1. Questions - Call 4 - 07/07/2021

Solutions to each question are included at the end of this document.

Call 4

II 4.	
(1)	Q1
` '	CLOZE 1 point 0.10 penalty
	(Fill in each of the following blanks with the correct integer , possibly zero
	or negative.) We will find a power series solution to the differential equation
	$2x^2y'' + xy' + x^2y = 0$
	under the assumption that $f(0) = 336$. By substituting $y(x) = \sum_{n=0}^{\infty} a_n x^n$
	one obtains the equation $\sum_{n=0}^{\infty} a_n = 0$
	∞
	$\sum_{n=2} [(2n^2 + a_n)a_n + a_{n-2}] x^n + a_1 x + b a_0 = 0$
	where a:
	NUMERICAL 2 points
	<u>-1 √</u>
	, b:
	NUMERICAL 2 points
	0 🗸
	(1 point each). Using the above equation and also the given initial value
	we know that $a_0 =$
	NUMERICAL 1 point
	336 ✓
	and $a_1 =$
	NUMERICAL 1 point
	0 🗸
	$(\frac{1}{2} \text{ point each})$. Furthermore, the above equation implies a recurrence
	relation between a_{n-2} and a_n which holds for all $n \geq 2$. Derive this recur-
	rence relation and use it to calculate the following coefficients of the power
	series solution: $a_2 =$
	NUMERICAL 1 point
	-56 ✓
	$, a_3 =$
	NUMERICAL 1 point
	0 🗸
	$, a_4 =$
	NUMERICAL 1 point
	2 🗸
	, $a_5 = $ NUMERICAL 1 point 1
	0 ✓

1

Single Shuffle

MULTI 2 points

 $(\frac{1}{2}$ point each). The radius of convergence of the power series solution is

0			
1			
336			
infinite ✓			
(1 point).			
$\mathbf{Q2}$			

(2) **Q2**

CLOZE 1 point 0.10 penalty

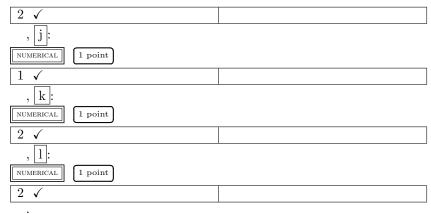
Fill in the blanks with integers, possibly 0 or negative. Find all stationary points of the function below, following the suggested steps.

$$f(x, y, z) = 2e^{(x-1)^2}(y^4 - 4yz + 2z^2).$$

First, we compute the gradient ∇f :

$$\nabla f(x,y,z) = \begin{pmatrix} \boxed{\mathbf{a}}(x-1)e^{(x-1)^2}(y^4 - 4yz + 2z^2) \\ e^{(x-1)^2}(\boxed{\mathbf{b}}y^{\boxed{\mathbf{c}}} + \boxed{\mathbf{d}}z) \\ e^{(x-1)^2}(\boxed{\mathbf{e}}y + \boxed{\mathbf{f}}z) \end{pmatrix}.$$

a :	
NUMERICAL 1 point	
4 🗸	
b:	
NUMERICAL 1 point	
8 🗸	
<u>c</u> :	
NUMERICAL 1 point	
3 ✓	
<u>d</u> :	
NUMERICAL 1 point	
-8 ✓	
e:	
NUMERICAL 1 point	
-8 🗸	
<u>f</u> :	
NUMERICAL 1 point	
8 🗸	
	three solutions. They are (x, y, z)
(g) , \sqrt{h} , \sqrt{i} , (j) , $-\sqrt{k}$, $-\sqrt{1}$) a	and $(1,0,0)$ where $\boxed{\mathbf{g}}$:
NUMERICAL 1 point	
1 🗸	
, h:	
NUMERICAL 1 point	
2 ✓	
, i:	
NUMERICAL 1 point	



Consider the first of them (g, \sqrt{h} , \sqrt{i}). The determinant of the Hessian at this point is

MULTI 1 point Single Shuffle

- positive ✓
- 0
- negative

At this point, the function f(x, y, z) takes a

- local minimum
- \bullet saddle point
- local maximum ✓

Consider the solution (1,0,0). The determinant of the Hessian at this point is

- positive ✓
- 0
- negative

At this point, the function f(x,y) has a

- local minimum
- \bullet saddle point \checkmark
- local maximum

(3) **Q3**

CLOZE 1 point 0.10 penalty

Determine which of the following is a parametrization of the path

$$C = \{(x, y) : 4x^2 + y^2 = 4, y \le 0\} \subset \mathbb{R}^2,$$

starting at (-1,0) and finishing at (1,0) $(\frac{1}{2}$ point each):

