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ABSTRACT
Some aspects of nonlocal dynamics on directed and undirected networks
for an initial value problem whose Jacobian matrix is a variable-order frac-
tional power of a Laplacian matrix are discussed here. This is a new exten-
sion to non-stationary behaviour of a class of non-local phenomena on
complex networks for which both directed and undirected graphs are con-
sidered. Under appropriate assumptions, the existence, uniqueness, and
uniform asymptotic stability of the solutions of the underlying initial value
problem are proved. Some examples giving a sample of the behaviour of
the dynamics are also included.
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1. Introduction

To model the evolution of probability distributions on graphs, two popular approaches are repre-
sented by the heat equation ⎧⎪⎪⎨

⎪⎪⎩
p′(t) = −p(t)J, t > 0,

p(0) = p0,
n∑
j=1
(p0)j = 1, (1)

and by the Schrödinger equation⎧⎪⎪⎨
⎪⎪⎩
ψ ′(t) = −iψ(t)J, t > 0,

ψ(0) = ψ0,
n∑
j=1

|(ψ0)j|2 = 1, (2)

where p(t) ≥ 0 is a time-dependent probability distribution in (1), and, in (2), the probability that a
particle at time t is at node vj ∈ V , V the set of all the nodes, is |ψj(t)|2/

∑n
j=1 |ψj(t)|2. The matrix J

is usually the combinatorial Laplacian matrix L associated to the graph G = (V ,E) and is related to
adjacency and degree matrices A and D, i.e. the singular M-matrix

L = D − A, D = diag(A1), (A)l,j = al,j =
{
1, (vl, vj) ∈ E,
0, otherwise.

(3)

The solutions of Equations (1) and (2) produce a probability distribution/density at each time step
t, with the caveat that for (2) we need to consider the amplitudes |ψj(t)|2, j = 1, . . . , n, and model
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the evolution of the probability distribution for a random walker on G that moves between adjacent
nodes, that is locally. Recently, there has been an interest in expanding these navigational strategies
to cover also the evolution of probability distributions on G for walkers that perform ‘long jumps’,
i.e. Lévy flights, on the underlying graph. To achieve this result, generalizations of (1) and (2) in
which the combinatorial Laplacian matrix is substituted by either its fractional power Lα , α ∈ (0, 1],
have been proposed; see [6,33,34], or by the generalized k-path Laplacian matrix LG; see [17,20,21].
In both cases, the choice of the type of jumps we want our walker to perform on G are selected to
be the same for all times t, while it could be more natural to think about a walker following non-
stationary jumps instead. Sometimes, it can decide to explore the network locally, some others its
attention span is diminished and opts to start skipping the nodes by performing longer jumps. To
model this behaviour, we consider the nonautonomous extensions of (1) and (2) given by

{
p′(t) = −p(t)L(t), t > 0,
p(0) = p0,

{
ψ ′(t) = −iψ(t)L(t), t > 0,
ψ(0) = ψ0,

(4)

where p(t) ≥ 0 is a time-dependent probability distribution, the amplitudes associated withψ(t) are
a time-dependent probability distribution, andL(t) is obtained as a time-dependent extension of the
fractional Laplacian Lα .

In this work we aim to analyse this generalization based on a variable fractional exponent, poten-
tially able to model better the nonlocal behaviour of the underlying models and discuss some
theoretical properties of these models. Moreover, numerical integration methods for these problems
are also considered with an eye to more efficient ways to compute the associated matrix-function
vector products in view of solving much larger problems.

In the remaining part of the introduction, Section 1.1, we recall some notations related to graphs
for a network; then in Section 2 we discuss the definitions of the fractional Laplacian matrix and give
some information on the transformed k-path Laplacian. Then, in Section 3, we introduce our general-
ization to get the non-autonomous extension in (4) and discuss some of its properties. Section 4 briefly
introduces the problem of the numerical integration of the underlying non-autonomous systems and
the theoretical analysis is completed with some numerical tests on real-world complex networks.
Section 5 summarizes the obtained result, and highlights some future research directions.

1.1. Notation and graphs for a network

A well known efficient and clear way to represent the complex interactions of a network is through
the use of graph models. A graph G is defined by a set of nodes (or vertices V = {v1, . . . , vn} and a
set of edges E that are a subset of the Cartesian product E ⊆ V × V . We set G = (V ,E). Cartesian
products are ordered, thus if G is an undirected graph, we assume that whenever (vl, vj) ∈ E then
(vj, vl) ∈ E, otherwiseG it is a directed graph. To avoid repeating this specification, we denote as {vl, vj}
the unordered pairs.

A weighted (undirected) graph G = (V ,E,W) is then obtained by considering a (symmetric)
weightmatrixW withnonnegative entries (W)i,j = wi,j ≥ 0 and such thatwi,j > 0 if andonly if (vi, vj)
is an edge of G. If all the nonzero weights have value 1 we omit the weight specification.

