
1. Questions - Call 2 - 15/02/2021

Solutions to each question are included at the end of this document.

Call 2.

(1) Q1-A
Fill in the blanks with integers, possibly 0 or negative ( 1

4 point each). In

this question we calculate the Taylor expansion of x cos2(x) about the point
x = 0. Consider first cos(2x). Its Taylor expansion is

cos(2x) =

∞∑
n=0

a
n

(2n)!
x b n

where a : −4 X b : 2 X . Additionally we know that

cos2 x =
1

c
+

d

2
cos(2x)

where c : 2 X d : 1 X . From this we obtain the Taylor expansion

of x cos2 x =
∑∞
n=0 anx

n. The first few terms are

x cos2 x = e + x+ f x2 − x3 + g x4 +
h

3
x5 + i x6 +

j

45
x7 + o(x7).

e : 0 X f : 0 X g : 0 X h : 1 X i : 0 X j : −2 X .

We compute the integral:∫ x

0

t cos2 t dt = k + l x+
1

2
x2 + m x3 +

n

4
x4 + o x5 +

1

p
x6 + o(x6)

where k : 0 X l : 0 X m : 0 X n : −1 X o : 0 X

p : 18 X . The radius of convergence of the series x cos2 x =
∑∞
n=0 anx

n

is 0
1
4
infinite X

(1 point).

(2) Q1-B
Fill in the blanks with integers, possibly 0 or negative ( 1

4 point each). In

this question we calculate the Taylor expansion of x sin2(x) about the point
x = 0. Consider first cos(2x). Its Taylor expansion is

cos(2x) =

∞∑
n=0

a
n

(2n)!
x b n

where a : −4 X b : 2 X . Additionally we know that

sin2 x =
1

c
+

d

2
cos(2x)

1



2

where c : 2 X d : −1 X . From this we obtain the Taylor expan-

sion of x sin2 x =
∑∞
n=0 anx

n. The first few terms are

x sin2 x = e x+ f x2 + x3 + g x4 +
h

3
x5 + i x6 +

j

45
x7 + o(x7).

e : 0 X f : 0 X g : 0 X h : −1 X i : 0 X j :

2 X . We compute the integral:∫ x

0

t cos2 t dt = k x+ l x2 + m x3 +
n

4
x4 + o x5 − 1

p
x6 + o(x6)

where k : 0 X l : 0 X m : 0 X n : 1 X o : 0 X p :

18 X . The radius of convergence of the series x sin2 x =
∑∞
n=0 anx

n is

0
1
4
infinite X

(1 point).
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(3) Q2-A
In this question we will find and classify the extrema points of f(x, y) =
x4 + 3xy + 2y2. The gradient of this function is

∇f(x, y) =

(
a x3 + b y

c x+ d y

)
,

where a : 4 X b : 3 X c : 3 X d : 4 X .

There are three stationary points: (− 3
4 ,

e
16 ), (0, f ) and (

g
4 ,

h
16 ) where

e : 9 X f : 0 X g : 3 X h : −9 X .

Computing the Hessian at each stationary points we deduce that there

are 2 X relative minima, 1 X saddle point and 0 X relative

maxima. Moreover f(x, y) is bounded
unbounded X

. Fill in the blanks with

integers, possibly 0 or negative. Each part is worth 1
2 point.

(4) Q2-B
In this question we will find and classify the extrema points of f(x, y) =
x4 + 4xy + 9

2y
2. The gradient of this function is

∇f(x, y) =

(
a x3 + b y

c x+ d y

)
,

where a : 4 X b : 4 X c : 4 X d : 9 X .

There are three stationary points: (− 2
3 ,

e
27 ), (0, f ) and (

g
3 ,

h
27 ) where

e : 8 X f : 0 X g : 2 X h : −8 X .

