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Abstract The efficient numerical solution of the large linear systems of fractional
differential equations is considered here. The key tool used is the short–memory prin-
ciple. The latter ensures the decay of the entries of the inverse of the discretized
operator, whose inverses are approximated here by a sequence of sparse matrices.
On this ground, we propose to solve the underlying linear systems by these approxi-
mations or by iterative solvers using sequence of preconditioners based on the above
mentioned inverses.
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1 Introduction

Partial differential equations provide tools for modeling phenomena in many areas
of science. Nonetheless, there exist phenomena for which this kind of modeling is
not as effective. For example, the processes of anomalous diffusion, the dynamics
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of viscoelastic and polymeric materials (see [30, 37] for details and a list of other
possible applications). Indeed, most of the processes associated with these have non-
local dynamics, for which the use of fractional partial derivatives seems to be much
more effective. For physical interpretation (see, e.g., [32]).

To deal with the simulation of these models, we use the matrix approach frame-
work as suggested in [31, 33, 34] to try to transfer some of computational techniques
developed for ordinary partial differential equations to differential equations with
fractional partial derivative, called also fractional differential equations or FDEs for
brevity. In recent years, there has been some important contributions in this field; see,
e.g., [10, 23–26, 39].

We propose the use of a structural property of the fractional derivative known as
the short–memory principle. We are dealing with non-local operators, but their struc-
ture permit to observe a decay of correlations towards the extremes of the interval of
integration. As have been observed in [24, Chap. 2.6], “Up to now, the short memory
principal has not been thoroughly studied so is seldom used in the real applications.”
As an example, we can consider the work on the predictor-corrector approach in [14]
and the work in [35]. For the solution with Krylov subspace methods have been also
developed strategies with approximate inverse preconditioners. The latter build struc-
tured approximation of the inverse of the discretization matrix in the fashion of an
inverse circulant-plus-diagonal preconditioner (see the work in [27, 29]).

The novelty of our proposal is mainly in the use of short–memory principle as
a means to generate sequences of approximations for the inverse of the discretiza-
tion matrix with a low computational effort. With the aid of this precious property,
we can solve the underlying discrete problems effectively by preconditioned Krylov
iterative methods. In this way, there is no loss of accuracy in the discretization of the
differential model, because the decay properties of the operators are used to approx-
imate their inverses. Use of this solution framework also allows to exploit strategies
for updating approximate inverses to treat problems with coefficients that vary over
time, or to apply methods of integration with variable time step, in the style of [1, 3,
4, 16]. Finally, we note that from the computational point of view this also allows us
to use GPUs, for which these techniques have been recently specialized (see [6, 11,
12, 17] for the implementation details and Section 4 for our contribution).

2 Matrix approach

This section is devoted to the approximation of the fractional integral and differential
operator in matrix form. In accord with [30], we start recalling the notation for the
fractional operators we are interested in. From now on with the notation �(·) we mean
the Euler gamma function, the usual analytic continuation to all complex numbers
(except the non-positive integers) of the convergent improper integral function

�(t) =
∫ +∞

0
xt−1e−xdx. (1)

Definition 1 (Fractional Operators) Given a function y(t), we define
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Fractional Integral given α > 0 and a < b ∈ R ∪ {±∞},
Jα

a,xy(x) = 1

�(α)

∫ x

a

(x − ξ)α−1y(ξ)dξ ; (2)

Riemann-Liouville given α > 0 and m ∈ Z
+ such that m − 1 < α ≤ m, the

left-side Riemann-Liouville fractional derivative reads as

RLDα
a,xy(x) = 1

�(m − α)

(
d

dx

)m ∫ x

a

y(ξ)dξ

(x − ξ)α−m+1
, (3)

while the right-side Riemann-Liouville fractional derivative

RLDα
x,by(x) = 1

�(m − α)

(
− d

dx

)m ∫ b

x

y(ξ)dξ

(ξ − x)α−m+1
; (4)

Symmetric Riesz given α > 0 and m ∈ Z
+ such that m − 1 < α ≤ m, the

symmetric Riesz derivative reads as

dαy(x)

d|x|α = 1

2

(
RLDα

a,x + RLDα
x,b

) ; (5)

Caputo given α > 0 and m ∈ Z
+ such that m − 1 < α ≤ m, the left-side Caputo

fractional derivative reads as

CDα
a,xy(x) = 1

�(m − α)

∫ x

a

y(m)(ξ)dξ

(x − ξ)α−m+1
, (6)

while the right-side

CDα
x,by(x) = (−1)m

�(m − α)

∫ b

x

y(m)(ξ)dξ

(ξ − x)α−m+1
, (7)

Grünwald-Letnikov given α > 0 and m ∈ Z
+ such that m − 1 < α ≤ m, the

left-side Grünwald-Letnikov fractional derivative reads as

GLDα
a,xy(x) = lim

h→0
Nh=t−a

1

hα

N∑
j=0

(−1)j
(

α

j

)
y(x − jh), (8)

while the right-side

GLDα
x,by(x) = lim

h→0
Nh=b−t

1

hα

N∑
j=0

(−1)j
(

α

j

)
y(x + jh). (9)

Generally speaking, the definitions given above are equivalent only for functions
that are suitably smooth. Nevertheless, in some case, relationships can be established
between the fractional derivatives written in the above forms (see [30]).

