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Higher dimensional space e

Notation x = (x1,X2,...,Xn) € R” where x; € R,...,x, € R.

Higher dimensional
space

Definition (Inner product)
Xy = k_1Xkyk €R

Definition (Norm)

Il = vxx=\/Sioi ¢ (Eg., in R then x| = \/x? +3)

Recall
Ix-y| <|x|| |ly]| Cauchy-Schwarz inequality,
Ix+y| <|x||+[ly]| Triangle inequality.
Scalar field » Temperature in a region,
f:R"—> R > Wind velocity,

Vector fields > Fluid flow,
f:R" - R™ » Electric field, ...



Open balls and open sets M aetor it
Examples: Open intervals, disks, balls,

Let a € R", r > 0. The open n-ball of ) i
union of open intervals, etc., are all

radius r and centre a is

Open SetS Soezsen balls and
B(a,r):={xeR":|x—al| <r}.
Definition (Interior point) . B(a,r)
Let S C R". A point a € S is said to be oo
an interior point if there is r > 0 such . _‘;‘//
that B(a,r) C S. The set of all interior S

points of S is denoted int S.

Definition (Open set)
A set S C R” is said to be open if all of

its points are interior points, i.e., if Figure: Interior points are the centre of a
intS =8S. ball contained within the set.
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CarteSIan prOdUCt vector fields
If A1, A> C R then the Cartesian product is defined as

Al X Ay = {(Xl,Xz) ix1 €A X € Ag} C R2.

Open balls and
sets

Fact: If A1, Ao are open subsets of R
then A; x As is an open subset of R?.

>

> Let a = (a1, ax) € Ay x Ay C R? Ao

> A; is open = exists n > 0 such
that B(al, r1) C A

» Similarly for A

» Let r = min{r, rn} A >><1

» B(a,r) C B(ai,rn) x B(az,n) C
A1 X Ao Figure: If A1, Ay are intervals then A; x Ay
is a rectangle.




Exterior points and boundary

Definition (Exterior points)

Let S C R". A point a ¢ S is said to be
an exterior point if there exists r > 0
such that B(a,r)NS = (. The set of all
exterior points of S is denoted ext S.

| 2

>
> Observe ext S is an open set.

> Let S¢:=R"\S. .

Definition (Boundary)

The set R\ (int S UextS) is called the

boundary of S C R" and is denoted 05. L

Definition (Closed)

A set S C R” is said to be closed if
oS cC S.
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Fact: S is open <= S5°€ is closed.
> R"=intSUISUextS (disjointly);

Open balls and
sets

If x € JS then, for every r > 0,
B(x,r)N'S # 0 and so x € 9(5°);
Similarly with S and S€ swapped
and so S = 9(5°);

If S is open then intS = S and
S¢=extSUOIS =extSUOI(S)
and so 5€ is closed;

If S is not open then there exists
a € 05N S. Additionally

a € 9(5°) NS hence S€ is not
closed.
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leltS and COﬂtanlty vector fields

Notation: Let SCR"and f: S — R™. Ifac R", b € R™ we write
)!i_rpaf(x) = b to mean that lim,_,_0 [[f(x) — b|| = 0.

Definition (Continuous) Limits and
continuity
A function f is said to be continuous at a if f is defined at a and IiLn f(x) = f(a).
X—a
We say f is continuous on S if f is continuous at each point of S.

