Call5.

(1) **Q1**

Fill in the blanks with integers (possibly 0 or negative), unless otherwise specified. If a fraction or a root appears, write the simplified form (for example, $\frac{1}{2}$ and $2\sqrt{2}$ are accepted but not $\frac{2}{4}$ and $\sqrt{8}$). If a fraction is negative, **put the negative** sign on the numerator $(\frac{-1}{2}$ but not $\frac{1}{-2})$.

Consider first $\cos(2x)$. Its Taylor expansion is

$$\cos(2x) = \sum_{n=0}^{\infty} \frac{\boxed{\mathbf{a}}^n}{(2n)!} x^{\boxed{\mathbf{b}}_n}$$

a: $\boxed{-4}$ \checkmark b: $\boxed{2}$ \checkmark It holds that

$$\cos^2 x = \frac{\boxed{c}}{\boxed{d}}\cos(2x) + \frac{\boxed{e}}{\boxed{f}}.$$

C: $\boxed{1}$ \checkmark d: $\boxed{2}$ \checkmark e: $\boxed{1}$ \checkmark f: $\boxed{2}$ \checkmark From this we obtain the Taylor expansion of $\cos^2 x = \sum_{n=0}^{\infty} a_n x^n$. The first few terms are

$$\cos^2 x = \boxed{g} + \boxed{h}x + \boxed{i}x^2 + \boxed{j}x^3 + \frac{\boxed{k}}{\boxed{1}}x^4 + \boxed{m}x^5 + \frac{\boxed{n}}{\boxed{o}}x^6 + o(x^6).$$

g:
$$\boxed{1}$$
 \checkmark \boxed{h} : $\boxed{0}$ \checkmark \boxed{i} : $\boxed{-1}$ \checkmark \boxed{j} : $\boxed{0}$ \checkmark \boxed{k} : $\boxed{1}$ \checkmark $\boxed{0}$: $\boxed{45}$ \checkmark We can also compute the integral.

$$\int_0^x \cos^2 t dt = \boxed{\mathbf{p}} + \boxed{\mathbf{q}} x + \boxed{\mathbf{r}} x^2 + \boxed{\frac{\mathbf{s}}{\mathbf{t}}} x^3 + \boxed{\mathbf{u}} x^4 + \boxed{\frac{\mathbf{v}}{\mathbf{w}}} x^5 + o(x^5).$$

p:
$$0 \checkmark q$$
: $1 \checkmark r$: $0 \checkmark s$: $-1 \checkmark t$: $3 \checkmark$
u: $0 \checkmark v$: $1 \checkmark w$: $15 \checkmark$
Choose values of x for which the above series converges.

- -10 ✓
- \bullet -1 \checkmark
- -0.1 \checkmark
- 0 √
- 0.1 ✓
- 1 ✓
- 10 √
- 100 ✓

For $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $\int_0^{\infty} f(t) dt = \sum_{n=1}^{\infty} \frac{a_n}{n} x^n$. By the ratio test, the series for $\cos^2 x$ and $\sin^2 x$ converges for all x. The radius of convergence does not change if it is integrated from the center (x = 0 in this case).

(2) **Q1**

Fill in the blanks with integers (possibly 0 or negative), unless otherwise specified. If a fraction or a root appears, write the simplified form (for example, $\frac{1}{2}$ and $2\sqrt{2}$ are accepted but not $\frac{2}{4}$ and $\sqrt{8}$). If a fraction is negative, **put the negative** sign on the numerator $(\frac{-1}{2}$ but not $\frac{1}{-2})$.

