1. QUESTIONS - CALL 2 - 15/02/2021

Solutions to each question are included at the end of this document.

Call 2.

(1)

Q1-A

Fill in the blanks with integers, possibly 0 or negatlve (i point each). In
this question we calculate the Taylor expansion of  cos?(x) about the point
2 = 0. Consider first cos(2x). Its Taylor expansion is

cos(2z) = Z @a}@”

= (2n)!

where [a]: ’ —4 v ‘E ’ 2 v ‘ Additionally we know that

2 1 @ (2.%)

cos x:——i—?cos

where [c]: ] 2 v ‘@ ] 1 v ‘ From this we obtain the Taylor expansion
of xcos?x = > anz". The first few terms are

x0052x2@+x+w —2® +.x 5—1—30 —|—x + o(z").

|

@:’0 \/‘:’O \/‘:’0 \/‘:’1 \/‘:’0 \/‘:’—2 \/‘.

We compute the integral:

tcos®t dt = +x+ J: +-x +- 4+E]a: +@ 6 1 o(z)

where [k|: [0 v ][l [0 v ]m} [0 v |@m}[-1 v ]|} [0 V]
@ . The radius of convergence of the series z cos?> z = Y~ a,z"
is| 0 (1 point).

1

4

infinite v*
Q1-B

Fill in the blanks with integers, possibly 0 or negative (% point each). In
this question we calculate the Taylor expansion of z sin? (x) about the point
2 = 0. Consider first cos(2z). Its Taylor expansion is

cos(2z) = Z @x@”

= (2n)!

where [a]: ’ —4 v ‘E ’ 2 v ‘ Additionally we know that

sin“zx = — + os(2x)

(o]~
=
(@)

1



where [c: ] 2 v ‘@ ] -1 v ‘ From this we obtain the Taylor expan-
sion of zsin®x = Y07 a,z™. The first few terms are

x sin x*E]CL’er + 23 +-93 Jr 5+z Jr + o(z").

e} [0V I[tf [0V [} [0 ][n} —I [0 if
. We compute the integral:

/ztcos2tdt J;—i—a: + [m]z? —|—- t+[o]® - @x 5+ o(2%)
0

where [k|: [0 ][I} [0 v @} [0 v @} [T v ][e} [0 v][p]
[ 18 v | The radius of convergence of the series zsinz = Y 0" a,z™ is
0 (1 point).

1

4

infinite v/




3)

Q2-A
In this question we will find and classify the extrema points of f(z,y) =
2% + 32y + 2y2. The gradient of this function is

Vie,y) = ("fj%’) ,

where [a]: [4 v |[b}[3 V][c}[3 v ]ld}[4 V]
There are three stationary points: (—%, %), (0, ) and (, ) where

e} [9 \/‘:’O \/‘:’3 /‘:’79 v |

Computing the Hessian at each stationary points we deduce that there

are relative minima, saddle point and relative

maxima. Moreover f(z,y) is | bounded . Fill in the blanks with
unbounded v’
integers, possibly 0 or negative. Each part is worth % point.

Q2-B

In this question we will find and classify the extrema points of f(z,y) =
ot + 4oy + %yQ. The gradient of this function is

23 +|bly
V() = (HEy)
Where@:’4 /‘E:’ﬁl \/‘:’4 \/‘@:’9 \/‘.
There are three stationary points: (-2, 2@;), (O,) and (, 2—“7) where
[e] [ 8 ‘/‘:’O \/‘:’2 /‘:’—8 v

Computing the Hessian at each stationary points we deduce that there

are relative minima, saddle point and relative

maxima. Moreover f(z,y) is | bounded . Fill in the blanks with
unbounded v’
integers, possibly 0 or negative. Each part is worth % point.




(5) Q3-A
Choose the correct option in each of the following four places (1 point each).

