MA2 – Part 4 – Line integrals Weeks 7–8 of MA2 – Draft lecture slides

Oliver Butterley

University of Rome Tor Vergata

2020/21

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Outline

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications (gradients / work in physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Applications to differential equations

MA2 – Part 4 – Line integrals

Curves and line ntegrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Some curves

Recall some "curves" we already saw:

- Circle $\{(x, y) : x^2 + y^2 = 4\}$
- Half a circle $\{(x, y) : x^2 + y^2 = 4, x \ge 0\}$
- Ellipse $\{(x, y) : (\frac{x}{2})^2 + (\frac{y}{3})^2 = 4\}$
- Line $\{(x, y) : y = 5x + 2\}$
- Line in 3D space $\{(x, y, z) : x + 2y + 3z = 0, x = 4y\}$
- ▶ Parabola $\{(x, y) : y = x^2\}$

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Curves and paths

- Let $\alpha : [a, b] \to \mathbb{R}^n$ be continuous.
- In components $\alpha(t) = (\alpha_1(t), \dots, \alpha_n(t)).$
- We say that α(t) is continuously differentiable if each component α_k(t) is differentiable on [a, b] and α'_k(t) is continuous.
- We say that α(t) is piecewise continuously differentiable if [a, b] = [a, c₁] ∪ [c₁, c₂] ∪ · · · ∪ [c_l, b] and α(t) is continuously differentiable on each of these intervals.

Definition

If $\alpha: [a,b] \to \mathbb{R}^n$ is piecewise continuously differentiable then we call it a *path*.

- Different functions can trace out the same curve in different ways.
- ▶ The path has an inherent direction.
- ▶ This is a *parametric representation* of the curve.

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Examples of paths

•
$$\alpha(t) := (t, t), t \in [0, 1]$$

• $\alpha(t) := (\cos t, \sin t), t \in [0, 2\pi]$
• $\alpha(t) := (\cos t, \sin t), t \in [-\pi/2, \pi/2]$
• $\alpha(t) := (\cos t, -\sin t), t \in [0, 2\pi]$
• $\alpha(t) := (t, t, t), t \in [0, 1]$
• $\alpha(t) := (\cos t, \sin t, t), t \in [-10, 10]$
• etc...

[View graphic of the spiral and circle in part 2]

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Definition of the line integral

- Let $\alpha(t)$ be a (piecewise continuously differentiable) path on [a, b],
- Let $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^n$ be a continuous vector field,

• Recall that
$$\alpha'(t) = \begin{pmatrix} \alpha'_1(t) \\ \vdots \\ \alpha'_n(t) \end{pmatrix}$$
 and $\mathbf{f}(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{x}) \end{pmatrix}$

Definition (line integral)

The line integral of the vector field ${\bf f}$ along the path α is

$$\int \mathbf{f} \cdot d\boldsymbol{\alpha} := \int_a^b \mathbf{f}(\boldsymbol{\alpha}(t)) \cdot \boldsymbol{\alpha}'(t) \ dt.$$

Other possible notation:

- $\int_C \mathbf{f} \cdot d\alpha$ (if the parametrization of the curve *C* is clear);
- $\int f_1 \ d\alpha_1 + \dots + f_n \ d\alpha_n \text{ or } \int f_1 \ dx_1 + \dots + f_n \ dx_n.$

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications (gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Example of calculating a line integral

Example

Consider the vector field
$$\mathbf{f}(x,y) := \begin{pmatrix} \sqrt{y} \\ x^3 + y \end{pmatrix}$$
 and the path $\alpha(t) := (t^2, t^3)$, $t \in (0,1)$. Evaluate $\int \mathbf{f} \cdot d\alpha$.

Solution.

