
Mathematical Analysis 2 – Call 1 – 20/01/2026

Part 1 – 9:30-11:00

Question 1. For each of the following functions, find the partial derivatives ∂f
∂x and ∂f

∂y (or ∂g
∂x and ∂g

∂y , etc.).

1. f(x, y) = exy sin(x2 + y)

2. g(x, y) =
x2 − y2

x2 + y2

3. h(x, y) =
∫ x2y

0
e−t2 dt

Question 2. Find themaximum andminimum values of f(x, y, z) = xy+xz+yz subject to the constraint
x2 + y2 + z2 = 3.
Method: Set up the Lagrange multiplier equations∇f = λ∇g. Solve the system of equations to find the

critical points (you should obtain two isolated points and a curve). Calculate the value of f at each critical point to
determine the maximum and minimum.

Question 3. Consider the following vector fields defined onR2:

F1(x, y) = yi+ xj F2(x, y) = 2 sin(x)i F3(x, y) = −yi+ xj

F4(x, y) = j F5(x, y) = yi F6(x, y) = 2xi+ yj

1. Match each to one of the plots and briefly explain the logic/calculation for matching each.

2. Calculate the divergence,∇ · Fn(x, y) for each of the vector fields.
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Mathematical Analysis 2 – Call 1 – 20/01/2026

Part 2 – 11:30-13:00

Question 4. Calculate the path integral
∫
C
F · dαwhereF(x, y) = (x2 + y)i+ (xy)j andC is the path

from (0, 0) to (2, 4) along the curve y = x2.

Question 5. Let S be the closed surface formed by the paraboloid z = 4− x2 − y2 for z ≥ 0, together with
the disk x2 + y2 ≤ 4 in the plane z = 0. LetF(x, y, z) = xi+ yj+ zk and let n̂ be the outward-pointing
unit normal.

Evaluate the flux integral ∫∫
S
F · n̂ dS

by direct calculation. That is, compute the flux through the paraboloid and the disk separately, then add
them.

Hint: The paraboloid can be parametrized asσ(r, θ) = (r cos θ, r sin θ, 4− r2) for r ∈ [0, 2], θ ∈ [0, 2π].
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Question 6. Using the same surface S and vector fieldF fromQuestion 5, evaluate the flux integral∫∫
S
F · n̂ dS

using the divergence theorem.



Solutions – Call 1 – 20/01/2026

Question 1 Solution:

1. f(x, y) = exy sin(x2 + y)

Using product rule:

∂f

∂x
= yexy sin(x2 + y) + exy cos(x2 + y) · 2x

= exy
(
y sin(x2 + y) + 2x cos(x2 + y)

)
∂f

∂y
= xexy sin(x2 + y) + exy cos(x2 + y) · 1

= exy
(
x sin(x2 + y) + cos(x2 + y)

)
2. g(x, y) =

x2 − y2

x2 + y2

Using quotient rule:

∂g

∂x
=

2x(x2 + y2)− (x2 − y2)(2x)

(x2 + y2)2
=

2x(x2 + y2 − x2 + y2)

(x2 + y2)2
=

4xy2

(x2 + y2)2

∂g

∂y
=

−2y(x2 + y2)− (x2 − y2)(2y)

(x2 + y2)2
=

−2y(x2 + y2 + x2 − y2)

(x2 + y2)2
=

−4x2y

(x2 + y2)2

3. h(x, y) =
∫ x2y

0
e−t2 dt

Using the Fundamental Theorem of Calculus with chain rule:

∂h

∂x
= e−(x2y)2 · ∂

∂x
(x2y) = e−x4y2 · 2xy = 2xy e−x4y2

∂h

∂y
= e−(x2y)2 · ∂

∂y
(x2y) = e−x4y2 · x2 = x2e−x4y2

Question 2 Solution:
We use Lagrange multipliers with g(x, y, z) = x2 + y2 + z2 − 3 = 0.
We have∇f = (y + z, x+ z, x+ y) and∇g = (2x, 2y, 2z).
Setting∇f = λ∇g:

y + z = 2λx (1)

x+ z = 2λy (2)

x+ y = 2λz (3)

Adding all three equations: 2(x+ y + z) = 2λ(x+ y + z), so (x+ y + z)(1− λ) = 0.
Case 1: λ = 1. Then from (1): y + z = 2x, from (2): x+ z = 2y, from (3): x+ y = 2z.



Subtracting (2) from (1): y − x = 2x− 2y =⇒ 3y = 3x =⇒ y = x. Similarly, subtracting (3) from
(2): z − y = 2y − 2z =⇒ 3z = 3y =⇒ z = y.

So x = y = z. With x2 + y2 + z2 = 3: 3x2 = 3 =⇒ x = ±1.
Points: (1, 1, 1) and (−1,−1,−1), both giving f = 1 + 1 + 1 = 3.
Case 2: x+ y + z = 0. Then z = −x− y, and from the constraint:

x2 + y2 + (x+ y)2 = 3 =⇒ 2x2 + 2xy + 2y2 = 3

The value of f in this case:

f = xy + xz + yz = xy + x(−x− y) + y(−x− y)

= xy − x2 − xy − xy − y2 = −x2 − xy − y2 = −3

2

Therefore:Maximum= 3 at (1, 1, 1) and (−1,−1,−1);Minimum= −3
2 on the circle x+ y + z = 0,

x2 + y2 + z2 = 3.