Consider first $\cos(2x)$. Its Taylor expansion is

$$\cos(2x) = \sum_{n=0}^{\infty} \frac{\boxed{a}^n}{(2n)!} x^{\boxed{b}_n}$$

a: $\boxed{-4}$ \checkmark b: $\boxed{2}$ \checkmark It holds that

$$\sin^2 x = \frac{\boxed{c}}{\boxed{d}}\cos(2x) + \frac{\boxed{e}}{\boxed{f}}$$

The first few terms are

$$\sin^2 x = \boxed{g} + \boxed{h}x + \boxed{i}x^2 + \boxed{j}x^3 + \boxed{k}x^4 + \boxed{m}x^5 + \boxed{n}x^6 + o(x^6)$$

$$\boxed{g} : \boxed{0} \checkmark \boxed{h} : \boxed{0} \checkmark \boxed{i} : \boxed{1} \checkmark \boxed{j} : \boxed{0} \checkmark \boxed{k} : \boxed{-1} \checkmark$$

$$\boxed{1} : \boxed{3} \checkmark \boxed{m} : \boxed{0} \checkmark \boxed{n} : \boxed{2} \checkmark \boxed{o} : \boxed{45} \checkmark$$
We can also compute the integral.

$$\int_0^x \sin^2 t dt = \boxed{\mathbf{p}} + \boxed{\mathbf{q}} x + \boxed{\mathbf{r}} x^2 + \boxed{\frac{\mathbf{S}}{\mathbf{t}}} x^3 + \boxed{\mathbf{u}} x^4 + \boxed{\frac{\mathbf{V}}{\mathbf{w}}} x^5 + o(x^5).$$

Choose values of x for which the above series converges.

- -10 ✓
- \bullet -1 \checkmark
- −0.1 ✓

- 0 √
- 0.1 √
- 1 ✓
- 10 √
- 100 ✓

$(3) \mathbf{Q2}$

Fill in the blanks with **integers** (possibly 0 or negative), unless otherwise specified. If a fraction or a root appears, write the simplified form (for example, $\frac{1}{2}$ and $2\sqrt{2}$ are accepted but not $\frac{2}{4}$ and $\sqrt{8}$). If a fraction is negative, put the negative sign on the numerator $(\frac{-1}{2}$ but not $\frac{1}{-2}$).

Let us find stationary points of the function below, following the suggested steps.

$$f(x, y, z) = x^3 + y^3 + z^3 - x - y - z + xyz.$$

First, we compute the gradient ∇f . We have:

$$\frac{\partial f}{\partial x} = \boxed{a}x^{\boxed{b}} + \boxed{c} + \boxed{d}yz.$$

a: 3
$$\checkmark$$
 b: 2 \checkmark c: -1 \checkmark d: 1 \checkmark The equation $\nabla f(x,y,z) = \mathbf{0}$ has many solutions. Let us

The equation $\nabla f(x, y, z) = \mathbf{0}$ has many solutions. Let us consider **only those that satisfy** x = y. They are (x, y, z) =

$$(\underbrace{\frac{e}{f}},\underbrace{\frac{e}{f}},\underbrace{\frac{g}{h}}),(\sqrt{\underbrace{i}},\sqrt{\underbrace{j}},\sqrt{\underbrace{l}}),(-\sqrt{\underbrace{i}},-\sqrt{\underbrace{i}},-\sqrt{\underbrace{i}},-\frac{\underbrace{k}}{\sqrt{l}}),(-\underbrace{e},-\underbrace{e},-\underbrace{g}_h).,$$

where [e], [f] > 0:

Consider the first of them $(\frac{e}{f}, \frac{e}{f}, \frac{g}{h})$. The determinant of the Hessian at this point is m.

At this point, the function f(x, y, z) takes a

- local minimum ✓
- saddle point
- local maximum

The equations are $x^2 + yz = 1$, $y^2 + zx = 1$, $z^2 + xy = 1$. Assuming x = y, we only have to solve $x^2 + xz = 1$, $z^2 + xz = 1$. Subtracting the sides, we obtain two cases. The Hessian determinant can be calculated directly.

$(4) \ \mathbf{Q2}$

Fill in the blanks with **integers** (**possibly** 0 **or negative**), unless otherwise specified. If a fraction or a root appears, write the simplified form (for example, $\frac{1}{2}$ and $2\sqrt{2}$ are accepted but not $\frac{2}{4}$ and $\sqrt{8}$). If a fraction is negative, **put the negative sign on the numerator** ($\frac{-1}{2}$ but not $\frac{1}{-2}$).

