MA2 - Scalar and vector fields Weeks 3–4 of MA2 – Draft lecture slides

Oliver Butterley

University of Rome Tor Vergata

2020/21

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Outline

- Higher dimensional space
- Open balls and sets
- Limits and continuity
- Derivatives of scalar fields
- Chain rule
- Level sets & tangent planes
- Derivatives of vector fields
- Matrix form of the chain rule
- More on partial derivatives

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Higher dimensional space

Notation
$$\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$$
 where $x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R}$.
Definition (Inner product)

$$\mathbf{x} \cdot \mathbf{y} := \sum_{k=1}^{n} x_k y_k \in \mathbb{R}$$

D (C) (N |)

Definition (Norm)

$$\|\mathbf{x}\| := \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\sum_{k=1}^{n} x_k^2}$$
 (E.g., in \mathbb{R}^2 then $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2}$)
Recall
 $|x \cdot y| \le \|\mathbf{x}\| \|\mathbf{y}\|$ Cauchy-Schwarz inequality,

 $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ Triangle inequality.

Scalar field $f: \mathbb{R}^n \to \mathbb{R}$

Vector fields $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$

- Temperature in a region,
- Wind velocity,
- ► Fluid flow,
- Electric field, ...

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Open balls and open sets

Let $\mathbf{a} \in \mathbb{R}^n$, r > 0. The open *n*-ball of radius *r* and centre **a** is

$$B(\mathbf{a},r) := \left\{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{a}\| < r \right\}.$$

Definition (Interior point)

Let $S \subset \mathbb{R}^n$. A point $\mathbf{a} \in S$ is said to be an *interior point* if there is r > 0 such that $B(\mathbf{a}, r) \subset S$. The set of all interior points of S is denoted int S.

Definition (Open set)

A set $S \subset \mathbb{R}^n$ is said to be *open* if all of its points are interior points, i.e., if int S = S.

Examples: Open intervals, disks, balls, union of open intervals, etc., are all open sets.

Figure: Interior points are the centre of a ball contained within the set.

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Cartesian product

If $A_1, A_2 \subset \mathbb{R}$ then the Cartesian product is defined as

$$A_1 \times A_2 := \{(x_1, x_2) : x_1 \in A_1, x_2 \in A_2\} \subset \mathbb{R}^2$$

Fact: If A_1, A_2 are open subsets of \mathbb{R} then $A_1 \times A_2$ is an open subset of \mathbb{R}^2 .

- Let $\mathbf{a} = (a_1, a_2) \in A_1 \times A_2 \subset \mathbb{R}^2$
- A_1 is open \implies exists $r_1 > 0$ such that $B(a_1, r_1) \subset A_1$
- ► Similarly for A₂
- Let $r = \min\{r_1, r_2\}$

$$\blacktriangleright B(\mathbf{a},r) \subset B(a_1,r_1) \times B(a_2,r_2) \subset A_1 \times A_2$$

Figure: If A_1, A_2 are intervals then $A_1 \times A_2$ is a rectangle.

MA2 - Scalar and vector fields

ligher dimensional space

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Exterior points and boundary

Definition (Exterior points)

Let $S \subset \mathbb{R}^n$. A point $\mathbf{a} \notin S$ is said to be an *exterior point* if there exists r > 0such that $B(\mathbf{a}, r) \cap S = \emptyset$. The set of all exterior points of S is denoted ext S.

- Observe ext S is an open set.
- Let $S^c := \mathbb{R}^n \setminus S$.

Definition (Boundary)

The set $\mathbb{R}^n \setminus (\text{int } S \cup \text{ext } S)$ is called the boundary of $S \subset \mathbb{R}^n$ and is denoted ∂S .

Definition (Closed)

A set $S \subset \mathbb{R}^n$ is said to be *closed* if $\partial S \subset S$.

Fact: S is open $\iff S^c$ is closed.

- $\mathbb{R}^n = \operatorname{int} S \cup \partial S \cup \operatorname{ext} S$ (disjointly);
- ▶ If $\mathbf{x} \in \partial S$ then, for every r > 0, $B(\mathbf{x}, r) \cap S \neq \emptyset$ and so $\mathbf{x} \in \partial(S^c)$;
- Similarly with S and S^c swapped and so ∂S = ∂(S^c);
- ▶ If S is open then int S = S and $S^c = \text{ext } S \cup \partial S = \text{ext } S \cup \partial (S^c)$ and so S^c is closed;
- If S is not open then there exists
 a ∈ ∂S ∩ S. Additionally
 a ∈ ∂(S^c) ∩ S hence S^c is not closed.

