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a b s t r a c t

A new strategy for updating preconditioners by polynomial interpolation of factors of
approximate inverse factorizations is proposed here. The computational cost per iteration
is linear in the number of degree of freedom, the same order of most of the strategies for
updating an incomplete factorization proposed in the last decade. The effectiveness of the
technique is confirmed by some experiments.
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1. Introduction

The numerical solution of sequences of large scale and sparse linear systems of algebraic equations

Ai xi = bi, i = 0, 1, . . . , s, (1)

is ubiquitous in models for applied sciences.
Models requiring the solutions of such problems are based on partial differential equations, on systems of coupled

differential equations, on hybrid differential–algebraic problems, on equilibrium problems and others. Direct solvers are
robust and deterministic approaches which are often used as a standard tool in small and medium scale problems. On the
other hand, iterative methods are more appropriate for large scale problems; here we concentrate on the Krylov subspace
iterative solvers GMRES and BiCGstab [1]. Unfortunately, iterative solvers can fail if not preconditioned. However, if s in
(1) is not small, the computation of several preconditioners can be expensive and reusing the same preconditioner not
appropriate; see tests, e.g., in [2,3]. In order to overcome these issues, in recent years there has been some interest on
updating preconditioners. The literature begins considering simple problems where the matrices Ai in the sequence (1)
differ from one another by a scalar multiple of the identity matrix; see [4,3]. In the former Ai are symmetric M-matrices
and the preconditioner an incomplete Cholesky factorization while the latter considers generic SPD matrices and updates
a single approximate inverse preconditioner; see [3] for details. Then, sequences of complex symmetric matrices differing
by a complex diagonal matrix are considered in [5]. A generalization considering sequences of generic symmetric positive
definite matrices from a finite volume discretization of a nonlinear selective diffusion equation for imaging is considered
in [6] while general nonsymmetric matrices in [2]. Sequences of nonsymmetric matrices are considered in [7] and more
recently, e.g., in [8], both using strategies for updating that are different from the paradigms introduced in [3].
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Several other papers were published, also recently, on the subclass of shifted linear systems. They are not mentioned
here because we focus on more general sequences of matrices.

Note that, in all the above mentioned literature, the update of a single preconditioner is computed by using some
information on the actual matrix.

In [3, Section 6] we suggested that matrix interpolation could be another chance for updating preconditioner. In [9] the
author proposes a first promising attempt in this sense based on linear interpolation for sequences of SPD matrices.

In this paperwe propose the update of few preconditioners in factorized inverse form by interpolating the inverse factors
of few decompositions. We concentrate on quadratic matrix interpolation and therefore start building our preconditioner
from three preconditioners computed for three appropriately chosen different matrices in the sequence (1). However, this
paradigm is fairly general and can be applied to higher degree or spline-like interpolation.

We stress that our approach requires that the matrices used for interpolation should be known in advance while this is
not required in the other abovementioned ‘‘non interpolation-based’’ updating paradigms. On the other hand, the strategies
proposed here can use the p matrices of the sequence {Ai} to build the needed preconditioners and then use interpolation
for the others.

The paper is divided as follows. In Section 2 a brief outline of algorithms for obtaining an approximate inverses
in factorized form while in Section 3 we introduce our new preconditioning technique by describing it both from the
algorithmic and theoretical point of view. Finally, in Section 4 we test our strategy with problem arising from the finite
element approximation of boundary value problems and partial differential equations.

2. Approximate inverse preconditioners

In order to build up the underlying interpolated preconditioners, we need to provide preconditioners Pij for (a few)
matrices Aij , j = 0, 1, 2, . . . , p, in approximate inverse form. Given Aij , j = 0, 1, 2, . . . , p (p = 2 in our tests in Section 4),
we need to generate p + 1 well defined and sparse approximations in factorized form

Pij = Wij D
−1
ij

ZT
ij (2)

for A−1
ij

. Herewe concentrate on incomplete factorization algorithms. Given ϵ the drop tolerance of the algorithm generating
the incomplete factorizations, i.e., the threshold belowwhich the extra-diagonal elements are set to zero, it is intended that

lim
ϵ→0

∥A−1
ij

− WijD
−1
ij

ZT
ij ∥ = 0, j = 0, 1, . . . , p

for any matrix norm ∥ · ∥, i.e., that for ϵ = 0 the factorizations for the inverse matrices are exact.
The algorithms for approximate inverse factorization considered here belong to two classes: inverse ILU and approximate

inverse preconditioners or AINV for short. See also [10] for recent notes and comments on their usage.

The inverse ILU technique

Inverse ILU technique for amatrix A ∈ Rn×n amounts to compute first a threshold ILU factorization supposedwell defined,
see, e.g., [1]

P ≈ L̃ D̃ ŨT , (3)

where L̃ and Ũ are unit lower triangular and D̃ is a diagonal matrix. We aim to approximate the factorization of the inverse
of A

A−1
= WD−1ZT ,

i.e., we look for sparse Z̃ and W̃ such that

Z̃ ≈ Ẑ = L̃−T , W̃ ≈ Ŵ = Ũ−T . (4)

Consequently, P takes the form

P = W̃ D̃−1Z̃T . (5)

Clearly, this procedure is not feasible if the reference ILU factorization breaks down or if it is very ill-conditioned. This can
happen in the case of, e.g., strongly indefinite matrices. A way to circumvent this relies often in allowing more fill-in and/or
pivoting.

