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a b s t r a c t

We propose a tensor structured preconditioner for the tensor train GMRES
algorithm (or TT-GMRES for short) to approximate the solution of the all-at-once
formulation of time-dependent fractional partial differential equations discretized
in time by linear multistep formulas used in boundary value form and in space by
finite volumes.

Numerical experiments show that the proposed preconditioner is efficient for
very large problems and is competitive, in particular with respect to the AMEn
algorithm.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Solution of partial differential equations of fractional order, or FDEs for short, is an emerging crucial topic
since FDEs naturally occurs in many applications in a variety of fields, e.g., physics, population dynamics,
viscoelastic and viscoplastic phenomena, electrical networks, and many others, see, e.g., [1]. Here we deal with
the solution of the following boundary value conservative fractional diffusion equation with Riesz derivatives
of order 2 − αℓ with αℓ ∈ (0, 1) [2]

∂u

∂t
−

ℓ∑
j=1

∂

∂xj

[
κj(x) ∂αℓu

∂|xj |

]
= z(x, t), xj ∈ (Lj , Rj)ℓ,

t ∈ (t0, T ], ℓ = 1, 2, . . . (1)
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where
∂αℓu

∂|xj |
= η(αℓ)

(
∂1−αℓu

∂+|xj |1−αℓ
+ ∂1−αℓu

∂−|xj |1−αℓ

)
, η(αℓ) = − 1

2 cos
(

(1−αℓ)π
2

) ,

for κj(x) ≥ 0 the diffusion coefficients, z(x, t) the source term, ∂1−αℓ u

∂±|xj |1−αℓ
the left- and right-sided Riemann–

Liouville derivatives, coupled with zero Dirichlet boundary conditions, and an initial condition u(x, 0) =
u0(x). We propose here a structured preconditioner to be applied in tensor train form [3] (TT for short) for
the all-at-once formulation [4,5] of the underlying problem to be used with the TT-GMRES algorithm [6,7].

2. Discrete boundary value problem formulation

For a fixed integer m > 0 we consider the partition of (L1, R1) with interfaces {xi = L1 + i∆x;∆x =
(R1 − L1)/(m + 1)}m+1

i=0 , and denote their centers as xi−1/2, for i = 1, . . . , m + 1. The finite volume
discretization in space of (1) for ℓ = 1 reads

ut(t) = J (1)
m u(t) + z(t), J (1)

m = K−
m,1G(α1)

m + K+
m,1G(α1)

m

T
, (u(t))m

i=1 = u(xi, t), (2)

where K±
m,1 = diag({κ1(xi±1/2)}m

i=1), G
(α1)
m is the Toeplitz matrix (G(αℓ)

m )r,s = g
(αℓ)
r−s

g
(αℓ)
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⎧⎪⎪⎨⎪⎪⎩
2(−k + 1

2 )αℓ − (−k − 1
2 )αℓ − (−k + 3
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3

2αℓ − 3αℓ

2αℓ , k = 0,
3αℓ

2αℓ − 3
2αℓ , k = 1,

−2(k − 1
2 )αℓ + (k + 1

2 )αℓ + (k − 3
2 )αℓ 2 ≤ k ≤ m − 1,

and
(z(t))i = z(t)i = Γ (α1 + 1)∆x1−α1

η(α1)

∫ xi+1/2

xi−1/2

s(x, t)dx, i = 1, . . . , m.

The fully discrete system, in the form of a discrete boundary value problem, is then obtained by applying
to (2) a fully implicit method for differential equations based on linear multistep formulas in boundary
value form [8–10]. We consider the k-step Generalized Backward Differentiation Formula, or GBDF for
short, because of the stiffness of the underlying problem (see, e.g., [4] for more details) over a uniform mesh
tj = t0 + jh, for j = 0, . . . , s, and h = (T − t0)/s:

k−ν∑
i=−ν

αi+νun+i = hfn+i,
n = ν, . . . , s − k + ν,
fn = Jmun + zn,

ν =
{

k+2
2 , k even,

k+2
1 , k odd,

(3)

complemented by additional (k − 1) equations for the auxiliary initial and final values. Thus, the required
k-order method is determined by taking the coefficients {αi}k

i=0 as the solution of the Vandermonde linear
system

W (k)
ν α ≡

⎡⎢⎢⎢⎣
1 · · · 1 1 1 · · · 1

−ν · · · −1 0 1 · · · k − ν
... · · ·

...
...

... · · ·
...

(−ν)k · · · (−1)k 0 1 · · · (k − ν)k

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

α0
α1
...

αk

⎤⎥⎥⎥⎦ = e2 ≡

⎡⎢⎢⎢⎢⎢⎣
0
1
0
...
0

⎤⎥⎥⎥⎥⎥⎦ .

