Taylor & Francis
Taylor & Francis Group

Computer . .
Mathematics | International Journal of Computer Mathematics

ISSN: 0020-7160 (Print) 1029-0265 (Online) Journal homepage: http://www.tandfonline.com/loi/gcom20

Efficient approximation of functions of some large
matrices by partial fraction expansions

D. Bertaccini, M. Popolizio & F. Durastante

To cite this article: D. Bertaccini, M. Popolizio & F. Durastante (2018): Efficient approximation of
functions of some large matrices by partial fraction expansions, International Journal of Computer
Mathematics, DOI: 10.1080/00207160.2018.1533123

To link to this article: https://doi.org/10.1080/00207160.2018.1533123

ﬁ Accepted author version posted online: 08
Oct 2018.
Published online: 16 Oct 2018.

N
[:J/ Submit your article to this journal &

||I| Article views: 7

BN

(&) View Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=gcom?20

http://www.tandfonline.com/action/journalInformation?journalCode=gcom20
http://www.tandfonline.com/loi/gcom20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207160.2018.1533123
https://doi.org/10.1080/00207160.2018.1533123
http://www.tandfonline.com/action/authorSubmission?journalCode=gcom20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gcom20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2018.1533123&domain=pdf&date_stamp=2018-10-08
http://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2018.1533123&domain=pdf&date_stamp=2018-10-08

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
https://doi.org/10.1080/00207160.2018.1533123

Taylor & Francis
Taylor &Francis Group
M) Check for updates

Efficient approximation of functions of some large matrices
by partial fraction expansions

D. Bertaccini®®, M. Popolizio® and F. Durastanted

aDjpartimento di Matematica, Universita di Roma ‘Tor Vergata’, Roma, Italy; ®National Research Council (CNR),
Istituto per le Applicazioni del Calcolo (IAC) ‘M. Picone’, Roma, Italy; “Politecnico di Bari, Dipartimento di Ingegneria

Elettrica e dell'Informazione, Bari, Italy; 9Dipartimento di Informatica, Universita di Pisa, Pisa, Italy

ABSTRACT

Some important applicative problems require the evaluation of functions
W of large and sparse and/or localized matrices A. Popular and interesting
techniques for computing W (A) and W (A)v, where v is a vector, are based
on partial fraction expansions. However, some of these techniques require
solving several linear systems whose matrices differ from A by a complex
multiple of the identity matrix / for computing W (A)v or require inverting
sequences of matrices with the same characteristics for computing W (A).
Here we study the use and the convergence of a recent technique for gen-
erating sequences of incomplete factorizations of matrices in order to face
with both these issues. The solution of the sequences of linear systems

ARTICLE HISTORY
Received 11 April 2018
Revised 6 September 2018
Accepted 24 September 2018

KEYWORDS

Matrix functions; partial
fraction expansions; large
linear systems; incomplete
factorizations

AMS CLASSIFICATIONS
65F60; 65F08; 15A23

and approximate matrix inversions above can be computed efficiently pro-
vided that A= shows certain decay properties. These strategies have good
parallel potentialities. Our claims are confirmed by numerical tests.

1. Introduction

The numerical evaluation of a function W (A) € C"*" of a matrix A € C"*" is ubiquitous in models
for applied sciences. Functions of matrices are involved in the solution of ordinary, partial and frac-
tional differential equations, systems of coupled differential equations, hybrid differential-algebraic
problems, equilibrium problems, complex networks, in quantum theory, in statistical mechanics,
queuing networks and many others. Motivated by the variety of applications, important advances in
the development of numerical algorithms for matrix function evaluations have been presented over
the years and a rich literature is devoted to this subject; see, e.g. [23, 24, 32, 38] and references therein.

In this paper, we focus mainly on functions of large and sparse and/or localized matrices A. A typ-
ical example of localized matrix generated by a PDE, say, is the one whose non-negligible entries are
concentrated in a small region within the computational domain showing a rapid decay away from
this region. Localization often offers a way to perform (even full) matrix computations much more
efficiently, possibly with a linear cost with respect to the degrees of freedom. For a very interesting
treatment on this new point of view, we suggest the review [5]. In the latter, there are also several exam-
ples of localized matrices from physics, Markov chains, electronic structure computations, graph,
network analysis, quantum information theory and many others.

For the computation of W (A) with A as above, the available literature offers few efficient strategies.
The existing numerical methods for computing matrix functions can be broadly divided into three

CONTACT D. Bertaccini @ bertaccini@mat.uniroma2.it @ Dipartimento di Matematica, Universita di Roma ‘Tor Vergata’,
viale della Ricerca Scientifica 1, Roma, Italy; National Research Council (CNR), Istituto per le Applicazioni del Calcolo (IAC) ‘M.
Picone’, Roma, Italy

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2018.1533123&domain=pdf
mailto:bertaccini@mat.uniroma2.it

2 D. BERTACCINIET AL.

classes: those employing approximations of W, those based on similarity transformations of A and
matrix iterations. When the size n of the matrix argument A is very large, as for example when it
stems from a fine grid discretization of a differential operator, similarity transformations and matrix
iterations can sometimes be not feasible since their computational cost can be of the order of
flops in general. To overcome these difficulties, we consider an efficient computational framework
for approximation algorithms based on partial fraction expansions. In particular, let us consider an
approximation of W (A) of the form

N

fA =) gA+&D7, (1)

j=1

where scalars ¢j and &; can be complex and I is the n x n identity matrix. The above approach has
been proven to be effective for a wide set of functions W.

In general, computing (1) requires inverting several complex valued matrices and, with the excep-
tion of lucky or trivial cases, if n is large, this can be computationally expensive. We propose to
overcome this issue by approximating directly each term (A + &I) ! with an efficient update of an
inexact sparse factorization inspired by the complex valued preconditioners update proposed in [10]
that there was defined for symmetric matrices A only. Moreover, such strategy can be extended to the
computation of the action of the matrix function on vectors, that is, to compute W(A)v for a given
vector v. Vectors of this form often represent the solution of important problems. The simplest exam-
ple is the vector exp(#;A)yo which represents the solution at a time #; of the differential equation
y'(t) = Ay(¢) subject to the initial condition y(ty) = yo.

Note that if the interest is just on obtaining the vector W (A)v and not W (A), then ad hoc strategies
can be applied as, for example, well-known Krylov subspace methods [1, 22, 25, 28, 33-35, 37, 38,
43] and others. Quite interesting are also the polynomial methods for the exponential function based
on Chebyshev [9] or Laguerre [40] series expansions. In a number of applications, methods based
on Chebyshev or Laguerre polynomials have been proven to be as accurate as the Krylov subspace
methods with a smaller computational effort. However, the performance of the Chebyshev polyno-
mials depends on the accuracy in locating the matrix spectrum. On the other hand, the Laguerre
polynomials are in general slower but they do not need eigenvalues estimate.

The paper is organized as follows: in Section 2, we recall the basics of matrix functions, together
with some results on approximation theory to ground the proposed approach. Section 3 recalls a
recent updating strategy we propose to use in the algorithms to approximate matrix functions. In
Section 4, the proposed approximation for matrix functions is analysed by first recalling some recent
results on our updating process for approximate inverse factorizations and then using the underlying
results to build an a priori bound for the error made. Section 5 is devoted to numerical tests showing
the effectiveness of the approach in a variety of applications and comparisons. Finally in Section 6,
we give the conclusion.

2. Computing function of matrices by partial fraction expansions

Many different definitions have been proposed over the years for matrix functions. We refer to
Higham [24] for an introduction and references.