To treat fractional differential equations, i.e., dealing with equations written in
terms of the operators in Definition 1, we recall some matrix-based approaches. We
can consider the one introduced in [31] and further generalized in [33, 34]. This
method is based on a suitable matrix representation of discretized fractional operators
in a way that is the analogues of the numerical differentiation for standard integer
order differential equations.
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Let us fix an interval [a, b] ⊆ R, an order of fractional derivative α and consider
the equidistant nodes of step size h = (b−a)/N , {xk = a+kh}Nk=0, with x0 = a and
xN = b. Then, for functions y(x) ∈ Cr ([a, b]) with r = �α	 and such that y(x) ≡ 0
for x < a, we have that

RLDα
a,xy(x) = GLDα

a,xy(x), RLDα
x,by(x) = GLDα

x,by(x). (10)

Therefore, we can approximate both the left- and right-side Riemann-Liouville
derivatives with the truncated Grünwald-Letnikov expansion

RLDα
a,xk

y(x) ≈ 1
hα

∑k
j=0(−1)j

(
α
j

)
y((k − j)x), k = 0, . . . , N, (11)

RLDα

xk,b
y(x) ≈ 1

hα

∑k
j=0(−1)j

(
α
j

)
y((k + j)x), k = 0, . . . , N. (12)

In this way, we can define the lower and upper Toeplitz triangular matrices,
respectively

B
(α)
L = 1

hα

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(α)
0 0 0 . . . 0

ω
(α)
1

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
ω

(α)
N ω

(α)
N−1 · · · ω

(α)
1 ω

(α)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B
(α)
U =

(
B

(α)
L

)T

, (13)

where the coefficients ω
(α)
j are defined as

ω
(α)
j = (−1)j

(
α

j

)
, j = 0, 1, . . . , N. (14)

To satisfy the semi-group property of the left-right Riemann-Liouville fractional
derivatives is also needed that y(k)(a) = 0 for the left, respectively y(k)(b) = 0 for
the right, for each k = 1, 2, . . . , r − 1. It is crucial to observe that there is a decay of
the coefficients along the diagonals of the discretization matrices.

Proposition 1 Given the discretization formula in (13), the following decay rate for
the coefficients holds

|ω(α)
j | = O(j−α−1), for j → +∞. (15)

This is a well-known consequence of the asymptotic relation for the Gamma
function in [38]:

lim
x→+∞

�(x + α)

xα�(x)
= 1, ∀α ∈ R. (16)

If we are interested in obtaining an even sharper bound for the constant, the esti-
mate for the sequence of real binomial coefficients in [22, Theorem 4.2] can be
applied. The strategy we have described is a numerical scheme with accuracy O(h).
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With the same strategy, a discretization, showing the same decaying property, for
the Symmetric Riesz fractional derivative is obtained.

Schemes with higher accuracy can also be derived by observing that

(1 − z)α =
+∞∑
j=0

ω
(α)
j zj , z ∈ C. (17)

Therefore, as have been done in [25], by substituting the generating function of
the first order one-side differences with the one of the desired order and posing

z = exp(−ıθ),

we get the coefficients for the scheme of higher accuracy. We stress that all the pro-
cedure can be done automatically by using Fornberg algorithm [18] and FFTs. What
we need to observe is that also in this case we can state the following proposition.

Proposition 2 Given a one-side finite difference discretization formula represented
by the polynomial pq(z) of degree q, with an associated Fourier symbol f (θ) �
pq(exp(−iθ)), and α ∈ (0, 1)∪(1, 2), we have that the coefficients for the discretiza-

tion formula of RLD
α
x,a are given by the Fourier coefficients {ω(α,q)

j }j of the function
f (θ)α and

0 < α < 1, ω
(α,q)
j = O(1/|j |α), j → +∞,

1 < α < 2, ω
(α,q)
j = O(1/|j |1+α), j → +∞.

Proof The results follows by standard relations between Hölder continuity, regular-
ity, and Fourier coefficients (see [30, Section 7.6] for details).

For our purposes, it is enough to observe that also in this case the matrix shows a
polynomial decay of the coefficients, as can be seen in Fig. 1.

Another strategy to obtain methods with higher order of accuracy is using the
shifted Grünwald-Letnikov approximation from [26]. For our purpose, it is enough
to say that it consists in building matrices that are no more only lower triangular,
but with coefficients on the other diagonals obtained with the same approxima-
tions. Therefore, the decay of the entries is preserved with the same behavior in
Propositions 1 and 2.

To discretize symmetric Riesz fractional derivatives, other approaches can be also
taken into account. We recall here only the so-called central-fractional-difference
approach from [28], with its further generalizations in [10]. By observing that for
α ∈ (1, 2], the Riesz fractional derivative operator of Definition 1 can be rewritten as

∂αu(x)

∂|x|α = − 1

2 cos(α π
2 )�(2 − α)

d2

dx2

∫
R

u(ξ)dξ

|x − ξ |α−1
, (18)
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Fig. 1 Decay of the Fourier coefficients as in Propositions 1 and 2

the following O(h2) scheme, given by [28], can be obtained

∂αu(x)

∂|x|α = − 1

hα

x−a
h∑

k=− b−x
h

ςku(x − kh) + O(h2),

ςk = (−1)k�(α + 1)

�(α/2 − k + 1)�(α/2 + k + 1)
. (19)

The decay of the coefficients of the scheme from [28] have been proved with the
same techniques of Proposition 1.

Corollary 1 For large values of k for the coefficients ςk of (19), we have

ςk = O(k−α−1) (20)
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By discretizing the differential operator over the same uniform grid over [a, b] ⊆
R, it is possible to restate the problem in symmetric Toeplitz matrix form:

O
(α)
N = − 1

hα

⎡
⎢⎢⎢⎢⎣

ς0 ς1 · · · ςN

ς1
. . .

