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Higher dimensional space
Notation x = (x1, x2, . . . , xn) ∈ Rn where x1 ∈ R, . . . , xn ∈ R.
Definition (Inner product)
x · y := ∑n

k=1 xkyk ∈ R

Definition (Norm)
‖x‖ :=

√
x · x =

√∑n
k=1 x2

k (E.g., in R2 then ‖x‖ =
√

x2
1 + x2

2 )
Recall

|x · y | ≤ ‖x‖ ‖y‖ Cauchy-Schwarz inequality,
‖x + y‖ ≤ ‖x‖+ ‖y‖ Triangle inequality.

Scalar field
f : Rn → R

Vector fields
f : Rn → Rm

I Temperature in a region,
I Wind velocity,
I Fluid flow,
I Electric field, . . .
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Open balls and open sets

Let a ∈ Rn, r > 0. The open n-ball of
radius r and centre a is

B(a, r) := {x ∈ Rn : ‖x− a‖ < r} .

Definition (Interior point)
Let S ⊂ Rn. A point a ∈ S is said to be
an interior point if there is r > 0 such
that B(a, r) ⊂ S. The set of all interior
points of S is denoted int S.

Definition (Open set)
A set S ⊂ Rn is said to be open if all of
its points are interior points, i.e., if
int S = S.

Examples: Open intervals, disks, balls,
union of open intervals, etc., are all
open sets.

B(a, r)

a

S

Figure: Interior points are the centre of a
ball contained within the set.
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Cartesian product
If A1,A2 ⊂ R then the Cartesian product is defined as

A1 × A2 := {(x1, x2) : x1 ∈ A1, x2 ∈ A2} ⊂ R2.

Fact: If A1,A2 are open subsets of R
then A1 × A2 is an open subset of R2.
I Let a = (a1, a2) ∈ A1 × A2 ⊂ R2

I A1 is open =⇒ exists r1 > 0 such
that B(a1, r1) ⊂ A1

I Similarly for A2
I Let r = min{r1, r2}
I B(a, r) ⊂ B(a1, r1)× B(a2, r2) ⊂

A1 × A2

x1

x2

A1

A2 A1 × A2

Figure: If A1,A2 are intervals then A1 × A2
is a rectangle.
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Exterior points and boundary

Definition (Exterior points)
Let S ⊂ Rn. A point a /∈ S is said to be
an exterior point if there exists r > 0
such that B(a, r)∩ S = ∅. The set of all
exterior points of S is denoted ext S.
I Observe ext S is an open set.
I Let Sc := Rn \ S.

Definition (Boundary)
The set Rn \ (int S ∪ ext S) is called the
boundary of S ⊂ Rn and is denoted ∂S.

Definition (Closed)
A set S ⊂ Rn is said to be closed if
∂S ⊂ S.

Fact: S is open ⇐⇒ Sc is closed.
I Rn = int S ∪ ∂S ∪ ext S (disjointly);
I If x ∈ ∂S then, for every r > 0,

B(x, r) ∩ S 6= ∅ and so x ∈ ∂(Sc);
I Similarly with S and Sc swapped

and so ∂S = ∂(Sc);
I If S is open then int S = S and

Sc = ext S ∪ ∂S = ext S ∪ ∂(Sc)
and so Sc is closed;

I If S is not open then there exists
a ∈ ∂S ∩ S. Additionally
a ∈ ∂(Sc) ∩ S hence Sc is not
closed.
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Limits and continuity

Notation: Let S ⊂ Rn and f : S → Rm. If a ∈ Rn, b ∈ Rm we write
lim
x→a

f(x) = b to mean that lim‖x−a‖→0 ‖f(x)− b‖ = 0.

Definition (Continuous)
A function f is said to be continuous at a if f is defined at a and lim

x→a
f(x) = f(a).

We say f is continuous on S if f is continuous at each point of S.

