
Call6.

(1) Q1
Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, 1

2
and 2

√
2 are accepted but

not 2
4

and
√

8). If a fraction is negative, put the negative

sign on the numerator (−1
2

but not 1
−2).

Find a power series solution of the following differential equa-
tion.

(1− x)2y′′ − 2y = 0.

By substituting y(x) =
∑∞

n=0 anx
n, one has

∞∑
n=0

[
(n+ a )(n+ b )an+2 + c n(n+ d )an+1 + (n+ e )(n+ f )an

]
xn = 0,

where a > b , e > f . a : 2 X b : 1 X c : −2 X

d : 1 X e : 1 X f : −2 X

From this we obtain (n+ a )(n+ b )an+2+ c n(n+ d )an+1+

(n+ e )(n+ f )an = 0. This is equivalent to

(n+ 1)[(n+ g )(an+2 − an+1)− (n+ h )(an+1 − an)] = 0.

g : 2 X h : −2 X

Let us put bn = an+1 − an. Then we have bn+1 =
n+ h
n+ g

bn.

If y(0) = 1, y′(0) = −2, then we have b0 = i , b1 = j , b2 = k

and a2 = l , a3 = m , a4 = n .

i : −3 X j : 3 X k : −1 X l : 1 X m : 0 X

n : 0 X
In this case, the series

∑∞
n=0 converges for x:

• −10 X
• −1 X
• −0.1 X
• 0 X
• 0.1 X
• 1 X
• 10 X
• 100 X
If y(0) = 1, y′(0) = 1, similarly as above, a2 = o , a3 =

p , a4 = q . o : 1 X p : 1 X q : 1 X
1
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In this case, the series
∑∞

n=0 converges for x:
• −10
• −1
• −0.1 X
• 0 X
• 0.1 X
• 1
• 10
• 100

Use y′(x) =
∑

n=1 nanx
n−1 and y′′(x) =

∑
n=2 n(n −

1)anx
n−2, and one obtains the equation
∞∑
n=0

[(n+ 2)(n+ 1)an+2 − 2n(n+ 1)an+1+

(n+ 1)(n− 2)an]xn = 0,

and this must hold for all x, so it follows that

(n+ 2)(n+ 1)an+2−2n(n+ 1)an+1 + (n+ 1)(n−2)an = 0

The factor n+1 is common and nonzero, so this is equiv-
alent to

0 = (n+ 2)an+2 − 2nan+1 + (n− 2)an

= (n+ 2)(an+2 − an+1)− (n− 2)(an+1 − an).

By putting bn = an+1 − an, we have a relation for bn:

bn+1 =
n− 2

n+ 2
bn.

From the initial condition, we get the values of a0, a1 and
hence of b0. We can determine recursively the values of
bn, and also of an.
For the case y(0) = 1, y′(0) = −2, one has b0 = −3, b1 =
3, b2 = −1, bn = 0 for n ≥ 3. Accordingly, a0 = 1, a1 =
−2, a2 = 1, an = 0 for n ≥ 3. This is a polynomial and
the radius of convergence is ∞.
For the case y(0) = 1, y′(0) = 1, one has b0 = 0 and
bn = 0 for all n. Accordingly, an = 1 for all n. This has
the radius of convergence is 1, and for x = ±1 the series
does not converge.

(2) Q1
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Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, 1

2
and 2

√
2 are accepted but

not 2
4

and
√

8). If a fraction is negative, put the negative

sign on the numerator (−1
2

but not 1
−2).

Find a power series solution of the following differential equa-
tion.

(2− x)2y′′ − 2y = 0.

