
Computers and Mathematics with Applications 71 (2016) 693–711

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Sparse approximate inverse preconditioners on high
performance GPU platforms✩

Daniele Bertaccini a,∗, Salvatore Filippone b

a Department of Mathematics, University of Rome ‘‘Tor Vergata’’, via della Ricerca Scientifica 1, I-00133, Roma, Italy
b School of Aerospace, Transport and Manufacturing, Bldg 52, Cranfield University, Cranfield, MK43 0AL, United Kingdom

a r t i c l e i n f o

Article history:
Received 20 March 2015
Received in revised form 9 October 2015
Accepted 12 December 2015
Available online 28 January 2016

Keywords:
Preconditioners
Approximate inverses
Sparse matrices
GPU

a b s t r a c t

Simulation with models based on partial differential equations often requires the solution
of (sequences of) large and sparse algebraic linear systems. In multidimensional domains,
preconditioned Krylov iterative solvers are often appropriate for these duties. Therefore,
the search for efficient preconditioners for Krylov subspace methods is a crucial theme.
Recent developments, especially in computing hardware, have renewed the interest in
approximate inverse preconditioners in factorized form, because their application during
the solution process can be more efficient. We present here some experiences focused
on the approximate inverse preconditioners proposed by Benzi and Tůma from 1996
and the sparsification and inversion proposed by van Duin in 1999. Computational
costs, reorderings and implementation issues are considered both on conventional and
innovative computing architectures like Graphics Programming Units (GPUs).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical approximation of the vastmajority ofmathematicalmodels fromapplied science and engineering requires
solving linear algebraic systems that become every day larger and larger. In particular, this happens for finite volumes,
finite elements or finite differences schemes solving models based on partial differential equations. Very often, most of the
computing time is spent in the solution of those linear systems by direct or iterative algorithms. However, direct methods
sometimes can be less appropriate than iterative for multidimensional problems and Krylov iterative methods can give a
viable approach especially on parallel architectures. Preconditioning is often essential because without it the convergence
of iterative solvers can be too slow for practical purposes.

Preconditioning a linear system Ax = b by a direct approximation of A−1, i.e. by using approximate inverse precondi-
tioners, has been quite popular in the last two decades; see, e.g. [1] and references therein.

From an implementation point of view, preconditioning by an approximate inverse is carried out by sparse matrix by
vector multiplications, the same numerical kernel that forms the core of any Krylov subspace method. On highly parallel
computing architectures such as the GPUs it is quite possible to implement efficientlymatrix–vectormultiplication, but GPU
implementations for triangular systems are much less efficient [2–4].

Aside from the potential to exploit parallel hardware potentialities, there are also frameworkswhere sparse approximate
inverse is required. An example is the updates for inverse incomplete factorization preconditioners for solving cheaply

✩ Work supported in part by grants MIUR-PRIN no. 20083KLJEZ, ItalianMinistry of Health no. RF-2009-1470310 and by an INDAM-GNCS grant 2012. The
CINECA Supercomputer Facilities (Standard HPC Grant 2012 with projects ‘‘Exa-PSBLAS’’ and ‘‘GPU-PSBLAS’’) are also gratefully acknowledged.
∗ Corresponding author.

E-mail addresses: bertaccini@mat.uniroma2.it (D. Bertaccini), salvatore.filippone@cranfield.ac.uk (S. Filippone).

http://dx.doi.org/10.1016/j.camwa.2015.12.008
0898-1221/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.camwa.2015.12.008
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2015.12.008&domain=pdf
mailto:bertaccini@mat.uniroma2.it
mailto:salvatore.filippone@cranfield.ac.uk
http://dx.doi.org/10.1016/j.camwa.2015.12.008

694 D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711

sequence of large and sparse linear systems proposed in [5–8]. We recall that sequences of large and sparse linear systems
arise, e.g., in the numerical solution of nonlinear algebraic systems, ordinary and partial differential equations, and nonlinear
optimization.

Among the various approaches for computing sparse approximate inverses that have been proposed in the literature
through the years we can find:
• Minimization of the residual norm;
• Approximation by a matrix polynomial;
• Inexact inversion of sparse triangular factors;
• Incomplete biconjugation.

This paper will deal with the last two approaches. See [9] for a recent GPU implementation of the first one.
The remainder of the paper is organized as follows. In Section 2 we recall briefly the sparse approximate inverses based

on inversion and sparsification of incomplete factorizations proposed in [10] and in Section 3 the approximate inverse
preconditioners based on incomplete biconjugation proposed by Benzi and Tůma. In Section 4 we give a brief discussion of
the main features of the algorithms for the underlying approximate inverse factorization to prepare for some experimental
results; Section 5 holds a description of a number of software and hardware issues. Finally, in Sections 6 and 7 we report
some numerical tests and conclusions and perspectives.

2. Sparse inversion of sparse factors

A strategy for computing a sparse approximate inverse based on incomplete factorizations is advocated by
A. van Duin [10]. The idea is to start from a sparse (approximate) factorization

A ≈ LDU,

where L and U are unit lower and upper triangular matrices and D is diagonal. Let us now describe the process with respect
to the upper factor U; the lower factor L can be treated in a completely analogous way.

The triangular matrix U can be represented as

U = I +
n−1
i=1

eiuT
i , (1)

where uT
i is the ith row of the strictly upper part of U , i.e.

ui(j) = 0 ∀j ≤ i.
Given this structure, it is also possible to express the same matrix in product form as

U =
1

i=n−1

(I + eiuT
i), (2)

where each term in the product is an elementary transformation. Since each term is easily invertible, we obtain the following
expression

U−1 =
n−1
i=1

(I − eiuT
i), (3)

but given that this matrix is also upper triangular we can express it in the form

U−1 = I +
n−1
i=1

eiûT
i . (4)

Combining (4) and (3) we derive an expression for ûT
i :

ûT
i = −u

T
i

n−1
j=i+1

(I − ejuT
j). (5)

We can recast this expression in the Algorithm 1 for computing U−1. To turn this into an effective preconditioning strategy
we need however to apply some form of ‘‘drop strategy’’ to preserve the sparsity of the resulting factors. Let us emphasize
that, as noted by [11,12], the usage of a factored form to approximate A−1 can be helpful in this respect: an irreducible sparse
matrix has an inverse that is typically full, but, under suitable conditions, its inverse can be approximated reasonably by the
product of two sparse matrices. Therefore, we can expect to reap some benefits in this respect.

2.1. Positional drop strategies

The most common positional drop strategy is based on the concept of level of fill; the resulting algorithm bears many
similarities with the incomplete factorizations based on levels of fill, and is shown in Algorithm 2. Throughout the paper we

D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711 695

Algorithm 1 A General Sparse Triangular Inverse
1: for j = 1 to n− 1 do
2: ûT

i ←−u
T
i

3: j← location of first nonzero in ûT
i

4: while j < n do
5: α←−ûT

i ej
6: ûT

i ← ûT
i + αuT

j

7: j← location of next nonzero in ûT
i

8: end while
9: end for

Algorithm 2 Positional Fill Level Triangular Inverse, or INVK
1: levelij ← 0 if aij ≠ 0,∞ otherwise;
2: for j = 1 to n− 1 do
3: ûT

i ←−u
T
i

4: j← location of first nonzero in ûT
i

5: while j < n do
6: if levelij ≤ p then
7: α←−ûT

i ej
8: ûT

i ← ûT
i + αuT

j
9: update fill levels levelik = min(levelik, levelij + 1)

10: else
11: ûT

i (j)← 0
12: end if
13: j← location of next nonzero in ûT

i
14: end while
15: end for

will refer to this method as INVK. In the overall process, the fill level will have to be specified for both the LDU incomplete
factorization as well as for the sparse triangular inversion. In the sequel we will split the specification in two steps, so that
an INVK(I, J) is to be interpreted as allowing a fill level of I in the factorization phase, and then an additional fill level of J in
the inversion phase.

2.2. Numerical drop strategies

In a manner completely analogous to the previous subsection, the numerical drop strategy for the approximate inverse
shown in Algorithm 4 (shown in Section 2.3) can be implemented with algorithmic steps very similar to the factorization
phase; the resulting algorithmwill be called here INVT. In an actual implementation, it is normal practice to use the threshold
ϵ as a relative value with respect to the norm of the relevant row; this reduces the dependency on the scaling of the original
problem.

2.3. Factorization and inversion implementation

Let us review the basic incomplete factorization algorithmwith threshold (Algorithm 3), described in [13]: Each iteration
of the main factorization loop may be partitioned in three phases:

1. A copy-in phase at step 2 where we take the ith row of matrix A and expand it in a full row w;
2. A factorization loop 3 where we apply all the needed updates from the previous phases of the factorization and the first

dropping rule 5;
3. A copy-out phase at steps 10–13 in which we also apply the second dropping rule.

The two dropping rules are slightly different in nature. The dropping rule at step 5 is based on the comparison of wk with
a user specified threshold. The second dropping rule at step 10 is more complicated: first, we perform a comparison with a
threshold; then, we keep only the p elements of largest absolute value among those which were not dropped.