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Limits and continuity

Notation: Let $S \subset \mathbb{R}^n$ and $\mathbf{f} : S \to \mathbb{R}^m$. If $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$ we write $\lim_{\mathbf{x} \to \mathbf{a}} \mathbf{f}(\mathbf{x}) = \mathbf{b}$ to mean that $\lim_{\|\mathbf{x}-\mathbf{a}\| \to 0} \|\mathbf{f}(\mathbf{x}) - \mathbf{b}\| = 0$.

Definition (Continuous)

A function **f** is said to be *continuous* at **a** if **f** is defined at **a** and $\lim_{x\to a} f(x) = f(a)$. We say **f** is continuous on S if **f** is continuous at each point of S.

Theorem

Suppose that $\lim_{x\to a} \mathbf{f}(\mathbf{x}) = \mathbf{b}$ and $\lim_{x\to a} \mathbf{g}(\mathbf{x}) = \mathbf{c}$. Then (a) $\lim_{x\to a} (\mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})) = \mathbf{b} + \mathbf{c}$, (b) $\lim_{x\to a} \lambda \mathbf{f}(\mathbf{x}) = \lambda \mathbf{b}$ for every $\lambda \in \mathbb{R}$, (c) $\lim_{x\to a} \mathbf{f}(\mathbf{x}) \cdot \mathbf{g}(\mathbf{x}) = \mathbf{b} \cdot \mathbf{c}$, (d) $\lim_{x\to a} \|\mathbf{f}(\mathbf{x})\| = \|\mathbf{b}\|$.

MA2 - Scalar and vector fields

Higher dimensional

Sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Proof of (c)

1.
$$f(x) \cdot g(x) - b \cdot c = (f(x) - b) \cdot (g(x) - c) + b \cdot (g(x) - c) + c \cdot (f(x) - b)$$

2. By the triangle inequality and Cauchy-Schwarz,

$$\begin{split} \| {\bf f}({\bf x}) \cdot {\bf g}({\bf x}) - {\bf b} \cdot {\bf c} \| &\leq \| {\bf f}({\bf x}) - {\bf b} \| \, \| {\bf g}({\bf x}) - {\bf c} \| \\ &+ \| {\bf b} \| \, \| {\bf g}({\bf x}) - {\bf c} \| \\ &+ \| {\bf c} \| \, \| {\bf f}({\bf x}) - {\bf b} \| \end{split}$$

3. Since $\|\mathbf{f}(\mathbf{x}) - \mathbf{b}\| \to 0$ and $\|\mathbf{g}(\mathbf{x}) - \mathbf{c}\| \to 0$ as $\mathbf{x} \to \mathbf{a}$ this implies that $\|\mathbf{f}(\mathbf{x}) \cdot \mathbf{g}(\mathbf{x}) - \mathbf{b} \cdot \mathbf{c}\| \to 0$.

Proof of (d)

1. Take
$$\mathbf{f} = \mathbf{g}$$
 in part (c) implies that $\lim_{\mathbf{x} \to \mathbf{a}} \|\mathbf{f}(\mathbf{x})\|^2 = \|\mathbf{b}\|^2$.

MA2 - Scalar and vector fields

ligher dimensional pace

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Components of a vector field

Theorem

Let $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$. Then \mathbf{f} is continuous if and only if each f_k is continuous.

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Example (Polynomials)

A *polynomial* in *n* variables is a scalar field on \mathbb{R}^n of the from

$$p(x_1,...,x_n) = \sum_{k_1=0}^{j} \cdots \sum_{k_n=0}^{j} c_{k_1,...,k_n} x_1^{k_1} \cdots x_n^{k_n}.$$

E.g., $f(x_1, x_2) := x_1 + 2x_1x_2 - x_1^2$ is a polynomial in 2 variables. Polynomials are continuous everywhere in \mathbb{R}^n . (Finite sum of products of continuous fields.)

Example (Rational functions)

A rational function is a scalar field

$$f(\mathbf{x}) = \frac{p(\mathbf{x})}{q(\mathbf{x})}$$

where $p(\mathbf{x})$ and $q(\mathbf{x})$ are polynomials. A rational function is continuous at every point \mathbf{x} such that $q(\mathbf{x}) \neq 0$.

