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Abstract An innovative block structured with sparse blocks multi iterative preconditioner
for linear multistep formulas used in boundary value form is proposed here to accelerate
GMRES, FGMRESandBiCGstab(l). The preconditioner is based on blockω-circulantmatri-
ces and a short-memory approximation of the underlying Jacobian matrix of the fractional
partial differential equations. Convergence results, numerical tests and comparisons with
other techniques confirm the effectiveness of the approach.
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1 Introduction and Rationale

In this paper we consider two classes of initial value problems (IVPs) with fractional deriva-
tives in space. The latter fractional partial differential equations (FPDE for short in the sequel)
are sometimes used to model anomalous dispersion phenomena. In particular, we focus on
the fractional diffusion equation
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⎧
⎪⎪⎨

⎪⎪⎩

∂
∂t y(x, t) = d+(x, t) RLD

α
xL ,x y(x, t) + d−(x, t) RLD

α
x,xR y(x, t) + g(x, t),

x ∈ (xL , xR), t ∈ (t0, T ],
y(xL , t) = y(xR, t) = 0, 0 ≤ t ≤ T,

y(x, t0) = y0(x), x ∈ [xL , xR],
(1)

for α ∈ (1, 2), f (x, t) the source (or sink) term and the diffusion coefficients d±(x, t) ≥ 0
with d+(x, t)+d−(x, t) > 0 ∀ x, t ∈ [xL , xR]×[0, T ], andmore in general on the fractional
advection dispersion equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂
∂t y(x, t) = d+(x, t) RLD

α
xL ,x y(x, t) + d−(x, t) RLD

α
x,xR y(x, t)++b(x)yx (x, t) + c(x)y(x, t) + g(x, t),

x ∈ (xL , xR), t ∈ (t0, T ],
y(xL , t) = y(xR, t) = 0, 0 ≤ t ≤ T,

y(x, t0) = y0(x), x ∈ [xL , xR],

(2)

where b(x) ≥ 0 ∈ C1 and c(x) ≥ 0 ∈ C0. Similarly, one can take into account the 2D
symmetric (Riesz) version of the fractional diffusion equation, given by

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
− Kx

∂2αu

∂|x |2α − Ky
∂2βu

∂|y|2β + b · ∇u + cu = g, (x, y) ∈ Ω, t ∈ [0, T ]
u(x, y, t) = 0, (x, y) ∈ ∂Ω t ∈ [0, T ],
u(x, y, 0) = u0(x, y), (x, y) ∈ ∂Ω,

(3)

where b ∈ C1(Ω,R2), c ∈ C(Ω), u ∈ L
2(Ω), Kx , Ky ≥ 0 and Kx +Ky > 0,α, β ∈ (1/2, 1).

See, e.g., [20,27] and references therein formore details on these fractional partial differential
equations.

We use the following definition for Riemann–Liouville fractional derivatives.

Definition 1 Given a function y(t) we define the left-side Riemann–Liouville fractional
derivative of order α > 0 with m ∈ Z

+ such that m − 1 < α ≤ m as

RLD
α
a,x y(x) = 1

Γ (m − α)

(
d

dx

)m ∫ x

a

y(ξ)dξ

(x − ξ)α−m+1 ,

where Γ (·) is the Euler gamma function, and the right-side Riemann–Liouville fractional
derivative as

RLD
α
x,b y(x) = 1

Γ (m − α)

(

− d

dx

)m ∫ b

x

y(ξ)dξ

(ξ − x)α−m+1 .

Given a function u(x, y) and given 1/2 < μ ≤ 1 and n − 1 < 2μ ≤ n, we define the
symmetric Riesz derivative

∂2μu(x, y)

∂|x |2μ = −c2μ
(

RLD
2μ
a,x + RLD

2μ
x,b

)
u(x, y), c2μ = 1

2 cos(μπ)
,
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where

RLD
2μ
a,xu(x, y) = 1

Γ (n − 2μ)

(
∂

∂x

)n ∫ x

a

u(ξ, y)dξ

(x − ξ)2μ−n+1 ,

RLD
μ
x,bu(x, y) = 1

Γ (n − 2μ)

(

− ∂

∂x

)n ∫ b

x

u(ξ, y)dξ

(ξ − x)2μ−n+1 .

The symmetric Riesz derivative with respect to y is defined similarly and is not duplicated
here.

To semidiscretize Eqs. (1) and (2), we use the p-shifted Grünwald–Letnikov discretization
for the fractional Riemann–Liouville operators [22,23] over the grid {xk = L + k
x}mk=0
and 
x = R−L

m ,

RLD
α
xL ,x y(x)

∣
∣
x=xk

= 1


xα

k+p∑

j=0

ω
(α)
j

[
y(xk− j+p) − y(xL)

] + y(xL)x−α
k

Γ (1 − α)
+ O(
x2),

where the coefficients ω
(α)
j are obtained recursively [27] as

ω
(α)
0 = 1, ω

(α)
j =

(

1 − α + 1

j

)

ω
(α)
j−1, j ≥ 1.