By assembling together the equations for all the time steps we find

Mu ≡ (A ⊗ Im − hIs+1 ⊗ J (ℓ)
m )u = e1 ⊗ u0 + h(Is+1 ⊗ Im)z ≡ b, (4)



94 D. Bertaccini and F. Durastante / Applied Mathematics Letters 95 (2019) 92–97

where e1 = [1, 0, . . . , 0]T ∈ Rs+1, u = [uT
0 , . . . , uT

s ]T ∈ R(s+1)m, g = [gT
0 , . . . , gT

s ]T ∈ R(s+1)m while the
matrix A ∈ R(s+1)×(s+1) is generated by the coefficients of the formula (3) and of the auxiliary linear
multistep formulas producing the GBDF’s (ν, k − ν)-boundary conditions

k∑
i=0

αi,jui = hfj , j = 1, . . . , ν − 1,

k∑
i=0

αi,jus−ν−1+i = hfm−ν−1+j , j = ν + 1, . . . , k,

where the {αi,j}j are computed to get an overall O(hk+1) truncation error, see [10, Chapter 5.4] for details.
In general, for ℓ > 1, the Jacobian J

(ℓ)
m is then expressed as the following sum of Kronecker products in

“Laplace-like” form [3] discretizing the fractional derivatives

J (ℓ)
m =

ℓ∑
i=1

(
K−

m,ℓ

i−1⨂
p=1

I ⊗ G
(ℓ)
m1/ℓ ⊗

ℓ−1⨂
p=1

I + K+
m,ℓ

i−1⨂
p=1

I ⊗ G
(ℓ)
m1/ℓ

T
⊗

ℓ−1⨂
p=1

I

)
,

in which the K±
m,ℓ have also a Kronecker tensor structure whenever the functions {κj}ℓ

j=1 are separable in
the xj variables.

2.1. Tensor representation and matrix–vector product in tensor format

To efficiently solve the linear system (4), we need to exploit its tensorial structure, see [5]. Recall that
a tensor X is a multidimensional array X = [X(i1, . . . , id)], ik ∈ {1, . . . , nk}, in which d is the tensor
dimensionality, i.e., the number of indices, and n1 × · · · × nd is the size of the tensor, i.e., ni is the number
of nodes along each index. The exponential growth of the number of elements (nd) makes impossible using
component-wise storage and operations, thus several compression (representation) of such objects have been
developed in the literature [11]. We focus here on the TT-tensor representation [3,12]. Any tensor with
dimensionality d has d − 1 unfoldings of the form

Xk = [X(i1, . . . , ik; ik+1, . . . , id)], where X(i1, . . . , ik; ik+1, . . . , id) = X(i1, . . . , id),

i1, . . . , ik, ik+1, . . . , id are row and column multi-indices, and the Xk are matrices of size Qk × Rk with
Qk = n1 × · · · × nk, and Rk = nk+1 × · · · nd. Then, a d-dimensional tensor X with size n1 × · · · × nd is said
to be in the TT-format with cores Xk of size rk−1 × nk × rk, for k = 1, . . . , d, r0 = rd = 1, if its elements
are defined by

X = X(i1, . . . , id) =
∑

α0,...,αd

X1(α0, i1, α1)X2(α1, i2, α2) . . . Xd(αd−1, id, αd), (5)

and the rk are called TT-ranks. Any dense tensor can be converted into the TT-format by the TT-SVD
algorithm, and also the right-hand side of (4) can be restated in this format straightforwardly. Indeed, if a
vector of length N = n1 × · · · × nd is treated as a d-dimensional tensor with mode sizes nk, and represented
in TT-format, the matrices acting on it have the form

M(i1, . . . , id, j1, . . . , jd) = M1(i1, j1) . . . M(id, jd), Mk(ik, jk) ∈ Rrk−1×rk ,

where (i1, . . . , id) enumerates the row of M, and (j1, . . . , jd) enumerates the columns. If we have a matrix M
in TT-format, and a vector X in TT -format with cores Xk, and entries X(j1, . . . , jd) then the matrix–vector
multiplication amounts to the following sum

Y = Y (i1, . . . , id) =
∑

j1,...,jd

M(i1, . . . , id, j1, . . . , jd)X (j1, . . . , jd) = Y1(i1) . . . Yd(id),

where Yk(ik) =
∑

jk
Mk(ik, jk)⊗Xk(jk), from which we see that the ranks of Y are the product of the ranks

of the matrix and of the vector. Thus, as expected (see, e.g., [3]), we experience that often the result should
be approximated during the computations to avoid a rapid rank explosion.
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3. The solution strategy

By exploiting the techniques we developed in [4,13], we propose a preconditioner based on the structure
of (4) that can be written in the form

P =Ă ⊗ I − hB̆ ⊗ J̃ (ℓ)
m = UΛAUH ⊗ I − hUΛBUH ⊗ J̃ (ℓ)

m

=(U ⊗ I)(ΛA ⊗ Im − hΛB ⊗ J̃ (ℓ)
m )(UH ⊗ I), with UHU = I,ΛA,ΛB diagonal,

(6)

where Ă and B̆ are the projection of the Toeplitz-like matrices A and B = Is+1 on the {−1}-circulant
algebra [4,9], and {J̃

(ℓ)
m }m is an approximation of the Jacobian matrix. For the considered model problem,

it is the scaled Laplacian [14]

J̃ (ℓ)
m =

ℓ∑
i=1

(
K−

m,ℓ + K+
m,ℓ

) i−1⨂
p=1

I ⊗ ∆m1/ℓ ⊗
ℓ−1⨂
p=1

I, ∆m1/ℓ = tridiag(−1, 2, −1) ∈ Rm1/ℓ×m1/ℓ
. (7)

To apply the preconditioner in the TT-GMRES algorithm [7], we need a suitable approximation of the inverse
of (6) in TT-format [15]. First, the orthogonal matrix (U ⊗ I) in (6) is easy to represent, invert and use in
tensor format. Then, consider the inverse of the block-diagonal part (ΛA ⊗Im −hΛB ⊗ J̃

(ℓ)
m ) = Λ(A, B, J̃

(ℓ)
m ).

