MA2 – Part 3 – Applications of the differential calculus Weeks 5–6 of MA2 – Draft lecture slides

Oliver Butterley

University of Rome Tor Vergata

2020/21

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs LD wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points

continuous scalar fields

Extrema with constraints

Outline

Partial differential equations

First order linear PDEs 1D wave equation

Extrema

Stationary points Second order Taylor formula and Hessian matrix Classifying stationary points Extreme value theorem for continuous scalar fields

Extrema with constraints Lagrange multipliers

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs LD wave equation

Extrema

Stationary points

econd order Taylor formul nd Hessian matrix

Classifying stationary points

Extreme value theorem for continuous scalar fields

Extrema with constraints

First order linear PDE

Huge number of different partial differential equations - we consider a few types.

Example

Find all solutions of the partial differential equation $3\frac{\partial f}{\partial x}(x, y) + 2\frac{\partial f}{\partial y}(x, y) = 0$. Solution:

- 1. Equivalent to $\begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot \nabla f(x, y) = 0;$
- 2. Directional derivative $D_v f(x, y) = 0$ where $v = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$;
- 3. This means that f is constant in the direction $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$;
- 4. All solutions have the form f(x,y) = g(2x 3y) for some $g : \mathbb{R} \to \mathbb{R}$.

Theorem

Let $g : \mathbb{R} \to \mathbb{R}$ be differentiable, $a, b \in \mathbb{R}$, $(a, b) \neq (0, 0)$. If f(x, y) := g(bx - ay) then

$$a\frac{\partial f}{\partial x}(x,y)+b\frac{\partial f}{\partial y}(x,y)=0.$$

Conversely, every f which satisfies this equation is of the form g(bx - ay).

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs

1D wave equation

Extrema

Stationary points

econd order Taylor formula nd Hessian matrix

lassifying stationary points

continuous scalar fields Extrema with

PDE (cont.)

Proof.

(⇒) 1. If
$$f(x, y) = g(bx - ay)$$
 then, by the chain rule,
 $\partial_x f(x, y) = bg'(bx - ay)$ and $\partial_y f(x, y) = -ag'(bx - ay)$.
2. Consequently
 $a\partial_x f(x, y) + b\partial_y f(x, y) = abg'(bx - ay) - abg'(bx - ay) = 0$.
(⇐) 1. Let $\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ and so $\begin{pmatrix} x \\ y \end{pmatrix} = \frac{-1}{a^2 + b^2} \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$.
2. Let $h(u, v) = f(\frac{au + bv}{a^2 + b^2}, \frac{bu - av}{a^2 + b^2})$.
3. Calculate

$$\partial_u h(u,v) = \frac{1}{a^2+b^2} \left(a \partial_x f + b \partial_y f \right) \left(a u + b v, b u - a v \right) = 0.$$

4. Namely, h(u, v) is a function of v only so take g(v) = h(u, v)and so f(x, y) = g(bx - ay). MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs

1D wave equation

Extrema

Stationary points

cond order Taylor formula d Hessian matrix

Classifying stationary points Extreme value theorem for continuous scalar fields

1D wave equation

The 1D wave equation is

$$rac{\partial^2 f}{\partial x^2}(x,t)=c^2rac{\partial^2 f}{\partial t^2}(x,t).$$

- t time
- f(x, t) displacement
- c constant depending on the string

Derived from the equation of motion F = ma where F is the tension in the string, a is the acceleration from horizontal and m is the mass of a little piece of the string. Good for small displacement.

Boundary conditions: Are the ends fixed? Does it start moving?

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs

1D wave equation

Extrem

Stationary points

econd order Taylor formula nd Hessian matrix

lassifying stationary points

continuous scalar fields

1D wave equation (cont.)