Let us find stationary points of the function below, following the suggested steps.

$$f(x,y,z) = 4x^3 + 4y^3 + 4z^3 - x - y - z + 4xyz.$$

First, we compute the gradient ∇f . We have:

$$\frac{\partial f}{\partial x} = \boxed{\mathbf{a}} x \boxed{\mathbf{b}} + \boxed{\mathbf{c}} + \boxed{\mathbf{d}} yz.$$

a:
$$12 \checkmark$$
 b: $2 \checkmark$ c: $-1 \checkmark$ d: $4 \checkmark$ The equation $\nabla f(x,y,z) = \mathbf{0}$ has many solutions. Let us

The equation $\nabla f(x, y, z) = \mathbf{0}$ has many solutions. Let us consider **only those that satisfy** x = y. They are (x, y, z) =

$$(\frac{e}{f}, \frac{e}{f}, \frac{g}{h}), (\frac{\sqrt{i}}{j\sqrt{k}}, \frac{\sqrt{i}}{j\sqrt{k}}, \frac{l}{\sqrt{m}}), (-\frac{\sqrt{i}}{j\sqrt{k}}, -\frac{\sqrt{i}}{j\sqrt{k}}, -\frac{l}{\sqrt{m}}), (-\frac{e}{f}, -\frac{e}{f}, -\frac{g}{h})$$

where [e], [f] > 0:

Consider the first of them $(\frac{e}{f}, \frac{e}{f}, \frac{g}{h})$. The determinant of the Hessian at this point is $\frac{m}{n}$.

At this point, the function f(x, y, z) takes a

- local minimum ✓
- saddle point
- local maximum

(5) Q3

Fill in the following blanks with the correct **integer**, possibly zero or negative (2 points each).

(a) If C is the path from (-1,1) to (1,1) along the parabola $y=x^2$ and

$$\mathbf{f}(x,y) = \begin{pmatrix} x^2 - 2xy \\ y^2 - 2xy \end{pmatrix}$$

is a vector field then $\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \boxed{-14 \ \checkmark \ 14 \ (50\%)}$ /15. **(b)** If C is the line segment from (1,0,2) to (3,4,1) and

$$\mathbf{f}(x,y) = \begin{pmatrix} 2xy \\ x^2 + z \\ y \end{pmatrix}$$

is a vector field then $\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \begin{bmatrix} 40 & \checkmark \\ -40 & (50\%) \end{bmatrix}$.

(c) If C is the circle $x^2 + y^2 = 1$ traversed once in a counter

clockwise direction and

$$\mathbf{f}(x,y) = \begin{pmatrix} (x+y)/(x^2+y^2) \\ -(x-y)/(x^2+y^2) \end{pmatrix}$$

is a vector field then $\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \begin{bmatrix} -2 & \checkmark \\ 2 & (50\%) \end{bmatrix} \pi$.

(a) Let
$$\alpha(t) = (t, t^2), t \in [-1, 1]$$
. Calculate

$$\boldsymbol{\alpha}'(t) = \begin{pmatrix} 1 \\ 2t \end{pmatrix}, \quad \mathbf{f}(\boldsymbol{\alpha}(t)) = \begin{pmatrix} t^2 - 2t^3 \\ t^4 - 2t^3 \end{pmatrix}.$$

Moreover $\mathbf{f}(\boldsymbol{\alpha}(t)) \cdot \boldsymbol{\alpha}'(t) = t^2 - 2t^3 + 2t^5 - 4t^4$. Consequently

$$\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \int_{-1}^1 t^2 - 4t^4 \ dt = 2\left[\frac{t^3}{3} - \frac{4t^5}{5}\right]_0^1 = -\frac{14}{15}.$$