To get Z̃ and W̃ , an approximation is needed because they can be full even if L̃ and Ũ are sparse. Under some hypothesis
on P , like, e.g., diagonal dominance or being M-matrix or a suitable reordering with lumping etc., we can ensure a fast decay
of the entries of the inverse factors. Nonetheless, sparsification of Ẑ and Ŵ even with very slow (or no) decay of the entries
away from themain diagonal can result in surprisingly good results in several important cases in practice. Effective schemes
for computing Z̃ and W̃ consist in dropping fill as soon as it occurs within a sparse vector update, see [11,10]. In order to
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control the number of fills, we can easily impose a restriction on the allowed number of nonzero entries. This approach is
effective on shared memory machines since the only concurrent access to the same memory location is a read type access.
The inversion and sparsification part of the underlying algorithm is perfectly scalable because there are no dependencies
between the calculation of the columns of the triangular factors, see again [11,10].

Approximate Inverses Preconditioners or AINV

A reliable method computing directly an approximate factorization of the inverse of the underlying matrices is the
Approximate Inverses Preconditioners or AINV for short, described in [12] and used for updating preconditioners for shifted
linear systems [3,5].

The method was proposed in [12] and later extended. It is based on the observation that if a matrix A ∈ Rn×n is
nonsingular, and if we have two vector sequences {zi, i = 1 . . . n} and {wi, i = 1 . . . n}which are A-biconjugate, i.e. zTi Awj =

0 if and only if i ≠ j, we can express the biconjugation relation as follows:

ZTAW = D = diag(p1, p2, . . . , pn) (6)

where pi = zTi Awi ≠ 0. Thus, Z and W must be nonsingular, since D is nonsingular. Therefore

A = Z−TDW−1

from which it readily follows that

A−1
= WD−1ZT . (7)

If Z and W are triangular, then they are actually the inverses of the triangular factors in the LDU decomposition.
Sparsity in the inverse factors is obtained by carrying out the biconjugation process incompletely.
Details on the incomplete biconjugation process can be found in [12] and in [10], a recent paper revisiting some crucial

aspects and issues.

3. Interpolated preconditioners

Given the underlying sequence of n×nmatrices {Ai}
p
i=0, let us beginwith the computation of three reference approximate

inverse preconditioners for the matrices Ai0 , Ai1 and Ai2 chosen appropriately from the sequence {Ai}i, i.e.,
approximate inverse factorization of A−1

i


= WiD−1

i ZT
i , i = i0, i1, i2. (8)

The choice of Ai0 , Ai1 and Ai2 is problem-dependent and it is made in order to maximize the probabilities to get a reasonable
approximation for all the interpolated preconditioners. We will not focus on this aspect here, leaving more details for some
specific case study in a further research.

The factorizations (8) can be produced by various algorithms. Here we focus on inversion and sparsification algorithms
and AINV as revisited in [10]. We build the preconditioner factors by means of quadratic interpolation of the points (αi, ZT

i ),
(αi,Wi), i = i0, i1, i2, where {αi}

s
i=0 is the discretization of a parameter α linked to the problem and to the i indices, i.e., if

we are dealing with variable time step integrator is the time step, otherwise could be some interpolation parameter or some
parameter linked to the time in PDEs with variable in time coefficients. The functions for the interpolation are given by the
quadratic polynomial

p2(α; ·) = a + bα + cα2, (9)

where we obtain, for a generic triplet of matricesM1,M2,M3, the expression for the coefficients a, b, c:

a =
α0 (α0 − α1) α1M3 + α2 (α1 (α1 − α2)M1 + α0 (α2 − α0)M2)

(α0 − α1) (α0 − α2) (α1 − α2)
, (10)

b =


α2
1 − α2

0


M3 +


α2
0 − α2

2


M2 +


α2
2 − α2

1


M1

(α0 − α1) (α0 − α2) (α1 − α2)
, (11)

c =
(α0 − α1)M3 + (α1 − α2)M1 + (α2 − α0)M2

(α0 − α1) (α0 − α2) (α1 − α2)
. (12)

Therefore, we build the approximations for the Zα and Wα matrices as functions of the parameter α by using equation (9)
with the coefficients a, b, c computed for the {Zij}

2
j=0 and {Wij}

2
j=0 matrices coming from the factorized approximate inverses

of the reference matrices, so we have

Zα = p2(α; {Zij}
2
j=0) and Wα = p2(α; {Wij}

2
j=0). (13)
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We can take as a preconditioner the approximate inverse of the generic matrix Ai of the sequence given by

M−1
i = Wα(Di + [Zα 1Wα]k)

−1ZT
α ,

where Di is the diagonal matrix coming from one of the reference preconditioner (2). The matrix ∆ is given by

∆ = Ai − Aij , (14)

and the operator [·]k extracts the k upper and lower diagonals of a matrix ([·]0 gives the main diagonal). Therefore, what
we do from the computational point of view is working with [∆]k and the k banded approximation of Zα and Wα . In this
way, the matrix ∆ is not completely computed. Then, to choose between the different reference matrices, i.e., between the
differentDi, taking into account the value assumed by the α parameter for each single linear system, we take the index i = ij
as the one that realizes

i∗ = arg min
ij=i0,i1,i2

∥Ai − Aij∥F , ∆ = Ai − Ai∗ . (15)

Therefore we build a preconditioner update in factorized form

M−1
i,k = Wα(Di∗ + Ek)−1ZT

α , with


Zα = p2(α; {Zij}

2
j=0),

Wα = p2(α; {Wij}
2
j=0),

Ek =

ZT
α1Wα


k .

