MA2 — Part 4 — Line integrals
Weeks 7-8 of MA2 — Draft lecture slides

Oliver Butterley

University of Rome Tor Vergata

2020/21

MA2 — Part 4 —
Line integrals



MA2 — Part 4 —

O Utl | ne Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications (gradients / work in physics)

The second fundamental theorem of calculus
The first fundamental theorem of calculus
Potential functions and conservative vector fields

Applications to differential equations



MA2 — Part 4 —

Some CU rVeS Line integrals

Curves and line
integrals

Recall some “curves” we already saw:

>

vVvyyVvyyvyy

Circle {(x,y) : x>+ y? = 4}

Half a circle {(x,y) : x> + y? = 4,x > 0}

Ellipse {(x,y) : (3)* + (§)* = 4}

Line {(x,y) : y =5x + 2}

Line in 3D space {(x,y,z) : x+2y +3z=0,x =4y}
Parabola {(x,y) : y = x?}



Curves and paths Line ntegrals
» Let o : [a, b] = R" be continuous.
» In components a(t) = (a1(t),...,an(t)).
» We say that a(t) is continuously differentiable if each component ay(t) is
differentiable on [a, b] and «/ (t) is continuous.

Definition of paths
and line integral

» We say that a(t) is piecewise continuously differentiable if
[a, b] = [a,c1] U [c1, 2] U---Ulcy, b] and «(t) is continuously differentiable
on each of these intervals.

Definition
If « : [a,b] — R" is piecewise continuously differentiable then we call it a path.

» Different functions can trace out the same curve in different ways.
» The path has an inherent direction.

» This is a parametric representation of the curve.
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Exa m pleS Of paths Line integrals

Definition of paths

> aft) = (t,t), t €[0,1] and line integral
> «ft) :=(cost,sint), t € [0,2n]

» «ft) :=(cost,sint), t € [-7/2,7/2]

> «ft) :=(cost,—sint), t € [0,2n]

> at) = (t,t,t), t€[0,1]

» «ft) :=(cost,sint,t), t € [-10,10]

> etc...

[View graphic of the spiral and circle in part 2]
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Deflnltlon Of the Ilne Integral Line integrals

> Let (t) be a (piecewise continuously differentiable) path on [a, b],

> Let f: R” — R" be a continuous vector field,
Oéll(t) fl (x) Definition of paths

and line integral
» Recall that @/(t) = : and f(x) = :
an(t) fn(x)
Definition (line integral)
The line integral of the vector field f along the path a is

/f-da - /abf(a(t)) -a/(t) dt.

Other possible notation:
» [ f- da (if the parametrization of the curve C is clear);
» [Adag+--+fhdayor [ dxg+--+f dx,.



Example of calculating a line integral e itegrals
Example
: : (W (+2 43 -
Consider the vector field f(x,y) := Bty and the path a(t) := (t°, t°), Definition of paths
and line integral

t € (0,1). Evaluate [f- da.

Solution.

1 a/(t) = (:;;);
t3
2. f(a(t)) = <t6 N t3>;
3. f(a(t)) - &/(t) = ( 2 > . <32t2> = 2t3 + 318 4 3¢5;

to + 3
59

1
4. /f-da:/(2t%+3t8+3t5) dt = —. O
0 42
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Basic properties of the line integral R
Linearity: Suppose f, g are vector fields and «(t) is a path. For any ¢,d € R,

/(cf+dg)-da:c/f~da+d/g-da.

Basic properties

Joining / dividing paths: Suppose f is a vector field and that

as(t) t€|c,b]

a(t) = {al(t) t €la,c]

is a path. Then

/f‘da:/f-dal—i-/f-dag.

Or: If we write C, (1, G for the corresponding curves, then

/f-da:/ f.dat [ f-de
C C (@}
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Choices of parametrization R

Consider the curve C = {(x,y) : x>+ y?> = 1,y > 0} (Half circle).
Many possible path parametrization, e.g.,

> at) :=(—t,V1-1t2), te[-1,1]

» B(t) := (cost,sint), t € [0, ]

Basic properties

Definition (equivalent paths)
We say that two paths «(t) and 3(t) are equivalent if there exists a
continuously differentiable function v : [c, d] — [a, b] such that a(u(t)) = B(t).
Furthermore,
» if u(c) = a and u(d) = b we say that «(t) and 3(t) are in the same
direction,
» if u(c) = b and u(d) = a we say that «(t) and 3(t) are in the opposite
direction.
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Change Of parametrlzatlon Line integrals

Theorem (Change of parametrization)
Let f be a continuous vector field and let o, B be equivalent paths. Then

Basic properties

/f d [f-dp if the paths are in the same direction, e

. a o
— [ f-dpB if the paths are in the opposite direction.