Theorem

1. Let F be a twice differentiable function and G a differentiable function. Then

$$f(x,t) := \frac{1}{2}(F(x+ct) + F(x-ct)) + \frac{1}{2c}\int_{x-ct}^{x+ct} G(s) \ ds \qquad (1)$$

satisfies
$$\frac{\partial^2 f}{\partial x^2}(x,t) = c^2 \frac{\partial^2 f}{\partial t^2}(x,t)$$
, $f(x,0) = F(x)$ and $\frac{\partial f}{\partial t}(x,0) = G(x)$.
2. Conversely, if a solution of $\frac{\partial^2 f}{\partial x^2}(x,t) = c^2 \frac{\partial^2 f}{\partial t^2}(x,t)$ satisfies

$$\frac{\partial^2 f}{\partial x \partial t}(x,t) = \frac{\partial^2 f}{\partial t \partial x}(x,t),$$

then it has the above form (1).

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

rst order linear PDEs

1D wave equation

Extrema

Stationary points

cond order Taylor formula d Hessian matrix

Lassitying stationary points Extreme value theorem for continuous scalar fields

1D wave equation (cont.)

Proof of part 1.

1. Let f(x, t) be as defined (1) and calculate

$$\begin{aligned} \frac{\partial f}{\partial x}(x,t) &= \frac{1}{2} \left(F'(x+ct) + F'(x-ct) \right) + \frac{1}{2c} \left(G(x+ct) - G(x-ct) \right) \\ \frac{\partial^2 f}{\partial x^2}(x,t) &= \frac{1}{2} \left(F''(x+ct) + F''(x-ct) \right) + \frac{1}{2c} \left(G'(x+ct) - G'(x-ct) \right) \\ \frac{\partial f}{\partial t}(x,t) &= \frac{1}{2} \left(cF'(x+ct) - cF'(x-ct) \right) + \frac{1}{2} \left(G(x+ct) + G(x-ct) \right) \\ \frac{\partial^2 f}{\partial t^2} f(x,t) &= \frac{1}{2} \left(c^2 F''(x+ct) + c^2 F''(x-ct) \right) + \frac{c}{2} \left(G'(x+ct) + G'(x-ct) \right) \end{aligned}$$

- 2. Observe that $\frac{\partial^2 f}{\partial x^2}(x,t) = c^2 \frac{\partial^2 f}{\partial t^2}(x,t)$.
- 3. Observe that f(x,0) = F(x) and $\frac{\partial f}{\partial t}(x,0) = G(x)$.

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

irst order linear PDEs

1D wave equation

Extrema

Stationary points

econd order Taylor formula nd Hessian matrix

assifying stationary points

xtreme value theorem for ontinuous scalar fields

Extrema with constraints

Lagrange multipliers

1D wave equation (cont.)

Proof of part 2.

1. Introduce u = x + ct, v = x - ct and observe that $x = \frac{u+v}{2}$, $t = \frac{u-v}{2c}$;

2. Define
$$g(u, v) = f(x, t) = f(\frac{u+v}{2}, \frac{u-v}{2c})$$

3. By the chain rule

0

ᅯ 6

$$\frac{\partial g}{\partial u}(u,v) = \frac{1}{2}\frac{\partial f}{\partial x}\left(\frac{u+v}{2},\frac{u-v}{2c}\right) + \frac{1}{2c}\frac{\partial f}{\partial t}\left(\frac{u+v}{2},\frac{u-v}{2c}\right)$$
$$\frac{\partial^2 g}{\partial v \partial u}(u,v) = \frac{1}{4}\frac{\partial^2 f}{\partial x^2}\left(\frac{u+v}{2},\frac{u-v}{2c}\right) - \frac{1}{4c}\frac{\partial^2 f}{\partial x \partial t}\left(\frac{u+v}{2},\frac{u-v}{2c}\right)$$
$$+ \frac{1}{4c}\frac{\partial^2 f}{\partial x \partial t}\left(\frac{u+v}{2},\frac{u-v}{2c}\right) - \frac{1}{4c^2}\frac{\partial^2 f}{\partial t^2}\left(\frac{u+v}{2},\frac{u-v}{2c}\right) = 0;$$