The vector-field
2y(1 4+ x)e®
fz,y) = ( y(%ew) )

is v | conservative on R2. The vector-field

is not
_ (2
is conservative on R2. The vector-field
is not v/
_ (3y(=* +y*) !

h(ZC,y) - <3£E($2 +y2)71
is conservative on the domain {(x,y) : |y| > 0} and | is
is not v/ is not v/

conservative on the annular domain {(x,y) : 1 < 2% + y? < 4}.
Let a denote the anticlockwise triangular path with three straight seg-
ments and vertices (0,0), (1,0), (0,1). With g the vector-field defined

above, calculate the line integral fg daa =| -1 VvV /6. Fill in the
1 (50%)
blank with the correct integer, possibly zero or negative (2 points).
(6) Q3-B

Choose the correct option in each of the following four places (1 point each).

The vector-field
3y(1+ x)e®
f(x,y)=(y( m) )

3ze

is v | conservative on R2. The vector-field

is not
_ (&
g(z,y) = (x+4)
is conservative on R2. The vector-field
is not v’
_ (29 + )7

h(z,y) = (23:(1‘2 —|—y2)_1
is conservative on the domain {(x,y) : |y| > 0} and | is
is not v/ is not v/

conservative on the annular domain {(x,y) : 1 < 2% + y? < 4}.

Let a denote the anticlockwise triangular path with three straight seg-
ments and vertices (0,0), (1,0), (0,1). With g the vector-field defined
above, calculate the line integral [g da =| -5 v /6. Fill in the
5  (50%)
blank with the correct integer, possibly zero or negative (2 points).




(7)

Q4-A
The set V = {(z,y,2) : 22 + y?> <320 < 2 < 3 — /22 + y2} is a cone of
height 3 with base in the zy-plane. The set W = {(z,y,2) : (x—3)*+y* <
(2)?} is a cylinder. Let D C R? be the subset of the cone V which is
contained within the cylinder W. We will calculate the volume of D.

Let S = {(z,y): (z — 3)?+y* < (2)?}. We can then write

D= {(x,y,z) (z,y) ES,OSZSE—\/W}

where [a: (1 point). This is convenient since the volume of D is

equal to [[s[a]— /22 +y? dady.
To proceed we use polar coordinates x = r cosf, y = rsin 6 which means
that the Jacobian is J(r,0) = r and the corresponding region is

S = {(r,@):@é -3, %] ,OSTSECOSO}

where Ez (1 point).

This all means that the volume of D is equal to

//gr(@— r) drdf.

Evaluating the integral we show that the volume of D is Vol(D) = [c |} +@
where [c}: [27 v ], @: | —12 v | (2 points each).
Q4-B
The set V = {(z,y,2) : 2% + y?> <420 < 2 < 4 — /22 + y2} is a cone of
height 4 with base in the zy-plane. The set W = {(z,y,2) : (x—2)?+y? <
22} is a cylinder. Let D C R? be the subset of the cone V which is contained
within the cylinder W. We will calculate the volume of D.

Let S = {(z,y) : (z — 2)? + y* < 22}. We can then write

D= {(x,y&) t(2,9) ES,ngg@f\/W}

where [a]: (1 point). This is convenient since the volume of D is

equal to [[[a]— /2% +y? dxdy.
To proceed we use polar coordinates x = r cos, y = r sin # which means
that the Jacobian is J(r,0) = r and the corresponding region is

S = {(T,H):HE [—g,g] ,0§T§ECOSG}

where : (1 point).

This all means that the volume of D is equal to

/ /g r(@] - r) drdd.

Evaluating the integral we show that the volume of D is Vol(D) = 7r+@
where [c]: [16 v |,[d}: [ =256 v | (2 points each).