. . .
...

...
. . .

. . . ς1
ςN · · · ς1 ς0

⎤
⎥⎥⎥⎥⎦ ,

∂αu(x)

∂|x|α = O
(α)
N u(xk) + O(h2). (21)

We remark also that discretizations of higher order for the symmetric Riesz deriva-
tive were introduced and effectively applied in [15]. For our purposes, it is enough to
note that the entries of the matrix form are weighted sums of the coefficients ςk of
(19). Therefore, they show the same decay properties, although with coefficients of
different magnitude.

The matrices generated by the Grünwald-Letnikov approximation and the central-
fractional-differences share the same decay property along the diagonals. This feature
depends on a structural property of the fractional derivatives. While the classical
derivatives are local operators, the fractional derivatives and integral operator of def-
inition (1) are non-local. Again, as we have just observed, the role of the history of
the behavior of the y(x) function, when we go near to the starting or ending point,
has less importance: the short–memory principle.

2.1 The short–memory principle

To introduce the short–memory principle, we can follow the approach in [30, Section
7.3] defining a memory length L and then imposing the approximation

RLDα
a,xy(x) ≈ RLDα

x−L,xy(x), x > a + L. (22)

Therefore, the error produced by zeroing out the entries of the matrix representing
the operator is given by

E(x) = | RLDα
a,xy(x) − RLDα

x−L,xy(x)| ≤
sup

x∈[a,b]
y(x)

Lα|�(1 − α)| , a + L ≤ x ≤ b. (23)

Thus, fixed an admissible error ε, we get that

L ≥
⎛
⎝

sup
x∈[a,b]

f (x)

ε|�(1 − α)|

⎞
⎠

1
α

⇒ E(x) ≤ ε,

a + L ≤ x ≤ b.
. (24)

This underlying properties can be used to build a predictor-corrector approach for
FDEs as in [14], or to apply truncation to reduce the computational cost for the
exponential of the discretization matrix as in [35].

Differently from these approaches, we want to preserve all the information
obtained by the discretization and use the short–memory principle, i.e., the decaying
of the entries, to gain information on the inverse of the discretization matrix.

Classical results on the decays of the inverse of a matrix A, as in [13], have been
proven to be useful in different frameworks. They have been generalized also to other
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matrix function than the simple f (z) = z−1. For our needs, we are going use the
results in [20] that require that A is not sparse or banded but has entries that show
polynomial or exponential decay. This is exactly the case of our discretizations (see
Fig. 1 for the coefficients and Fig. 2 for the decay of the inverse).

We can now state the result from [20, 21] to check that the decay really exists.

Theorem 1 Given an invertible matrix (A)h,k such that

|ah,k| ≤ C(1 + |h − k|)−s , (25)

then its inverse A−1 shares the same property. Moreover, the class Qs of such
matrices is an algebra.

Proposition 3 Given the discretizations in Propositions 1, 2 or in Corollary 1, we
have that if α ∈ (1, 2) the following relation holds

∃ C > 0 : |(A−1)h,k| = |θh,k| ≤ C(1 + |h − k|)−α−1, (26)

while for α ∈ (0, 1) we get

∃ C > 0 : |(A−1)h,k| = |θh,k| ≤ C(1 + |h − k|)−α. (27)

Fig. 2 Decay of the inverse matrix relative to the various discretizations, n = 300 and α = 1.7
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Proof To prove the results, it is enough to observe that by (15) of Proposition 1, we
get

∃ C > 0 : |(A)h,k| = |ah,k| = |ω(α)
|h−k|| ≤ C(1 + |h − k|)−α−1. (28)

Therefore, by Theorem 1, the results hold. The bounds for the other discretizations
are obtained in the same way.

2.2 Multidimensional FPDEs

The other case that need consideration is the one of multidimensional FPDEs. In the
linear constant coefficients case, the matrices of discretization can be written as a
sum of Kronecker products of matrices that discretize the equation in one dimension.

Given two matrices A, B ∈ R
n×n, we have that their Kronecker product

(Cα,β)α,β � (Ai,j )i,j ⊗ (Bk,l)k,l is defined elementwise as

cα,β = ai,j bk,l, α = n(i − 1) + k, β = n(j − 1) + l, 1 ≤ i, j, k, l ≤ n. (29)

As a corollary of the previous, we can state the following result.

Proposition 4 Given A, B ∈ R
n×n, A = (ai,j ), B = (bi,j ),

|ai,j | ≤ C1(1 + |i − j |)−s1 , |bi,j | ≤ C2(1 + |i − j |)−s2 , (30)

and I the identity matrix of order n, we have that

A ⊕ B � A ⊗ I + I ⊗ B, (31)

and there exist C, s > 0 such that

|(A ⊕ B)α,β | ≤ C(1 + |α − β|)−s . (32)

Proof By Theorem 1, we know that the set of matrices whose entries show a polyno-
mial decay is an algebra. Therefore, we only need to prove that A⊗I and I ⊗B show
the decaying property too. For (I ⊗ B)α,β , we get simply that (I ⊗ B)α,β = δi,j bk,l ,
where δi,j is the usual Kronecker delta. Then, we get the block matrix with n copies
of the B matrix on the main diagonal. This implies that we have preserved the same
decay property of the B matrix having added only zeros entries. On the other hand,
for (A ⊗ I ) we get

(A ⊗ I )α,β = ai,j δk,l,

that is the following block matrix

A ⊗ I =

⎡
⎢⎢⎢⎣

A1,1 A1,2 . . . A1,n

A2,1 A2,2 . . . A2,n

...
...