4. So
$$\frac{\partial g}{\partial u}(u,v) = \varphi_0(u)$$
 and $g(u,v) = \varphi_1(u) + \varphi_2(v)$. I.e.,
 $f(x,t) = \varphi_1(x+ct) + \varphi_2(x-ct);$
5. Let $F(x) := \varphi_1(x) + \varphi_2(x);$
6. $F'(x) = \varphi'_1(x) + \varphi'_2(x)$ and $\frac{\partial f}{\partial t}(x,t) = c\varphi_1(x+ct) - c\varphi_2(x-ct);$
7. Let $G(x) := \frac{\partial f}{\partial t}(x,0) = c\varphi_1(x) - c\varphi_2(x).$

MA2 - Part 3 -Applications of the differential calculus

1D wave equation

Minima, maxima and saddle points

Let $S \subset \mathbb{R}^n$ be open, $f : S \to \mathbb{R}$ be a scalar field and $\mathbf{a} \in S$.

Definition (absolute min/max)

If $f(\mathbf{a}) \leq f(\mathbf{x})$ (resp. $f(\mathbf{a}) \geq f(\mathbf{x})$) for all $\mathbf{x} \in S$, then $f(\mathbf{a})$ is said to be the *absolute* minimum (resp. maximum) of f.

Definition (relative min/max)

If $f(\mathbf{a}) \leq f(\mathbf{x})$ (resp. $f(\mathbf{a}) \geq f(\mathbf{x})$) for all $\mathbf{x} \in B(\mathbf{a}, r)$ for some r > 0, then $f(\mathbf{a})$ is said to be a *relative* minimum (resp. maximum) of f.

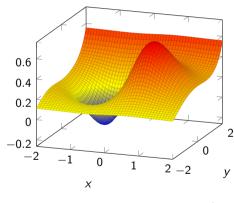


Figure:
$$f(x, y) := xe^{-(x^2y^2)} + \frac{1}{4}e^{y^{\frac{3}{10}}}$$

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs 1D wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points

Extrema with constraints

Stationary points

Theorem

If $f : S \to \mathbb{R}$ is differentiable and has a relative minimum or maximum at \mathbf{a} , then $\nabla f(\mathbf{a}) = \mathbf{0}$.

Proof.

- 1. Suppose f has a relative minimum at **a** (or consider -f);
- 2. For any unit vector **v** let $g(u) = f(\mathbf{a} + u\mathbf{v});$
- 3. g has relative minimum at u = 0 so u'(0) = 0;
- 4. This means that $D_{\mathbf{v}}f(\mathbf{a}) = 0$ for every \mathbf{v} and so $\nabla f(\mathbf{a}) = \mathbf{0}$.

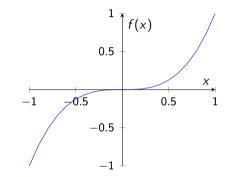


Figure: $\nabla f(\mathbf{a}) = \mathbf{0}$ doesn't imply a minimum or maximum at \mathbf{a} as seen for the function $f(x) := x^3$.

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs ID wave equation

Extrema

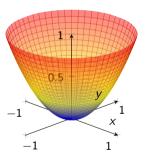
Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points Extreme value theorem for continuous scalar fields

Stationary points (cont.)

Definition (stationary point) If $\nabla f(\mathbf{a}) = 0$ then **a** is called a stationary point.



Definition (saddle point)

If $\nabla f(\mathbf{a}) = 0$ and \mathbf{a} is neither a minimum nor a maximum then **a** is said to be a *saddle point*.