The shift parameter p is chosen to optimize the approximation performance as the minimizer
of |α − p/2|, i.e., p = 1 for us because 1 < α ≤ 2. At the same time, the right-sided operator
can be obtained as

RLD
α
x,xR y(x)

∣
∣
x=xk

= 1


xα

n−k+p∑

j=0

ω
(α)
j

[
y(xk+ j−p) − y(xR)

] + y(xR)x−α
k

Γ (1 − α)
+ O(
x2).

Analogously, we can obtain a discretization of the Eq. (3) bymeans of the fractional centered
discretization in [25]

∂2α y(x)

∂|x |2α
∣
∣
∣
∣
x=xk

= cos(απ)


xα

k∑

j=−k

Γ (2α + 1)(−1) j

Γ (α − j + 1)Γ (α + j + 1)
y(xk− j ) + O(
x2),

that, as observed in [6], shares an analogous decay property for the coefficients of the
p-shifted Grünwald–Letnikov discretization; see, e.g., [17,20] for other feasible finite dif-
ferences schemes. By means of the above discretization, together with the centered finite
difference scheme for b(x)ux (x, t) and for b · ∇u, we get a semidiscretization for Eqs. (1),
(2) and (3):

d

dt
y(t) = Jmy(t) + g(t), t ∈ (t0, T ], y(t) = [y(1)(t), . . . , y(m)(t)]T . (4)

The initial condition for (4) is

y(t0) = [y0(x1), . . . , y0(xm)]T = y0,

the Jacobian matrix and forcing term are Jm ∈ R
m×m , g(t) ∈ R

m , respectively.
Two properties of Jm are crucial for us:

– the decay in absolute values of the entries along the diagonals [6,28];
– the behavior of its eigenvalues, i.e., the spectral distribution.
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(a) (b)

Fig. 1 Bound (5) for both Grünwald–Letnikov (on the left) and fractional centered (on the right) discretiza-
tions. The dots represents the values of the coefficients in the discretization, while the squares are the values
of the bound. The example is for order of fractional derivative 1.5. a Right Grünwald–Letnikov discretization.
b Fractional centered discretization

The decay of the coefficients represents a structural property of the continuous operators
called short-memory principle [27], that is inherited by the Grünwald–Letnikov and the
fractional centered discretizations: (see Fig. 1)

|ω(α)
j | = O( j−α−1), for j → +∞. (5)

The latter property has been recently exploited in several ways. Among them:

– to drop diagonalswith entries of smallmodulus in Jm in order to reduce the computational
cost for approximating the matrix exponential or classical time stepping schemes; see,
e.g., [28,36,37];

– for the computation and the update of approximate inverse preconditioners to solve time-
dependent FPDEs [6] or standard incomplete LU factorizations [21].

In Sect. 3 we propose an hybrid preconditioner based on block ω-circulant matrices using
the short-memory principle of the Jacobian matrix.

We recall that an n × n matrix An = (a j,k) is said to be Toeplitz if a j,k = α j−k ,
j, k = 1, . . . , n, i.e., An is constant along its diagonals. An n × n matrix Ăn is said to be
circulant if it is Toeplitz and its diagonals satisfy ăn− j = ă− j , j = 1, . . . , n−1. The circulant
matrices Ăn are diagonalized by the Fourier matrix F = (Fj,k), Fj,k = e2π i jk/n/

√
n,

j, k = 0, . . . , n − 1, i is the imaginary unit, see, e.g., [7,24] and references therein.

Definition 2 W is an n × n {ω}-circulant matrix if there exists a number ω such that

W =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 · · · an−1

ωan−1 a0 · · · an−2

ωan−2 ωan−1 · · · an−3
...

... · · · ...

ωa1 ωa2 · · · a0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

Theorem 1 Let ω = exp(iθ), −π < θ ≤ π and W an n× n {ω}-circulant matrix. Then, the
following Schur decomposition for W holds true:

W = Ω∗F∗ΛFΩ, (6)

where Ω = diag(1, ω−1/n, . . . , ω−(n−1)/n), Λ is a diagonal matrix containing the eigen-
values of W and F is the Fourier matrix.
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Note that circulant matrices are simply the {1}-circulant matrices and thus Theorem 1 gives
also their Schur decomposition.

Let us mention a tool that will be useful to determine the distribution of singular values
and of the eigenvalues of matrix sequences: the Generalized Locally Toeplitz Theory (GLT);
see [16].

Proposition 1 [14] Let us fix a time tm and assume that the functions d+(x) = d+(x, tm) and
d−(x) = d−(x, tm) are both Riemann integrable over [xL , xR]. Then, the matrix sequence
{
xα Jm}m is a GLT sequence with symbol

f̂ (x̂, θ) = f (xL + (xR − xL)x̂, θ),

where
f (x, θ) = −d+(x)e−iθ (1 − eiθ )α − d−(x)eiθ (1 − e−iθ )α,

(x̂, θ) ∈ [0, 1] × [−π, π], (x, θ) ∈ [xL , xR] × [−π, π].
Definition 3 Let f : Rk ⊃ D → C be a measurable function with k ≥ 1, μ(D) < +∞.
Then, if C0(K) is the set of measurable functions with compact support overK, withK = C

or R+
0 , given a sequence of matrices {Jm}m with eigenvalues {λ j } and singular values {σ j },

then

Jm ∼λ ( f, D): {Jm}m is distributed in the sense of the eigenvalues as the pair ( f, D) if

lim
m→+∞

1

m

m∑

j=1

F(λ j ) = 1

μ(D)