9)

Q5-A
Consider the parametric surface r(S) where

r(u,v) = (2ucosv, 2usinv, u?),
and S = {(u,v):0<w<1,0<wv<2r}. This surface has the Cartesian

equation 2% + 32 = z (1 point). The fundamental vector product

is )
—4u” cosv
or Or

— x — = [ [aJu?sinv
ou  Ov Eu
where[a]:[ -4 v ‘,E:’ 4 v |(1 point each). Now calculate Hg—; X %H

and then integrate to calculate the area of the surface Area (r(S)) =

?7‘(‘ — 87 (3 points). (Fill in the blanks with the correct integers, possibly

zero or negative.)
Q5-B
Consider the parametric surface r(S) where

r(u,v) = (3ucosv, 3usinv, u?),
and S = {(u,v) : 0<u<1,0<wv<2r}. This surface has the Cartesian

equation 22 + 3% = z (1 point). The fundamental vector product

is )
—6u” cosv
or Or

%x%: @%Sjnv

where[a]:[ =6 v/ ‘,@:’ 9 v |(1 point each). Now calculate H% X @H

v
and then integrate to calculate the area of the surface Area (r(5)) =
VAE} 27

Yoom — 5w (3 points). (Fill in the blanks with the correct integers, pos-

sibly zero or negative.)



7

Q1 Solution: In this question we calculate the Taylor expansion of zcos?z or
xsin® z about the point z = 0.

e recall or calculate that cos(z) = _ Tx”an SO
1) We recall or calculate th o Gara? and
_ - (_1)n 2n __ - (_4)n 2n
cos(2z) = nE:O @)l (2x)"" = 3:0 @)l x

(2) Additionally we know that cos(2z) = cos? z — sin® z and hence

cos’z =1+ Lcos(2z) and sin®x =1 - 1cos(2z).

(3) Combining the above we obtain

T r (—4)
2 = — — 2n
T Cos $—7+fcos(2x)f§+§§ .x

272 2 (2n)!
5 (g G G )
:x—x3+%x5 %$7+
On the other hand
zsin®x = g - gcos(2m) = g - ;2 ((;;37 z?n
Fo3 (gt G )
:x3—%x5+4—25x7+'~

(4) To integrate we use the fact that f(z) = > 7 a,a" implies [ f(t) dt =
ST f2=ta™ (or simply integrate the above term-by-term) and so

n=1 n!
* 1 1 1 1
teos?t dt — g2 — St a6 a8 ..
/0 €0 291j 4x +18m 18036 +

and

4 18 180
(5) The Taylor expansion for cosx converges for all z and consequently the
Taylor expansions for (1 + cos(2z)) and for 3(1 — cos(2z)) also converge
for all x.

! 1 1 1
/ tsint dt = 2 — —a5 + —a® + ...
0



8

Q2-A Solution: Let f(z,y) = 2* + 3zy + 212,

(1)

(2)

We calculate the gradient of this function

423 +3
Vi) = <3x+4yy> '

To find the stationary points we suppose V f(z,y) = 0 and solve for (z,y).
The second equation (3x 4 4y = 0) implies that y = —%. Substituting this
into the first equation (423 +3y = 0) we obtain 423 — %Jc = (0. Consequently,
either x = 0 or 22 — 1% = 0. In the first case we obtain the solution (0, 0).
In the second case we have x = i%. Using again that y = —%’3 we obtain
the solutions (—2, %) and (3, --%).

We calculate the Hessian matrix

2
i) = (%)

/0.0 - (5 3).

Hi(-4 ) - HG—) - (5 3)
4716 47 16 3 4]

The eigenvalues of Hf(0,0) are A\ = 2 + /13. In particular one is pos-
itive and the other is negative so this is a saddle. The eigenvalues of
Hf(—%7 %) = Hf(%7 —%) are both positive and so these two points are
relative minima.

This means that

and



Q2-B Solution: Let f(z,y) = z* + 4y + 2¢°.

(1)

(2)

We calculate the gradient of this function

423 + 4y
vf(xay)_<4x+9y .

To find the stationary points we suppose V f(z,y) = 0 and solve for (z,y).
The second equation (4x 49y = 0) implies that y = —%. Substituting this
into the first equation (423 +4y = 0) we obtain z*
either # = 0 or 22 — § = 0. In the first case we obtain the solution (0,0).
In the second case we have x = i%. Using again that y = —%’3 we obtain
the solutions (—2, ) and (3, -2 ).