Proof.
1. Suppose continuously differentiable path (decomposing if required);
2. Since a(u(t)) = B(t) chain rule implies that B'(t) = o/(u(t)) J/(¢);

3 /f dB — / (t) dt = /Cdf(a(u(t)))-o/(u(t)) J(t) dt;

4. Change variables (g|ves minus if path is opposite direction). O



Gradients and line integrals

Let h(x,y) be a scalar field in R?;

Recall that the gradient Vh(x,y) is a vector field;
Let a(t), t € [0, 1] be a path;

sh(a(t)) = Vh(a(t)) - o (t);

vVvyyVvyyvyy

/Vh da = /01 Vh(a(t)) - o (t) dt
1

0

[Graphic of person walking on a map with contour lines]

:/ 4 h(a(t)) dt = h(e(1)) — h(cx(0)).
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Applications
(gradients / work
in physics)
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Work In phySlCS 1 (GraVIty) Line integrals
L ) 0
» Gravitational field f(x,y, z) = <n9g>,
» Move particle from a = (a1, a2, a3) to b = (b, by, b3) along the path «(t), Applications
t e [07 1], Ffr;:;,es?ctss)/ work

» Work done is defined as [ f - da.

/f~da _ /01 f(a(t)) - o/(t) dt = /01 mg al(t) dt

= mg [as(t)]; = mg(bs — a3).

I.e., work done depends only on the change in height.



Work in physics 2 (force field) MA2 — Part 4 ~

Line integrals

» Let f be a force field;

» Let x(t) be the position at time t of a particle moving in the field;
> Let v(t) = x'(t) be the velocity at time t of the particle;

» Define kinetic energy as 7% MG (tradienta } work
in physics)
Newton's law: f(x(t)) = mx"(t) = mv'(t).

Work done: ) )
/f-dx:/ F(x(£)) - v(?) dt:/o mv(£) - v(t) dt

1
= [ & (3 IMOP) = (21vI? - 2 IVO)IP)

I.e., work done on the particle moving in the force field is equal to the change in
kinetic energy.
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Length Of a CU rve Line integrals

Let a(t), t € [a, b] be a path.

Definition (length of a curve)
The length of the piece of the curve between a(a) and «(t) is defined as Applications

(gradients / work
in physics)

s(t) = /at |/ (v)|| du.

> s'(t) = [[&/(D)].
» If the path represents a wire and the wire has density p(c(t)) at the point
a(t) then the mass of the wire is defined as M = /gp(a(t)) s'(t) dt.
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The second fundamental theorem of calculus Line intagrals
Recall: If ¢ : R — R is differentiable then [?¢/(t) dt = ¢(b) — ¢(a).

Theorem (2" fundamental theorem in R")

Suppose that ¢ is a continuously differentiable scalar field on S C R" and
suppose that a(t), t € [a, b] is a path in S. Let a:= a(a), b := a(b). Then

[ Vi da= o(b) — o(a).

The second
fundamental
theorem of calculus

Proof.
1. Suppose that «(t) is continuously differentiable;
2. By the chain rule Z¢(a(t)) = Vip(a(t)) - /(2);
3. Consequently [Vy - da = fol Vo(a(t)) - a/(t) dt = fol 2 o(at)) dt
4. By 2" fund. theorem in R, fol %gp(a(t)) dt = p(a(b)) — p(a(a)).