Computing the Hessian at each stationary points we deduce that there

are 2 X relative minima, 1 X saddle point and 0 X relative

maxima. Moreover f(x, y) is bounded
unbounded X

. Fill in the blanks with

integers, possibly 0 or negative. Each part is worth 1
2 point.
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(5) Q3-A
Choose the correct option in each of the following four places (1 point each).
The vector-field

f(x, y) =

(
2y(1 + x)ex

2xex

)
is X
is not

conservative on R2. The vector-field

g(x, y) =

(
2y2

x+ 2

)
is
is not X

conservative on R2. The vector-field

h(x, y) =

(
3y(x2 + y2)−1

3x(x2 + y2)−1

)
is
is not X

conservative on the domain {(x, y) : |y| > 0} and is
is not X

conservative on the annular domain {(x, y) : 1 ≤ x2 + y2 ≤ 4}.
Let α denote the anticlockwise triangular path with three straight seg-

ments and vertices (0, 0), (1, 0), (0, 1). With g the vector-field defined

above, calculate the line integral
∫
g dα = −1 X

1 (50%)
/6. Fill in the

blank with the correct integer, possibly zero or negative (2 points).
(6) Q3-B

Choose the correct option in each of the following four places (1 point each).
The vector-field

f(x, y) =

(
3y(1 + x)ex

3xex

)
is X
is not

conservative on R2. The vector-field

g(x, y) =

(
4y2

x+ 4

)
is
is not X

conservative on R2. The vector-field

h(x, y) =

(
2y(x2 + y2)−1

2x(x2 + y2)−1

)
is
is not X

conservative on the domain {(x, y) : |y| > 0} and is
is not X

conservative on the annular domain {(x, y) : 1 ≤ x2 + y2 ≤ 4}.
Let α denote the anticlockwise triangular path with three straight seg-

ments and vertices (0, 0), (1, 0), (0, 1). With g the vector-field defined

above, calculate the line integral
∫
g dα = −5 X

5 (50%)
/6. Fill in the

blank with the correct integer, possibly zero or negative (2 points).
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(7) Q4-A

The set V = {(x, y, z) : x2 + y2 ≤ 32, 0 ≤ z ≤ 3 −
√
x2 + y2} is a cone of

height 3 with base in the xy-plane. The set W = {(x, y, z) : (x− 3
2 )2 +y2 ≤

( 3
2 )2} is a cylinder. Let D ⊂ R3 be the subset of the cone V which is

contained within the cylinder W . We will calculate the volume of D.
Let S =

{
(x, y) : (x− 3

2 )2 + y2 ≤ ( 3
2 )2
}

. We can then write

D =
{

(x, y, z) : (x, y) ∈ S, 0 ≤ z ≤ a −
√
x2 + y2

}
where a : 3 X (1 point). This is convenient since the volume of D is

equal to
∫∫
S

a −
√
x2 + y2 dxdy.

To proceed we use polar coordinates x = r cos θ, y = r sin θ which means
that the Jacobian is J(r, θ) = r and the corresponding region is

S̃ =
{

(r, θ) : θ ∈
[
−π2 ,

π
2

]
, 0 ≤ r ≤ b cos θ

}
where b : 3 X (1 point).

This all means that the volume of D is equal to∫∫
S̃

r( a − r) drdθ.

Evaluating the integral we show that the volume of D is Vol(D) = c π
4 + d

where c : 27 X , d : −12 X (2 points each).

(8) Q4-B

The set V = {(x, y, z) : x2 + y2 ≤ 42, 0 ≤ z ≤ 4 −
√
x2 + y2} is a cone of

height 4 with base in the xy-plane. The set W = {(x, y, z) : (x−2)2 +y2 ≤
22} is a cylinder. Let D ⊂ R3 be the subset of the cone V which is contained
within the cylinder W . We will calculate the volume of D.

Let S =
{

(x, y) : (x− 2)2 + y2 ≤ 22
}

. We can then write

D =
{

(x, y, z) : (x, y) ∈ S, 0 ≤ z ≤ a −
√
x2 + y2

}
where a : 4 X (1 point). This is convenient since the volume of D is

equal to
∫∫
S

a −
√
x2 + y2 dxdy.

To proceed we use polar coordinates x = r cos θ, y = r sin θ which means
that the Jacobian is J(r, θ) = r and the corresponding region is

S̃ =
{

(r, θ) : θ ∈
[
−π2 ,

π
2

]
, 0 ≤ r ≤ b cos θ

}
where b : 4 X (1 point).

This all means that the volume of D is equal to∫∫
S̃

r( a − r) drdθ.

