1. Questions - Call 6 - 16/09/2021

Solutions to each question are included at the end of this document.

Call 6.

(1)	Q1 CLOZE 1 point 0.10 penalty The Taylor Series for $f(x) = \frac{7}{x^4}$ about $x = -3$ is
	$f(x) = \sum_{n=1}^{\infty} \frac{7(n+b)(n+2)(n+1)}{6(c)^{n+4}} (x+3)^n$
	where a =
	; b =
	NUMERICAL 1 point
	3
	. The fadius of convergence of this series is $r =$
	. Fill in the above blanks with the correct integers, possibly zero or
	negative (1 point each). At $x = -3 - r$ the series
	MULTI I point Single Shuffle
	converges
	diverges 🗸
	and at $x = -3 + r$ the series
	MULTI 1 point Single Shuffle
	converges
	diverges \checkmark
	(1 point each).

(2) **Q2**

CLOZE 1 point 0.10 penalty (Fill in each of the following blanks with the correct **integer**, possibly zero or negative.) Let $g(x, y) := x^2 + 3xy + y^2 - 35$. We will find the points in the set $\{g(x, y) = 0\} \subset \mathbb{R}^2$ which are closest / furthest from the origin. Introduce a suitable function f(x, y) and apply the Lagrange multiplier method with the constraint g(x, y) = 0 in order to find the extrema points. There are

NUMERICAL 2 points	
2 🗸	
1	

extrema points (2 points). There is a single extrema point in the upper right quadrant and it is equal to (\sqrt{a}, \sqrt{b}) where a =

•	$\begin{array}{c} (t,-\sqrt{4-t^2}), \ t\in [0,2]\\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \\ \hline \\$	
	is 🗸	
	is not	
٠	$(t+2,t), t \in [-2,0]$	
	MULTI 1 point Single	
	is	
	is not \checkmark	
T 0		

If \overline{C} is the path above and

$$\mathbf{f}(x,y) = \begin{pmatrix} 2\\x^2 \end{pmatrix}$$

is a vector field on \mathbf{R}^2 then $\int_C \mathbf{f} \ d\boldsymbol{\alpha} =$

NUMERICAL 4 points			
28 🗸			
-28 (50%)			
/3 Fill in the blank with the co	rroct intoror	possibly zo	o or no

/3. Fill in the blank with the correct integer, possibly zero or negative (2 points). Hint: $\int \sin^3 t \, dt = (\cos 3t - 9 \cos t)/12$.

(4) **Q4**

CLOZE 1 point 0.10 penalty

Let V denote the three dimensional region which is contained within the cylinder $x^2 + y^2 = 4$, lies below $z = 8 - x^2 - y^2$ and above $z = -\sqrt{4x^2 + 4y^2}$. Let $D = \{(x, y) : x^2 + y^2 \le 4\}$ and show that the volume of V is equal to

$$\iint_{D} \boxed{\mathbf{a}} - (x^2 + y^2) + 2\sqrt{(x^2 + y^2)} \, dxdy$$

where a =

NUMERICAL 3 points

8 🗸

Hint: write $V = \{(x, y, z) : (x, y) \in D, f(x, y) \le z \le g(x, y)\}$ for a suitable choice of functions f and g, then integrate with respect to z. Now evaluate this integral show that the volume of V is equal to

NUMERICAL 3 points

104 🗸

 $\frac{\pi}{3}$. *Hint: use polar coordinates.* Fill in the blanks with the correct integers, possibly zero or negative (3 points each).

(5) **Q5**

CLOZE 1 point 0.10 penalty

Consider the parametric surface $\mathbf{r}(S)$ where

$$\mathbf{r}(u,v) = (3u\cos v, 3u\sin v, -u^2),$$

and $S = \left\{ (u, v) : 0 \le u \le \frac{\sqrt{19}}{6}, 0 \le v \le 2\pi \right\}$. This surface has the Cartesian equation $x^2 + y^2 =$

-9 🗸	
9 (50%)	
	•

z (1 point). The fundamental vector product is

4

$$\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} = \begin{pmatrix} 6u^2 \cos v \\ \boxed{a} u^2 \sin v \\ \boxed{b} u \end{pmatrix}$$

(1 point each). Now calculate $\left\|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right\|$ and then integrate to calculate the area of the surface Area $(\mathbf{r}(S)) =$

271 \checkmark $\frac{\pi}{54}$ (3 points). Fill in the blanks with the correct **integers**, possibly zero or negative. Q1 Solution: For the Taylor expansion see https://tutorial.math.lamar.edu/ Solutions/CalcII/TaylorSeries/Prob5.aspx. We obtain

$$f(x) = \sum_{n=0}^{\infty} \frac{7(n+3)(n+2)(n+1)}{6(3)^{n+4}} (x+3)^n.$$

Fixing x we let

$$a_n = \frac{7(n+3)(n+2)(n+1)}{6(3)^{n+4}}|x+3|^n$$

and consider $\sum_{n=0}^{\infty} a_n$. Using the ratio test we see that this converges when |x+3| < 3 and diverges when |x+3| > 3 and so the radius of convergence is r. Now we investigate convergence for x = -3 - r = -6:

Now we investigate convergence for x = -3 + r = 0:

$$f(0) = \sum_{n=0}^{\infty} \frac{7(n+3)(n+2)(n+1)}{6(3)^{n+4}} (3)^n = \frac{7}{6(3)^4} \sum_{n=0}^{\infty} (n+3)(n+2)(n+1).$$

In both cases the series diverge.

