ ·ϕ,

and, changing variables, we obtain

(7.3)

∫

Wj

n−l∏

i=1

w̄ u
π(i )X l h ·

(
ᾱϕ

)
◦Tt ·ρ j ·det(DTt )−1 · JW Tt ,

where JW Tt is the Jacobian of Tt : Wj →W . Note that

∣∣(ᾱϕ)◦Tt

∣∣
C q+n ≤Cp,q

∣∣ϕ
∣∣
C q+n ≤Cp,q ,

because of Lemma 7.4. Moreover,
∣∣∣w̄ u

π(i )

∣∣∣
C q+n

≤ Cp,q e−λ′t (see Lemma 7.4) and
so:

(7.4)
n−l∏

i=k+1

|w̄ u
π(i )|C q+n ≤Cp,q e−λ′(n−k−l)t .

14Since for smooth φ holds V Ttφ= Tt V φ and we have used (2.2).
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Putting together all the above estimates we finally obtain15

(7.5)

∣∣∣∣

∫

W
v1 . . . vn(Lt h) ·ϕ

∣∣∣∣≤
∑

0≤l≤n
j≤$

∣∣∣∣∣

∫

Wj

V l
n−l∏

i=1

w̄ u
π(i )h · (ᾱϕ)◦Tt

ρ j · JW Tt

det(DTt )

∣∣∣∣∣

+Cp,q,t (‖Lt h‖n−1,q +‖h‖n−1,q ).

To conclude, we need the following distortion lemma:16

LEMMA 7.5 ([12] Lemma 6.2). Given W ∈Σ and leaves Wj such that W ⊂
⋃

j≤$Wj

and W + ⊃
⋃

j≤$Wj , we have the following control:

(7.6)
∑

j≤$

∣∣JW Tt ·det(DTt )−1
∣∣
C r (Wj ,R) ≤C .

Lemma 7.5 together with (7.4) and (7.5) implies, for all 0 < n ≤ p ,

‖Lt h‖−0,q ≤C‖h‖−0,q

‖Lt h‖−n,q ≤C e−λ′t‖h‖−n,q +C‖V nh‖0,q+n +Cp,q,t (‖Lt h‖n−1,q +‖h‖n−1,q ).
(7.7)

The idea is to finish the proof by induction. For n = 0 the first inequality of (7.7) is
the same as ‖Lt h‖0,q ≤Cp,q‖h‖0,q . On the other hand if ‖Lt h‖m,q ≤Cp,q‖h‖m,q

for each m ≤ n < p , then the second inequality of (7.7) yields

‖Lt h‖−n+1,q ≤C e−λ′t‖h‖−n+1,q +C‖X n+1h‖0,q+n+1 +Cp,q,t (‖Lt h‖n,q +‖h‖n,q )

≤C e−λ′t‖h‖−n+1,q +C‖X n+1h‖0,q+n+1 +Cp,q,t ‖h‖n,q .

Next, choose t0 such that C e−λ′t0 ≤σ< 1 Then

‖Lt0+t h‖−n+1,q ≤σ‖Lt h‖−n+1,q +C‖Lt X n+1h‖0,q+n+1 +Cp,q‖Lt h‖n,q

≤σ‖Lt h‖−n+1,q +Cp,q‖X n+1h‖0,q+n+1 +Cp,q‖h‖n,q .

Writing t as mt0+ s, s ∈ (0, t0), and iterating the above equation yields

‖Lt h‖−n+1,q ≤σm‖Ls h‖−n+1,q + (1−σ)−1Cp,q

[
‖X n+1h‖0,q+n+1 +‖h‖n,q

]

≤Cp,q‖h‖−n+1,q +Cp,q‖h‖n,q .

Finally we have

‖Lt h‖n+1,q ≤‖Lt h‖−n+1,q +‖Lt h‖n,q ≤Cp,q‖h‖n+1,q .

This completes the proof of Lemma 4.1.

15Where we have used again the possibility to commute the vector fields by paying an error

bound in the ‖ ·‖n−1,q norm and we have recalled (2.4).
16In fact, [12] applies to hyperbolic maps, yet the proof holds also for flows with the only

change of thickening Tt Wj by ρ also in the flow direction.
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8. LASOTA–YORKE TYPE ESTIMATES—THE RESOLVENT

In this section we prove Lemma 4.3. In order to do this note that the following
may be shown by induction from equation (2.5):

(8.1) R(z)mh =
1

(m −1)!

∫∞

0
t m−1e−zt

Lt hd t .

The first inequality of Lemma 4.3 follows directly from equations (4.1) and (8.1)
by integration over t . Analogously we can use (4.1) to cut the domain of integra-
tion.

Indeed for each z := a + i b, a ≥ a0 > 0, β≥ 16 and L :=
mβ

a , we have17

∥∥∥∥
1

(m −1)!