We call a walk in G a sequence of edges which joins a sequence of vertices in V. if all vertices (and
thus all edges) in the walk are distinct we call it a path. In case of a direct graph, all the edges in a path
should point in the same direction. An undirect graph is connected if for each distinct pairs of nodes
there is a walk between them. A directed graph is strongly connected if for each distinct pairs of nodes
vi, vj, there is a direct walk from vi to vj. The (geodesic) distance d(u, v) between two vertices u, v ∈ V
is defined as the length of the shortest path connecting them, where the length of a path is intended
as the number of edges crossed. Observe that, in the direct case, d(u, v) can be different from d(v, u).
Therefore, in that case, d is only a pseudo distance. We call the diameter of the graph G with respect
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to the geodesic distance d the quantity dmax = maxu,v∈V d(u, v), i.e. the length of the longest shortest
path.

For a direct and an undirect graph G, we introduce the adjacency matrix A as the n × n matrix
with entries

(A)i,j = ai,j =
{

1, if (vi, vj) ∈ E,
0, otherwise.

The adjacency matrix A of an undirected graph G is always symmetric. In particular, if G = (V ,E)
is a graph, given two nodes u, v ∈ V , we say that u is adjacent to v and write u ∼ v, if (u, v) ∈ E. The
above relation is symmetric ifG is an undirected graph, while in general it is not for a directed graph.
Note that for an unweighted graph we haveW = A.

We introduce also the incidence matrix of an undirected graph as the |V| × |E| matrix B, defined
by Bij = 1 if the vertex vi and edge ej are incident and 0 otherwise. For the incidence matrix of a
directed graph an arbitrary sign convention has to be imposed. We assume here that Bij = −1 if the
edge ej leaves vertex vi, 1 if it enters vertex vi and 0 otherwise. In the weighted case we substitute to
the value ±1 the weight of the associated edge.

For every node v ∈ V , we introduce also the degree deg(v) of v as the number of edges leaving or
entering v taking into account their weights

di = deg(vi) =
∑

j : (vi,vj)∈E
wi,j.

The degree matrix D is then the diagonal matrix whose entries are given by the degrees of the
nodes, i.e.

D = diag(deg(v1), . . . , deg(vn)) = diag(d1, . . . , dn).

For directed graphs, it is useful to differentiate the degree of a node vi respectively to the incoming
and outgoing edges. For this reason we consider in–degrees and out–degrees

d(in)i = degin(vi) =
∑

j : (vj,vi)∈E
wj,i, d(out)i = degout(vi) =

∑
j : (vi,vj)∈E

wi,j,

together with the related diagonal matrices

Din = diag(degin(v1), . . . , degin(vn)) = diag(d(in)1 , . . . , d(in)n ),

Dout = diag(degout(v1), . . . , degout(vn)) = diag(d(out)1 , . . . , d(out)n ).

With this notation, we recall some definitions pertaining to the Laplacian matrix as given in [6].
LetG = (V ,E,W) be a weighted undirected graph with weight matrixW, weighted degree matrix

D and weighted incidence matrix B. Then the graph Laplacian L of G is given by

L = D − W = BBT .

The normalized random walk version of the graph Laplacian is

D−1L = I − D−1W = D−1BBT ,

where I is the identity matrix. Observe that D−1W is a row-stochastic matrix, i.e. it is nonnegative
with row sums equal to 1. The normalized symmetric version is

D− 1
2 LD− 1

2 = I − D− 1
2WD− 1

2 .

If G is unweighted then W = A in the above definitions. As in [6], we assume that every vertex has
nonzero degree or that every vertex is not isolated.
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Let G = (V ,E,W) be a weighted directed graph, with degree matricesDout and Din. The nonnor-
malized directed graph Laplacians Lout and Lin of G are

Lout = Dout − W, Lin = Din − W. (5)

To define the normalized versions, we need to invert either the Din or the Dout matrices, but the
absence of isolated vertices is no longer sufficient to ensure this since there could be a node with only
outgoing or ingoing edges. A first way to overcome this issue could be imposing that every vertex has
at least one outgoing and one incoming edge, which is rather restrictive. Otherwise, we could restrict
our attention to the subsets of nodes having an out-degree or in-degree different from zero.

2. Non-local navigation strategies

There exist different approaches to induce a nonlocal probability transition on the graph G = (V ,E).
Given the Laplacian matrix L in (3), consider its αth power Lα , α ∈ (0, 1], for a symmetric L, i.e. for
an undirected G. This can be expressed by decomposition [33] as

Lα = X�αXT , � = diag(λα1 , . . . , λ
α
n), 0 = λ1 ≤ λ2 ≤ . . . ≤ λn, XTX = In. (6)

For a directed graph, the definition of f (L) = Lα requires the Jordan canonical form (see [6] for
details)

Z−1LZ = J = diag(J1, . . . , Jp), Jk = Jk(λk) =

⎡
⎢⎢⎢⎢⎣
λk 1

λk
. . .
. . . 1

λk

⎤
⎥⎥⎥⎥⎦ ∈ C

mk×mk ,

where Z is nonsingular andm1 + m2 + · · · + mp = n, and

f (L) = Zf (J)Z−1 = Z diag(f (J1), . . . , f (Jp))Z−1, (7)

f (Jk) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f (λk) f (1)(λk) . . .
f (mk−1)(λk)

(mk − 1)!

f (λk)
. . .

