
1. Questions - Call 1 - 18/01/2021

Solutions to each question are included at the end of this document.

Call 1.

(1) Q1-A
(Fill in each of the following blanks with the correct integer, possibly zero
or negative.) We will find a power series solution to the differential equation

x2y′′ + xy′ + x2y = 0

under the assumption that f(0) = 192. By substituting y(x) =
∑∞
n=0 anx

n

one obtains the equation
∞∑
n=2

[
n2an + an−2

]
xn + a a1x+ b a0 = 0

where a : 1 X , b : 0 X (1 point each). Using the above equa-

tion and also the given initial value we know that a0 = 192 X and

a1 = 0 X ( 1
2 point each). Furthermore, the above equation implies a

recurrence relation between an−2 and an which holds for all n ≥ 2. De-
rive this recurrence relation and use it to calculate the following coefficients

of the power series solution: a2 = −48 X , a3 = 0 X , a4 = 3 X ,

a5 = 0 X ( 1
2 point each). The radius of convergence of the power series

solution is 0
1
192
infinite X

(1 point).

(2) Q1-B
(Fill in each of the following blanks with the correct integer, possibly zero
or negative.) We will find a power series solution to the differential equation

x2y′′ + xy′ + (x2 − 1)y = 0

under the assumption that f ′(0) = 192. By substituting y(x) =
∑∞
n=0 anx

n

one obtains the equation
∞∑
n=2

[
(n2 − 1)an + an−2

]
xn + a a1x+ b a0 = 0

where a : 0 X , b : −1 X (1 point each). Using the above equation

and also the given initial value we know that a0 = 0 X and a1 = 192 X
( 1
2 point each). Furthermore, the above equation implies a recurrence rela-

tion between an−2 and an which holds for all n ≥ 2. Derive this recurrence
relation and use it to calculate the following coefficients of the power se-

ries solution: a2 = 0 X , a3 = −24 X , a4 = 0 X , a5 = 1 X
( 1
2 point each). The radius of convergence of the power series solution is

0
1
192
infinite X

(1 point).
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(3) Q2-A
(Fill in each of the following blanks with the correct integer, possibly zero
or negative.) Let g(x, y) := x2 + 3xy + y2 − 45. We will find the points
in the set {g(x, y) = 0} ⊂ R2 which are closest / furthest from the origin.
Introduce a suitable function f(x, y) and apply the Lagrange multiplier
method with the constraint g(x, y) = 0 in order to find the extrema points.

There are 2 X extrema points (2 points). There is a single extrema

point in the upper right quadrant and it is equal to ( 3 X , 3 X ) (1

point each). The extrema points are:
• all equally the closest points to the origin X
• some are the closest and some are the furthest
• all equally the furthest points to the origin
• something else
(2 point). Hint: draw a sketch of the set.

(4) Q2-B
(Fill in each of the following blanks with the correct integer, possibly zero
or negative.) Let g(x, y) := x2 + 4xy + y2 − 24. We will find the points
in the set {g(x, y) = 0} ⊂ R2 which are closest / furthest from the origin.
Introduce a suitable function f(x, y) and apply the Lagrange multiplier
method with the constraint g(x, y) = 0 in order to find the extrema points.

There are 2 X extrema points (2 points). There is a single extrema

point in the upper right quadrant and it is equal to ( 2 X , 2 X ) (1

point each). The extrema points are:
• all equally the closest points to the origin X
• some are the closest and some are the furthest
• all equally the furthest points to the origin
• something else
(2 point). Hint: draw a sketch of the set.

(5) Q3-A
Fill in the following blanks with the correct integer, possibly zero or

negative (2 points each).
(a) If C is the path from (0, 0) to (π, 0) along the curve y = sinx and

f(x, y) =

(
2x2

4

)

is a vector field then
∫
C
f dα = 2 X

−2 (50%)

π3

3 .

(b) If C is the line segment from (1, 0, 1) to (3, 2, 3) and

f(x, y) =

xyz
y


is a vector field then

∫
C
f dα = 32 X

−32 (50%)
/3.
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(c) If C is the circle x2 + y2 = 1 traversed once in a counter clockwise
direction and

f(x, y) =

(
(x+ y)/(x2 + y2)
−(x− y)/(x2 + y2)

)
is a vector field then

∫
C
f dα = −2 X

2 (50%)
π.

(6) Q3-B
Fill in the following blanks with the correct integer, possibly zero or

negative (2 points each).
(a) If C is the path from (0, 0) to (π, 0) along the curve y = sinx and

f(x, y) =

(
3x2

6

)
is a vector field then

∫
C
f dα = 3 X

−3 (50%)

π3

3 .