Theorem
Suppose that limy_, f(x) = b and limyx_,ag(x) = c. Then

() limea(F(x) + g(x) = b+,
(b) limx_a Af(x) = Ab for every A € R,
(c) limy—af(x)-g(x)=b-c,

(d) limx—a [[f(x)[| = [|b]|.
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Proof of (c)

1 f(x)-g(x) —b-c=(f(x) —b) - (g(x) —c) + b (g(x) —c) +c- (f(x) — b)
2. By the triangle inequality and Cauchy-Schwarz,

Limits and

Hf(X) : g(X) - b : CH S ||f(X) — bH ||g(x) — c” continuity
+ [l [[g(x) — cll
+ [le[l[[f(x) — bl

3. Since ||f(x) — b|| — 0 and ||g(x) — c|| — 0 as x — a this implies that
If(x) - g(x) —b- | = 0.

Proof of (d)
1. Take f = g in part (c) implies that lim,_,, [|[f(x)||* = ||b]|°.
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Components of a vector field —_—
Theorem
Let f(x) = (fi(x),..., fm(x)). Then f is continuous if and only if each fy is R
continuous. continuity
Proof. r kthposition

(=) Letex=(0,...,0,1,0,...,0) and observe that f,(x) = f(x) - ex
We have already shown that the continuity of two vector fields
implies the continuity of the inner product.

(<) By definition of the norm ||f(x) Z(fk — fi(a))? and

we know || fc(x) — fr(a)|| = 0 as ||x —a|| — 0 O



Example (Polynomials)

A polynomial in n variables is a scalar field on R" of the from

J J
p(x1,...,Xxn) = Z . Z Choy,.. k ~~x,’,‘".
k1 =0 =0

E.g., f(x1,x2) := x1 + 2x1xo — x? is a polynomial in 2 variables. Polynomials are
continuous everywhere in R”. (Finite sum of products of continuous fields.)

Example (Rational functions)
A rational function is a scalar field

where p(x) and g(x) are polynomials. A rational function is continuous at every
point x such that g(x) # 0.
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Limits and
continuity
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Composition of functions —_—

Theorem
Suppose SCR!, TCR™, f:S—-R™, g: T — R" and that f(S) C T so that

(g0 f)(x) = g(f(x)) continty

makes sense. If f is continuous at a € S and g is continuous at f(a) then gof is
continuous at a.

Proof.
> lim [[f(g(x)) — f(g(a))ll = Jim If(y) — f(g(a)) =0
L]
Example

f(x1,x) = sin(x12 + x2) + x1x2



Example (Continuity problem in higher dimensions)
Let f(x1,x2) be defined as £(0,0) = 0 and, for all (x1,x2) # (0,0),

X1X2

f(x1,x) = .
(a ) x12—i-x22

What is the behaviour of the function along the following three lines?
1. X1 = 0,
2. Xy = 0,

3. X1 = X2.
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Limits and
continuity



Directional derivatives

1.5

0.5

00 0.5 1 1.5 2

Figure: Plot where colour represents the
value of f(x1,x) = x? + x3. The change in
f depends on direction.

Definition (Directional derivative)

Let SCR"and f: S — R. For any
acintS and v € R” the derivative of f
with respect to v is defined as

Duf(a) = lim % (F(a+ hv) — F(a).

» When hissmalla+ hve S
because a € int S so this definition
makes sense.

> Many different notations in use.

MAZ2 - Scalar and
vector fields

Derivatives of
scalar fields
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Theorem vector fields

Suppose S CR", f:S — R, acintS. Let g(t) := f(a+ tv). If one of the
derivatives g'(t) or Dyf(a) exists then the other also exists and

g'(t) = D,f(a+ tv).

In particular g’(0) = D,f(a).

Proof.
By definition &(h=g(h) _ flathy)—f(a) .

Derivatives of
scalar fields

Theorem (Mean value)
Assume that D,(a + tv) exists for each t € [0,1]. Then for some 6 € (0,1),

f(a+v)—f(a) = Dyf(z), wherez=a+6bv.

Proof.
Apply mean value theorem to g(t) = f(a+ tv). O



Partial derivatives
T kthposition

For any k € {1,2,...,n}, let e, = (0,...,0,1,0,...,0).

Definition (Partial derivatives)

We define the partial derivative in xx of f(x1,x2,...,%,) at a as
of
—(a) := De,f(a).
(@) == D (a)
Notation
Various symbols used for partial derivatives: %( a) = Dyf(a) = Okf(a). If a
function is written f(x,y) we write af, g}f for the partial derivatives. Similarly

for higher dimension.