. . .
...

An,1 An,2 . . . An,n

⎤
⎥⎥⎥⎦ , Ai,j = ai,j I. (33)

Again, we can use the same decay bound for the matrix A, even if it is no more sharp
because the values are now interspersed by diagonals of zero.

Author's personal copy



1070 Numer Algor (2017) 74:1061–1082

Sharper bounds for this kind of structures have been obtained in [9]. Nevertheless,
they refer to the case of banded matrices A, B and can become of interest when we
consider equations with both fractional and classical derivatives.

Remark 1 The decay of the entries and the strategy of dropping entries of prescribed
small modulus in the inverse matrices can be applied also when some form of the
short–memory principle has been used to approximate directly the system matrix.

3 Solution strategies

The observed decay of the entries for the inverse of the matrices that discretize
the FPDEs allows us to devise an effective algorithm. All is based on the possi-
bility of discarding elements of prescribed small modulus in the calculation of an
approximate inverse of the matrix of interest. For the case of non-fractional PDEs,
i.e., with non-fractional partial derivatives, this technique was often used to pro-
duce explicit preconditioners for Krylov subspace methods: the approximate inverse
preconditioners (see, e.g., [1, 3, 4, 6]).

On this basis, our proposal is to solve the discretized differential equations in
matrix form, written in terms of the operators we introduced in Section 2. To this end,
we use an appropriate Krylov subspace method (see, e.g., [36]) with an approximate
inverse preconditioner in factored form discussed in Section 3.1. Experiments 1, 2,
and 3 in Section 4 illustrate the application of our approach to some test problems.

On the other hand, if we have a good approximation of the inverse of the discretiza-
tion matrix, we can use it as a direct method for the solution of the given FPDE. In
this way, the solution procedure is reduced to compute an appropriate approximate
inverse and do some matrix-vector products.

For this second approach, we consider the solution of a pure fractional partial dif-
ferential equation, i.e., without derivatives of integer order. Having discretized it in
terms of the formulas in Section 2, we get sequences of matrices, which, together with
their inverses, share the decay property called short–memory principle. In practice,
we approximate the underlying inverses with the approximate inverses in Section 3.1.
Similarly to what was done in [35], we are going to trade off accuracy and perfor-
mance. Nevertheless, instead of discarding elements of the discretized operator and
then solving the associated linear systems, we are going to act directly on the inverse
of the operator, building a sort of direct method (see Experiment 4 in Section 4).

Before trying both strategies on some test problems, we recall a class of algorithms
from [7] to compute the approximate inverse through the use of a biorthogonaliza-
tion procedure (conjugation for the Hermitian case). Moreover, we will consider a
strategy from [3–5, 16] to update these approximations in the case where the dis-
cretization of the equation depends on the time step, giving rise to a sequence of
algebraic linear systems with variable coefficient matrices.

We stress that also other strategies, based on the use of approximate inverses archi-
tecture, have been used in literature. The one considering the solutions of Hermitian
positive definite Toeplitz-plus-diagonal systems from [27], which is based on the
exponential decay of the entries of the matrix combined with the use of approximate
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inverse circulant-plus-diagonal preconditioners. A similar idea, although specialized
for the case of discretization of fractional diffusion equations, has been developed
in [29]. In the latter, the construction of an approximate inverse preconditioner is
obtained by the circulant approximation of the inverses of a scaled Toeplitz matrix
that is then combined together in a row-by-row fashion.

3.1 Approximate inverse preconditioners

Given a matrix A symmetric and positive definite, we are interested in an appropriate
sparse approximation of the inverse of A in factorized form

A−1 ≈ ZD−1ZT , (34)

where the matrix Z is lower triangular. If the process is carried out without dropping
and in exact arithmetic, we get Z = L−T , where L is the unit Cholesky factor of A.
Moreover, we consider sparse approximations for unsymmetric matrices

A−1 ≈ WD−1ZT . (35)

We recall that there exist stabilized algorithms for computing approximate inverses
for nonsymmetric matrices that are less prone to breakdowns than others (see [2]).
Indeed, we stress that in general, incomplete factorizations (ILUs; see [36]) are not
a guarantee to be nonsingular also for positive definite matrices. This issue holds
also for efficient inverse ILU techniques, i.e., approximations of the inverse matrix
generated by sparsification and inversion of an ILU algorithm. In particular, we will
not use inverse ILU techniques for our test problems in Section 4 because of the
frequent breakdowns.

To show that the decay allows to build approximate inverses significantly more
sparse, we report in Table 1 the fill-in percentage of the approximate factorization for
the test problem⎧⎨

⎩
ut = d+(x) RLDα

a,xu + d−(x) RLDα
x,bu + f (x, t). x ∈ (a, b),

u(a, t) = u(b, t) = 0, t ∈ [0, T ],
u(x, 0) = u0(x). x ∈ [a, b].

(36)

where the fractional derivative order is α ∈ (1, 2), f (x, t) is the forcing term, and
d±(x) are two non-negative functions representing the variable diffusion coefficients.

Table 1 Ratio of fill-in for
various drop tolerances for the
problem (36) with matrix size
n = 2048 and α = 1.8

Tolerance nnz(W) nnz(Z) Fill-in (%)

5.00e-01 4094 4095 0.20

1.00e-01 52253 51867 2.48

1.00e-02 117294 116453 5.57

1.00e-03 214242 208970 10.09

1.00e-04 332837 319870 15.56

1.00e-05 466732 443718 21.71

1.00e-06 630214 594081 29.19
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The convergence properties of this approach will be discussed in the numerical
experiments section.