As written this algorithm is hopelessly expensive: the nested loop 3 on k is executed i − 1 times and for each iteration
we execute a vector update of size n− i, thus giving an overall cost that is quadratic in n. To keep the cost under control the
first thing to do is to run the loop 3 on just the values that correspond to non zero entries in the current row w. The set of
nonzeros in w is easily identified when it is initialized at step 2, but the problem is that it is altered during the course of the
loop itself. An efficient loop would be described as follows:

696 D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711

Algorithm 3 Incomplete factorization with threshold
1: for i = 1, . . . , n do
2: w← ai∗
3: for k = 1, . . . , i− 1 and wk ≠ 0 do
4: wk ← wk/dk
5: Apply a drop rule to wk
6: if wk ≠ 0 then
7: w← w − wkuk∗
8: end if
9: end for

10: Apply a drop rule to row w
11: lij ← wj j = 1, . . . , i− 1
12: lii ← 1; di ← wi; uii ← 1;
13: uij ← wj j = i+ 1, . . . , n
14: w← 0
15: end for

Algorithm 4 Numerical Fill Drop Triangular Inverse or INVT
1: for j = 1 to n− 1 do
2: ûT

i ←−u
T
i

3: j location of first nonzero in ûT
i

4: while j < n do
5: α←−ûT

i ej = −û
T
i (j)

6: if |α| > ϵ then
7: ûT

i ← ûT
i + αuT

j
8: else
9: ûT

i (j)← 0
10: end if
11: j location of next nonzero in ûT

i
12: end while
13: Drop elements in ûi as necessary to achieve the desired number of nonzeros.
14: end for

At each iteration, select the next lowest index k among the nonzero entries ofw; updatewk and if it is not dropped then:
• use it to update the rest ofw with uk∗, possibly adding new nonzeros tow and thus new indices to the candidate set inw;
• Add wk to the set of entries in w to be considered for the second drop rule and copying out in steps 10–13.

A subtle and interesting problem surfaces with the seemingly innocuous statement at step 14: if we naively zero out the
entire row w, we are accessing all its entries, and therefore incur an O(n) cost. This O(n) cost is incurred at each iteration
of the outer loop, which runs through all n columns: thus, we would be reintroducing an overall quadratic cost for our
algorithm. To overcome this issue we make use of the drop rule and copy-out steps 10–13: here, we can zero coefficients
selectively, as we run through the entries of w that were not annihilated at step 5. Then, it only remains to initialize to
zero the data area for w before entering the main loop; this is an example of how small details can sometimes imperil the
implementation of an otherwise reasonable algorithm.

Let us now turn to the issue of implementing the sparse inversion of a sparse triangular factor. By comparing the threshold
based version presented in Algorithm 4 with the factorization discussed above, it is clear that it is possible to implement it
with the same ‘‘elementary’’ operators, and specifically:
• During the copy-in phase in step 2 we initialize the set of nonzero entries for the current row ûi;
• During the update phase in step 7 we also insert the relevant indices into the set to ensure that the retrieval of the next

nonzero at step 11 is performed efficiently;
• At the end of the inner loop, we perform a copy-out operation bringing the row ûi into its desired final state, copying the

largest entries up to the maximum allowed number of nonzeros.

From the above discussion it is clear that for both the factorization and the inversion phases we are looking for ways to
implement efficiently the following two operations on a set with an order relation:
1. Select and remove the lowest ranked element from a set;
2. Add an element to the set.

One possible and efficient solution relies on the Partially Ordered Set Abstract Data Type [14]. This guarantees that both
insertion of a new element and deletion of the lowest ranked element can be performed with a cost O(log(|S|)) where |S| is
the cardinality of the set S.

D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711 697

The copy-out operations in both factorization and inversion can be again implemented by making use of a partially
ordered set, but this time we are interested in a set that is ordered based on the absolute value of its entries, since the
second dropping rule in both phases states that we are to keep the p largest entries of the current row.

With the appropriate implementation for this data structure we are now in a position to estimate the cost of building an
approximate inverse as in Algorithm 4.

Theorem 1. Let nzu be the average number of nonzeros per row in u and let nzû be defined similarly; assume moreover the
bounds

|S| ≤ γ nzu, (6)
nzû ≤ βnzu, (7)

where |S| is the maximum size of the set of entries in any of the ûi before the application of the drop rule 13. Then the cost of
Algorithm 4 is

O(γ βn · nz2u(1+ log(γ nzu))). (8)

Proof. Given the bound (6), the term γ n ·nzu follows easily from the nesting of the two outer loops. For the remaining factor
βnzu(1+ log(γ nzu)), consider statement 7: this is executed whenever the nonzero in ûi is above threshold, and we would
expect this to happen a number of times within a (moderate) factor times the size of ui. On each execution, statement 7
requires nzu floating-point operations to execute the sparse AXPY, plus nzu log(|S|) operations to update the set S with the
(possibly new) nonzero entries. Using again bound (6) gives the desired result.

The result relies on the two crucial assumptions about the size of the sets involved, and specifically that both β and γ
are small constants. Assumption (7) is easier to justify: it simply expresses the fact that in many applications we would
normally like to have a preconditioner that has a number of nonzeros of the same order as the coefficient matrix A, hence
we would have β ≈ 1. Since the number of nonzeros can be enforced at step 13, this is not a problem.

Assumption (6) is a bit more complex: it relies on the interaction between the profile of u and û. In particular, the
hypothesis (6) is considered plausible, at least for important classes of problems, see Theorem 4 in [12]. The latter gives
an exponential decaying argument for the entries of the inverse of the Cholesky factor. The application of the dropping rules
at 6 and 13 in Algorithm 4 is also acting to keep the number of elements in the set S under control.

The cost of the sparse inversion of sparse factors INVK and INVT has also been analyzed in the paper where they were
proposed [10]. The approximate inversion for the upper factor is estimated at

Cinvrt = O

nzÛ

nzU
n

where nzU is the number of nonzeros above the main diagonal in U and likewise for the other quantities.

Note that the upper bound for the first term nzÛ is given by the product nβnzu while the second term is nzu. This estimate
is then equivalent to our estimate (8) under the mild assumption that log(γ nzu) is bounded by a small constant.

3. AINV: a method based on incomplete biconjugation

The method we are about to discuss was proposed in [15] and later extended in [16]. It is based on the observation that
if a matrix A ∈ Rn×n is nonsingular, and if we have two vector sequences {zi, i = 1 . . . n} and {wi, i = 1 . . . n} which are
A-biconjugate, i.e. wT

i Azj = 0 if and only if i ≠ j, we can express the biconjugation relation as follows:

W TAZ = D =

p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...
0 0 . . . pn

 (9)

where pi = wT
i Azi ≠ 0. Thus, W and Z must be nonsingular, since D is nonsingular. Therefore, we have

A = W−TDZ−1

from which it readily follows that

A−1 = ZD−1W T . (10)

IfW and Z are triangular, then they are actually the inverses of the triangular factors in the familiar LDU decomposition, as
can be easily seen by comparing the two expressions

A = LDU

and

A = W−TDZ−1.

698 D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711

Algorithm 5 Biconjugation

1: w
(0)
i ← z(0)

i ← ei 1 ≤ i ≤ n
2: for i = 1, . . . , n do
3: for j = i, i+ 1, . . . , n do
4: p(i−1)

j ← aTi z
(i−1)
j ; q(i−1)

j ← cTi w
(i−1)
j

5: end for
6: for j = i+ 1, . . . , n do

7: z(i)
j ← z(i−1)

j −

p(i−1)
j

p(i−1)
i

z(i−1)
i ; w

(i)
j ← w

(i−1)
j −

q(i−1)
j

q(i−1)
i

w

(i−1)
i

8: end for
9: end for

10: wi ← w
(i−1)
i , zi ← z(i−1)

i , pi ← p(i−1)
i , 1 ≤ i ≤ n

There are infinitely many biconjugate sequences {w} and {z}: to find any one of them it is sufficient to apply a
biconjugation procedure to the appropriate pair of nonsingular matrices W (0), Z (0)

∈ Rn×n. From a computational point
of view one can start with W (0)

= Z (0)
= I , thus obtaining the procedure in Algorithm 5, where aTi is the ith row of A and

cTi is the ith row of AT . If the procedure reaches completion without breakdowns, i.e. all the diagonal elements are nonzero,
then the resulting matrices W and Z will be triangular, again giving the explicit inverses of L and U . Thus, we can conclude
that for symmetric positive definite matrices the process will not break down. Another interesting feature of Algorithm 5 is
that the process for buildingW can proceed independently of the process to build Z .

To turn Algorithm 5 into a practical procedure, we need to ‘‘sparsify’’ the resultingW and Z by dropping elements in the
vectors wi and zi. In principle this could be done at the end of Algorithm 5, but this would mean storing the matricesW and
Z in full until the very end. Thus in practice the sparsification has to happen at all updates to the vectors w and z.

Similarly to the case of the incomplete factorization, it is possible to prove [17] that the incomplete inverse factorization
exists (in exact arithmetic) when A is an H-matrix.

An important point to be noted is that, despite the many similarities, there is a noticeable difference with the case of
incomplete factorizations. It is well known that if A is an M-matrix, then the incomplete factorization induces a regular
splitting A = L̂Û − R, i.e. ρ(I − Û−1L̂−1A) < 1, while this is not necessarily true of the incomplete inverse factors produced
by biconjugation [15].

Let us finally note that in particular the process as modified in [16] will not break down for symmetric positive matrices.
The modified method is known as SAINV. Indeed, in theory, AINV may suffer breakdown when the coefficient matrix is not
an H-matrix.