1.
$$\alpha'(t) = \begin{pmatrix} 2t \\ 3t^2 \end{pmatrix};$$

2. $\mathbf{f}(\alpha(t)) := \begin{pmatrix} t^{\frac{3}{2}} \\ t^6 + t^3 \end{pmatrix};$
3. $\mathbf{f}(\alpha(t)) \cdot \alpha'(t) = \begin{pmatrix} t^{\frac{3}{2}} \\ t^6 + t^3 \end{pmatrix} \cdot \begin{pmatrix} 2t \\ 3t^2 \end{pmatrix} = 2t^{\frac{5}{2}} + 3t^8 + 3t^5;$
4. $\int \mathbf{f} \cdot d\alpha = \int_0^1 (2t^{\frac{5}{2}} + 3t^8 + 3t^5) \ dt = \frac{59}{42}.$

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Basic properties of the line integral

Linearity: Suppose **f**, **g** are vector fields and $\alpha(t)$ is a path. For any $c, d \in \mathbb{R}$,

$$\int (c\mathbf{f} + d\mathbf{g}) \cdot d\alpha = c \int \mathbf{f} \cdot d\alpha + d \int \mathbf{g} \cdot d\alpha.$$

Joining / dividing paths: Suppose \mathbf{f} is a vector field and that

$$lpha(t) = egin{cases} lpha_1(t) & t\in [\mathsf{a},c] \ lpha_2(t) & t\in [c,b] \end{cases}$$

is a path. Then

$$\int \mathbf{f} \cdot d\boldsymbol{\alpha} = \int \mathbf{f} \cdot d\boldsymbol{\alpha}_1 + \int \mathbf{f} \cdot d\boldsymbol{\alpha}_2.$$

Or: If we write C, C_1 , C_2 for the corresponding curves, then

$$\int_C \mathbf{f} \cdot d\boldsymbol{\alpha} = \int_{C_1} \mathbf{f} \cdot d\boldsymbol{\alpha} + \int_{C_2} \mathbf{f} \cdot d\boldsymbol{\alpha}.$$

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications (gradients / work in physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Choices of parametrization

Consider the curve $C = \{(x, y) : x^2 + y^2 = 1, y \ge 0\}$ (Half circle). Many possible path parametrization, e.g.,

•
$$\alpha(t) := (-t, \sqrt{1-t^2}), \ t \in [-1, 1]$$

$$\blacktriangleright \ \beta(t) := (\cos t, \sin t), \ t \in [0, \pi]$$

Definition (equivalent paths)

We say that two paths $\alpha(t)$ and $\beta(t)$ are *equivalent* if there exists a continuously differentiable function $u : [c, d] \rightarrow [a, b]$ such that $\alpha(u(t)) = \beta(t)$. Furthermore,

- If u(c) = a and u(d) = b we say that α(t) and β(t) are in the same direction,
- If u(c) = b and u(d) = a we say that α(t) and β(t) are in the opposite direction.

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Change of parametrization

Theorem (Change of parametrization)

Let **f** be a continuous vector field and let α , β be equivalent paths. Then

$$\int \mathbf{f} \cdot d\boldsymbol{\alpha} = \begin{cases} \int \mathbf{f} \cdot d\boldsymbol{\beta} & \text{if the paths are in the same direction,} \\ -\int \mathbf{f} \cdot d\boldsymbol{\beta} & \text{if the paths are in the opposite direction} \end{cases}$$

Proof.

- 1. Suppose continuously differentiable path (decomposing if required);
- 2. Since $\alpha(u(t)) = \beta(t)$ chain rule implies that $\beta'(t) = \alpha'(u(t)) u'(t)$;

3.
$$\int \mathbf{f} \cdot d\boldsymbol{\beta} = \int_{c}^{d} \mathbf{f}(\boldsymbol{\beta}(t)) \cdot \boldsymbol{\beta}'(t) \ dt = \int_{c}^{d} \mathbf{f}(\boldsymbol{\alpha}(u(t))) \cdot \boldsymbol{\alpha}'(u(t)) \ u'(t) \ dt;$$

4. Change variables (gives minus if path is opposite direction).

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Gradients and line integrals

- Let h(x, y) be a scalar field in \mathbb{R}^2 ;
- Recall that the gradient $\nabla h(x, y)$ is a vector field;
- Let $\alpha(t)$, $t \in [0,1]$ be a path;
- $\frac{d}{dt}h(\alpha(t)) = \nabla h(\alpha(t)) \cdot \alpha'(t);$

$$\int
abla h \cdot doldsymbol{lpha} = \int_0^1
abla h(oldsymbol{lpha}(t)) \cdot lpha'(t) \ dt = \int_0^1 rac{d}{dt} h(oldsymbol{lpha}(t)) \ dt = h(oldsymbol{lpha}(1)) - h(oldsymbol{lpha}(0)).$$