By substituting y(x) =
∑∞

n=0 anx
n, one has

∞∑
n=0

[
4(n+ a )(n+ b )an+2 + c n(n+ d )an+1 + (n+ e )(n+ f )an

]
xn = 0,

where a > b , e > f . a : 2 X b : 1 X c : −4 X

d : 1 X e : 1 X f : −2 X

From this we obtain (n+ a )(n+ b )an+2+ c n(n+ d )an+1+

(n+ e )(n+ f )an = 0. This is equivalent to

(n+ 1)[2(n+ g )( h an+2 − an+1)− (n− 2)( h an+1 − an)] = 0.

g : 2 X h : 2 X

Let us put bn = h an+1−an. Then we have bn+1 = n−2
2(n+ g )

bn.

If y(0) = 4, y′(0) = −4, then we have b0 = i , b1 = j , b2 = k

and a2 = l , a3 = m , a4 = n .

i : −12 X j : 6 X k : −1 X l : 1 X m :

0 X n : 0 X
In this case, the series

∑∞
n=0 converges for x:

• −10 X
• −1 X
• −0.1 X
• 0 X
• 0.1 X
• 1 X
• 10 X
• 100 X
If y(0) = 1

2
, y′(0) = 1

4
, similarly as above, a2 = 1

o
, a3 =

1

p
, a4 = 1

q
. o : 8 X p : 16 X q : 32 X

In this case, the series
∑∞

n=0 converges for x:
• −10
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• −1 X
• −0.1 X
• 0 X
• 0.1 X
• 1 X
• 10
• 100

This can be solved in a very similar way to the above,
with bn = 2an+1 − an.

(3) Q2
Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, 1

2
and 2

√
2 are accepted but

not 2
4

and
√

8).
Let us find the points that are nearest and fartherest from

(0, 0, 0) on the line defined by

x+ y = 1, x− z = 1.

By applying Lagrange’s multiplier method, we find stationary
points of a function f(x, y, z) under the condition g(x, y, z) =
x+ y − 1 = 0 and h(x, y, z) = x− z − 1 = 0.

Choose functions f(x, y, z) which are appropriate for this pur-
pose.
• x+ y + z
• x2 + y2 + z2 X
• x3 + y3 + z3

• (x2 + y2 + z2)
1
2 X

• (x3 + y3 + z3)
1
3

• exp(x2 + y2 + z2) X
• sin(x2 + y2 + z2)
Compute the gradient ∇g:

∇g(x, y, z) = ( a , b , c ).

a : 1 X b : 1 X c : 0 X

∇h(x, y, z) = ( a , b , c ).

a : 1 X b : 0 X c : −1 X
Choose an appropriate f . By Lagrange’s multiplier method,

introduce λ1, λ2 ∈ R and solve the equation ∇f(x, y, z) =
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λ1∇g(x, y, z) + λ2∇h(x, y, z). There is one solution (x, y, z) =

(
d
e
,

f
g
,

h

i
).

d : 2 X e : 3 X f : 1 X g : 3 X h : −1 X

i : 3 X
Choose a correct statement.
• This solution is a minimum. X
• This solution is a maximum.
• This solution is a saddle point.

The question asks to find the point nearest or far-
therst from (0, 0, 0). This is equivalent to minimize or
maximize the distance from (0, 0, 0) to (x, y, z), namely√
x2 + y2 + z2. Actually, the minumal and maximal

points do not change if one compose it with a mono-
tonic function, so one can also consider f(x, y, z) =√
x2 + y2 + z2, x2 + y2 + z2, exp(x2 + y2 + z2). But sin is

not monotonic.
The easiest choice is f(x, y, z) = x2 + y2 + z2. To find
an extremal point of f under the condition g(x, y, z) =
h(x, y, z) = 0, by Lagrange’s multiplier method, intro-
duce λ1, λ2 and put ∇f = λ1∇g + λ2∇h. In this case, it
gives

(2x, 2y, 2z) = (λ1, λ1, 0) + (λ2, 0,−λ2)
together with x+ y − 1 = 0, x− z − 1 = 0.
This solution is a minumum, because the equation g =
h = gives a plane, and there is a nearest point from
(0, 0, 0), but no fartherest point or a saddle point.

