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Some curves

Recall some “curves” we already saw:
I Circle {(x , y) : x2 + y2 = 4}
I Half a circle {(x , y) : x2 + y2 = 4, x ≥ 0}
I Ellipse {(x , y) : ( x

2 )2 + ( y
3 )2 = 4}

I Line {(x , y) : y = 5x + 2}
I Line in 3D space {(x , y , z) : x + 2y + 3z = 0, x = 4y}
I Parabola {(x , y) : y = x2}
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Curves and paths
I Let α : [a, b]→ Rn be continuous.
I In components α(t) = (α1(t), . . . , αn(t)).
I We say that α(t) is continuously differentiable if each component αk(t) is

differentiable on [a, b] and α′k(t) is continuous.
I We say that α(t) is piecewise continuously differentiable if

[a, b] = [a, c1] ∪ [c1, c2] ∪ · · · ∪ [cl , b] and α(t) is continuously differentiable
on each of these intervals.

Definition
If α : [a, b]→ Rn is piecewise continuously differentiable then we call it a path.

I Different functions can trace out the same curve in different ways.
I The path has an inherent direction.
I This is a parametric representation of the curve.
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Examples of paths

I α(t) := (t, t), t ∈ [0, 1]
I α(t) := (cos t, sin t), t ∈ [0, 2π]
I α(t) := (cos t, sin t), t ∈ [−π/2, π/2]
I α(t) := (cos t,− sin t), t ∈ [0, 2π]
I α(t) := (t, t, t), t ∈ [0, 1]
I α(t) := (cos t, sin t, t), t ∈ [−10, 10]
I etc. . .

[View graphic of the spiral and circle in part 2]
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Definition of the line integral
I Let α(t) be a (piecewise continuously differentiable) path on [a, b],
I Let f : Rn → Rn be a continuous vector field,

I Recall that α′(t) =

α
′
1(t)
...

α′n(t)

 and f(x) =

f1(x)
...

fn(x)

.

Definition (line integral)
The line integral of the vector field f along the path α is∫

f · dα :=
∫ b

a
f(α(t)) ·α′(t) dt.

Other possible notation:
I
∫

C f · dα (if the parametrization of the curve C is clear);
I
∫

f1 dα1 + · · ·+ fn dαn or
∫

f1 dx1 + · · ·+ fn dxn.
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Example of calculating a line integral
Example

Consider the vector field f(x , y) :=
( √y

x3 + y

)
and the path α(t) := (t2, t3),

t ∈ (0, 1). Evaluate
∫

f · dα.

Solution.

1. α′(t) =
(

2t
3t2

)
;

2. f(α(t)) :=
(

t 3
2

t6 + t3

)
;

3. f(α(t)) ·α′(t) =
(

t 3
2

t6 + t3

)
·
(

2t
3t2

)
= 2t 5

2 + 3t8 + 3t5;

4.
∫

f · dα =
∫ 1

0
(2t

5
2 + 3t8 + 3t5) dt = 59

42 .
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Basic properties of the line integral
Linearity: Suppose f, g are vector fields and α(t) is a path. For any c, d ∈ R,∫

(cf + dg) · dα = c
∫

f · dα + d
∫

g · dα.

Joining / dividing paths: Suppose f is a vector field and that

α(t) =
{

α1(t) t ∈ [a, c]
α2(t) t ∈ [c, b]

is a path. Then ∫
f · dα =

∫
f · dα1 +

∫
f · dα2.

Or: If we write C , C1, C2 for the corresponding curves, then∫
C

f · dα =
∫

C1
f · dα +

∫
C2

f · dα.
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Choices of parametrization

Consider the curve C = {(x , y) : x2 + y2 = 1, y ≥ 0} (Half circle).
Many possible path parametrization, e.g.,
I α(t) := (−t,

√
1− t2), t ∈ [−1, 1]

I β(t) := (cos t, sin t), t ∈ [0, π]

Definition (equivalent paths)
We say that two paths α(t) and β(t) are equivalent if there exists a
continuously differentiable function u : [c, d ]→ [a, b] such that α(u(t)) = β(t).
Furthermore,
I if u(c) = a and u(d) = b we say that α(t) and β(t) are in the same

direction,
I if u(c) = b and u(d) = a we say that α(t) and β(t) are in the opposite

direction.
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Change of parametrization

Theorem (Change of parametrization)
Let f be a continuous vector field and let α, β be equivalent paths. Then

∫
f · dα =

{∫
f · dβ if the paths are in the same direction,
−
∫

f · dβ if the paths are in the opposite direction.