∫∞

L
t m−1e−zt

Lt hd t

∥∥∥∥
p,q

≤
1

(m −1)!

∫∞

L
t m−1e−atCp,q‖h‖p,q

≤Cp,q a−me−
mβ

2 ‖h‖p,q .

(8.2)

Accordingly, to prove the second part of Lemma 4.3 it is sufficient to fix n ≤ p ,
|vi |C q+n ≤ 1,

∣∣ϕ
∣∣
C

n+q
0

≤ 1 and estimate

1

(m −1)!

∫L

0
t m−1e−zt

∫

W
v1 . . . vn(Lt h) ·ϕd t .

To do so it is convenient to localize in time by introducing a smooth parti-
tion of unity {φi } of R+ subordinated to the partition {[(s−1/2)t∗, (s+3/2)t∗]}s∈N,
where t∗ = cδ and c is specified in Remark 7.3. In fact, it is possible to have such
a partition of the form φs (t ) :=φ(t − st∗) for some fixed function φ.

We will use the notation of Section 7 and the formula (7.5) where the families
of submanifolds are chosen for each t = st∗, s ∈N, according to Lemma 7.2 and
for t 7= st∗ the families of submanifolds are constructed as described in Remark

17Indeed, setting I (m) :=
∫∞

L tm e−at , integrating by parts yields I (m) = Lm a−1e−aL +

ma−1I (m −1). Hence, by induction, we can prove the formula

1

(m −1)!
I (m −1) =

m−1∑

j=0

L j

am− j j !
e−aL = a−m

m−1∑

j=0

m j β j

j !
e−mβ ≤ a−m

m−1∑

j=0

(
m

j
e

) j

β j e−mβ,

since j ! ≥ j j e− j . Next, since the maximum of
(

m
j e

) j
is achieved for j = m, hence

(
m
j e

) j
≤ em ,

1

(m −1)!
I (m −1) ≤

a−mβm

β−1
e−m(β−1) ≤C a−me−m

β
2 .
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7.3. We can then write, for each s ∈N and setting ts := st∗− t ,18

(8.3)

∣∣∣∣

∫L

0
t m−1e−ztφs (t )

∫

W
v1 . . . vn(Lt h) ·ϕd t

∣∣∣∣

≤
∑

0≤l≤n
j≤$

∣∣∣∣∣

∫L

0

t m−1φs (t )

ezt

∫

Tts Wj

V l
n−l∏

i=1

w̄ u
π(i )h ·

(ᾱϕ)◦Tt ·ρ j ◦Tts · JW Tt

det(DTt )

∣∣∣∣∣

+Cp,q,L Lmm−1‖h‖n−1,q ,

where we have used equations (7.5), (7.7). Changing variables and using the Fu-
bini Theorem on all the right hand side integrals and setting t+s := st∗+ t yields

∫

Wj

∫

R

(t+s )m−1e−zt+s φ(t )V l

((
n−l∏

i=1

w̄ u
π(i )h

)

◦Tt

)
(ᾱϕ)◦Tst∗ ·ρ j · JW Tst∗

det(DTts )−1 ◦Tt
.

For l 7= 0, we can integrate by parts, since V (Ψ◦Tt )= d
dt Ψ◦Tt , obtaining

(8.4) C‖h‖n−1,q |z|

∫

R+

t m−1e−atφs (t ) ≤C‖h‖n−1,q |z|a
−m.

For l = 0 and n = p , remembering (7.4), we have

(8.5)
∑

s∈N
j≤$

1

(m −1)!

∣∣∣∣∣

∫L

0
t m−1e−ztφs (t )

∫

Wj

p∏

i=1

w̄ u
π(i )h · (ᾱϕ)◦Tt ·

ρ j · JW Tt

det(DTt )

∣∣∣∣∣

≤
Cp,q

(m −1)!

∫

R+

t m−1e−(a+λ′p)t‖h‖−p,q ≤Cp,q (a +λ′p)−m‖h‖−p,q .

In the case l = 0, n < p we use a regularization trick to obtain the desired decay
in the norm. Since the composition with Tt decreases the derivatives one can
take advantage of such a fact by smoothing the test function.

For ε ≤ δ and ϕ̄ ∈ C a
0 (W,R), let Aεϕ̄ ∈ C a+1

0 (W +,R) be obtained by convolv-
ing ϕ̄ with a C ∞ mollifier whose support is of size ε. We will use the following
standard result.

LEMMA 8.1. For each n ∈N, q ∈R+ and ϕ̄ ∈C q+n,

|Aεϕ̄|C q+n ≤C |ϕ̄|C q+n , |Aεϕ̄|C q+1+n ≤Cε−1|ϕ̄|C q+n , |Aεϕ̄−ϕ̄|C q+n ≤Cε|ϕ̄|C q+n+1 .