[Graphic of person walking on a map with contour lines]

MA2 – Part 4 – Line integrals

Curves and line ntegrals

Definition of paths and line integral

Basic properties

Applications (gradients / work in physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Work in physics 1 (Gravity)

• Gravitational field
$$\mathbf{f}(x, y, z) = \begin{pmatrix} 0 \\ 0 \\ mg \end{pmatrix}$$
;

- Move particle from $\mathbf{a} = (a_1, a_2, a_3)$ to $\mathbf{b} = (b_1, b_2, b_3)$ along the path $\alpha(t)$, $t \in [0, 1]$;
- Work done is defined as $\int \mathbf{f} \cdot d\boldsymbol{\alpha}$.

$$\int \mathbf{f} \cdot d\boldsymbol{\alpha} = \int_0^1 \mathbf{f}(\boldsymbol{\alpha}(t)) \cdot \boldsymbol{\alpha}'(t) \ dt = \int_0^1 mg \ \alpha'_3(t) \ dt$$
$$= mg \ [\alpha_3(t)]_0^1 = mg(b_3 - a_3).$$

I.e., work done depends only on the change in height.

MA2 – Part 4 – Line integrals

Curves and line ntegrals

Definition of paths and line integral

Basic properties

Applications (gradients / work in physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Work in physics 2 (force field)

- Let f be a force field;
- Let $\mathbf{x}(t)$ be the position at time t of a particle moving in the field;
- Let $\mathbf{v}(t) = \mathbf{x}'(t)$ be the velocity at time t of the particle;
- Define kinetic energy as $\frac{m}{2} \|\mathbf{v}(t)\|^2$. Newton's law: $\mathbf{f}(\mathbf{x}(t)) = m\mathbf{x}''(t) = m\mathbf{v}'(t)$. Work done:

$$\int \mathbf{f} \cdot d\mathbf{x} = \int_0^1 \mathbf{f}(\mathbf{x}(t)) \cdot \mathbf{v}(t) \ dt = \int_0^1 m \mathbf{v}'(t) \cdot \mathbf{v}(t) \ dt$$
$$= \int_0^1 \frac{d}{dt} \left(\frac{m}{2} \| \mathbf{v}(t) \|^2 \right) = \left(\frac{m}{2} \| \mathbf{v}(1) \|^2 - \frac{m}{2} \| \mathbf{v}(0) \|^2 \right)$$

I.e., work done on the particle moving in the force field is equal to the change in kinetic energy.

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications (gradients / work in physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Length of a curve

Let $\alpha(t)$, $t \in [a, b]$ be a path.

Definition (length of a curve)

The length of the piece of the curve between $\alpha(a)$ and $\alpha(t)$ is defined as

$$s(t):=\int_a^t \|lpha'(u)\|\;\; du.$$

- ► $s'(t) = \| \alpha'(t) \|.$
- If the path represents a wire and the wire has density $\varphi(\alpha(t))$ at the point $\alpha(t)$ then the mass of the wire is defined as $M = \int \varphi(\alpha(t)) s'(t) dt$.

MA2 – Part 4 – Line integrals

Curves and line ntegrals

Definition of paths and line integral

Basic properties

Applications (gradients / work in physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

The second fundamental theorem of calculus

Recall: If $\varphi : \mathbb{R} \to \mathbb{R}$ is differentiable then $\int_a^b \varphi'(t) dt = \varphi(b) - \varphi(a)$. Theorem (2nd fundamental theorem in \mathbb{R}^n)

Suppose that φ is a continuously differentiable scalar field on $S \subset \mathbb{R}^n$ and suppose that $\alpha(t)$, $t \in [a, b]$ is a path in S. Let $\mathbf{a} := \alpha(a)$, $\mathbf{b} := \alpha(b)$. Then

$$\int
abla arphi \cdot oldsymbol{d} oldsymbol{lpha} = arphi(oldsymbol{b}) - arphi(oldsymbol{a}).$$

Proof.