Proof.
1. Suppose continuously differentiable path (decomposing if required);
2. Since α(u(t)) = β(t) chain rule implies that β′(t) = α′(u(t)) u′(t);

3.
∫

f · dβ =
∫ d

c
f(β(t)) · β′(t) dt =

∫ d

c
f(α(u(t))) ·α′(u(t)) u′(t) dt;

4. Change variables (gives minus if path is opposite direction).
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Gradients and line integrals

I Let h(x , y) be a scalar field in R2;
I Recall that the gradient ∇h(x , y) is a vector field;
I Let α(t), t ∈ [0, 1] be a path;
I d

dt h(α(t)) = ∇h(α(t)) ·α′(t);
I ∫

∇h · dα =
∫ 1

0
∇h(α(t)) · α′(t) dt

=
∫ 1

0
d
dt h(α(t)) dt = h(α(1))− h(α(0)).

[Graphic of person walking on a map with contour lines]



MA2 – Part 4 –
Line integrals

Curves and line
integrals

Definition of paths
and line integral

Basic properties

Applications
(gradients / work
in physics)

The second
fundamental
theorem of calculus

The first
fundamental
theorem of calculus

Potential functions
and conservative
vector fields

Applications to
differential
equations

Work in physics 1 (Gravity)

I Gravitational field f(x , y , z) =
(

0
0

mg

)
;

I Move particle from a = (a1, a2, a3) to b = (b1, b2, b3) along the path α(t),
t ∈ [0, 1];

I Work done is defined as
∫

f · dα.

∫
f · dα =

∫ 1

0
f(α(t)) ·α′(t) dt =

∫ 1

0
mg α′3(t) dt

= mg [α3(t)]10 = mg(b3 − a3).

I.e., work done depends only on the change in height.
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Work in physics 2 (force field)

I Let f be a force field;
I Let x(t) be the position at time t of a particle moving in the field;
I Let v(t) = x′(t) be the velocity at time t of the particle;
I Define kinetic energy as m

2 ‖v(t)‖2.
Newton’s law: f(x(t)) = mx′′(t) = mv′(t).
Work done:∫

f · dx =
∫ 1

0
f(x(t)) · v(t) dt =

∫ 1

0
mv′(t) · v(t) dt

=
∫ 1

0
d
dt

(
m
2 ‖v(t)‖2

)
=
(

m
2 ‖v(1)‖2 − m

2 ‖v(0)‖2
)

I.e., work done on the particle moving in the force field is equal to the change in
kinetic energy.
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Length of a curve

Let α(t), t ∈ [a, b] be a path.

Definition (length of a curve)
The length of the piece of the curve between α(a) and α(t) is defined as

s(t) :=
∫ t

a

∥∥α′(u)
∥∥ du.

I s ′(t) = ‖α′(t)‖.
I If the path represents a wire and the wire has density ϕ(α(t)) at the point

α(t) then the mass of the wire is defined as M =
∫
ϕ(α(t)) s ′(t) dt.



MA2 – Part 4 –
Line integrals

Curves and line
integrals

Definition of paths
and line integral

Basic properties

Applications
(gradients / work
in physics)

The second
fundamental
theorem of calculus

The first
fundamental
theorem of calculus

Potential functions
and conservative
vector fields

Applications to
differential
equations

The second fundamental theorem of calculus
Recall: If ϕ : R→ R is differentiable then

∫ b
a ϕ
′(t) dt = ϕ(b)− ϕ(a).

Theorem (2nd fundamental theorem in Rn)
Suppose that ϕ is a continuously differentiable scalar field on S ⊂ Rn and
suppose that α(t), t ∈ [a, b] is a path in S. Let a := α(a), b := α(b). Then∫

∇ϕ · dα = ϕ(b)− ϕ(a).

Proof.
1. Suppose that α(t) is continuously differentiable;
2. By the chain rule d

dtϕ(α(t)) = ∇ϕ(α(t)) ·α′(t);
3. Consequently

∫
∇ϕ · dα =

∫ 1
0 ∇ϕ(α(t)) ·α′(t) dt =

∫ 1
0

d
dtϕ(α(t)) dt

4. By 2nd fund. theorem in R,
∫ 1

0
d
dtϕ(α(t)) dt = ϕ(α(b))− ϕ(α(a)).
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Potential energy example

I Earth has mass M with centre at (0, 0, 0),
I Small particle close to earth has mass m,
I Force field of gravitation is equal to f(x) := −GmM

‖x‖3 x,

I Define potential energy as ϕ(x) := GmM
‖x‖ .

We write ϕ(x1, x2, x3) = GmM√
x2

1 +x2
2 +x2

3
and calculate

∇ϕ(x) =

(GmM) (2x1) (−1
2 ) (x2

1 + x2
2 + x2

3 )− 3
2

(GmM) (2x2) (−1
2 ) (x2

1 + x2
2 + x2

3 )− 3
2

(GmM) (2x3) (−1
2 ) (x2

1 + x2
2 + x2

3 )− 3
2

 = −GmM
‖x‖3 x.
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Connected sets

Definition (connected)
The set S ⊂ Rn is said to be connected
if, for every pair of points a,b ∈ S, there
exists a path α(t), t ∈ [a, b] such that
I α(t) ∈ S for every t ∈ [a, b],
I α(a) = a and α(b) = b.