MA2 - Scalar and vector fields

space

Limits and

continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Composition of functions

Theorem Suppose $S \subset \mathbb{R}^{I}$, $T \subset \mathbb{R}^{m}$, $\mathbf{f} : S \to \mathbb{R}^{m}$, $\mathbf{g} : T \to \mathbb{R}^{n}$ and that $\mathbf{f}(S) \subset T$ so that $(\mathbf{g} \circ \mathbf{f})(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$

makes sense. If **f** is continuous at $\mathbf{a} \in S$ and **g** is continuous at $\mathbf{f}(\mathbf{a})$ then $\mathbf{g} \circ \mathbf{f}$ is continuous at \mathbf{a} .

Proof.

$$\lim_{\mathbf{x}\to\mathbf{a}} \|\mathbf{f}(\mathbf{g}(\mathbf{x})) - \mathbf{f}(\mathbf{g}(\mathbf{a}))\| = \lim_{\mathbf{y}\to\mathbf{g}(\mathbf{a})} \|\mathbf{f}(\mathbf{y}) - \mathbf{f}(\mathbf{g}(\mathbf{a}))\| = 0$$

Example

$$f(x_1, x_2) = \sin(x_1^2 + x_2) + x_1 x_2$$

MA2 - Scalar and vector fields

ligher dimensional pace

)pen balls and ets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Example (Continuity problem in higher dimensions) Let $f(x_1, x_2)$ be defined as f(0, 0) = 0 and, for all $(x_1, x_2) \neq (0, 0)$,

$$f(x_1, x_2) = \frac{x_1 x_2}{x_1^2 + x_2^2}.$$

What is the behaviour of the function along the following three lines?

1. $x_1 = 0$, 2. $x_2 = 0$,

3. $x_1 = x_2$.

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Directional derivatives

Figure: Plot where colour represents the value of $f(x_1, x_2) = x_1^2 + x_2^2$. The change in f depends on direction.

Definition (Directional derivative)

Let $S \subset \mathbb{R}^n$ and $f : S \to \mathbb{R}$. For any $\mathbf{a} \in \text{int } S$ and $\mathbf{v} \in \mathbb{R}^n$ the derivative of f with respect to \mathbf{v} is defined as

$$D_{\mathbf{v}}f(\mathbf{a}) := \lim_{h \to 0} \frac{1}{h} \left(f(\mathbf{a} + h\mathbf{v}) - f(\mathbf{a}) \right).$$

Many different notations in use.

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and ets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Theorem

Suppose $S \subset \mathbb{R}^n$, $f : S \to \mathbb{R}$, $\mathbf{a} \in \text{int } S$. Let $g(t) := f(\mathbf{a} + t\mathbf{v})$. If one of the derivatives g'(t) or $D_{\mathbf{v}}f(\mathbf{a})$ exists then the other also exists and

 $g'(t) = D_{\mathbf{v}}f(\mathbf{a}+t\mathbf{v}).$

In particular $g'(0) = D_v f(\mathbf{a})$.

Proof. By definition $\frac{g(t+h)-g(h)}{h} = \frac{f(\mathbf{a}+h\mathbf{v})-f(\mathbf{a})}{h}$.

Theorem (Mean value)

Assume that $D_{\mathbf{v}}(\mathbf{a} + t\mathbf{v})$ exists for each $t \in [0,1]$. Then for some $\theta \in (0,1)$,

 $f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a}) = D_{\mathbf{v}}f(\mathbf{z}), \text{ where } \mathbf{z} = \mathbf{a} + \theta \mathbf{v}.$

Proof.

Apply mean value theorem to $g(t) = f(\mathbf{a} + t\mathbf{v})$.

MA2 - Scalar and vector fields

ligher dimensional pace

Sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Partial derivatives

any
$$k \in \{1,2,\ldots,n\}$$
, let $\mathbf{e}_k = (0,\ldots,0,1,0,\ldots,0).$

Definition (Partial derivatives)

We define the *partial derivative* in x_k of $f(x_1, x_2, ..., x_n)$ at **a** as

$$\frac{\partial f}{\partial x_k}(\mathbf{a}) := D_{\mathbf{e}_k} f(\mathbf{a}).$$

Notation

For

Various symbols used for partial derivatives: $\frac{\partial f}{\partial x_k}(\mathbf{a}) = D_k f(\mathbf{a}) = \partial_k f(\mathbf{a})$. If a function is written f(x, y) we write $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ for the partial derivatives. Similarly for higher dimension.