- 1. Suppose that $\alpha(t)$ is continuously differentiable;
- 2. By the chain rule $\frac{d}{dt}\varphi(\alpha(t)) = \nabla \varphi(\alpha(t)) \cdot \alpha'(t);$
- 3. Consequently $\int \nabla \varphi \cdot d\alpha = \int_0^1 \nabla \varphi(\alpha(t)) \cdot \alpha'(t) dt = \int_0^1 \frac{d}{dt} \varphi(\alpha(t)) dt$
- 4. By 2nd fund theorem in \mathbb{R} , $\int_0^1 \frac{d}{dt} \varphi(\alpha(t)) dt = \varphi(\alpha(b)) \varphi(\alpha(a))$.

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications (gradients / work in physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Potential energy example

• Earth has mass M with centre at (0, 0, 0),

Small particle close to earth has mass m,

• Force field of gravitation is equal to $\mathbf{f}(\mathbf{x}) := \frac{-GmM}{\|\mathbf{x}\|^3} \mathbf{x}$,

• Define potential energy as $\varphi(\mathbf{x}) := \frac{GmM}{\|\mathbf{x}\|}$.

We write $arphi(x_1,x_2,x_3)=rac{{\it GmM}}{\sqrt{x_1^2+x_2^2+x_3^2}}$ and calculate

$$\nabla\varphi(\mathbf{x}) = \begin{pmatrix} (GmM) \ (2x_1) \ (-\frac{1}{2}) \ (x_1^2 + x_2^2 + x_3^2)^{-\frac{3}{2}} \\ (GmM) \ (2x_2) \ (-\frac{1}{2}) \ (x_1^2 + x_2^2 + x_3^2)^{-\frac{3}{2}} \\ (GmM) \ (2x_3) \ (-\frac{1}{2}) \ (x_1^2 + x_2^2 + x_3^2)^{-\frac{3}{2}} \end{pmatrix} = \frac{-GmM}{\|\mathbf{x}\|^3} \mathbf{x}.$$

MA2 – Part 4 – Line integrals

Curves and line ntegrals

Definition of paths and line integral

Basic properties

Applications (gradients / work in physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Connected sets

Definition (connected)

The set $S \subset \mathbb{R}^n$ is said to be *connected* if, for every pair of points $\mathbf{a}, \mathbf{b} \in S$, there exists a path $\alpha(t), t \in [a, b]$ such that

- ▶ $\alpha(t) \in S$ for every $t \in [a, b]$,
- $\blacktriangleright \ \alpha(a) = \mathbf{a} \text{ and } \alpha(b) = \mathbf{b}.$

Terminology: Sometimes this is called "path connected" to distinguish between different notions.

Figure: A connected set.

MA2 – Part 4 – Line integrals

Curves and line ntegrals

Definition of paths and line integral

Basic properties

Applications (gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

The first fundamental theorem of calculus

Recall: If $f : \mathbb{R} \to \mathbb{R}$ is continuous and $\varphi(x) := \int_a^x f(t) dt$ then $\varphi'(x) = f(x)$.

Theorem $(1^{st}$ fundamental theorem in $\mathbb{R}^n)$

Let **f** be a continuous vector field on a connected set $S \subset \mathbb{R}^n$. Suppose that, for $\mathbf{x}, \mathbf{a} \in S$, the line integral $\int \mathbf{f} \cdot d\alpha$ is equal for every path α such that $\alpha(\mathbf{a}) = \mathbf{a}$, $\alpha(b) = \mathbf{x}$. Fix $\mathbf{a} \in S$ and define $\varphi(\mathbf{x}) := \int \mathbf{f} \cdot d\alpha$. Then φ is continuously differentiable and $\nabla \varphi = \mathbf{f}$.

Sketch of proof.