We calculate the Hessian matrix

2
miea) = (% ).

— ga: = 0. Consequently,

This means that

and 6
HA-3 8 - 1G5 - (§ )

The eigenvalues of Hf(0,0) are A = § +,/(2)2 + 16. In particular one is

positive and the other is negative so this is a saddle. The eigenvalues of
Hf(—%7 %) = Hf(%, —%) are both positive and so these two points are

relative minima.



10

Q3-A Solution: We see that f(x,y) is conservative because, if ¢(x,y) = 2zye®

then
2y(1 +x)e”
Ve(r,y) = ( y(%em) )

Comparing the y derivative of the first component and the z derivative of the
second component we see that the other two vector fields are not conservative on
any domain.
Let’s calculate the line integral.
(1) Tt is convenient to divide the path « into three pieces:
e a;(t) =(t,0),te€[0,1],
o as(t) = (1—1t,t), [0, 1],
L aS(t) = (Ovl_t)v [Oal]
(2) This in turn implies that

te
te

And so
o (t) - glau(t)) =0,
o) gles(t) =142~ t — 27,
as(t) - glas(t) = =2

(4) Finally

1
/gda:/ 1—t—2t% dt
0

2 93!
_[t__] i
2 3,
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Q3-B Solution: We see that f(x,y) is conservative because, if ¢(x,y) = 3zye®

then
3y(l + x)e®
Ve(r,y) = ( y(&mm) )

Comparing the y derivative of the first component and the z derivative of the
second component we see that the other two vector fields are not conservative on
any domain.
Let’s calculate the line integral.
(1) Tt is convenient to divide the path « into three pieces:
e a;(t) =(t,0),te€[0,1],
o as(t)=(1—t,t),tel0,1],
e a3(t)=(0,1-1¢),te]0,1].
(2) This in turn implies that

And so
ai(t) - glau(t)) =0,
ah(t) - glag(t) = 1+4 —t — 417,
as(t) - glas(t) = —4

(4) Finally

1
/gda:/ 1—t— 4t dt
0

N PR il S N O 5
B 2 3], 2 3 6 6
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Q4-A Solution: The set V = {(x,9,2) 12 +y? <3%,0<2<3— /22 +y?}isa
cone of height 3 with base in the zy-plane. The set W = {(z,y,2) : (z—2)?+y> <
(%)2} is a cylinder. Let D C R?® be the subset of the cone V' which is contained
within the cylinder W. We will calculate the volume of D.
(1) We define S = {(z,y) : (z — 2)? +y? < (2)?} (the projection of the cylin-
der on to the zy-plane). Consequently

D= {(967:%2) S (x,y) eS,ngg?,_\/W}_

In particular the volume of D is equal to [ 3 — /22 +y? dxdy.

(2) To proceed we use polar coordinates = rcosf, y = rsinf which means
that the Jacobian is J(r,0) = r and the corresponding region is (it helps to
sketch a picture here)

S={(r0):0e[-2,%],0<r<3cosf}.
The condition on r is because (z — %)2 +y% < (%)2 implies (r cos 6 — %)2 +

r2sin?0 < (%)2 which in turn implies that » — 3 cos < 0.
(3) This all means that the volume of D is equal to

% 3cos
//yr(?)—r)drd(?:/ / 3r—r2dr|df
s -7 |/o

2
(4) For the inner integral we calculate

3 cos 0 3cosf
3 1 27 27
/ Y — 2 dr = | 292 — 243 =" cos?0 — Z_cos®0.
0 20 3 |, 2 3

(5) Consequently the volume of D is equal to

3 3
27 <;/WCOS29d9—;/ﬂ_C0839 d@).
-2 -2

Either from memory or from calculation [ cos? df = (6 + sinf cos ) and
Jcos®6 df = sin§ — %sin?’ 6. It is also convenient to note that both cos? 6
and cos® 6§ are even.

(6) Putting everything together we have calculated that the volume of D is
equal to

27 <[%9+ %sin@cos@]og — % [sinf)f §s1n30]§> .