Terminology: Sometimes this is called
“path connected” to distinguish
between different notions.

a
b

α(t)

S

Figure: A connected set.
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The first fundamental theorem of calculus
Recall: If f : R→ R is continuous and ϕ(x) :=

∫ x
a f (t) dt then ϕ′(x) = f (x).

Theorem (1st fundamental theorem in Rn)
Let f be a continuous vector field on a connected set S ⊂ Rn. Suppose that, for
x, a ∈ S, the line integral

∫
f · dα is equal for every path α such that α(a) = a,

α(b) = x. Fix a ∈ S and define ϕ(x) :=
∫

f · dα. Then ϕ is continuously
differentiable and ∇ϕ = f.

Sketch of proof.
1. As before e1 =

( 1
0
0

)
, e2 =

( 0
1
0

)
, e3 =

( 0
0
1

)
;

2. ϕ(x + hek)− ϕ(x) =
∫

f · dβk where βk(t) := x + tek , t ∈ [0, h];
3. Observe that β′k(t) = ek ;

4. ∂ϕ
∂xk

= lim
h→0

1
h (ϕ(x + hek)− ϕ(x)) = lim

h→0

1
h

∫ h

0
f(βk(t)) · ek dt = fk(x);

5. I.e., ∇ϕ(x) = f(x);
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Closed paths

Definition (closed path)
We say a path α(t), t ∈ [a, b] is closed if α(a) = α(b).

Remarks
I If α(t), t ∈ [a, b] is a closed path then we can divided it into two paths: Let

c ∈ [a, b] and consider the two paths α(t), t ∈ [a, c] and α(t), t ∈ [c, b].
I Suppose α(t), t ∈ [a, b] and β(t), t ∈ [c, d ] are two path starting at a and

finishing at b. The these can be combined to define a closed path (by
following one backward).
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Conservative vector fields

Definition (conservative vector field)
A vector field f, continuous on S ⊂ Rn is said to be conservative if there exists a
scalar field ϕ such that, on S,

f = ∇ϕ.

Terminology:
I Some authors call such a vector field a gradient (i.e., the vector field is the

gradient of some scalar).
I If f = ∇ϕ the ϕ is called the potential.

Non-uniqueness:
I Observe that ∇ϕ = ∇(ϕ+ C) for any constant C ∈ R.
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Conservative vector fields
Theorem (conservative vector fields)
The following are equivalent for a vector field f:
(a) There exists ϕ such that f = ∇ϕ,
(b)

∫
f · dα does not depend on α, as long as α(a) = a, α(b) = b,

(c)
∫

f · dα = 0 for any closed path α.

Proof.
(a) ⇔ (b) We proved in the previous theorems (the two fundamental

theorems);
(b) ⇒ (c) Let α(t) be a closed path and let β(t) be the same path in the

opposite direction. Observe that
∫

f · dα = −
∫

f · dβ but that∫
f · dα =

∫
f · dβ and so

∫
f · dα = 0;

(b) ⇐ (c) The two paths between a and b can be combined (with a minus
sign) to give a closed path.
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Mixed partial derivatives
Theorem
Suppose that f is a continuously differential vector field. If f = ∇ϕ for some
scalar field ϕ then, for each l , k,

∂fl
∂xk

= ∂fk
∂xl

.

Notation: Here we write, as usual, f(x1, . . . , xn) =

 f1(x1,...,xn)
...

fn(x1,...,xn)

.

Proof.
By assumption the second order partial derivatives exist and so

∂fl
∂xk

= ∂2ϕ
∂xk∂xl

= ∂2ϕ
∂xl∂xk

= ∂fk
∂xl
.

Useful: If a pair of mixed derivatives is not equal then f is not conservative.
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Constructing a potential

Question: Suppose we are given a vector field f and we know that f = ∇ϕ for
some ϕ. How can we calculate ϕ?
Two methods:

1. by line integral;
2. by indefinite integrals.
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Constructing a potential by line integral

1. Suppose that f is a conservative
vector field on the rectangle
[a1, b1]× [a2, b2];

2. We will define ϕ(x) as the line
integral

∫
f · dα where α is a path

between a = (a1, a2) and x;
3. For any x = (x1, x2) ∈ R2 consider

the two paths:
H: α1(t) := (t, a2), t ∈ [a1, x1];
V: α2(t) := (x1, t), t ∈ [a2, x2];

a

x

α1

α2

a1 x1

a2

x2

Figure: The paths α1 and α2.