(b) Let $\alpha(t) = (2t + 1, 4t, 2 - t), t \in [0, 1]$. Calculate

$$\boldsymbol{\alpha}'(t) = \begin{pmatrix} 2\\4\\-1 \end{pmatrix},$$

and

$$\mathbf{f}(\boldsymbol{\alpha}(t)) = \begin{pmatrix} 2(2t+1)(4t) \\ (2t+1)^2 + 2 - t \\ 4t \end{pmatrix} = \begin{pmatrix} 16t^2 + 8t \\ 4t^2 + 3t + 3 \\ 4t \end{pmatrix}.$$

Moreover $\mathbf{f}(\boldsymbol{\alpha}(t)) \cdot \boldsymbol{\alpha}'(t) = (32t^2 + 16t) + (16t^2 + 12t + 12) + (-4t) = 48t^2 + 24t + 12$. Consequently

$$\int_C \mathbf{f} \ d\mathbf{\alpha} = \int_0^1 48t^2 + 24t + 12 \ dt$$
$$= \left[\frac{48}{3} t^3 + 12t^2 + 12t \right]_0^1 = \frac{48}{3} + 24.$$

(c) Let $\alpha(t) = (\cos t, \sin t), t \in [0, 2\pi]$. Calculate

$$\alpha'(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}, \quad \mathbf{f}(\alpha(t)) = \begin{pmatrix} \cos t + \sin t \\ -\cos t + \sin t \end{pmatrix}.$$

Moreover $\mathbf{f}(\boldsymbol{\alpha}(t)) \cdot \boldsymbol{\alpha}'(t) = -\sin t \cos t - \sin^2 t - \cos^2 t + \sin t \cos t = -1$. Consequently

$$\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \int_0^{2\pi} (-1) \ dt = -2\pi.$$

(6) **Q3**

Fill in the following blanks with the correct **integer**, possibly zero or negative (2 points each).

(a) If C is the path from (-1,1) to (1,1) along the parabola $y=x^2$ and

$$\mathbf{f}(x,y) = \begin{pmatrix} x^2 - 2xy \\ y^2 - 2xy \end{pmatrix}$$

is a vector field then
$$\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \begin{bmatrix} -14 & \checkmark \\ 14 & (50\%) \end{bmatrix} / 15$$
.

(b) If C is the line segment from (1,0,2) to (3,4,1) and

$$\mathbf{f}(x,y) = \begin{pmatrix} xy \\ x^2 + z \\ 2y \end{pmatrix}$$

is a vector field then
$$\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \boxed{86 \quad \checkmark \\ -86 \quad (50\%)}/3$$
.

(c) If C is the circle $x^2 + y^2 = 1$ traversed once in a counter

clockwise direction and

$$\mathbf{f}(x,y) = \begin{pmatrix} (x+y)/(x^2+y^2) \\ -(x-y)/(x^2+y^2) \end{pmatrix}$$

is a vector field then
$$\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \begin{bmatrix} -2 & \checkmark \\ 2 & (50\%) \end{bmatrix} \pi$$
.

(a) Let
$$\alpha(t) = (t, t^2), t \in [-1, 1]$$
. Calculate

$$\boldsymbol{\alpha}'(t) = \begin{pmatrix} 1 \\ 2t \end{pmatrix}, \quad \mathbf{f}(\boldsymbol{\alpha}(t)) = \begin{pmatrix} t^2 - 2t^3 \\ t^4 - 2t^3 \end{pmatrix}.$$

Moreover $\mathbf{f}(\boldsymbol{\alpha}(t)) \cdot \boldsymbol{\alpha}'(t) = t^2 - 2t^3 + 2t^5 - 4t^4$. Consequently

$$\int_C \mathbf{f} \ d\alpha = \int_{-1}^1 t^2 - 4t^4 \ dt = 2\left[\frac{t^3}{3} - \frac{4t^5}{5}\right]_0^1 = -\frac{14}{15}.$$