In practice: To compute the partial derivative $\frac{\partial f}{\partial x_k}$, one should consider all other x_j for $j \neq k$ as constants and take the derivative with respect to x_k .

MA2 - Scalar and vector fields

Higher dimensional pace

sets

continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Total derivatives

Recall that if $f:\mathbb{R}\to\mathbb{R}$ is differentiable, then

f(a+h) = f(a) + hf'(a) + hE(a,h)

where $E(a, h) \rightarrow 0$ as $h \rightarrow 0$. I.e., f(a) + hf'(a) approximates f(x) close to a.

Definition (Differentiable)

Let $S \subset \mathbb{R}^n$ be open, $f : S \to \mathbb{R}$. We say that f is *differentiable* at $\mathbf{a} \in S$ if there is $T_{\mathbf{a}} \in \mathbb{R}^n$ and $E(\mathbf{a}, \mathbf{v})$ such that, for $\mathbf{v} \in B(\mathbf{a}, r)$,

$$f(\mathbf{a} + \mathbf{v}) = f(\mathbf{a}) + T_{\mathbf{a}} \cdot \mathbf{v} + \|\mathbf{v}\| E(\mathbf{a}, \mathbf{v})$$

and $E(\mathbf{a}, \mathbf{v}) \rightarrow 0$ as $\mathbf{v} \rightarrow 0$.

Theorem

If f is differentiable at a then $T_{\mathbf{a}} = (\partial_1 f(\mathbf{a}), \dots, \partial_n f(\mathbf{a}))$ and $D_{\mathbf{v}} f(\mathbf{a}) = T_{\mathbf{a}} \cdot \mathbf{v}$.

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Total derivatives (cont.)

Proof.

Since f is differentiable $f(\mathbf{a} + h\mathbf{v}) = f(\mathbf{a}) + hT_{\mathbf{a}} \cdot \mathbf{v} + h \|\mathbf{v}\| E(\mathbf{a}, h\mathbf{v})$ and hence

$$D_{\mathbf{v}}f(\mathbf{a}) := \lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{v}) - f(\mathbf{a})}{h} = \lim_{h \to 0} \frac{hT_{\mathbf{a}} \cdot \mathbf{v} + h \|\mathbf{v}\| E(\mathbf{a}, h\mathbf{v})}{h} = T_{\mathbf{a}} \cdot \mathbf{v}.$$

In particular $T_{\mathbf{a}} \cdot \mathbf{e}_k = D_{\mathbf{e}_k} f(\mathbf{a}).$

Definition (Gradient)

The *gradient* of f is the vector-valued function

$$abla f(\mathbf{a}) := egin{pmatrix} \partial_1 f(\mathbf{a}) \ \partial_2 f(\mathbf{a}) \ dots \ \partial_n f(\mathbf{a}) \end{pmatrix}.$$

Theorem

If f is differentiable at \mathbf{a} , then it is continuous at \mathbf{a} .

Proof.

$$\begin{split} f(\mathbf{a} + \mathbf{v}) &- f(\mathbf{a})| \\ &= |T_{\mathbf{a}} \cdot \mathbf{v} + \|\mathbf{v}\| \, E(\mathbf{a}, \mathbf{v})| \\ &\leq \|T_{\mathbf{a}}\| \, \|\mathbf{v}\| + \|\mathbf{v}\| \, |E(\mathbf{a}, \mathbf{v})| \to 0. \, \Box \end{split}$$

MA2 - Scalar and vector fields

algner dimensional space Open balls and

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Theorem

Suppose that the partial derivatives $\partial_1 f(\mathbf{x}), \partial_2 f(\mathbf{x}), \dots, \partial_n f(\mathbf{x})$ exist for all $\mathbf{x} \in B(\mathbf{a}, r)$ and are continuous at \mathbf{a} . Then f is differentiable at \mathbf{a} .

Proof.