In this work, we make use of a definition based on the Cauchy integral: given a closed contour I'
lying in the region of analyticity of ¥ and enclosing the spectrum of A, W(A) is defined as

W(A) = #/ W (z)(zl — A)~dz. (2)
r

Thus any analytic function W admits an approximation of the form (1). Indeed, the application of any
quadrature rule with N points on the contour I', leads to an approximation as in (1).

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS . 3

In [23], authors address the choice of the conformal maps to deal with the contour I" for special
functions like A* and log(A) when A is a real symmetric matrix whose eigenvalues lie in an interval
[a,b] C (0,00). The basic idea therein is to approximate the integral in (2) by means of the trapezoidal
rule applied to a circle in the right half-plane surrounding [, b]. Thus

N
W(A) & f(A) = yAlm) (gl — A7 (3)
j=1

where y depends on a, b and a complete elliptic integral, while the &; and ¢; involve Jacobi elliptic
functions evaluated in N equally spaced quadrature nodes. We refer to [23] for the implementation
details and we make use of their results for our numerical tests. In particular, an error analysis is
presented there and we report here briefly only the main result [23].

Theorem 2.1: Let A be a real matrix with eigenvalues in [a,b] ,0 < a < b, let V be a function analytic
in C\(—o00, 0] and let f (A) be the approximation in (3). Then

1W(A) — f(A)]| = O(e ™ N/dogb/a)+3))

The analysis in [23] also applies to matrices with complex eigenvalues.

An approximation like (1) can also derive from a rational approximation Ry to W, given by the ratio
of two polynomials of degree N, with the denominator having simple poles. A popular example is the
Chebyshev rational approximation for the exponential function on the real line. This has been largely
used over the years and it is still a widely used approach, since it guarantees an accurate result even
for low degree N, say N = 16. Its poles and residues are listed in [17] while in [16] the approximation
error is analysed and the following useful estimate is given

sup | exp(—x) — Ry(x)| =~ 107N,

x>0
Another example is the diagonal Padé approximation to the logarithm, namely

N
log(I+A) ~ f(A) =AY eI+ BA) s (4)

j=1
this is the core of the | ogm pade_pf code in the package by Higham [24] and we will use it in
our numerical tests in Section 5. Unfortunately, as for every Padé approximant, formula (4) works
accurately only when ||A|| is relatively small, otherwise scaling-and-squaring techniques or similar
need to be applied. The error analysis for the matrix case reduces to the scalar one, according to the

following result [27].

Theorem 2.2: If ||A|| < 1 and f(A) is defined as (4), then
I og(I + A) — f(AIl = [f(=All) — log(1 — [IAID].

In some important application, the approximation of the matrix W(A) is not required and it is
enough to get the vector W(A)v for a given vector v. In this case, by using (1), we formally get the
approximation

N
fAyv=> gA+&Dy, (5)

j=1
which requires to evaluate (A + éjl)_l or (A + SjI)_lv for several values of §j, j = 1,...,N. Usu-
ally, if A is large and sparse or localized or even structured, the matrix inversions in (5) should be

4 D. BERTACCINIET AL.

avoided since each term w; = (A + &)~ 'v is mathematically (but fortunately not computationally)
equivalent to the solution of the algebraic linear system

A+EDwW = v. (6)

3. Updating the approximate inverse factorizations

In the underlying case of interest, i.e. A large and sparse and/or localized or structured, solving (6)
by standard direct algorithms can be unfeasible and in general a preconditioned iterative framework
is preferable. However, even using an iterative solver but computing N preconditioners, one for each
of the matrices (A + &I), can be expensive. At the same time, keeping the same preconditioner for
all the N linear systems [37], even if chosen appropriately, may not account for all the possible issues.
Indeed, very different orders of magnitude of the complex valued parameters &; can cause potential
risks for divergence of the iterative linear system solver. Our proposal is based on cheap updates for
incomplete factorizations developed during the last decade started by the papers [6, 10] essentially
based on the inversion and sparsification of a reference approximation used to build updates. We stress
that the updates in [6, 10] were studied for symmetric matrices. In recent years, these algorithms
have been generalized towards either updates from any symmetric matrix to any other symmetric
[14] and nonsymmetric matrices [2, 3, 11] with applications to very different contexts, but still little
attention has been spent on the update of incomplete factorizations for sequences of nonsymmetric
linear systems with a complex shift.

Among the strategies that can provide a factorization for the inverse of A, we consider the approx-
imate inverses or AINV by Benzi et al. (see [4] and references therein) and the inversion and
sparsification proposed by van Duin [44], or INVT for short. Both approaches are very interesting
and differ slightly in their computational cost (see [13] for some recent results), parallel potentialities
and stability.

Several efforts have been done in the last decade in order to update the above-mentioned
incomplete factorizations in inverse form, usually as preconditioners [3, 6, 10, 11, 14].

Here, in order to build up an approximate factorization (or, better saying, to approximate an
incomplete factorization) for each factor (A + £I) ™!, as & varies, we assume that A can be formally
decomposed as A = L D U with L, U lower triangular matrices and that the factorization is well
defined. Then, the inverse of A can be formally decomposed as

A"l =UuHp L' = zD'WH,

where W = L™H and Z = U are upper triangular with all ones on the main diagonal and D is a
diagonal matrix, respectively. The process can be based also on different decompositions but here we
focus on LDU types only. In general, this is not a practical way to proceed because the factors L and
U (and thus their inverses) are often dense. At this point, we have two possibilities. The first is use
AINYV and its variants (again see [4]) that provides directly an approximate inverse in factored form
for A whose factors can be suitably sparse as well if A is sparse or shows certain decay properties. The
second is use an inversion and sparsification process as in [44], that, starting from a sparse incomplete
factorization for A such as ILU (see, e.g. [39]) P=LDUH approximating A, whose factors L, U are
sparse, produces an efficient inversion of L, U and provides also a post-sparsification of the factors Z
and W to get Z and W. A popular post-sparsification strategy can be to zero all the entries smaller
than a given value and/or outside a prescribed pattern. We call seed preconditioner, denoted Py, the
following approximate decomposition of A~!:

1]
13
3

N
=
E:

(7)

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS . 5

Similarly to what done above for AL, in the style of [10], given a complex pole £, a factorization for
the inverse of the complex nonsymmetric matrices in (6) can be formally obtained by the identities

All=@A+en!
=W Hpz 4 ew HwH z)z71)~!
=ZD+eE)'wH, E=wH_Zz (8)

However, as recalled above, the factors Z and W are dense in general. Therefore, their computation
and storage are sometimes possible for n small to moderate but can be too expensive to be feasible
for n large. This issue can be faced by using the sparse approximations Zand W for Z and W, respec-
tively, produced by AINV, by inversion and sparsification or by another process generating a sparse
factorization for A~!. Indeed, supposing that the chosen algorithm generates a well-defined factor-
ization, we can provide an approximate factorization for the inverse of A + &;I. In particular, we get
a sequence of approximate factorization candidates using Py defined above as a reference and E, a
sparsification of the nonsymmetric real-valued matrix E, with the approximation of AE_I given by Pg
defined as

P; =7 (D+&E) " WH,)
where, by using the formalism introduced in [3],
E=gWHZ). (10)

The function g serves to generate a sparse matrix from a full one such that the linear systems with
matrix D + £E can be solved with a low computational complexity, e.g. possibly linear in 7. As an
example, if the entries of A~! decay fast away from the main diagonal, we can consider the sparsifying
function g = g,

g : Cnxn _, onxn,

extracting m upper and lower bands (with respect to the main diagonal, which is the 0-diagonal) of its
matrix argument generating an (2m, 2m) -banded matrix. In general, a matrix A is called m-banded
if there is an index / such that

al‘)jZO, ifj¢[i—l,i—l+m].