(b) Let $\alpha(t) = (2t + 1, 4t, 2 - t), t \in [0, 1]$. Calculate

$$\boldsymbol{\alpha}'(t) = \begin{pmatrix} 2\\4\\-1 \end{pmatrix},$$

and

$$\mathbf{f}(\boldsymbol{\alpha}(t)) = \begin{pmatrix} (2t+1)(4t) \\ (2t+1)^2 + 2 - t \\ 2(4t) \end{pmatrix} = \begin{pmatrix} 8t^2 + 4t \\ 4t^2 + 3t + 3 \\ 8t \end{pmatrix}.$$

Moreover $\mathbf{f}(\boldsymbol{\alpha}(t)) \cdot \boldsymbol{\alpha}'(t) = (16t^2 + 8t) + (16t^2 + 12t + 12) + (-8t) = 32t^2 + 12t + 12$. Consequently

$$\int_{C} \mathbf{f} \ d\alpha = \int_{0}^{1} 32t^{2} + 12t + 12 \ dt$$
$$= \left[\frac{32}{3}t^{3} + 6t^{2} + 12t \right]_{0}^{1} = \frac{86}{3}.$$

(c) Let $\alpha(t) = (\cos t, \sin t), t \in [0, 2\pi]$. Calculate

$$\alpha'(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}, \quad \mathbf{f}(\alpha(t)) = \begin{pmatrix} \cos t + \sin t \\ -\cos t + \sin t \end{pmatrix}.$$

Moreover $\mathbf{f}(\boldsymbol{\alpha}(t)) \cdot \boldsymbol{\alpha}'(t) = -\sin t \cos t - \sin^2 t - \cos^2 t + \sin t \cos t = -1$. Consequently

$$\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \int_0^{2\pi} (-1) \ dt = -2\pi.$$

$(7) \mathbf{Q4}$

Fill in the blanks with the correct **integer**, possibly zero or negative.

Let D be the solid $\{(x, y, z) : x^2 + y^2 + 4z^2 \le 9, y \ge 0\} \subset \mathbb{R}^3$. In the following we will compute the triple integral $\iiint_D x + y \, dx dy dz$. Using cylindrical coordinates $x = r \cos \theta$, $y = r \sin \theta$,

z=z, the set D corresponds to

$$E = \{(r, \theta, z) : 0 \le \theta \le \pi, 0 \le r \le 3, -\varphi(r) \le z \le \varphi(r)\}$$

where $\varphi(r) = \frac{1}{2}\sqrt{[a] + [b]r^2}$ with values [a]: [9] \checkmark [b]: [-1] \checkmark (1 point each).

Evaluating the integral we obtain the result $\iiint_D x+y \, dx dy dz = 81 \quad \checkmark$ $= 81 \quad \checkmark$ $= 81 \quad (50\%)$ $= 81 \quad (50\%)$

can be useful for integrating quantities like $\sqrt{1-u^2}$. Double angle formulae: $2\sin t \cos t = \sin(2t)$ and $1-\cos(2t) = 2\sin^2 t$.

Using cylindrical coordinates $x = r \cos \theta$, $y = r \sin \theta$, z = z, the set D corresponds to

$$E = \{(r, \theta, z) : 0 \le \theta \le \pi, 0 \le r \le 3, -\varphi(r) \le z \le \varphi(r)\}$$

where $\varphi(r) = \frac{1}{2}\sqrt{9-r^2}$. The Jacobian is $J(r,\theta,z) = r$. This means that

$$\iiint_D x + y \, dx dy dz = \int_0^{\pi} \int_0^3 \int_{-\varphi(r)}^{\varphi(r)} r^2(\cos\theta + \sin\theta) \, dz dr d\theta.$$

Since $\int_0^{\pi} (\cos \theta + \sin \theta) \ d\theta = \int_0^{\pi} \sin \theta \ d\theta = 2$ and $\int_{-\varphi(r)}^{\varphi(r)} \ dz = 2\varphi(r) = \sqrt{9 - r^2}$ the integral is equal to

$$2\int_0^3 r^2 \sqrt{9 - r^2} \ dr.$$

in order to integrate this we make the substitution $r=3\sin t$ and so the above is equal to

$$2\int_0^{\pi/2} (3^2 \sin^2 t)(3\cos t)(3\sqrt{1-\sin^2 t}) dt = 162\int_0^{\pi/2} \sin^2 t \cos^2 t dt.$$