3.1. Algorithmic variants

The procedure in Algorithm 5 is a right looking variant: when a vector zi is finalized, it is used to update all the vectors
zj, j > i. An alternative formulation is to use a left looking variant: all the updates to zi involving zj, j < i, are performed in a
single iteration of the outer loop; the relevant procedure is shown for Z in Algorithm 6 (the other triangleW can be handled
in the same way). While the numerical behavior of the two algorithms is the same (in exact arithmetic), the distribution
of work in the two variants is quite different. The left-looking variant groups together all the updates to a given column; it
tends to perform more (sparse) dot products, using the ‘‘true’’ zi (i.e. before sparsification), as it can afford to sparsify each
column only once. These features have the following interesting properties that may be beneficial from a numerical point
of view:
1. The dot products at 5 and 8 in Algorithm 6 are computed with the full vector zi, before the application of the dropping

tolerance;
2. The dropping rule on zi entries is only applied at the end of the update loop, whereas in the right-looking version it would

be applied at each update, thereby allowing a better buildup of the vector entries.

In our test problems the left-looking variant has suffered less from pivot breakdown.

3.2. Approximate biconjugation implementation

In Section 2.3 we have seen how incomplete factorization with inversion and sparsification can be implemented
employing data structures and operators for partially ordered sets. We now direct our attention to the implementation
of approximate inversion with biconjugation. It turns out that the scheme we are interested in can also be based on the
same abstract data type.

Let us take a close look at Algorithm 6. In an actual implementation the vector zi would be stored in full format during
the execution of loop 4, and there could be two applications of a dropping rule:
1. at statement 6 the update of zi is only performed for a sufficiently large value of pi/pj;
2. after the statement 8 a dropping rule is applied to zi thereby sparsifying it for final storage.

D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711 699

Algorithm 6 Left Looking Biconjugation for Z

1: z(0)
1 ← e1; p(0)

1 ← a11
2: for i = 2, . . . , n do
3: z(0)

i ← ei
4: for j = 1, . . . , i− 1 do
5: p(j−1)

i ← aTj z
(j−1)
i ;

6: z(j)
i ← z(j−1)

i −

p(j−1)
i

p(j−1)
j

z(j−1)
j

7: end for
8: p(i−1)

i ← aTi z
(i−1)
i ;

9: end for

Note that the application of the first dropping rule based on pi/pj was actively discouraged in the paper that introduced
right-looking AINV for symmetric systems [17].

In our experiments with the left-looking variant we have instead applied the dropping rule, without adverse numerical
effects while at the same time providing a performance advantage. Moreover, in the dropping rule applied to zi we apply
the usual threshold comparison but we also enforce a limitation on the maximum number of nonzeros allowed, similarly to
what happens in the ILU(T , P) algorithm.

A key observation is that the execution of statement 5 in Algorithm 6 will compute the dot product among aj and zi even
if inmost cases this productwill be exactly zero because of the (mis)match between the position of nonzeros in aj and zi; this
is a useless quadratic cost. We can instead ensure that the loop 4 is executed only as necessary, i.e.: we should only execute
the iterations of the loop on j where the dot product at 5 is nonzero. This is equivalent to letting at each step j be the lowest
index among those not processed yet such that row aj∗ has at least one nonzero element in a column corresponding to a
nonzero entry in z(j−1)

i . To achieve this goal we keep an extra copy of the pattern of a in a column-oriented format, and we
do the following:

1. at the start of loop 4, zi ← ei; therefore, the set of indices {j} is initialized with RA∗j = {i : aij ≠ 0}, the set of row indices
of nonzero entries in column i of matrix A;

2. at each iteration of loop 4, choose j to be the smallest index in the set that is greater than the last visited one;
3. at step 6, whenever an entry zi(k) becomes nonzero, add the row indices RA∗k corresponding to the nonzeros of column

k in matrix a to the set of indices to be visited.

To ease the implementation of the algorithm, we keep copies of the input matrix A both in a row-oriented and column-
oriented storage. Having an extra copy of A in column-oriented format allows to build Z and W at the same time, sharing
the same outer loop: when dealing with W we need to access rows and columns of AT , but these are accessible as the
columns/rows (respectively) of A. The inner loop is in any case separate between Z and W , as it runs on a subset of indices
specific to the given triangular factor.

The result is Algorithm 7. The implementation makes use of a dense work vector zw to compute zi and wi; the indices of
the non-zero entries are kept in a heap hp. Another heap rhp is used to hold the indices of the rowswith at least one nonzero
in a column matching a nonzero entry in zw, thus giving the set of rows for which we have to compute the scalar products.

We are now in a position to state:

Theorem 2. Let nza be the average number of nonzeros per row in A and similarly nzz ; assume moreover the bounds

|S| ≤ γ nza, (11)
nzz ≤ βnza, (12)

where |S| is the maximum cardinality of the sets of entries in any of the zi before the application of the drop rule 19.Then the cost
of Algorithm 7 is

O(γ nnz2a(1+ β(1+ log(γ nza)))). (13)

Proof. Given the bound (11), the term γ nnza follows easily from the nesting of the two outer loops. The bodies of loops 8
and 23 in Algorithm 7 contain the following terms:

• The dot products at 10 and 25 add a term nza;
• The cost of 12 and 27 is given by βnza, by assumption (12);
• The updates of the set S at 14 and 29 add another cost βnza log(γ nza).

The result follows considering that the statements 12–14 and 27–29 are executed at most as many times as statements 10
and 25 respectively, because of the drop rule at 11 and 26.

700 D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711

Algorithm 7 Practical left-looking biconjugation
1: For a matrix A let Ai∗ be the ith row, and A∗j the jth column;
2: For a sparse matrix A let CAi∗ = {j : aij ≠ 0} be the set of column indices in row i, and similarly let RA∗j = {i : aij ≠ 0};
3: For a set S with an order relation≤, let first(S) be the operator returning the smallest element in S;
4: z(0)

1 ← e1; p(0)
1 ← a11

5: for i = 2, . . . , n do
6: Inner loop over Zj;
7: zw← ei; S ← RA∗i ;
8: while S ≠ ∅ do
9: j← first(S); S ← S − {j};

10: p(i)← Aj∗zw; α← (p(i)/p(j)) ;
11: if |α| > ϵ (drop rule) then
12: zw← zw − αZ∗j
13: for k ∈ RZ∗j do
14: S ← S ∪ {l ∈ RA∗k : j < l < i}
15: end for
16: end if
17: end while
18: p(i)← Ai∗zw;
19: Apply a drop rule to zw;
20: Z∗i ← zw;
21: Inner loop overWj;
22: zw← ei; S ← CAi∗ ;
23: while S ≠ ∅ do
24: j← first(S); S ← S − {j};
25: q(i)← AT

∗jzw; α← (q(i)/q(j)) ;
26: if |α| > ϵ (drop rule) then
27: zw← zw − αW∗j
28: for k ∈ RW∗j do
29: S ← S ∪ {l ∈ CAk∗ : j < l < i}
30: end for
31: end if
32: end while
33: q(i)← (A∗i)T zw;
34: Apply a drop rule to zw;
35: W∗i ← zw;
36: end for

The situation is thus analogous to that of Theorem 1. To be completely precise, note that the bound β in (12) refers
to the ratio between the size of the rows in the upper triangle Z and the rows in matrix A. When enforcing a size of the
preconditioner comparable to that of the matrix A, the actual value of β will be approximately one half as that of the factor
entering (7), since in that case we are comparing the upper triangle of the inverse to the upper triangle of the incomplete
factorization. On the other hand, the biconjugation process is applied twice, for both Z andW , so that the ratio of nonzeros
in the complete preconditioner to the nonzeros in A is again β just like in the case of INVT .

The application of the dropping rules at statements 11, 19, 26 and 34 of Algorithm 7 has the effect of enforcing strict
control over the size of set S, thereby improving the factor γ and the overall performance of the preconditioner construction.
A key element here is the fact that with dropping rules 19 and 34 we limit the number of accepted nonzeros.

The original AINV algorithm proposed in [17] may suffer from pivot breakdown when applied to matrices that are not
H-matrices. In [16] a more robust version called SAINV is proposed: the key issue identified is the need to compute the
diagonal elements pi via the formula

pi ← zTi Azi,

instead of the simplified formula

pi ← Ai∗zi.

The same kind of reasoning can be applied to nonsymmetric matrices, but we expect to reap less benefits, because in
general the matrix A does not necessarily define a dot product. On the other hand, there are important cases where pivot
breakdown cannot occur for SAINV also in the nonsymmetric case, in particular, if the symmetric part of thematrix is positive
definite [18].

If we apply the full formula to the left-looking algorithm we obtain Algorithm 8: the product with A is applied at steps
10, 24 and 34. Note that the two triangles W and Z are no longer independent of each other: the computation of the pi and

D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711 701

Algorithm 8 Practical left-looking biconjugation stabilized
1: For a matrix A let Ai∗ be the ith row, and A∗j the jth column;
2: For a sparse matrix A let CAi∗ = {j : aij ≠ 0} be the set of column indices in row i, and similarly let RA∗j = {i : aij ≠ 0};
3: For a set S with an order relation≤, let first(S) be the operator returning the smallest element in S;
4: z(0)

1 ← e1; p(0)
1 ← a11

5: for i = 2, . . . , n do
6: Inner loop over Zj;
7: zw← ei; S ← RA∗i ;
8: while S ≠ ∅ do
9: j← first(S); S ← S − {j};

10: p(i)← ((W∗j)TA)zw; α← (p(i)/p(j)) ;
11: if |α| > ϵ (drop rule) then
12: zw← zw − αZ∗j
13: for k ∈ RZ∗j do
14: S ← S ∪ {l ∈ RA∗k : j < l < i}
15: end for
16: end if
17: end while
18: Apply a drop rule to zw;
19: Z∗i ← zw;
20: Inner loop overWj;
21: zw← ei; S ← CAi∗ ;
22: while S ≠ ∅ do
23: j← first(S); S ← S − {j};
24: q(i)← (AZj)T zw; α← (q(i)/q(j)) ;
25: if |α| > ϵ (drop rule) then
26: zw← zw − αW∗j
27: for k ∈ RW∗j do
28: S ← S ∪ {l ∈ CAk∗ : j < l < i}
29: end for
30: end if
31: end while
32: Apply a drop rule to zw;
33: W∗i ← zw;
34: p(i)← q(i)← (W∗i)TAZ∗i;
35: end for

qi must be performed at step 34 where we finally have available the relevant elements of bothW and Z . In the test set used
in this paper we have not found any significant advantage in using Algorithm 8 over the use of Algorithm 7.