We look for X such that XΛ(A, B, J̃
(ℓ)
m ) = I, i.e., such that (I ⊗Λ(A, B, Jm)T )x = vec(I), where x = vec(X)

is a vectorized form of X. Since we use the TT-format for Λ(A, B, J̃
(ℓ)
m ), we apply an approximate inversion

method for tensors proposed in [6,15] to keep bounded the solution rank r, getting a candidate approximation
Xr of X, and then the overall preconditioner P is necessarily approximated by Pr as well:

P −1 ≈ P −1
r = (U ⊗ I)Xr(UH ⊗ I). (8)

By using arguments similar to those in [9, Theorem 4] and considering negligible the effect of the
approximate inversion that produces Pr above, we can prove the clustering result below.

Theorem 1. Let us consider the limited memory block ω-circulant preconditioner (6) such that ω = exp(iωθ),
θ = π and J̃m as in (7). If there exists ϵ ∈ (0, 1) not depending on the mesh, provided fine enough, and
∥P −1

r − P −1∥ ≤ ϵ∥P −1∥, then the eigenvalues of the preconditioned matrix P −1
r M are equal to 1 ∈ C except

for O(m α
2 ) outliers.

Note that in general the deterioration needed to keep an upper bound to the tensorial rank can destroy
the underlying cluster.

4. Numerical examples

The numerical tests are performed with Matlab 7.13.0.564 (R2011b), and the TT-Toolbox [3] Version
2.2.2, on a Intel R⃝ Xeon R⃝ CPU X5680 3.33 GHz, with 24 Gb of RAM. We solve (1) on the domain
(Li, Ri) = (0, 1), (t0, T ] = (0, 5], for the following choice of the coefficients

ℓ = 1, κ1 = Γ (1 + α)(1 + x1) z = x1(1 + x1)1+αet, u0 = sin(πx1),

ℓ = 2,
κ1 = Γ (1 + α1)(1 + x1)(1 + x2)
κ2 = Γ (1 + α2)(1 − x1)2(1 − x2)2.

z = x1x2(1 + x2)(1 + x1)1+α1et, u0 = sin(πx1) sin(πx2)

To advance in time with an error that is comparable with the one produced in space, the 2 steps GBDF
formula is used. To benchmark our preconditioner (7), we compare it against the AMEn solver [5,16] that
is set to achieve a tolerance on the residual of τ = 1e − 6, with a maximum rank for the residuals of 10, a
maximum number of 20 log2(m1/ℓ) sweeps, and the truncation computed with respect to the Frobenius norm.
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Fig. 1. Time–Residual graphs for the test problem for ℓ = 1, 2, every marker corresponds to a problem of different (growing) size.

The TT-GMRES [7] is set to achieve the same tolerance τ , the method is restarted every 20 iterations and
the maximum number of iteration is 20 log2(m1/ℓ). The compression/truncation tolerances for the method
are εx = 1e − 3, 1e − 6 for the compression of the solution, and εz = 1e − 4, 1e − 7 for the compression of
the Krylov basis vectors for ℓ = 1, 2 respectively. The maximum allowed rank r for the construction of (8) is
r = 4, corresponding to a residual on the inverse of approximately 10−2. Details on the parameter used above
are in [7]. The results are given in Fig. 1. We can observe that the TT-GMRES without preconditioner either
fails to achieve convergence or reaches convergence after many iterations, as it happens also for standard
nonpreconditioned restarted GMRES [4]. This is observed for more general cases in [16]. On the other hand,
our preconditioner delivers a reasonable reduction of the timings with respect to the AMEn solver, whose
convergence also deteriorates increasing the size of the problem.

5. Conclusions and perspectives

We extended and specialized an existing preconditioning technique for structured linear systems by
exploiting suitable tensor representations. This permits to use the preconditioner in a tensor setting. To
improve the performances of the AMEn solver, the solution of the auxiliary linear systems arising in each
optimization step of the underlying outer algorithm should be further investigated by focusing on their
structure. On the other hand, the experiments we performed (see, e.g., Fig. 1) show that the application of
our structured TT-preconditioner to the TT-GMRES algorithm performs reasonably better.

We plan to investigate the use of QTT-tensor representation [17] for the whole linear system and carefully
analyze the nontrivial deterioration of the cluster of the eigenvalues of the preconditioned matrices due to
the upper bound on the tensorial rank. The implementation on GPGPUs, taking advantage of the underlying
shared memory framework will be also considered.
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