∫

D
F( f (t)) d t, ∀ F ∈ C0(C),

Jm ∼σ ( f, D): {Jm}m is distributed in the sense of the singular values as the pair f ( f, D)

if

lim
m→+∞

1

m

m∑

j=1

F(σ j ) = 1

μ(D)

∫

D
F(| f (t)|) d t, ∀ F ∈ C0(R+

0 ),

In particular, {
xα Jm}m is a GLT sequence for f , and thus Jm ∼σ f , with f from
[0, 1]×[−π, π]. Moreover, if Jm is Hermitian, this holds also in the sense of the eigenvalues;
see Fig. 2. This gives that the eigenvalues of any Jm have negative real part, i.e., 
(λi ) < 0.

3210-1-2-3

0.5

1

1.5

2

2.5

3

-3 -2 -1 1 2 3

1

2

3

4

(a) (b)

Fig. 2 Proposition 1. Some GLT symbols for different values of α for the Jacobian matrix with coefficients
d+(x) ≡ 0.5 and d−(x) ≡ 0.6 and computed singular values (dot) and approximated by the sampling of the
GLT symbol (dashed gray line). a GLT symbols. b Singular values distribution
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Note that there is a zero of order α in 0 for the GLT symbol of Jm , see [14, Proposition 6].
Thus, any circulant preconditioner that produces a clustering at the unity in the case of
constant d+ and d− coefficients, is not anymore effective in the general, Hermitian or not,
variable coefficient case.

The outline of the paper is the following. In Sect. 2 some notions on linear multistep
formulas used in boundary value form that we will use for our FPDEs are briefly recalled.
Section 3 includes our proposals to precondition the large, sparse and structured linear sys-
tems generated by the discretization of the underlying time-dependent FPDEs along with
some convergence and spectral results. Finally, in Sect. 4 some numerical experiments and
comparisons with some of the most recent solution strategies are proposed.

2 Linear Multistep Formulas Used in Boundary Value Form

After discretization with respect to space variables, FPDEs (1), (2) and (3), but also many
time-dependent PDEs, can be reduced to the solution of the IVP

{
y′(t) = Jmy(t) + g(t), t ∈ (t0, T ],
y(t0) = y0,

(7)

where y(t), g(t) : R → R
m , y0 ∈ R

m , and Jm ∈ R
m×m . We apply to (7) fully implicit

methods for differential equations based on linear multistep formulas (LMF for short) in
boundary value form, see [1,12] and references therein. These methods approximate the
solution of the IVP (7) bymeans of a discrete boundary value problem.Consider the following
k-step linear multistep formula over a uniform mesh t j = t0 + jh, for j = 0, . . . , s, h =
(T − t0)/s to (7):

k−ν∑

i=−ν

αi+νyn+i = h
k−ν∑

i=−ν

βi+νfn+i , n = ν, . . . , s − k + ν. (8)

Here, yn is the discrete approximation to y(tn), fn = Jmyn + gn and gn = g(tn). The method
in (8) should be used with ν initial conditions and k − ν final conditions. That is, we need
the values y0, . . . , yν−1 and the values ys−k+ν+1, . . . , ys . An initial value problem like (7)
provides only one value, i.e., y0. In order to get the other initial and final values, we have
to provide additional (k − 1) equations. The coefficients α

( j)
i and β

( j)
i of these equations

can be chosen such that the truncation errors for these initial and final conditions are of the
same order as that in (8), see [12] for details. Note that for a boundary value problem we can
have other values than y0. We stress that all the methods considered are consistent, i.e., their
characteristic polynomials

ρ(z) = zν
k−ν∑

j=−ν

α j+ν z
j , σ (z) = zν

k−ν∑

j=−ν

β j+νz
j ,

are such that
ρ(1) = 0, ρ′(1) = σ(1).

Combining (8) with the above mentioned additional methods gives a discrete boundary value
problem, also called BVM in [12]. These equations can be restated to give the following
linear system of algebraic equations:

My ≡ (A ⊗ Im − hB ⊗ Jm)y = e1 ⊗ y0 + h(B ⊗ Im)g ≡ b, (9)

123

Author's personal copy



J Sci Comput

where

e1 = [1, 0, . . . , 0]T ∈ R
s+1, y = [yT0 , . . . , yTs ]T ∈ R

(s+1)m,

g = [gT0 , . . . , gTs ]T ∈ R
(s+1)m, A, B ∈ R

(s+1)×(s+1).

The matrices A and B are obtained from the coefficients of the formula (8) and the auxiliary
linear multistep formulas:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 . . . 0
α

(1)
0 . . . vα

(1)
k ,

...
...

α
(ν−1)
0 . . . α

(ν−1)
k

α0 . . . αk

α0 . . . αk

. . .
. . .

. . .

α0 . . . αk

α
(s−k+ν+1)
0 . . . α

(s−k+ν+1)
k ,

...
...

α
(s)
0 . . . α

(s)
k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 0
β

(1)
0 . . . β

(1)
k ,

...
...