(4) Q2
Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, 1

2
and 2

√
2 are accepted but

not 2
4

and
√

8).
Let us find the points that are nearest and fartherest from

(0, 0, 0) on the line defined by

y + z = 1, y − x = 1.

By applying Lagrange’s multiplier method, we find stationary
points of a function f(x, y, z) under the condition g(x, y, z) =
y + z − 1 = 0 and h(x, y, z) = y − x− 1 = 0.
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Choose functions f(x, y, z) which are appropriate for this pur-
pose.
• x+ y + z
• x2 + y2 + z2 X
• x3 + y3 + z3

• (x2 + y2 + z2)
1
2 X

• (x3 + y3 + z3)
1
3

• exp(x2 + y2 + z2) X
• sin(x2 + y2 + z2)
Compute the gradient ∇g:

∇g(x, y, z) = ( a , b , c ).

a : 0 X b : 1 X c : 1 X

∇h(x, y, z) = ( a , b , c ).

a : −1 X b : 1 X c : 0 X
Choose an appropriate f . By Lagrange’s multiplier method,

introduce λ1, λ2 ∈ R and solve the equation ∇f(x, y, z) =
λ1∇g(x, y, z) + λ2∇h(x, y, z). There is one solution (x, y, z) =

(
d
e
,

f
g
,

h

i
).

d : −1 X e : 3 X f : 2 X g : 3 X h : 1 X

i : 3 X
Choose a correct statement.
• This solution is a minimum. X
• This solution is a maximum.
• This solution is a saddle point.

(5) Q2
Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, 1

2
and 2

√
2 are accepted but

not 2
4

and
√

8).
Let us find the points that are nearest and fartherest from

(0, 0, 0) on the line defined by

z + x = 1, z − y = 1.

By applying Lagrange’s multiplier method, we find stationary
points of a function f(x, y, z) under the condition g(x, y, z) =
z + x− 1 = 0 and h(x, y, z) = z − y − 1 = 0.
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Choose functions f(x, y, z) which are appropriate for this pur-
pose.
• x+ y + z
• x2 + y2 + z2 X
• x3 + y3 + z3

• (x2 + y2 + z2)
1
2 X

• (x3 + y3 + z3)
1
3

• exp(x2 + y2 + z2) X
• sin(x2 + y2 + z2)
Compute the gradient ∇g:

∇g(x, y, z) = ( a , b , c ).

a : 1 X b : 0 X c : 1 X

∇h(x, y, z) = ( a , b , c ).

a : 0 X b : −1 X c : 1 X
Choose an appropriate f . By Lagrange’s multiplier method,

introduce λ1, λ2 ∈ R and solve the equation ∇f(x, y, z) =
λ1∇g(x, y, z) + λ2∇h(x, y, z). There is one solution (x, y, z) =

(
d
e
,

f
g
,

h

i
).

d : 1 X e : 3 X f : −1 X g : 3 X h : 2 X

i : 3 X
Choose a correct statement.
• This solution is a maximum.
• This solution is a minimum. X
• This solution is a saddle point.

(6) Q3
Determine which of the following is a parametrization of the
path

C = {(x, y) : x2 + (y − 2)2 = 4, y ≤ 2} ⊂ R2,

starting at (−2, 2) and finishing at (2, 2) (1
2

point each):

• (2 cos t, 2(1 + sin t)), t ∈ [−π, 0] is X
is not

• (2 sin t, 2 cos t), t ∈ [−π, 0] is
is not X

• (t, 2−
√

4− t2), t ∈ [−2, 2] is X
is not
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• ( 8t
t2+4

, 4t2

t2+4
), t ∈ [−2, 2] is X

is not

• ( 4t
t2+1

, 4t2

t2+1
), t ∈ [−1, 1] is X

is not

• (2t, 2− 2
√

1− t2), t ∈ [−1, 1] is X
is not

• (−
√

4− (t− 2)2, t), t ∈ [0, 2] is
is not X

• (2 cos t, 2(1 + sin t)), t ∈ [π, 2π] is X
is not

If C is the path above and

f(x, y) =

(
y2 − 4y + 4

x2

)
is a vector field on R2 calculate

∫
C
f dα = 32 X

−32 (50%)
/3. Fill

in the blank with the correct integer, possibly zero or negative
(2 points).