Hence, setting ∆ϕ = (ϕ−Aεϕ) ◦Tt , the action of Tt on the derivatives yields

|∆ϕ|C q+n ≤C e−λ(q+n)t , provided one chooses ε≤C e−λ(q+n)t . Thus, using (7.4) as

18By construction, the manifolds {Wj } in the formula (8.3) depend on s but not on t .
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well, we have

(8.6)
∑

s∈N
j≤$

1

(m −1)!

∣∣∣∣∣

∫L

0
t m−1e−ztφs (t )

∫

Wj

n∏

i=1

w̄ u
π(i )h ·ϕ◦Tt ·

ρ j · JW Tt

det(DTt )

∣∣∣∣∣

≤
∑

s∈N
j≤$

∫L

0

t m−1e−ztφs (t )

(m −1)!

∣∣∣∣∣

∫

Wj

n∏

i=1

w̄ u
π(i )h ·

∆ϕ ·ρ j · JW Tt

det(DTt )

∣∣∣∣∣

+
Cp,q,a0,LLm‖h‖−n,q+1

m!

≤Cp,q (a +λ(q +n))−m‖h‖p,q +Cp,q,a0 ,L
Lm

m!
‖h‖−n,q+1.

Collecting equations (8.2), (8.3), (8.4), (8.5) and (8.6) yields, for each n ≤ p ,

‖R(z)mh‖−n,q ≤Cp,q

[
a−me−

mβ
2 + (a +λ′p)−m + (a +λq)−m

]
‖h‖n,q

+ (a−m |z|+Cp,q,L m−1)‖h‖n−1,q +Cp,q,a0,L
Lm

m!
‖h‖n−1,q+1.

To conclude it is convenient to introduce, for each 0 < A < 1, the equivalent
weighted norms19

‖h‖p,q,A :=
∑

n≤p
An‖h‖−n,q .

Using such a norm we can write

‖R(z)mh‖p,q,A ≤Cp,q

[
a−me−

mβ
2 + (a +λ′p)−m + (a +λq)−m

]
‖h‖p,q,A

+ A(a−m |z|+Cp,q,L m−1)‖h‖p,q,A +Cp,q,a0 ,L
Lm

m!
‖h‖p−1,q+1,A.

For each λ′′ < λ′, calling p̄ := min{p, q}, there exists ma ∈N, e.g., ma = Cλ′′,p,q a

will do, such that Cp,q (a+λ′p̄)−ma ≤ 1
4 (a+λ′′p̄)−ma . Choosing then β, and hence

L, large enough20 and A small enough we have

‖R(z)ma h‖p,q,A ≤ (a +λ′′p̄)−ma‖h‖p,q,A +Cp,q,a0
a−ma |z|‖h‖p−1,q+1,A,

which can be iterated to yield the desired estimate (given the equivalence of the
norms).

APPENDIX A.

Proof of Lemma 7.4. Our aim is to write the vector field as v = w s +w u +w f . We
start by making a C r+1 change of variables in the charts21 so that W +

j and W +

are subsets of Rds × {0}× {0} while Tt (s,u,τ) = (s,u,τ+ t ). In addition, having
chosen z ∈Wj , we can assume, without loss of generality, that E u(z) = {(0,0,u) :

19The advantage of using weighted norms has been pointed out to us by Sébastien Gouëzel.
20For example, β ≥ 2λp̄a−1 will do, notice that this choice implies that L can be chosen uni-

formly bounded with respect to a.
21A point in the charts will be written as (s,τ,u) ∈R

d with s ∈R
ds , τ∈R and u ∈R

du .
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u ∈ R
du } and E u(Tt z) = {(0,0,u) : u ∈ R

du }. We can then consider the foliation
E = {E (s,τ,u)} of a neighborhood of W +

j made by the leaves E (s,τ,u) := {(s,τ,u+

v) : v ∈R
du ; |v | ≤ δ} and define the foliation F =Tt E .

The idea is to first define the splitting on Tt+sW
+
j and then extend it to a neigh-

borhood. We thus define the splitting on {(s,τ,0)} as follows: 〈w s, (0,τ,u)〉 = 0, for

each u ∈R
du , τ ∈R; w f is in the flow direction; w u belongs to the tangent spaces

of the leaves of the foliation F .
To verify that the splitting satisfies the wanted properties we need to write the

differential of Tt in the chosen coordinates. For each x in a neighborhood of W +
j ,

by the requirement that the flow direction is mapped into the flow direction, it
follows that

DTt (x) =




At (x) 0 Bt (x)
at (x) 1 bt (x)
Ct (x) 0 Dt (x)



 .