Combining the identities $2 \sin t \cos t = \sin(2t)$ and $1 - \cos(2t) = 2 \sin^2 t$ we obtain the identity $1 - \cos(4t) = 8 \sin^2 t \cos^2 t$. Consequently

$$\iiint_D x + y \, dx dy dz = \frac{81}{4} \int_0^{\pi/2} 1 - \cos(4t) \, dt = \frac{81}{4} \left(\frac{\pi}{2} - 0 \right) = \frac{81}{8} \pi$$

(8) **Q4**

Fill in the blanks with the correct **integer**, possibly zero or negative.

Let D be the solid $\{(x,y,z): x^2+y^2+4z^2 \leq 16, y \geq 0\} \subset \mathbb{R}^3$. In the following we will compute the triple integral $\iiint_D x+y\ dxdydz$. Using cylindrical coordinates $x=r\cos\theta$, $y=r\sin\theta$, z=z, the set D corresponds to

$$E = \{(r,\theta,z): 0 \leq \theta \leq \pi, 0 \leq r \leq 4, -\varphi(r) \leq z \leq \varphi(r)\}$$

where $\varphi(r) = \frac{1}{2}\sqrt{[a] + [b]r^2}$ with values [a]: [16] \checkmark [b]: [-1] \checkmark (1 point each).

Evaluating the integral we obtain the result $\iiint_D x+y \, dx dy dz = 32 \quad \checkmark \quad \pi \quad (4 \text{ points})$. Hint: A substitution like $u = \sin t = 32 \quad (50\%)$

can be useful for integrating quantities like $\sqrt{1-u^2}$. Double angle formulae: $2\sin t \cos t = \sin(2t)$ and $1-\cos(2t) = 2\sin^2 t$.

Using cylindrical coordinates $x = r \cos \theta$, $y = r \sin \theta$, z = z, the set D corresponds to

$$E = \{(r,\theta,z): 0 \leq \theta \leq \pi, 0 \leq r \leq 4, -\varphi(r) \leq z \leq \varphi(r)\}$$

where $\varphi(r) = \frac{1}{2}\sqrt{16 - r^2}$. The Jacobian is $J(r, \theta, z) = r$. This means that

$$\iiint_D x + y \, dx dy dz = \int_0^{\pi} \int_0^4 \int_{-\varphi(r)}^{\varphi(r)} r^2(\cos\theta + \sin\theta) \, dz dr d\theta.$$

Since $\int_0^{\pi} (\cos \theta + \sin \theta) d\theta = \int_0^{\pi} \sin \theta d\theta = 2$ and $\int_{-\varphi(r)}^{\varphi(r)} dz = 2\varphi(r) = \sqrt{16 - r^2}$ the integral is equal to

$$2\int_0^4 r^2 \sqrt{16-r^2} \ dr.$$

in order to integrate this we make the substitution $r=4\sin t$ and so the above is equal to

$$2\int_0^{\pi/2} (4^2 \sin^2 t)(4\cos t)(4\sqrt{1-\sin^2 t}) dt = 2^9 \int_0^{\pi/2} \sin^2 t \cos^2 t dt.$$

Combining the identities $2 \sin t \cos t = \sin(2t)$ and $1 - \cos(2t) = 2 \sin^2 t$ we obtain the identity $1 - \cos(4t) = 8 \sin^2 t \cos^2 t$. Consequently

$$\iiint_D x + y \, dx \, dy \, dz = 2^6 \int_0^{\pi/2} 1 - \cos(4t) \, dt = 2^6 \left(\frac{\pi}{2} - 0\right) = 32\pi$$

Fill in the blanks with the correct **integer**, possibly zero or negative.

Let
$$T = \{(u, v) : u^2 + v^2 \le 1\} \subset \mathbb{R}^2$$
 and let $\mathbf{r} : T \to \mathbb{R}^3$,

$$\mathbf{r}(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right)$$

be the representation of the surface $S = \mathbf{r}(T)$.