(16)

For the memory occupation we observe that is contained, assuming a reasonable worst case with a non cancellation rule, at
most in three times the sum of the nonzero element of the reference matrices:

nnz(p2(α,M1,M2,M3)) ≤ 3


i

nnz(Mi),

see, e.g., Fig. 1, referring to the three experiments in the next section.
Moreover, the asymptotic computational cost for the construction of the preconditioner M−1

i,k and its application is the
same of linear interpolation and of the updates in [5,2,9].

Using the upper bound for condition numbers of n × n regular triangular matrices from [13] we can also get a bound for
the condition number of both the matrices Zα and Wα obtained by the quadratic interpolation formula (9).

Corollary 1 (Bound for κ2(·)). Let us consider the unit upper triangular matrices of order n given by

Zα = p2(α, Zi0 , Zi1 , Zi2), Wα = p2(α,Wi0 ,Wi1 ,Wi2). (17)

We have that if the non-diagonal elements of Zα have absolute values not larger than aZ , we can bound κ2(Z) as

∥Z−1
α ∥2 ≤ ∥Z−1

α ∥F ≤


n


2

aZ + 2


+

(aZ + 1)2n − 1
(aZ + 2)2

,

∥Zα∥2 ≤ ∥Zα∥F ≤


n +

n(n − 1)
2

a2Z .

(18)

If the non-diagonal elements of Wα have absolute values not larger than aW , we can bound κ2(W ) as

∥W−1
α ∥2 ≤ ∥W−1

α ∥F ≤


n


2

aW + 2


+

(aW + 1)2n − 1
(aW + 2)2

,

∥Wα∥2 ≤ ∥Wα∥F ≤


n +

n(n − 1)
2

a2W .

(19)

Moreover, we can express the values of aZ and aW as

aZ = p2


α;max

i,j
|z(i0)

i,j |,max
i,j

|z(i1)
i,j |,max

i,j
|z(i2)

i,j |


,

aW = p2


α;max

i,j
|w

(i0)
i,j |,max

i,j
|w

(i1)
i,j |,max

i,j
|w

(i2)
i,j |


. �

(20)

The condition number of the interpolatedmatrices is bounded by the condition number of the referencematrices. Therefore,
reference preconditioners with a reasonable condition number will potentially generate interpolated preconditioners with
a reasonable condition number too.

Let us write the difference between the interpolated preconditioner (computed on the basis of the exact factorizations
for the inverses of Ai) and its target matrix.
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(a) Experiment 2.

(b) Experiment 4.

Fig. 1. Memory occupation for the ZT
α matrices.
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Lemma 2. Let LiDiUi be the exact factorization of Ai ∈ Rn×n and consider the quadratic interpolated matrix Mi,k = LαDαUα ,
where

Lα = p2(α, {Lij}
2
j=0), Uα = p2(α, {Uij}

2
j=0), Dα = Di∗ + Ek.

We have

Mi,k − Ai = (LαDi∗Uα − LiDiUi) + (Z−T
α EkW−1

α − ∆),

where ∆ = Ai − Ai∗ , as in Eq. (15) and

Mi,k − Ai = 0, i = i0, i1, i2, (21)

i.e., the interpolated matrix Mi,k
1 computed on the basis of the exact factorization for the inverses is exact for interpolation points

corresponding to α = αi, i = 0, 1, 2.

Proof.

Mi,k − Ai = Lα(Di∗ + Ek)Uα − (Ai − Ai∗ + Ai∗)

= LαDi∗Uα + LαEkUα − ∆ − Ai∗

= (LαDi∗Uα − Ai∗) + (LαEkUα − ∆)

= (LαDi∗Uα − LiDiUi) + (Z−T
α EkW−1

α − ∆). �

We define for later use the matrix

Cα = LαDi∗Uα − LiDiUi. (22)

In the style of [2,5] we prove that the updated preconditionerM−1
i,k in (16) applied to the generic matrix of the sequence

Ai can cluster eigenvalues of the matrices in the underlying preconditioned sequence.

Theorem 3. Given the sequence of linear systems Aix = bi for i = 0, 1, . . . , s, let us consider the preconditioner defined in
Eq. (16). If there exists δ ≥ 0 and t ≪ n such that

Z−T
α EkW−1

α − ∆ = UΣV T , Σ = diag(σ1, σ2, . . . , σn),

σ1 ≥ σ2 ≥ · · · ≥ σt ≥ δ > σt+1 ≥ · · · ≥ σn, (23)

and

max
α∈(α1,α2)

∥D−1
i∗ Ek∥ ≤

1
2
, (24)

then there exist matrices Cα , ∆, F and a scalar constant cα such that

M−1
i,k Ai = I + M−1

α,kCα + ∆ + F , (25)

with Rank(∆) = t ≪ n, independent from α and

∥F∥2 ≤
2δcα
β


n


(n − 1)a2W + 2


n


(n − 1)a2Z + 2


2 n bWbZ

, (26)

where

β = min{ max
r=1,...,n

|dr |−1, c}, dr = (Di∗)r,r (27)

with c constant used to avoid zero pivots in the matrix Dα1 ,

bW = min
i,j=1,2,...,n

|w
(i0)
i,j |

1/2, bZ = min
i,j=1,2,...,n

|z(i0)
i,j |

1/2

and

∥M−1
i,k Cα∥2 ≤ 2cακ2(Lα)κ2(Uα)

max
r

|dr |

min
r

|dr |
+ ∥M−1

i,k Aα1∥2.