4. Let α(t) denote the combination of the two paths;
5. Calculate

∫
f · dα =

∫ x1
a1

f(α1(t)) ·α′1(t) dt +
∫ x2

a2
f(α2(t)) ·α′2(t) dt;

6. And so ϕ(x) =
∫ x1

a1
f1(t, a2) dt +

∫ x2
a2

f2(x1, t) dt.
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Constructing a potential by indefinite integrals
1. Again suppose that f = ∇ϕ for some scalar field ϕ(x , y) which we wish to

find;
2. Observe that ∂ϕ

∂x = f1 and ∂ϕ
∂y = f2;

3. This means that (A(y), B(x) are constants of integration)∫ x

a
f1(t, y) dt + A(y) = ϕ(x , y) =

∫ y

b
f2(x , t) dt + B(x);

4. Calculating and comparing we can obtain a formula for ϕ(x , y).

Example
Find a potential for f(x , y) =

(
ex y2+1

2ex y

)
on R2.

I
∫ x

a f1(t, y) dt + A(y) = ex y2 + x + A(y) = ϕ(x , y);
I
∫ y

b f2(x , t) dt + B(x) =ex y2 + B(x) = ϕ(x , y);
I we can choose A(y) = 0 and B(x) = x to obtain equality above;
I potential is ϕ(x , y) = ex y2 + x .
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Convex sets
Definition (convex set)
A set S ⊂ Rn is said to be convex if for any x, y ∈ S the segment
{tx + (1− t)y, t ∈ [0, 1]} is contained in S.

x
y

S

Figure: A convex set.

x
y

S

Figure: A set which is not convex.



MA2 – Part 4 –
Line integrals

Curves and line
integrals

Definition of paths
and line integral

Basic properties

Applications
(gradients / work
in physics)

The second
fundamental
theorem of calculus

The first
fundamental
theorem of calculus

Potential functions
and conservative
vector fields

Applications to
differential
equations

Sufficient condition for a vector field to be conservative
Theorem
Let1 f be a continuously differentiable vector field on a convex region S ⊂ Rn.
Then f is conservative if and only if

∂fl
∂xk

= ∂fk
∂xl
, for each l , k.

Sketch of proof.
1. Need only assume ∂g fl = ∂l fk and construct a potential;
2. Let ϕ(x) =

∫
f · dα where α(t) = tx, t ∈ [0, 1];

3. Since α′(t) = x, ϕ(x) =
∫ 1

0 f(tx) · x;
4. Also (needs proving) ∂kϕ(x) =

∫ 1
0 (t∂k f(tx) · x + fk(tx)) dt;

5. This is equal to
∫ 1

0 (t∇fk(tx) · x + fk(tx)) dt because ∂g fl = ∂l fk ;
6. By the chain rule (to g(t) := t∇fk(tx)) this is equal to fk(x) as required.

1As usual fk (x1, . . . , xn) denotes the k th component of the vector field f.
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Conservative or non-conservative vector field?
Example
Consider the vector field f(x , y) :=

(
−y(x2+y2)−1

x(x2+y2)−1

)
on S = R2 \ (0, 0).

1. Verify that ∂f2
∂y = ∂f2

∂x ;
2. Evaluate the line integral

∫
f ·dα where α(t) := (a cos t, a sin t), t ∈ [0, 2π].

Remarks
I S is not convex;
I Line integral is the same for any circle, independent of the radius.

Evaluation of line integral
1. α′(t) =

(−a sin t
a cos t

)
and f(α(t)) = 1

a2
(−a sin t

a cos t
)
;

2. f(α(t)) ·α′(t) = sin2 t + cos2 t = 1;
3.
∫

f · dα =
∫ 2π

0 (1) dt = 2π.
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Exact differential equations p(x , y) + q(x , y)dy
dx = 0

Theorem
(a) If ϕ(x , y) satisfies ∇ϕ(x , y) =

(
p(x ,y)
q(x ,y)

)
then the solution y(x) of the

equation p(x , y) = q(x , y)dy
dx satisfies ϕ(x , y(x)) = C for some C ∈ R.

(b) Conversely, if ϕ(x , y(x)) = C defines implicitly a function y(x), then y(x)
is a solution to the equation p(x , y) = q(x , y)dy

dx .

Proof.
1. If y(x) satisfies ϕ(x , y(x)) = C , then by the chain rule and ∇ϕ = ( p

q ),
p(x , y(x)) + y ′(x)q(x , y(x)) = 0;

2. Conversely, if y(x) is a solution, ϕ(x , y(x)) must be constant in x .

Example
Solve y2 + 2xyy ′ = 0. Let p(x , y) = y2, q(x , y) = 2xy and find ϕ(x , y) = xy2 so
∇ϕ = ( p

q ). Solutions satisfy ϕ(x , y(x)) = xy(x)2 = C , i.e., y(x) =
√

C
x .
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