...
. . . f (1)(λk)

f (λk)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (8)

that needs the function f (z) = zα to be defined on the spectrum of L, i.e. the values

f (j)(λi), j = 0, 1, . . . , ni − 1, i = 1, . . . s,

should exist, where f (j) denotes the jth derivative of f, with f (0) = f ; we refer back to [6] for the details
and to [25] for the theory of matrix functions. In both the directed and undirected case we have that
Lα1 = 0.

Remark 2.1 (k-path Laplacian): Another approach for inferring nonlocal transitions on a network
is represented by the transformed k-path Laplacian. The k-path Laplacian matrix Lk [17,19] of a
connected undirected graph G = (V ,E) is related to the k-hopping walks and k-path degree.

k-hopping walk: A k-hopping walk of length l is any sequence of (not necessarily different) nodes
v1, . . . , vl, vl+1 such that d(vj, vj+1) = k for each j = 1, 2, . . . , l;
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k-path degree: The k-path degree δk(vl) of a node vl is the number of irreducible shortest-paths of
length k having vl as an endpoint.

The k-path analogous of the combinatorial Laplacian in (3) is defined as the square symmetric
matrix Lk

(Lk)l,j =

⎧⎪⎨
⎪⎩

−1, d(vl, vj) = k,
δk(vl), vl ≡ vj,
0, otherwise.

To produce the generalized k-path Laplacian inducing the nonlocal transition probability, we consider
the series

LG = L1 +
∑
k≥2

1
kα

Lk = L +
∑
k≥2

1
kα

Lk, α ≥ 0,

that is indeed a finite sum since Lk coincides with the zero matrix for each k > dmax. Observe that
again Lk1 = 0 ∀k ≥ 1, and thus LG1 = 0. For the remaining part of the manuscript, we will focus on
the properties of the underlying fractional extension.We refer to [18] for some comparison of the two
approaches, and to [14] for a discussion on using different type of series and distances on the graph
G.

When we substitute Lα into the heat Equation (1) or into the Schrödinger equation, the solution
at time t can be expressed in terms of the matrix exponential as

p(t) = p0 exp(−tLα),

ψ(t) = ψ0 exp(−t i Lα),

that produce a probability distribution p(t) and a probability density |ψ(t)|2, respectively, because

p(t)1 = p0 exp(−tLα)1 = p0
(
I − tLα + p0

t2L2α

2
− t3L3α

6
+ . . .

)
1 = p01 = 1,

having used Lα1 = 0, and analogously for the corresponding Schrödinger system. The second note-
worthy property of this characterization of the solution is that for the heat equation we can easily
compute the steady state for t → +∞ for a given α on a graph G.

Let us recall some useful definitions of stability from [23]. The vector field f below is assumed
smooth enough to ensure existence, uniqueness, and continuous dependence on the parameters but,
in our setting, this will concern only α(t) because f is a linear function of Lα(t) and L is constant.

Definition 2.1 (Stability): Let us consider the differential equation

x′(t) = f (t, x), f : C
n+1 → C

n, (9)

f (t, 0) = 0, t ≥ 0. (10)

• The solution x = 0 is called stable if for any ε > 0 and any t0 ≥ 0, there is δ = δ(ε, t0) > 0 such
that ‖x0‖ < δ implies ‖x(t, t0, x0)‖ < ε for t ≥ 0.

• The solution x = 0 is called uniformly stable if it stable and δ can be chosen independent of t0 ≥ 0.
• The solution x = 0 is called asymptotically uniformly stable if it uniformly stable, there exists a

b> 0 that for every η > 0 there exists a T(η) > 0 such that ‖x0‖ < b implies ‖x(t, t0, x0)‖ < η if
t ≥ t0 + T(η).
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The stability of any nonzero solution of the underlying differential equation is easily derived from
the ones above. See, e.g. [23] for other details.

When we deal with the heat equation in (1), and, in general, with any constant coefficients case,
stability depends only on the eigenvalues of the Jacobian matrix, i.e. Lα in the case of fractional dif-
fusion. Since Lα is an M-matrix (see [6]) for any value of α ∈ (0, 1), every eigenvalue of −Lα have
a nonpositive real part and those with zero real part have a Jordan block of size one, i.e. they are
semisimple. Thus, the dynamic is automatically uniformly stable. Moreover, for a connected graphG,
we find

p(t) = y0 exp(−tLα) → 1T/n, α ∈ (0, 1).

Example 2.2: Consider a simple cycle graph G with n = 4 nodes, i.e, V = 1, 2, 3, 4, E =
{{1, 2}, {2, 3}, {3, 4}, {4, 1}}, see Figure 1 on the left. The fractional Laplacian matrix for G can be
computed in closed form as

Lα =

⎡
⎢⎢⎣
2α−2 (2α + 2) −4α−1 2α−2 (2α − 2) −4α−1

−4α−1 2α−2 (2α + 2) −4α−1 2α−2 (2α − 2)
2α−2 (2α − 2) −4α−1 2α−2 (2α + 2) −4α−1

−4α−1 2α−2 (2α − 2) −4α−1 2α−2 (2α + 2)

⎤
⎥⎥⎦ ,

while the k-path generalized Laplacian matrix reads as

LG =

⎡
⎢⎢⎣
2−α + 2 −1 −2−α −1

−1 2−α + 2 −1 −2−α
−2−α −1 2−α + 2 −1
−1 −2−α −1 2−α + 2

⎤
⎥⎥⎦ .