1 The matrix Mi,k is called interpolated preconditioner if the interpolation is performed on approximate inverse decompositions for Ai .
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Proof. By using the decomposition in Lemma 2 we have that

M−1
i,k Aα = I + M−1

i,k Cα + M−1
i,k (Z−T

α EkW−1
α − ∆).

We can now use the hypothesis (23) on the singular value decomposition of

Z−T
α EkW−1

α − ∆ = ∆1 + F1,

∆1 = U diag(σ1, . . . , σt , 0, . . . , 0)VH ,

F1 = U diag(0, . . . , 0, σt+1, . . . , σn)VH .
(28)

Therefore we get

M−1
i,k Ai = I + M−1

i,k Cα + M−1
i,k ∆1 + M−1

i,k F1.

To proceed we now need to get an estimate of the norm ∥M−1
α,k∥2:

∥M−1
i,k ∥2 = ∥Wα(Di∗ + Ek)−1Zα∥2 ≤ ∥Wα∥2 ∥Zα∥2∥(Di∗ + Ek)−1

∥2

≤ ∥Wα∥2 ∥Zα∥2∥D−1
i∗ (I + D−1

i∗ Ek)−1
∥2

by(24)
≤ ∥Wα∥2 ∥Zα∥2∥D−1

i∗ ∥2


n≥0

(−1)n(D−1
i∗ Ek)n


2

by(24)
≤ ∥Wα∥2 ∥Zα∥2 max

r=1,2,...,n
(|dr |−1)cα


1 − ∥D−1

i∗ Ek∥2


≤ 2cα∥Wα∥2 ∥Zα∥2 max
r=1,2,...,n

(|dr |−1).

We now define the matrix F of the thesis as the matrix F = M−1
i,k F1 and, by using the notation and results of Corollary 1,

∥F∥2 ≤ ∥M−1
i,k ∥2∥F1∥2

by(23)
≤ δ∥M−1

i,k ∥2

≤ 2δcα∥Wα∥2 ∥Zα∥2 max
r=1,2,...,n

(|dr |−1)

≤
2δcα
β

∥Wα∥2 ∥Zα∥2

min
r=1,2,...,n

∥w
(α1)
:,r ∥ min

r=1,2,...,n
∥z(α1)

:,r ∥

≤
2δcα
β


n


(n − 1)a2W + 2


n


(n − 1)a2Z + 2


2 n bWbZ

.

Let us work on the termM−1
i,k Cα , for which we observe that is 0 for α = αi, i = i0, i1, i2.

∥M−1
i,k Cα∥2 ≤ ∥M−1

i,k (LαDi∗Uα − L1Di∗U1)∥2

≤ ∥Di∗∥2∥M−1
i,k ∥2∥Lα∥2∥Uα∥2 + ∥M−1

i,k Ai1∥2

≤ 2cακ2(Lα)κ2(Uα)

max
r

|dr |

min
r

|dr |
+ ∥M−1

i,k Ai1∥2.

By introducing the low rank matrix ∆ = M−1
i,k ∆1 we complete the proof. �

We just proved that our interpolated preconditioners can show a clustering of the spectra of the underlying matrices.
This is a behavior that has to be expected in this kind of framework, where the updated preconditioner greatly relies on the
reference ones and is consistent with the behavior of the condition number of the updates in Corollary 1.

4. Numerical experiments

We resume here some of the tests performed on the proposed interpolated preconditioners. We compare AINV fixed,
AINV updated, AINV interpolated and AINV interpolated 2, where the meaning of these abbreviations is explained below.

• AINV fixed: compute just an approximate inverse preconditioner and use it for all the other linear systems in the
sequence.

• AINV updated: compute the approximate inverse preconditioner for the first matrix of the sequence and update it for
all the others as in [2].
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Fig. 2. Mesh for the Experiment 1.

• AINV interpolated: compute two approximate inverse preconditioners, one for the first matrix of the sequence and
another for the last and use them in the linear matrix interpolation strategy proposed in [9].

• AINV interpolated 2: the quadratic polynomial matrix interpolated preconditioner introduced in Section 3.

We also tried ILU(0) and ILUT(ϵ) preconditioners with ϵ = 10−1 and 10−2; see [1] for details. However, the results are
not reported because the computed factors are too ill conditioned for all experiments below.

Note that details of tests using recomputed preconditioners, i.e., iterative solvers using approximate inverse
preconditioners computed from scratch for each linear system, are omitted. Indeed, we experienced that their timings were
always greater than all the others in the tables, regardless of the implementations we tried.

The codes are in a prototype stage using Matlab R2015a in order to simplify changes and porting to more powerful
platforms. Our machine is a laptop running Linux with 8 Gb memory and CPU Intel(R) Core(TM) i7-4710HQ CPU with clock
2.50 GHz. GMRES and BiCGSTAB are considered with a relative residual stopping criteria of ϵ = 10−9 in order to test the
performances of the preconditioners. A similar behavior is observed also with ϵ = 10−6 and is not reported here.