Question 3 Solution:

1. Matching:
• F1 = yi + xjmatches C: At (1, 1) the vector is (1, 1), at (1,−1) it’s (−1, 1). This creates a
saddle/hyperbolic pattern.

• F2 = 2 sin(x)imatches F: Purely horizontal vectors that oscillate with x, creating vertical stripes
of alternating direction.

• F3 = −yi+ xjmatches B: Counter-clockwise rotation (at (1, 0): vector is (0, 1), pointing up).
• F4 = jmatchesD: Constant upward vectors everywhere.
• F5 = yimatches E: Horizontal shear – vectors point right above x-axis, left below.
• F6 = 2xi + yjmatches A: Stretched radial pattern, horizontal component grows faster than
vertical.

2. Divergences:

∇ · F1(x, y) =
∂

∂x
(y) +

∂

∂y
(x) = 0 + 0 = 0

∇ · F2(x, y) =
∂

∂x
(2 sinx) +

∂

∂y
(0) = 2 cosx

∇ · F3(x, y) =
∂

∂x
(−y) +

∂

∂y
(x) = 0 + 0 = 0

∇ · F4(x, y) =
∂

∂x
(0) +

∂

∂y
(1) = 0

∇ · F5(x, y) =
∂

∂x
(y) +

∂

∂y
(0) = 0

∇ · F6(x, y) =
∂

∂x
(2x) +

∂

∂y
(y) = 2 + 1 = 3

Question 4 Solution:



1. Parametrization: Letα(t) = (t, t2) for t ∈ [0, 2].

2. We haveα′(t) = (1, 2t).

F(α(t)) = (t2 + t2, t · t2) = (2t2, t3)

3. The path integral: ∫
C
F · dα =

∫ 2

0
F(α(t)) ·α′(t) dt

=

∫ 2

0
(2t2, t3) · (1, 2t) dt

=

∫ 2

0
(2t2 + 2t4) dt

=

[
2t3

3
+

2t5

5

]2
0

=
16

3
+

64

5
=

80 + 192

15
=

272

15

Question 5 Solution:
The closed surface S consists of two parts: the paraboloid S1 and the disk S2.
Flux through the disk S2: The disk is x2 + y2 ≤ 4 at z = 0. The outward normal points downward:

n̂ = −k.
On this surface,F = (x, y, 0), soF · n̂ = 0 · (−1) = 0.

Therefore,
∫∫

S2

F · n̂ dS = 0.

Flux through the paraboloidS1: Parametrize using polar coordinates: σ(r, θ) = (r cos θ, r sin θ, 4−r2)
for r ∈ [0, 2], θ ∈ [0, 2π].

Compute partial derivatives:

∂σ

∂r
(r, θ) = (cos θ, sin θ,−2r)

∂σ

∂θ
(r, θ) = (−r sin θ, r cos θ, 0)

Fundamental vector product:

(
∂σ

∂r
× ∂σ

∂θ

)
(r, θ) =

∣∣∣∣∣∣
i j k

cos θ sin θ −2r
−r sin θ r cos θ 0

∣∣∣∣∣∣ = (2r2 cos θ, 2r2 sin θ, r)

This points upward/outward (positive z-component), which is correct for the outward normal.
On the paraboloid: F(σ(r, θ)) = (r cos θ, r sin θ, 4− r2)

(
F ·

(
∂σ

∂r
× ∂σ

∂θ

))
(r, θ) = 2r3 cos2 θ + 2r3 sin2 θ + r(4− r2)

= 2r3 + 4r − r3 = r3 + 4r



Integrate: ∫∫
S1

F · n̂ dS =

∫ 2π

0

∫ 2

0
(r3 + 4r) dr dθ

= 2π

[
r4

4
+ 2r2

]2
0

= 2π(4 + 8) = 24π

Total flux:
∫∫

S
F · n̂ dS = 0 + 24π = 24π

Question 6 Solution:
By the divergence theorem: ∫∫

S
F · n̂ dS =

∫∫∫
V
∇ · F dV

Compute the divergence:

∇ · F =
∂

∂x
(x) +

∂

∂y
(y) +

∂

∂z
(z) = 1 + 1 + 1 = 3

The region V is bounded by the paraboloid z = 4 − x2 − y2 above and the plane z = 0 below, with
x2 + y2 ≤ 4.

Using cylindrical coordinates (r, θ, z):∫∫∫
V
3 dV = 3

∫ 2π

0

∫ 2

0

∫ 4−r2

0
r dz dr dθ

= 3

∫ 2π

0
dθ

∫ 2

0
r(4− r2) dr

= 3 · 2π
∫ 2

0
(4r − r3) dr

= 6π

[
2r2 − r4

4

]2
0

= 6π (8− 4) = 6π · 4 = 24π

This confirms the result fromQuestion 5.


