
1. Questions - Call 3 - 22/06/2021

Solutions to each question are included at the end of this document.

Call 3.

(1) Q1-A
Fill in the following blanks with the correct integer, possibly zero or neg-
ative (2 points each).

In this problem we find a power series solution of the differential equation

(1 + x2)y′′ − 2y = 0

subject to the initial condition y(0) = 3, y′(0) = 3. Substituting y(x) =∑∞
n=0 anx

n we obtain the formula

∞∑
n=0

[
(n+ a )(n+ 1)an+2 + (n− 2)(n+ b )an

]
xn = 0

where a : 2 X
−2 (50%)

, b : 1 X
−1 (50%)

( 1
2 point each). We can now

produce a recursion formula for the coefficients. We calculate a0 = 3 X
−3 (50%)

,

a2 = 3 X
−3 (50%)

, a4 = 0 X , a6 = 0 X ( 1
2 point each). The general

formula for the odd coefficients is (for all n ≥ 0),

a2n+1 =
− (−1)

n
3

( c n+ d )(2n− 1)
.

where c : 2 X
−2 (50%)

, d : 1 X
−1 (50%)

(1 point each). The radius of

convergence of this power series is 1 X (1 point).

(2) Q1-B
Fill in the following blanks with the correct integer, possibly zero or neg-
ative (2 points each).

In this problem we find a power series solution of the differential equation

(1 + x2)y′′ − 2y = 0

subject to the initial condition y(0) = 4, y′(0) = 4. Substituting y(x) =∑∞
n=0 anx

n we obtain the formula

∞∑
n=0

[
(n+ a )(n+ 1)an+2 + (n− 2)(n+ b )an

]
xn = 0

where a : 2 X
−2 (50%)

, b : 1 X
−1 (50%)

( 1
2 point each). We can now

produce a recursion formula for the coefficients. We calculate a0 = 4 X
−4 (50%)

,

a2 = 4 X
−4 (50%)

, a4 = 0 X , a6 = 0 X ( 1
2 point each). The general

1



2

formula for the odd coefficients is (for all n ≥ 0),

a2n+1 =
− (−1)

n
4

( c n+ d )(2n− 1)
.

where c : 2 X
−2 (50%)

, d : 1 X
−1 (50%)

(1 point each). The radius of

convergence of this power series is 1 X (1 point).

(3) Q2-A
(Fill in each of the following blanks with the correct integer, possibly zero
or negative.) Let g(x, y) := x2 + xy + y2 − 12. We will find the points in
the set {g(x, y) = 0} ⊂ R2 which are closest / furthest from the origin.
Introduce a suitable function f(x, y) and apply the Lagrange multiplier
method with the constraint g(x, y) = 0 in order to find the extrema points.

There are 4 X extrema points (2 points). There is a single extrema

point in the lower right quadrant and it is equal to ( 2 X , −2 X ) (1

point each). The extrema points are:
• all equally the closest points to the origin
• some are the closest and some are the furthest X
• all equally the furthest points to the origin
• something else
(2 points).

(4) Q2-B
(Fill in each of the following blanks with the correct integer, possibly zero
or negative.) Let g(x, y) := x2 + xy + y2 − 27. We will find the points in
the set {g(x, y) = 0} ⊂ R2 which are closest / furthest from the origin.
Introduce a suitable function f(x, y) and apply the Lagrange multiplier
method with the constraint g(x, y) = 0 in order to find the extrema points.

There are 4 X extrema points (2 points). There is a single extrema

point in the lower right quadrant and it is equal to ( 3 X , −3 X ) (1

point each). The extrema points are:
• all equally the closest points to the origin
• some are the closest and some are the furthest X
• all equally the furthest points to the origin
• something else
(2 points).

(5) Q3-A
Fill in the following blanks with the correct integer, possibly zero or

negative (2 points each).
(a) If C is the path from (0, 1) to (1, e) along the curve y = ex and

f(x, y) =

(
4x2

2y

)
.

is a vector field then
∫
C
f dα = 1 X /3 + e2.