β
(ν−1)
0 . . . β

(ν−1)
k

β0 . . . βk

β0 . . . βk

. . .
. . .

. . .

β0 . . . βk

β
(s−k+ν+1)
0 . . . β

(s−k+ν+1)
k ,

...
...

β
(s)
0 . . . β

(s)
k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We recall that auxiliary methods cannot have the same coefficients of (8). More details on
the matrices A and B, M and their entries can be found in [12]. Properties and information
on their eigenvalues can be found in [3] and in [5].

The size of the matrix M can be very large when s orm are large. If a direct method is used
to solve the system (9), e.g., for a multidimensional FPDE, the operation count can be high,
see also the comparisons on sparse direct/iterative methods for a PDEs in [3]. Therefore, we
concentrate on Kyrlov iterative solvers. Note that in general it is not necessary to assemble
explicitly the matrix M from Eq. (9), since to apply Krylov iterative solvers we need only to
form the matrix vector product My. Thus, by the properties of Kronecker products, we get:

x = My = vec(ImY AT − h JmY BT ) = vec(Y AT − h JmY BT ),

where the operator vec(·) stacks the columns of amatrix andY is obtained by simply reshaping
y as an m × s matrix.
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Differently to PDEs discretized by finite differences or using finite elements, in case of
FPDEs, also Krylov iterative solvers with the block circulant preconditioners introduced in
[3] can be not so effective since Jm is a dense matrix; see Remark 1. The same conclusion
can be achieved for all (block or not) preconditioners for the linear systems of other time-step
integrators based, e.g., on linear multistep formulas or on Runge–Kutta methods; see [3].

By Proposition 1, the discretizations considered here for fractional differential equations
produce Jacobian matrices Jm whose eigenvalues have non positive real parts. Therefore, it
is natural to use Generalized BDFs, or GBDFs for short, the generalization of BDF formulas
proposed in [12] that are Aν,k−ν-stable and Lν,k−ν-stable for all k ≥ 1, a sort of A-stability
and L-stability in a generalized sense, instead of the generalizations of the Adams-Moulton
formulas used in [18], that are not.

The GBDF formula for a problem of the form (7) with k steps can be obtained starting
from the expression of the classical BDF formulas

k∑

i=0

αiyn+i = hβkfn+k (10)

with the same notation of (8). Note that the second stability polynomial is σ(z) = βk zk for
(10). It is well known that the BDF formulas from order 7 on are 0-unstable and for any
k > 2 they are also not A-stable. On the other hand, if we use the underlying generalization
of linear multistep formulas, we can build methods of both maximal order k and potentially
better stability properties. In particular, with a second stability polynomial σ(z) = β j z j with
j = ν chosen as

ν =
{

k+1/2, k odd,
k/2 + 1, k even,

instead of j = k, we obtain formulas that are both 0ν,k−ν-stable and Aν,k−ν-stable for all
k ≥ 1, i.e., the stability regions of these methods are outside the curve

Γk = {q ∈ C : |π(z, q)| ≡ |ρ(z) − qzν | = 1, ∀z ∈ C}.

Thus, by normalizing the coefficients, a GBDFwith k steps, ν initial and k−ν final conditions
can be written as

k−ν∑

i=−ν

αi+νyi+ν = hfn, n = ν, . . . , s − k + ν, (11)

that is clearly an instance of the general formula in (8); see again [12] for the full derivation.
We stress that also Lν,k−ν-stability matters in this case. Indeed, in the occurrence of rapid
decaying transients in the solution, supposing we are not interested in resolving them accu-
rately, the use of L-stable (and thus Lν,k−ν-stable) methods permit to use sensibly larger time
steps without compromising the qualitative behavior of the approximation.

Here we use low order linear multistep formulas (maximum order 3) because the dis-
cretization of the fractional differential operator shows a order atmost linear in our equispaced
mesh. Note also that a higher order formula requires a higher computational effort to solve
the related linear systems; see next sections. Moreover, a higher order formula (in both time
and space) requires a higher regularity of the solution to express its potentialities, that is not
guaranteed to hold for a fractional equation, even when the coefficients of the underlying
FPDE are arbitrarily regular.
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Theorem 2 [12] In exact arithmetic, a linear multistep formula in boundary value form with
(ν, k − ν)-boundary conditions is convergent if it is consistent and 0ν,k−ν-stable.

From the above arguments, we can state our main convergence result.

Proposition 2 The GBDF formula (11) with k = 2 applied to Problem (1) discretized by
the 1-shifted Grünwald–Letnikov formulas is convergent whenever y ∈ Cα+1.

Proof We wish to apply Theorem 2, thus we only need to prove that the resulting method is
consistent, since, as we have seen, GBDF formulas are 0ν,k−ν-stable. Let u(x, t) be the true
solution of (1). Then, the local truncation error τ(x, t) is consistent of order two in space
and one in time by the same arguments used in [22, Theorem 2.7]. Similar arguments can be
used in several spatial dimensions. ��

In our opinion, using a discretization in time of order five as in [18] is unnecessarily
expensive because the global accuracy cannot increase in general. Indeed, the low order
of the discretization in space dominates the global error. We stress also that several other
methods for integrating system (7) are available in the literature, consider, e.g., Contour
Integral Methods [26], Exponential Quadrature Rules [38], and the classical LMFs [20];
nevertheless, we used the proposed BVM schemes since they are suitable for a possible
parallel implementation:we need to solve only once the linear system (9) to have an evaluation
of the solution of (7) at all the time steps simultaneously.

