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Example: Parametric representation of a hemisphere

Recall: Half circle C = {(x , y) : x2 + y2 = 1, y ≥ 1} can be parametrized
I α(x) := (x ,

√
1− x2), x ∈ [−1, 1], or

I α(t) := (cos t, sin t), t ∈ [0, π].

Example (hemisphere)
The hemisphere S = {(x , y , z) : x2 + y2 + z2 = 1, z ≥ 0} can be parametrized
I r(x , y) := (x , y ,

√
1− x2 − y2), (x , y) ∈ {x2 + y2 ≤ 1}, or

I r(u, v) := (cos u cos v , sin u cos v , sin v), (u, v) ∈ [0, 2π]× [0, π/2].

Remark
Second form can be deduced from spherical coordinates (fixed distance from
origin).
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Example: Parametric representation of a cone

Example (cone)
The cone S = {(x , y , z) : z2 = x2 + y2, z ∈ [0, 1]} can be parametrized
I r(x , y) := (x , y ,

√
x2 + y2), (x , y) ∈ {x2 + y2 ≤ 1}, or

I r(u, v) := (v cos u, v sin u, v), (u, v) ∈ [0, 2π]× [0, 1].

Remark
Second form can be deduced from spherical coordinates (fixed angle from
z-axis).
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Fundamental vector product
Consider the parametric surface, denoted r(T ),

r(u, v) := (X (u, v),Y (u, v),Z (u, v)) , (u, v) ∈ T .

Definition (fundamental vector product)
The vector-valued function

∂r
∂u ×

∂r
∂v =

(
∂uX
∂uY
∂uZ

)
×
(
∂v X
∂v Y
∂v Z

)
is called the fundamental vector product of the representation r.

Remarks
I The vector-valued functions ∂r

∂u and ∂r
∂v are tangent to the surface,

I The fundamental vector product ∂r
∂u ×

∂r
∂v is normal to the surface,

I Represents local scaling of area (small parallelograms).
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Further details on parametric surface representations

Definition (regular point)
If (u, v) is a point in T at which ∂r

∂u and ∂r
∂v are continuous and the fundamental

vector product is non-zero then r(u, v) is said to be a regular point for that
representation.

Definition
A surface r(T ) is said to be smooth if all its points are regular points.
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Parametric representation of surface with explicit form

Suppose that a surface S has the form z = f (x , y), i.e., it is described explicitly.
I We can use x , y as the parameters and show

r(x , y) := (x , y , f (x , y)) ,

I The region T is called the projection of S onto the xy -plane,
I We compute

∂r
∂x =

(
1
0
∂x f

)
,

∂r
∂y =

(
0
1
∂y f

)
,

I Consequently

∂r
∂x ×

∂r
∂y =

(
1
0
∂x f

)
×
(

0
1
∂y f

)
=
(
−∂x f
−∂y f

1

)
.
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Example: Hemisphere representation 1

I Let T := {x2 + y2 ≤ 1},
I Let r(x , y) := (x , y ,

√
1− x2 − y2).

I The surface r(T ) is the unit hemisphere.
I The fundamental vector product of this representation is

∂r
∂x ×

∂r
∂y (x , y) =

(
x(1−x2−y2)−1/2

y(1−x2−y2)−1/2

1

)
= z−1 r(x , y).

I All points are regular except the equator.
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Example: Hemisphere representation 2

I Let T := [0, 2π]× [0, π/2],
I Let r(u, v) := (cos u cos v , sin u cos v , sin v).
I The surface r(T ) is the unit hemisphere.
I

∂r
∂u (u, v) =

(− sin u cos v
cos u cos v

0

)
,

∂r
∂v (u, v) =

(− cos u sin v
− sin u sin v

cos v

)
.

I The fundamental vector product of this representation is

∂r
∂u ×

∂r
∂v (u, v) = cos v r(u, v).

I Many points map to the north pole, north pole is not a regular point, many
points map to a line between equator and north pole.
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Area of a parametric surface

Definition (area of a parametric surface)
The area of the parametric surface S = r(T ) is defined as the double integral

Area(S) :=
∫∫

T

∥∥∥∥ ∂r
∂u ×

∂r
∂v

∥∥∥∥ dudv .