These above are indeed essentially different. Indeed, Lα α→1−−−→ L and LG
α→+∞−−−−→ L, while for α → 0,

LG converges to the Laplacianmatrix of the complete graph, and Lα to 1/4 of it; see Figure 1.Moreover,
for t → +∞ we can look at the asymptotic behaviour for a given α in Figure 2, i.e. the stability
properties of the solution for both the fractional Laplacian Lα and the generalized k-path Laplacian.
Independently from the value of α, we observe that all the components of the probability vector reach
the stationary solution given by the uniformly distributed probability on the nodes.

Figure 1. Comparison of the eigenvalues for different values of α between the fractional Laplacian Lα and the generalized k-path
Laplacian LG matrices for the cycle graph on the left. The line represents the eigenvalues of the Lα forα ∈ [0, 1], while the
represents the Eigenvalues for thegeneralized k-path Laplacian forα ∈ [0, 6]. The× represents the eigenvalues of the combinatorial
Laplacian matrix L.
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Figure 2. Comparison of the decay behaviour towards the stationary solution using the fractional Laplacian Lα and the generalized
k-path Laplacian. (a) With fractional Laplacian matrix Lα (b) With generalized k-path fractional Laplacian matrix.

Remark 2.2: As discussed in [11], we can interpret the fractional navigation strategy as a random
walk on a new complete graph G′ that is built on the same nodes of the original graph. Indeed, the
underlying extension is in general not compatible with the dynamics characterizing the original graph
modelG. If one restricts the randomwalks onG′ tomove on the edges ofG, these are not stochastically
equivalent to the randomwalks onG. In other words, the incompatibility ofG′ withGmeans that the
graph Ĝ induced by the normalization D−1L can not be embedded into the normalized graph Ĝ′
related to D−1

α Lα , for Dα = diag(Lα); refer to the analysis in [11] for the details. For our goals here,
this is not an issue.

3. Non-local and non-stationary navigation strategies

We can now modify (4) by defining the operator

L(α(t); t) = Lα(t), α : R+ → (0, 1],

where we use the function α(t) to modulate the ‘quantity of nonlocality’ at time t for the proba-
bility measures p(t) and |ψ(t)|2 over G. Such approach is built by extending the fractional Laplacian
matrix to a variable order, see, e.g. [22,36,40]. Even if this seems aminor change, twomain difficulties
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are encountered when moving to the non-autonomous setting. In general, for a system of ordinary
differential equations of the form {

y′(t) = A(t)y(t), t > 0,
y(0) = y0,

(11)

the solution cannot be expressed as

y(t) = exp(A(t))y0,

for A(t) a primitive ofA(t), consider, e.g. the following example from [39],

A(t) =
[
6 sin(12t)− 9 cos2(6t)− 1 9

2 sin(12t)+ 6 cos(12t)+ 6
9
2 sin(12t)+ 6 cos(12t)− 6 −6 sin(12t)+ 9

2 cos(12t)− 11
2

]
,

for which the solution for y0 = (5, 0)T is given by

y(t) =
[
6 sin(12t)− 9 cos2(6t)− 1 9

2 sin(12t)+ 6 cos(12t)+ 6
9
2 sin(12t)+ 6 cos(12t)− 6 −6 sin(12t)+ 9

2 cos(12t)− 11
2

]
,

that is indeed different from y(t) = exp(A(t))y0. Furthermore, we observe also that even if the eigen-
values ofA(t) are λ1 = −1, λ2 = −10 ∀t, the solution x(t) diverges for t → +∞, i.e. all eigenvalues
with negative real part are no longer sufficient to induce the stability of the resulting system.

The two following sections investigate which properties of the original systems (1) and (2) can be
recovered for the non-autonomous versions using α variable with t.

3.1. Existence and uniqueness for our non-autonomous extensions

Let us analyse first existence and uniqueness of the solution of the problem whose Jacobian matrix is
the fractional power of the combinatorial Laplacian⎧⎪⎪⎨

⎪⎪⎩
p′(t) = −p(t)Lα(t), t > 0,

p(0) = p0,
n∑
j=1
(p0)j = 1, α(t) : R+ → (0, 1]. (12)

Lemma 3.1: Let G = (V ,E) be a simple graph and α(t) : R+ → (0, 1] a continuous function. Then,

(1) z 
→ zα(t) is defined on the spectrum of the Laplacian matrix L for every t;
(2) ∃ k > 0 such that ‖Lα(t)‖ ≤ k for t> 0;
(3) f (t, p) = −pLα(t) is Lipschitz continuous with respect to p for t> 0.