4. Approximate inverses: Algorithmic variants

We now discuss some features of the algorithms presented.
For reference we denote by:

INVK: the Algorithm 2 based on the sparse inversion of triangular factors based on a positional drop strategy;
INVT: the Algorithm 4 based on the sparse inversion of a triangular factors based on a numerical drop strategy;
LLK: the Algorithm 7 based on a left-looking variant of AINV biconjugation.

These different algorithms have different implementation costs.Moreover, a discussion of their cost based on the number
of floating-point operations only is likely to be misleading.

4.1. Inversion of sparse ILU factors

The inversion of underlying sparse ILU factors, INVK and INVT variants, can be implementedwith the samebuilding blocks
that have been used for ILU(K) and ILUT (T , P) incomplete factorizations, respectively. The above inversion algorithms re-
quire the choice of multiple parameters, and are therefore somewhat difficult to tune in actual applications. In the case of
INVK it is necessary to choose the level of fill in the sparse factorization and the level of additional fill in the approximate
inversion phase: INVK(N1,N2)means having an ILU(N1) factorization, and then an inversion accepting fill-in forN2 levels be-
yond the output of the factor phase. Thus, an INVK(0, 0) preconditioner has exactly the same pattern as the originalmatrix A.

702 D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711

In general it is better to allow additional fill in the inversion phase rather than in the factorization phase; this is perhaps
not surprising considering that the inverse of an irreducible sparse matrix is usually full, therefore we need to spend
space resources (i.e. nonzeros) to approximate more closely the sparse triangular factor, taken as a reference in terms of
preconditioning efficiency.

For INVT , similar considerations apply, except that we have to choose four parameters: the drop threshold ϵ and the
number of additional nonzeros N for both the incomplete factorization and the sparse inversion. Again, the sparse inversion
phase is based on the kernels developed for the incomplete factorization; this in turn defines a dual drop strategy based on
the numerical threshold and on accepting at least as many nonzero entries as in the original matrix A, and up toN additional
nonzeros, with N chosen by the user.

We will henceforth denote this algorithm as INVT (N1, ϵ1,N2ϵ2) where the ϵ1,2 are the thresholds for the factor and
inversion steps, respectively. The parametersN1 andN2 specify the factor β implicitly: they are interpreted as themaximum
number of nonzeros per row to be accepted in output in addition to those already present in input. Thus, INVT (0, ·, 1, ·)
would accept at most as many nonzeros as in A in the factor phase, and at most one more per row per triangular factor in
the inversion phase.

We can derive from Theorem 1 and from the performed tests useful suggestions for the choice of the algorithmic
parameters:

• as a first approximation, the performance of the final preconditioner is related to the number of its nonzeros (although
this is not guaranteed to be always true). As we let β grow, we typically get a better approximation to the inverse, so the
number of iterations decreases, but the cost of the preconditioner, both in terms of building and applying it, grows. Often
a value of β only moderately larger than 1 suffices;
• The threshold employed at statement 6 of Algorithm 4 controls the size of the set S: having too permissive a threshold

is wasteful, since many nonzeros will be kept around, only to be thrown away when sparsifying ûi at step 13. Thus the
threshold should be as restrictive as possible while still providing enough nonzeros to match the desired β .

4.2. Biconjugation

The implementation of our left-looking variant of biorthogonalization requires the choice of two parameters: the
dropping threshold ϵ and the amount of fill-in p. We stress that for non symmetric or non Hermitian matrices we speak
about biorthogonalization and conjugation for symmetric or Hermitian ones.

We always use the same threshold and fill-in for the Z and W factors, even if in principle they could be different. The
construction of each factor is logically independent of the other; nevertheless, we compute them simultaneously, making
maximal use of both a row-oriented and a column-oriented copy of A. The left-looking incomplete biconjugation will be
henceforth denoted as LLK(N, ϵ), where ϵ is the dropping tolerance and N is the number of nonzeros per row in each
triangular factor; thus, the effective number of nonzeros per row in the preconditioner will be determined by 2N + 1.

Comparing Eqs. (8) and (13), we see that the computational complexity bounds for INVT and LLK are of the same order.
This is substantiated by the numerical results in Section 6 where the ratio of the computing time of the two preconditioner
types is approximately constant once the method(s) parameters are adjusted to give preconditioners with comparable
number of nonzeros, and with comparable intermediate sizes during the factorization/biconjugation loops. The advantage
of LLK is that it is normally easier to adjust the control parameters of the algorithm to achieve the desired result. On the
other hand, once the parameters are tuned, we experienced that the build phase of the INVT and INVK preconditioners is
often faster.

4.3. Reordering: numerical and algorithmic implications

Reordering is the process of applying a permutation to both rows and columns of a sparse matrix. If P is the permutation,
then the new matrix is Â = PAPT .

Also nonsymmetric permutations Â = PAQ T ,Q ≠ P , have been shown to be very beneficial in many cases but will not
be treated here.

The effects of reordering on preconditioners are the subject of a substantial body of research, even though the situation
is far from being fully clear. Both factorization-based and inversion-based preconditioners have been analyzed in the past;
see, e.g., [19,11,12,20].

A recurring theme in sparsematrix computations is the relativeweight of data structuremanipulations and other integer
operations as opposed to the ‘‘true’’ floating point arithmetic operations; both are affected by reorderings. In particular it is
often observed that

• the amount of fill during the computation of a factorized approximate inverse strongly depends on the ordering of the
matrix;
• the interaction with the computer memory subsystem, and the reduction in operations due to ‘‘clipping’’ techniques

applied to the matrix profile, tend to favor orderings designed to reduce bandwidth, such as Reverse Cuthill–McKee (or
RCM for short).

D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711 703

Orderings developed for sparse factorization algorithms such asNested Dissection andMinimumDegree give in general lower
fill-in, therefore better approximation for a fixed amount of allowed fill-in; Benzi and Tůma prove the following (see [12])

Theorem 3. Consider a matrix A arising from a five-point discretization of an elliptic PDE on a two-dimensional regular k × k
grid. Then, the number of nonzeros in the inverse factor L−1 is O(k3) for Nested Dissection and O(k4) for Reverse Cuthill–McKee
orderings, respectively.

And yet the situation is not quite as bad as it sounds; in the same paper [12], by using the main result in [21], the authors
derive a bound for the entries of the factors of the approximate inverses.

Theorem 4. Let A be SPD and m-banded, with maxi aii = 1; then the entries zij, i < j in Z = L−T , are bounded by

|zij| ≤ Kλj−i (14)

for appropriate K and λ.

The actual definition of λ is related to the spectral condition number κ , and is given by

λ = q2/m, q = q(κ) =

√
κ − 1
√

κ + 1
.

Themost important feature entailed by Theorem 4 is by far the fact that for important applications, even though the inverse
matrix is full, its entries decay away from the main diagonal. The value of λ determines how fast the entries decay; this
property becomes computationally interesting when λ is not too close to one. Moreover, K also depends on the condition
number and on the bandwidth of A and can be written explicitly in terms of these quantities; see [12].

As a consequence, using a bandwidth-reducing ordering appears to be beneficial. Benzi and Tůma as well as Bridson and
Tang [20] conclude that for the preconditioners based on biconjugation, fill-reducing orderings give better results in general.

5. Software issues and computing platforms

The study of the multiple variants of approximate inverse preconditioners discussed here required the development of a
substantial amount of software. A complete and detailed discussion of the software development issues involved is outside
the scope of this work.

The Krylov subspace iterative methods and the basic kernels for computing matrix–vector products are those of the
Parallel Sparse BLAS (PSBLAS) library [22]. This software library has the ultimate goal of enabling the implementation of
Krylov methods on distributed memory computing architectures employing the MPI programming interface. To achieve
this, it was necessary to develop a number of support tools for handling sparse matrices in serial mode, both in terms
of support operations and of computational kernels. The library has been subject to a major redesign employing object-
oriented techniques, described in [23] and resulting in its version 3.0. The main objective for the redesign was to make it
easy for developers to evolve the library over time by adding plugins for new computing architectures without the need to
change themain library framework. This capability has been exploited to implement in a convenient way a plugin to use the
computing capability of graphics processing units, commonly known as GPUs (see also Section 5.1). The specific techniques
employed involve the usage of the STATE and PROTOTYPE design patterns [24], which may be described in a nutshell as
follows:

1. The STATE pattern consists of the encapsulation of an object in a two-layered hierarchy, so that the inner object can be
changed dynamically to adapt to the various usage needs of the application.

2. The PROTOTYPE pattern tackles a problem for a library developer: the library codemust be able to instantiate at run time
objects whose type is not known (exactly) at the time of writing and compiling. In particular, the object the library needs
to instantiate is of a type that extends a known type, but was developed after themain library was written and compiled,
e.g. to adapt to a new computing architecture. The solution is to make the library code use a sample object provided by
the application code. In our case the application code will declare an object of a specific GPU-enabled type, and will pass
this object to the library which will then instantiate a copy of it to run the necessary computations (e.g. matrix–vector
products) on the GPU device.

