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First order linear PDE
Huge number of different partial differential equations – we consider a few types.
Example
Find all solutions of the partial differential equation 3 ∂f

∂x (x , y) + 2 ∂f
∂y (x , y) = 0.

Solution:
1. Equivalent to ( 3

2 ) · ∇f (x , y) = 0;
2. Directional derivative Dv f (x , y) = 0 where v = ( 3

2 );
3. This means that f is constant in the direction ( 3

2 );
4. All solutions have the form f (x , y) = g(2x − 3y) for some g : R→ R.

Theorem
Let g : R→ R be differentiable, a, b ∈ R, (a, b) 6= (0, 0). If
f (x , y) := g(bx − ay) then

a∂f
∂x (x , y) + b ∂f

∂y (x , y) = 0.

Conversely, every f which satisfies this equation is of the form g(bx − ay).
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PDE (cont.)

Proof.
(⇒) 1. If f (x , y) = g(bx − ay) then, by the chain rule,

∂x f (x , y) = bg ′(bx − ay) and ∂y f (x , y) = −ag ′(bx − ay).
2. Consequently

a∂x f (x , y) + b∂y f (x , y) = abg ′(bx − ay)− abg ′(bx − ay) = 0.
(⇐) 1. Let ( u

v ) =
(

a b
b −a

)
( x

y ) and so ( x
y ) = −1

a2+b2

(
a b
b −a

)
( u

v ).
2. Let h(u, v) = f (au+bv

a2+b2 ,
bu−av
a2+b2 ).

3. Calculate

∂uh(u, v) = 1
a2+b2 (a∂x f + b∂y f ) (au + bv , bu − av) = 0.

4. Namely, h(u, v) is a function of v only so take g(v) = h(u, v)
and so f (x , y) = g(bx − ay).
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1D wave equation

The 1D wave equation is

∂2f
∂x2 (x , t) = c2∂

2f
∂t2 (x , t).

I x – position along string
I t – time
I f (x , t) – displacement
I c – constant depending on the string

Derived from the equation of motion F = ma where F is the tension in the
string, a is the acceleration from horizontal and m is the mass of a little piece of
the string. Good for small displacement.
Boundary conditions: Are the ends fixed? Does it start moving?



MA2 – Part 3 –
Applications of the
differential calculus

Partial differential
equations
First order linear PDEs

1D wave equation

Extrema
Stationary points

Second order Taylor formula
and Hessian matrix

Classifying stationary points

Extreme value theorem for
continuous scalar fields

Extrema with
constraints
Lagrange multipliers

1D wave equation (cont.)

Theorem
1. Let F be a twice differentiable function and G a differentiable function.

Then

f (x , t) := 1
2(F (x + ct) + F (x − ct)) + 1

2c

∫ x+ct

x−ct
G(s) ds (1)

satisfies ∂2f
∂x2 (x , t) = c2 ∂2f

∂t2 (x , t), f (x , 0) = F (x) and ∂f
∂t (x , 0) = G(x).

2. Conversely, if a solution of ∂2f
∂x2 (x , t) = c2 ∂2f

∂t2 (x , t) satisfies

∂2f
∂x∂t (x , t) = ∂2f

∂t∂x (x , t),

then it has the above form (1).
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1D wave equation (cont.)

Proof of part 1.
1. Let f (x , t) be as defined (1) and calculate

∂f
∂x (x , t) = 1

2
(
F ′(x + ct) + F ′(x − ct)

)
+ 1

2c (G(x + ct)− G(x − ct))
∂2f
∂x2 (x , t) = 1

2
(
F ′′(x + ct) + F ′′(x − ct)

)
+ 1

2c
(
G ′(x + ct)− G ′(x − ct)

)
∂f
∂t (x , t) = 1

2
(
cF ′(x + ct)− cF ′(x − ct)

)
+ 1

2 (G(x + ct) + G(x − ct))
∂2f
∂t2 f (x , t) = 1

2

(
c2F ′′(x + ct) + c2F ′′(x − ct)

)
+ c

2
(
G ′(x + ct) + G ′(x − ct)

)
2. Observe that ∂2f

∂x2 (x , t) = c2 ∂2f
∂t2 (x , t).

3. Observe that f (x , 0) = F (x) and ∂f
∂t (x , 0) = G(x).
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1D wave equation (cont.)
Proof of part 2.