3 Structured Preconditioners

To solve linear systems (9), let us focus on the application of the following iterative Krylov
methods: BiCGSTAB(2) [35], GMRES(20) [31] and FGMRES [29], coupled with block
preconditioners that take into account their block structure. In the style of [3,4,9–11], we
propose here a preconditioner of the form

P = Ă ⊗ I − h B̆ ⊗ J̃m,

where Ă and B̆ are circulant-like approximations of the Toeplitz matrices A and B, respec-
tively, containing the coefficients of the LMF formulas (8) and of the additional LMFs, while
J̃m is a suitable approximation of the Jacobian matrix detailed below.

By properties of the Kronecker product, the eigenvalues of the preconditioner P are given
by

φi − hψiλ j , i = 1, . . . , s, j = 1, . . . ,m,

where {φi } and {ψi } are the eigenvalues of the circulant-like approximations Ă and B̆, respec-
tively, and {λ j } are the eigenvalues of the selected approximation of Jm .

In [18] the authors proposed the following block-preconditioner based on the Strang
circulant approximation (see [24] for details) for the FPDEs semidiscretized in space with
p-shifted Grünwald–Letnikov:

Ps = s(A) ⊗ Im − hs(B) ⊗ Jm, (12)
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where

s(A) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αν · · · αk α0 · · · αν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . α0
. . .

. . .
. . . 0

. . .
. . .

. . .

0
. . .

. . .
. . .

αk
. . .

. . . αk
...

. . .
. . .

. . .
...

αν+1 · · · αk α0 · · · αν

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and s(B) is defined similarly. The preconditioner (12) for a generic LMF in boundary value
form was first introduced in 1998 in [2] and in [3] using also other circulant approximations,
and later studied also in [13]. In particular, (12) was introduced for LMF in boundary value
form to solve a generic differential problem and thus also for an initial value problem gener-
ated by semidiscretization in space of the underlying FPDE problem. In this framework, the
following preconditioner, based on the modified Strang circulant introduced in [4], can be a
better approach:

Ps̃ = s̃(A) ⊗ Im − hs̃(B) ⊗ Jm . (13)

The above, discussed in [4], is able to recover problems of severe ill-conditioning or also
singularity of the block preconditioners based on Strang circulant approximation of a LMF. In
particular s̃(·) is obtained simply as a rank-one correction of the natural Strang preconditioner
s(·), i.e., s̃(A) = s(A) + E where E is a rank-one circulant matrix given by

E = F∗diag(φ̂0 − φ0, 0, . . . , 0)F,

with φ̂0 that, as suggested in [4], can be φ̂0 = 1/s+1 or φ̂0 = 
(φs); see [2,4,5] for further
details. Surprisingly, none of the above mentioned researches on block circulant precondi-
tioners for LMF in boundary value form have been mentioned in Gu et al. [18].

Differently from PDEs, for FPDEs Jm can be a dense matrix. So, in order to reduce the
computational complexity, the following two block-circulant with circulant blocks versions

P ′
s = s(A) ⊗ Im − hs(B) ⊗ s(Jm), (14)

and
P ′
s̃ = s̃(A) ⊗ Im − hs̃(B) ⊗ s̃(Jm), (15)

based on the application of the same circulant preconditioner to the Jacobian matrix were
also considered in [18].

The eigenvalues of the circulant approximation s(·) and s̃(·) can be read on the main
diagonal of the matrix Λ in Theorem 1 with ω = 1 and thus Ω = I .

Remark 1 We do not recommend the choice of the Strang circulant approximation for the
Jacobian matrix Jm or for A in (9). As clearly remarked in [2] and in [4], the Strang’s
approximation for the matrix A in Eq. (9) is singular for every number of step k ≥ 1,
independently from the value of s, by the consistency requirements of the linear multistep
formulas.Moreover, the analysis of the spectral distribution of {
xα Jm}m matrices in Sect. 1,
does not recommend the use of the Strang preconditioner for the Jacobian matrix Jm as well.
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Here we focus on other preconditioners that do not need the above mentioned patch. In
particular, we consider the ω-circulant approximation ω(·) introduced for LMF in boundary
value form to integrate PDEs in [8,11]:

Pω = ω(A) ⊗ Im − hω(B) ⊗ Jm, (16)

where

ω(A) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αν · · · αk ωα0 · · · ωαν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . ωα0
. . .

. . .
. . . 0

. . .
. . .

. . .

0
. . .

. . .
. . .

ωαk
. . .

. . . αk
...

. . .
. . .

. . .
...

ωαν+1 · · · ωαk α0 · · · αν

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and ω(B) is defined similarly.
Since for FPDEs Jm is a dense matrix, in order to reduce the computational cost of matrix-

vector multiplications using preconditioner (16), we firstly propose to use ω(Jm) instead of
Jm in (16), i.e., an ω-circulant approximation also for Jm :

P ′
ω = ω(A) ⊗ Im − hω(B) ⊗ ω(Jm).