The surface S is a hemisphere centred at (0,0,0) \checkmark (2 points). cone with point downward

Calculating the fundamental vector product we find that

$$\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}(u, v) = \frac{C}{u^2 + v^2 + 1} \begin{pmatrix} 2u \\ 2v \\ u^2 + v^2 - 1 \end{pmatrix}$$

where
$$C = \boxed{ -4 \quad \checkmark \\ 4 \quad (50\%) }$$
 (2 points).

where $C = \boxed{ -4 \quad \checkmark \atop 4 \quad (50\%) }$ (2 points). Consider the vector-field $\mathbf{f}(x,y,z) = \begin{pmatrix} 0 \\ 0 \\ 1/z \end{pmatrix}$ and evaluate the surface integral (where **n** denotes the normal with positive z component) $\iint_{S} \mathbf{f} \cdot \mathbf{n} \ dS = \begin{bmatrix} -4 & \checkmark \\ 4 & (50\%) \end{bmatrix} \pi \ (2 \text{ points}).$ The surface S is a hemisphere. In order to see that S is a subset of the unit sphere centred at (0,0,0) we calculate $x^2 + y^2 + z^2$ and see that

$$\left(\frac{2u}{u^2+v^2+1}\right)^2 + \left(\frac{2v}{u^2+v^2+1}\right)^2 + \left(\frac{u^2+v^2-1}{u^2+v^2+1}\right)^2$$

$$= \frac{4u^2+4v^2+(u^2+v^2)^2-2(u^2+v^2)+1}{(u^2+v^2+1)^2}$$

$$= \frac{(u^2+v^2)^2+2(u^2+v^2)+1}{(u^2+v^2+1)^2} = 1.$$

We calculate

$$\frac{\partial \mathbf{r}}{\partial u}(u,v) = \frac{1}{(u^2 + v^2 + 1)^2} \begin{pmatrix} 2(u^2 + v^2 + 1) - (2u)(2u) \\ -(2u)(2v) \\ 2u(u^2 + v^2 + 1) - 2u(u^2 + v^2 - 1) \end{pmatrix}$$

$$= \frac{1}{(u^2 + v^2 + 1)^2} \begin{pmatrix} 2(-u^2 + v^2 + 1) \\ -4uv \\ 4u \end{pmatrix}$$

and

$$\frac{\partial \mathbf{r}}{\partial v}(u,v) = \frac{1}{(u^2 + v^2 + 1)^2} \begin{pmatrix} -(2u)(2v) \\ 2(u^2 + v^2 + 1) - (2v)(2v) \\ 2v(u^2 + v^2 + 1) - 2v(u^2 + v^2 - 1) \end{pmatrix}
= \frac{1}{(u^2 + v^2 + 1)^2} \begin{pmatrix} -4uv \\ 2(u^2 - v^2 + 1) \\ 4v \end{pmatrix}.$$

and so

$$\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}(u, v) = \frac{-4}{u^2 + v^2 + 1} \begin{pmatrix} 2u \\ 2v \\ u^2 + v^2 - 1 \end{pmatrix}.$$

We note that this is correctly aligned for the positive z-component. We calculate that $\mathbf{f}(\mathbf{r}(u,v)) \cdot \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right)(u,v)$ is equal to

$$\frac{-4}{u^2 + v^2 + 1} \begin{pmatrix} 0 \\ 0 \\ (u^2 + v^2 + 1)/(u^2 + v^2 - 1) \end{pmatrix} \cdot \begin{pmatrix} 2u \\ 2v \\ u^2 + v^2 - 1 \end{pmatrix} = -4.$$

Consequently $\iint_S \mathbf{f} \cdot \mathbf{n} \ dS = \iint_T (-4) \ du dv = -4\pi$ since $\iint_T \ du dv = \pi$.