Theorem
Suppose that limx→a f(x) = b and limx→a g(x) = c. Then
(a) limx→a(f(x) + g(x)) = b + c,
(b) limx→a λf(x) = λb for every λ ∈ R,
(c) limx→a f(x) · g(x) = b · c,
(d) limx→a ‖f(x)‖ = ‖b‖.
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Proof of (c)
1. f(x) · g(x)− b · c = (f(x)− b) · (g(x)− c) + b · (g(x)− c) + c · (f(x)− b)
2. By the triangle inequality and Cauchy-Schwarz,

‖f(x) · g(x)− b · c‖ ≤ ‖f(x)− b‖ ‖g(x)− c‖
+ ‖b‖ ‖g(x)− c‖
+ ‖c‖ ‖f(x)− b‖

3. Since ‖f(x)− b‖ → 0 and ‖g(x)− c‖ → 0 as x→ a this implies that
‖f(x) · g(x)− b · c‖ → 0.

Proof of (d)
1. Take f = g in part (c) implies that limx→a ‖f(x)‖2 = ‖b‖2.
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Components of a vector field

Theorem
Let f(x) = (f1(x), . . . , fm(x)). Then f is continuous if and only if each fk is
continuous.

Proof.
(⇒) Let ek = (0, . . . , 0, 1, 0, . . . , 0)

kthposition

and observe that fk(x) = f(x) · ek .
We have already shown that the continuity of two vector fields
implies the continuity of the inner product.

(⇐) By definition of the norm ‖f(x)− f(a)‖2 =
m∑

k=1
(fk(x)− fk(a))2 and

we know ‖fk(x)− fk(a)‖ → 0 as ‖x− a‖ → 0.
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Example (Polynomials)
A polynomial in n variables is a scalar field on Rn of the from

p(x1, . . . , xn) =
j∑

k1=0
· · ·

j∑
kn=0

ck1,...,kn xk1
1 · · · xkn

n .

E.g., f (x1, x2) := x1 + 2x1x2 − x2
1 is a polynomial in 2 variables. Polynomials are

continuous everywhere in Rn. (Finite sum of products of continuous fields.)

Example (Rational functions)
A rational function is a scalar field

f (x) = p(x)
q(x)

where p(x) and q(x) are polynomials. A rational function is continuous at every
point x such that q(x) 6= 0.
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Composition of functions

Theorem
Suppose S ⊂ Rl , T ⊂ Rm, f : S → Rm, g : T → Rn and that f(S) ⊂ T so that

(g ◦ f)(x) = g(f(x))

makes sense. If f is continuous at a ∈ S and g is continuous at f(a) then g ◦ f is
continuous at a.

Proof.
I lim

x→a
‖f(g(x))− f(g(a))‖ = lim

y→g(a)
‖f(y)− f(g(a))‖ = 0

Example
f (x1, x2) = sin(x2

1 + x2) + x1x2
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Example (Continuity problem in higher dimensions)
Let f (x1, x2) be defined as f (0, 0) = 0 and, for all (x1, x2) 6= (0, 0),

f (x1, x2) = x1x2
x2

1 + x2
2
.

What is the behaviour of the function along the following three lines?
1. x1 = 0,
2. x2 = 0,
3. x1 = x2.
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Directional derivatives

0 0.5 1 1.5 20

0.5

1

1.5

2

Figure: Plot where colour represents the
value of f (x1, x2) = x2

1 + x2
2 . The change in

f depends on direction.

Definition (Directional derivative)
Let S ⊂ Rn and f : S → R. For any
a ∈ int S and v ∈ Rn the derivative of f
with respect to v is defined as

Dvf (a) := lim
h→0

1
h (f (a + hv)− f (a)) .

I When h is small a + hv ∈ S
because a ∈ int S so this definition
makes sense.

I Many different notations in use.
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Theorem
Suppose S ⊂ Rn, f : S → R, a ∈ int S. Let g(t) := f (a + tv). If one of the
derivatives g ′(t) or Dvf (a) exists then the other also exists and

g ′(t) = Dvf (a + tv).

In particular g ′(0) = Dvf (a).

Proof.
By definition g(t+h)−g(h)

h = f (a+hv)−f (a)
h .

Theorem (Mean value)
Assume that Dv(a + tv) exists for each t ∈ [0, 1]. Then for some θ ∈ (0, 1),

f (a + v)− f (a) = Dvf (z), where z = a + θv.

Proof.
Apply mean value theorem to g(t) = f (a + tv).
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Partial derivatives

For any k ∈ {1, 2, . . . , n}, let ek = (0, . . . , 0, 1, 0, . . . , 0).
kthposition

Definition (Partial derivatives)
We define the partial derivative in xk of f (x1, x2, . . . , xn) at a as

∂f
∂xk

(a) := Dek f (a).