- 1. Write $\mathbf{v} = (v_1, v_2, \dots, v_n)$ and $\mathbf{u}_k = (v_1, v_2, \dots, v_k, 0, \dots, 0)$;
- 2. Observe that $\mathbf{u}_k \mathbf{u}_{k-1} = v_k \mathbf{e}_k$, $\mathbf{u}_0 = (0, 0, \dots, 0)$ and $\mathbf{u}_n = \mathbf{v}$;
- 3. Using the mean value theorem (exists $\mathbf{z}_k = \mathbf{u}_{k-1} + \theta_k \mathbf{e}_k$)

$$f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a}) = \sum_{k=1}^{n} f(\mathbf{a} + \mathbf{u}_{k}) - f(\mathbf{a} + \mathbf{u}_{k-1}) = \sum_{k=1}^{n} v_{k} D_{\mathbf{e}_{k}} f(\mathbf{a} + \mathbf{z}_{k})$$
$$= \sum_{k=1}^{n} v_{k} D_{\mathbf{e}_{k}} f(\mathbf{a} + \mathbf{u}_{k-1})$$
$$+ \sum_{k=1}^{n} v_{k} (D_{\mathbf{e}_{k}} f(\mathbf{a} + \mathbf{z}_{k}) - D_{\mathbf{e}_{k}} f(\mathbf{a} + \mathbf{u}_{k-1}))$$

4.
$$\sum_{k=1}^{n} v_k D_{\mathbf{e}_k} f(\mathbf{a} + \mathbf{u}_{k-1}) \rightarrow \mathbf{v} \cdot \nabla f(\mathbf{a}).$$

MA2 - Scalar and vector fields

space Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Chain rule

If $f(t) = g \circ h(t)$ then f'(t) = g'(h(t)) h'(t). Does this extend to higher dimension?

Example

Suppose that

- $\mathbf{x}: \mathbb{R} \to \mathbb{R}^3$ describes the position $\mathbf{x}(t)$ at time t,
- $f: \mathbb{R}^3 \to \mathbb{R}$ describes the temperature $f(\mathbf{x})$ at a point \mathbf{x}

The temperature at time t is equal to $g(t) = f(\mathbf{x}(t))$. We want to calculate g'(t).

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Derivative of $oldsymbol{lpha}:\mathbb{R} o\mathbb{R}^n$

Let $\alpha : \mathbb{R} \to \mathbb{R}^n$ and suppose it has the form $\alpha(t) = (\alpha_1(t), \ldots, \alpha_n(t))$. We define the derivative as

It represents the "direction of movement".

Note: We sometimes consider horizontal and sometimes vertical vectors. It can be convenient to distinguish between "position" and "direction".

Figure:
$$lpha(t):=(\cos t,\sin t,t),\;t\in\mathbb{R}$$

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and ets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Chain rule (cont.)

Theorem

Let $S \subset \mathbb{R}^n$ be open and $I \subset \mathbb{R}$ an interval. Let $\mathbf{x} : I \to S$ and $f : S \to \mathbb{R}$ and define, for $t \in I$,

$$g(t) = f(\mathbf{x}(t))$$

Suppose that $t \in I$ is such that $\mathbf{x}'(t)$ exists and f is differentiable at $\mathbf{x}(t)$. Then g'(t) exists and

$$g'(t) =
abla f(\mathbf{x}(t)) \cdot \mathbf{x}'(t).$$

Proof.

Let h > 0 be small,

$$\begin{aligned} \frac{1}{h} \left[g(t+h) - g(t) \right] &= \frac{1}{h} \left[f(\mathbf{x}(t+h) - f(\mathbf{x}(t))) \right] \\ &= \frac{1}{h} \nabla f(\mathbf{x}(t)) \cdot \left(\mathbf{x}(t+h) - \mathbf{x}(t) \right) \\ &+ \frac{1}{h} \left\| \mathbf{x}(t+h) - \mathbf{x}(t) \right\| E(\mathbf{x}(t), \mathbf{x}(t+h) - \mathbf{x}(t)) \end{aligned}$$

Observe that $\frac{1}{h}(\mathbf{x}(t+h) - \mathbf{x}(t)) \rightarrow \mathbf{x}'(t)$ as $h \rightarrow 0$.

MA2 - Scalar and vector fields

Higher dimensional space Open balls and

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Chain rule example

- A particle moves in a circle and its position at time t ∈ [0, 2π] is given by
 x(t) = (cos t, sin t).
- The temperature at a point
 y = (y₁, y₂) is given by the function
 f(y) := y₁ + y₂,
- The temperature the particle experiences at time t is given by g(t) = f(x(t)).