Proof: The first item is just a corollary of [6, Theorem2.6], since the conditions on the existence of the
derivatives are to be considered with respect to the z variable, and ∀ t > 0 we have that α(t) ∈ (0, 1].
For an undirected graph, since the power function is monotonically increasing, we bound ‖Lα(t)‖2 ≤
λMn = k forM = max

t∈R

α(t). For the directed case, and, e.g. the out-degree Laplacian, a more involved

form for the constant k can be obtained [6, Section 3.2], and [7, Section 4]. In both cases the obtained
k can be used as the Lipschitz constant as below

‖xLα(t) − yLα(t)‖ ≤ k‖x − y‖.
�
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Theorem 3.2: Under the hypothesis of Lemma 3.1, there exists a unique solution for the Cauchy
problem (12) for t> 0.

Proof: The system in (12) is linear homogeneous with (Lα(t))i,j = li,j(t) ∈ C0 a matrix of continuous
real functions in t. This is indeed a classical case underwhich existence and uniqueness are guaranteed
by, e.g. [15, Theorem5.1] or any other book covering fundamentals on ordinary differential equations.

�

To build explicitly the solution of (12), a commutativity result is of fundamental importance.
Indeed, if the matrix Lα(t) commutes with its antiderivative then we can express the solution by using
the exponential of the antiderivative of Lα(t).

Proposition 3.3: Given a graph G = (V ,E), let L be its combinatorial Laplacian matrix in (3) and α :
R

+ → (0, 1] a continuous function. Then, the matrices−Lα(t) and exp(−L(t)) = exp(− ∫ t
0 L

α(τ) d τ)
commute.

Proof: For an undirected graph G, L is a symmetric matrix, then we can compute −Lα(t) as in (6).
Thus,

−Lα(t) exp(−L(t)) = −X�α(t)XT exp
(

−
∫ t

0
X�α(τ)XT dτ

)

= X
(

−�α(t) exp
(

−
∫ t

0
�α(τ) dτ

))
XT

= X
(

− exp
(∫ t

0
−�α(τ) dτ

)
�α(t)

)
XT

= −X exp
(

−
∫ t

0
�α(τ) dτ

)
XTX�α(t)XT

= − exp(−L(t))Lα(t).

For a directed graph, we need to consider the definition through the Jordan canonical form in (7)–(8),
i.e. we can rewrite −Lα(t) exp(L(t)) as

−Lα(t) exp(L(t)) = −ZJα(t)Z−1 exp
(

−
∫ t

0
ZJα(τ)Z−1 dτ

)

= Z
(

−Jα(t) exp
(

−
∫ t

0
Jα(t) dτ

))
Z−1,

by using Lemma3.1, and observing that f (t) = λ
α(t)
k is integrable.Nowexp(Jα(t)) is amatrix exponen-

tial of a block-diagonal matrix, thus it is block diagonal itself, and the product of the block-diagonal
matrix commutes if and only if the product of the blocks commutes. Therefore, we can reduce the
previous computation on a generic Jordan block Jk. By construction, each block is an upper tri-
angular Toeplitz matrix, i.e. is a matrix with constant entries along the diagonals. The conclusion
follows from the fact that the product of upper triangular Toeplitz matrices is commutative because
it can be expressed as the product of two matrix polynomials for the same matrix; see [12] and
[9, Chapter 2]. �

Theorem 3.4: Given a graph G = (V ,E), let L be its combinatorial Laplacian matrix in (3) and α :
R

+ → (0, 1] a continuous function. Then, the problem in (12) admits a solution p(t) on every interval
[0,T] and ‖p(t)‖1 = 1 ∀t ∈ [0,T].
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Proof: The proof follows from Theorem 3.2 and from the property that the matrix Lα(t) commutes
with its antiderivative by Proposition 3.3. Indeed, we can express the solution in closed form with the
exponential of the antiderivative of Lα(t), i.e. the solution of (12) can be expressed as

p(t) = p0 exp
(

−
∫ t

0
Lα(τ) dτ

)
,

whenever

Lα(t)
∫ t

0
Lα(τ) dτ −

∫ t

0
Lα(τ) dτLα(t) = 0,

that is exactly what we proved in Proposition 3.3. Then, to prove that

‖p(t)‖1 = p(t)1 = 1,

we have only to prove that L(t)1 = 0 ∀t ≥ 0, and indeed

L(t)1 =
∫ t

0
Lα(τ) dτ1 =

∫ t

0
Lα(τ)1 dτ =

∫ t

0
0 dτ = 0.

�

Remark 3.1: The proof of Proposition 3.3, and, therefore, of Theorem 3.4, depends on one hand on
the fact that all the matrices involved are diagonalized by the same transform that is independent of
t, and, on the other, the Jordan blocks are upper triangular Toeplitz matrices. These properties are
inherited from the definition in (7)–(8). Therefore, both the results can be extended to other matrix
functions with constant L depending on a variable parameter.

3.2. Stability for our non-autonomous extensions

Let us discuss the stability of (12). The classical definitions of stability and asymptotic stability, due to
Lyapunov, can be useful for the study of autonomous differential equations. For our nonautonomous
equations, however, the concepts of uniform stability and uniform asymptotic stability are more
appropriate; see W. A. Coppel [16, Chapter 1].