Notation
Various symbols used for partial derivatives: ∂f

∂xk
(a) = Dk f (a) = ∂k f (a). If a

function is written f (x , y) we write ∂f
∂x ,

∂f
∂y for the partial derivatives. Similarly

for higher dimension.
In practice: To compute the partial derivative ∂f

∂xk
, one should consider all other

xj for j 6= k as constants and take the derivative with respect to xk .
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Total derivatives
Recall that if f : R→ R is differentiable, then

f (a + h) = f (a) + hf ′(a) + hE (a, h)

where E (a, h)→ 0 as h→ 0. I.e., f (a) + hf ′(a) approximates f (x) close to a.

Definition (Differentiable)
Let S ⊂ Rn be open, f : S → R. We say that f is differentiable at a ∈ S if there
is Ta ∈ Rn and E (a, v) such that, for v ∈ B(a, r),

f (a + v) = f (a) + Ta · v + ‖v‖E (a, v)

and E (a, v)→ 0 as v→ 0.

Theorem
If f is differentiable at a then Ta = (∂1f (a), . . . , ∂nf (a)) and Dvf (a) = Ta · v.
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Total derivatives (cont.)
Proof.
Since f is differentiable f (a + hv) = f (a) + hTa · v + h ‖v‖E (a, hv) and hence

Dvf (a) := lim
h→0

f (a + hv)− f (a)
h = lim

h→0
hTa · v + h ‖v‖E (a, hv)

h = Ta · v.

In particular Ta · ek = Dek f (a).

Definition (Gradient)
The gradient of f is the vector-valued
function

∇f (a) :=


∂1f (a)
∂2f (a)

...
∂nf (a)

 .

Theorem
If f is differentiable at a, then it is
continuous at a.

Proof.
|f (a + v)− f (a)|

= |Ta · v + ‖v‖E (a, v)|
≤ ‖Ta‖ ‖v‖+ ‖v‖ |E (a, v)| → 0.
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Theorem
Suppose that the partial derivatives ∂1f (x), ∂2f (x), . . . , ∂nf (x) exist for all
x ∈ B(a, r) and are continuous at a. Then f is differentiable at a.

Proof.
1. Write v = (v1, v2, . . . , vn) and uk = (v1, v2, . . . , vk , 0, . . . , 0);
2. Observe that uk − uk−1 = vkek , u0 = (0, 0, . . . , 0) and un = v;
3. Using the mean value theorem (exists zk = uk−1 + θkek)

f (a + v)− f (a) =
n∑

k=1
f (a + uk)− f (a + uk−1) =

n∑
k=1

vkDek f (a + zk)

=
n∑

k=1
vkDek f (a + uk−1)

+
n∑

k=1
vk (Dek f (a + zk)− Dek f (a + uk−1))

4. ∑n
k=1 vkDek f (a + uk−1)→ v · ∇f (a).
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Chain rule

If f (t) = g ◦ h(t) then f ′(t) = g ′(h(t)) h′(t). Does this extend to higher
dimension?
Example
Suppose that
I x : R→ R3 describes the position x(t) at time t,
I f : R3 → R describes the temperature f (x) at a point x

The temperature at time t is equal to g(t) = f (x(t)). We want to calculate
g ′(t).
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Derivative of α : R→ Rn

Let α : R→ Rn and suppose it has the form α(t) = (α1(t), . . . , αn(t)). We
define the derivative as

α′(t) :=

x ′1(t)
...

x ′n(t)

 .

I α′ is a vector-valued function,
I It represents the “direction of

movement”.
Note: We sometimes consider horizontal
and sometimes vertical vectors. It can
be convenient to distinguish between
“position” and “direction”.

α′(t)
α(t)

Figure: α(t) := (cos t, sin t, t), t ∈ R.
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Chain rule (cont.)
Theorem
Let S ⊂ Rn be open and I ⊂ R an interval. Let x : I → S and f : S → R and
define, for t ∈ I,

g(t) = f (x(t)).

Suppose that t ∈ I is such that x′(t) exists and f is differentiable at x(t). Then
g ′(t) exists and

g ′(t) = ∇f (x(t)) · x′(t).