Figure: $\mathbf{x}(t)$ is the position of a particle. Shading represents temperature f.

Temperature change: $g'(t) = \nabla f(\mathbf{x}(t)) \cdot \mathbf{x}'(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} = \cos t - \sin t$.

MA2 - Scalar and vector fields

Higher dimensional space

Dpen balls and ets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Level sets & tangent planes (2D) Let $S \subset \mathbb{R}^2$, $f : S \to \mathbb{R}$. Suppose $c \in \mathbb{R}$ and

$$L(c) := \{\mathbf{x} \in S : f(\mathbf{x}) = c\}$$

is a curve at $\mathbf{a} \in S$ in the sense that $\mathbf{x} : I \to S$ is the parametric form of the curve. I.e., $\mathbf{x}(t_a) = \mathbf{a}$ for some $t_a \in I$ and

$$f(\mathbf{x}(t)) = c$$

for all $t \in I$. Then

- $\triangleright \nabla f(\mathbf{a})$ is normal to the curve at \mathbf{a}
- ► Tangent line at **a** is $\{\mathbf{x} \in \mathbb{R}^2 : \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}) = 0\}$

This is because the chain rule implies that $\nabla f(\mathbf{x}(t)) \cdot \mathbf{x}'(t) = 0$.

Figure: Contour plot of $x_1 \exp(-x_1^2 - x_2^2)$

- lsotherms \leftrightarrow temperature;
- Contours \leftrightarrow altitude.

Terminology: L(c) is called the *level set*.

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and ets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Level set examples

Example

Let $f(x_1, x_2, x_3) := x_1^2 + x_2^2 + x_3^2$.

- If c > 0 then L(c) is a sphere,
- L(0) is a single point (0, 0, 0),
- If c < 0 then L(c) is empty.

Example

Let
$$f(x_1, x_2, x_3) := x_1^2 + x_2^2 - x_3^2$$
.

- ► If c > 0 then L(c) is a one-sheeted hyperboloid,
- L(0) is an infinite cone,
- ► If c < 0 then L(c) a two-sheeted hyperboloid.</p>

Figure: Sphere, two-sheeted hyperboloid, infinite cone, one-sheeted hyperboloid.

MA2 - Scalar and vector fields

ligher dimensional pace

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Level set & tangent planes (3D)

- Let f be a differentiable scalar field on $S \subset \mathbb{R}^3$ and suppose that
- $L(c) = {\mathbf{x} \in S : f(\mathbf{x}) = c}$ is a surface.
 - ∇f(a) is normal to every curve
 α(t) in the surface which passes
 through a,
 - ► Tangent plane at **a** is $\{\mathbf{x} \in \mathbb{R}^3 : \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}) = 0\}.$

Same argument as in \mathbb{R}^2 works in \mathbb{R}^n .

Figure: Tangent plane and normal vector

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and ets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Derivatives of vector fields

Definition (Directional derivative)

Let $S \subset \mathbb{R}^n$ and $\mathbf{f} : S \to \mathbb{R}^m$. For any $\mathbf{a} \in \text{int } S$ and $\mathbf{v} \in \mathbb{R}^n$ the derivative of f with respect to \mathbf{v} is defined as

$$D_{\mathsf{v}}\mathsf{f}(\mathsf{a}) := \lim_{h o 0} rac{\mathsf{f}(\mathsf{a} + h\mathsf{v}) - \mathsf{f}(\mathsf{a})}{h}$$

.

Note: If we write
$$\mathbf{f} = (f_1, \dots, f_m)$$
 then $D_{\mathbf{v}}\mathbf{f} = (D_{\mathbf{v}}f_1, \dots, D_{\mathbf{v}}f_m)$.

Definition (Differentiable)

We say that f is *differentiable* at **a** if there is a linear transformation $\mathbf{T}_{\mathbf{a}} : \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{E}(\mathbf{a}, \mathbf{v})$ such that, for $\mathbf{v} \in B(\mathbf{a}, r)$,

$$\mathbf{f}(\mathbf{a}+\mathbf{v}) = \mathbf{f}(\mathbf{a}) + \mathbf{T}_{\mathbf{a}}(\mathbf{v}) + \|\mathbf{v}\| \, \mathbf{E}(\mathbf{a},\mathbf{v})$$

and $\mathbf{E}(\mathbf{a}, \mathbf{v}) \rightarrow 0$ as $\mathbf{v} \rightarrow 0$.