A special case is when L(t) is a T-periodic function for which it is possible to apply Floquet
Theorem, see, e.g. [23, Chapter III.7].

Theorem 3.5 (Floquet): Every fundamental matrix solution P(T) of

P′(t) = −P(t)L(t), t > 0, ∃T > 0 : L(t + T) = L(t), ∀ t > 0, (13)

has the form

P(t) = X(t)eBt , (14)

where X(t), B are n × n matrices, X(t + T) = X(t) for all t, and B is a constant.

The stability studied by the characteristic exponent λ in (13), i.e. the complex number λ for which
x(t)eλt is a nontrivial solution of (13) with x(t) = x(t + T), implies that there exists a representation
of the solution (14) for which the values of λ are the eigenvalues of B in (14).

Theorem 3.6 ([23, Theorem 7.2]): (1) A necessary and sufficient condition for the system (13) to be
uniformly stable is that the characteristic exponents have real parts≤ 0 and the ones with zero real
parts have simple elementary divisors.
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(2) A necessary and sufficient condition for the system (13) to be uniformly asymptotically stable is that
all the characteristic exponents have real parts< 0. If this is the case and P(t) is a matrix solution
of (13), then there exist K> 0, η > 0 such that ‖P(t)P−1(s)‖ ≤ K exp(−η(t − s)), for t ≥ s.

Let us stress that the characteristic exponents are defined only after the solutions of (13) are com-
puted. In general, there is no straightforward relation between the characteristic exponents and the
eigenvalues of L(t).

Fortunately, a much more general result is available. Indeed, we can prove the uniformly asymp-
totical stability for our linear differential equation also ifL(t) is not T-periodic; seeW. A. Coppel [16,
Chapter 1], provided that the exponent scalar function α(t) is regular enough.

Theorem 3.7 ([16]): If there exist K> 0, η > 0 such that ‖P(t)P−1(s)‖ ≤ K exp(−η(t − s)), P
fundamental matrix solution of (12) for t ≥ s, the IVP (12) is uniformly asymptotically stable.

Theorem 3.8: Given a (strongly) connected graph G = (V ,E), let L be its combinatorial (out-degree)
Laplacian matrix in (3) and α : R

+ → (0, 1] a continuous function. Then, the solution p(t) of
problem (12) is uniformly asymptotically stable.

Proof: Let P(t) be thematrix solution of (12), i.e. P(t) = exp(− ∫ t
0 L

α(τ) d τ), we will prove that there
exists K> 0, and η > 0 such that

‖P(t)P−1(s)‖ ≤ K exp(−η(t − s)), t ≥ s, (15)

so that we can apply Theorem 3.6. We start from the case in which G is an undirected graph, thus, by
using the Euclidean norm, by direct computation, we find

‖P(t)P−1(s)‖2 =
∥∥∥∥exp

(
−

∫ t

0
Lα(τ) dτ

)
exp

(∫ s

0
Lα(τ) dτ

)∥∥∥∥
=

∥∥∥∥X exp
(

−
∫ t

0
�α(τ) dτ

)
exp

(∫ s

0
�α(τ) dτ

)
XT

∥∥∥∥
=

∥∥∥∥exp
(∫ s

t
�α(τ) dτ

)∥∥∥∥
≤ exp

(∥∥∥∥
∫ s

t
�α(τ) dτ

∥∥∥∥
)

≤ exp
(
(s − t)max

τ∈R

‖�α(τ)‖
)

≤ exp(−β(t − s)),

from which we find (15) for K = 1 and

η = β = max
i,τ

λi(L)α(τ),

where λi(L) is the i-th eigenvalue of the Laplacian. For a directed graph, we suppose that the Laplacian
is diagonalizable and we get the same result but with

K = ‖Z‖2‖Z−1‖2 = cond2(Z),

cond2 the 2-norm condition number of the matrix Z diagonalizing L.
If L cannot be diagonalized, a similar approach can be adapted by using a Jordan decomposition

of the Laplacian matrix. �

The results on stability analysis we have obtained here could be applied to neural networks, by
leveraging, e.g. the results in [32], and the references therein. Other possible applications of these
techniques are in [4,13,30,31].



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS: COMPUTER SYSTEMS THEORY 183

4. Integrating the non-autonomous systems

Let us now consider the numerical integration of (12) to see the evolution of the probability
distributions on the graphs.

Here we use theMATLAB’s ode packagesode45 andode15s. Both aremethods with local error
estimators that can control and adapt the stepsize to reach the prescribed accuracy (here we request
a relative tolerance reltol= 10−6). The first method is a fourth-order nonstiff integrator based on
(explicit) Runge-Kutta-Fehlberg formulas while ode15s is based on the numerical differentiation
formulas (NDFs, a generalization of BDFs; see [27] for details on BFDs) of orders from 1 to 5. The
latter is based on implicit schemes and is able to manage stiff problems. For more details on formulas
for numerical integration of ODEs, in particular of their consistence, convergence and stability, see,
e.g. [27]. In particular, for the definitions of stiff problem and stiffness see [27, Chapter 6].