The timings do not include the cost for generating the approximate inverse factorizations because these are not computed
in Matlab but use the implementation proposed in [10].

We stress again that for computing one interpolation preconditioner the triplet of matrices described in Section 3 should
be known in advance.

4.1. Unsteady state case

We consider the finite element approximation of the convex combination (α ∈ [0, 1]) of the following equations
ut + a1(x, y)ux + b1(x, y)uy − ∇ · (k1(x, y)∇u) = f1(x, y), (x, y) ∈ Ω,
ut + a2(x, y)ux + b2(x, y)uy − ∇ · (k2(x, y)∇u) = f2(x, y), (x, y) ∈ Ω,

and ki(x, y), ai(x, y)bi(x, y) > 0 ∀(x, y) ∈ Ω i = 1, 2, with the same boundary conditions on the borders of the domain.
Experiment 1. We start considering the boundary given in Fig. 2 parametrized by the equations

C1

x = b cos

t
a
b

− 1


+ t cos(a − b), a = 7, b = 1,

y = t sin(a − b) − b sin

t
a
b

− 1


, t ∈ [0, 2π ]

\ C2


x = 0.3 cos(t),
y = 0.3 sin(t).

The discretization is obtained by applying the backward Euler method for the time derivative and taking the test functions
in the space of the piecewise linear continuous polynomials

P1h =

v ∈ H1(Ω) | ∀ K ∈ Th, v|K ∈ R1[x]


. (29)
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Table 1
Experiment 1, α = 0, 0.1, . . . , 0.9, 1, size of the matrix n = 1061, GMRES algorithm.

AINV fixed AINV updated AINV interpolated AINV interpolated 2
IT T IT T IT T IT T

1 9 0.020714 1 9 0.005556 1 9 0.008338 1 9 0.007451
1 75 0.050835 1 93 0.070675 1 149 0.208240 1 171 0.265795
1 139 0.141679 1 172 0.205938 1 237 0.451837 1 169 0.255071
1 188 0.243326 1 263 0.442285 1 288 0.634035 1 134 0.177269
1 241 0.381868 1 332 0.686958 1 296 0.665371 1 73 0.072044
1 258 0.430485 1 362 0.807219 1 329 0.806470 1 25 0.016961
1 281 0.508083 1 387 0.924151 1 342 0.867981 1 76 0.077965
1 301 0.576041 1 419 1.075130 1 347 0.876915 1 143 0.194432
1 318 0.640597 1 437 1.162376 1 354 0.910213 1 199 0.336698
1 335 0.704442 1 452 1.230199 1 376 1.004745 1 209 0.365155
1 349 0.763383 1 464 1.301722 1 403 1.159710 1 217 0.389327

The coefficient functions are chosen as

a1(x) = 50(1 + 0.9 sin(100πx)), b1(y) = 50(1 + 0.3 sin(100πy)),
k1(x, y) = x2y2 exp(−x2 − y2),
a2(x, y) = cos2(2x + y), b2(x, y) = cos2(x + 2y), k2(x, y) = x4 + y4,
f1(x, y) = f2(x, y) = π2(sin(x) + cos(y))

and boundary conditions as

u(x, y, t) = x, (x, y) ∈ C1, u(x, y, t) = y, (x, y) ∈ C2, ∀t ≥ 0. (30)

The initial condition is the null function over the entire domain. FreeFem++ software [14] is used.
The results of the preconditioning strategies for this problem are reported in Table 1 with GMRES. The reference AINV

preconditioners are computed with a drop tolerance δ = 10−2, and only the main diagonal of matrix ∆ is used, i.e., we
are using [∆]k with k = 1. The values of α used for reference are α = 0, 0.5, 1, respectively. From these experiments the
performance of the fixed ILU preconditioner is omitted because, even if convergent, generates matrices close to singular or
badly scaled. Also the results with the unpreconditioned GMRES are omitted because they never reach convergence due to
stagnation or reach the maximum number of iteration. These results are obtained by choosing the following indices in Eq.
(15)


1 1 1 2 2 2 2 2 3 3 3


that fit well with the expected behavior of the interpolation, and that will

be the same for all the other experiments.
Experiment 2. We consider the same settings of the previous experiment, just changing the coefficient functions as

a1(x) = 50(1 + 0.9 sin(100πx)), b1(y) = 50(1 + 0.3 sin(15πy)),
k1(x, y) = x2y2 exp(−x2 − y2),
a2(x) = 1 + 0.6 sin(100πx), b2(y) = 1 + 0.6 sin(100πy), k2(x, y) = x2 + y2,
f1(x, y) = f2(x, y) = π2(sin(x) + cos(y))

and the boundary conditions as

u(x, y, t) = 0, (x, y) ∈ C1 ∪ C2, ∀t ≥ 0. (31)

The results of the experiments are collected in Table 2. Again we exclude the results with the unpreconditioned GMRES in
Table 2 because it never reached convergence due to stagnation.

For this case we also consider the solution with restarted GMRES, i.e. GMRES(50), with the same settings used for the
references AINV preconditioners. Result for this case is collected in Table 3. Again, the results with the unpreconditioned
algorithm are omitted because it never reach convergence within the maximum number of allowed iterations.