1. Introduce u = x + ct, v = x − ct and observe that x = u+v
2 , t = u−v

2c ;
2. Define g(u, v) = f (x , t) = f (u+v

2 , u−v
2c );

3. By the chain rule

∂g
∂u (u, v) = 1

2
∂f
∂x (u+v

2 , u−v
2c ) + 1

2c
∂f
∂t (u+v

2 , u−v
2c )

∂2g
∂v∂u (u, v) = 1

4
∂2f
∂x2 (u+v

2 , u−v
2c )− 1

4c
∂2f

∂x∂t (u+v
2 , u−v

2c )

+ 1
4c

∂2f
∂x∂t (u+v

2 , u−v
2c )− 1

4c2
∂2f
∂t2 (u+v

2 , u−v
2c ) = 0;

4. So ∂g
∂u (u, v) = ϕ0(u) and g(u, v) = ϕ1(u) + ϕ2(v). I.e.,

f (x , t) = ϕ1(x + ct) + ϕ2(x − ct);
5. Let F (x) := ϕ1(x) + ϕ2(x);
6. F ′(x) = ϕ′1(x) + ϕ′2(x) and ∂f

∂t (x , t) = cϕ1(x + ct)− cϕ2(x − ct);
7. Let G(x) := ∂f

∂t (x , 0) = cϕ1(x)− cϕ2(x).
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Minima, maxima and saddle points

Let S ⊂ Rn be open, f : S → R be a
scalar field and a ∈ S.

Definition (absolute min/max)
If f (a) ≤ f (x) (resp. f (a) ≥ f (x)) for
all x ∈ S, then f (a) is said to be the
absolute minimum (resp. maximum) of
f .

Definition (relative min/max)
If f (a) ≤ f (x) (resp. f (a) ≥ f (x)) for
all x ∈ B(a, r) for some r > 0, then
f (a) is said to be a relative minimum
(resp. maximum) of f .

Terminology: “absolute” = “global”;
“relative” = “local”.

−2 −1 0 1 2 −2
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Figure: f (x , y) := xe−(x2y2) + 1
4 ey

3
10
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Stationary points

Theorem
If f : S → R is differentiable and has a
relative minimum or maximum at a,
then ∇f (a) = 0.

Proof.
1. Suppose f has a relative minimum

at a (or consider −f );
2. For any unit vector v let

g(u) = f (a + uv);
3. g has relative minimum at u = 0 so

u′(0) = 0;
4. This means that Dvf (a) = 0 for

every v and so ∇f (a) = 0.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

f (x)

Figure: ∇f (a) = 0 doesn’t imply a
minimum or maximum at a as seen for the
function f (x) := x3.
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Stationary points (cont.)
Definition (stationary point)
If ∇f (a) = 0 then a is called a
stationary point.

−1

1−1

1

0.5

1

x

y

Figure: If f (x , y) = x2 + y 2 then
∇f (x , y) =

( 2x
2y
)

and ∇f (0, 0) = ( 0
0 ). The

point (0, 0) is an absolute minimum for f .

Definition (saddle point)
If ∇f (a) = 0 and a is neither a
minimum nor a maximum then a is said
to be a saddle point.

−1

1−1 −0.5
0.5 1

−1

1

x

y

−1 −0.5
0 0.5 1

Figure: If f (x , y) = x2 − y 2 then
∇f (x , y) =

( 2x
−2y
)

and ∇f (0, 0) = ( 0
0 ).

The point (0, 0) is a saddle point for f .
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Hessian matrix

Definition (Hessian matrix)
Let f : Rn → R be twice differentiable. The Hessian matrix at a ∈ Rn is defined

Hf (a) =



∂2f
∂x2

1
(a) ∂2f

∂x1 ∂x2
(a) · · · ∂2f

∂x1 ∂xn
(a)

∂2f
∂x2 ∂x1

(a) ∂2f
∂x2

2
(a) · · · ∂2f

∂x2 ∂xn
(a)

...
... . . . ...

∂2f
∂xn ∂x1

(a) ∂2f
∂xn ∂x2

(a) · · · ∂2f
∂x2

n
(a)


.

I The Hessian matrix Hf (a) is
symmetric;

I If v =
( v1

...
vn

)
then vt Hf (a) v ∈ R.
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vt Hf (a) v

Let v =
( v1

...
vn

)
. We use the notation ∂j∂k f (a) = ∂2f

∂xj ∂xk
(a).