4.1. Operations with Lα

We considered the use of implicit time-step integration to avoid possible severe stepsize restrictions
to satisfy stability requirements of the underlying formulas that we experienced in some tests even
for not so long final times. Implicit time-step integrators for a problem of the form (11) require the
solution of a sequence of linear systems of the form

(αmI + δmβmA(tm)) y(m) = δmv(m−1), m = 0, 1, . . . , nt , (16)

where δm is them-th time step, the coefficients {αm,βm}�m=0 are selected depending on the particular
formula used, v(m−1) is a suitable combination of the vectors containing previous time steps and the
{αm,βm} coefficients. See, e.g. [1, Section 4.1] for the use of linear multistep formulas in a similar
context and [27] for a general discussion.

In the case we are treating here, we use the above mentioned MATLAB time-step integrators
package. In principle, they can be invoked by employing only the dynamics of the associated dif-
ferential problems. This means that we need a routine that can evaluate vA for the v generated by the
underlying integrator to handle

f (x) = −xα(t), (17)

or

f (x) = −ixα(t), (18)

for computing vf (L). Then, to formulate and solve the linear system (16), the routine assembles the
wholematrix at each new time-step and utilizes a direct solver. The building phase for the sequence of
linear systems (16), if no further information are given to the integrator, is completed by performing
several matrix-vector products with Lα(t). To reduce the computing time, we provide to the integrator
a routine to build directly the matrix Lα(t) for every t.

A further reduction in the timings could result by implementing a code for computing directly the
matrix function-vector product with

F(x; t) =
(
αm + δmβmxα(t)

)−1
, m = 0, 1, . . . , nt ,

for δmv(m−1)F(A; tm). This procedure can be based on the techniques for the computation of matrix
function times a vector product with the functions (17), and (18). For symmetric positive definite
matrices there exist several efficient approaches, either based on various type of quadrature formu-
las [2,3,8,24,26], or on Krylov methods [1,28,29]. The case we want to deal with here needs an extra
care because of the presence of the zero eigenvalue in L for which we refer to the strategies intro-
duced in [7]. Having selected the procedure for computing the αth power, then the extension to the
computation of the F(x, t) could be addressed with the techniques discussed in [1, Section 4.1].
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4.2. Numerical examples

Weconsider numerical examples on some real-world complex networks from [35], and choices for the
values of the function α(t) from [22]. All the experiments run on MATLAB 9.6.0.1072779 (R2019a)
installed on a Linuxmachine with an IntelR CoreTM i7-8750HCPU@ 2.20GHz processor, and 16Gb
of RAM.

Example 4.1: We consider as the first example of this section the Zachary’s Karate club net-
work [5,35]. This is a small (undirected) social network of a university karate club with n = 34
nodes. We simulate both the dynamics from (4) for some choice of α(t) from [22]. We start the
simulation from a random vector sampled from a uniform distribution across the nodes of the
network.

In Figure 3 we observe that the use of the different α(t) alters the evolution of the probability.
Specifically, for each time step, we report the value of the probability at the given node. In every case,
after a long time, all the solutions reach the steady-state, represented by the uniform color, and we
observe different transient behaviour.

We also observe how this behaviour is maintained even in the case of only continuous α(t) func-
tions. To this end, we consider the periodic sawtooth function in Figure 4(a) alternating between the
values (0.05, 0.75].

In this case, the evolution of the probability distribution behaves again as intended. If we look at
the evolution for a given node in Figure 4(b), we observe that the probability ‘oscillates’ between the
behaviour given by the two fixed value of α(t), the two extremes of the sawtooth function.

A more complex behaviour is highlighted by Schrödinger model, see Figure 5, in which we do not
reach a steady-state, as in the case of a fixed α ∈ (0, 1]. For all tests, we have a different behaviour in
the intermediate times, showing the effect of the new exploration strategy.

Figure 3. Zachary’s karate clubnetwork [5,35]. This is a small social networkof auniversity karate clubwithn = 34nodes. Evolution
of the probability pi(t) for i = 1, . . . , 34, t ∈ [0, 10] for different choices of α(t) and the Heat equation dynamics from (4).
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Figure 4. Zachary’s Karate club network [5,35]. Example of the trajectories obtained by employing a function α(t) that is only con-
tinuous. Comparison with the trajectories obtained with the constant fractional Laplacian with values the maximum andminimum
of the α(t) function. (a) Sawtooth α(t) function (b) Probability evolution for a selected node.

Figure 5. Zachary’s Karate club, Schrödinger model [5,35]. A small social network of a university Karate club with n = 34 nodes.

Figure 6. Eigenvalue distribution of the Laplacian matrix of the graph of US Airlines in 1997. Source of the graph data: [35].
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Figure 7. Comparison of short-term results of US Airlines in 1997 integrated using ode15s. Source of the graph data: [35].

Figure 8. Comparison of short-term results of US Airlines in 1997 integrated using ode45 and ode15s α(t) = 1 − exp(−10t).
Transition probabilities are depicted in logarithmic scale to better highlight the differences between the transitions. Source of the
graph data: [35].

Example 4.2: To look more closely at the convergence towards the steady-state, we consider a larger
graph based on US airlines in 1997, where the graph is undirected with 332 nodes. The (real and
nonnegative) eigenvalue distribution of the underlying Laplacian matrix is depicted in Figure 6.