• $(\cos t, 2\sin t), t \in [-\pi, 0]$ MULTI 1 point Single Shuffle

is ✓	
is not	

• $(\sin t, 2\cos t), t \in [-\pi, 0]$ MULTI 1 point | Single | Shuffle

is	
is not ✓	
• $(t, -2\sqrt{1-t^2}), t \in [-1, 1]$	
MULTI 1 point Single Shuffle	
is √	
is not	
• $(\frac{2t}{t^2+1}, \frac{2t^2-2}{t^2+1}), t \in [-1, 1]$	
MULTI 1 point Single Shuffle	
is	
is not ✓	
• $(\frac{2t}{t^2+1}, \frac{2-2t^2}{t^2+1}), t \in [-1, 1]$	
MULTI 1 point Single Shuffle	
is √	
is not	
• $(2t, 2-2\sqrt{1-t^2}), t \in [-1,1]$	
MULTI 1 point Single Shuffle	
ia	

If \overline{C} is the path above and

is not ✓

$$\mathbf{f}(x,y) = \begin{pmatrix} y^2 \\ 3x^2 \end{pmatrix}$$

is a vector field on \mathbb{R}^2 calculate $\int_C \mathbf{f} \ d\boldsymbol{\alpha} =$

| Numerical | 6 points | | 16 √ | | | -16 (50%) | |

/3. Fill in the blank with the correct **integer**, possibly zero or negative (3 points).

(4) **Q4**

CLOZE 1 point 0.10 penalty

Let S be the triangular region of the xy-plane which is bounded by the three lines x = 0, y = x and y = 2 - x. Let V be the solid under the paraboloid $z = x^2 + y^2$ and above the region S. The volume of V is

NUMERICAL 6 points

/3. Fill in the blank with the correct **integer**, possibly zero or negative (6 points).

(5) **Q5**

Consider the the sphere $S = \{(x, y, z) : x^2 + y^2 + z^2 = 1/4\}$ and the vector-field

$$\mathbf{f}(x,y,z) = \begin{pmatrix} 2x^3 \\ 2y^3 \\ 2z^3 \end{pmatrix}.$$

We wish to compute $\iint_S \mathbf{f} \cdot \mathbf{n} \ dS$ where \mathbf{n} is the outgoing unit normal on S. If we let $V = \{(x, y, z) : x^2 + y^2 + z^2 \le 1/4\}$ then, by Gauss, we know that

$$\iint_{S} \mathbf{f} \cdot \mathbf{n} \ dS = \iiint_{V} \nabla \cdot \mathbf{f} \ dV$$

 $(\nabla \cdot \mathbf{f} \text{ denotes the divergence of } \mathbf{f})$. In this case $\nabla \cdot \mathbf{f}$ is equal to

MULTI 1 point Single Shuffle

- $3(x^2 + y^2 + z^2)$, $6(x^2 + y^2 + z^2)$, \checkmark $x^3 + y^3 + z^3$,
- $(x^4 + y^4 + z^4)/4$.

To evaluate the three-dimensional integral use spherical coordinates x = $r\sin\theta\cos\varphi$, $y=r\sin\theta\sin\varphi$, $z=r\cos\theta$. The Jacobian $J(r,\theta,\varphi)$ is equal

MULTI 1 point Single | Shuffle

- $r\cos\theta$,
- $r^2 \sin \theta$, \checkmark
- $2r^2\sin\theta$,
- $r^3 \tan \varphi$.

Consequently

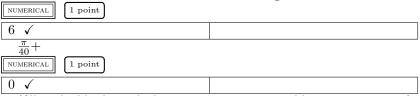
$$\iiint_{V} \nabla \cdot \mathbf{f} \ dV = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1/2} \boxed{?} \ dr d\theta d\varphi$$

where the blank ? should be

Single Shuffle MULTI 2 points

- $3r^4\sin\theta$,
- $6r^4 \sin \theta$, \checkmark
- $2r^4\sin\theta$,
- $r^3 \sin \theta$.

Evaluate the integral and hence calculate $\iint_S \mathbf{f} \cdot \mathbf{n} \ dS =$



(fill in the blanks with the correct integers, possibly zero or negative).

Q1 Solution: We consider, the equation

$$2x^2y'' + xy' + x^2y = 0.$$

Substituting $y(x) = \sum_{n=0}^{\infty} a_n x^n$, $y'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$ and $y''(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$ one obtains the equation

$$2x^{2} \left(\sum_{n=2}^{\infty} n(n-1)a_{n}x^{n-2} \right) + x \left(\sum_{n=1}^{\infty} na_{n}x^{n-1} \right) + x^{2} \left(\sum_{n=0}^{\infty} a_{n}x^{n} \right) = 0$$

and so

$$\sum_{n=2}^{\infty} 2n(n-1)a_n x^n + \sum_{n=1}^{\infty} na_n x^n + \sum_{n=0}^{\infty} a_n x^{n+2} = 0.$$

Shifting the index in the third sum

$$\sum_{n=2}^{\infty} 2n(n-1)a_n x^n + \sum_{n=1}^{\infty} na_n x^n + \sum_{n=2}^{\infty} a_{n-2} x^n = 0.$$

Consequently, separating the terms of x^1 and x^0 ,

$$\sum_{n=2}^{\infty} \left[2n(n-1)a_n + na_n + a_{n-2} \right] x^n + a_1 x = 0.$$