Moreover, if x ∈W +
j , then it must be at (x) = 0; Ct (x) = 0 and, finally bt (z) = 0 and

Bt (z) = 0. In addition, due to the uniform hyperbolicity of the flow, we have that,
for each x ∈W +

j , ‖At (x)‖ ≤C e−λt , while ‖(Bt (x)u,〈bt (x),u〉,Dt (x)u)‖≥C eλt‖u‖

for each x in a neighborhood of Wj .22 Notice as well that the size of the neigh-
borhood we are interested in can be chosen arbitrarily, thus, by continuity, we
can assume ‖Ct‖C r +‖at‖C r arbitrarily small.23 Finally, since the foliation F is
close to the unstable direction, ‖Bt (x)u‖+|〈bt (x)u〉| ≤ 1

2‖Dt (x)u‖, for all u ∈R
du .

By construction the tangent space to the leaves of the foliation F has the form

{(Bt (x)Dt (x)−1u,〈bt (x),Dt (x)−1u〉,u) : u ∈ R
du }. Accordingly, if we write v =:

(vs , v f , vu), we have

w s = (vs − (Bt D−1
t )◦T−t vu ,0,0)

w f = (0, v f − (bt D−1
t )◦T−t vu ,0)

w u = ((Bt D−1
t )◦T−t vu, (bt D−1

t )◦T−t vu , vu).

(A.1)

By construction such vector fields satisfy points (a-d) of Lemma 7.4; moreover
they belong to C r (Tt (Wj )). To estimate the C r norm we must study the C r norm

of Ut (x) := Bt (x)Dt (x)−1 and βt (x) := bt (x)Dt (x)−1.24

To do so it is convenient to break up the trajectory into pieces of finite length
t0 and, at all the points Tkt0

x, introduce the same type of coordinates already de-
fined. By the hyperbolicity assumption, given λ′ ∈ (0,λ), it is possible to choose

t0 ≤ C so that nt0 = t and ‖Dt0
(Tkt0

x)−1‖ ≤ e−λ′t0 , ‖At0
(Tkt0

x)‖ ≤ e−λ′t , ‖Tkt0
x −

Tkt0
y‖ ≤ e−λ′t‖T(k−1)t0

x −T(k−1)t0
y‖ for each k ≤ n and x, y ∈ Wj . Accordingly,

22The latter follows from the possibility to chooseδ small enough so that all the tangent spaces

to the foliations E lie in the unstable cone.
23Given a function A with values in the matrices we define ‖A‖C n := supk

∑
j |Ak j |C n . Such a

definition has the useful consequence that if A = BD, then ‖A‖C n ≤‖B‖C n ‖D‖C n .
24Note that, within a chart, the matrices do not depend on x f
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since D(k+1)t0
(x) =Dt0

(Tkt0
x)Dkt0

(x),

(A.2) ‖D−1
t ‖C r =‖D−1

nt0
‖C r ≤ (e−λ′t0 +C e−λ′(n−1)t0 )‖D−1

(n−1)t0
‖C r ≤C e−λ′t .

Next, notice that




A(k+1)t0

(x) 0 B(k+1)t0
(x)

0 1 b(k+1)t0
(x)

0 0 D(k+1)t0
(x)





=




At0

(Tkt0
x)Akt0

(x) 0 At0
(Tkt0

x)Bkt0
(x)+Bt0

(Tkt0
x)Dkt0

(x)
0 1 bt0

(Tkt0
x)Dkt0

(x)+bkt0
(x)

0 0 Dt0
(Tkt0

x)Dkt0
(x)



 .

Thus, setting Uk := Bkt0
D−1

kt0
, we get

Uk+1 = At0
(Tkt0

x)Uk Dt0
(Tkt0

x)−1 +Bt0
(Tkt0

x)Dt0
(Tkt0

x)−1.

Hence,

‖Un‖C r ≤ (e−λ′t0 +e−λ′(n−1)t0 )2‖Un−1‖C r +C .

Iterating the above equation yields ‖Ut‖C r (Wj ) ≤ C . A similar argument gives
‖βt‖C r (Wj ) ≤C . Applying the above estimates to (A.1) yields |w s ◦Tt |C a (Wj ) ≤ C ,

|w u ◦Tt |C a (Wj ) ≤C and |w f ◦Tt |C a (Wj ) ≤C , which proves (e).
To tackle (f) we need to extend the vector fields smoothly; this is easily done by

taking them constant along the leaves of F . Since on Wj we have DT −1
t w u ◦Tt =

(0,0,D−1
t v u ◦Tt ) and w f ◦Tt = (0, v f ◦Tt −bD−1

t v u ◦Tt ,0), the above estimates

imply |T ∗
t w u|C a (Wj ) ≤C e−λ′t and |w f ◦Tt |C a (Wj ) ≤C . Since the vector fields have

been extended by keeping them constant on the leaves of F , if follows that their
preimages are constant along the leaf of E , that is they do not depend on u. This
means that the above bounds on the norms does not increase when they are
considered on the neighborhood T−tU j , hence point (f).
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