It is said to be centred and m-banded if m is even and the [above can be chosen to be m/2. In this case,
the zero elements of the centred and (m, m)-banded are

ajj =0, ifli—j| > >

thus self-adjoint matrices are naturally centred, i.e. a tridiagonal self-adjoint matrix is centred and
two-banded. This choice will be used in our numerical examples but of course different choices for g
can be more appropriate in different contexts. A substantial saving can be made by approximating

gm(WH Z) with g,, (WH) g,,(Z), m >0

with a reasonable quality of the approximation, i.e. under suitable conditions and provided m > 0, the
relative error

llgm(WH Z) — gu(WH) gin(Z)]|
||WH Z||

can be moderate in a way that will be detailed in Theorem 4.3 discussed in the following section.

6 D. BERTACCINIET AL.

4. Analysis of the approximation processes

We use here the underlying approximate inverses in factored form (9) as a preconditioner for Krylov
solvers to approximate W (A)v and to approximate f(A) by

N
f@a)y=> gP
] 1

Z (D+&E) wh. (11)

||Mz

In order to discuss an a priori bound for the norm of the error || W (A) —f(A)| | generated by the var-
ious approximation processes, supposing we are operating in exact arithmetic, we need some results
on the update of the approximate inverse factorizations.

Let us recall a couple of results that can be derived as corollaries of Theorem 4.1 in [20]. In this
context, we consider a general complex, separable, Hilbert space H, and denote with B(H) the Banach
algebra of all linear operators on H that are also bounded. If A € 3(H), then A can be represented
by a matrix with respect to any complete orthonormal set thus A can be regarded as an element of
B(2(S)), where § = {1,2,...,N}.

Theorem 4.1: Let A € C"™" be a nonsingular (2m,2m)-banded matrix, with A € B(*(S)) and
condition number k3(A) > 2. Then, by denoting with b the i, j-entry of A~" and with

ﬂ_ <K2(A)—1)1/2m
) +1 ’

for all B > B, B < 1, there exists a constant ¢ > 0 such that

|bijl < c B,
with
k2(A) + 1
c< (2m+ I)T”A k2 (A)

<3@m+ DA a(A).

For the proof and more details, see [12, Theorem 3.10].
We can note immediately that the results in Theorem 4.1, without suitable further assumptions,
can be of very limited use because

e the decay of the extradiagonal entries can be very slow, in principle arbitrarily slow;

e the constant ¢ in front of the bound depends on the condition number of A and we are usually
interested in approximations of A~! such that their condition numbers can range from moderate
to high;

e the bound is far to be tight in general. A trivial example is given by a diagonal matrix with entries
ajj =j,j=1,...,n. We have that b;; = 0, i # j but of course k2(A) = anu/a1,1 = n.

e If we take m=rn and n is very large, then must be chosen very near 1 and it is very likely that no
decay can be perceptible with the bound in Theorem 4.1.

However, the issues presented here are more properly connected with the decay properties of the
matrices Z, W (and therefore Z, W). Using similar arguments as in Theorem 4.1 in [8], it is possible
to state the following result.

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS . 7

Corollary 4.2: Let A € C"™" be invertible, A € B(I*(S)), and with its symmetric part positive definite.
Then for all i, j with j > i, the entries z;j in Z = L™H and w;j in W = U™ satisfy the following upper
bound:

i sici L.
lzigl <l By wigl < By j>i

(note that z;j, w;j = 0 for j < i), where

0<p, pp=p<l
and c1, ¢; are positive constants, c1,c2 < c3 - k2(A).

Recently, this kind of decay bound for the inverse of matrices was intensely studied and appears
also with other structures. Consider, e.g. the case of nonsymmetric band matrices in [36], tridiagonal
and block tridiagonal matrices in [31], triangular Toeplitz matrices coming from the discretization of
integral equations [21], Kronecker sum of banded matrices [15], algebras with structured decay [26]
and many others. Thus the results we propose can be readily extended to the above-mentioned cases.

If the seed matrix A is, e.g. diagonally dominant, then the decay of the entries of A~! and therefore
of W, Z (W, Z) is faster and more evident. This can be very useful for at least two aspects:

e the factors W, Z of the underlying approximate inverse in factored form can show a narrow band
for drop tolerances even just slightly larger than zero;

e banded approximations can be used not only for post-sparsifying W, Z in order to get more sparse
factors, but also the update process can benefit from the fast decay.

Theorem 4.3: Let A € C™™" be invertible, A € B(I*(S)), and with its symmetric part positive definite.
Let gm = [-1m be a sparsifying function extracting the m upper and lower bands of its argument. Then,
given the matrices from Corollary 4.2, we have

[WH Z]m = [WH]m[Z]m + R(A, m),
[(R(A, m))ij| < caBT,
where ¢4 = c1c3.

The above result can be proved by comparing the expressions of WHZ and g,,,(W'Z) and using
Corollary 4.2 with an induction argument on #.

As a matter of fact, we see that a fast decay of entries of A~! guarantees that the essential component
of the proposed update matrix, i.e. E = W!Z, can be cheaply, easily and accurately approximated by
the product gm(W) - gm (Z), without performing the time and memory consuming matrix-matrix
product WHZ.

On the other hand, if the decay of the entries of A~! is fast, even a simple diagonal approxima-
tion of W Z can be accurate enough. In this case, there is no need to apply the approximation in
Theorem 4.3. The update matrix E can be produced explicitly by the exact expression of diag(WH Z).

All our numerical experiments use the approximations proposed in Theorem 4.3 without percep-
tible loss of accuracy, see Section 5.

We use the properties stated by the previous results to get an a priori estimates of the global error
v (A) f (A)|| that is given below in exact arithmetics and for A symmetric and definite positive
in order to use the results in [23]. Note that, with the above hypotheses, we get Z = Win (11) and
therefore

fa) = ch (D + &E) 'ZH, (12)

8 (&) D.BERTACCINIETAL.

Theorem 4.4: Let A be a real positive definite matrix with eigenvalues in [a, b], 0 < a < b, ¥ a function
analytic in C\(—00, 0], f(A) the approximation ofIZ/(A) in (3) and f (A) tl/ie approximation of f(A) in
(9) with 0 < © < 1 drop tolerance used to produce Z. Moreovet, let Ay = Z — Z. Then,

Iy (A) = fA)Il < Ex(N) + Ex(t),
with
Ey(7) = c(B) T = O(||AzI),
where ¢ = c(B) is a parameter that depends on the decay of the offdiagonal entries of Z, and

E{(N) = (f)(e—ﬂzN/(log(b/a)-i-S))‘
The above result follows by observing that

19 (A) — FA) = [W(A) — F(A) + f(A) — A

= 1) = fAI + IIf (A = fAl. (13)

The upper bound for the quadrature error E; (N) = ||/ (A) — f(A)| for an analytic function W is
obtained straightforwardly from Theorem 2.1. Recall that the bound is derived from the classical
error estimate for the Trapezoidal/Midpoint rule [19, Section 4.6.5]. Similar bounds for functions
that are less smooth can be provided as well, even if they show just a polynomial decay, see again [19,
Section 2.9].

The upper bound for the errors generated by the approximation of the terms (A + £1)~! by the
approximate inverse factorization updates, i.e. E; (N) = ||f(A) —f”(A) ||, is easily derived by working
on the norm of the difference between (8) and (9) substituting to 7 the expression Z =27+ Ayand
to (D + £E)~ ! the expression (D + £E)~! 4+ Ap. The claim follows by observing that || Ap||, [|Az]|
can be bounded by ¢(8) 7, see Theorem 4.1 and Corollary 4.2.