A full discussion of these techniques has been detailed in [25,3].
Note that since the approximate inverse preconditioners work by applying sparse matrix–vector products, the necessary

kernels and programming techniques are a by-product of the effort to implement Krylov methods, which also rely on the
sparse matrix–vector product in their formulation. Since the matrix–vector product per se has already been discussed in
otherworks, in this articlewehavemostly discussed the programming techniques that have been applied to the construction
of the preconditioner matrices.

The preconditioners themselves have been implemented in the context of theMLD2P4 framework [26]. This is a package
of multilevel preconditioners that can be plugged into the PSBLAS library in an easy and transparent way. In particular we
refer to the current development version 2, since this uses PSBLAS 3.0.

704 D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711

As already mentioned, MLD2P4 version 2 is a framework supporting algebraic multilevel preconditioners. It supports a
hierarchy of objects including ‘‘restriction’’ and ‘‘prolongation’’ operators that move between levels, ‘‘smoothers’’ that are
applied to a given level using ‘‘solvers’’ applied to a given subdomain, according to the lexicon typical of algebraic multigrid.
Froma software point of view, approximate inverses are simply newvariants of the inner ‘‘solver’’ objects that canbeplugged
into the general framework, using the same design patterns we discussed above.

For the purposes of this articlewe are only discussing the behavior of approximate inverses as preconditioners.We do not
exploit the full generality of the multilevel preconditioner structure. Nevertheless, by construction the framework supports
the usage of approximate inverses in more sophisticated ways. Some preliminary results are presented in [27].

We are testing some ideas to implement the construction phase of the underlying preconditioners on the GPU itself. At
the present stage, it seems that the left-looking variant of biconjugation is less suitable than the right-looking to exploit the
GPU computing features. Since we are still at a preliminary stage, we will only present here results related to building the
preconditioners on the CPU. Note however that there is a positive aspect in that we have not tied down the approximate
inverses to the GPU usage: they are two different plugins that can be used together or separately, thereby demonstrating
the flexibility of the underlying software structure, and providing the ability to run the experiments on more conventional
architectures.

5.1. Approximate inverses and computing devices: GPUs

In the context of the present article the main interest of GPUs is not only in their performance characteristics, but
also in the algorithmic implications of their programming model. The parallelization needed to exploit the capabilities of
these machines can be quite influential in the formulation of the models and algorithms for solving interesting application
problems. The characteristics of the GPUs have been discussed in a number of papers, among them there are [28,4,3,2]
which are relevant to sparse matrix computations. See also [29–31], where the latest focus on the construction phase of the
preconditioners.

In particular, it should be stressed that the usage of GPUs has the effect of making approximate inverses more attractive
with respect to the standard incomplete factorizations. In fact, there exist efficient implementations of a sparse matrix by
vector product, whereas it is difficult to have an efficient direct solver or iterative method with incomplete factorization
preconditioner for sparse linear system on the GPU. As an example, the conjugate gradient preconditioned with incomplete
LU available in CUDA CuSPARSE since version 4.0 [32] achieves at best a speedup factor of about 2, whereas approximate
inverses give much better results as we will detail in Section 6.

Finally, we note that the NVIDIA GPUs do not have virtual memory: memory occupation must be managed by the
application. This makes it desirable to have fine-tuned control over the size of the preconditioning operators.

6. Numerical tests

Wenowreport on someexperiments onboth synthetic and real-world applications. Even though the PSBLAS andMLD2P4
software frameworks discussed in Section 5 are based on MPI, for the current set of experiments we report runs with just
one MPI process. Further testing in the context of multilevel preconditioners with multiple MPI processes is the subject of
related work, to be fully explored in the future. The computing platform used is based on an Intel Xeon E5-2670 running at
2.6 GHz, coupled with an NVIDIA K20M graphics accelerator. The GPU kernels have been compiled with CUDA 6.5. All other
software components have been built with the GNU compilers (C and Fortran) version 4.8.3. Symmetric linear systems are
solvedwith the CGmethod, whereas non symmetric systems are solvedwith BiCGSTAB [33]; with a stopping criterion based
on the reduction of the 2-norm of the (left preconditioned) relative residual, and a stopping tolerance of 10−7.

Table 2 shows tests run completely on the CPU. All other measurements refer to a preconditioner build phase run on the
CPU and a linear system solution run on the GPU.

6.1. Convection–diffusion in 2D and 3D

We start with some tests based on the linear convection–diffusion PDE model problem

−ν∇ · (a(x)∇u)+ q(x) · ∇u = 0, x ∈ Ω, (15)
u = g, x ∈ ∂Ω, (16)

where Ω is [0, 1]d, d is the dimension, here d = 2 or d = 3. We use standard second order centered finite difference dis-
cretization with constant step size. Note that bounds for the spectrum of the eigenvalues of the underlying system of linear
equations, i.e., of the discretizedmodel, are known.Moreover, for somepreconditioners, bounds for the preconditioned spec-
trum and the condition number of the related matrix of the eigenvectors are known under certain simplifying assumptions,
see, e.g., [34]. Different choices for the function a(x) are possible. We have run tests with a(x) = 1, x = (x1, x2, . . .)T , and
a(x) = exp(−

i xi), the second case being harder than the first case for the linear solvers because the considered domain

includes the origin. The parameter ν controls the relative strength of the diffusion and convection parts of the equations,
and indirectly the conditioning of the resulting linear system. The tests have been run with ν = 1/80. We have built both

D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711 705

Table 1
Linear system sizes—PDE test cases.

2D 3D
Matrix Size Matrix Size

pde0300 90,000 pde020 8,000
pde0400 160,000 pde030 27,000
pde0500 250,000 pde040 64,000
pde0600 360,000 pde050 125,000
pde0700 490,000 pde060 216,000
pde0800 640,000 pde070 343,000
pde0900 810,000 pde080 512,000
pde1000 1,000,000 pde090 729,000
pde1100 1,210,000 pde100 1,000,000

Table 2
Baseline CPU performance data, a(x) = 1, CG.

Matrix NOPREC ILU(0) INVK(0, 0)
it tslv tpr it tslv tpr it tslv

pde0300 728 0.69 0.1 133 0.31 0.1 375 0.75
pde0400 960 1.68 0.2 175 0.75 0.2 495 1.88
pde0500 1189 3.52 0.2 216 1.46 0.4 614 3.93
pde0600 1417 7.04 0.3 256 2.62 0.5 731 6.91
pde0700 1643 10.30 0.4 296 3.95 0.7 847 10.75
pde0800 1867 16.00 0.5 336 5.92 0.9 962 15.66
pde0900 Ď 2000 – 0.6 376 8.36 1.2 1075 21.91
pde1000 Ď 2000 – 0.7 416 11.54 1.5 1189 29.53
pde1100 Ď 2000 – 0.9 455 15.05 1.8 1301 39.38

Table 3
Performance data for ILU(0) on GPU, a(x) = 1, CG.

Matrix ILU(0) ILU(0) ILU(0)
CPU GPU CSR GPU HYB
tpr it tslv it tslv it tslv

pde0300 0.097 133 0.31 133 2.14 133 0.31
pde0400 0.152 175 0.75 175 3.94 175 0.74
pde0500 0.216 216 1.46 216 6.25 216 1.46
pde0600 0.292 256 2.62 256 9.17 256 2.59
pde0700 0.379 296 3.95 296 12.56 296 3.94
pde0800 0.483 336 5.92 336 16.86 336 6.02
pde0900 0.599 376 8.36 376 21.63 376 8.31
pde1000 0.722 416 11.54 416 27.27 416 11.36
pde1100 0.862 455 15.05 455 33.83 455 15.24

2D and 3D variants of this equation. The names of the test cases contain the number of steps in each coordinate direction for
unit square and cube, respectively. The resulting linear system sizes are detailed in Table 1. In all tables the Ď symbol marks
those cases where convergence was not reached within the allowed number of iterations.

For the first set of tests we have used the natural numbering scheme, i.e. no reorderings have been applied. The baseline
performance for our analysis is shown in Table 2. Here we show measurements gathered running both the preconditioner
setup and the Krylov solver on the CPU; they refer to the 2D equation with no preconditioning, ILU(0) and INVK(0, 0). From
this comparison it looks like INVK(0, 0) is not a very attractive option. It is substantially underperforming when compared
with ILU(0). Indeed, when the method converges without a preconditioner within the allowed iterations, it is faster even
if the iteration count is much worse. This is far from surprising, since the INVK(0, 0) preconditioner starts from ILU(0) and
then it computes its inverse in an approximated manner, therefore the increase in the amount of work per iteration is not
compensated by a sufficient reduction in the iteration count.

If we perform the same tests on the GPU, the results are quite different. The ILU preconditioners rely on the solution of
sparse triangular linear systems; the triangular structure enforces data dependencies, and the sparsity of thematrix reduces
the amount of floating-point operations. The GPU architecture employs a large number of relatively slow arithmetic units;
to use them effectively, we need to feed themwith a significant amount of independent computations, and this is extremely
difficult in the context of a sparse triangular system solution.

In Table 3we show some performance data obtainedwith an implementation of ILU(0) based on the data storage formats
CSR and HYB available in the NVIDIA CUSPARSE library version 6.5. The first set of data in the second, third and fourth
columns is just a repetition of the CPU data from the previous table. The second set of measurements in the fifth and sixth
columns uses the CSR format: we actually get a slowdown, even a significant one. When using HYB the GPU timings are

706 D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711

Table 4
Basic GPU performance data, 2D test case, a(x) = 1, CG.