Among reliable methods for computing directly an approximate factorization of
the inverse of the underlying matrices, we mention the Bridson’s outer product for-
mulation in [7, 8] and its implementation in [11]. The algorithm is based on a
biconjugate Gram–Schmidt process (i.e., conjugate with respect to the bilinear form
associated with A). Sparsity in the inverse factors is obtained by carrying out bicon-
jugation process incompletely. A left-looking reformulation of the algorithm with the
use of outer products permits to exploit even more zeros under suitable conditions
(see [6]).

We do not discuss the techniques for generating approximate inverse in factorized
form any further because it is out of the scope of this paper (see, e.g., [2, 6–8] for
details).

3.2 Updating factorizations for the approximate inverses

The discretization of time-dependent fractional PDEs produces a sequence of linear
systems whose matrices are dependent on the time step. Usually facing a sequence
of linear systems with different matrices makes expensive to rebuild a new pre-
conditioner each time. On the other hand, reusing the same preconditioner can be
inappropriate; see [3, 4].

The update strategy considered here is the one developed in [3, 4] and further in
[1]. We consider having a sequence of nonsymmetric matrices {Ak}tk=0, where A0 is
called the reference matrix.

Consider an initial approximation (35) for the inverse of A0 in factorized form:

P −1
0 = ZD−1WT , (37)

then by writing each Ak , for k ≥ 1 as

Ak = Ak − A0 + A0 = A0 + k, k � Ak − A0, (38)

we build the updated preconditioner as

A−1
k ≈ P −1

k = Z(D + Ek)
−1WT , Ek � g(WT kZ), (39)

where g is a sparsification function, e.g., a function that extracts some banded
approximation of its matrix argument.

Techniques with more than one reference matrix have been devised in [5, 16] by
means of matrix interpolation. The formula (39) is modified to change at each update
the Z and W factors, i.e.,

A−1
k ≈ P −1

k = Zk(Dk + Ek)
−1WT

k , Ek � g(WT
k kZk). (40)

In order to use the inverse approximated in a direct manner, rather than as a precon-
ditioner for an iterative method, we considered to use the update rule as a way to get
an approximation for the inverse of the matrix of the other steps.
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4 Numerical experiments

The numerical experiments are performed on a laptop running Linux with 8 Gb mem-
ory and CPU Intel(R) Core(TM) i7-4710HQ CPU with clock 2.50 GHz, while the
GPU is an NVIDIA GeForce GTX 860M. The scalar code is written and executed
in MATLAB R2015a, while for the GPU we use C++ with Cuda compilation tools,
release 6.5, V6.5.12 and the CUSP library [11].

We build our approximate inverses with the CUSP library [11] that implements the
standard scaled Bridson algorithm for approximate inverses in factorized form. This
choice was made to exploit highly parallel computer architectures such as GPUs. In
this kind of setting, it is possible to implement efficiently matrix-vector multiplica-
tions that are the numerical kernel of both iterative Krylov subspace and approximate
inverse preconditioners considered here. Moreover, the implementation of the under-
lying approximate inverses relays on a left-looking variant of the biorthogonalization
procedure that, as have been observed in [6], sometimes suffers less from pivot break-
down. In the proposed experiments, we use GPU only to build the preconditioners
in order to emphasize the related performances. However, it is possible to imple-
ment also the solving phase on GPUs, i.e., the iterative methods for the underlying
algebraic linear systems. This will be the subject of a future work. Indeed, we are
actually studying the migration to the Parallel Sparse BLAS (PSBLAS) library [17]
that contains some Krylov subspace iterative methods and the basic kernels for com-
puting matrix-vector products, in conjunction with the MLD2P4 framework [12],
containing some parts of the preconditioners. The former is a package of multi-
level preconditioners that can work with the PSBLAS library (see [6] and references
therein).

The proposed strategies are scalable also on architectures that use more than one
degree of parallelism, i.e., using more than one GPU to further improve the speedups.

We start considering the following problem containing both integer and fractional
derivatives

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u(x, y, t)

∂t
= ∇ · (< ((a(x), b(y)),∇u >) (x, y) ∈ �, t > 0,

+L(α,β)u,

u(x, y, 0) = u0(x, y),

u(x, y, t) = 0 (x, y) ∈ ∂�, t > 0.

(41)

where the fractional operator is given by

L(α,β)· � d
(α)
+ (x, y) RLDα

a,x · +d
(α)
− (x, y) RLDα

x,b ·
+d

(β)
+ (x, y) RLDβ

a,y · +d
(β)
− (x, y) RLD

β
y,b. (42)