Remarks
I Similar to the definition of the length of a curve,
I We can show that Area(S) is independent of the choice of representation.
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Example: Area of a hemisphere

I Let, as before, T := [0, 2π]× [0, π/2],
I Let r(u, v) := (cos u cos v , sin u cos v , sin v).
I Norm of fundamental vector product:∥∥∥∥ ∂r

∂x ×
∂r
∂y (u, v)

∥∥∥∥ = ‖cos v r(u, v)‖ = cos v .

I Hence:

Area(S) :=
∫∫

T
cos v dudv =

∫ 2π

0

[∫ π/2

0
cos v dv

]
du = 2π.
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Surface integrals

Similar to line integrals, defined using a parametrization.

Definition (surface integral)
Let S = r(T ) be a parametric surface and let f be a scalar field defined on S.
The surface integral of f over S is defined as∫∫

r(T )
f dS =

∫∫
T

f (r(u, v))
∥∥∥∥ ∂r
∂u ×

∂r
∂v (u, v)

∥∥∥∥ dudv

whenever the double integral on the right exists.

Remarks:
I When f ≡ 1 the surface integral reduces to surface area.
I If f is the density of thin material in the form S then

∫∫
S f dS is the mass.

I We can calculate the centre of mass of material in the form S.
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Change of parametric representation

Suppose that
I q(A) and r(B) are both

representations of the same surface,
I r = q ◦ G for some differentiable

G : B → A.
Then∫∫

A
f ◦ q

∥∥∥∥∂q
∂s ×

∂q
∂t

∥∥∥∥ dsdt

=
∫∫

B
f ◦ r

∥∥∥∥ ∂r
∂u ×

∂r
∂v

∥∥∥∥ dudv
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Proof of change of parametric representation

1. Since r(u, v) = q(S(u, v),T (u, v)) we calculate (chain rule and vector
product) that[
∂r
∂u ×

∂r
∂v

]
(u, v) =

[(
∂q
∂s ×

∂q
∂t

)(
∂S
∂u

∂T
∂v −

∂S
∂v

∂T
∂u

)]
(S(u, v),T (u, v)),

2. Observe that ∂S
∂u

∂T
∂v −

∂S
∂v

∂T
∂u is the Jacobian determinant associated to

change of variables (u, v) 7→ (S(u, v),T (u, v)),
3. Consequently, by the change of variables theorem,∫∫

A
f ◦ q

∥∥∥∥∂q
∂s ×

∂q
∂t

∥∥∥∥ dsdt =
∫∫

B
f ◦ r

∥∥∥∥ ∂r
∂u ×

∂r
∂v

∥∥∥∥ dudv .
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Normal vector of a surface

Definition (normal vector)
Let S = r(T ) be a parametric surface and let N := ∂r

∂u ×
∂r
∂v . At each regular

point there are two unit normals

n1 := N
‖N‖ and n2 := −n1.

Remark:
I If f is a vector field then f · n is the

component of the flow in direction
of n.
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Normal vector and surface integral of a vector field

Definition (surface integral of a vector field)
Let S = r(T ) be a parametric surface and f a vector field. The integral∫∫

S
f · n dS

is said to be the surface integral of f with respect to the normal n.

Remarks:
I
∫∫

S f · n dS =
∫∫

T (f ◦ r) · n
∥∥∥ ∂r
∂u ×

∂r
∂v

∥∥∥ dudv = ±
∫∫

T (f ◦ r) ·N dudv .
I
∫∫

S f · n1 dS = −
∫∫

S f · n2 dS because n1 = −n2.
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Curl and divergence
Suppose that f =

( fx
fy
fz

)
is a vector field.

Definition (curl)
The curl of f is defined as

∇× f =


∂fz
∂y −

∂fy
∂z

∂fx
∂z −

∂fz
∂x

∂fy
∂x −

∂fx
∂y

 .