Evaluating the integral we show that the volume of D is Vol(D) = c π+
d
9

where c : 16 X , d : −256 X (2 points each).
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(9) Q5-A
Consider the parametric surface r(S) where

r(u, v) = (2u cos v, 2u sin v, u2),

and S = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π}. This surface has the Cartesian

equation x2 + y2 = 4 X z (1 point). The fundamental vector product
is

∂r

∂u
× ∂r

∂v
=

−4u2 cos v
a u2 sin v

b u


where a : −4 X , b : 4 X (1 point each). Now calculate

∥∥ ∂r
∂u ×

∂r
∂v

∥∥
and then integrate to calculate the area of the surface Area (r(S)) = 16 X
√
2
3 π−

8
3π (3 points). (Fill in the blanks with the correct integers, possibly

zero or negative.)
(10) Q5-B

Consider the parametric surface r(S) where

r(u, v) = (3u cos v, 3u sin v, u2),

and S = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π}. This surface has the Cartesian

equation x2 + y2 = 9 X z (1 point). The fundamental vector product
is

∂r

∂u
× ∂r

∂v
=

−6u2 cos v
a u2 sin v

b u


where a : −6 X , b : 9 X (1 point each). Now calculate

∥∥ ∂r
∂u ×

∂r
∂v

∥∥
and then integrate to calculate the area of the surface Area (r(S)) = 13 X
√
13
2 π − 27

2 π (3 points). (Fill in the blanks with the correct integers, pos-
sibly zero or negative.)
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Q1 Solution: In this question we calculate the Taylor expansion of x cos2 x or
x sin2 x about the point x = 0.

(1) We recall or calculate that cos(x) =
∑∞
n=0

(−1)n
(2n)! x

2n and so

cos(2x) =

∞∑
n=0

(−1)n

(2n)!
(2x)2n =

∞∑
n=0

(−4)n

(2n)!
x2n

.
(2) Additionally we know that cos(2x) = cos2 x− sin2 x and hence

cos2 x = 1
2 + 1

2 cos(2x) and sin2 x = 1
2 −

1
2 cos(2x).

(3) Combining the above we obtain

x cos2 x =
x

2
+
x

2
cos(2x) =

x

2
+
x

2

∞∑
n=0

(−4)n

(2n)!
x2n

=
x

2
+
x

2

(
1 +
−4

2!
x2 +

(−4)2

4!
x4 +

(−4)3

(6)!
x6 + · · ·

)
= x− x3 +

1

3
x5 − 2

45
x7 + · · ·

On the other hand

x sin2 x =
x

2
− x

2
cos(2x) =

x

2
− x

2

∞∑
n=0

(−4)n

(2n)!
x2n

=
x

2
− x

2

(
1 +
−4

2!
x2 +

(−4)2

4!
x4 +

(−4)3

(6)!
x6 + · · ·

)
= x3 − 1

3
x5 +

2

45
x7 + · · ·

(4) To integrate we use the fact that f(x) =
∑∞
n=0 anx

n implies
∫ x
0
f(t) dt =∑∞

n=1
an−1

n! x
n (or simply integrate the above term-by-term) and so∫ x

0

t cos2 t dt =
1

2
x2 − 1

4
x4 +

1

18
x6 − 1

180
x8 + · · ·

and ∫ x

0

t sin2 t dt =
1

4
x4 − 1

18
x6 +

1

180
x8 + · · ·

(5) The Taylor expansion for cosx converges for all x and consequently the
Taylor expansions for 1

2 (1 + cos(2x)) and for 1
2 (1 − cos(2x)) also converge

for all x.
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Q2-A Solution: Let f(x, y) = x4 + 3xy + 2y2.

(1) We calculate the gradient of this function

∇f(x, y) =

(
4x3 + 3y
3x+ 4y

)
.

(2) To find the stationary points we suppose ∇f(x, y) = 0 and solve for (x, y).
The second equation (3x+ 4y = 0) implies that y = − 3x

4 . Substituting this

into the first equation (4x3+3y = 0) we obtain 4x3− 9
4x = 0. Consequently,

either x = 0 or x2 − 9
16 = 0. In the first case we obtain the solution (0, 0).

In the second case we have x = ± 3
4 . Using again that y = − 3x

4 we obtain

the solutions (− 3
4 ,

9
16 ) and (3

4 ,−
9
16 ).

(3) We calculate the Hessian matrix

Hf(x, y) =

(
12x2 3

3 4

)
.