Matrix NOPREC INVK(0, 0) INVT (0, .1, 4.01)
it tslv tpr it tslv tpr it tslv

pde0300 728 0.69 0.1 375 0.58 0.6 286 0.47
pde0400 960 0.94 0.2 495 0.83 1.0 377 0.71
pde0500 1189 1.20 0.4 614 1.11 1.5 468 1.09
pde0600 1417 1.51 0.5 731 1.45 2.2 556 1.31
pde0700 1643 2.00 0.7 847 1.93 3.0 646 1.85
pde0800 1867 2.59 0.9 962 2.50 3.9 732 2.25
pde0900 Ď 2000 – 1.2 1075 3.23 4.9 820 2.78
pde1000 Ď 2000 – 1.5 1189 4.20 6.0 906 3.59
pde1100 Ď 2000 – 1.8 1301 5.18 7.5 994 4.63

Table 5
Basic GPU performance data, 2D test case, a(x) = exp(−(x1 + x2)), CG.

Matrix NOPREC INVK(0, 0) INVK(0, 1)
it tslv tpr it tslv tpr it tslv

pde0300 1446 0.43 0.1 408 0.64 0.2 310 0.50
pde0400 1926 0.89 0.2 538 0.90 0.3 410 0.71
pde0500 Ď 2000 – 0.4 667 1.20 0.5 509 0.98
pde0600 Ď 2000 – 0.5 795 1.57 0.8 606 1.40
pde0700 Ď 2000 – 0.7 922 2.09 1.0 703 1.79
pde0800 Ď 2000 – 0.9 1048 2.71 1.3 799 2.41
pde0900 Ď 2000 – 1.2 1174 3.50 1.7 895 3.03
pde1000 Ď 2000 – 1.4 1299 4.49 2.1 991 3.93
pde1100 Ď 2000 – 1.8 1424 5.76 2.5 1085 4.96

Table 6
GPU performance: INVT vs. LLK on 2D test case, a(x) = 1, CG.

Matrix INVT (0, .1, 4, .01) LLK(5, 0.01)
tpr it tslv spd tpr it tslv spd

pde0300 0.6 286 0.47 1.6 0.3 289 0.46 1.6
pde0400 1.0 377 0.71 2.6 0.5 380 0.69 2.6
pde0500 1.5 468 1.09 3.5 0.8 471 0.90 4.1
pde0600 2.2 556 1.31 4.8 1.2 561 1.20 5.1
pde0700 3.0 646 1.85 5.5 1.6 650 1.64 5.8
pde0800 3.9 732 2.25 6.6 2.1 739 2.10 6.7
pde0900 4.9 820 2.78 7.6 2.7 826 2.75 7.2
pde1000 6.0 906 3.59 8.0 3.3 913 3.51 7.7
pde1100 7.5 994 4.63 8.2 4.0 996 4.47 8.0

essentially the same as the CPU times, despite the fact that the matrix–vector product in HYB format is significantly faster
than the CPU one. From the NVIDIA documentation we surmise that the library is applying some sort of level numbering
to the triangular matrices, but the amount of parallelism that can thus be extracted is apparently too low in many practical
cases to make good use of the GPU capabilities. Slightly better results can be obtained in the case of 3D problems, but we
have never seen a speedup over 1.5, and Naumov reports in [32] a best speedup of about 2.

In Table 4 we see the results from the application of approximate inverses:

• The preconditioned iterations always converge within the allowed number of iterations;
• The solve times are as good as or better for the preconditioned iterations with respect to the unpreconditioned ones;
• The solve times for INVK and INVT are very similar (with INVT better), but the time for building the preconditioner is

quite different;
• The speedup of the GPU over CPU on iterations preconditionedwith the approximate inverse is quite substantial; enough,

indeed, to overcome the advantage of ILU(0) in the number of iterations.

A similar situation is shown in Table 5 for the harder test case with

a(x) = exp(−(x1 + x2));

here the unpreconditioned iterations do not converge at all, and we need to increase β to reach convergence. Note that the
reduction in the number of iterations when going from INVK(0, 0) to INVK(0, 1) does not translate into the same reduction
in runtime, because the memory footprint of the preconditioner increases significantly.

In Tables 6 and 7wehave a comparisonwith the symmetric left-looking LLK variant. For the solution phase it is the fastest
option; for the setup phase it is faster than INVT , although slower than INVK , and itworks consistentlywell, as opposed to the

D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711 707

Table 7
GPU performance: INVK vs. LLK on 2D test case, a(x) = exp(−(x1 + x2)), CG.

Matrix INVK(0, 1) LLK(10, 0.05)
tpr it tslv spd tpr it tslv spd

pde0300 0.2 310 0.50 1.6 0.4 242 0.42 1.9
pde0400 0.3 410 0.71 2.9 0.7 321 0.62 3.3
pde0500 0.5 509 0.98 4.2 1.1 397 0.91 5.3
pde0600 0.8 606 1.40 5.0 1.6 472 1.33 5.1
pde0700 1.0 703 1.79 6.0 2.2 549 1.62 7.0
pde0800 1.3 799 2.41 6.6 2.8 623 2.17 8.1
pde0900 1.7 895 3.03 7.5 4.1 698 2.83 7.9
pde1000 2.1 991 3.93 7.8 4.3 772 3.58 9.5
pde1100 2.5 1085 4.96 8.3 5.4 845 4.63 9.9

Fig. 1. Parallel performance data, 2D test case, a(x) = 1, CG.

occasional problems of INVK . The behavior in terms of number of iterations to convergence is consistent with the theoretical
expectations, i.e., they are roughly proportional to n. We also list speedups with respect to running the same algorithms on
the CPU, which for large enough matrices are about an order of magnitude. We also have a non-trivial speedup of about 3.4
when comparing against ILU(0) on CPU, despite the fact that the number of iterations is larger for approximate inverses.
We stress that ILU(0) would provide no speedup at all with a GPU implementation.

Note that INVK(N1,N2) has a rather significant disadvantage with respect to the other alternatives, in that the control
over the number of nonzeros in the preconditioner is exercised through the fill levels, and therefore it is at a much coarser
grain.

6.2. Multi-core and multi-GPU performance

The programming framework of PSBLAS/MLD2P4 is fully parallel; therefore we may choose to run our application
by using multiple processes. Here we show the results of two tests, the basic 2D and 3D convection–diffusion problem,
preconditioned with one sweep of Block Jacobi using INVT as the local solver on both CPU and GPU. The tests were run
on 1 or 2 GPUS, and on 1–16 CPUs, within one shared-memory node. From the graphs in Figs. 1 and 2 we can see that for
these problems even a single GPU is capable of performing at more than twice the speed of 16 cores acting together, and at
sufficiently large sizes we also have a good speedup from using two GPUs to solve the linear system; the solution times for
the largest 2D cases are about 100 s for the 16-cores, 48 s for single GPU and 23 for dual GPUs. This behavior is consistent
with the fact that the sparse matrix–vector product is a memory-bound kernel, therefore its performance is determined

708 D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711

Fig. 2. Parallel performance data, 3D test case, a(x) = 1, CG.

by the available memory bandwidth. On our experimental platform the CPU cores are divided in two 8-core banks, each
having a peak bandwidth of 51 GB/s, whereas each K20 GPU has a peak memory bandwidth of 208 GB/s. One thing to notice
is that there is a break-even point between the solution times with one and two GPUs, and this is approximately located
at a number of equations of 106; all these performance data are consistent with the behavior in the image segmentation
application examined in [35]. At (very) small sizes the multi-core versions exhibit spikes in the speedup graphs. These are
due to the fact that the smallest matrices are small enough to fit into the combined cache memories of the 8/16 cores.

A more detailed analysis of the behavior of the approximate inverse preconditioners in a parallel context would require
looking at the interaction with multilevel aggregation, and the use of heterogeneous local solvers (factorization and
approximate inverses) on CPU cores and GPUs, as easily enabled by our software framework. Such a complete analysis
is beyond the scope of this article; some preliminary data appeared in [27], and a more thorough investigation taking into
account recent hardware developments is the subject of ongoing work.

6.3. Engine design application

This test set was extracted from an engine simulation application [36,37]. The latter solves the turbulent Navier–Stokes
equationswithALE finite volumediscretization, coupledwith the k–ϵ turbulencemodel and solvedwith the SIMPLEmethod.
In particular, the test matrices are those for the pressure-correction equation, which is themost demanding linear system to
be solved in this application. The coefficient matrices are non-symmetric, but with a symmetric sparsity pattern, and they
have no more than 19 nonzero entries per row. They are obtained from the simulation of the cycle of a Diesel engine, at
various positions of the piston inside the cylinder; the extreme cases (kivap1 and kivap9) were extracted with the piston at
the bottom center, while kivap5 is close to the top center.

In Table 8we can see the behavior of the simplest preconditioners; near the top center the linear systems are significantly
harder and both INVK and INVT methods suffer. From Table 9 we can extract the following considerations:

• With the appropriate parameters INVT can be quite competitive, sometimes even better than LLK ;
• Finding the correct set of parameters for INVT is a non-trivial task;
• LLK is easier to tune; indeed, the fill factor of 10 is easy to derive as being roughly half of the average number of nonzeros

in the test matrices;
• The speedups for the GPU version over the CPU are not too high, but they are in line with the results from the model test

cases given the relatively small size of the matrices involved.

We should also note that in our experience, keepingwith similar performance in terms of iterations, the number of nonzeros
for the LLK preconditioner is often less than the corresponding number for INVT .