In the Figures 7, 8 and 9we report the output and, in particular, the evolution of the probability dis-
tribution for runs with short final times. This shows some interesting performances of the functions
α(t) considered. Moreover, the Figures 8 and 9 are useful to observe a moderate stiffness phenomena
that can be present even in small graphs, and that is clearly highlighted by the difference in the num-
ber of time steps generated by the underlying stiff and nonstiff time-step integrators. In particular,
for α(t) = 1 − exp(−10t) in Figure 8 we have that ode45 employs 3349 time steps, while ode15s
needs just 90. As expected, the difference is less pronounced in Figure 9, where the periodic transition
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Figure 9. Comparison of short-term results of US Airlines in 1997 integrated using ode45 and ode15s, α(t) = 0.5 +
0.4 sin(4π t). Source of the graph data: [35].

Figure 10. US Airlines in 1997 [35]. Example of the trajectories obtained by employing a function α(t) with reduced regularity.
Comparison with the trajectories obtained with the constant fractional Laplacian matrix with values the maximum and minimum
of the α(t) function. (a) Spline approximation of the αtrue(t) function. (b) Probability evolution for a selected node.

α(t) = 0.5 + 0.4 sin(4π t) has been adopted instead: ode45 employs 549 time steps while ode15s
employs 191.

To conclude the example, consider using a less regular α(t). Specifically, we use a sampling of
the function αtrue(t) = 0.5 + 0.4 sin(π t/2) at points tk = k, k = 0, 1, . . . , 6. Then, for integrating the
system, we use the piecewise polynomial form of the cubic spline interpolating α(t) on these data; see
Figure 10(a). From Figure 10(b), that represents the probability evolution for an arbitrary node of the
network, we observe again the same behaviour shown in the other cases, i.e. the probability evolves
mimicking the extreme cases, at least in part.

Example 4.3: Let us now consider a directed network. We simulate the evolution of the probability
distributions on the weighted cage8 graph from the van Heukelum collection [38]. The weights on
the adjacency matrix describe the transition probabilities between equivalence classes of the config-
urations, for an applied field of E = (0.1, 0.1, 0.1) and a polymers of 8 monomers in a cage model of
DNA electrophoresis. We model the evolution of the probability p(t) for t ∈ [0, 5] for the choices of
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α(t) from Figure 3, and the heat equation dynamics from (4). That is, we look at the transition func-
tion α(t) given by the two fixed values, the two oscillating functions and the exponential transitions.
Since the network is now directed, we need to choose which Laplacian matrix we adopt. For this case
we consider the out-degrees, i.e. Lout in (5).

To depict a clearer picture, we report in Figure 11 the evolution of the probability of a single node.
We can observe rapid oscillations in the transient phase, while the oscillations settle to the steady state
more slowly.

Example 4.4: The last test case we consider is the EU-Road network [37]. This is the international
E-road network for roads that are mostly located in Europe. The network is undirected, with nodes
representing cities and links denoting e-road between two cities, and is neither scale-free nor small-
world. Moreover, since the graph has more than one connected components, we restrict the analysis
to the largest component of the network consisting of 1039 nodes and 1355 edges.

Figure 11. Cage8 network [38]. This is a cage model of DNA electrophoresis with n = 1015 nodes. Evolution of the probability
pi(t) for i = 6, t ∈ [0, 5] for different choices of α(t) and the Heat equation dynamics from (4).

Figure 12. Euroad network. Source of the graph data: [35,37].
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In the figures in 12, we report the output and, in particular, the evolution of the probability distri-
bution for two different runtimes and α(t). We can observe that the oscillations reach the steady-state
faster than the one in which our ‘attention span’ rapidly reaches the value 1. Indeed, if we go ‘one road
at a time’ across the whole of Europe, we need potentially much more time to explore every place.

5. Conclusions

We extended the nonlocal exploration of complex networks utilizing a time-varying function α =
α(t) for the fractional Laplacian matrix used as the Jacobian of an initial value problem for the evo-
lution of the underlying probability distributions (see [6,33,34]). In particular, we proved existence,
uniqueness, and asymptotic stability properties of the solution of a model based on the heat equation.
Interesting (moderate) stiffness phenomena of the underlying system of differential equations on
some real-world complex networks are also observed in some numerical experiments involving
simulations of the evolution of the probability distributions for complex networks.

There are some directions in which we plan to extend this study. The first is the generalization to
the non-autonomous version of the transformed k-path Laplacian briefly discussed in Remark 2.1,
even if the formulation of this case can be achieved straightforwardly by modifying the k-path
operator to

LG(α(t); t) = L1 +
∑
k≥2

1
kα(t)

Lk, α : R+ → R+.

This extension does not falls under the observation in Remark 3.1, since the matrices LG(α(t); t),
even in the symmetric case, cannot be diagonalized by the same transformation in general.

The second is to (i) extend the approach in [1] by working with a variable order integrator and the
singularM-matrix L, by applying some of the techniques proposed in [7] and (ii) use computationally
efficient techniques to solve (16) generalizing those proposed in [10].
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