Our second proposal is based on exploiting the short-memory principle. This means using
a banded approximation of the Jacobian matrix Jm instead of a circulant or an ω-circulant
one (for Jm). We apply the short-memory principle by the function gk(Jm) that extracts
the k lower and upper main diagonals of Jm producing the following limited memory block
ω-circulant preconditioner:

Pω,k = ω(A) ⊗ Im − hω(B) ⊗ gk(Jm). (17)

To further reduce the computational effort needed to apply a Pω,k-circulant preconditioner at
each iteration,we can consider, instead of a directmethod for sparse systems, the use of nested
iterative methods, e.g., the GMRES(m) method. To apply preconditioner Pω,k from (17) we
observe that by Theorem 1 we have

Pω,k = (Ω∗F∗ ⊗ Im)(ΛA ⊗ Im)(FΩ ⊗ Im) − (Ω∗F∗ ⊗ Im)(hΛB ⊗ gk(Jm))(FΩ ⊗ Im)

and thus

P−1
ω,k = (FΩ ⊗ Im)−1(ΛA ⊗ Im − hΛB ⊗ gk(Jm))−1(Ω∗F∗ ⊗ Im)−1.

Then, the application z = P−1
ω,kv is computed with the following three steps:

1. Use the Fast Fourier Transform (or FFT for short) and solve a diagonal system to compute
v1 = (Ω∗F∗ ⊗ Im)−1v,

2. Solve (ΛA ⊗ Im − hΛB ⊗ gk(Jm))v2 = v1,
3. Use the Inverse Fast Fourier Transform (or IFFT for short) and solve a diagonal system

to compute v = (FΩ ⊗ Im)−1v2.

123

Author's personal copy



J Sci Comput

In particular, to solve the block diagonal linear system at Step 2, we solve the s auxiliary
linear systems of the form

Tj,k � φ j I − hψ j gk(Jm), j = 1, . . . , s, ΛA = diag(φ j ), ΛB = diag(ψ j ),

required to apply all block circulant or block Pω,k-circulant preconditioners described above;
see, e.g., [3,11] for technical details. In this way we are moving into the framework of
preconditioners changing during the iterations and then we need to use Flexible GMRES
method or its restarted version, see Saad [29,30]. In some cases, to ensure a fast convergence
of the outer method (FGMRES), we need to use a preconditioner for the inner (GMRES(m)).
To this end, we propose the use of an approximate inverse Toeplitz preconditioner for Tj,k

based on the ω-circulant preconditioner from [15,19]. Thus, we consider the ω-circulant
extension Wj,n+k of Tj,k , obtained as

Wj,n+k =
[
T̃ j,k T ∗

2,1
T2,1 T2,2

]

, T2,1 =
⎡

⎢
⎣

ωtk 0 . . . 0 tk . . . t1
...

. . .
...

. . .
...

. . .
...

ωt1 . . . ωtk 0 . . . 0 tk

⎤

⎥
⎦ ,

where T̃ j,k is the Toeplitz matrix obtained with the first column and row of Tj,k and ω =
exp(iθ)with θ ∈ [−π, π]. In this way, the diagonalmatrixΛ j,n+k containing the eigenvalues
of Wj,n+k is given by

Λ j,n+k = Fn+kΩn+kW j,n+kΩ
∗
n+k F

∗
n+k .

Once the eigenvalues have been computed, the inverse of the ω-circulant matrix is

W−1
j,n+k =

[
P P1,2
P1,2 P2,2

]

= Ω∗
n+k F

∗
n+kΛ

−1
j,n+k Fn+kΩn+k . (18)

To avoid breakdowns, we can take care of the non-positive entries of Λ j,n+k by setting them
to a positive value δ in the corresponding positions of Λ−1

j,n+k also warning the user with a
message. But this never happened in our experiments. Then, the preconditioner used for the
inner (GMRES(m)) is the matrix P in (18).

We also tried various recycling Krylov subspace approaches to solve the s auxiliary linear
systems at Step 2 but the performances were not satisfactory and we do not report the
underlying experiments here.

Lemma 1 Let us consider the approximation gk(Jm) for Jm. Then, for ε > 0 and m > 0
integer, there exists a bandwidth parameter k̃ = k̃(ε,m, α) > 0 such that gk(Jm)−1 Jm =
I + N with ‖N‖ ≤ ε ∀k ≥ k̃.

Proof Let us fix ε > 0 and assume y(x) such that y(x) ≤ M for x ∈ Ω = [xL , xR]. Then,
for each L ∈ Ω , we can write the error as (see [27, Chapter 7.3]),

E(x) = | RLDα
a,x y(x) − RLD

α
x−L ,x y(x)| ≤ ML−α

|Γ (1 − α)| .

We can find the required values of L by solving

|E(x)| ≤ ε, (xL + L ≤ x ≤ xR), ⇒ L ≥
(

M

ε|Γ (1 − α)|
)1/α

.