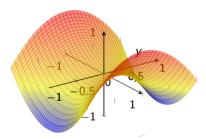


Figure: If $f(x, y) = x^2 + y^2$ then $\nabla f(x,y) = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$ and $\nabla f(0,0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. The $\nabla f(x,y) = \begin{pmatrix} 2x \\ -2y \end{pmatrix}$ and $\nabla f(0,0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. point (0,0) is an absolute minimum for f.

Figure: If $f(x, y) = x^2 - y^2$ then The point (0,0) is a saddle point for f.

MA2 - Part 3 -Applications of the differential calculus

Stationary points

Hessian matrix

Definition (Hessian matrix)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice differentiable. The *Hessian matrix* at $\mathbf{a} \in \mathbb{R}^n$ is defined

$$\mathbf{H}f(\mathbf{a}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(\mathbf{a}) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{a}) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{a}) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{a}) & \frac{\partial^2 f}{\partial x_2^2}(\mathbf{a}) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\mathbf{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{a}) & \frac{\partial^2 f}{\partial x_n \partial x_2}(\mathbf{a}) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(\mathbf{a}) \end{pmatrix}.$$

► The Hessian matrix $\mathbf{H}f(\mathbf{a})$ is symmetric; ► If $\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ then $\mathbf{v}^t \mathbf{H}f(\mathbf{a}) \mathbf{v} \in \mathbb{R}$. MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs 1D wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points Extreme value theorem for

Extrema with constraints

 $\mathbf{v^t} \; \mathbf{H} f(\mathbf{a}) \; \mathbf{v}$

Let
$$\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$
. We use the notation $\partial_j \partial_k f(\mathbf{a}) = \frac{\partial^2 f}{\partial x_j \partial x_k}(\mathbf{a})$.
Then

$$\mathbf{v}^{\mathbf{t}} \mathbf{H} f(\mathbf{a}) \mathbf{v} = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix} \begin{pmatrix} \partial_1 \partial_1 f(\mathbf{a}) & \cdots & \partial_1 \partial_n f(\mathbf{a}) \\ \vdots & \ddots & \vdots \\ \partial_n \partial_1 f(\mathbf{a}) & \cdots & \partial_n \partial_n f(\mathbf{a}) \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$
$$= \sum_{j,k=0}^n \partial_j \partial_k f(\mathbf{a}) v_j v_k.$$

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs 1D wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points Extreme value theorem for

Extrema with constraints

Hessian matrix (cont.)

Example

Let $f(x, y) = x^2 - y^2$. The gradient is

$$abla f(x,y) = egin{pmatrix} rac{\partial f}{\partial x}(x,y) \ rac{\partial f}{\partial y}(x,y) \end{pmatrix} = egin{pmatrix} 2x \ -2y \end{pmatrix}.$$

The Hessian is

$$\mathbf{H}f(x,y) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial x \partial y}(x,y) \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}.$$

The point (0,0) is a stationary point since $\nabla f(0,0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs 1D wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points

Extreme value theorem for continuous scalar fields

Second order Taylor formula for scalar fields

Recall first order Taylor approximation: If f is differentiable at \mathbf{a} then $f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v} + \|\mathbf{v}\| E(\mathbf{a}, \mathbf{v})$. If \mathbf{a} is a stationary point then this only tells us that $f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a}) = \|\mathbf{v}\| E(\mathbf{a}, \mathbf{v})$ but we want better information.

Theorem (second order Taylor)

Let f be a scalar field twice differentiable on $B(\mathbf{a}, r)$. Then, if $\|\mathbf{v}\| \leq r$,

$$f(\mathbf{a} + \mathbf{v}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^{\mathsf{t}} \mathbf{H} f(\mathbf{a}) \mathbf{v} + \|\mathbf{v}\|^2 E_2(\mathbf{a}, \mathbf{v})$$

and $E_2(\mathbf{a}, \mathbf{v}) \rightarrow 0$ as $\|\mathbf{v}\| \rightarrow 0$.

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs 1D wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points Extreme value theorem for continuous scalas fields

Extrema with constraints

Proof of second order Taylor formula.