A generalization of Theorem 4.4 for nonsymmetric matrices A can be given with similar argu-
ments.

The main purpose of the a priori upper bound in Theorem 4.4 should be intended as more
qualitative than quantitative, for showing that the multiple approximation processes considered
here for computing f(A) converge, i.e. in exact arithmetic, under the hypotheses of Theorem 2.1,

¥ (A) — f(A)| = 0ift — 0and N — oo.

4.1. Cross relations between the function g and drop tolerance t

To clarify the role of the function g introduced in (10) and the drop tolerance 7 for AINV, we compare
the results of our approach to compute exp(A) with the built-in Matlab function expm We use the
expression in (1) for the Chebyshev rational approximation of degree N = 16 so that we can consider
the approximation error negligible.

Consider the localized matrix A = (A;;) described in [7] with entries

—a(i—j) s
Ajj= { Z_Ig(]’_i): ; ;j: a,B > 0. (14)
This is a typical example of a localized matrix, completely dense but with rapidly decaying entries.
These matrices are usually replaced with banded matrices obtained by considering just few bands or
by dropping entries which are smaller than a certain threshold. Here we sparsify it by keeping only
15 off-diagonals on either side of its main diagonal. Let us takeoo = § = 0.5anda = = 1.2 fora
small example, namely 50 x 50, in order to show the application of Theorem 4.1. The approximation

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS . 9

error

LU e —p—
- - -1=le-4
1072 2w = mto7 1073 [- = -1
=0 =0
1071 107
0 10 20 30 40 50 0 10 20 30 40 50
number of diagonals extracted by g number of diagonals extracted by g

Figure 1. Behaviour of the error for exp(A) as T and g vary. The 50 x 50 matrix argument A has the expression in (14) with o =
B = 0.5 (left), « = B = 1.2 (right). The x-axis reports the number of diagonals the function g selects while the y-axis reports the
error with respect to the Matlab’s expim(A) . AINV is used with the tolerance t given in the figures’ caption.

we refer to is (11), in which we let T and g change, with effects on the factors Z, W and E in (10),
respectively. The continuous curves in Figure 1 refer to the ‘exact’ approach, that is, for 7 = 0 leading
to full factors W and Z. In the abscissa, we report the number of extra diagonals selected by g. Notice
that both 7 and g are important because even for t = 0 more extra diagonals are necessary to reach
a high accuracy.

From the plots in Figure 1, we note that the loss of information in discarding entries smaller than
7 cannot be recovered even if g extracts a full matrix. In the left plot, for a moderate decay in the
off-diagonal entries, a conservative T is necessary to keep the most important information. On the
other hand, when the decay is more evident, as in the right plot, a large 7 is enough, and g keeping
just two diagonals gives already a reasonable accuracy. We get similar results also for the logarithm,
as well as for other input matrices.

4.2. Choosing the reference preconditioner(s)

To generate a viable update (9), we need to compute an appropriate seed preconditioner (7). However,
using the partial fraction expansion (1), sometimes it could be useful to compute the seed precon-
ditioner for a shifted matrix A + &I instead of A. The choice of the pole is not trivial because, for
example, the poles &; for the Chebyshev approximation of the exponential have a modulus that grows
with the number of points, see, e.g. Figure 2 (left).

Therefore, we need to take into account the possibility that the resolvent matrices

A+&D7", j=1,...,N,

become diagonally dominant or very close to the identity matrix, up to a scalar factor, or, in general,
with a spectrum that is far from the one of A. Sometimes the matrices related to the resolvent above
can be so well conditioned that the iterative solver does not need any preconditioner. In this case, any
choice of the seed preconditioner as an approximate inverse of the matrix A is almost always a poor
choice, and thus also the quality of the updates [6, 10]. Let us consider, e.g. the matrices from the
mutual exclusion model from [42]. These are the transition matrices for a model of M distinguishable
process (or users) that share a resource, but only M, with 1 < M’ < M that could use it at the same
time. In Figure 2 (right), the underlying experiments are reported as ‘mutex matxM M”. We report
the mean iterations required when the Pgeeq corresponding to &; is used for j = 1,..., N (the poles

10 D. BERTACCINI ET AL.

40 30
*
30 -
L
20 =
z
— e —%— mutex matx12 1
10 +“flg 3 —%— mutex matx12 4
N-21| mutex matx12 8
P‘\j 0 —s—N=24 g —%— mutex matx12 11
#—N - 27 = ——— mutex matx14 6
N - 30 g mutex matx16 4
10 - g —k— mutex matx20 4
g
-20 3
S
-
-30
—
-40 0
-30 20 10 0 10 20 0 2 4 6 8 10
R J

Figure 2. Position of the poles of Chebyshev approximation of exp (left) and a sample of mean number of iterations (right) for
different choice of Pgeeq for the mutual exclusion model from [42].

are sorted in descending order with respect to their modulus), while j = 0 refers to the seed precondi-
tioner for A, all obtained with INVT for r; = le — 5and tz = le — 2. The underlying figure confirms
that working directly with A is often the most expensive choice. Better results can be obtained with
the shifted matrices A + &I for whatever pole. Usually the pole with the largest modulus, e.g. &1, gives
slightly better results. Observe also that in this way complex arithmetic should be used to build the
approximate inverse of the matrix (A + &;I), because its main diagonal has complex valued entries.

5. Numerical tests

The codes are written in Matlab (R2016a). The machine used is a laptop running Linux with 8Gb
memory and CPU Intel(R) Core(TM) i7-4710HQ CPU with clock 2.50 GHz.

The sparse inversion algorithm chosen for each numerical test (those used here are described in
Section 3) takes into account the choice made for the computation of the reference (or seed for short)
preconditioners. If the matrix used to compute the seed preconditioner is real, we use the AINV.
Otherwise, the inversion and sparsification of the ILUT Algorithm, or INVT for short, requiring a
dual threshold strategy. See [13] for details and a revisitation of AINV and INVT techniques. In the
following, the symbol t denotes drop tolerance for AINV while 77, 7 the threshold parameters for
ILU decomposition and for post-sparsification of the inverted factors of INVT, respectively; see also
the details discussed in Section 4.2. &, denotes the standard relative (to a reference solution) error.

Other details on the parameters and strategies used are given in the description of each experiment.

5.1. Approximating V¥ (A)

Let us focus on the approximation of exp(A) and log(A). In the following tables, the column Update
refers to the approximation (11). Column Direct is based on the direct inversion of the matrices (A +
gD lin (1).

The Fill-in for computing the incomplete factors approximating the underlying matrices is
computed as

nnz(Z) + nnz(W) — n

Fill —in =
i 2

(15)

where n denotes the size and nnz(-) the number of the non-zero entries, as usual.

5.1.1. log(A) - Exponential decay
We consider the evaluation of log(A) where the entries of A are as in (14) with « = 0.2 and 8 =
0.5 and n varies from 500 to 8000. For this matrix, we use a drop tolerance T = 0.1 to get a sparse

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 1

Table 1. Execution time in seconds for log(A) for A as in (14) with « = 0.2and 8 = 0.5.

n Update Direct logm logm_pade_pf Fill-in

500 0.04 0.40 0.67 0.24 2.6e—02
1000 0.03 2.68 1.92 0.83 1.3e—02
2000 0.20 60.86 28.02 17.08 6.6e—03
4000 0.87 483.67 366.28 124.07 3.3e—03
8000 3.08 f f T 1.7e—03

Note: AINV with = Te — 1isused. A T is reported when we get an out of memory error.

approximate inverse factorization of A with AINV. The resulting factors Z and W are bidiagonal
and thus we take g(X) = X. The inversion of the tridiagonal factors is the more demanding part
of the Update technique. For this test, we compare the Update and Direct methods, based on the
approximation (3), with the Matlab function | ogmand the| ogm pade_pf code in the package by
Higham [24].