(b) If C be the line segment from (0, 2) to (2, 4) and

f(x, y) =

(
x3y
xy

)



3

is a vector field then
∫
C
f dα = 316 X

−316 (50%)
/15.

(c) If Let C be the path from (−1,−1) to (1, 1) along the curve y = x3

and

f(x, y) =

(
x2

5y2

)
is a vector field then

∫
C
f dα = 4 X

−4 (50%)
.

(6) Q3-B
Fill in the following blanks with the correct integer, possibly zero or

negative (2 points each).
(a) If C is the path from (0, 1) to (1, e) along the curve y = ex and

f(x, y) =

(
5x2

2y

)
.

is a vector field then
∫
C
f dα = 2 X /3 + e2.

(b) If C be the line segment from (0, 2) to (2, 4) and

f(x, y) =

(
x2y
xy

)
is a vector field then

∫
C
f dα = 16 X

−16 (50%)
.

(c) If Let C be the path from (−1,−1) to (1, 1) along the curve y = x3

and

f(x, y) =

(
x2

8y2

)
is a vector field then

∫
C
f dα = 6 X

−6 (50%)
π.

(7) Q4-A
Fill in the following blanks with the correct integers, possibly zero or neg-
ative. We wish to evaluate the integral

I =

∫∫∫
V

5x+ 4y + 3z dxdydz

where the integral is over the half ellipsoid

V =

{
(x, y, z) :

x2

4
+ y2 + z2 ≤ 1, x ≥ 0

}
⊂ R3.

We choose a change of coordinates x = r cos θ, y = 1
2r sin θ, z = z under

which V is sent to

W =

{
(r, θ, z) : −π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ c , |z| ≤

√
d − r2

e

}
and the Jacobian is J(r, θ, z) = r

f
. The missing values are (1 point each):

c : 2 X d : 1 X e : 4 X f : 2 X Evaluating the integral

we obtain the final result I = 5 X π
2 (2 points).
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(8) Q5
Fill in each blank with the correct integer, possibly zero or negative.

Consider the surface S =
{

(x, y, z) : x2 + y2 = z, z ≤ 16
}

. A possible
choice for the parametric form of the surface S is to let T = {(r, θ) : r ∈ [0,

4 X ], θ ∈ [0, 2π]} ( 1
2 point) and

r : (r, θ) 7→
(
r cos θ, a , b

)
.

For this parametric representation we calculate that

∂r

∂r
× ∂r

∂θ
=

 c

d
e

 .

The missing formulae are (1
2 point each):

a :

• r sin θ X • r cos θ • r • r2 • r2 cos θ • r2 sin θ
b :

• r sin θ • r cos θ • r • r2 X • r2 cos θ • r2 sin θ
c :

• 2r sin θ • r • 2r2 • −r2 sin θ • −2r2 cos θ X
d :

• 2r sin θ • r • r2 • −2r2 sin θ X • −2r2 cos θ
e :

• 2r sin θ • r X • r2 • −2r2 sin θ • −2r2 cos θ
Consider the vector field

f(x, y, z) =
(
x
0
2

)
and let n be the unit normal to S which has negative z-component. The

surface integral
∫∫
S
f · n dS = 96 X

−96 (50%)
π (3 points).
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Q1 Solution: In this problem we find a power series solution of the differential
equation

(1 + x2)y′′ − 2y = 0

subject to the initial condition y(0) = a, y′(0) = a. (Either a = 3 or a = 6.) To
proceed we substitute y(x) =

∑∞
n=0 anx

n and y′′(x) =
∑∞
n=2 n(n − 1)anx

n−2 to
obtain

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=2

n(n− 1)anx
n − 2

∞∑
n=0

anx
n = 0.

Rearranging this is equivalent to
∞∑
n=0

[(n+ 2)(n+ 1)an+2 + n(n− 1)an − 2an]xn = 0.

Consequently we know that, for all n ≥ 0,

(n+ 2)(n+ 1)an+2 = − (n(n− 1)− 2) an = −(n− 2)(n+ 1)an.