1. Let
$$g(u) = f(\mathbf{a} + u\mathbf{v})$$
;
2. Taylor's expansion $g(1) = g(0) + g'(0) + \frac{1}{2}g''(c)$ for some $c \in (0, 1)$
3. Since $g(u) = f(a_1 + uv_1, ..., a_n + uv_n)$, by the chain rule,

$$g'(u) = \sum_{j=1}^{n} \partial_j f(a_1 + uv_1, \dots, a_n + uv_n) v_j = \nabla f(\mathbf{a} + u\mathbf{v}) \cdot \mathbf{v};$$

4. Similarly

$$g''(u) = \sum_{j,k=1}^n \partial_j \partial_k f(a_1 + uv_1, \dots, a_n + uv_n) v_j v_k = \mathbf{v}^t \mathbf{H} f(\mathbf{a} + u\mathbf{v}) \mathbf{v};$$

- 5. Consequently $f(\mathbf{a} + \mathbf{v}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot \mathbf{v} + \frac{1}{2}\mathbf{v}^{\mathsf{t}} \mathbf{H} f(\mathbf{a} + c\mathbf{v}) \mathbf{v}$;
- 6. We define $E_2(\mathbf{a}, \mathbf{v}) = \frac{1}{2} \frac{1}{\|\mathbf{v}\|^2} \mathbf{v}^t (\mathbf{H}f(\mathbf{a} + c\mathbf{v}) \mathbf{H}f(\mathbf{a}))\mathbf{v}$.
- 7. $|E_2(\mathbf{a},\mathbf{v})| \leq \sum_{j,k=0}^n \frac{v_j v_k}{\|\mathbf{v}\|^2} \left(\partial_j \partial_k f(\mathbf{a}+c\mathbf{v}) \partial_j \partial_k f(\mathbf{a}) \right).$

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

irst order linear PDEs D wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points Extreme value theorem for

Classifying stationary points

Theorem

Let A be a real symmetric matrix and let $Q(\mathbf{v}) = \mathbf{v}^t A \mathbf{v}$. Then

- $Q(\mathbf{v}) > 0$ for all $\mathbf{v} \neq \mathbf{0}$ if and only if all eigenvalues of A are positive;
- $Q(\mathbf{v}) < 0$ for all $\mathbf{v} \neq \mathbf{0}$ if and only if all eigenvalues of A are negative.

Proof.

1. A can be diagonalised by matrix B which is orthogonal $(B^{t} = B^{-1})$

$$D = B^{\mathbf{t}}AB = \begin{pmatrix} \lambda_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_n \end{pmatrix};$$

2. $Q(\mathbf{v}) = \mathbf{v}^{t} B^{t} B A B^{t} B \mathbf{v} = \mathbf{w}^{t} D \mathbf{w} = \sum_{j} \lambda_{j} w_{j}^{2}$ where $\mathbf{w} = B \mathbf{v}$; 3. If all $\lambda_{j} > 0$ then $\sum_{j} \lambda_{j} w_{j}^{2} > 0$; 4. $Q(B \mathbf{u}_{k}) = \lambda_{k}$ so, if $Q(\mathbf{v}) > 0$ for all $\mathbf{v} \neq \mathbf{0}$ then $\lambda_{k} > 0$ for all k. MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs LD wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points

xtreme value theorem for ontinuous scalar fields

Theorem (classification of stationary points)

Let f be a scalar field twice differentiable on $B(\mathbf{a}, r)$. Suppose $\nabla f(\mathbf{a}) = \mathbf{0}$. Then

- All eigenvalues of Hf(a) are positive then f has a relative minimum at a;
- All eigenvalues of Hf(a) are negative then f has a relative maximum at a;
- Some eigenvalues positive and some negative then **a** is a saddle point.

Proof.