Equivalently

$$\sum_{n=2}^{\infty} \left[(2n^2 - n)a_n + a_{n-2} \right] x^n + a_1 x = 0.$$

This means that $a_1 = 0$ and, as an immediate consequence of the given initial value, $a_0 = 336$. Considering the first sum in the above equation, we see that, for all $n \geq 2$, $(2n^2 - n)a_n + a_{n-2} = 0$ and so

$$a_n = -\frac{a_{n-2}}{2n^2 - n}.$$

The recurrence relation would allow us to determine the coefficients of the power series solution to this differential equation. For the first few terms we calculate that

$$a_2 = -\frac{1}{2 \cdot 2^2 - 2} a_0 = -\frac{1}{6} a_0,$$

$$a_3 = -\frac{1}{2 \cdot 3^2 - 3} a_1 = 0,$$

$$a_4 = -\frac{1}{2 \cdot 4^2 - 4} a_2 = -\frac{1}{28} a_2,$$

$$a_5 = -\frac{1}{2 \cdot 5^2 - 5} a_3 = 0.$$

Using the ratio test on the recurrence relation shows that the radius of converge of the power series solution is infinite.

Q3 Solution: Consider the vector field

$$\mathbf{f}(x,y) = \begin{pmatrix} ay^2 \\ (4-a)x^2 \end{pmatrix}$$

Picking the parametrization $\alpha(t) = (\cos t, 2\sin t), \quad t \in [-\pi, 0]$ we calculate that

$$\boldsymbol{\alpha}'(t) = \begin{pmatrix} -\sin t \\ 2\cos t \end{pmatrix}, \quad \mathbf{f}(\boldsymbol{\alpha}(t)) = \begin{pmatrix} 4a\sin^2 t \\ (4-a)\cos^2 t \end{pmatrix}$$

and so $\mathbf{f}(\boldsymbol{\alpha}(t)) \cdot \boldsymbol{\alpha}'(t) = 2(4-a)\cos^3 t - 4a\sin^3 t$. Consequently

$$\int_C \mathbf{f} \ d\alpha = 2(4 - a) \int_{-\pi}^0 \cos^3 t \ dt - 4a \int_{-\pi}^0 \sin^3 t \ dt.$$

To proceed we note the indefinite integrals $\int \cos^3 t \ dt = -\frac{1}{3} \sin^3 t + \sin t + C$ and $\int \sin^3 t \ dt = \frac{1}{3} \cos^3 t - \cos t + C$. Consequently

$$\int_C \mathbf{f} \ d\alpha = \frac{2(4-a)}{3} \left[-\sin^3 t + 3\sin t \right]_{-\pi}^0 - \frac{4a}{3} \left[\cos^3 t - 3\cos t \right]_{-\pi}^0$$
$$= 0 - \frac{4a}{3} (1 - 3 + 1 - 3) = \frac{16a}{3}.$$

Q5 Solution. Consider the sphere $S = \{(x, y, z) : x^2 + y^2 + z^2 = 1/4\}$ and the vector-field

$$\mathbf{f}(x, y, z) = \begin{pmatrix} x^3 \\ y^3 \\ z^3 \end{pmatrix}.$$

We wish to compute $\iint_S \mathbf{f} \cdot \mathbf{n} \ dS$ where \mathbf{n} is the outgoing unit normal on S. If we let $V = \{(x, y, z) : x^2 + y^2 + z^2 \le 1/4\}$ then, by Gauss, we know that

$$\iint_{S} \mathbf{f} \cdot \mathbf{n} \ dS = \iiint_{V} \nabla \cdot \mathbf{f} \ dV$$

 $(\nabla \cdot \mathbf{f} \text{ denotes the divergence of } \mathbf{f})$. In this case $\nabla \cdot \mathbf{f}$ is equal to $3(x^2 + y^2 + z^2)$, To evaluate the three-dimensional integral use spherical coordinates $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$. The Jacobian $J(r, \theta, \varphi)$ is equal to $r^2 \sin \theta$, Consequently

$$\iiint_{V} \nabla \cdot \mathbf{f} \ dV = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1/2} \boxed{?} \ dr d\theta d\varphi$$

where the blank ? should be $3r^4 \sin \theta$, Evaluate the integral and hence calculate $\iint_S \mathbf{f} \cdot \mathbf{n} \ dS = 3 \frac{\pi}{40}$ (fill in the blanks with the correct integers, possibly zero or negative).

$$\iiint_{V} \nabla \cdot \mathbf{f} \ dV = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1/2} 3r^{4} \sin \theta \ dr d\theta d\varphi$$
$$= 2\pi \left(\int_{0}^{\pi} \sin \theta \ d\theta \right) \left(\int_{0}^{1/2} 3r^{4} \ dr \right)$$
$$= 2\pi \cdot 2 \cdot \frac{3}{5 \cdot 2^{5}} = \frac{3}{40}\pi.$$