Numerical tests on scalar problems show that the degrees N =5 for the Padé approximation (4)
and N =7 for the approximant in (3) allow to reach a similar accuracy with respect to the reference
solution. Thus we use these values for N in our tests.

Results in Table 1 show that, for small examples, the Update and | ogm _pade_pf approaches
require a similar execution time, while the efficiency of the former becomes more striking with respect
to all the others as the problem dimension increases.

5.1.2. exp(A) - Exponential decay

We now consider the error for the matrix exponential. The test matrix is symmetric as in (14) for
three choices of the parameter r. We analyse the error of the approximations provided by the Update
and Direct methods, for the Chebyshev rational approximation of degree N =8, with respect to the
results obtained by the expmMatlab command. We considero = =1, = =15, a0 = =6.
For the first two cases, the drop tolerance for the AINV is 7 = 0.1 and g = g;(-) extracts just the main
diagonal and one superdiagonal. For the third case, AINV with 7 = 1073 is used and Z, W are both
diagonal. No matrix inversion is thus performed.

Indeed, although the presence of the errors due to the sparsification (see the action of v and g), the
error is comparable with the one of the Direct method, which does not suffer from truncation, i.e. the
Update approach reaches a good accuracy as well. For the case « = B = 6, the difference between the
two errors is more noticeable but it has to be balanced with great savings in timings. Indeed, in this
case the decay of the off-diagonal entries of the inverse of A is very fast and we exploit this feature by
combining the effect of the small drop tolerance T = 1073 and a function g = go(-) extracting just
the main diagonal. Then, the computational cost is much smaller for the Update approach since no
matrix inversion is explicitly performed and we experienced an overall linear cost in n, as in the other
experiments. Thus, when a moderate accuracy is needed, the Update approach is preferable, since it
is faster (Table 2).

Table 2. Timings in seconds for exp(A) with Aasin (14) witha = 8 = 6.

n Update Direct expm Fill-in
500 0.01 0.06 1.97 2.0e—3
1000 0.00 0.01 6.19 1.0e—3
2000 0.00 0.01 30.52 5.0e—4
4000 0.00 0.06 172.89 2.5e—4
8000 0.01 0.10 910.16 1.3e—4

Note: AINV with 7 = 1073 is used and g extracts just the main diagonal. The

Fill-in column refers to the Fill-in occurred for computing the factors W and Z
measured as in (15).

12 D. BERTACCINI ET AL.

5.1.3. exp(A) - Kronecker structure
Now, let us test our approach in the context of the numerical solution of a 3D reaction—-diffusion
linear partial differential equation

du = —kViu+y(xy2)u (16)

Discretizing (16) in the space variables with second-order centred differences, the reference solu-
tion can be computed by means of the matrix exp(A). Here we take k = le — 8, and consider a
function y (x, y,2z) such that y (x, y,z)u can be discretized by the matrix-vector product between
G= sparsify(rand(nfc, nfc)) and the vector u whose entries are the approximations of « on the mesh
points. As usual, 7, is the number of mesh points along one direction of the domain Q = [0, 1]°.
Function sparsify gives a sparse version of G with 0.1% of Fill-in and the Laplacian is discretized with
the standard 7-point stencil with homogeneous Dirichlet conditions, i.e. the semidiscrete equation
reads as

w(t) = (A4 Gu(y).

The results of this experiment are reported in Table 3. The reference matrix is computed by using
the incomplete inverse LDU factorization (INVT) that needs two drop tolerances, 77, = le — 6 and
7 = 17 = le — 8. The former is the drop tolerance for the incomplete LU (or ILU for short) process
and the latter for the post-sparsification of the inversion of LU factors, respectively; see [13] for details
on approximate inverse preconditioners with inversion of an ILU. A tridiagonal approximation of the
correction matrix E = ZT W is used, i.e. E = g (ZT W).

5.2. Approximating ¥ (A)v

5.2.1. exp(A)v - Exponential decay

To apply our approximation for W (A)v, where A is large and/or localized and/or possibly structured,
we use a Krylov iterative solver for the systems (A + &;I)x = v in (5) with and without precondition-
ing (the corresponding columns will be labelled as Prec and Not prec). The iterative solvers considered
are BICGSTAB and CG (the latter for symmetric matrices). The preconditioner is based on the matrix
Z(D + SjE)’l WH a5 in (9). The matrix A has the entries as in (14) while v is the normalized unit
vector.

The average of the iterates in Table 4 is much smaller when the preconditioner is used. Moreover,
also the preconditioned iterations are independent of the size of the problem.

When comparing the error, with respect to the Matlabs expn{ A) v, of the approximations given
by the Prec and Not prec, we observe a comparable behaviour between our approach and the one
obtained with the Matlab’s PCG used without preconditioning. The entries in the test matrix have a
so fast decay, since « = 8 = 6, that the term E can be chosen diagonal. Interestingly, a good accuracy
is reached with respect to the true solution. Moreover, the timings for the Prec approach are negligible
with respect to that for the Not prec. To conclude the comparison, we consider the use of one sweep

Table 3. Execution time in seconds for exp(A) and relative errors (e,e) with respect to expn{ A) where A is the discretization
matrix of (16) (the time needed for building the reference matrix is not considered).

Direct Update expmA)
n=n T(s) Erel T(s) Erel T(s) Fill-in
512 0.15 2.85e—07 0.07 2.82e—07 0.92 100.00 %
1000 0.83 2.85e—07 0.35 2.83e—07 8.19 100.00 %
1728 428 2.85e—07 0.94 2.83e—07 46.23 92.40 %
4096 118.39 2.85e—07 3.72 2.84e—07 669.39 5177 %
8000 834.15 2.85e—07 9.69 2.82e—07 4943.73 28.84 %

Note: INVT with, = 1le —6and 7 = 77 = 1e — 8is used.

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS . 13

Table 4. Iterates average and execution time in seconds for log(A)v for A as in (14) witha = 0.2, B = 0.5.

Prec Not Prec Jacobi
n iters T (s) iters T (s) iters T (s)
500 2 0.05 21 0.1 19 0.43
1000 2 0.05 19 0.18 17 1.48
2000 2 0.08 18 0.33 17 4.56
4000 2 0.95 17 2.96 16 15.91

Note: The linear systems are solved with the Matlab’s implementation of Bi CGSt ab with and without preconditioning. INVT with
t =1, = 17 = le — 1and asingle iteration of a recomputed Jacobi for each matrix of the sequence is used.

of the classical Jacobi preconditioner, see, e.g. [39], built with the diagonal of every matrix in the
sequence. The observed reduction in the number of average iterations and timings is less than the
one obtained with the update approach.

5.2.2. exp(A)v - Transition matrices
Let us consider a series of test matrices of a different nature: the infinitesimal generators, i.e. tran-
sition rate matrices from the MARCA package by Stewart [42]. They are large non-symmetric
ill-conditioned matrices whose condition number ranges from 10'” to 10! and their eigenvalues are
in the square in the complex plane given by [—90,5.17e — 15] x i[—3.081,3.081]. As a first exam-
ple, we consider the NCD model. It consists of a set of terminals from which the same number of
users issue commands to a system made by a central processing unit, a secondary memory device
and a filling device. In Table 5, we report results for various n, obtained by changing the number of
terminals/users. The matrices A are used to compute exp(A)v, v = (12 ...n)T/n. We compare the
performance of BiICGSTAB for solving the linear systems in (5) without preconditioner and with our
updating strategy, where g extracts only the main diagonal, i.e. g(-) = go(-). The INVT algorithm
with 77 = le — 4 and 7, = le — 2 is used to produce the approximate inverse factorization. The
comparisons consider the time needed for solving each linear system, i.e. the global time needed
to compute exp(A)v. Both methods are set to achieve a relative residual of 10~° and the degree of the
Chebyshev rational approximation is N =9. The column & reports the relative error between our
approximation and expm(A)v. For the case with the largest size expm gives ‘out of memory’ error.
We conclude again the experiment by comparing our procedure with the Jacobi preconditioner
computed for every matrix of the sequence. The latter does not precondition the sequence thus giving
higher iterations and timings than both the update strategy and the not preconditioned case.