8f

In practice: To compute the partial derivative =, one should consider all other

xj for j # k as constants and take the derlvatlve W|th respect to xj.
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Derivatives of
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TOtal derlvatlves vector fields
Recall that if f : R — R is differentiable, then
f(a+ h) = f(a) + hf'(a) + hE(a, h)

where E(a, h) — 0 as h — 0. l.e., f(a) + hf’(a) approximates f(x) close to a.

Derivatives of
scalar fields

Definition (Differentiable)

Let S C R” be open, f : S — R. We say that f is differentiable at a € S if there
is Ta € R" and E(a,v) such that, for v e B(a,r),

fla+v)=f(a)+ Ta-v+|v| E(a,v)
and E(a,v) - 0 as v — 0.

Theorem
If f is differentiable at a then T, = (0:1f(a),...,0,f(a)) and Dyf(a) = T, - v.



Total derivatives (cont.)
Proof.
Since f is differentiable f(a + hv) = f(a) + hT, - v+ h|v|| E(a, hv) and hence

f(a+ hv) — f(a) hTa-v+ hlv| E(a, hv)

D.f(a) = i, h = jm, h =Tarv.
In particular T, - ex = De, f(a). O

Definition (Gradient) Theorem

The gradient of f is the vector-valued If f is differentiable at a, then it is

function continuous at a.
d1f(a) Proof.
Oxf(a f(a+v)—f(a

i | @] fa+v) - ()

: = [Ta-v+|lv|] E(a,v)|
9t (a) < Tall vl + [[vI[ |E(a, v)| = 0.0
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Derivatives of
scalar fields



Theorem

Suppose that the partial derivatives 01f(x), 92f(x), ..., Onf(x) exist for all
x € B(a, r) and are continuous at a. Then f is differentiable at a.

Proof.
1. Write v = (vi,va,...,v,) and ug = (vi,v2,..., v%,0,...,0);
2. Observe that ux — ug_1 = vkek, up = (0,0,...,0) and u, = v;
3. Using the mean value theorem (exists zx = uk_1 + 0x€x)

fla+v)—f(a)= z”: fla+ux) —fladu,1) = z”: vkDe, f(a+ zk)
k=1 k=1

n
= Z kaekf(a + uk,l)
k=1

+ ) vk (De,f(a+zk) — De,f(a+ uk_1))
k=1

4. 58 1 vkDe, f(a4 uk_1) — v- Vi£(a).
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C h a I nru |e vector fields

If f(t) =g o h(t) then f'(t) = g’(h(t)) K (t). Does this extend to higher

dimension?

Example

Suppose that Chain rule
» x: R — R3 describes the position x(t) at time t,
» f:R3 = R describes the temperature f(x) at a point x

The temperature at time ¢ is equal to g(t) = f(x(t)). We want to calculate
g'(1).
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Derlvatlve Of (8 R % Rn vector fields

Let & : R — R" and suppose it has the form a(t) = (ai(t),...,an(t)). We
define the derivative as

at) Z)
Chain rule
» o is a vector-valued function,
P It represents the “direction of
movement". @

Note: We sometimes consider horizontal

and sometimes vertical vectors. It can >

be convenient to distinguish between
“position” and “direction”.

Figure: a(t) := (cost,sint, t), t € R.



Chain rule (cont.)

Theorem

Let S C R" be open and | C R an interval. Letx: | — S andf:S — R and
define, fort € |,

g(t) = f(x(t))-

Suppose that t € | is such that x'(t) exists and f is differentiable at x(t). Then
g'(t) exists and

g'(t) = VI (x(1)) - X(1).

Proof.
Let h > 0 be small,

i le(t+ h) —g(6)] = [F(x(t + h) — F(x(1)))]
= 5VF(x(t) - (x(t+ h) —x(t))
+ L x(t + h) — x(£)]| E(x(t), x(t + h) — x(t)).