Proof.
Let h > 0 be small,

1
h [g(t + h)− g(t)] = 1

h [f (x(t + h)− f (x(t)))]
= 1

h∇f (x(t)) · (x(t + h)− x(t))
+ 1

h ‖x(t + h)− x(t)‖E (x(t), x(t + h)− x(t)).

Observe that 1
h (x(t + h)− x(t))→ x′(t) as h→ 0.
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Chain rule example

I A particle moves in a circle and its
position at time t ∈ [0, 2π] is given
by

x(t) = (cos t, sin t).
I The temperature at a point

y = (y1, y2) is given by the function
f (y) := y1 + y2,

I The temperature the particle
experiences at time t is given by
g(t) = f (x(t)).

x1

x2

x(t)

Figure: x(t) is the position of a particle.
Shading represents temperature f .

Temperature change: g ′(t) = ∇f (x(t)) · x′(t) = ( 1
1 ) · (− sin t

cos t
)

= cos t − sin t.
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Level sets & tangent planes (2D)
Let S ⊂ R2, f : S → R. Suppose c ∈ R
and

L(c) := {x ∈ S : f (x) = c}

is a curve at a ∈ S in the sense that
x : I → S is the parametric form of the
curve. I.e., x(ta) = a for some ta ∈ I
and

f (x(t)) = c

for all t ∈ I. Then
I ∇f (a) is normal to the curve at a
I Tangent line at a is{

x ∈ R2 : ∇f (a) · (x− a) = 0
}

This is because the chain rule implies
that ∇f (x(t)) · x′(t) = 0.

0.4

0.3

0.3

0.2

0.2

0.1

0
.1

0.1
0

−0.1

−
0.

1

−0.1

−0.2

−0.2

−0.3

−0.3−0.4

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure: Contour plot of x1 exp(−x2
1 − x2

2 )

I Isotherms ↔ temperature;
I Contours ↔ altitude.

Terminology: L(c) is called the level set.
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Level set examples

Example
Let f (x1, x2, x3) := x2

1 + x2
2 + x2

3 .
I If c > 0 then L(c) is a sphere,
I L(0) is a single point (0, 0, 0),
I If c < 0 then L(c) is empty.

Example
Let f (x1, x2, x3) := x2

1 + x2
2 − x2

3 .
I If c > 0 then L(c) is a one-sheeted

hyperboloid,
I L(0) is an infinite cone,
I If c < 0 then L(c) a two-sheeted

hyperboloid.
Figure: Sphere, two-sheeted hyperboloid,
infinite cone, one-sheeted hyperboloid.
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Level set & tangent planes (3D)

Let f be a differentiable scalar field on
S ⊂ R3 and suppose that
L(c) = {x ∈ S : f (x) = c} is a surface.
I ∇f (a) is normal to every curve

α(t) in the surface which passes
through a,

I Tangent plane at a is{
x ∈ R3 : ∇f (a) · (x− a) = 0

}
.

Same argument as in R2 works in Rn.

∇f (a)

a

L(c)

α(t)

α′(t)

Figure: Tangent plane and normal vector
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Derivatives of vector fields

Definition (Directional derivative)
Let S ⊂ Rn and f : S → Rm. For any a ∈ int S and v ∈ Rn the derivative of f
with respect to v is defined as

Dvf(a) := lim
h→0

f(a + hv)− f(a)
h .

Note: If we write f = (f1, . . . , fm) then Dvf = (Dvf1, . . . ,Dvfm).
Definition (Differentiable)
We say that f is differentiable at a if there is a linear transformation
Ta : Rn → Rm and E(a, v) such that, for v ∈ B(a, r),

f(a + v) = f(a) + Ta(v) + ‖v‖E(a, v)

and E(a, v)→ 0 as v→ 0.
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Derivatives of vector fields (cont.)
Theorem
If f is differentiable at a then f is continuous at a and Ta(v) = Dvf(a).

Proof.
Same as for the case when f : Rn → R.

Definition (Jacobian matrix)
The Jacobian matrix of f : Rn → Rm at a is defined
as

Df(a) =


∂1f1(a) ∂2f1(a) · · · ∂nf1(a)
∂1f2(a) ∂2f2(a) · · · ∂nf2(a)

... ... ...
∂1fm(a) ∂2fm(a) · · · ∂nfm(a)



I Choosing a basis any
linear transformation
can be written as a
m × n matrix.