1. As before
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{e}_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$;
2. $\varphi(\mathbf{x} + h\mathbf{e}_k) - \varphi(\mathbf{x}) = \int \mathbf{f} \cdot d\beta_k$ where $\beta_k(t) := \mathbf{x} + t\mathbf{e}_k$, $t \in [0, h]$;
3. Observe that $\beta'_k(t) = \mathbf{e}_k$;
4. $\frac{\partial \varphi}{\partial x_k} = \lim_{h \to 0} \frac{1}{h} (\varphi(\mathbf{x} + h\mathbf{e}_k) - \varphi(\mathbf{x})) = \lim_{h \to 0} \frac{1}{h} \int_0^h \mathbf{f}(\beta_k(t)) \cdot \mathbf{e}_k dt = f_k(\mathbf{x})$;
5. I.e., $\nabla \varphi(\mathbf{x}) = \mathbf{f}(\mathbf{x})$;

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Closed paths

Definition (closed path)

We say a path $\alpha(t)$, $t \in [a, b]$ is *closed* if $\alpha(a) = \alpha(b)$.

Remarks

- If $\alpha(t)$, $t \in [a, b]$ is a closed path then we can divided it into two paths: Let $c \in [a, b]$ and consider the two paths $\alpha(t)$, $t \in [a, c]$ and $\alpha(t)$, $t \in [c, b]$.
- Suppose α(t), t ∈ [a, b] and β(t), t ∈ [c, d] are two path starting at a and finishing at b. The these can be combined to define a closed path (by following one backward).

MA2 – Part 4 – Line integrals

Curves and line ntegrals

Definition of paths and line integral

Basic properties

Applications (gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Conservative vector fields

Definition (conservative vector field)

A vector field **f**, continuous on $S \subset \mathbb{R}^n$ is said to be conservative if there exists a scalar field φ such that, on S,

 $\mathbf{f}=\nabla\varphi.$

Terminology:

- Some authors call such a vector field a gradient (i.e., the vector field is the gradient of some scalar).
- If $\mathbf{f} = \nabla \varphi$ the φ is called the *potential*.

Non-uniqueness:

• Observe that $\nabla \varphi = \nabla(\varphi + C)$ for any constant $C \in \mathbb{R}$.

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

pplications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Conservative vector fields

Theorem (conservative vector fields)

The following are equivalent for a vector field \mathbf{f} :

- (a) There exists φ such that $\mathbf{f} = \nabla \varphi$,
- (b) $\int \mathbf{f} \cdot d\alpha$ does not depend on α , as long as $\alpha(a) = \mathbf{a}$, $\alpha(b) = \mathbf{b}$,
- (c) $\int \mathbf{f} \cdot d\mathbf{\alpha} = 0$ for any closed path $\mathbf{\alpha}$.

Proof.

- (a) \Leftrightarrow (b) We proved in the previous theorems (the two fundamental theorems);
- (b) \Rightarrow (c) Let $\alpha(t)$ be a closed path and let $\beta(t)$ be the same path in the opposite direction. Observe that $\int \mathbf{f} \cdot d\alpha = -\int \mathbf{f} \cdot d\beta$ but that $\int \mathbf{f} \cdot d\alpha = \int \mathbf{f} \cdot d\beta$ and so $\int \mathbf{f} \cdot d\alpha = 0$;
- (b) \Leftarrow (c) The two paths between a and b can be combined (with a minus sign) to give a closed path.

MA2 – Part 4 – Line integrals

Curves and line ntegrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Mixed partial derivatives

Theorem

Suppose that **f** is a continuously differential vector field. If $\mathbf{f} = \nabla \varphi$ for some scalar field φ then, for each l, k,

$$\frac{\partial f_l}{\partial x_k} = \frac{\partial f_k}{\partial x_l}.$$

Notation: Here we write, as usual,
$$\mathbf{f}(x_1, \ldots, x_n) = \begin{pmatrix} f_1(x_1, \ldots, x_n) \\ \vdots \\ f_n(x_1, \ldots, x_n) \end{pmatrix}$$
.

Proof.

By assumption the second order partial derivatives exist and so

$$\frac{\partial f_l}{\partial x_k} = \frac{\partial^2 \varphi}{\partial x_k \partial x_l} = \frac{\partial^2 \varphi}{\partial x_l \partial x_k} = \frac{\partial f_k}{\partial x_l}.$$

Useful: If a pair of mixed derivatives is not equal then **f** is *not* conservative.