Observe that #(x(t + h) — x(t)) — X/(t) as h — 0. O

MAZ2 - Scalar and
vector fields

Chain rule
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Chain rule example —_—

P> A particle moves in a circle and its
position at time t € [0, 27] is given
by

x(t) = (cos t,sint).

Chain rule

» The temperature at a point
y = (1, y2) is given by the function
fF(y) ==y +y2
» The temperature the particle
experiences at time t is given by
g(t) = f(x(1)). Figure: x(t) is the position of a particle.
Shading represents temperature f.

Temperature change: g'(t) = Vf (x(t)) - X'(t) = (}) - (3nt) = cost —sin t.

cost




Level sets & tangent planes (2D)
Let SC R? f:S — R. Suppose c € R
and

L(c):={xeS:f(x)=c}

is a curve at a € S in the sense that

x : | = S is the parametric form of the
curve. l.e., x(t;) = a for some t, € /
and

fF(x(t)) = c
for all t € I. Then
» Vf(a) is normal to the curve at a
> Tangent line at a is
{x e R?:Vf(a) - (x—a) =0}
This is because the chain rule implies
that V£ (x(t)) - x'(t) = 0.

MAZ2 - Scalar and

vector fields

I |
1 \0-1
Yo
J Q /—\
0.5 %
> o,
° (/ (/
—0.5 |~ o 0\3_/
-1} Level sets &
\0\'1 ‘ ‘ ‘ q A t:r\:;ersnft;lanes
-1 -05 0 0.5 1
Figure: Contour plot of x; exp(—x? — x3)

> Isotherms <+ temperature;
> Contours < altitude.
Terminology: L(c) is called the level set.
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Level set examples e

Higher dimensional
Example S
Open balls and
sets

Let f(x1,x0,x3) := x2 + x3 + x5.
» If ¢ > 0 then L(c) is a sphere,
» L(0) is a single point (0,0, 0),
» If ¢ <0 then L(c) is empty.

Limits and
continuity

Derivatives of
scalar fields

Chain rule

Level sets &
tangent planes

Example

Derivatives of
vector fields

Let f(x1,x2,x3) := X2 + x5 — x5.
» If ¢ > 0 then L(c) is a one-sheeted
hyperboloid,

Matrix form of the
chain rule

More on partial
derivatives

» L(0) is an infinite cone,

» If ¢ <0 then L(c) a two-sheeted Figure: Sphere, two-sheeted hyperboloid,
hyperboloid. infinite cone, one-sheeted hyperboloid.
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Level set & tangent planes (3D) o el

Let f be a differentiable scalar field on Vf(a)
S C R3 and suppose that
L(c)={x € S:f(x)=c}is a surface. o/(t) a
» Vf(a) is normal to every curve
a(t) in the surface which passes L(c) Level sets &
thI’OUgh a, tangent planes
» Tangent plane at a is aft)
{x e R®: Vf(a) (x —a) =0}.
Same argument as in R? works in R”.
Figure: Tangent plane and normal vector
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Derivatives of vector fields vector filds

Definition (Directional derivative)

Let SCR"and f: S — R™. For any a € intS and v € R” the derivative of f
with respect to v is defined as

f(a+ hv) —f(a)
p .

Dif(a) = lim

Note: If we write f = (f1,..., fn) then Df = (Dyfi,..., Dyfp).

Definition (Differentiable) Derivatives of
We say that f is differentiable at a if there is a linear transformation

Ta:R” — R™ and E(a,v) such that, for v € B(a,r),

f(a+v)="f(a)+ Ta(v) + ||v|] E(a,v)

and E(a,v) - 0asv— 0.



Derivatives of vector fields (cont.) MA2 - Scalar and

vector fields

Theorem
If £ is differentiable at a then f is continuous at a and T,(v) = D,f(a).