To discretize the problem, we consider the five points discretization of the Laplace
operator combined with the shifted Grünwald-Letnikov approximation for the frac-
tional one. As a time integrator, we choose the Backward-Euler method, considering
the behavior of the error of approximation and the overall stability of the method
(see [26]).
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Experiment 1 As a first choice for the solution of problem (41), we consider the
coefficients

a(x) = 1 + 0.5 sin(3πx), b(y) = 1 + 0.7 sin(4πy)

dα+(x, y, t) = dα−(x, y, t) = e4t x4αy4β,

d
β
+(x, y, t) = d

β
−(x, y, t) = e4t (2 − x)4α(2 − y)4β

u0(x, y) = x2y2(2 − x)2(2 − y)2. (43)

over the domain [0, 2]2 and the time interval t ∈ [0, 2]. In Table 2 ,we consider the
use of the GMRES(50) algorithm with a tolerance of ε = 1e−6 and a maximum num-
ber of admissible iterations MAXIT = 1000. The approximate inverses are computed
with a drop tolerance δ = 0.1. The update formula (39) for the preconditioner is used
with only a diagonal update, i.e., the function g(·) extracts only the main diagonal.
In Table 2 ,we report the average timings and the number of external/internal itera-
tions. When a “†” is reported, at least one of the iterative solvers does not reach the
prescribed tolerance in MAXIT iterations. We report in Fig. 3 the solution obtained at
different time steps. We consider the solution of this problem also with BiCGSTAB

and GMRES algorithms with the same settings. The results for this case are reported
in Tables 3 and 4, respectively.

Experiment 2 We now consider a slightly different model in which the coefficient
function is used in divergence form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u(x, y, t)

∂t
= ∇ · (a(x, y)∇u) (x, y) ∈ �, t > 0,

+L(α,β)u,

u(x, y, 0) = u0(x, y),

u(x, y, t) = 0 (x, y) ∈ ∂�, t > 0.

(44)

The fractional operator L(α,β) is defined as in (42). We set Nx = Ny = 80 and Nt =
70 over the domain � = [0, 2]2 and T = [0, 2]. The same choice of the previous
example have been done for the fractional diffusion coefficients, while various func-
tion have been tested for variable diffusion. We start with the GMRES(50) algorithm

Table 2 Test problem in (41)

GMRES(50) Fixed PREC. Updated PREC.

α β Fill-in IT T(s) IT T(s) IT T(s)

1.6 1.2 5.38 % † † 4.45 26.24 7.68e-01 2.04 26.08 2.95e-01

1.3 1.8 6.51 % † † 4.55 27.57 7.79e-01 2.20 23.71 3.09e-01

1.5 1.5 4.41 % † † 4.43 28.04 7.61e-01 2.04 26.08 2.93e-01

Nx = Ny = 80, Nt = 50
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Fig. 3 Plot of the solution of the problem (41) for α = 1.6, β = 1.2

with a tolerance of ε = 1e − 6. The drop tolerance for the approximate inverse pre-
conditioners is set again to δ = 0.1. Results for this case are collected in Tables 5, 6
and 7.

Experiment 3 We now consider a different but related model problem: a time-
dependent 2D mixed fractional convection-diffusion equation, where fractional

Table 3 Test problem in (41)

BiCGSTAB Fixed PREC. Updated PREC.

α β Fill-in IT T(s) IT T(s) IT T(s)

1.6 1.2 5.38 % † † 134.78 5.74e-01 69.08 2.94e-01

1.3 1.8 6.51 % † † 127.18 5.38e-01 75.05 3.21e-01

1.5 1.5 4.41 % † † 123.46 5.08e-01 74.43 3.09e-01

Nx = Ny = 80, Nt = 50
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Table 4 Test problem in (41)

GMRES Fixed PREC. Updated PREC.

α β Fill-in IT T(s) IT T(s) IT T(s)

1.6 1.2 5.38 % † † 1.00 159.55 1.89e+00 1.00 70.12 3.30e-01

1.3 1.8 6.51 % † † 1.00 159.86 1.85e+00 1.00 71.12 3.37e-01

1.5 1.5 4.41 % † † 1.00 161.12 1.91e+00 1.00 70.08 3.28e-01

Nx = Ny = 80, Nt = 50

diffusion is combined with classical transport. By using the same notation of the
previous cases, we write
⎧⎨
⎩

ut (x, y, t) = L(α,β)u+ < (t1(x, y), t2(x, y)), ∇u >, (x, y) ∈ [0, 2]2, t ≥ 0
u(x, y, 0) = u0(x, y),

u(x, y, t) = 0, (x, y) ∈ ∂[0, 2]2 ∀t ≥ 0.

(45)
Regarding the space variables, we discretize the fractional operator with shifted
Grünwald-Letnikov approximation and the transport term with standard first order
centered finite differences. For the time approximation, we use the backward Euler
method to be consistent with the approximation error and for the dominant diffusion
behavior of the equation.

We choose as a first set of coefficients for this experiment the following variable
(in space) coefficients for the fractional operator L(α,β)

dα+(x, y, t) = dα−(x, y, t) = x4αy4β,

d
β
+(x, y, t) = d

β
−(x, y, t) = (2 − x)4α(2 − y)4β (46)

while for the transport part we choose

t1(x, y) = y + β

x + y + α
, t2(x, y) = x + α

x + y + β
, (47)

Table 5 Test problem in (44)

GMRES(50) Fixed PREC. Updated PREC.

α β Fill-in IT T(s) IT T(s) IT T(s)

1.2 1.8 5.96 % † † 2.93 31.77 4.89e-01 1.52 27.48 1.94e-01

1.5 1.5 2.74 % † † 2.90 30.36 4.55e-01 1.55 24.33 1.88e-01

1.8 1.8 4.27 % † † 3.65 23.93 5.82e-01 2.19 20.54 2.90e-01

1.8 1.3 5.21 % † † 3.10 30.87 5.05e-01 1.67 28.26 2.25e-01

Nx = Ny = 80, Nt = 70 and a(x, y) = exp(−x3 − y3)
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Table 6 Test problem in (44)

GMRES Fixed PREC. Updated PREC.