Then

vt Hf (a) v =
(

v1 · · · vn
)∂1∂1f (a) · · · ∂1∂nf (a)

... . . . ...
∂n∂1f (a) · · · ∂n∂nf (a)


v1

...
vn


=

n∑
j,k=0

∂j∂k f (a)vjvk .
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Hessian matrix (cont.)

Example
Let f (x , y) = x2 − y2. The gradient is

∇f (x , y) =

 ∂f
∂x (x , y)

∂f
∂y (x , y)

 =
(

2x
−2y

)
.

The Hessian is

Hf (x , y) =


∂2f
∂x2 (x , y) ∂2f

∂x ∂y (x , y)

∂2f
∂y ∂x (x , y) ∂2f

∂y2 (x , y)

 =

2 0

0 −2

 .

The point (0, 0) is a stationary point since ∇f (0, 0) = ( 0
0 ).
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Second order Taylor formula for scalar fields

Recall first order Taylor approximation: If f is differentiable at a then
f (a + v)− f (a) = ∇f (a) · v + ‖v‖E (a, v). If a is a stationary point then this
only tells us that f (a + v)− f (a) = ‖v‖E (a, v) but we want better information.

Theorem (second order Taylor)
Let f be a scalar field twice differentiable on B(a, r). Then, if ‖v‖ ≤ r ,

f (a + v) = f (a) +∇f (a) · v + 1
2vt Hf (a) v + ‖v‖2 E2(a, v)

and E2(a, v)→ 0 as ‖v‖ → 0.
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Proof of second order Taylor formula.
1. Let g(u) = f (a + uv);
2. Taylor’s expansion g(1) = g(0) + g ′(0) + 1

2 g ′′(c) for some c ∈ (0, 1);
3. Since g(u) = f (a1 + uv1, . . . , an + uvn), by the chain rule,

g ′(u) =
n∑

j=1
∂j f (a1 + uv1, . . . , an + uvn)vj = ∇f (a + uv) · v;

4. Similarly

g ′′(u) =
n∑

j,k=1
∂j∂k f (a1 + uv1, . . . , an + uvn)vjvk = vt Hf (a + uv) v;

5. Consequently f (a + v) = f (a) +∇f (a) · v + 1
2vt Hf (a + cv) v;

6. We define E2(a, v) = 1
2

1
‖v‖2 vt(Hf (a + cv)−Hf (a))v.

7. |E2(a, v)| ≤
∑n

j,k=0
vj vk
‖v‖2 (∂j∂k f (a + cv)− ∂j∂k f (a)) .
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Classifying stationary points
Theorem
Let A be a real symmetric matrix and let Q(v) = vtAv. Then
I Q(v) > 0 for all v 6= 0 if and only if all eigenvalues of A are positive;
I Q(v) < 0 for all v 6= 0 if and only if all eigenvalues of A are negative.

Proof.
1. A can be diagonalised by matrix B which is orthogonal (Bt = B−1)

D = BtAB =

λ1 · · · 0
... . . . ...
0 · · · λn

 ;

2. Q(v) = vtBtBABtBv = wtDw =
∑

j λjw2
j where w = Bv;

3. If all λj > 0 then
∑

j λjw2
j > 0;

4. Q(Buk) = λk so, if Q(v) > 0 for all v 6= 0 then λk > 0 for all k.
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Theorem (classification of stationary points)
Let f be a scalar field twice differentiable on B(a, r). Suppose ∇f (a) = 0. Then
I All eigenvalues of Hf (a) are positive then f has a relative minimum at a;
I All eigenvalues of Hf (a) are negative then f has a relative maximum at a;
I Some eigenvalues positive and some negative then a is a saddle point.

Proof.
1. Let Q(v) = vtHf (a)v, w = Bv and let Λ := minj λj ;
2. Observe that ‖w‖ = ‖v‖ and that Q(v) =

∑
j λjw2

j ≥ Λ
∑

j w2
j = Λ ‖v‖2;

3. 2nd-order Taylor
f (a + v)− f (a) = 1

2vt Hf (a) v + ‖v‖2 E2(a, v) ≥
(

Λ
2 − E2(a, v)

)
‖v‖2 ;

4. Since E2(a, v)→ 0 as ‖v‖ → 0, |E2(a, v)| < Λ
2 when ‖v‖ is small.

Analogous argument for the second part. For final part consider vj which is
eigenvector for λj and apply the argument of first or second part.
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Extreme value theorem for continuous scalar fields

The argument will be in two parts:
1. Continuity implies boundedness;
2. Boundedness implies that the maximum and minimum are attained.