And so Vol(D) =27(F — §) =275 — 12.

jus
4
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Q4-B Solution: The set V = {(x,y,2) : 2?+y? <42,0<z2<4— /22 +y?}isa
cone of height 4 with base in the zy-plane. The set W = {(x,y,2) : (x —2)?+ 3> <
22} is a cylinder. Let D C R be the subset of the cone V which is contained within
the cylinder W. We will calculate the volume of D.

(1)

We define S = {(z,y) : (z — 2)? +y? < 2%} (the projection of the cylinder
on to the zy-plane). Consequently

D= {(%%2) (z,y) eS,O§z§4_\/m}'

In particular the volume of D is equal to [[ 4 — \/x? +y? dxdy.

To proceed we use polar coordinates x = rcosf, y = rsinf which means
that the Jacobian is J(r,8) = r and the corresponding region is (it helps to
sketch a picture here)

S = {(r,0):0€[-%,5],0<r <4cosb}.

The condition on 7 is because (z — 2)% + y? < 22 implies (rcosd — 2)% +
r2sin® @ < 22 which in turn implies that r — 4 cosé < 0.
This all means that the volume of D is equal to

z a cos 6
//~r(4—T)drd9=/2 [/ 4r—r2d7°1d0
5 -5 /o

For the inner integral we calculate

4 cos 0 4cos0
1 64 64
/ dr —r? dr = [27"2 - r3] = —cos’ — — cos® 0.
) 37 1o 2 3

Consequently the volume of D is equal to

3 3
64 <;/WCOS29d9—;/ﬂ_COSBG d&).
-2 -2

Either from memory or from calculation [ cos? df = (6 + sinf cos) and
[ cos®0 df = sinf — L sin® 6. It is also convenient to note that both cos? 0
and cos® § are even.

Putting everything together we have calculated that the volume of D is
equal to

64 ([éHJr %Sin@cos@]og — % [sinf)f ésinse](%r) .

And so Vol(D) = 64(F — §) = 167 — 28,

s
4
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Q5-A Solution: Consider the parametric surface r(S) where
r(u,v) = (2ucosv, 2usinv, u?),
and S = {(u,v) : 0<u<1,0<v<2r}.

(1) We observe that (2ucosv)? + (2usinv)? = 4u? and so this surface has the
Cartesian equation z2 + y? = 4z.
(2) We calculate that

or 2 €S v or —2usinv
= 2sinv |, — = | 2ucosv
w 2u v 0
and so the fundamental vector product is
40,2
or  or 4u2cgsv
— X — = | —4u*sinv
ou Ov A
U
(3) Hence
Jr Or 1 1
— x — |l = (16u* + 16u?)* = 4u (u® +1)* .
50 < (16u* + 16u*) u(u” +1)
(4) Using this we calculate the surface area
(’9
Area (r / / r dudv
0 8
= / [ / ! r du} dv
0 0 au 3’0

:27r/01 (4u(u2+1)%) du
:27r{§(u2+1)3}1:8;(23—1 ) g(w\f— )

0
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Q5 Solution: Consider the parametric surface r(S) where
r(u,v) = (3ucos v, 3usinv, u?),
and S = {(u,v) : 0<u<1,0<v<2r}.
(1) We observe that (3ucosv)? + (3usinv)? = 9u? and so this surface has the

Cartesian equation 22 + 3% = 9z.
(2) We calculate that

o 3cosv —3usinv
r . r
= 3sinv |, 5 = 3ucosv
w 2u v 0
and so the fundamental vector product is
or  or —6uz cosv
— X — = | —6u“sinv
ou Ov 9
U
(3) Hence
Or Or 4 ! 2 3
= lu®)? = 4 2,
5 % 3y (36u* + 81u?) 3u (4u® +9)
(4) Using this we calculate the surface area
8
Area (r / / r dudv
Or
= [ du} dv

/ 3u 4u +9) ) du
23(13%—9%):g(13ﬁ—27).

[

l\')
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