MA2 – Part 4 – Line integrals

Curves and line ntegrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Question: Suppose we are given a vector field **f** and we know that $\mathbf{f} = \nabla \varphi$ for some φ . How can we calculate φ ? Two methods:

- 1. by line integral;
- 2. by indefinite integrals.

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Constructing a potential by line integral

- 1. Suppose that **f** is a conservative vector field on the rectangle $[a_1, b_1] \times [a_2, b_2];$
- 2. We will define $\varphi(\mathbf{x})$ as the line integral $\int \mathbf{f} \cdot d\alpha$ where α is a path between $\mathbf{a} = (a_1, a_2)$ and \mathbf{x} ;
- 3. For any $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$ consider the two paths:

$$\begin{array}{ll} \mathsf{H}: \ \, \alpha_1(t):=(t,a_2), \ t\in [a_1,x_1];\\ \mathsf{V}: \ \, \alpha_2(t):=(x_1,t), \ t\in [a_2,x_2]; \end{array}$$

Figure: The paths α_1 and α_2 .

- 4. Let $\alpha(t)$ denote the combination of the two paths;
- 5. Calculate $\int \mathbf{f} \cdot d\mathbf{\alpha} = \int_{a_1}^{x_1} \mathbf{f}(\alpha_1(t)) \cdot \alpha'_1(t) dt + \int_{a_2}^{x_2} \mathbf{f}(\alpha_2(t)) \cdot \alpha'_2(t) dt$;
- 6. And so $\varphi(\mathbf{x}) = \int_{a_1}^{x_1} f_1(t, a_2) dt + \int_{a_2}^{x_2} f_2(x_1, t) dt$.

MA2 – Part 4 – Line integrals

urves and line ntegrals

Definition of paths and line integral

Basic properties

Applications (gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Constructing a potential by indefinite integrals

- 1. Again suppose that $\mathbf{f} = \nabla \varphi$ for some scalar field $\varphi(x, y)$ which we wish to find;
- 2. Observe that $\frac{\partial \varphi}{\partial x} = f_1$ and $\frac{\partial \varphi}{\partial y} = f_2$;
- 3. This means that (A(y), B(x)) are constants of integration)

$$\int_a^x f_1(t,y) dt + A(y) = \varphi(x,y) = \int_b^y f_2(x,t) dt + B(x);$$

4. Calculating and comparing we can obtain a formula for $\varphi(x, y)$.

Example

Find a potential for $\mathbf{f}(x, y) = \begin{pmatrix} e^x y^2 + 1 \\ 2e^x y \end{pmatrix}$ on \mathbb{R}^2 .

- $\blacktriangleright \int_a^x f_1(t,y) dt + A(y) = e^x y^2 + x + A(y) = \varphi(x,y);$
- $\int_{b}^{y} f_{2}(x,t) dt + B(x) = e^{x}y^{2} + B(x) = \varphi(x,y);$
- we can choose A(y) = 0 and B(x) = x to obtain equality above;

• potential is
$$\varphi(x, y) = e^x y^2 + x_y$$

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Convex sets

Definition (convex set)

A set $S \subset \mathbb{R}^n$ is said to be *convex* if for any $\mathbf{x}, \mathbf{y} \in S$ the segment $\{t\mathbf{x} + (1-t)\mathbf{y}, t \in [0,1]\}$ is contained in S.

Figure: A set which is not convex.

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Applications to differential equations

Figure: A convex set.

Sufficient condition for a vector field to be conservative

Theorem

Let¹ **f** be a continuously differentiable vector field on a convex region $S \subset \mathbb{R}^n$. Then **f** is conservative if and only if

$$\frac{\partial f_l}{\partial x_k} = \frac{\partial f_k}{\partial x_l}, \quad \text{for each } l, k.$$

Sketch of proof.