This means that

Hf(0, 0) =

(
0 3
3 4

)
,

and

Hf(− 3
4 ,

9
16 ) = Hf( 3

4 ,−
9
16 ) =

(
27
4 3
3 4

)
.

(4) The eigenvalues of Hf(0, 0) are λ = 2 ±
√

13. In particular one is pos-
itive and the other is negative so this is a saddle. The eigenvalues of
Hf(− 3

4 ,
9
16 ) = Hf( 3

4 ,−
9
16 ) are both positive and so these two points are

relative minima.
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Q2-B Solution: Let f(x, y) = x4 + 4xy + 9
2y

2.

(1) We calculate the gradient of this function

∇f(x, y) =

(
4x3 + 4y
4x+ 9y

)
.

(2) To find the stationary points we suppose ∇f(x, y) = 0 and solve for (x, y).
The second equation (4x+ 9y = 0) implies that y = − 4x

9 . Substituting this

into the first equation (4x3 +4y = 0) we obtain x3− 4
9x = 0. Consequently,

either x = 0 or x2 − 4
9 = 0. In the first case we obtain the solution (0, 0).

In the second case we have x = ± 2
3 . Using again that y = − 4x

9 we obtain

the solutions (− 2
3 ,

8
27 ) and (2

3 ,−
8
27 ).

(3) We calculate the Hessian matrix

Hf(x, y) =

(
12x2 4

4 9

)
.

This means that

Hf(0, 0) =

(
0 4
4 9

)
,

and

Hf(− 2
3 ,

8
27 ) = Hf( 2

3 ,−
8
27 ) =

(
16
3 4
4 9

)
.

(4) The eigenvalues of Hf(0, 0) are λ = 9
2 ±

√
( 9
2 )2 + 16. In particular one is

positive and the other is negative so this is a saddle. The eigenvalues of
Hf(− 2

3 ,
8
27 ) = Hf( 2

3 ,−
8
27 ) are both positive and so these two points are

relative minima.
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Q3-A Solution: We see that f(x, y) is conservative because, if ϕ(x, y) = 2xyex

then

∇ϕ(x, y) =

(
2y(1 + x)ex

2xex

)
.

Comparing the y derivative of the first component and the x derivative of the
second component we see that the other two vector fields are not conservative on
any domain.

Let’s calculate the line integral.

(1) It is convenient to divide the path α into three pieces:
• α1(t) = (t, 0), t ∈ [0, 1],
• α2(t) = (1− t, t), t ∈ [0, 1],
• α3(t) = (0, 1− t), t ∈ [0, 1].

(2) This in turn implies that

α′1(t) =

(
1
0

)
, α′2(t) =

(
−1
1

)
, α′3(t) =

(
0
−1

)
.

(3) Since

g(x, y) =

(
2y2

x+ 2

)
,

g(α1(t)) =

(
0

t+ 2

)
, g(α2(t)) =

(
2t2

1− t+ 2

)
, g(α3(t)) =

(
2(1− t)2

2

)
.

And so
α′1(t) · g(α1(t)) = 0,

α′2(t) · g(α2(t)) = 1 + 2− t− 2t2,

α′3(t) · g(α3(t)) = −2.

(4) Finally∫
g dα =

∫ 1

0

1− t− 2t2 dt

=

[
t− t2

2
− 2t3

3

]1
0

= 1− 1

2
− 2

3
=

3− 4

6
= −1

6
.
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Q3-B Solution: We see that f(x, y) is conservative because, if ϕ(x, y) = 3xyex

then

∇ϕ(x, y) =

(
3y(1 + x)ex

3xex

)
.

Comparing the y derivative of the first component and the x derivative of the
second component we see that the other two vector fields are not conservative on
any domain.

Let’s calculate the line integral.

(1) It is convenient to divide the path α into three pieces:
• α1(t) = (t, 0), t ∈ [0, 1],
• α2(t) = (1− t, t), t ∈ [0, 1],
• α3(t) = (0, 1− t), t ∈ [0, 1].

(2) This in turn implies that

α′1(t) =

(
1
0

)
, α′2(t) =

(
−1
1

)
, α′3(t) =

(
0
−1

)
.