Potential energy example

» Earth has mass M with centre at (0,0, 0),

» Small particle close to earth has mass m,

> Force field of gravitation is equal to f(x) := =¢mM

» Define potential energy as ((x) := C’ﬁ:ﬁw

We write p(x1,x2,x3) = ——2"M__ and calculate
Plaens) = Eae

(GmM) (2x1) (—
V(x) = | (GmM) (2x2) (-
(GmM) (2x3) (—

NI NI N—=

3
lIx”

) (F + x5 +x3)”
) (F + x5 +x3)”
) (6 + x5 +x3)”

Nlw Nlw Nlw
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The second
fundamental
theorem of calculus



Connected sets

Definition (connected)

The set S C R" is said to be connected
if, for every pair of points a,b € S, there
exists a path «(t),t € [a, b] such that
> at) € S for every t € [a, b],
» a(a) =aand a(b) =b.
Terminology: Sometimes this is called

“path connected” to distinguish
between different notions.
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a(t) The first

fundamental
theorem of calculus

Figure: A connected set.



The first fundamental theorem of calculus

Recall: If f: R — R is continuous and ¢(x) :=

Theorem (1% fundamental theorem in R")

Let f be a continuous vector field on a connected set S C R". Suppose that, for
x,a € S, the line integral [f - da is equal for every path a such that a(a)
a(b) =x. Fixa e S and define p(x) :=

differentiable and V = f.

Sketch of proof.

1.

2.
3.

As before e; = (é) e, =
o(x + hey) —o(x) = [f
Observe that 8} (t) = e;

1
o = Jim —(p(x+ hex) —

. le., Vo(x) = f(x);

[ f(t) dt then ¢'(x) = f(x).

(3) = (8)

- dB where B,(t) :=x+ teg, t € [0, h];

= lim —
h—0 h

/fﬁk

J f-da. Then ¢ is continuously

-e, dt = fk(X);

:a,
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The first
fundamental
theorem of calculus
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Closed pathS Line integrals

Definition (closed path)
We say a path a(t), t € [a, b] is closed if a(a) = a(b).

Remarks
> If a(t), t € [a, b] is a closed path then we can divided it into two paths: Let
¢ € [a, b] and consider the two paths «(t), t € [a, c] and «a(t), t € [c, b]. o
e first
» Suppose a(t), t € [a, b] and B(t), t € [c, d] are two path starting at @a and ~ fundemental
finishing at b. The these can be combined to define a closed path (by
following one backward).



Conservative vector fields

Definition (conservative vector field)
A vector field f, continuous on S C R" is said to be conservative if there exists a

scalar field ¢ such that, on S,
f=Vop.

Terminology:
» Some authors call such a vector field a gradient (i.e., the vector field is the
gradient of some scalar).
> If f = Vo the ¢ is called the potential.

Non-uniqueness:
» Observe that Vo = V(¢ + C) for any constant C € R.
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The first
fundamental
theorem of calculus



Conservative vector fields s

Line integrals

Theorem (conservative vector fields)

The following are equivalent for a vector field f:

(a) There exists ¢ such that f = Vi,

(b) [f-da does not depend on «, as long as a(a) = a, a(b) = b,
(c) [f-da =0 for any closed path c.

Proof.

(a) < (b) We proved in the previous theorems (the two fundamental e et
theorems);

fundamental
theorem of calculus

(b) = (c) Let a(t) be a closed path and let B(t) be the same path in the
opposite direction. Observe that [f-da = — [f-df but that
Jf-da=[f-dBandso [f-da=0;

(b) < (c) The two paths between a and b can be combined (with a minus
sign) to give a closed path.



Mixed partial derivatives e ntegrals
Theorem
Suppose that f is a continuously differential vector field. If f = Vi for some
scalar field © then, for each I, k,

of;  ofx
8Xk aX/'
ﬂ(le"'v)(n)
Notation: Here we write, as usual, f(x,...,x,) =
. The first
fn(Xl,.-.,Xn) fundamental
theorem of calculus
Proof.
By assumption the second order partial derivatives exist and so
of _ o _ Pp _ O [
Ox, — OxOx; — Ox0xx — Ox°

Useful: If a pair of mixed derivatives is not equal then f is not conservative.



Constructing a potential

Question: Suppose we are given a vector field f and we know that f = V¢ for
some . How can we calculate ¢7
Two methods:

1. by line integral;
2. by indefinite integrals.
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Potential functions
and conservative
vector fields



Constructing a potential by line integral

1. Suppose that f is a conservative X

b3

vector field on the rectangle
[a1, b1] X [a2, bo];

Q

N

2. We will define ¢(x) as the line

integral [f - da where a is a path as
between a = (a1, a2) and x;

3. For any x = (x1,x2) € R? consider
the two paths: a X1
H: ai(t) :==(t,a), t € [a1,x];

Vi ap(t) = (x1,t), t € [a2,x]; Figure: The paths a;; and a.