5.2.3. exp(A)v - Network adjacency matrix

Let us compute exp(A)v for the matrix TSOPF_FS_b9_c6 of dimension 14454 coming from [18].
Results are reported in Table 6 and Figure 3. For this case, we do not have a reference solution and then
the error because MATLAB’s expmgives out of memory error. Instead, we consider the Euclidean
norm of the difference of the solutions obtained for consecutive values of N for N = 6, ..., 30. The

Table 5. Approximation of exp(A)v, A from NCD queuing network example.

Not prec Update Jacobi

n iters T(s) iters T(s) iters T(s) Erel
286 7.50 0.008 7.50 0.007 8.20 0.01 8.73e—09
1771 17.60 0.029 17.60 0.030 18.40 0.03 3.46e—07
5456 29.00 0.115 29.00 0.118 29.60 0.13 5.23e—06
8436 34.50 0.244 28.00 0.167 34.90 0.27 1.50e—05
12341 43.10 0.339 33.20 0.268 41.70 0.40 3.87e—05
23426 64.30 0.966 42.30 0.626 66.50 1.14 U

Note: BiCGSTAB, N =9, tol= 1e — 9, INVT algorithm with t; = 1e — 4 and 7, = 1e — 2 and a single iteration of a recomputed
Jacobi for each matrix of the sequence are used. A T is reported on the &, when expm gives out of memory error and no reference
solution is available.

14 D. BERTACCINI ET AL.

Table 6. Approximation of exp(A)v as the degree N of the Chebyshev approximation varies.

Matrix TSOPF_FS_b9_c6
Size: 14,454, k7 (A) =3.1029e+12

Not prec Prec Jacobi
iters T(s) iters T(s) iters T(s) N
171.33 1.22 15.00 0.26 19.00 0.35 6
145.20 1.38 36.50 1.00 1614.22 12.25 9
99.58 1.44 8.75 0.23 8.95 0.34 12
77.93 1.32 7.64 0.23 8.15 0.35 14
70.38 1.25 7.06 0.24 7.67 0.40 16
71.00 1.45 6.61 0.26 7.26 0.43 18
59.70 1.34 6.15 0.28 7.00 0.48 20
53.32 1.32 5.95 0.30 6.76 0.52 22
51.67 1.38 5.75 0.31 6.65 0.57 24
46.65 1.37 5.58 033 6.46 0.60 26
44.86 1.44 539 0.39 6.30 0.66 28
43.30 1.47 5.20 0.36 6.17 0.60 30

Note: The matrix A is TSOPF_FS_b9_c6 [18]. The INVT algorithm with t; = 1e — 4 and 7; = 1e — 2 and a single iteration of a
recomputed Jacobi for each matrix of the sequence are used.

104 T " T . T
.
= *
= *
& 100 1
[«5)
| *
=
= q02t * |
&
*
5} x x
= 104} % 1
10-6 1 1 1
9 12 14 16 18 20 22 24 26 28 30
N

Figure 3. Accuracy for various values of N for the TSOPF_FS_b9_c6 matrix.

other settings for the solver remain unchanged in order to evaluate the efficiency of the algorithm
for the same level of accuracy, i.e. we are using again the INVT algorithm with vz = le — 4 and
7, = le — 2.

We observe two different effects for higher degree of approximations in Table 6. On one hand,
from Figure 3, the relative error is reduced, as expected from the theoretical analysis, while, on the
other, it makes the shifted linear system more well-conditioned. Note that the gain obtained using our
preconditioning strategy is sensible even for large matrices, and again is still better than the simple
use of one sweep of the Jacobi preconditioner.

5.2.4. log(A)v - Polynomial decay
Let us consider the matrix A from [30] with entries given by

1

WSy MTheem (17)

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS . 15

Table 7. Computation of log(A)v with A as in Equation (17).

BiCGSTAB Not prec Update logm(A)v Jacobi

n iters T (s) iters T(s) Fill-in T(s) Erel iters T(s)
1000 11.88 24 5.07 1.25 3.16% 0.169 1.91e—06 11.88 3.05
4000 11.05 34.2 473 16.8 0.80 % 147 1.54e—06 11.05 29.07
8000 10.58 133.78 4.53 65.7 0.40 % 116.9 1.66e—06 10.58 109.94
12,000 10.32 296.9 438 1457 0.27% 4282 1.74e—06 T T

Note the moderate decay and a spectrum that range in the interval [6e — 2, 3]. For INVT, 77 = 1e — 1 and 7, = 1e — 2 are used.
For the Jacobi preconditioner, one iteration of the method is used.

in order to approximate log(A)v,v = (1,1,...,1)T. A is symmetric positive definite with a minimum
eigenvalue of the order of 1072 and its entries decay polynomially. We approximate log(A)v with (5);
BiCGSTAB is used with our preconditioner update strategy and without it (Not prec). The seed pre-
conditioner is computed using INVT with 7z = le — 1 and 71, = 1e — 2. We include the results with
MATLAB’s logm(A)v. In particular, we use N = 30 for the approximation of the logarithm function.
Results are collected in Table 7. The behaviour of the precondioner and the comparison with the
simple Jacobi approach is analogous to the one observed in the case with exponential decay.

5.2.5. log(A)v - Matrix collection
Finally, we consider some matrices from SuiteSparse Matrix Collection [18], focusing on INVT with
a seed preconditioner with 7z = le — 1 and 77 = le — 2. The results are collected in Table 8 and
confirm what we observed in the other tests.

In this case, in which there is in general no decay in the system matrix, the Jacobi preconditioner
behaves erratically as one should expect. There are both instances of very fast and complete lack of
convergence. On the other hand, the approach we propose is indeed more robust.

5.3. W (A)v with updates and with Krylov subspace methods

A popular class of effective algorithms for approximating W (A)v for a given large and sparse matrix
A relies on Krylov subspace methods. The basic idea is to project the problem into a smaller space
and then to make its solution potentially cheaper. The favourable computational and approximation
properties have made the Krylov subspace methods extensively used, see, e.g. [25, 29, 33, 38].

Over the years, some tricks have been added to these techniques to make them more effective,
both in terms of computational cost and memory requirements, see, e.g. [1, 28, 34, 35, 37, 43]. In
particular, as shown by Hochbruck and Lubich [25], the convergence depends on the spectrum of
A. For our test matrices, the spectrum has just a moderate extension in the complex plane. Thus the
underlying Krylov subspace techniques for approximating W (A)v can be appropriate.

Table 8. Approximation of log(A)v with A SPD from SuiteSparse Matrix Collection.