(3) Since

g(x, y) =

(
4y2

x+ 4

)
,

g(α1(t)) =

(
0

t+ 4

)
, g(α2(t)) =

(
4t2

1− t+ 4

)
, g(α3(t)) =

(
4(1− t)2

4

)
.

And so
α′1(t) · g(α1(t)) = 0,

α′2(t) · g(α2(t)) = 1 + 4− t− 4t2,

α′3(t) · g(α3(t)) = −4.

(4) Finally∫
g dα =

∫ 1

0

1− t− 4t2 dt

=

[
t− t2

2
− 4t3

3

]1
0

= 1− 1

2
− 4

3
=

3− 8

6
= −5

6
.
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Q4-A Solution: The set V = {(x, y, z) : x2 + y2 ≤ 32, 0 ≤ z ≤ 3−
√
x2 + y2} is a

cone of height 3 with base in the xy-plane. The set W = {(x, y, z) : (x− 3
2 )2 +y2 ≤

( 3
2 )2} is a cylinder. Let D ⊂ R3 be the subset of the cone V which is contained

within the cylinder W . We will calculate the volume of D.

(1) We define S =
{

(x, y) : (x− 3
2 )2 + y2 ≤ ( 3

2 )2
}

(the projection of the cylin-
der on to the xy-plane). Consequently

D =
{

(x, y, z) : (x, y) ∈ S, 0 ≤ z ≤ 3−
√
x2 + y2

}
.

In particular the volume of D is equal to
∫∫
S

3−
√
x2 + y2 dxdy.

(2) To proceed we use polar coordinates x = r cos θ, y = r sin θ which means
that the Jacobian is J(r, θ) = r and the corresponding region is (it helps to
sketch a picture here)

S̃ =
{

(r, θ) : θ ∈
[
−π2 ,

π
2

]
, 0 ≤ r ≤ 3 cos θ

}
.

The condition on r is because (x− 3
2 )2 + y2 ≤ ( 3

2 )2 implies (r cos θ− 3
2 )2 +

r2 sin2 θ ≤ ( 3
2 )2 which in turn implies that r − 3 cos θ ≤ 0.

(3) This all means that the volume of D is equal to∫∫
S̃

r(3− r) drdθ =

∫ π
2

−π2

[∫ 3 cos θ

0

3r − r2 dr

]
dθ

(4) For the inner integral we calculate∫ 3 cos θ

0

3r − r2 dr =

[
3

2
r2 − 1

3
r3
]3 cos θ

0

=
27

2
cos2 θ − 27

3
cos3 θ.

(5) Consequently the volume of D is equal to

27

(
1

2

∫ π
2

−π2

cos2 θ dθ − 1

3

∫ π
2

−π2

cos3 θ dθ

)
.

Either from memory or from calculation
∫

cos2 dθ = 1
2 (θ + sin θ cos θ) and∫

cos3 θ dθ = sin θ − 1
3 sin3 θ. It is also convenient to note that both cos2 θ

and cos3 θ are even.
(6) Putting everything together we have calculated that the volume of D is

equal to

27

([
1
2θ + 1

2 sin θ cos θ
]π
2
0
− 2

3

[
sin θ − 1

3 sin3 θ
]π
2
0

)
.

And so Vol(D) = 27(π4 −
4
9 ) = 27π4 − 12.
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Q4-B Solution: The set V = {(x, y, z) : x2 + y2 ≤ 42, 0 ≤ z ≤ 4−
√
x2 + y2} is a

cone of height 4 with base in the xy-plane. The set W = {(x, y, z) : (x− 2)2 + y2 ≤
22} is a cylinder. Let D ⊂ R3 be the subset of the cone V which is contained within
the cylinder W . We will calculate the volume of D.

(1) We define S =
{

(x, y) : (x− 2)2 + y2 ≤ 22
}

(the projection of the cylinder
on to the xy-plane). Consequently

D =
{

(x, y, z) : (x, y) ∈ S, 0 ≤ z ≤ 4−
√
x2 + y2

}
.

In particular the volume of D is equal to
∫∫
S

4−
√
x2 + y2 dxdy.

(2) To proceed we use polar coordinates x = r cos θ, y = r sin θ which means
that the Jacobian is J(r, θ) = r and the corresponding region is (it helps to
sketch a picture here)

S̃ =
{

(r, θ) : θ ∈
[
−π2 ,

π
2

]
, 0 ≤ r ≤ 4 cos θ

}
.