- 1. Let $Q(\mathbf{v}) = \mathbf{v}^{\mathbf{t}} \mathbf{H} f(\mathbf{a}) \mathbf{v}$, $\mathbf{w} = B \mathbf{v}$ and let $\Lambda := \min_{j} \lambda_{j}$;
- 2. Observe that $\|\mathbf{w}\| = \|\mathbf{v}\|$ and that $Q(\mathbf{v}) = \sum_j \lambda_j w_j^2 \ge \Lambda \sum_j w_j^2 = \Lambda \|\mathbf{v}\|^2$;

3. 2nd-order Taylor

$$f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a}) = \frac{1}{2} \mathbf{v}^{\mathbf{t}} \mathbf{H} f(\mathbf{a}) \mathbf{v} + \|\mathbf{v}\|^2 E_2(\mathbf{a}, \mathbf{v}) \ge \left(\frac{\Lambda}{2} - E_2(\mathbf{a}, \mathbf{v})\right) \|\mathbf{v}\|^2;$$

4. Since $E_2(\mathbf{a}, \mathbf{v}) \to 0$ as $\|\mathbf{v}\| \to 0$, $|E_2(\mathbf{a}, \mathbf{v})| < \frac{\Lambda}{2}$ when $\|\mathbf{v}\|$ is small. Analogous argument for the second part. For final part consider \mathbf{v}_j which is eigenvector for λ_j and apply the argument of first or second part. MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs ID wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points

Extreme value theorem for continuous scalar fields

Extreme value theorem for continuous scalar fields

The argument will be in two parts:

- 1. Continuity implies boundedness;
- 2. Boundedness implies that the maximum and minimum are attained.

Notation: Intervals / rectangles / etc... If $\mathbf{a} = (a_1, \ldots, a_n)$ and $\mathbf{b} = (b_1, \ldots, b_n)$ then we consider the *n*-dimensional closed cartesian product

$$[\mathbf{a},\mathbf{b}] = [a_1,b_1] \times \cdots \times [a_n,b_n].$$

We call this set a *rectangle*.

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs 1D wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points

Extreme value theorem for continuous scalar fields

Extrema with constraints

Theorem (Bolzano-Weierstrass)

If $\{\mathbf{x}_n\}_n$ is a sequence in $[\mathbf{a}, \mathbf{b}]$ there exists a convergent subsequence $\{\mathbf{x}_{n_i}\}_i$.

Proof.

- Divide [a, b] into sub-rectangles of size half the original;
- Choose a sub-rectangle which contains infinite elements of the sequence and choose the first of these elements to be part of the sub-sequence;
- 3. Now divide again this sub-rectangle by half and repeat to give the subsequence.

[Insert: illustration of proof]

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs 1D wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points

Extreme value theorem for continuous scalar fields

Extrema with constraints

Boundedness

Theorem (boundedness of continuous scalar fields)

Suppose that f is a scalar field continuous at every point in the closed rectangle $[\mathbf{a}, \mathbf{b}]$. Then f is bounded on $[\mathbf{a}, \mathbf{b}]$ in the sense that there exists C > 0 such that $|f(\mathbf{x})| \leq C$ for all $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$.

Proof.

- 1. Suppose the contrary: for all $n \in \mathbb{N}$ there exists $\mathbf{x}_n \in [\mathbf{a}, \mathbf{b}]$ such that $|f(\mathbf{x}_n)| > n$;
- 2. Bolzano–Weierstrass theorem means that there exists a subsequence $\{\mathbf{x}_{n_j}\}_j$ converges to $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$;
- 3. Continuity of f means that $f(\mathbf{x}_{n_j})$ converges to $f(\mathbf{x})$. This is a contradiction.

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

irst order linear PDEs D wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points

Extreme value theorem for continuous scalar fields

Attaining extreme values

Theorem (extreme value theorem)

Suppose that f is a scalar field continuous at every point in the closed rectangle [a, b]. There there exist points $x, y \in [a, b]$ such that

$$f(\mathbf{x}) = \inf f$$
 and $f(\mathbf{y}) = \sup f$.