BiCGSTAB Not prec Update logm(A)v Jacobi
Name n iters T(s) iters T(s) Fill-in T(s) Erel iters T(s)
1138_bus 1138 198.93 13 31.18 0.4 0.84 % 0.22 441e—07 U 1.39
Chem977tZ 2541 27.98 0.34 6.43 0.12 0.10 % 35 1.87e—07 8.18 0.16
besstk21 3600 157.85 48 76.4 31 1.36 % 10 3.10e—07 155.37 4.1
t2dal_e 4257 232.00 42 98.90 1.78 0.02 % 2.58 6.82e—04 0.50 0.01
crystm01 4875 23.35 1.03 11.48 0.56 0.17 % 25.3 3.16e—07 13.12 0.67

Note: The real parts of the eigenvalues are all in the interval [2.324e — 14, 1.273e + 08]. The updated preconditioners are computed
using INVT with 77 = e — 1and 7, = 1e — 2 or a single iteration of a recomputed Jacobi for each matrix of the sequence. A T is
reported if any of the linear system solution fails.

16 D. BERTACCINI ET AL.

The approximation spaces for these techniques are defined as

Km(A,v) = span{v, Av, ..., A" 1y}.

Since the basis given by the vectors v =v;,Av =v,,... ,A" 1y = v, can be very ill-conditioned,
one usually applies the modified Gram-Schmidt method to get an orthonormal basis with starting
vector vi = v/||v||. Thus if these vectors vy, ..., V,, are the columns of a matrix V,, and the upper

Hessenberg matrix H,, collects the coefficients h;; of the orthonormalization process, the following
expression by Arnoldi holds

AVy = Vi Hy + hm+l,mvm+le,{1)
where e, denotes the mth column of the identity matrix. An approximation to W (A)v can be obtained
as
Ym = VIV ¥ (Hm)e.

The procedure reduces to the three-term Lanczos recurrence when A is symmetric, which results in
a tridiagonal matrix H,,. One has still to face the issue of evaluating a matrix function, but, if m < n,
for the matrix H,,, which is just m x m. Several approaches can then be tried. For example, one can
use the built-in function f unmin Matlab, based on the Schur decomposition of the matrix argument,
and the Schur—Parlett algorithm to evaluate the function of the triangular factor [24].

We consider the application of our strategy for the computation of exp(A)v, with a matrix A
generated from the discretization of the following 2D advection-diffusion problem

8u_8 k8u +8 k()au
ot ax \lax) T ay %y

ou u 2
+t1(-x)a+t2(y)a_y> X € [0>1] (18)

u(x,y,t) =0, xedo,1]%,

u(x, y,0) = up(x,y),

where the coefficients are k; = 1072, ky(x) = 2 + 107> cos(57x), t;(x) = 1 + 0.15sin(10rx) and
t2(x) = 1 4 0.45sin(207 x). The second-order centred differences and first-order upwind are used to
discretize the Laplacian and convection terms, respectively. The purpose of this experiment, whose
results are in Table 9, is comparing the performance of our updating approach, using INVT with

Table 9. Errors and execution time for exp(A)v for A obtained as the finite difference discretization of (18).

Update Expoki t

n=n? Erel T(s) Erel T(s)

100 1.96e—08 1.27e—02 1.45e—10 1.19e—02
196 1.26e—08 1.94e—02 5.64e—10 2.90e—02
484 7.71e—09 6.32e—02 2.03e—09 6.33e—02
961 9.75e—08 1.05e—01 5.58e—09 1.08e—01
1936 6.83e—08 2.84e—01 1.09e—08 3.05e—01
7921 3.42e—08 2.69e+00 1.07e—08 4.54e4-00
15876 2.48e—08 9.47e+4-00 2.70e—08 1.39e+01
49729 2.92e—07 6.62e+-01 2.06e—07 1.37e+4-02
90000* 2.93e—-07 1.01e+4-02 6.56e—07 4.26e+-02
250000* 7.43e—06 2.78e+02 5.01e—06 4.11e4-03
490000* 2.92e—05 5.69e+02 2.19e—05 2.92e+04

Note: INVT with t; = 1e — 5and tz = 1e — 2 is used. For the sizes marked with a “*’, the preconditioner updated is implemented
inside a diagonal block-Jacobi preconditioner.

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS . 17

77, = le — 5 and 17 = le — 2, with a Krylov subspace method. For the latter, we use the Matlab ver-
sion of the EXpoki t package from [41]. The threshold for the stopping criterion was tuned to the
accuracy expected by the Update approach.

From these experiences and others not reported here, we can conclude that our techniques, under
appropriate hypotheses of sparsity or locality of the matrices, seem to have interesting performances
compared with Krylov methods for computing W (A)v.

Moreover, we can expect even more interesting performances when simultaneous computations
of vectors such as W(A)wy, W(A)wy, ..., W (A)wk are required. This will give us another level of par-
allelism beyond the one that can be exploited in the simultaneous computation of the terms in (5). In
particular, this can be true when K is large and each vector w; does not depend on the previous values
w; and W (A)w;. In this setting, we can construct the factors once in order to reduce the impact of
the initial cost for computing the approximate inverse factors. Finally, we implemented our strategies
also in a block-Jacobi approach, i.e. we built the approximate inverse preconditioners on each inde-
pendent diagonal block, then all the updates and their applications procedure are decoupled on the
blocks, see the results denoted with a *’ in Table 9. Specifically, we have computed the block relax-
ation scheme by subdividing the matrix A into eight non-overlapping blocks of the same size. Then,
the approximate inverse reference preconditioner was updated on each block. Further improvements
on the global preconditioner can be expected if more refined domain decomposition technique are
applied, see [39, Sections 4.1.1 and 12.2]. The computational cost can be greatly reduced because of
the inherent parallel potentialities [13].

6. Conclusion

This paper studied the computation and convergence of approximations based on partial fraction
expansions for functions of large and sparse and/or localized matrices.

These techniques require solving several linear systems whose matrices differ from A by a complex
multiple of the identity matrix I or inverting these matrices, provided one wants to compute W (A)v,
where vis a vector, or W (A), respectively. We have shown that the solution of the underlying sequences
of linear systems and approximate matrix inversions above can be computed efficiently provided that
A~ shows certain decay properties. These strategies have good parallel potentialities. Our claims are
confirmed by numerical tests.

We plan to extend the proposed techniques to very large and structured problems.

Acknowledgments

We wish to thank two anonymous referees for their constructive comments which have improved the readability of the
paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported in part by Istituto Nazionale di Alta Matematica “Francesco Severi” INDAM-GNCS 2018
projects “Tecniche innovative per problemi di algebra lineare’ and ‘Risoluzione numerica di equazioni di evoluzione
integrali e differenziali con memoria’. The first author gratefully acknowledges the MIUR Excellence Department
Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006 and
the Tor Vergata University ‘MISSION: SUSTAINABILITY project NUMnoSIDS’, CUP E86C18000530005.

References

[1] M. Afanasjew, M. Eiermann, O.G. Ernst and S. Guettel, Implementation of a restarted Krylov subspace method for
the evaluation of matrix functions., Linear Algebra Appl. 429 (2008), pp. 2293-2314.

18 (&) D.BERTACCINIETAL.

(2]

(3]

(4]
(5]

(6]
(7]

[13]
[14]
[15]

[16]

[17]
(18]

[19
(20]

[21]
[22]
[23]

[24]
[25]

[26]

[27]
[28]

[29]
(30]
[31]

(32]

S. Bellavia, D. Bertaccini and B. Morini, Quasi matrix free preconditioners in optimization and nonlinear least-
squares, in Numerical Analysis and Applied Mathematics, T. Simos, ed., Vol. 1281, Uppsala, July 2009. AIP, 2010,
pp. 1036-1039.

S. Bellavia, D. Bertaccini and B. Morini, Nonsymmetric preconditioner updates in Newton-Krylov methods for
nonlinear systems, SIAM J. Sci. Comput. 33 (2011), pp. 2595-2619.