As a last test for this set of parameters we consider same settings but BiCGSTAB instead of GMRES; see Table 4. The use
of BiCGSTABwithout preconditioners is not reported because it never converges. The failure of the other methods in Table 4
is caused by one of the scalar quantities calculated becoming too small or too large. The fixed ILU preconditioners are again
numerically singular.

4.2. Steady state case

We consider now finite element approximation for the steady state equation
−∇ · (a(x, y)∇u) + b(x, y) · ∇u + c(x, y)u = f (x, y), (x, y) ∈ Ω,
u = 0, (x, y) ∈ ∂Ω

(32)
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Table 2
Experiment 2, α = 0, 0.1, . . . , 0.9, 1, size of the matrix n = 1061, GMRES algorithm.

AINV fixed AINV updated AINV interpolated AINV interpolated 2
IT T IT T IT T IT T

1 8 0.005492 1 8 0.005457 1 8 0.005451 1 8 0.005453
1 21 0.010126 1 21 0.010001 1 18 0.009315 1 14 0.007712
1 36 0.018278 1 37 0.018474 1 26 0.013336 1 15 0.008090
1 51 0.028517 1 54 0.030884 1 28 0.014256 1 13 0.007350
1 64 0.040053 1 68 0.042952 1 27 0.013719 1 10 0.006270
1 74 0.049302 1 79 0.055230 1 25 0.012694 1 8 0.006658
1 82 0.057557 1 89 0.065642 1 21 0.010649 1 10 0.006150
1 90 0.067051 1 99 0.078088 1 18 0.009299 1 11 0.006465
1 96 0.074336 1 108 0.090274 1 14 0.007616 1 11 0.006476
1 103 0.084157 1 116 0.102196 1 11 0.006491 1 10 0.006114
1 108 0.090881 1 123 0.113140 1 10 0.006086 1 8 0.006414

Table 3
Experiment 2, α = 0, 0.1, . . . , 0.9, 1, size of the matrix n = 1061, GMRES(50).

AINV fixed AINV updated AINV interpolated AINV interpolated 2
IT T IT T IT T IT T

1 8 0.016259 1 8 0.003615 1 8 0.003675 1 8 0.003687
1 21 0.008037 1 21 0.008316 1 18 0.007599 1 14 0.006146
1 36 0.015967 1 37 0.016629 1 26 0.011299 1 15 0.006147
2 1 0.027306 2 5 0.027401 1 28 0.012345 1 13 0.005531
2 16 0.030555 2 23 0.033895 1 27 0.011874 1 10 0.004371
2 30 0.037148 2 42 0.044547 1 25 0.010785 1 8 0.003646
2 43 0.045475 3 11 0.053968 1 21 0.008694 1 10 0.004297
3 7 0.052097 3 31 0.062703 1 18 0.007613 1 11 0.004754
3 19 0.056502 4 1 0.075398 1 14 0.005755 1 11 0.004746
3 30 0.061592 4 29 0.086087 1 11 0.004710 1 10 0.004418
3 41 0.068515 4 49 0.099530 1 10 0.004357 1 8 0.003597

Table 4
Experiment 2, α = 0, 0.1, . . . , 0.9, 1, size of the matrix n = 1061, BiCGSTAB. Ď: the iterative method does not converge.

AINV fixed AINV updated AINV interpolated AINV interpolated 2
IT T IT T IT T IT T

4.0 0.013243 4.0 0.002515 4.0 0.002529 4.0 0.002629
13.0 0.005550 13.5 0.005791 9.5 0.004888 7.5 0.003944
32.5 0.013409 33.5 0.012697 16.5 0.007601 8.5 0.004374
88.5 0.032187 97.5 0.035321 18.5 0.008485 6.5 0.003553
166.5 0.059718 190.5 0.068083 19.0 0.008605 5.0 0.002917
312.5 0.110927 428.5 0.151612 16.5 0.007648 5.0 0.002782
530.5 0.188864 260.0 Ď 15.5 0.007247 5.0 0.002922
113.0 Ď 121.0 Ď 11.0 0.005364 5.5 0.003137
161.0 Ď 1.0 Ď 8.0 0.004120 6.0 0.003331
132.0 Ď 1.0 Ď 5.5 0.003118 5.0 0.002899
201.0 Ď 1.0 Ď 5.0 0.002845 5.5 0.003164

where Ω is the domain whose boundary is parametrized by the curve
x = cos(t),
y = sin(t) sinm(t/2). ∪


x = 0.01 cos(t),
y = 0.01 sin(t). t ∈ [0, 2π ]. (33)

An example of the mesh is reported in Fig. 3. As a test function for the FEM method we use the elements in

P2h =

v ∈ H1(Ω) | ∀ K ∈ Th, v|K ∈ R2[x]


. (34)

We generate a couple of problems {A0, b0} and {A1, b1} for different coefficient functions. The genericmatrix of the sequence
{Aα}

1
α=0 is given by the convex combination of parameter α ∈ [0, 1] of the {A0, A1} matrices. The right hand sides are

obtained in the same way. As for the previous set of experiments, the matrices are generated with the FreeFem++
software [14].
Experiment 3. We consider as a first experiment for the steady state case the following couple of coefficient functions

a1(x, y) = x2 + y2, b1(x, y) = (1/2x, −1/2 sin(2πy)),
c1(x, y) = x + y, f1(x) = cos(x);
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Fig. 3. Mesh for the steady state experiments.