Proof.
Same as for the case when f : R" — R. ]

Definition (Jacobian matrix)

The Jacobian matrix of f : R" — R™ at a is defined . .
Choosing a basis any

% linear transformation RS
oifi(@) fi(a) -+ Oxfi(a) can be written as a
oih(a) oObh(a) --- Oph(a m X n matrix.
Df(a) 12_() 22_() n?()

: : : > T.(v) = Df(a)v.
O1fm(a) Oafm(a) -+ Onfm(a)
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Derivatives of f : R” — R™ (recap.) o el

Let SCR"and f: S — R™. If f is differentiable at a € S then, for all
v e B(a,r) C S,

f(a+v) = f(a) + Df(a)v + ||v]| E(a, ).

Derivatives of

This is like a Taylor expansion in higher dimensions. vector fields
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MatrlX fOrm Of the Chaln rUle vector fields

Theorem
Let SCR!, T CR™ beopen. Letf:S— T andg: T — R" and define

h:=gof:S5S—R"

Let a € S. Suppose that f is differentiable at a and g is differentiable at f(a).
Then h is differentiable at a and

Dh(a) = Dg(f(a)) Df(a).

Proof.
Since f and g are differentiable there exists Ef and Eg. Let u:=f(a+4v) —f(a).  Matrix form of the

chain rule

h(a+v) — h(a) = g(f(a+v)) — f(h(a))
= Dg(f(a))(f(a + v) — f(a)) + ||u]| Eg(f(a), u)
= Dg(f(a))Df (a)v + [|v|| Dg(f(a))Es(a, v) + [lul| Eg(f(a), u)-D
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Polar coordinates (derivatives example) o el

» We can write the change of coordinates (r,0) — (rcos@, rsinf) as the
function f(r,0) = (x(r,0), y(r,0)) where f : (0,00) x [0,27) — R2.
» We calculate the Jacobian matrix

_ [ Orx(r,0) Opx(r,0)\ [cos® —rsinf
Df(r’e)_<8,y(r,9) Ogy(r,0)) \sinf rcosf |-

» We wish to calculate derivatives of h:= g o f for some g : R> — R.

Dh(r,0) = Dg(f(r,0)) Df(r,0)

(0eh(r,0)  O5h(r,0)) = (0x&(F(r,0)) Oy&(f(r,0))) (cose rsin0>

sinff  rcosf

Matrix form of the
chain rule

» Consequently

Orh(r,0) = Oxg(rcosb, rsinf)cosb + d,g(rcosb, rsinf)sinf
Ogh(r,0) = —roxg(rcosf, rsinf)sinf + rd,g(rcosb,rsinf)cosf



MAZ2 - Scalar and

Equality of partial derivatives —_—

Does 010>f = 0,01 T, etc.?

Example (partial derivative problem)
Let f : R? — R be defined as £(0,0) = 0 and, for (xi, x2) # (0,0),

xve (X —x3)
f =
(Xla X2) X12 + X22

We can calculate 9,01f(0,0) = —1 but 010>f(0,0) = 1.

Theorem
Let f : S — R be a scalar field such that the partial derivatives O1f, O»f and

- .. . More on partial
0201 exist on an open set S C R? containing x. Further assume that 0,01 f is dortoatives

continuous on S. Then the derivative 0102f (x) exists and 0102f (x) = 0201 f(x).



Implicit functions and partial derivatives

Implicit

> x2—y=0

> x2+y?2-1=0

> x2—y2-1=0

> x°+y’—e—4=0
Explicit

> f(x) = x?

> f(x)=+V1—x2 |x| <1
> f(x)=+vx2 -1, |x| >1

> ?

» We know F : R?> — R and we suppose
there exists some f : R — R such that
F(x, f(x)) =0 for all x.

» Let g(x) := F(x, f(x)) and note that
g'(x)=0.

» By the chain rule g’(x) is equal to

(01F (. () @F@JUD)Qiﬂ>

» Consequently

/ - alF(Xv f(X))
””_*@H&a@y

» A similar argument holds in higher
dimension.
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vector fields

More on partial
derivatives
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