Definition (divergence)
The divergence of f is

∇ · f := ∂fx
∂x + ∂fy

∂y + ∂fz
∂z .

Alternative notation:
I curl f = ∇× f
I div f = ∇ · f

Properties:
I If f = ∇ϕ then ∇× f = 0,
I ∇2ϕ := ∇·(∇ϕ) = ∂2ϕ

∂x2 + ∂2ϕ
∂y2 + ∂2ϕ

∂z2

is called the Laplacian,
I ∇ · (∇× f) = 0,
I ∇× (∇× f) = ∇(∇ · f)−∇2f.

Theorem
Let S ⊂ R3 be convex. Then ∇× f = 0
if and only if f is a gradient.
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Examples (curl and divergence)

Example

If f(x , y , z) =

x
y
z

 then ∇× f = 0, ∇ · f = 3.

Example
If f(x , y , z) = ∇ϕ then ∇× f = 0.

Example

If f(x , y , z) =

−y
x
0

 then ∇× f =

0
0
2

, ∇ · f = 0.
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Theorem of Stokes

Theorem (Stokes)
Let S = r(T ) be a parametric surface. Suppose that T is simply connected and
that the boundary of T is mapped to C, the boundary of S. Let β be a counter
clockwise parametrization of the boundary of T and let α(t) = r(β(t)). Then∫∫

S
(∇× f) · n dS =

∫
f · dα.

Sketch of proof.

1. Write f =
( fx

fy
fz

)
and suppose that fy = fz = 0;

2. Use Green’s theorem;
3. Conclude for general f by linearity.
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Theorem of Stokes

Theorem (Stokes)
Let S = r(T ) be a parametric surface. Suppose that T is simply connected and
that the boundary of T is mapped to C, the boundary of S. Let β be a counter
clockwise parametrization of the boundary of T and let α(t) = r(β(t)). Then∫∫
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Extension of Stokes’ theorem

Linearity of integrals allows to extend
Stokes’ theorem to other parametric
surfaces:
I Surfaces with holes
I Cylinder
I Möbius band (does not hold)
I Sphere
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Theorem of Gauss
Theorem (Gauss)
Let V ⊂ R3 be a solid with boundary the parametric surface S and let n be the
outward normal unit vector. If f is a vector field then∫∫∫

V
∇ · f dxdydz =

∫∫
S

f · n dS.

Sketch of proof.
1. Write

∫∫∫
V

(
∂fx
∂x + ∂fy

∂y + ∂fz
∂z

)
dxdydz =

∫∫
S (fx nx + fy ny + fznz) dS,

2. Suffices to show that
∫∫∫

V

(
∂fx
∂x

)
dxdydz =

∫∫
S (fx nx ) dS,

3. Suppose solid is xy -projectable,
4. Basic calculus to express fx as the integral of the derivative.

Remark: Also called the “Divergence Theorem”.
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Interpretation of divergence as a limit

Theorem
Let Vt be the ball of radius t > 0 centred at a ∈ R3 and let St be its boundary
with outgoing unit normal vector n. Then

∇ · f = lim
t→0

1
Vol(Vt)

∫∫
St

f · n dS.

Proof.
Using Gauss’ theorem.

Remark:
Curl can also be written as a similar limit.
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Relation of curl and divergence to the Jacobian matrix

Jac(f) =


∂fx
∂x

∂fx
∂y

∂fx
∂z

∂fy
∂x

∂fy
∂y

∂fy
∂z

∂fz
∂x

∂fz
∂y

∂fz
∂z



I The divergence is the trace of the Jacobian
matrix

I Every real matrix A can be written as the
sum of a symmetric matrix 1

2 (A + AT ) and
a skew-symmetric matrix 1

2 (A− AT ).

1
2 (Jac(f)− Jac(f)T ) =


0 ∂fx

∂y −
∂fy
∂x

∂fx
∂z −

∂fz
∂x

∂fy
∂x −

∂fx
∂y 0 ∂fy

∂z −
∂fz
∂y

∂fz
∂x −

∂fx
∂z

∂fz
∂y −

∂fy
∂z 0
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