Therefore, by using the same arguments for the fractional derivative of the other side, fixed
a discretization step and a value of ε > 0, we can choose a bandwidth k giving the wanted
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residual and such that its norm is less the ε. Otherwise, we can look at it from the spectral
point of view. From Proposition 1 we get Jm ∼GLT f , where the domain of f is given by
[0, 1] × [−π, π]. Thus, we can consider, at the same way, the spectral distribution fk̃ of
gk̃(Jm). This is obtained by replacing e−iθ (1− eiθ )α and eiθ (1− eiθ )−α in f with the first k̃
terms of their real binomial expansion. Therefore, gk̃(Jm)−1 Jm ∼GLT f/ fk̃ , and this can be
expressed as

f

fk̃
= 1 + nk̃,

where nk̃ is again the f function in which we have replaced e−iθ (1−eiθ )α and eiθ (1−eiθ )−α

with the first m − k̃ term of their real binomial expansion. We conclude by referring to the
decay property in (5) and recalling that the coefficients of nk̃ are exactly the ω

(α)
j for j > k̃,

thus finding the minimum integer k̃ such that the bound ‖nk̃‖ < ε holds. Therefore, we
immediately get also ‖nk‖ < ε ∀k ≥ k̃. ��

Remark 2 Observe that Lemma 1 is quite independent from the discretization adopted, since
the tools used to prove it are based mainly on a structural property of the fractional operators,
namely the short-memory principle, that, as extensively discussed in [6], is inherited by
various discretizations of the underlying operators. Therefore, with a little additional effort,
also the spectral part of the proof can be extended to other discretizations. A depiction of the
results of Lemma 1 is given in Fig. 3. We stress again that this property is lost if we use any
circulant approximation for the variable coefficient case in both Problems (1) and (2). See
the discussion at the end of Sect. 1.

Theorem 3 Let us consider the limited memory block ω-circulant preconditioner (17) such
that ω = exp(iωθ), θ = π and k ≥ k̃, k̃ as in Lemma 1. Then, the eigenvalues of the
preconditioned matrix P−1

ω,k M are equal to 1 ∈ C except for at most 2mk outliers.

Proof Follows by applying Lemma 1 and Theorem 4 in [11]. ��
As a direct consequence, we have the convergence result.

Fig. 3 Lemma 1. Clustering of
the eigenvalues for the
preconditioner gk (Jm )−1 Jm for
Jm as in Problem (1) and
k = �m/5�, m = 210

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
-0.03

-0.02

-0.01

0

0.01
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Corollary 1 If the matrix P−1
ω,k M is diagonalizable, GMRES converges in at most 2mk + 1

iterations, independently of s, where k is the number of steps of the LMF formula.

We stress that the above result shows a number of iteration proportional to m. However,
in practice, we experience convergence of iterations for GMRES, GMRES(r), r > 1, and
BiCGstab, preconditioned by the limitedmemory blockω-circulant preconditioner,much less
dependent on themesh thanCorollary 1 suggests; see tables in Sect. 4.On the other hand, ifwe
choose, e.g., k = �m/5� for Pω,k in (17), then the underlyingKrylov iterative solvers converge
in a number of iterations more or less constant with the mesh parameters. Unfortunately, by
taking k = �m/5�, the iterations are kept (almost) constant but the computational cost
increases with m, suggesting that a choice of a constant k, can be a good (but of course
somewhat problem-dependent) compromise.

Convergence results similar to Theorem 3 can be derived for other values of θ different
from π . However, as observed in [11, Section 2.2] and confirmed by our numerical exper-
iments, the {ω}-circulant block preconditioners which give slightly “best” results are those
with ω = −1, i.e., θ = π , and then are based on skew-circulant matrices.

4 Numerical Experiments

We summarize in Table 1 the preconditioning strategies tested in our experiments.
The results have been obtained on a laptop running Linux with 8 Gb memory and CPU

Intel® Core™ i7-4710HQ CPU with clock 2.50 GHz and MATLAB version R2016b.
We use our implementation of FGMRES, based on the algorithms and suggestions in

[7,29]. GMRES(20) and BiCGstab are provided by Matlab. BiCGstab(2) is implemented
similarly to [7,35]. We report the number of matrix–vector operations performed by the
solvers in the tables. Moreover, the main stopping criterium require the relative residuals less
than ε = 10−8. Here all the {ω}-circulant approximations have ω = −1, i.e., θ = π , and
then are based on skew-circulant matrices. Motivations for this choice are detailed at the end
of the previous section and in [11, Section 2.2].

Experiment 1 As a first test case, let us consider the fractional diffusion Eq. (1) with
coefficients

Table 1 Preconditioners tested in the numerical experiments, details in Sect. 3

Preconditioner for: Computational
costA B Jm

I None None None –

Ps Strang Strang None O(ms log(s) + sm2)

Ps̃ Modified Strang Modified Strang None O(ms log(s) + sm2)

P ′
s Strang Strang Strang O(ms log(ms))

Pω ω-Circulant ω-Circulant None O(ms log(s) + sm2)

P ′
ω ω-Circulant ω-Circulant ω-Circulant O(ms log(ms))

Pω,k ω-Circulant ω-Circulant gk (Jm ) O(ms log(s) + sk2m)

PFGMRES
ω,k ω-Circulant ω-Circulant gk (Jm ) O(ms log(s) + s(2k − 1)m)

GMRES
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xL = 0, xR = 2, t0 = 0, T = 1,

g(x, t) = −32e−t
{

x2 + 1

8
(2 − x)2(8 + x2) − 3

3 − α

[
x3 + (2 − x)3

] + . . .