Table 5
Experiment 3, α = 0, 0.1, . . . , 0.9, 1, size of the matrix n = 1218, GMRES algorithm.

AINV fixed AINV updated AINV interpolated AINV interpolated 2

1 12 0.011202 1 12 0.010653 1 12 0.010820 1 12 0.010888
1 136 0.147877 1 79 0.062908 1 61 0.044824 1 42 0.029075
1 173 0.223355 1 90 0.075088 1 56 0.039877 1 30 0.020560
1 199 0.286868 1 96 0.083772 1 49 0.034027 1 23 0.017202
1 218 0.339314 1 99 0.087773 1 41 0.027457 1 19 0.014206
1 236 0.391216 1 99 0.088492 1 35 0.023390 1 18 0.013939
1 252 0.441283 1 102 0.093551 1 29 0.019613 1 18 0.013710
1 261 0.470766 1 103 0.094702 1 25 0.017333 1 18 0.014060
1 268 0.493680 1 104 0.095055 1 22 0.015509 1 18 0.013954
1 279 0.531869 1 104 0.094574 1 20 0.014490 1 19 0.014323
1 287 0.560723 1 105 0.097394 1 19 0.013900 1 19 0.014523

a2(x, y) = x4 + y4, b2(x, y) = (1/2x2 sin(4πx), −1/2y2),
c2(x, y) = cos(x) + sin(y), f2(x, y) = exp(−x − y).

We use GMRES without restart. The reference AINV preconditioners are computed with a dropping tolerance of δ = 1e− 2.
For what concerns the correction matrix ∆, we stress that again only the main diagonal is considered. The results of the
experiment are reported in Table 5. Similarly to the other experiments, the behavior of the fixed ILU preconditioner is not
reported due to factors numerically singular.Moreover, the GMRES algorithmwithout preconditioning stagnates in all cases.

As for the PDE experiment we test the strategy also with GMRES(50). The results for this experiment are collected in
Table 6. As expected, also unpreconditioned GMRES(50) does not converge and ILU preconditioners do not work.

Finally, we test our preconditioning strategy by using BiCGSTAB. The results are collected in Table 7. Also
nonpreconditioned BiCGSTAB stagnates in all the instances. Moreover, ILU preconditioners are again numerically singular.

Experiment 4. We consider the following coefficient function for the generation of the A0 and A1 matrices

a1(x, y) = exp(−x2 − y2), b1(x, y) = (1/2x2, 1/2y2),
c1(x, y) = exp(x + y) sin(x + y), f1(x) = x2 + y2;
a2(x, y) = x4 + y4, b2(x, y) = (1/2x2, −y sin(y)),
c2(x, y) = exp(−x − y) cos(x + y), f2(x, y) = exp(−x − y);

The results of this experiment, obtained with the same settings of the preconditioner as in the previous experiment, are
collected in Table 8. Also in this case results relative to ILU preconditioning are omitted for the same reason of the other
cases, same is obtained with the unpreconditioned GMRES algorithm, i.e., stagnation.
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Table 6
Experiment 3, α = 0, 0.1, . . . , 0.9, 1, size of the matrix n = 1218, GMRES(50).

AINV fixed AINV updated AINV interpolated AINV interpolated 2
IT T IT T IT T IT T

1 12 0.005275 1 12 0.005428 1 12 0.005263 1 12 0.005382
4 31 0.094927 2 36 0.044897 2 15 0.034914 1 42 0.022818
5 36 0.125520 2 49 0.054426 2 8 0.032187 1 30 0.014405
6 45 0.157440 3 7 0.057231 1 49 0.028282 1 23 0.010443
7 26 0.174086 3 10 0.058787 1 41 0.022117 1 19 0.008493
7 37 0.178430 3 10 0.058439 1 35 0.017715 1 18 0.007901
8 50 0.217248 3 16 0.060779 1 29 0.013693 1 18 0.007903
9 38 0.232914 3 23 0.064202 1 25 0.011561 1 18 0.007959
10 4 0.245124 3 25 0.065636 1 22 0.009922 1 18 0.007901
10 15 0.247101 3 27 0.066140 1 20 0.008901 1 19 0.008453
11 4 0.270208 3 28 0.066834 1 19 0.008422 1 19 0.008419

Table 7
Experiment 3, α = 0, 0.1, . . . , 0.9, 1, size of the matrix n = 1218, BiCGSTAB.

AINV fixed AINV updated AINV interpolated AINV interpolated 2
IT T IT T IT T IT T

8.0 0.016040 8.0 0.004520 8.0 0.004680 8.0 0.005073
95.5 0.041435 39.0 0.016808 33.5 0.016366 21.0 0.010530
136.5 0.056062 49.5 0.021100 29.0 0.014159 15.5 0.008114
168.0 0.069001 53.0 0.022541 24.0 0.011895 12.5 0.006647
200.0 0.081733 56.0 0.023725 20.5 0.010744 10.5 0.005763
251.5 0.102740 53.0 0.022485 18.0 0.009162 9.5 0.005236
232.0 0.094478 60.5 0.025640 14.5 0.007588 9.5 0.005254
250.5 0.103164 54.0 0.022944 13.0 0.006911 10.0 0.005524
257.5 0.105048 60.5 0.025658 11.5 0.006205 10.0 0.005446
267.5 0.108782 67.0 0.028204 10.5 0.005757 10.0 0.005530
302.5 0.122927 62.0 0.026282 10.5 0.005720 10.5 0.005748

Table 8
Experiment 4, α = 0, 0.1, . . . , 0.9, 1, size of the matrix n = 1218, GMRES.