(7) Q3
Determine which of the following is a parametrization of the
path

C = {(x, y) : x2 + (y − 2)2 = 4, y ≤ 2} ⊂ R2,

starting at (−2, 2) and finishing at (2, 2) (1
2

point each):

• (−
√

4− (t− 2)2, t), t ∈ [0, 2] is
is not X

• (2 cos t, 2(1 + sin t)), t ∈ [π, 2π] is X
is not

• (t, 2−
√

4− t2), t ∈ [−2, 2] is X
is not

• ( 8t
t2+4

, 4t2

t2+4
), t ∈ [−2, 2] is X

is not

• ( 4t
t2+1

, 4t2

t2+1
), t ∈ [−1, 1] is X

is not

• (2t, 2− 2
√

1− t2), t ∈ [−1, 1] is X
is not

• (2 cos t, 2(1 + sin t)), t ∈ [−π, 0] is X
is not
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• (2 sin t, 2 cos t), t ∈ [−π, 0] is
is not X

If C is the path above and

f(x, y) =

(
y2 − 4y + 4

x2

)
is a vector field on R2 calculate

∫
C
f dα = 32 X

−32 (50%)
/3. Fill

in the blank with the correct integer, possibly zero or negative
(2 points).

(8) Q3
Determine which of the following is a parametrization of the
path

C = {(x, y) : x2 + (y − 3)2 = 9, y ≤ 3} ⊂ R2,

starting at (−3, 3) and finishing at (3, 3) (1
2

point each):

• (3 cos t, 3(1 + sin t)), t ∈ [−π, 0] is X
is not

• (3 sin t, 3 cos t), t ∈ [−π, 0] is
is not X

• (t, 3−
√

9− t2), t ∈ [−3, 3] is X
is not

• ( 18t
t2+9

, 6t2

t2+9
), t ∈ [−3, 3] is X

is not

• ( 6t
t2+1

, 6t2

t2+1
), t ∈ [−1, 1] is X

is not

• (3t, 3− 3
√

1− t2), t ∈ [−1, 1] is X
is not

• (−
√

9− (t− 3)2, t), t ∈ [0, 3] is
is not X

• (3 cos t, 3(1 + sin t)), t ∈ [π, 2π] is X
is not

If C is the path above and

f(x, y) =

(
y2 − 6y + 9

x2

)
is a vector field on R2 calculate

∫
C
f dα = 36 X

−36 (50%)
. Fill

in the blank with the correct integer, possibly zero or negative
(2 points).
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(9) Q3
Determine which of the following is a parametrization of the
path

C = {(x, y) : x2 + (y − 3)2 = 9, y ≤ 3} ⊂ R2,

starting at (−3, 3) and finishing at (3, 3) (1
2

point each):

• (−
√

9− (t− 3)2, t), t ∈ [0, 3] is
is not X

• (3 cos t, 3(1 + sin t)), t ∈ [π, 2π] is X
is not

• (t, 3−
√

9− t2), t ∈ [−3, 3] is X
is not

• ( 18t
t2+9

, 6t2

t2+9
), t ∈ [−3, 3] is X

is not

• ( 6t
t2+1

, 6t2

t2+1
), t ∈ [−1, 1] is X

is not

• (3t, 3− 3
√

1− t2), t ∈ [−1, 1] is X
is not

• (3 cos t, 3(1 + sin t)), t ∈ [−π, 0] is X
is not

• (3 sin t, 3 cos t), t ∈ [−π, 0] is
is not X

If C is the path above and

f(x, y) =

(
y2 − 6y + 9

x2

)

is a vector field on R2 calculate
∫
C
f dα = 36 X

−36 (50%)
. Fill

in the blank with the correct integer, possibly zero or negative
(2 points).
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Let a = 2 or a = 3 depending on the alternative version
with curve C = {(x, y) : x2 + (y − a)2 = a2, y ≤ a}.
The formula α(t) = (a sin t, a cos t), t ∈ [−π, 0] is not a
parametrization of C since (a sin t2) + (a cos t− a)2 6= a2.