Q2 Solution: Let $g(x, y) := x^2 + 3xy + y^2 - 45$. One suitable choice of function for finding points closest / furthest from the origin is $f(x, y) = x^2 + y^2$. We calculate

$$abla g(x,y) = \begin{pmatrix} 2x+3y\\ 3x+2y \end{pmatrix}, \quad
abla f(x,y) = \begin{pmatrix} 2x\\ 2y \end{pmatrix}.$$

According to the Lagrange multiplier method we introduce $\lambda \in \mathbb{R}$ and write

$$\begin{pmatrix} 2x\\2y \end{pmatrix} = \lambda \begin{pmatrix} 2x+3y\\3x+2y \end{pmatrix}$$

Multiplying the first line by y and the second line by x we obtain that $2xy = 2\lambda xy + 3\lambda y^2$ and $2xy = \lambda 3x^2 + 2\lambda xy$. Equating these implies that $2\lambda xy + 3\lambda y^2 = \lambda 3x^2 + 2\lambda xy$ and so $y^2 = x^2$. We treat the case y = x and y = -x independently.

Case y = x: Substituting into $x^2 + 3xy + y^2 - 35 = 0$ we obtain $(2+3)x^2 = 35$. Consequently $x = \pm \sqrt{\frac{35}{5}}$. This gives two solutions: $(\sqrt{7}, \sqrt{7})$ and $(-\sqrt{7}, -\sqrt{7})$. **Case** y = -x: Substituting into $x^2 + 3xy + y^2 - 35 = 0$ we obtain $(2-3)x^2 = 35$. However (2-3) is negative and so there are no solutions in this case.

This set consists of two curves and has mirror symmetry along the line y = xand the line y = -x. The set is unbounded, it contains points infinitely far from the origin. The two extrema are the two points equally close to the origin.

Q3 Solution: Consider the vector field

$$\mathbf{f}(x,y) = \begin{pmatrix} 2\\ x^2 \end{pmatrix}$$

Picking the parametrization $\alpha(t) = (2 \sin t, -2 \cos t), t \in [0, \frac{\pi}{2}]$ we calculate that

$$\boldsymbol{\alpha}'(t) = \begin{pmatrix} 2\cos t \\ 2\sin t \end{pmatrix}$$

and also

$$\binom{2}{4\sin^2 t} \cdot \binom{2\cos t}{2\sin t} = 4\cos t + 8\sin^3 t$$

Consequently

$$\int_{C} \mathbf{f} \ d\boldsymbol{\alpha} = 8 \int_{0}^{\frac{\pi}{2}} \sin^{3} t \ dt + 4 \int_{0}^{\frac{\pi}{2}} \cos t \ dt.$$

Since $\int \sin^3 t \, dt = (\cos 3t - 9\cos t)/12$,

$$\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \frac{2}{3} \left[\cos 3t - 9 \cos t \right]_0^{\frac{\pi}{2}} + 4 \left[-\sin t \right]_0^{\frac{\pi}{2}} \\ = \frac{2}{3} (-1+9) + 4 = \frac{16}{3} + 4 = \frac{28}{3}.$$

 $\mathbf{Q4\ Solution:}\ \texttt{https://tutorial.math.lamar.edu/Solutions/CalcIII/TripleIntegrals/Prob9.aspx}$

Q5 Solution: Consider the parametric surface $\mathbf{r}(S)$ where

$$\mathbf{r}(u,v) = (3u\cos v, 3u\sin v, -u^2),$$

and $S = \left\{ (u, v) : 0 \le u \le \frac{\sqrt{19}}{6}, 0 \le v \le 2\pi \right\}.$

- (1) We observe that $(3u\cos v)^2 + (3u\sin v)^2 = 9u^2$ and so this surface has the Cartesian equation $x^2 + y^2 = -9z$.
- (2) We calculate that

$$\frac{\partial \mathbf{r}}{\partial u} = \begin{pmatrix} 3\cos v\\ 3\sin v\\ -2u \end{pmatrix}, \quad \frac{\partial \mathbf{r}}{\partial v} = \begin{pmatrix} -3u\sin v\\ 3u\cos v\\ 0 \end{pmatrix}$$

and so the fundamental vector product is

$$\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} = \begin{pmatrix} -6u^2 \cos v \\ 6u^2 \sin v \\ 9u \end{pmatrix}.$$

(3) Hence

$$\left\|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right\| = \left(36u^4 + 81u^2\right)^{\frac{1}{2}} = u\left(36u^2 + 81\right)^{\frac{1}{2}}.$$

(4) Using this we calculate the surface area

Area
$$(\mathbf{r}(S)) = \iint_{S} \left\| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right\| du dv$$

$$= \int_{0}^{2\pi} \left[\int_{0}^{\frac{\sqrt{19}}{6}} \left\| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right\| du \right] dv$$

$$= 2\pi \int_{0}^{\frac{\sqrt{19}}{6}} \left(u \left(36u^{2} + 81 \right)^{\frac{1}{2}} \right) du$$

$$= 2\pi \left[\frac{2}{3 \cdot 36 \cdot 2} \left(36u^{2} + 81 \right)^{\frac{3}{2}} \right]_{0}^{\frac{\sqrt{19}}{6}} = \frac{\pi}{3 \cdot 18} \left(\left(36 \left(\frac{\sqrt{19}}{6} \right)^{2} + 81 \right)^{\frac{3}{2}} - (0 + 81)^{\frac{3}{2}} \right)$$

$$= \frac{\pi}{3 \cdot 18} \left(100^{\frac{3}{2}} - 81^{\frac{3}{2}} \right) = \frac{\pi}{3 \cdot 18} \left(1000 - 729 \right) = \frac{271\pi}{54}.$$