AINV fixed AINV updated AINV interpolated AINV interpolated
2

IT T IT T IT T IT T

1 11 0.008624 1 11 0.008237 1 11 0.007847 1 11 0.009121
1 782 3.858140 1 145 0.162046 1 108 0.103187 1 68 0.052373
1 828 4.336583 1 146 0.165280 1 83 0.069604 1 42 0.028622
1 855 4.615671 1 146 0.163970 1 66 0.049852 1 29 0.019464
1 877 4.849502 1 146 0.165380 1 53 0.037416 1 22 0.015385
1 894 5.029727 1 146 0.164791 1 44 0.030029 1 21 0.014714
1 907 5.135682 1 146 0.163435 1 36 0.023935 1 21 0.014809
1 919 5.298071 1 146 0.163200 1 29 0.019184 1 21 0.014793
1 932 5.462130 1 145 0.160476 1 25 0.016687 1 22 0.015331
1 946 5.632789 1 145 0.161281 1 22 0.015117 1 21 0.014857
1 958 5.866944 1 144 0.159491 1 21 0.014538 1 21 0.014756

We tested also the underlying preconditioners with the same settings with GMRES(50) and collected the results in
Table 9. As for all the other cases, there is no convergence both with the fixed ILU preconditioner or GMRES(50) without
preconditioning.

As a final test, we consider the application of interpolated preconditioners with BiCGSTAB. The results are in Table 10.
Also in this case BiCGSTAB without preconditioning reaches the maximum number of iteration without converging, while
the application of the fixed ILU preconditioners presents the same issues of the fixed AINV preconditioner.

5. Conclusions

We proposed a paradigm for the interpolation of (the factors of) approximate inverse preconditioners for sequences of
large and sparse linear systems.

Our technique shows promising performances for some problems. We tested it for a convection–diffusion steady state
and time-dependent problem approximated by using finite elements. In general, performances seem to be not worse than
updated preconditioners introduced and studied in various settings in [3,5,2].
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Table 9
Experiment 4, α = 0, 0.1, . . . , 0.9, 1, size of the matrix n = 1218, GMRES(50). Ď: the iterative method does not converge.

AINV fixed AINV updated AINV interpolated AINV interpolated 2
IT T IT T IT T IT T

1 11 0.005073 1 11 0.004839 1 11 0.004939 1 11 0.004866
1000 50 Ď 5 18 0.112649 3 49 0.086260 2 34 0.047497
1000 50 Ď 5 36 0.123246 3 1 0.059262 1 42 0.023581
1000 50 Ď 5 38 0.123619 2 30 0.044087 1 29 0.014554
341 50 Ď 5 39 0.124417 2 4 0.031545 1 22 0.010464
1000 50 Ď 5 42 0.127286 1 44 0.025142 1 21 0.009816
1000 50 Ď 5 43 0.126812 1 36 0.019024 1 21 0.009900
1000 50 Ď 5 44 0.128279 1 29 0.014564 1 21 0.009868
1000 50 Ď 5 44 0.128254 1 25 0.012129 1 22 0.010494
984 50 Ď 5 44 0.128555 1 22 0.010469 1 21 0.009951
246 50 Ď 5 44 0.128312 1 21 0.009866 1 21 0.009931

Table 10
Experiment 4, α = 0, 0.1, . . . , 0.9, 1, size of the matrix n = 1218, BiCGSTAB. Ď: the iterative method does not converge.

AINV fixed AINV updated AINV interpolated AINV interpolated 2
IT T IT T IT T IT T

7.0 0.016874 7.0 0.004219 7.0 0.004019 7.0 0.003948
Ď Ď 102.5 0.043997 75.0 0.038548 46.0 0.024265
Ď Ď 104.5 0.043005 58.0 0.030111 26.5 0.014448
Ď Ď 113.0 0.046021 45.0 0.023534 19.0 0.010779
Ď Ď 103.5 0.042312 36.5 0.019406 14.5 0.008485
Ď Ď 106.5 0.043577 28.5 0.015369 13.5 0.007972
Ď Ď 105.5 0.043032 23.0 0.012523 13.0 0.007716
Ď Ď 108.0 0.044277 18.5 0.010351 14.0 0.008180
Ď Ď 107.5 0.043890 16.0 0.009031 14.0 0.008230
Ď Ď 110.0 0.045023 14.0 0.008032 14.0 0.008297
Ď Ď 110.5 0.045788 13.0 0.007490 13.5 0.007947

The computational cost per iteration is similar to updated preconditioners while the initial setting requires the
computation of two more approximate inverse factorizations for the quadratic interpolation paradigm.

Generalizations of our interpolating strategies can be based on the use of higher order or of splines-like matrix
interpolation. Moreover, the choice of the starting preconditioners and therefore of the matrices in the sequence (1) can
be important and we stress that it is a very problem dependent issue. Both topics will be considered in a future work.
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