(b) If C is the line segment from (1, 0, 1) to (4, 2, 4) and

f(x, y) =

xyz
y


is a vector field then

∫
C
f dα = 17 X

−17 (50%)
.

(c) If C is the circle x2 + y2 = 1 traversed once in a counter clockwise
direction and

f(x, y) =

(
(x+ y)/(x2 + y2)
−(x− y)/(x2 + y2)

)
is a vector field then

∫
C
f dα = −2 X

2 (50%)
π.

(7) Q4-A
Fill in the blanks with the correct integer, possibly zero or negative. Let
V be the solid bounded above by the sphere x2 + y2 + z2 = 4 and below by

the cone z =
√
x2 + y2. We can write

V =

{
(x, y, z) : (x, y) ∈ D,

√
x2 + y2 ≤ z ≤

√
? − (x2 + y2)

}
⊂ R3

where ? : 4 X and D = {(x, y) : x2 + y2 ≤ 2 X } ⊂ R2 ( 1
2 point

each). In order to find the volume of V by evaluating the triple integral∫∫∫
V
dV we change to cylindrical coordinates x = r cos θ, y = r sin θ, z = z.

The Jacobian |J(r, θ, z)| is equal to (1 point)
• r cos θ,
• r2 sin θ,
• r sin θ,
• r. X
Complete the triple integral and show that the volume of V is equal to

( −8 X
√

2+ 16 X )π3 (2 points each part).
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(8) Q4-B
Fill in the blanks with the correct integer, possibly zero or negative. Let
V be the solid bounded above by the sphere x2 + y2 + z2 = 2 and below by

the cone z =
√
x2 + y2. We can write

V =

{
(x, y, z) : (x, y) ∈ D,

√
x2 + y2 ≤ z ≤

√
? − (x2 + y2)

}
⊂ R3

where ? : 2 X and D = {(x, y) : x2 + y2 ≤ 1 X } ⊂ R2 ( 1
2 point

each). In order to find the volume of V by evaluating the triple integral∫∫∫
V
dV we change to cylindrical coordinates x = r cos θ, y = r sin θ, z = z.

The Jacobian |J(r, θ, z)| is equal to (1 point)
• r cos θ,
• r2 sin θ,
• r sin θ,
• r. X
Complete the triple integral and show that the volume of V is equal to

( 4 X
√

2+ −4 X )π3 (2 points each part).

(9) Q5-A
Fill in each blank with the correct integer, possibly zero or negative.

Consider the surface S =
{

(x, y, z) : x2 + y2 = z, z ≤ 9
}

. A possible
choice for the parametric form of the surface S is to let T = {(r, θ) : r ∈ [0,

3 X ], θ ∈ [0, 2π]} ( 1
2 point) and

r : (r, θ) 7→
(
r cos θ, a , b

)
.

For this parametric representation we calculate that

∂r

∂r
× ∂r

∂θ
=

 c

d
e

 .

The missing formulae are (1
2 point each):

a :

• r sin θ X • r cos θ • r • r2 • r2 cos θ • r2 sin θ
b :

• r sin θ • r cos θ • r • r2 X • r2 cos θ • r2 sin θ
c :

• 2r sin θ • r • 2r2 • −r2 sin θ • −2r2 cos θ X
d :

• 2r sin θ • r • r2 • −2r2 sin θ X • −2r2 cos θ
e :

• 2r sin θ • r X • r2 • −2r2 sin θ • −2r2 cos θ
Consider the vector field

f(x, y, z) =
(
y2

0
z

)
and let n be the unit normal to S which has positive z-component. The

surface integral
∫∫
S
f · n dS = 81 X

−81 (50%)

π
2 (3 points).
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(10) Q5-B
Fill in each blank with the correct integer, possibly zero or negative.

Consider the surface S =
{

(x, y, z) : x2 + y2 = z, z ≤ 16
}

. A possible
choice for the parametric form of the surface S is to let T = {(r, θ) : r ∈ [0,

4 X ], θ ∈ [0, 2π]} ( 1
2 point) and

r : (r, θ) 7→
(
r cos θ, a , b

)
.

For this parametric representation we calculate that

∂r

∂r
× ∂r

∂θ
=

 c

d
e

 .

The missing formulae are (1
2 point each):

a :

• r sin θ X • r cos θ • r • r2 • r2 cos θ • r2 sin θ
b :

• r sin θ • r cos θ • r • r2 X • r2 cos θ • r2 sin θ
c :

• 2r sin θ • r • 2r2 • −r2 sin θ • −2r2 cos θ X
d :

• 2r sin θ • r • r2 • −2r2 sin θ X • −2r2 cos θ
e :

• 2r sin θ • r X • r2 • −2r2 sin θ • −2r2 cos θ
Consider the vector field

f(x, y, z) =
(
y2

0
z

)
and let n be the unit normal to S which has positive z-component. The

surface integral
∫∫
S
f · n dS = 128 X

−128 (50%)
π (3 points).
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Q1 Solution:

We consider, for m ∈ {0, 1}, the equation1

x2y′′ + xy′ + (x2 −m2)y = 0.