α β Fill-in IT T(s) IT T(s) IT T(s)

1.8 1.8 4.27 % † † 1.00 130.94 1.18e+00 1.00 69.14 3.16e-01

1.8 1.3 5.21 % † † 1.00 114.45 9.56e-01 1.00 59.19 2.55e-01

1.5 1.5 2.74 % † † 1.00 107.43 9.30e-01 1.00 51.35 2.24e-01

1.2 1.8 5.96 % † † 1.00 111.30 9.95e-01 1.00 52.01 2.22e-01

Nx = Ny = 80, Nt = 70 and a(x, y) = exp(−x3 − y3)

with the usual initial condition u0(x, y) = x2y2(2 − x)2(2 − y)2. The GMRES(50)

algorithm is used with a fixed approximate inverse preconditioner with drop tolerance
δ = 0.1. The results are in Table 8.

A similar behavior is obtained also with the GMRES algorithm, with the same over-
all settings and the same drop tolerance for the approximate inverse preconditioner.
Results are reported in Table 9.

Finally, we consider the solution with the BiCGSTAB(2) algorithm [19], instead
of the classical BiCGSTAB, to deal with the possibility of having a discretization
matrix with non-real eigenvalues, eigenvalues that are not approximated well by the
first order factors of the polynomials built by the standard BiCGSTAB. Tolerance for
the method and drop tolerance for the approximate inverse preconditioner are set to
be the same of the ones for the other algorithms. Results are collected in Table 10.

Experiment 4 We consider the following constant coefficients fractional diffusion
equation from [39]

⎧⎨
⎩

ut (x, t) = K ∂α

∂|x|α u(x, t), t ∈ [0, T ], x ∈ [0, π ], α ∈ (1, 2),

u(x, 0) = x2(π − x),

u(0, t) = u(π, t) = 0.

(48)

Table 7 Test problem in (44)

BiCGSTAB Fixed PREC. Updated PREC.

α β Fill-in IT T(s) IT T(s) IT T(s)

1.8 1.8 4.27 % † † † † 77.67 3.34e-01

1.8 1.3 5.21 % † † 116.08 4.97e-01 60.93 2.63e-01

1.5 1.5 2.74 % † † 117.43 4.96e-01 55.17 2.32e-01

1.2 1.8 5.96 % † † 107.55 4.65e-01 54.17 2.36e-01

Nx = Ny = 80, Nt = 70 and a(x, y) = exp(−x3 − y3)
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Table 8 Test problem in (45)

GMRES(50) Preconditioned

α β Fill-in IT T(s) IT T(s)

1.2 1.2 5.54 % 18.39 25.53 3.24e+00 2.37 24.39 3.59e-01

1.2 1.3 5.89 % 26.34 27.49 4.70e+00 2.34 25.95 3.47e-01

1.2 1.5 6.38 % 47.61 28.58 8.54e+00 2.34 22.10 3.44e-01

1.2 1.8 9.33 % 256.00 25.78 4.68e+01 2.00 18.20 2.60e-01

1.3 1.2 6.07 % 25.93 29.05 4.69e+00 2.00 22.27 2.79e-01

1.3 1.3 5.51 % 31.63 28.86 5.62e+00 2.47 27.49 3.86e-01

1.3 1.5 6.14 % 56.44 24.20 1.04e+01 2.39 31.37 3.95e-01

1.3 1.8 8.53 % 387.71 23.53 7.04e+01 2.22 21.69 3.15e-01

1.8 1.2 8.05 % 294.10 29.90 5.34e+01 1.56 26.95 2.14e-01

1.8 1.3 7.39 % 477.75 28.00 8.80e+01 1.61 29.17 2.32e-01

1.8 1.5 7.05 % † † 2.25 21.75 3.20e-01

1.8 1.8 7.18 % † † 3.71 28.61 6.33e-01

Nx = Ny = 80, Nt = 60

whose analytical solution, on an infinite domain, is given by

u(x, t) =
+∞∑
n=1

(
8

n3
(−1)n+1 − 4

n3

)
sin(nx) exp

(−nαKt
)
. (49)

To solve numerically the problem in (48), we consider both a direct application of the
short–memory principle, i.e., we extract a banded approximation of the discretiza-
tion matrix, and the use of approximate inverses instead of the true inverses. Both
the results will be compared with the solution(s) obtained by solving the underlying
sequence of linear systems.

As a first test, we consider the discretization of the symmetric Riesz FDE as a half-
sum of left- and right-sided Caputo derivatives, using the backward Euler scheme
for advancing in time. We set the number of diagonals to be extracted as d = 150,
and, to obtain a similar bandwidth in the inverse, drop tolerances of δ = 5e − 7 and
δ = 1e − 7. The averages of 2-norm of the errors are reported in Table 11. For the
choice of δ = 5e − 7, the bandwidth of the approximate inverse is 334 (instead of
the 300 given by the direct application of the short–memory principle) and an error
that is of comparable modulus. The time needed for the solution is T = 0.93s with
the band-approximation while we get T = 0.08s by using the approximate inverses.
On the other hand, if we decrease the drop tolerances, we can obtain a solution with
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Table 9 Test problem in (45)

GMRES Preconditioned

α β Fill-in IT T(s) IT T(s)