MA2 - Scalar and vector fields

ligher dimensional pace

Den balls and ets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Derivatives of vector fields (cont.)

Theorem

If f is differentiable at a then f is continuous at a and $\mathsf{T}_a(v) = \mathit{D}_v f(a).$

Proof.

Same as for the case when $f : \mathbb{R}^n \to \mathbb{R}$.

Definition (Jacobian matrix) The Jacobian matrix of $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ at \mathbf{a} is defined

as

$$D\mathbf{f}(\mathbf{a}) = \begin{pmatrix} \partial_1 f_1(\mathbf{a}) & \partial_2 f_1(\mathbf{a}) & \cdots & \partial_n f_1(\mathbf{a}) \\ \partial_1 f_2(\mathbf{a}) & \partial_2 f_2(\mathbf{a}) & \cdots & \partial_n f_2(\mathbf{a}) \\ \vdots & \vdots & & \vdots \\ \partial_1 f_m(\mathbf{a}) & \partial_2 f_m(\mathbf{a}) & \cdots & \partial_n f_m(\mathbf{a}) \end{pmatrix}$$

 Choosing a basis any linear transformation can be written as a m × n matrix.

$$\mathbf{T}_{\mathbf{a}}(\mathbf{v}) = D\mathbf{f}(\mathbf{a})\mathbf{v}.$$

MA2 - Scalar and vector fields

ligher dimensional pace

open balls and ets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Derivatives of $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ (recap.)

Let $S \subset \mathbb{R}^n$ and $\mathbf{f} : S \to \mathbb{R}^m$. If f is differentiable at $\mathbf{a} \in S$ then, for all $\mathbf{v} \in B(\mathbf{a}, r) \subset S$,

$$\mathbf{f}(\mathbf{a} + \mathbf{v}) = \mathbf{f}(\mathbf{a}) + D\mathbf{f}(\mathbf{a})\mathbf{v} + \|\mathbf{v}\| \mathbf{E}(\mathbf{a}, \mathbf{v}).$$

This is like a Taylor expansion in higher dimensions.

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Matrix form of the chain rule

Theorem Let $S \subset \mathbb{R}^{l}$, $T \subset \mathbb{R}^{m}$ be open. Let $\mathbf{f} : S \to T$ and $\mathbf{g} : T \to \mathbb{R}^{n}$ and define

 $\mathbf{h} := \mathbf{g} \circ \mathbf{f} : S \to \mathbb{R}^n.$

Let $a \in S$. Suppose that f is differentiable at a and g is differentiable at f(a). Then h is differentiable at a and

$$D\mathbf{h}(\mathbf{a}) = D\mathbf{g}(\mathbf{f}(\mathbf{a})) \ D\mathbf{f}(\mathbf{a})$$

Proof.

Since **f** and **g** are differentiable there exists E_f and E_g . Let u := f(a + v) - f(a).

$$\begin{split} \mathbf{h}(\mathbf{a} + \mathbf{v}) - \mathbf{h}(\mathbf{a}) &= \mathbf{g}(\mathbf{f}(\mathbf{a} + \mathbf{v})) - \mathbf{f}(\mathbf{h}(\mathbf{a})) \\ &= D\mathbf{g}(\mathbf{f}(\mathbf{a}))(\mathbf{f}(\mathbf{a} + \mathbf{v}) - \mathbf{f}(\mathbf{a})) + \|\mathbf{u}\| \, \mathbf{E}_{\mathbf{g}}(\mathbf{f}(\mathbf{a}), \mathbf{u}) \\ &= D\mathbf{g}(\mathbf{f}(\mathbf{a}))D\mathbf{f}(\mathbf{a})\mathbf{v} + \|\mathbf{v}\| \, D\mathbf{g}(\mathbf{f}(\mathbf{a}))\mathbf{E}_{\mathbf{f}}(\mathbf{a}, \mathbf{v}) + \|\mathbf{u}\| \, \mathbf{E}_{\mathbf{g}}(\mathbf{f}(\mathbf{a}), \mathbf{u}). \end{split}$$

MA2 - Scalar and vector fields

Higher dimensional space

iets

continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Polar coordinates (derivatives example)

▶ We can write the change of coordinates $(r, \theta) \mapsto (r \cos \theta, r \sin \theta)$ as the function $\mathbf{f}(r, \theta) = (x(r, \theta), y(r, \theta))$ where $\mathbf{f} : (0, \infty) \times [0, 2\pi) \to \mathbb{R}^2$.