The condition on r is because (x − 2)2 + y2 ≤ 22 implies (r cos θ − 2)2 +
r2 sin2 θ ≤ 22 which in turn implies that r − 4 cos θ ≤ 0.

(3) This all means that the volume of D is equal to∫∫
S̃

r(4− r) drdθ =

∫ π
2

−π2

[∫ a cos θ

0

4r − r2 dr

]
dθ

(4) For the inner integral we calculate∫ 4 cos θ

0

4r − r2 dr =

[
2r2 − 1

3
r3
]4 cos θ

0

=
64

2
cos2 θ − 64

3
cos3 θ.

(5) Consequently the volume of D is equal to

64

(
1

2

∫ π
2

−π2

cos2 θ dθ − 1

3

∫ π
2

−π2

cos3 θ dθ

)
.

Either from memory or from calculation
∫

cos2 dθ = 1
2 (θ + sin θ cos θ) and∫

cos3 θ dθ = sin θ − 1
3 sin3 θ. It is also convenient to note that both cos2 θ

and cos3 θ are even.
(6) Putting everything together we have calculated that the volume of D is

equal to

64

([
1
2θ + 1

2 sin θ cos θ
]π
2
0
− 2

3

[
sin θ − 1

3 sin3 θ
]π
2
0

)
.

And so Vol(D) = 64(π4 −
4
9 ) = 16π − 256

9 .
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Q5-A Solution: Consider the parametric surface r(S) where

r(u, v) = (2u cos v, 2u sin v, u2),

and S = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π}.
(1) We observe that (2u cos v)2 + (2u sin v)2 = 4u2 and so this surface has the

Cartesian equation x2 + y2 = 4z.
(2) We calculate that

∂r

∂u
=

2 cos v
2 sin v

2u

 ,
∂r

∂v
=

−2u sin v
2u cos v

0


and so the fundamental vector product is

∂r

∂u
× ∂r

∂v
=

−4u2 cos v
−4u2 sin v

4u

 .

(3) Hence ∥∥∥∥ ∂r∂u × ∂r

∂v

∥∥∥∥ =
(
16u4 + 16u2

) 1
2 = 4u

(
u2 + 1

) 1
2 .

(4) Using this we calculate the surface area

Area (r(S)) =

∫∫
S

∥∥∥∥ ∂r∂u × ∂r

∂v

∥∥∥∥ dudv

=

∫ 2π

0

[∫ 1

0

∥∥∥∥ ∂r∂u × ∂r

∂v

∥∥∥∥ du

]
dv

= 2π

∫ 1

0

(
4u
(
u2 + 1

) 1
2

)
du

= 2π

[
4

3

(
u2 + 1

) 3
2

]1
0

=
8π

3

(
2

3
2 − 1

3
2

)
=
π

3

(
16
√

2− 8
)
.
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Q5 Solution: Consider the parametric surface r(S) where

r(u, v) = (3u cos v, 3u sin v, u2),

and S = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π}.
(1) We observe that (3u cos v)2 + (3u sin v)2 = 9u2 and so this surface has the

Cartesian equation x2 + y2 = 9z.
(2) We calculate that

∂r

∂u
=

3 cos v
3 sin v

2u

 ,
∂r

∂v
=

−3u sin v
3u cos v

0


and so the fundamental vector product is

∂r

∂u
× ∂r

∂v
=

−6u2 cos v
−6u2 sin v

9u

 .

(3) Hence ∥∥∥∥ ∂r∂u × ∂r

∂v

∥∥∥∥ =
(
36u4 + 81u2

) 1
2 = 3u

(
4u2 + 9

) 1
2 .

(4) Using this we calculate the surface area

Area (r(S)) =

∫∫
S

∥∥∥∥ ∂r∂u × ∂r

∂v

∥∥∥∥ dudv

=

∫ 2π

0

[∫ 1

0

∥∥∥∥ ∂r∂u × ∂r

∂v

∥∥∥∥ du

]
dv

= 2π

∫ 1

0

(
3u
(
4u2 + 9

) 1
2

)
du

= 2π

[
3

12

(
4u2 + 9

) 3
2

]1
0

=
π

2

(
13

3
2 − 9

3
2

)
=
π

2

(
13
√

13− 27
)
.
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