1.2 1.2 5.54 % 1.00 365.86 5.51e+00 1.00 79.22 4.00e-01

1.2 1.3 5.89 % 1.00 443.95 7.97e+00 1.00 79.92 4.07e-01

1.2 1.5 6.38 % 1.00 660.56 1.69e+01 1.00 78.15 4.06e-01

1.2 1.8 9.33 % † † 1.00 64.12 2.87e-01

1.3 1.2 6.07 % 1.00 436.73 7.72e+00 1.00 66.49 3.08e-01

1.3 1.3 5.51 % 1.00 514.36 1.06e+01 1.00 83.31 4.37e-01

1.3 1.5 6.14 % † † 1.00 82.80 4.28e-01

1.3 1.8 8.53 % † † 1.00 74.12 3.64e-01

1.5 1.2 6.06 % 1.00 637.86 1.58e+01 1.00 59.08 2.59e-01

1.5 1.3 6.16 % † † 1.00 66.36 3.03e-01

1.5 1.5 5.78 % † † 1.00 95.56 5.45e-01

1.5 1.8 7.35 % † † 1.00 92.97 5.06e-01

1.8 1.2 8.05 % † † 1.00 53.88 2.34e-01

1.8 1.3 7.39 % † † 1.00 57.36 2.52e-01

1.8 1.5 7.05 % † † 1.00 73.69 3.67e-01

1.8 1.8 7.18 % † † 1.00 115.46 7.25e-01

Nx = Ny = 80, Nt = 60

also a smaller error than the one obtained by solving the sequence of linear system
with Gaussian elimination implemented in MATLAB, i.e., the well-known \, because
the good information are already completely included in the underlying reduced
model.

We also consider discretizing the symmetric Riesz derivatives with Ortigueira’s
centered fractional differences scheme, again by using backward Euler for advanc-
ing in time. The averages of the 2-norm of the errors are reported in Table 11. In this
case, we obtain a bandwidth of 330 for the approximate inverses that can be com-
pared with 300 of the direct approximation. The timings are T = 0.77s with the
direct application of the short–memory principle and T = 0.09s by using the approx-
imate inverses. The profile of the relative error has the same behavior of the former
discretization.

We experimented also the possibility outlined in Remark 1, i.e., the use of a banded
approximation of the discretization matrix and of the approximate inverse as the true
inverses. We observe that in these cases, the effect of the terms of small norm is
adding noise, i.e., ill-conditioning of the matrices, that reduces the overall accuracy
obtained by the discretization methods.
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Table 10 Test problem in (45)

GMRES Preconditioned

α β Fill-in IT T(s) IT T(s)

1.2 1.2 5.54 % 220.75 1.43e+00 44.88 3.45e-01

1.2 1.3 5.89 % 303.59 1.95e+00 44.69 3.43e-01

1.2 1.5 6.38 % † † 46.27 3.48e-01

1.2 1.8 9.33 % † † 39.61 3.07e-01

1.3 1.2 6.07 % 297.31 1.94e+00 36.27 2.73e-01

1.3 1.3 5.51 % 384.61 2.49e+00 49.42 3.70e-01

1.3 1.5 6.14 % † † 52.27 3.93e-01

1.3 1.8 8.53 % † † 46.22 3.67e-01

1.5 1.2 6.06 % † † 32.20 2.42e-01

1.5 1.3 6.16 % † † 37.92 2.86e-01

1.5 1.5 5.78 % † † 60.53 4.54e-01

1.5 1.8 7.35 % † † 64.41 4.91e-01

1.8 1.2 8.05 % † † 31.63 2.42e-01

1.8 1.3 7.39 % † † 34.68 2.67e-01

1.8 1.5 7.05 % † † 46.03 3.50e-01

1.8 1.8 7.18 % † † 80.80 6.14e-01

Nx = Ny = 80, Nt = 60

Table 11 Test problem in (48)

Complete Banded Direct

Type α K T (s) err. T (s) err. T (s) err.

C 1.8 0.25 9.39 2.42e-02 0.93 4.29e-02 0.08 4.24e-02

0.16 1.64e-02

O 1.8 0.25 9.27 3.03e-02 0.77 4.29e-02 0.09 4.43e-02

0.11 3.33e-02

O* 1.5 0.75 8.64 7.43e-02 0.58 2.62e-01 0.10 7.66e-02

O* 1.2 1.25 9.43 5.27e-01 0.63 2.78e-01 0.06 2.73e-01

C* 1.8 1.50 8.66 1.15e-01 1.05 1.53e-01 0.16 1.83e-01

Timings and averages of the 2-norm of the errors over all time steps. C discretization using the half-
sum of Caputo derivatives, O Ortigueira discretization, C∗ and O∗ our method applied to the banded
approximation of the discretization matrix (see Remark 1). Column Complete: the reference solution is
used with the standard discretization matrix. Column Banded: the Short–memory principle is applied to
the discretization of the operator. Column Direct: our approach using the approximate inverses. All the
discretizations use N = 210
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5 Conclusions and possible extensions

The use of a structural property of the differential operator, i.e., the short–memory
principle, and the fact that it is inherited by the discretization, gave us a chance for
the efficient use of sparse approximate inverses to solve FDEs. The former have been
used both for preconditioning Krylov iterative solvers and as direct methods through
the use of matrix-vector products. We stress that, differently from the approach rely-
ing only on the structure of the matrix, ours permits to consider cases in which
fractional and classical derivatives appear together. We observed that our proposal
can exploit the high-performance capabilities of GPGPU computing, providing also
a fast build of the preconditioners.

We plan to increase the use and the degree of GPU parallelism in a future work
by implementing PSBLAS and using more than one GPU in order to increase the
speedups.

Acknowledgments The authors would like to thank one of the referees for helpful comments which
have improved our presentation.
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