Notation: Intervals / rectangles / etc. . . If a = (a1, . . . , an) and b = (b1, . . . , bn)
then we consider the n-dimensional closed cartesian product

[a,b] = [a1, b1]× · · · × [an, bn].

We call this set a rectangle.
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Theorem (Bolzano–Weierstrass)
If {xn}n is a sequence in [a,b] there exists a convergent subsequence {xnj}j .

Proof.
1. Divide [a,b] into sub-rectangles of

size half the original;
2. Choose a sub-rectangle which

contains infinite elements of the
sequence and choose the first of
these elements to be part of the
sub-sequence;

3. Now divide again this sub-rectangle
by half and repeat to give the
subsequence.

[Insert: illustration of proof]
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Boundedness

Theorem (boundedness of continuous scalar fields)
Suppose that f is a scalar field continuous at every point in the closed rectangle
[a,b]. Then f is bounded on [a,b] in the sense that there exists C > 0 such that
|f (x)| ≤ C for all x ∈ [a,b].

Proof.
1. Suppose the contrary: for all n ∈ N there exists xn ∈ [a,b] such that
|f (xn)| > n;

2. Bolzano–Weierstrass theorem means that there exists a subsequence {xnj}j
converges to x ∈ [a,b];

3. Continuity of f means that f (xnj ) converges to f (x). This is a
contradiction.
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Attaining extreme values

Theorem (extreme value theorem)
Suppose that f is a scalar field continuous at every point in the closed rectangle
[a,b]. There there exist points x, y ∈ [a,b] such that

f (x) = inf f and f (y) = sup f .

Proof.
I By the boundedness theorem sup f is finite and so there exists a sequence
{xn}n such that f (xn) converges to sup f ;

I Bolzano–Weierstrass theorem implies that there exists a subsequence {xnj}j
which converges to x ∈ [a,b];

I By continuity f (xn)→ f (x) = sup f .
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The geometric idea of Lagrange multipliers

∇f ∇g

f = c3

g(x , y) = 0f = c2
f = c1

Figure: Extrema of f under constraint g

Problem: Minimise (or maximise)
f (x , y) under the constraint
g(x , y) = 0.
I At “touching point” the gradient

vectors are parallel;
I I.e., ∇f = λ∇g for some λ ∈ R.
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Lagrange multipliers

Method of Lagrange’s multipliers
If a scalar field f (x1, . . . , xn) has a relative extremum when it is subject to m
constraints

g1(x1, . . . , xn) = 0, . . . , gm(x1, . . . , xn) = 0,

where m < n, then there exist m scalars λ1, . . . , λm such that

∇f = λ1∇g1 + · · ·+ λm∇gm

at the extremum point.
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Lagrange multipliers (cont.)

Example
Find the extrema of f (x , y) = xy subject to the constraint
g(x , y) = x + y − 1 = 0.
I ∇f (x , y) = ( y

x ) and ∇g(x , y) = ( 1
1 );

I According to the Lagrange multiplier method there is λ ∈ R such that
∇f (x , y) = λ∇g(x , y) at the extremum point (x , y);

I We must solve the simultaneous equations

( y
x ) = λ ( 1

1 ) , g(x , y) = 0;

I I.e., x = λ, y = λ, x + y = 1;
I This has the solution (x , y) = ( 1

2 ,
1
2 ), f ( 1

2 ,
1
2 ) = 1

4 .
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Lagrange multipliers (cont.)

Example
Find the points closest and furthest from the origin on the curve defined by the
intersection of the two surfaces

x2 − xy + y2 − z2 = 1 and x2 + y2 = 1.

I Let f (x , y , z) =
√

x2 + y2 + z2;
I Let g1(x , y , z) = x2 − xy + y2 − z2 − 1, g2(x , y , z) = x2 + y2 − 1;
I Calculate ∇f , ∇g1 and ∇g2;
I Solve the system of 5 equations (and 5 unknowns):

∇f (x , y , z) = λ1∇g1(x , y , z) + λ2∇g2(x , y , z),

g1(x , y , z) = 0, g2(x , y , z) = 0;
I Check which are closest to and which are furthest from the origin.
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