Substituting y(x) =
∑∞
n=0 anx

n, y′(x) =
∑∞
n=1 nanx

n−1 and y′′(x) =
∑∞
n=2 n(n−

1)anx
n−2 one obtains the equation

x2

( ∞∑
n=2

n(n− 1)anx
n−2

)
+x

( ∞∑
n=1

nanx
n−1

)
+x2

( ∞∑
n=0

anx
n

)
−m2

( ∞∑
n=0

anx
n

)
= 0

and so
∞∑
n=2

n(n− 1)anx
n +

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n+2 −

∞∑
n=0

m2anx
n = 0.

Shifting the index in the third sum
∞∑
n=2

n(n− 1)anx
n +

∞∑
n=1

nanx
n +

∞∑
n=2

an−2x
n −

∞∑
n=0

m2anx
n = 0.

Consequently, separating the terms of x1 and x0,
∞∑
n=2

[
n(n− 1)an + nan + an−2 −m2an

]
xn + a1x−m2a1x−m2a0 = 0.

Equivalently
∞∑
n=2

[
(n2 −m2)an + an−2

]
xn + (1−m2)a1x−m2a0 = 0.

In the case that m = 0 this means that a1 = 0 and, as an immediate consequence
of the given initial value, a0 = 192. On the other hand, in the case that m = 1
this means that a0 = 0 and, as an immediate consequence of the given initial value,
a1 = 192. Considering the first sum in the above equation, we see that, for all
n ≥ 2, (n2 −m2)an + an−2 = 0 and so

an = − an−2
n2 −m2

.

The recurrence relation would allow us to determine the coefficients of the power
series solution to this differential equation. For the first few terms we calculate that

a2 = − 1

22 −m2
a0,

a3 = − 1

32 −m2
a1,

a4 = − 1

42 −m2
a2 =

1

(42 −m2)(22 −m2)
a0,

a5 = − 1

52 −m2
a3 =

1

(52 −m2)(32 −m2)
a1.

Using the ratio test on the recurrence relation shows that the radius of converge of
the power series solution is infinite.

1This equation, for some constant m, is called Bessel’s differential equation and has various
applications including: electromagnetic waves in a cylindrical waveguide; heat conduction in a

cylindrical object and the modes of vibration of a circular drum.

https://en.wikipedia.org/wiki/Bessel_function
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Q2 Solution:

Let g(x, y) := x2 + axy + y2 − b. Either (a = 3, b = 45) or (a = 4, b = 24). One
suitable choice of function for finding points closest / furthest from the origin is
f(x, y) = x2 + y2. We calculate

∇g(x, y) =

(
2x+ ay
ax+ 2y

)
, ∇f(x, y) =

(
2x
2y

)
.

According to the Lagrange multiplier method we introduce λ ∈ R and write(
2x
2y

)
= λ

(
2x+ ay
ax+ 2y

)
.

Multiplying the first line by y and the second line by x we obtain that 2xy =
2λxy + aλy2 and 2xy = λax2 + 2λxy. Equating these implies that 2λxy + aλy2 =
λax2 + 2λxy and so y2 = x2. We treat the case y = x and y = −x independently.

Case y = x: Substituting into x2+axy+y2−b = 0 we obtain (2+a)x2 = b. Con-

sequently x = ± b
2+a . This gives two solutions: (

√
b

2+a ,
√

b
2+a ) and (−

√
b

2+a ,−
√

b
2+a ).

Case y = −x: Substituting into x2 + axy + y2 − b = 0 we obtain (2− a)x2 = b.
However (2− a) is negative since a > 2 and so there are no solutions in this case.

This set consists of two curves and has mirror symmetry along the line y = x
and the line y = −x. The set is unbounded, it contains points infinitely far from
the origin. The two extrema are the two points equally close to the origin.
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Q3 Solution:

(a) Let C be the path from (0, 0) to (π, 0) along the curve y = sinx and

f(x, y) =

(
ax2

2a

)
.

Choose α(t) := (t, sin t), t ∈ [0, π]. We calculate

α′(t) =

(
1

cos t

)
, f(α(t)) =

(
at2

2a

)
.