The formula α(t) = (−
√
a2 − (t− a)2, t), t ∈ [0, a] is not

a parametrization of C since α(0) = (0, 0) but the path
is required to start at (−a, a).
Picking the parametrization

α(t) = (a cos t, a(1 + sin t)), t ∈ [π, 2π]

we calculate that

α′(t) =

(
−a sin t
a cos t

)
,

y2 − 2ay + a2 = (y − a)2 = a2 sin2 t, and also

f(α(t))·α′(t) =

(
a2 sin2 t
a2 cos2 t

)
·
(
−a sin t
a cos t

)
= a3(cos3 t−sin3 t).

Consequently∫
C

f dα = a3
∫ 2π

π

cos3 t− sin3 t dt.

To proceed we note the indefinite integrals
∫

cos3 t dt =
−1

3
sin3 t+ sin t+C and

∫
sin3 t dt = 1

3
cos3 t− cos t+C.

Consequently∫
C

f dα =
a3

3

[
− sin3 t+ 3 sin t− cos3 t+ 3 cos t

]2π
π

=
a3

3
((0 + 0− 1 + 3)− (0 + 0 + 1− 3)) =

4a3

3
.
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(10) Q4
Fill in the blanks with the correct integer, possibly zero or
negative.

Let V be the solid bounded above by the sphere x2+y2+z2 =
5 and below by the paraboloid x2 + y2 = 4z. We can write

V =

{
(x, y, z) : (x, y) ∈ D, x

2 + y2

4
≤ z ≤

√
5− (x2 + y2)

}
⊂ R3

where D = {(x, y) : x2+y2 ≤ 4 X } ⊂ R2 (1 point). In order

to find the volume of V by evaluating the triple integral
∫∫∫

V
dV

we change to cylindrical coordinates x = r cos θ, y = r sin θ,
z = z. The Jacobian |J(r, θ, z)| is equal to (1 point)
• r cos θ,
• r2 sin θ,
• r sin θ,
• r. X
Complete the triple integral and show that the volume of V

is equal to ( 10 X
√

5+ −8 X )π
3

(2 points each part).
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It can be helpful to sketch V . The disk D is the set of
(x, y) such that (x2+y2) ≤ 4

√
5− (x2 + y2). This implies

that (x2 + y2)2 + 42(x2 + y2)− 42 · 5 ≤ 0 and in turn that
(x2 + y2) ≤ 4(

√
4 + 5− 2) = 4.

In cylindrical coordinates the solid V corresponds to the
set Ṽ where,

Ṽ =
{

(r, θ, z) : r ∈ [0, 2], θ ∈ [0, 2π], r2/4 ≤ z ≤
√

5− r2
}
,

The volume integral is∫∫∫
V

dV = 2π

∫ 2

0

r

(√
5− r2 − r2

4

)
dr

= 2π

∫ 2

0

r(5− r2)
1
2 dr − π

2

∫ 2

0

r3 dr.

Observe the indefinite integrals
∫
r(a−r2) 1

2 dr = −1
3
(a−

r2)
3
2 + C and

∫
r3 dr = 1

4
r4 + C. This means that∫∫∫

V

dV = −2

3
π
[
(5− r2)

3
2

]2
0
− π

8

[
r4
]2
0

= −2

3
π
(

(5− 4)
3
2 − 5

3
2

)
− π

8
16

=

(
−2

3
+

2

3
· 5
√

5− 2

)
π =

(
10
√

5− 8
) π

3
.
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(11) Q4
Fill in the blanks with the correct integer, possibly zero or
negative.