This leads to the recursion relation

an+2 = − (n− 2)

(n+ 2)
an.

Using the initial conditions we have a0 = y(0) = a, a1 = y′(0) = a. Using the
recursion relation we observe that a2 = a0 = a but a4 = 0, a6 = 0, a8 = 0, etc.
For the odd terms we need to work slightly harder. Using the recursion formula we
calculate that

a2n+1 =

(
−2n− 3

2n+ 1

)
a2n−1

=

(
−2n− 3

2n+ 1

)(
−2n− 5

2n− 1

)
a2n−3

=

(
−2n− 3

2n+ 1

)(
−2n− 5

2n− 1

)(
−2n− 7

2n− 3

)
a2n−7

=

(
−2n− 3

2n+ 1

)(
−2n− 5

2n− 1

)(
−2n− 7

2n− 3

)
· · ·
(
−5

9

)(
−3

7

)(
−1

5

)(
−−1

3

)
a1.

The telescoping cancellations leads to the general formula

a2n+1 =
− (−1)

n
a

(2n+ 1)(2n− 1)
.

Using the ratio test with the recursion formula is convenient to deduce that the
radius of convergence is equal to 1.

Q2 Solution: Let g(x, y) := x2 + xy + y2 − b. Either b = 12 or b = 27. One
suitable choice of function for finding points closest / furthest from the origin is
f(x, y) = x2 + y2. We calculate

∇g(x, y) =

(
2x+ y
x+ 2y

)
, ∇f(x, y) =

(
2x
2y

)
.

According to the Lagrange multiplier method we introduce λ ∈ R and write(
2x
2y

)
= λ

(
2x+ y
x+ 2y

)
.
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Multiplying the first line by y and the second line by x we obtain that 2xy = 2λxy+
λy2 and 2xy = λx2 + 2λxy. Equating these implies that 2λxy+ λy2 = λx2 + 2λxy
and so y2 = x2. We treat the case y = x and y = −x independently.

Case y = x: Substituting into x2 + xy + y2 − b = 0 we obtain (2 + 1)x2 = b.

Consequently x = ±
√

b
3 . This gives two solutions: (

√
b
3 ,
√

b
3 ) and (−

√
b
3 ,−

√
b
3 ).

Case y = −x: Substituting into x2 + xy + y2 − b = 0 we obtain (2− 1)x2 = b.

Consequently x = ±
√
b. This gives two solutions: (

√
b,−
√
b) and (−

√
b,
√
b).

This set is an ellipse. Two extrema are the two points equally close as each other
to the origin, the other two extrema are the two points equally far as each other
from the origin.

Q3 Solution: (a) Let C be the path from (0, 1) to (1, e) along the curve y = ex

and

f(x, y) =

(
ax2

2y

)
.

Choose α(t) := (t, et), t ∈ [0, 1]. We calculate

α′(t) =

(
1
et

)
, f(α(t)) =

(
at2

2et

)
.

Consequently α(t) · f(α(t)) = at2 + 2e2t. And so∫
f dα =

∫ 1

0

(at2 + 2e2t) dt

=

∫ 1

0

at2 + 2e2t dt =
[a

3
t3 + e2t

]1
0

= (
a

3
+ e2 − 1).

(b) Let C be the line segment from (0, 2) to (2, 4) and

f(x, y) =

(
xay
xy

)
.

Choose α(t) := (2t, 2 + 2t), t ∈ [0, 1]. We calculate

α′(t) =

(
2
2

)
, f(α(t)) =

(
2ata(2 + 2t)
(2t)(2 + 2t)

)
=

(
2 · 2ata(1 + t)

4t(1 + t)

)
.

Consequently α(t) ·f(α(t)) = 4 ·2ata(1+t)+8t(1+t) = 8t+8t2+4 ·2ata+4 ·2ata+1.
And so ∫

f dα =

∫ 1

0

(23t+ 23t2 + 2a+2ta + 2a+2ta+1) dt

=

[
22t2 +

23

3
t3 +

2a+2

a+ 1
ta+1 +

2a+2

a+ 2
ta+2

]1
0

= 22 +
23

3
+

2a+2

a+ 1
+

2a+2

a+ 2
=

20

3
+

2a+2

a+ 1
+

2a+2

a+ 2
.