D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711 709

Table 8
GPU performance: engine design application.

Matrix Size NOPREC INVK(0, 1) INVT (0, .01, 1, .01)
it tslv tpr it tslv tpr it tslv

kivap1 86304 95 0.320 2.040 21 0.117 1.230 24 0.108
kivap2 76504 204 0.430 1.760 49 0.241 1.240 64 0.251
kivap3 59354 257 0.686 1.340 56 0.264 1.000 84 0.334
kivap4 42204 636 1.259 0.940 138 0.592 0.670 135 0.343
kivap5 25054 Ď 1000 1.955 0.540 Ď 1000 2.218 0.310 Ď 1000 1.930
kivap6 42204 856 2.025 0.900 250 0.735 0.610 214 0.534
kivap7 56904 257 0.828 1.260 55 0.241 0.980 74 0.295
kivap8 76504 197 0.604 1.700 49 0.254 1.240 62 0.268
kivap9 86304 203 0.675 1.950 46 0.205 1.320 65 0.287

Table 9
GPU performance: engine design application, best case.

Matrix Size LLK(10, 0.01) INVT (1, .01, 4, .01)
tpr it tslv spd tpr it tslv spd

kivap1 86304 1.73 24 0.083 2.8 1.31 20 0.091 2.4
kivap2 76504 1.66 62 0.189 2.7 1.33 54 0.237 2.3
kivap3 59354 1.28 67 0.261 1.6 1.07 73 0.270 2.1
kivap4 42204 0.80 101 0.242 1.8 0.71 103 0.267 2.1
kivap5 25054 0.38 41 0.077 1.2 0.34 53 0.105 1.4
kivap6 42204 0.80 101 0.384 1.1 0.67 109 0.281 2.0
kivap7 56904 1.23 67 0.234 1.7 1.03 64 0.172 2.8
kivap8 76504 1.65 54 0.228 1.9 1.33 52 0.229 2.3
kivap9 86304 1.76 54 0.233 2.2 1.41 44 0.184 2.7

Table 10
UFL sparse matrix collection linear system sizes.

Matrix M NNZ Matrix M NNZ

A_500k 531,612 2,629,578 thermal2 1,228,045 8,580,313
A_1M 995,100 4,892,218 thermomech_TC 102,158 711,558
ML_Laplace 377,002 27,689,972 nlpkkt80 1,062,400 28,704,672
bcsstk16 4,884 290,378 parabolic_fem 525,825 3,674,625
raefsky2 3,242 294,276 pde060 216,000 1,490,400
lung2 109,460 492,564 pde080 512,000 3,545,600
FEM_3D_thermal2 147,900 3,489,300 pde100 1,000,000 6,940,000
Poisson3Db 85,623 2,374,949

6.4. University of Florida collection

To complete our experiments we have picked a subset of the matrices in the University of Florida Sparse Matrix
Collection [38]. To this subset we have added the engine design matrices of the previous subsection, and five matrices from
simple elliptic problems:

• The cases pde060, pde080 and pde100 are from the three-dimensional version of the convection–diffusion equation used
previously;
• The cases A-500k and A-1M arise from a finite volume tetrahedral mesh discretization of the thermal diffusion in a solid

(copper) bar.

In Table 10 we report the size of the linear systems.
Renumbering, or reordering, and its effect on preconditioners has been investigated by many authors. Some works

relevant to this paper appeared previously in [11,39,12]. In these papers it is argued that a fill-reducing ordering is in
general to be preferred.We have thus tested thiswith the AMDminimumdegree algorithm [40,41] comparedwith the natural
ordering and with the Gibbs, Poole and Stockmeyer variant (GPS in the tables) of reverse Cuthill–McKee numbering [42,43].

As it turns out, AMD is practically never beneficial as detailed in Tables 11 and 12. The effect of GPS is on average less than
expected in our tests. In our opinion, this could be due to the differences in the memory hierarchy inside the GPU device
with respect to normal CPU hierarchies.

Finally, we emphasize that the different effect of reorderings (such as GPS) for the (limited) tests we performed makes it
difficult to give general statements on the interplay of sparse matrix orderings and preconditioning.

710 D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711

Table 11
Effect of renumbering on INVT , UFL collection.

Matrix INVT (1, .01, 2, .01)
NONE GPS AMD
tpr it tslv tpr it tslv tpr it tslv

A_500k 4.32 69 0.482 4.87 85 0.435 5.05 81 0.666
A_1M 9.31 66 0.537 9.12 66 0.512 9.28 78 1.073
ML_Laplace 32.50 Ď 11.537 – – – – – –
bcsstk16 0.31 34 0.065 0.31 37 0.072 0.30 38 0.074
raefsky2 0.27 53 0.099 0.28 53 0.100 0.28 53 0.121
lung2 0.68 Ď 3.839 – – – 0.50 Ď 3.133
FEM_3D_thermal2 2.48 7 0.046 2.69 6 0.041 3.08 6 0.044
Poisson3Db 3.14 75 0.327 2.51 72 0.362 2.89 60 0.336
thermal2 11.48 994 12.600 14.92 Ď 10.994 12.21 Ď 19.158
thermomech_TC 0.89 4 0.118 0.73 4 0.117 0.85 4 0.118
nlpkkt80 26.79 Ď 14.462 – – – – – –
parabolic_fem 3.72 593 3.580 5.88 673 3.400 5.17 716 8.175
pde060 1.70 48 0.167 1.63 49 0.200 2.31 47 0.252
pde080 3.86 62 0.305 3.85 65 0.389 5.86 56 0.474
pde100 10.29 87 0.672 11.02 72 0.635 11.72 55 0.889

Table 12
Effect of renumbering on LLK , UFL collection.

Matrix LLK(8, .01)
NONE GPS AMD
tpr it tslv tpr it tslv tpr it tslv

A_500k 6.96 71 0.482 6.33 89 0.511 10.47 93 1.081
A_1M 11.37 60 0.542 11.22 60 0.549 20.25 77 1.232
ML_Laplace 28.33 Ď 9.320 0.00 0 0.000 37.07 Ď 9.189
bcsstk16 0.32 78 0.139 0.33 71 0.126 0.38 74 0.131
raefsky2 0.39 117 0.202 0.39 117 0.200 0.51 119 0.204
lung2 0.50 70 0.226 – – – 0.71 24 0.257
FEM_3D_thermal2 2.91 11 0.060 2.85 10 0.055 3.81 12 0.048
Poisson3Db 11.63 143 0.484 2.95 136 0.620 7.17 Ď 3.693
thermal2 12.65 Ď 12.341 11.63 Ď 11.425 16.85 Ď 18.621
thermomech_TC 1.05 4 0.021 0.83 3 0.012 1.11 4 0.020
nlpkkt80 25.63 Ď 12.167 – – – 275.74 Ď 83.389
parabolic_fem 4.79 559 3.362 3.49 603 3.158 8.91 683 7.837
pde060 2.00 45 0.173 2.07 45 0.194 4.06 46 0.258
pde080 4.68 56 0.293 4.97 56 0.345 10.50 56 0.517
pde100 9.06 77 0.653 9.32 62 0.570 20.59 49 0.850

7. Conclusions

We have revisited some aspects of preconditioners based on approximations of the inverse of sparse matrices. We
reviewed some algorithms based on the inversion and sparsification of incomplete factors and on inexact biconjugation.
Some new results on their computational construction costs show that the biconjugation and the threshold-based sparse
inversion have a setup cost that is quite similar.

The observations in Section 4 have been confirmed by the numerical experiments, where we made use of the
PSBLAS/MLD2P4 framework. Setup of the preconditioners has been performed on a CPU platform, while the solution phase
has been carried out on an NVIDIA GPU accelerator. The AINV preconditioner setup cost has been measured to be within a
modest factor of an equivalent INVT preconditioner, and sometimes even better.

Carrying out the solution phase on the GPU platform has been demonstrated to be effective in terms of performance,
making the approximate inverse preconditioners appealing on such a platform, as opposed to the situation on conventional
CPUs where incomplete factorization preconditioners employing sparse triangular systems are usually more effective. This
is true even if approximate inverses usually suffer a disadvantage in terms of number of iterations to convergence. The
speedups that can be obtained are in line with the expectations from the evaluation of the computational kernels of sparse
matrix–vector products. Very small test cases may not be amenable to an effective parallelization on GPUs because of their
architectural features. In particular, they need a very large number of threads, each with its own workload, to achieve full
exploitation of the computational capabilities.

Further work will be needed for an implementation able to take advantages of parallelism potentialities in INVT/INVK
construction phase. In particular, we would like to clarify issues such as the effects of renumbering, scaling strategies, and
estimation of preconditioner parameters.We also plan to embed the considered preconditioners in the updating framework

D. Bertaccini, S. Filippone / Computers and Mathematics with Applications 71 (2016) 693–711 711

proposed in [5,8] and as local solvers in parallel Schwarz and algebraic multigrid-type frameworks. Finally, we plan to set
up a package based on PSBLAS/MLD2P4 framework for approximate inverse software freely available in the near future.

Acknowledgments

Wewish to thank two anonymous referees for comments that have improved this presentation. Moreover, thanks also to
Dr. Pasqua D’Ambra of CNR Italy for her help in running the test cases. This work was supported in part by CINECA under the
ISCRA grant programme for 2014, project IsC14_HyPSBLAS, and by Amazon with the AWS in Education Grant programme
2014.