 $(10) \mathbf{Q5}$

Fill in the blanks with the correct **integer**, possibly zero or

Let
$$T = \{(u, v) : u^2 + v^2 \le 1\} \subset \mathbb{R}^2$$
 and let $\mathbf{r} : T \to \mathbb{R}^3$,

$$\mathbf{r}(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{1-(u^2+v^2)}{1+u^2+v^2}\right)$$

be the representation of the surface $S = \mathbf{r}(T)$.

The surface S is a hemisphere centred at (0,0,0) \checkmark (2 points). cone with point upward

Calculating the fundamental vector product we find that

$$\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}(u, v) = \frac{C}{1 + u^2 + v^2} \begin{pmatrix} 2u \\ 2v \\ 1 - (u^2 + v^2) \end{pmatrix}$$

where
$$C = \boxed{ 4 \quad \checkmark \\ -4 \quad (50\%) }$$
 (2 points).

where C = 4 \checkmark (2 points). Consider the vector-field $\mathbf{f}(x,y,z) = \begin{pmatrix} 0 \\ 0 \\ 1/z \end{pmatrix}$ and evaluate the surface integral (where **n** denotes the normal with positive z component) $\iint_{S} \mathbf{f} \cdot \mathbf{n} \ dS = \boxed{4 \quad \checkmark \\ -4 \quad (50\%)} \pi \ (2 \text{ points}).$ The surface S is a hemisphere. In order to see that S is a subset of the unit sphere centred at (0,0,0) we calculate $x^2 + y^2 + z^2$ and see that

$$\left(\frac{2u}{u^2+v^2+1}\right)^2 + \left(\frac{2v}{u^2+v^2+1}\right)^2 + \left(\frac{u^2+v^2-1}{u^2+v^2+1}\right)^2$$

$$= \frac{4u^2+4v^2+(u^2+v^2)^2-2(u^2+v^2)+1}{(u^2+v^2+1)^2}$$

$$= \frac{(u^2+v^2)^2+2(u^2+v^2)+1}{(u^2+v^2+1)^2} = 1.$$

We calculate

$$\frac{\partial \mathbf{r}}{\partial u}(u,v) = \frac{1}{(u^2 + v^2 + 1)^2} \begin{pmatrix} 2(u^2 + v^2 + 1) - (2u)(2u) \\ -(2u)(2v) \\ -2u(u^2 + v^2 + 1) + 2u(u^2 + v^2 - 1) \end{pmatrix}$$

$$= \frac{1}{(u^2 + v^2 + 1)^2} \begin{pmatrix} 2(-u^2 + v^2 + 1) \\ -4uv \\ -4u \end{pmatrix}$$

and

$$\frac{\partial \mathbf{r}}{\partial v}(u,v) = \frac{1}{(u^2 + v^2 + 1)^2} \begin{pmatrix} -(2u)(2v) \\ 2(u^2 + v^2 + 1) - (2v)(2v) \\ -2v(u^2 + v^2 + 1) + 2v(u^2 + v^2 - 1) \end{pmatrix}
= \frac{1}{(u^2 + v^2 + 1)^2} \begin{pmatrix} -4uv \\ 2(u^2 - v^2 + 1) \\ -4v \end{pmatrix}.$$

and so

$$\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}(u, v) = \frac{4}{u^2 + v^2 + 1} \begin{pmatrix} 2u \\ 2v \\ 1 - (u^2 + v^2) \end{pmatrix}.$$

We note that this is correctly aligned for the positive z-component. We calculate that $\mathbf{f}(\mathbf{r}(u,v)) \cdot \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right)(u,v)$ is equal to

$$\frac{4}{u^2 + v^2 + 1} \begin{pmatrix} 0 \\ 0 \\ (u^2 + v^2 + 1)/(1 - u^2 - v^2) \end{pmatrix} \cdot \begin{pmatrix} 2u \\ 2v \\ 1 - (u^2 + v^2) \end{pmatrix} = 4.$$

Consequently $\iint_S \mathbf{f} \cdot \mathbf{n} \ dS = \iint_T (4) \ du dv = 4\pi$ since $\iint_T \ du dv = \pi$.