4. Let a(t) denote the combination of the two paths;
5. Calculate [f-da = [}* f(ou(t)) - aj(t) dt + [72 f(ea(t)) - ay(t) dt;
6. And so @(x) = [} fi(t, a) dt + [ fa(xa, t) dt.

a
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Potential functions
and conservative
vector fields



Constructing a potential by indefinite integrals
1. Again suppose that f = V¢ for some scalar field ¢(x, y) which we wish to
find;
2. Observe that g—f = f; and % = fr;
3. This means that (A(y), B(x) are constants of integration)
[ Aley) det A = plxy) = [ e de -+ B()

4. Calculating and comparing we can obtain a formula for ¢(x, y).

Example
Find a potential for f(x,y) = (ez};ij;l) on R2.
> At y) di s Aly) = ey 4+ x + Aly) = o(x, y);
> [ blx.t) di+ Blx) =e*y? + B(x) = ¢(x, y);
> we can choose A(y) = 0 and B(x) = x to obtain equality above;
> potential is p(x,y) = eXy? + x.
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Potential functions
and conservative
vector fields
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COnVeX SetS Line integrals

Definition (convex set)

A set S C R” is said to be convex if for any x,y € S the segment
{tx+ (1 —t)y, t € [0,1]} is contained in S.

S Potential functions
and conservative
vector fields

) Figure: A set which is not convex.
Figure: A convex set.



Sufficient condition for a vector field to be conservative

Theorem

Let' f be a continuously differentiable vector field on a convex region S C R".

Then f is conservative if and only if

=L =%k for each I, k.

Sketch of proof.
1. Need only assume Ogf; = 0,f and construct a potential;
Let p(x) = [f- da where a(t) = tx, t € [0,1];
Since &/(t) = x, p(x) = fol f(tx) - x;
Also (needs proving) dxp(x) = fol (tOkf(tx) - x + f(tx)) dt;
This is equal to fol (tVfi(tx) - x + fi(tx)) dt because Ogf; = O,fy;

o s~ Wb

'As usual fi(x1, ..., xn) denotes the k™' component of the vector field f.

By the chain rule (to g(t) := tVf(tx)) this is equal to fi(x) as required.
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Potential functions
and conservative
vector fields



Conservative or non-conservative vector field? s
Example
2 2\—1
Consider the vector field f(x,y) := (;{g;}éﬁ_l ) on S =R2\(0,0).

; of, _ 0h.
1. Verify that Ty = o

2. Evaluate the line integral [f-da where a(t) := (acost, asint), t € [0, 27].

Remarks
» S is not convex;

P Line integral is the same for any circle, independent of the radius.

Potential functions

Evaluation Of |ine integral and conservative
vector fields
1. a/(t) = (—aiglsntt) and f(a(t)) — é (—ai(s)lsntt);

2. f(a(t)) o/(t) =sin?t 4+ cos® t = 1;
3. [f-da= [27(1) dt = 2r.



Exact differential equations p(x, y) + q(x,y)% =0

Theorem

(a) If o(x,y) satisfies Vp(x,y) = (Zg)y/g) then the solution y(x) of the

equation p(x,y) = q(x,y)% satisfies o(x, y(x)) = C for some C € R.
(b) Conversely, if p(x,y(x)) = C defines implicitly a function y(x), then y(x)
is a solution to the equation p(x,y) = q(x,y)%.

Proof.
1. If y(x) satisfies p(x, y(x)) = C, then by the chain rule and Vi = (7),
p(x, y(x)) +y'(x)a(x, y(x)) = 0;

2. Conversely, if y(x) is a solution, ¢(x, y(x)) must be constant in x. O
Example
Solve y? 4+ 2xyy’ = 0. Let p(x,y) = y2, q(x,y) = 2xy and find ¢(x,y) = xy? so

Vi = (F). Solutions satisfy ¢(x, y(x)) = xy(x)?> = C, i.e., y(x) = \/g
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Applications to
differential
equations
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