References

[1] M. Benzi, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys. 182 (2002) 418–477.
[2] D. Barbieri, V. Cardellini, S. Filippone, GeneralizedGEMMapplications onGPGPUs: Experiments and applications, in: Proc. of 2009 Int’l Conf. on Parallel

Computing, ParCo 2009, IOS Press, 2009.
[3] V. Cardellini, S. Filippone, Damian Rouson, Design patterns for sparse-matrix computations on hybrid CPU/GPU platforms, Sci. Program. 22 (2014)

1–19.
[4] J.W. Choi, A. Singh, Richard W. Vuduc, Model-driven autotuning of sparse matrix–vector multiply on GPUs, SIGPLAN Not. 45 (2010) 115–126.
[5] M. Benzi, D. Bertaccini, Approximate inverse preconditioning for shifted linear systems, BIT 43 (2003) 231–244.
[6] D. Bertaccini, Efficient preconditioning for sequences of parametric complex symmetric linear systems, Electron. Trans. Numer. Anal. 18 (2004) 49–64.
[7] D. Bertaccini, F. Sgallari, Updating preconditioners for nonlinear deblurring and denoising image restoration, Appl. Numer. Math. 60 (2010) 994–1006.
[8] S. Bellavia, D. Bertaccini, B. Morini, Nonsymmetric preconditioner updates in Newton–Krylov methods for nonlinear systems, SIAM J. Sci. Comput. 33

(2011) 2595–2619.
[9] M.M. Dehnavi, D.M. Fernandez, J.L. Gaudiot, D.D. Giannacopoulos, Parallel sparse approximate inverse preconditioning on graphic processing units,

IEEE Trans. Parallel Distrib. Syst. 24 (2013) 1852–1862.
[10] A.C.N. van Duin, Scalable parallel preconditioning with the sparse approximate inverse of triangular matrices, SIAM J. Matrix Anal. Appl. 20 (1999)

987–1006.
[11] M. Benzi, D.B. Szyld, A. van Duin, Orderings for incomplete factorization preconditioning of nonsymmetric problems, SIAM J. Sci. Comput. 20 (1999)

1652–1670.
[12] M. Benzi, M. Tůma, Orderings for factorized sparse approximate inverse preconditioners, SIAM J. Sci. Comput. 21 (2000) 1851–1868.
[13] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, Philadelphia, PA, 2003.
[14] A.V. Aho, John E. Hopcroft, Jeffrey D. Ullman, Data Structures and Algorithms, Addison-Wesley, 1983.
[15] M. Benzi, M. Tůma, A sparse approximate inverse preconditioner for nonsymmetric linear systems, SIAM J. Sci. Comput. 19 (1998) 968–994.
[16] M. Benzi, J.K. Cullum, M. Tůma, Robust approximate inverse preconditioning for the conjugate gradient method, SIAM J. Sci. Comput. 22 (2000)

1318–1332.
[17] M. Benzi, C.D. Meyer, M. Tůma, A sparse approximate inverse preconditioner for the conjugate gradient method, SIAM J. Sci. Comput. 17 (1996)

1135–1149.
[18] A. Rafiei, F. Toutounian, New breakdown-free variant of ainv method for nonsymmetric positive definite matrices, J. Comput. Appl. Math. 219 (2008)

72–80.
[19] I.S. Duff, G.A. Meurant, The effect of ordering on preconditioned conjugate gradients, BIT 29 (1989) 635–657.
[20] R. Bridson, W.-P. Tang, Ordering, anisotropy and factored sparse approximate inverses, SIAM J. Sci. Comput. 21 (1999) 867–882.
[21] S. Demko, W.F. Moss, P.W. Smith, Decay rates for inverses of band matrices, Math. Comp. 43 (1984) 491–499.
[22] S. Filippone,M. Colajanni, PSBLAS: a library for parallel linear algebra computations on sparsematrices, ACMTrans.Math. Software 26 (2000) 527–550.
[23] S. Filippone, A. Buttari, Object-oriented techniques for sparse matrix computations in Fortran 2003, ACM Trans. Math. Software 38 (2012).
[24] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.
[25] D. Barbieri, V. Cardellini, S. Filippone, Damian Rouson, Design patterns for scientific computations on sparsematrices, in: Proc. of HPSS 2011, Springer,

2011.
[26] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a package of parallel algebraic multilevel domain decomposition preconditioners in Fortran 95, ACM

Trans. Math. Software 37 (2010).
[27] D. Bertaccini, S. Filippone, Approximate inverse preconditioners for krylov methods on heterogeneous parallel computers, in: M. Bader, A. Bode,

H. Bungartz, M. Gerndt, G. Joubert, F. Peters (Eds.), Parallel Computing: Accelerating Computational Science and Engineering, IOS Press, 2014,
pp. 183–192.

[28] N. Bell, M. Garland, Implementing sparsematrix–vectormultiplication on throughput-oriented processors, in: Proc. of Int’l Conf. on High Performance
Computing Networking, Storage and Analysis, SC ’09, ACM, 2009.

[29] R. Farina, S. Cuomo, P. DeMichele, M. Chinnici, Inverse preconditioning techniques on a GPUs architecture in global oceanmodels, in: N.E. Mastorakis,
Z. Bojkovic (Eds.), Recent Researches in Applied Mathematics and Informatics, Montreaux, Switzerland, December 29–31, in: Proceedings of the 16th
WSEAS International Conference on Applied Mathematics, WSEAS Press, 2012, pp. 15–20.

[30] M. Geveler, D. Ribbrock, D. Goddeke, P. Zajac, S. Turek, Towards a complete FEM-based simulation toolkit on GPUs: Unstructured grid finite element
geometric multigrid solvers with strong smoothers based on sparse approximate inverses, Comput. Fluids 80 (2013) 327–332.

[31] S. Xu, W. Xue, K. Wang, H.-X. Lin, Generating approximate inverse preconditioners for sparse matrices using CUDA and GPGPU, J. Algorithms Comput.
Technol. 5 (2011) 475–500.

[32] M. Naumov, Incomplete-LU and Cholesky preconditioned iterative methods using CUSPARSE and CUBLAS, Tech. Report., NVIDIA Corporation, 2011.
[33] H. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution o nonsymmetric linear systems, SIAM J. Sci. Stat. Comput.

13 (1992) 631–644.
[34] D. Bertaccini, G.H. Golub, S. Serra-Capizzano, Spectral analysis of a preconditioned iterative method for the convection–diffusion equation, SIAM J.

Matrix Anal. Appl. 29 (2007) 260–278.
[35] P. D’Ambra, S. Filippone, A parallel generalized relaxation method for high-performance image segmentation on GPUs, J. Comput. Appl. Math. (2015).
[36] S. Filippone, P. D’Ambra, M. Colajanni, Using a parallel library of sparse linear algebra in a fluid dynamics applications code on linux clusters,

in: G. Joubert, A. Murli, F. Peters, M. Vanneschi (Eds.), Parallel Computing — Advances & Current Issues, Imperial College Press, 2002, pp. 441–448.
[37] G. Bella, F. Bozza, A. De Maio, F. Del Citto, S. Filippone, An enhanced parallel version of KIVA-3V coupled with a 1D CFD code and its use in general

purpose engine application, in: M. Gerndt, D. Kranzlmuller (Eds.), Proceedings of HPCC 2006, in: LNCS, vol. 4208, Springer Verlag, 2006, pp. 11–20.
[38] T.A. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software 38 (2011) 1:1–1:25.
[39] M. Benzi, M. Tůma, A comparative study of sparse approximate inverse preconditioners, Appl. Numer. Math. 30 (1999) 305–340.
[40] P.R. Amestoy, T.A. Davis, I.S. Duff, Algorithm 837: AMD, an approximate minimum degree ordering algorithm, ACM Trans. Math. Software 30 (2004)

381–388.
[41] P. Amestoy, T.A. Davis, I.S. Duff, An approximate minimum degree ordering algorithm, SIAM J. Matrix Anal. Appl. 17 (1996) 896–905.
[42] N.E. Gibbs Jr., W.G. Poole, P.K. Stockmeyer, A comparison of several bandwidth and profile reduction algorithms, ACM Trans. Math. Software 2 (1976)

322–330.
[43] N.E. Gibbs Jr., W.G. Poole, P.K. Stockmeyer, An algorithm for reducing the bandwidth and profile of a sparse matrix, SIAM J. Numer. Anal. 18 (1976)

235–251.

http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref1
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref2
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref3
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref4
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref5
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref6
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref7
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref8
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref9
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref10
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref11
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref12
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref13
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref14
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref15
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref16
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref17
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref18
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref19
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref20
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref21
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref22
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref23
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref24
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref25
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref26
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref27
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref28
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref29
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref30
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref31
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref32
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref33
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref34
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref35
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref36
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref37
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref38
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref39
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref40
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref41
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref42
http://refhub.elsevier.com/S0898-1221(15)00576-3/sbref43

	Sparse approximate inverse preconditioners on high performance GPU platforms
	Introduction
	Sparse inversion of sparse factors
	Positional drop strategies
	Numerical drop strategies
	Factorization and inversion implementation

	AINV: a method based on incomplete biconjugation
	Algorithmic variants
	Approximate biconjugation implementation

	Approximate inverses: Algorithmic variants
	Inversion of sparse ILU factors
	Biconjugation
	Reordering: numerical and algorithmic implications

	Software issues and computing platforms
	Approximate inverses and computing devices: GPUs

	Numerical tests
	Convection--diffusion in 2D and 3D
	Multi-core and multi-GPU performance
	Engine design application
	University of Florida collection

	Conclusions
	Acknowledgments
	References