M. Benzi, Preconditioning techniques for large linear systems: A survey, . Comput. Phys. 182 (2002), pp. 418-477.
M. Benzi, Localization in matrix computations: Theory and applications, in Exploiting Hidden Structure in Matrix
Computations: Algorithms and Applications, Springer, 2016, pp. 211-317.

M. Benzi and D. Bertaccini, Approximate inverse preconditioning for shifted linear systems, BIT, Numer. Math. 43
(2003), pp. 231-244.

M. Benzi and N. Razouk, Decay bounds and O(n) algorithms for approximating functions of sparse matrices,
Electron. Trans. Numer. Anal 28 (2007), pp. 16-39.

M. Benzi and M. Ttima, Orderings for factorized sparse approximate inverse preconditioners, SIAM J. Sci. Comput.
21 (2000), pp. 1851-1868.

L. Bergamaschi, M. Caliari and M. Vianello, Efficient approximation of the exponential operator for discrete 2D
advection-diffusion problems, Numer. Linear Algebra Appl. 10 (2003), pp. 271-289.

D. Bertaccini, Efficient preconditioning for sequences of parametric complex symmetric linear systems, Electron.
Trans. Numer. Anal 18 (2004), pp. 49-64.

D. Bertaccini and F. Durastante, Interpolating preconditioners for the solution of sequence of linear systems, Comput.
Math. Appl. 72 (2016), pp. 1118-1130.

D. Bertaccini and F Durastante, Iterative Methods and Preconditioning for Large and Sparse Linear Systems with
Applications, Chapman & Hall/CRC Monographs and Research Notes in Mathematics, CRC Press, London and
New York, 2018.

D. Bertaccini and S. Filippone, Approximate inverse preconditioners on high performance GPU platforms, Comp.
Math. Appl. 71 (2016), pp. 693-711.

D. Bertaccini and F. Sgallari, Updating preconditioners for nonlinear deblurring and denoising image restoration,
Appl. Numer. Math. 60 (2010), pp. 994-1006.

C. Canuto, V. Simoncini and M. Verani, On the decay of the inverse of matrices that are sum of Kronecker products,
Linear Algebra Appl. 452 (2014), pp. 21-39.

Al]. Carpenter, A. Ruttan and R.S. Varga, Extended numerical computations on the 1/9 conjecture in rational approx-
imation theory, in Rational Approximation and Interpolation, PR. Graves-Morris, E.B. Saff, and R.S. Varga, eds.,
Lecture Notes in Mathematics Vol. 1105, Springer-Verlag, Berlin, 1984, pp. 383-411.

W.J. Cody, G. Meinardus and R. Varga, Chebyshev rational approximations to e™* in [0, +00) and applications to
heat-conduction problems, J. Approx. Theory 2 (1969), pp. 50-65.

T.A. Davis and Y. Hu, The university of Florida sparse matrix collection, ACM Trans. Math. Softw. (TOMS) 38
(2011), pp. 1.

PJ. Davis and P. Rabinowitz, Methods of Numerical Integration, Courier Corporation, Mineola, NY, 2007.

S. Demko, W.E. Moss and P.W. Smith, Decay rates for inverses of band matrices, Math. Comput. 43 (1984), pp.
491-499.

N.J. Ford, D.V. Savostyanov and N.L. Zamarashkin, On the decay of the elements of inverse triangular Toeplitz
matrices, SIAM J. Matrix Anal. Appl. 35 (2014), pp. 1288-1302.

R. Garrappa and M. Popolizio, On the use of matrix functions for fractional partial differential equations, Math.
Comput. Simul. 81 (2011), pp. 1045-1056.

N. Hale, N.J. Higham and L.N. Trefethen, Computing A% log(A), and related matrix functions by contour integrals,
SIAM J. Numer. Anal. 46 (2008), pp. 2505-2523.

N.J. Higham, Functions of Matrices. Theory and Computation, SIAM, Philadelphia, PA, 2008.

M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J.
Numer. Anal. 34 (1997), pp. 1911-1925.

S. Jaftard, Propriétés des matrices ((bien localisées)) prés de leur diagonale et quelques applications, in Annales de
IInstitut Henri Poincare (C) Non Linear Analysis, Vol. 7. Elsevier, 1990, pp. 461-476.

C. Kenney and A.]. Laub, Padé error estimates for the logarithm of a matrix, Int. J. Control. 50 (1989), pp. 707-730.
L. Knizhnerman and V. Simoncini, A new investigation of the extended Krylov subspace method for matrix function
evaluations, Numer. Linear Algebra Appl. 17 (2010), pp. 615-638.

L. Lopez and V. Simoncini, Analysis of projection methods for rational function approximation to the matrix
exponential, SIAM J. Numer. Anal. 44 (2006), pp. 613-635. (electronic)

Y.Y. Lu, Computing the logarithm of a symmetric positive definite matrix, Appl. Numer. Math. 26 (1998), pp.
483-496.

G. Meurant, A review on the inverse of symmetric tridiagonal and block tridiagonal matrices, SIAM J. Matrix Anal.
Appl. 13 (1992), pp. 707-728.

C. Moler and C. Van Loan, Nineteen Dubious ways to compute the exponential of a matrix, twenty-five years later,
SIAM Rev. 45 (2003), pp. 3-49.

[33]
[34]
[35]
(36]
(37]
(38]
[39]
[40]
[41]
[42]
[43]

(44]

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS . 19

I. Moret, Rational Lanczos approximations to the matrix square root and related functions, Numer. Linear Algebra
Appl. 16 (2009), pp. 431-445.

I. Moret and P. Novati, RD-rational approximations of the matrix exponential, BIT Numer. Math. 44 (2004), pp.
595-615.

I. Moret and M. Popolizio, The restarted shift-and-invert Krylov method for matrix functions, Numer. Linear
Algebra Appl. 21 (2014), pp. 68-80.

R. Nabben, Decay rates of the inverse of nonsymmetric tridiagonal and band matrices, SIAM]. Matrix Anal. Appl.
20 (1999), pp. 820-837.

M. Popolizio and V. Simoncini, Acceleration techniques for approximating the matrix exponential, SIAM J. Matrix
Anal. Appl. 30 (2008), pp. 657-683.

Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal.
29 (1992), pp. 209-228.

Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2003.

B.N. Sheehan, Y. Saad and R.B. Sidje, Computing exp(—t A)b with Laguerre polynomials, Electron. Trans. Numer.
Anal. 37 (2010), pp. 147-165.

R.B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans. Math. Softw. (TOMS) 24
(1998), pp. 130-156.

W. Stewart, Marca: Markov chain analyzet, a software package for Markov modeling, Numer. Solution Markov
Chains 8 (1991), pp. 37.

J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix exponential, SIAM J.
Sci. Comput. 27 (2006), pp. 1438-1457.

A. van Duin, Scalable parallel preconditioning with the sparse approximate inverse of triangular systems, SIAM J.
Matrix Anal. Appl. 20 (1999), pp. 987-1006.

	1. Introduction
	2. Computing function of matrices by partial fraction expansions
	3. Updating the approximate inverse factorizations
	4. Analysis of the approximation processes
	4.1. Cross relations between the function g and drop tolerance
	4.2. Choosing the reference preconditioner(s)

	5. Numerical tests
	5.1. Approximating (A)
	5.1.1. log(A) – Exponential decay
	5.1.2. exp(A) – Exponential decay
	5.1.3. exp(A) – Kronecker structure

	5.2. Approximating (A)v
	5.2.1. exp(A)v – Exponential decay
	5.2.2. exp(A)v – Transition matrices
	5.2.3. exp(A)v – Network adjacency matrix
	5.2.4. log(A)v – Polynomial decay
	5.2.5. log(A)v – Matrix collection

	5.3. (A)v with updates and with Krylov subspace methods

	6. Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	References