Consequently α′(t) · f(α(t)) = at2 + 2a cos t. And so∫
f dα =

∫ π

0

(at2 + 2a cos t) dt

= a

∫ π

0

t2 dt+ 2a

∫ π

0

cos t dt = a

[
1

3
t3
]π
0

+ 0 = a
π3

3
.

(b) Let C be the line segment from (1, 0, 1) to (a+ 1, 2, a+ 1) and

f(x, y) =

xyz
y

 .

Choose α(t) := (1 + ta, 2t, 1 + ta), t ∈ [0, 1]. We calculate

α′(t) =

a2
a

 , f(α(t)) =

2t(1 + ta)
1 + ta

2t

 .

Consequently α′(t) · f(α(t)) = 2at(1 + ta) + 2(1 + ta) + 2at = 2a2t2 + 6at+ 2. And
so ∫

f dα =

∫ 1

0

(2a2t2 + 6at+ 2) dt

=

[
2a2

3
t3 + 3at2 + 2t

]1
0

=
2a2

3
+ 3a+ 2.

(c) Let α(t) = (cos t, sin t), t ∈ [0, 2π]. Calculate

α′(t) =

(
− sin t
cos t

)
, f(α(t)) =

(
cos t+ sin t
− cos t+ sin t

)
.

Moreover f(α(t))·α′(t) = − sin t cos t−sin2 t−cos2 t+sin t cos t = −1. Consequently∫
C

f dα =

∫ 2π

0

(−1) dt = −2π.



9

Q4 Solution:

Let V be the solid bounded above by the sphere x2 + y2 + z2 = a2 and below by

the cone z =
√
x2 + y2. (Either a = 2 or a =

√
2.) We can write

V =
{

(x, y, z) : (x, y) ∈ D,
√
x2 + y2 ≤ z ≤

√
a2 − (x2 + y2)

}
⊂ R3

where D = {(x, y) : x2 + y2 ≤ a2

2 }. In cylindrical coordinates the solid V corre-

sponds to the set Ṽ where,

Ṽ =

{
(r, θ, z) : r ∈

[
0,

a√
2

]
, θ ∈ [0, 2π], r ≤ z ≤

√
a2 − r2

}
,

The volume integral is∫∫∫
V

dV = 2π

∫ a√
2

0

r
(√

a2 − r2 − r
)
dr

= 2π

∫ a√
2

0

r(a2 − r2)
1
2 dr − 2π

∫ a√
2

0

r2 dr.

Observe the indefinite integral
∫
r(a2 − r2)

1
2 dr = − 1

3 (a2 − r2)
3
2 + C. This means

that ∫∫∫
V

dV = −2

3
π
[
(a2 − r2)

3
2

] a√
2

0
− 2π

[
r3

3

] a√
2

0

= −2

3
π

((
a2 − a2

2

) 3
2

−
(
a2
) 3

2

)
− 2

3
π

(
a3

2
√

2

)
= −2

3
π

(
a3

2
√

2
− a3 +

a3

2
√

2

)
=
π

3

(
2−
√

2
)
a3.

Note that
(
2−
√

2
)

(
√

2)3 = 4
√

2− 4 and
(
2−
√

2
)

(2)3 = 16− 8
√

2.
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Q5 Solution:

Consider the surface S =
{

(x, y, z) : x2 + y2 = z, z ≤ a2
}

. Either a = 3 or a = 4.
We choose the parametric form of the surface S by letting T = {(r, θ) : r ∈ [0, a], θ ∈
[0, 2π]} and

r : (r, θ) 7→ (r cos θ, r sin θ, r2).

We calculate

∂r

∂r
× ∂r

∂θ
=

cos θ
sin θ
2r

×
−r sin θ
r cos θ

0

 =

−2r2 cos θ
−2r2 sin θ

r

 .

We observe that this corresponds to the required normal. Since f(x, y, z) =
(
y2

0
z

)
,

f(r(r, θ)) =

(
r2 sin2 θ

0
r2

)
.

Consequently∫∫
S

f · n dS =

∫ a

0

∫ 2π

0

r2 sin2 θ
0
r2

 ·
−2r2 cos θ
−2r2 sin θ

r

 dθdr

=

∫ a

0

∫ 2π

0

(−2r4 sin2 θ cos θ + r3) dθdr.

We calculate that ∫ a

0

∫ 2π

0

r3 dθdr = 2π

[
r4

4

]a
0

=
a4

2
π.

On the other hand, using the indefinite integral
∫

sin2 θ cos θ dθ = − 1
3 sin3 θ + C,

we calculate that (or observe the symmetry)∫ 2π

0

sin2 θ cos θ dθ = −1

3

[
sin3 θ

]2π
0

= 0.

This means that ∫∫
S

f · n dS =
a4

2
π.
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