. . . + 3

(4 − α)(3 − α)

[
x4 + (2 − x)4

]
}

d+(x, t) = �(3 − α)xα, d−(x, t) = �(3 − α)(2 − x)α,

u0(x) = 4x2(2 − x)2,

(19)

where the order of the fractional derivatives is α = 1.5 and α = 1.8, respectively. For
this choice of the coefficients we have the exact solution of the FPDEs that is ue(x, t) =
4e−t2 x2(2 − x)2 for any value of α ∈ (1, 2). In Table 2 we show the results obtained
with various preconditioning strategies. For this case, we use the GBFD formula with two
step, that gives a more reasonable behavior of the error when mixed with the first order
approximation used for the discretization in space, with GMRES(20) and FGMRES iterative
methods. Moreover, in Fig. 4, we give both the spectrum of the unpreconditioned matrix
M and of the preconditioned matrix M for all the proposed preconditioners. Consistently
with the results in Table 2 and the analysis in Sect. 3, the preconditioner based on the short-
memory principle achieves the better clustering among the others. We observe also that, with
BiCGstab(2), timings are greater than those obtained with FGMRES, even if the limited
memory preconditioners Pω,�m/10� are always better than their competitors. Therefore, we
omitted the numerical results for this case.

Experiment 2 We consider the fractional partial differential equation in two dimension in (3)
with the following choice of the coefficients:

Kx = 2, Ky = 1.5, c(x, y) = 1 + 0.5 cos(xy),

b = (β + 0.5 sin(4πx) cos(5πy), . . .

. . . α + 0.7 sin(7πy) cos(4πx)),

g(x, y, t) = sin(5πx) sin(5πy) exp(−t),

u0(x, y) = xy(x − 1)(y − 1).

(20)

The domain is Ω × [0, T ] = [0, 1]2 × [0, 1]. In Table 3 we give the results for
the solution of the semidiscrete problem with the GBDF formula with 2 steps and
GMRES(20)/FGMRES(20) iterative methods with the various proposed preconditioners.
Similarly to the other experiments, we observe that all the limited memory preconditioners,
i.e., based on the short-memory principle, are optimal: the number of iterations to reach a pre-
scribed tolerance is fixed, independent from the dimension. Moreover, similarly to the other
experiments, the approach with FGMRES turns out to be the fastest one. In this 2D case, we
do not give the results with the circulant approximation of the Jacobian matrix, because it
does not give a reasonable spectral approximation for the underlying block-matrix.

5 Conclusions

We presented a strategy for solving the large linear systems generated by discretizing time-
dependent fractional partial differential equations (FDEs) integrated in time by using linear
multistep formulas used in boundary value form. We use p-shifted Grünwald–Letnikov dis-
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Fig. 4 Experiment 1. Spectra of both the matrix of the system and of the preconditioned matrices with α = 2
and 2 step GBDF formula withm = 97 and s = 128. a Eigenvalues of the blockmatrixM in (9). bEigenvalues
of (P ′

s )
−1M . c Eigenvalues of (P ′

ω)−1M . d Eigenvalues of (Pω,�m/10�)−1M

cretization in space for the fractional Riemann–Liouville operators and fractional centered
discretization for the symmetric Riesz derivative.

We proposed to solve the underlying block structured with dense blocks linear systems
by restarted GMRES [31] and FGMRES [29] using our hybrid preconditioners. Several
tests have been performed with other methods, either as solver for the whole problem or in
conjunction with the preconditioner for the FGMRES method, they are not reported because
less competitive. Among them we mention: IDR(s) [33], BiCGStab [34], BiCGStab(2) [32],
alternate directions, various versions of gaussian elimination, most popular Krylov iterative
solvers with several incomplete factorization preconditioners, etc.

The preconditioners proposed here are based on block ω-circulant matrices and a short-
memory approximation of the underlying Jacobian matrix of the FDE.
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Theoretical convergence results for our limitedmemory blockω-circulant preconditioners
are also given, confirming that the preconditioned matrices have a clustered spectrum of
eigenvalues.

Numerical tests and comparisons with other techniques proposed in the recent literature
confirm the effectiveness of the following two preconditionedmulti iterative solvers proposed
here:

– FGMRESusing a hybrid preconditioner based on blockω-circulantmatrices and inwhich
the auxiliary linear systems are solved with GMRES(20). The latter is preconditioned
by a sequence of approximate inverse Toeplitz preconditioners computed on the short-
memory approximations of the underlying Jacobian matrices, and,

– restarted GMRES with a block ω-circulant preconditioner with approximate inverse
Toeplitz preconditioners using a short-memory approximation of the underlying Jacobian
matrices and direct solution of the auxiliary linear systems.

We observe also that the preconditioners Pω,k and PFGMRES
ω,k , i.e., those based on the short-

memory principle, are optimal in the sense that the number of iterations to reach a prescribed
tolerance is almost independent from the mesh used.

Acknowledgements We wish to thank two anonymous referees for their constructive comments which have
improved the readability of the paper.
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