Proof.

- By the boundedness theorem sup f is finite and so there exists a sequence {x_n}_n such that f(x_n) converges to sup f;
- ▶ Bolzano–Weierstrass theorem implies that there exists a subsequence {x_{nj}}_j which converges to x ∈ [a, b];
- By continuity $f(\mathbf{x}_n) \to f(\mathbf{x}) = \sup f$.

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

irst order linear PDEs D wave equation

Extrema

Stationary points

Second order Taylor formula and Hessian matrix

Classifying stationary points

Extreme value theorem for continuous scalar fields

The geometric idea of Lagrange multipliers

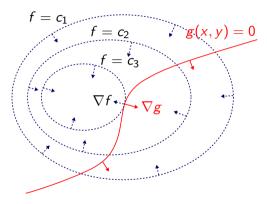


Figure: Extrema of f under constraint g

Problem: Minimise (or maximise) f(x, y) under the constraint g(x, y) = 0.

 At "touching point" the gradient vectors are parallel;

▶ I.e.,
$$\nabla f = \lambda \nabla g$$
 for some $\lambda \in \mathbb{R}$.

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs ID wave equation

Extrema

Stationary points

econd order Taylor formula nd Hessian matrix

lassifying stationary points

continuous scalar fields

Extrema with constraints

Lagrange multipliers

Method of Lagrange's multipliers

If a scalar field $f(x_1, \ldots, x_n)$ has a relative extremum when it is subject to m constraints

$$g_1(x_1,\ldots,x_n)=0,\ldots,g_m(x_1,\ldots,x_n)=0,$$

where m < n, then there exist m scalars $\lambda_1, \ldots, \lambda_m$ such that

$$\nabla f = \lambda_1 \nabla g_1 + \dots + \lambda_m \nabla g_m$$

at the extremum point.

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs 1D wave equation

Extrema

stationary points

Second order Taylor formula and Hessian matrix

lassifying stationary points

Extreme value theorem for continuous scalar fields

Extrema with constraints

Lagrange multipliers (cont.)

Example

Find the extrema of f(x, y) = xy subject to the constraint g(x, y) = x + y - 1 = 0.

•
$$\nabla f(x,y) = \begin{pmatrix} y \\ x \end{pmatrix}$$
 and $\nabla g(x,y) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$;

According to the Lagrange multiplier method there is λ ∈ ℝ such that ∇f(x, y) = λ∇g(x, y) at the extremum point (x, y);

We must solve the simultaneous equations

$$\begin{pmatrix} y \\ x \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad g(x, y) = 0;$$

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs 1D wave equation

Extrema

Stationary points

econd order Taylor formula nd Hessian matrix

lassifying stationary points

continuous scalar fields

Extrema with constraints

Lagrange multipliers (cont.)

Example

Find the points closest and furthest from the origin on the curve defined by the intersection of the two surfaces

$$x^2 - xy + y^2 - z^2 = 1$$
 and $x^2 + y^2 = 1$.

• Let
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
;

• Let
$$g_1(x, y, z) = x^2 - xy + y^2 - z^2 - 1$$
, $g_2(x, y, z) = x^2 + y^2 - 1$;

• Calculate ∇f , ∇g_1 and ∇g_2 ;

Solve the system of 5 equations (and 5 unknowns): $\nabla f(x, y, z) = \lambda_1 \nabla g_1(x, y, z) + \lambda_2 \nabla g_2(x, y, z),$

$$g_1(x, y, z) = 0, \quad g_2(x, y, z) = 0;$$

• Check which are closest to and which are furthest from the origin.

MA2 – Part 3 – Applications of the differential calculus

Partial differential equations

First order linear PDEs 1D wave equation

Extrema

Stationary points

econd order Taylor formula nd Hessian matrix

lassifying stationary points

Extrema with

onstraints