Let V be the solid bounded above by the sphere x2+y2+z2 =
12 and below by the paraboloid x2 + y2 = 4z. We can write

V =

{
(x, y, z) : (x, y) ∈ D, x

2 + y2

4
≤ z ≤

√
12− (x2 + y2)

}
⊂ R3

where D = {(x, y) : x2+y2 ≤ 8 X } ⊂ R2 (1 point). In order

to find the volume of V by evaluating the triple integral
∫∫∫

V
dV

we change to cylindrical coordinates x = r cos θ, y = r sin θ,
z = z. The Jacobian |J(r, θ, z)| is equal to (1 point)
• r cos θ,
• r2 sin θ,
• r sin θ,
• r. X
Complete the triple integral and show that the volume of V

is equal to ( 16 X
√

3+ −40 X /3)π (2 points each part).
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It can be helpful to sketch V . The disk D is the set
of (x, y) such that (x2 + y2) ≤ 4

√
12− (x2 + y2). This

implies that (x2 + y2)2 + 42(x2 + y2)− 42 · 12 ≤ 0 and in
turn that (x2 + y2) ≤ 4(

√
4 + 12− 2) = 8.

In cylindrical coordinates the solid V corresponds to the
set Ṽ where,

Ṽ =
{

(r, θ, z) : r ∈ [0, 2
√

2], θ ∈ [0, 2π], r2/4 ≤ z ≤
√

12− r2
}
,

The volume integral is∫∫∫
V

dV = 2π

∫ 2
√
2

0

r

(√
12− r2 − r2

4

)
dr

= 2π

∫ 2
√
2

0

r(12− r2)
1
2 dr − π

2

∫ 2
√
2

0

r3 dr.

Observe the indefinite integrals
∫
r(a−r2) 1

2 dr = −1
3
(a−

r2)
3
2 + C and

∫
r3 dr = 1

4
r4 + C. This means that∫∫∫

V

dV = −2

3
π
[
(12− r2)

3
2

]2√2
0
− π

8

[
r4
]2√2
0

= −2

3
π
(

(12− 8)
3
2 − 12

3
2

)
− π

8
64

= π

(
−2

3
· 8 +

2

3
· 3 · 8

√
3− 8

)
=

(
16
√

3− 40

3

)
π.
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(12) Q5
Fill in each blank with the correct integer, possibly zero or
negative.

Consider the surface S = {(x, y, z) : x2 + y2 = z, z ≤ 9}. A
possible choice for the parametric form of the surface S is to let

T = {(r, θ) : r ∈ [0, 3 X ], θ ∈ [0, 2π]} (1
2

point) and

r : (r, θ) 7→
(
r cos θ, a , b

)
.

For this parametric representation we calculate that

∂r

∂r
× ∂r

∂θ
=

 c

d
e

 .

The missing formulae are (1
2

point each):
a :
• r sin θ X • r cos θ • r • r2 • r2 cos θ • r2 sin θ
b :
• r sin θ • r cos θ • r • r2 X • r2 cos θ • r2 sin θ
c :
• 2r sin θ • r • 2r2 • −r2 sin θ • −2r2 cos θ X
d :
• 2r sin θ • r • r2 • −2r2 sin θ X • −2r2 cos θ
e :
• 2r sin θ • r X • r2 • −2r2 sin θ • −2r2 cos θ
Consider the vector field

f(x, y, z) =
(
x
0
1

)
and let n be the unit normal to S which has negative z-

component. The surface integral
∫∫

S
f · n dS = 63 X

−63 (50%)
π
2

(3 points).
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We choose the parametric form of the surface S by letting
T = {(r, θ) : r ∈ [0, 3], θ ∈ [0, 2π]} and

r : (r, θ) 7→ (r cos θ, r sin θ, r2).

We calculate

∂r

∂r
× ∂r

∂θ
=

cos θ
sin θ
2r

×
−r sin θ
r cos θ

0

 =

−2r2 cos θ
−2r2 sin θ

r

 .