I Ta(v) = Df(a)v.
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Derivatives of f : Rn → Rm (recap.)

Let S ⊂ Rn and f : S → Rm. If f is differentiable at a ∈ S then, for all
v ∈ B(a, r) ⊂ S,

f(a + v) = f(a) + Df(a)v + ‖v‖E(a, v).

This is like a Taylor expansion in higher dimensions.
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Matrix form of the chain rule
Theorem
Let S ⊂ Rl , T ⊂ Rm be open. Let f : S → T and g : T → Rn and define

h := g ◦ f : S → Rn.

Let a ∈ S. Suppose that f is differentiable at a and g is differentiable at f(a).
Then h is differentiable at a and

Dh(a) = Dg(f(a)) Df(a).

Proof.
Since f and g are differentiable there exists Ef and Eg. Let u := f(a + v)− f(a).

h(a + v)− h(a) = g(f(a + v))− f(h(a))
= Dg(f(a))(f(a + v)− f(a)) + ‖u‖Eg(f(a),u)
= Dg(f(a))Df(a)v + ‖v‖Dg(f(a))Ef(a, v) + ‖u‖Eg(f(a),u).
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Polar coordinates (derivatives example)
I We can write the change of coordinates (r , θ) 7→ (r cos θ, r sin θ) as the

function f(r , θ) = (x(r , θ), y(r , θ)) where f : (0,∞)× [0, 2π)→ R2.
I We calculate the Jacobian matrix

Df(r , θ) =
(
∂r x(r , θ) ∂θx(r , θ)
∂r y(r , θ) ∂θy(r , θ)

)
=
(

cos θ −r sin θ
sin θ r cos θ

)
.

I We wish to calculate derivatives of h := g ◦ f for some g : R2 → R.

Dh(r , θ) = Dg(f(r , θ)) Df(r , θ)(
∂r h(r , θ) ∂θh(r , θ)

)
=
(
∂x g(f(r , θ)) ∂y g(f(r , θ))

)(cos θ −r sin θ
sin θ r cos θ

)
I Consequently{

∂r h(r , θ) = ∂x g(r cos θ, r sin θ) cos θ + ∂y g(r cos θ, r sin θ) sin θ
∂θh(r , θ) = −r∂x g(r cos θ, r sin θ) sin θ + r∂y g(r cos θ, r sin θ) cos θ

.



MA2 - Scalar and
vector fields

Higher dimensional
space

Open balls and
sets

Limits and
continuity

Derivatives of
scalar fields

Chain rule

Level sets &
tangent planes

Derivatives of
vector fields

Matrix form of the
chain rule

More on partial
derivatives

Equality of partial derivatives

Does ∂1∂2f = ∂2∂1f , etc.?
Example (partial derivative problem)
Let f : R2 → R be defined as f (0, 0) = 0 and, for (x1, x2) 6= (0, 0),

f (x1, x2) := x1x2(x2
1 − x2

2 )
x2

1 + x2
2

.

We can calculate ∂2∂1f (0, 0) = −1 but ∂1∂2f (0, 0) = 1.

Theorem
Let f : S → R be a scalar field such that the partial derivatives ∂1f , ∂2f and
∂2∂1f exist on an open set S ⊂ R2 containing x. Further assume that ∂2∂1f is
continuous on S. Then the derivative ∂1∂2f (x) exists and ∂1∂2f (x) = ∂2∂1f (x).
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Implicit functions and partial derivatives

Implicit
I x2 − y = 0
I x2 + y2 − 1 = 0
I x2 − y2 − 1 = 0
I x2 + y2 − ey − 4 = 0

Explicit
I f (x) = x2

I f (x) = ±
√

1− x2, |x | ≤ 1
I f (x) = ±

√
x2 − 1, |x | ≥ 1

I ?

I We know F : R2 → R and we suppose
there exists some f : R→ R such that
F (x , f (x)) = 0 for all x .

I Let g(x) := F (x , f (x)) and note that
g ′(x) = 0.

I By the chain rule g ′(x) is equal to

(
∂1F (x , f (x)) ∂2F (x , f (x))

)( 1
f ′(x)

)

I Consequently

f ′(x) = −∂1F (x , f (x))
∂2F (x , f (x)) .

I A similar argument holds in higher
dimension.
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