(c)
Let C be the path from (−1,−1) to (1, 1) along the curve y = x3 and

f(x, y) =

(
x2

ay2

)
.
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Choose α(t) := (t, t3), t ∈ [−1, 1]. We calculate

α′(t) =

(
1

3t2

)
, f(α(t)) =

(
t2

at6

)
.

Consequently α(t) · f(α(t)) = t2 + 3at8. And so∫
f dα =

∫ 1

−1
(t2 + 3at8) dt

=

[
1

3
t3 +

a

3
t9
]1
−1

=
1

3
(1 + a+ 1 + a) =

2

3
(1 + a).

Q4 Solution: Here we evaluate the integral

I =

∫∫∫
V

5x+ 4y + 3z dxdydz

where

V =

{
(x, y, z) :

x2

4
+ y2 + z2 ≤ 1, x ≥ 0

}
⊂ R3.

We choose a change of coordinates x = r cos θ, y = 1
2r sin θ, z = z.

We calculate the Jacobian determinant

J(r, θ, z) =

∣∣∣∣∣∣
cos θ −r sin θ 0
1
2 sin θ 1

2r cos θ 0
0 0 1

∣∣∣∣∣∣ =
r

2
.

Observing the symmetry of the problem in y and z (try calculating the three terms
separately and you find that these two terms are odd functions integrated over
intervals symmetric on the origin),

I =

∫∫∫
V

5x+ 4y + 3z dxdydz =

∫∫∫
V

5x dxdydz.

Using the change of variables we obtain

I = 5

∫ π
2

−π2

∫ 2

0

∫ √
1− r24

−
√

1− r24

(r
2

)
(r cos θ) dzdrdθ

. Since
∫ π

2

−π2
cos θ dθ = 2 and

∫√
1− r24

−
√

1− r24
dz = 2

√
1− r2

4 ,

I = 5

∫ 2

0

r2
√

1− r2

4 dr.

It is convenient to change variables letting r = 2 sin t and hence

I = 5

∫ π
2

0

8 sin2 t cos2 t dt.

Using the double angle formulae sin 2t = 2 sin t cos t and cos 2t = 1 − 2 sin2 t we
know that 8 sin2 t cos2 t = 1− cos 4t and so

I = 5

∫ π
2

0

1− cos 4t dt =
5

2
π.
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Q5 Solution: We choose the parametric form of the surface S by letting T =
{(r, θ) : r ∈ [0, 4], θ ∈ [0, 2π]} and

r : (r, θ) 7→ (r cos θ, r sin θ, r2).

We calculate

∂r

∂r
× ∂r

∂θ
=

cos θ
sin θ
2r

×
−r sin θ
r cos θ

0

 =

−2r2 cos θ
−2r2 sin θ

r

 .

We observe that this corresponds to the opposite normal compared to the one that
we want so we will need to add a minus sign.∫∫

S

f · n dS = −
∫ 4

0

∫ 2π

0

r cos θ
0
2

 ·
−2r2 cos θ
−2r2 sin θ

r

 dθdr

=

∫ 4

0

∫ 2π

0

2r3 cos2 θ − 2r dθdr.

We calculate that ∫ 4

0

∫ 2π

0

(−2r) dθdr = −4π

[
1

2
r2
]4
0

= −2 · 42π.

On the other hand, using the indefinite integral
∫

cos2 θ dθ = 1
2 (θ + sin θ cos θ)+C,

we calculate that ∫ 2π

0

cos2 θ dθ =
1

2
[θ + sin θ cos θ]

2π
0 = π.

This means that∫ 4

0

∫ 2π

0

2r3 cos2 θ dθdr = 2π

∫ 4

0

r3 dr =
π

2

[
r4
]4
0

=
44

2
π.

Summing together the two parts of the integral we have∫∫
S

f · n dS =

(
44

2
− 2 · 42

)
π = 96π.
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