We observe that this corresponds to the opposite normal
compared to the one that we want so we will need to add
a minus sign.∫∫

S

f · n dS = −
∫ 3

0

∫ 2π

0

r cos θ
0
1

 ·
−2r2 cos θ
−2r2 sin θ

r

 dθdr

=

∫ 3

0

∫ 2π

0

2r3 cos2 θ − r dθdr.

We calculate that∫ 3

0

∫ 2π

0

(−r) dθdr = −2π

[
1

2
r2
]3
0

= −32π.

On the other hand, using the indefinite integral∫
cos2 θ dθ = 1

2
(θ + sin θ cos θ) + C, we calculate that∫ 2π

0

cos2 θ dθ =
1

2
[θ + sin θ cos θ]2π0 = π.

This means that∫ 3

0

∫ 2π

0

2r3 cos2 θ dθdr = 2π

∫ 3

0

r3 dr =
π

2

[
r4
]3
0

=
34

2
π.

Summing together the two parts of the integral we have∫∫
S

f · n dS =

(
34

2
− 32

)
π =

63

2
π.
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(13) Q5
Fill in each blank with the correct integer, possibly zero or
negative.

Consider the surface S = {(x, y, z) : x2 + y2 = z, z ≤ 16}. A
possible choice for the parametric form of the surface S is to let

T = {(r, θ) : r ∈ [0, 4 X ], θ ∈ [0, 2π]} (1
2

point) and

r : (r, θ) 7→
(
r cos θ, a , b

)
.

For this parametric representation we calculate that

∂r

∂r
× ∂r

∂θ
=

 c

d
e

 .

The missing formulae are (1
2

point each):
a :
• r sin θ X • r cos θ • r • r2 • r2 cos θ • r2 sin θ
b :
• r sin θ • r cos θ • r • r2 X • r2 cos θ • r2 sin θ
c :
• 2r sin θ • r • 2r2 • −r2 sin θ • −2r2 cos θ X
d :
• 2r sin θ • r • r2 • −2r2 sin θ X • −2r2 cos θ
e :
• 2r sin θ • r X • r2 • −2r2 sin θ • −2r2 cos θ
Consider the vector field

f(x, y, z) =
(
x
0
1

)
and let n be the unit normal to S which has negative z-

component. The surface integral
∫∫

S
f ·n dS = 112 X

−112 (50%)
π (3 points).
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We choose the parametric form of the surface S by letting
T = {(r, θ) : r ∈ [0, 4], θ ∈ [0, 2π]} and

r : (r, θ) 7→ (r cos θ, r sin θ, r2).

We calculate

∂r

∂r
× ∂r

∂θ
=

cos θ
sin θ
2r

×
−r sin θ
r cos θ

0

 =

−2r2 cos θ
−2r2 sin θ

r

 .

We observe that this corresponds to the opposite normal
compared to the one that we want so we will need to add
a minus sign.∫∫

S

f · n dS = −
∫ 4

0

∫ 2π

0

r cos θ
0
1

 ·
−2r2 cos θ
−2r2 sin θ

r

 dθdr

=

∫ 4

0

∫ 2π

0

2r3 cos2 θ − r dθdr.

We calculate that∫ 4

0

∫ 2π

0

(−r) dθdr = −2π

[
1

2
r2
]4
0

= −42π.

On the other hand, using the indefinite integral∫
cos2 θ dθ = 1

2
(θ + sin θ cos θ) + C, we calculate that∫ 2π

0

cos2 θ dθ =
1

2
[θ + sin θ cos θ]2π0 = π.

This means that∫ 4

0

∫ 2π

0

2r3 cos2 θ dθdr = 2π

∫ 4

0

r3 dr =
π

2

[
r4
]4
0

=
44

2
π.

Summing together the two parts of the integral we have∫∫
S

f · n dS =

(
44

2
− 42

)
π = 112π.