- 1. Need only assume $\partial_g f_l = \partial_l f_k$ and construct a potential;
- 2. Let $\varphi(\mathbf{x}) = \int \mathbf{f} \cdot d\mathbf{\alpha}$ where $\mathbf{\alpha}(t) = t\mathbf{x}$, $t \in [0, 1]$;
- 3. Since $\alpha'(t) = \mathbf{x}$, $\varphi(\mathbf{x}) = \int_0^1 \mathbf{f}(t\mathbf{x}) \cdot \mathbf{x}$;
- 4. Also (needs proving) $\partial_k \varphi(\mathbf{x}) = \int_0^1 (t \partial_k \mathbf{f}(t\mathbf{x}) \cdot \mathbf{x} + f_k(t\mathbf{x})) dt$;
- 5. This is equal to $\int_0^1 (t \nabla f_k(t\mathbf{x}) \cdot \mathbf{x} + f_k(t\mathbf{x})) dt$ because $\partial_g f_l = \partial_l f_k$;
- 6. By the chain rule (to $g(t) := t \nabla f_k(t\mathbf{x})$) this is equal to $f_k(\mathbf{x})$ as required.

MA2 – Part 4 – Line integrals

Curves and line ntegrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

¹As usual $f_k(x_1, \ldots, x_n)$ denotes the k^{th} component of the vector field **f**.

Conservative or non-conservative vector field?

Example

Consider the vector field $\mathbf{f}(x,y) := \begin{pmatrix} -y(x^2+y^2)^{-1} \\ x(x^2+y^2)^{-1} \end{pmatrix}$ on $S = \mathbb{R}^2 \setminus (0,0)$.

- 1. Verify that $\frac{\partial f_2}{\partial y} = \frac{\partial f_2}{\partial x}$;
- 2. Evaluate the line integral $\int \mathbf{f} \cdot d\alpha$ where $\alpha(t) := (a \cos t, a \sin t), t \in [0, 2\pi]$.

Remarks

- ► *S* is not convex;
- Line integral is the same for any circle, independent of the radius.

Evaluation of line integral

1.
$$\alpha'(t) = \begin{pmatrix} -a \sin t \\ a \cos t \end{pmatrix}$$
 and $\mathbf{f}(\alpha(t)) = \frac{1}{a^2} \begin{pmatrix} -a \sin t \\ a \cos t \end{pmatrix}$;
2. $\mathbf{f}(\alpha(t)) \cdot \alpha'(t) = \sin^2 t + \cos^2 t = 1$;
3. $\int \mathbf{f} \cdot d\alpha = \int_0^{2\pi} (1) dt = 2\pi$.

MA2 – Part 4 – Line integrals

Curves and line ntegrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields

Exact differential equations $p(x, y) + q(x, y)\frac{dy}{dx} = 0$

Theorem

(a) If $\varphi(x, y)$ satisfies $\nabla \varphi(x, y) = \begin{pmatrix} p(x,y) \\ q(x,y) \end{pmatrix}$ then the solution y(x) of the equation $p(x, y) = q(x, y) \frac{dy}{dx}$ satisfies $\varphi(x, y(x)) = C$ for some $C \in \mathbb{R}$.

(b) Conversely, if $\varphi(x, y(x)) = C$ defines implicitly a function y(x), then y(x) is a solution to the equation $p(x, y) = q(x, y) \frac{dy}{dx}$.

Proof.

- 1. If y(x) satisfies $\varphi(x, y(x)) = C$, then by the chain rule and $\nabla \varphi = \begin{pmatrix} p \\ q \end{pmatrix}$, p(x, y(x)) + y'(x)q(x, y(x)) = 0;
- 2. Conversely, if y(x) is a solution, $\varphi(x, y(x))$ must be constant in x.

Example

Solve
$$y^2 + 2xyy' = 0$$
. Let $p(x, y) = y^2$, $q(x, y) = 2xy$ and find $\varphi(x, y) = xy^2$ so $\nabla \varphi = \begin{pmatrix} p \\ q \end{pmatrix}$. Solutions satisfy $\varphi(x, y(x)) = xy(x)^2 = C$, i.e., $y(x) = \sqrt{\frac{C}{x}}$.

MA2 – Part 4 – Line integrals

Curves and line integrals

Definition of paths and line integral

Basic properties

Applications gradients / work n physics)

The second fundamental theorem of calculus

The first fundamental theorem of calculus

Potential functions and conservative vector fields