We calculate the Jacobian matrix

$$D\mathbf{f}(r,\theta) = \begin{pmatrix} \partial_r x(r,\theta) & \partial_\theta x(r,\theta) \\ \partial_r y(r,\theta) & \partial_\theta y(r,\theta) \end{pmatrix} = \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix}.$$

• We wish to calculate derivatives of $h := g \circ \mathbf{f}$ for some $g : \mathbb{R}^2 \to \mathbb{R}$.

$$Dh(r,\theta) = Dg(\mathbf{f}(r,\theta)) D\mathbf{f}(r,\theta)$$
$$\left(\partial_r h(r,\theta) \quad \partial_\theta h(r,\theta)\right) = \left(\partial_x g(\mathbf{f}(r,\theta)) \quad \partial_y g(\mathbf{f}(r,\theta))\right) \begin{pmatrix} \cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta \end{pmatrix}$$

Consequently

 $\begin{cases} \partial_r h(r,\theta) = \partial_x g(r\cos\theta, r\sin\theta)\cos\theta + \partial_y g(r\cos\theta, r\sin\theta)\sin\theta \\ \partial_\theta h(r,\theta) = -r\partial_x g(r\cos\theta, r\sin\theta)\sin\theta + r\partial_y g(r\cos\theta, r\sin\theta)\cos\theta \end{cases}$

MA2 - Scalar and vector fields

ligher dimensional pace

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Equality of partial derivatives

Does $\partial_1 \partial_2 f = \partial_2 \partial_1 f$, etc.?

Example (partial derivative problem)

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined as f(0,0) = 0 and, for $(x_1, x_2) \neq (0,0)$,

$$F(x_1, x_2) := \frac{x_1 x_2 (x_1^2 - x_2^2)}{x_1^2 + x_2^2}$$

We can calculate $\partial_2 \partial_1 f(0,0) = -1$ but $\partial_1 \partial_2 f(0,0) = 1$.

Theorem

Let $f : S \to \mathbb{R}$ be a scalar field such that the partial derivatives $\partial_1 f$, $\partial_2 f$ and $\partial_2 \partial_1 f$ exist on an open set $S \subset \mathbb{R}^2$ containing **x**. Further assume that $\partial_2 \partial_1 f$ is continuous on S. Then the derivative $\partial_1 \partial_2 f(\mathbf{x})$ exists and $\partial_1 \partial_2 f(\mathbf{x}) = \partial_2 \partial_1 f(\mathbf{x})$.

MA2 - Scalar and vector fields

ligher dimensional pace

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule

Implicit functions and partial derivatives

Implicit

- $\blacktriangleright x^2 y = 0$
- ► $x^2 + y^2 1 = 0$
- ► $x^2 y^2 1 = 0$
- ► $x^2 + y^2 e^y 4 = 0$

Explicit

f(*x*) = *x*² *f*(*x*) = ±√1 - *x*², |*x*| ≤ 1 *f*(*x*) = ±√*x*² - 1, |*x*| ≥ 1
?

- We know F : ℝ² → ℝ and we suppose there exists some f : ℝ → ℝ such that F(x, f(x)) = 0 for all x.
- Let g(x) := F(x, f(x)) and note that g'(x) = 0.
- By the chain rule g'(x) is equal to

$$\begin{pmatrix} \partial_1 F(x, f(x)) & \partial_2 F(x, f(x)) \end{pmatrix} \begin{pmatrix} 1 \\ f'(x) \end{pmatrix}$$

Consequently

$$f'(x) = -\frac{\partial_1 F(x, f(x))}{\partial_2 F(x, f(x))}$$

 A similar argument holds in higher dimension.

MA2 - Scalar and vector fields

Higher dimensional space

Open balls and sets

Limits and continuity

Derivatives of scalar fields

Chain rule

Level sets & tangent planes

Derivatives of vector fields

Matrix form of the chain rule