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Motivation: Cellular Signal Processing, Pooling and Autoencoders.
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Motivation: Cellular Signal Processing, Pooling and Autoencoders.
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Remark: All chain complexes will be finite dimensional over R.
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Motivation: Cellular Signal Processing, Pooling and Autoencoders.

Cellular Signal Processing

Signals on CW Complex ⇔ Cellular (co)chains.

Example: Cellular (co)chains

X CW complex,
Cn(X ) = {f : n-cells → R}

Chain Complex (C, ∂)

. . . C2(X ) C1(X ) C0(X )
∂2 ∂1
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Motivation: Cellular Signal Processing, Pooling and Autoencoders.

Cellular Signal Processing

Signals on Cellular Complex/Sheaf ⇔ Cellular (co)chains.

Example: Cellular Sheaves, Simplicial Neural Networks (Ebli. et al 2020,
Bodnar et al 2021)

Figure: Cellular Sheaf X

Cellular Sheaf Cochains ⇔ Vector Representations of Cells

Cn(X ;R) =
⊕

dimσ=n

Riσ
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Motivation: Cellular Signal Processing, Pooling and Autoencoders.

Motivation

Goal

Develop pooling layers for simplicial/cellular neural networks, cochain
data in general.

Key Point

Set of pixels ∼ (co)chain complex (C, ∂)

Pixel values ∼ specific (co)chain.
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Motivation: Cellular Signal Processing, Pooling and Autoencoders.

Motivation

What kind of maps should we use?

Deformation Retracts

A deformation retract of chain complexes (C, ∂) and (D, ∂
′
)

D C
Φ

Ψ
h

such that ΦΨ = IdD and ∂h + h∂ = IdC−ΨΦ

Properties

Preserves (co)homology.

Degree-wise linear projection maps (ΦnΨn)
2 = ΦnΨn.

Reduces dimensionality.
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Motivation: Cellular Signal Processing, Pooling and Autoencoders.

Reconstruction Error

Question

How to evaluate which deformation retracts are good?

Approach

Use concept of reconstruction error minimization

argmin
Φ,Ψ

∥s − ΦΨ(s)∥

Data in Large Space
ψ−→ Data in Latent Space

ϕ−→ Data in Large Space

Examples

(PCA) Ψ,Φ Orthogonal Projections

(Autoencoders) Ψ,Φ Multi-layer Perceptrons

(Topological Autoencoders) Michael Moor, Max Horn, Bastian Rieck,
and Karsten Borgwardt, Topological autoencoders, 2021
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Motivation: Cellular Signal Processing, Pooling and Autoencoders.

Reconstruction Error

Approach

Use concept of reconstruction error for (co)chain complexes.

0.0 0.4 0.7 1.1 1.4 1.80.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Reconstruction Error of Deformed Signal

∥s − ΦΨ(s)∥ = ∥∂h(s) + h∂(s)∥

Key Point

Understanding Reconstruction Error ∼ Understanding h
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Motivation: Cellular Signal Processing, Pooling and Autoencoders.

Reconstruction Error

Key Questions

How to generate deformation retracts that minimize reconstruction
error?

What parts of the signal

Successfully reconstructed?
Poorly reconstructed?
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Algebraic Discrete Morse Theory
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Algebraic Discrete Morse Theory

Discrete Morse Theory: CW Complexes

Discrete Morse Theory

DMT ⇒ generating deformation retracts.

Figure: (Whitehead) A simple homotopy collapse induced by a pairing.
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Algebraic Discrete Morse Theory

Discrete Morse Theory: CW Complexes

Figure: A discrete Morse matching on a CW complex.

Forman (1998)

Uses simple homotopy to define notions of discrete vector fields and
discrete Morse theory.
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Algebraic Discrete Morse Theory

Algebraic Discrete Morse Theory

Recall

Our data: Real-valued (co)chains

Skoldberg (2005)

Invents algebraic discrete Morse theory for based (co)chain complexes.

Consequences

Do everything at algebraic/cochain level.

Easier to generate matchings.

Linear algebra.

Liberate definition of a cell.
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Algebraic Discrete Morse Theory

Algebraic Discrete Morse Theory

Based Chain Complex

A based chain complex (C, I ) is a chain complex (C, ∂) with direct sum
decompositions

Cn =
⊕
α∈In

Cα

indexed by a finite set I = ⊔nIn.

Topological world : n-cells ⇔ Algebraic World : Elements of In

Examples

Simplicial/Cellular Cochains; standard basis.

Cellular sheaf; stalks.
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Algebraic Discrete Morse Theory

”Hasse Diagrams” of Based Chain Complexes

Graph of a Complex

For a based chain complex (C, I ) the graph of complex G(C, I ) consists of
Vertices α ∈ I

Directed edges α → β whenever

∂α,β : Cα ↪→ C
∂−→ C ↠ Cβ

is non-zero.

Intuition: ”Face Poset Based Chain Complex”
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Algebraic Discrete Morse Theory

Algebraic Morse Matchings

Algebraic Morse Matching

A subset M ⊆ E(C, I ) such that

1 (Partition) Each α ∈ I adjacent at most one edge.

2 (Invertibility) ∂α,β is an isomorphism for each (α, β) ∈ M.

3 (Acyclicity) There are no cyclic, directed paths in G(C, I )M .

Critical Cells: M0 ⇔ Cells adjacent to no edge in M
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Algebraic Discrete Morse Theory

Main Theorem: Algebraic DMT

Figure: Morse deformation retract of a complex.

Theorem (Sköldberg, 2005, [1])

Let (C, I ) be a based chain complex, and M a Morse matching. Then
there is a deformation retract

CM C
ΦM

ΨM

h
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Algebraic Discrete Morse Theory

Main Theorem: Algebraic DMT

Theorem (Sköldberg, 2005, [1])

Let (C, I ) be a based chain complex, and M a Morse matching. Then
there is a deformation retract

CM C
ΦM

ΨM

h

Key Points

The maps ΦM ,ΨM and h have explicit formulae.

Straight-forward to generate matchings over R.
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Combinatorial Hodge Theory
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Combinatorial Hodge Theory

Venn Diagram
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Combinatorial Hodge Theory

Inner products

Let C be a (co)chain complex of real inner product spaces, degree-wise
finite dimensional.

Consequences

Metric on (co)chains f , g ∈ Cn:

∥f − g∥ := ⟨f − g , f − g⟩1/2

Adjoint maps:

∂n : Cn → Cn−1 ⇒ ∂†
n : Cn−1 → Cn
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Combinatorial Hodge Theory

Combinatorial Laplacian

Geometry

Inner Products ⇒ Laplacian

Cn+1 Cn Cn−1

∂n+1

∂†n+1

∂n

∂†n

Combinatorial Laplacian

The combinatorial Laplacian is the operator

∆n = ∂†
n∂n + ∂n+1∂

†
n+1 : Cn → Cn

Remark

NOT FUNCTORIAL!
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Combinatorial Hodge Theory

Combinatorial Laplacian

Amazing Facts (Eckmann, 1940s)

(Harmonics)
Hn(C) ∼= Ker∆n

(Hodge Decomposition)

Cn
∼= Im∂n+1 ⊕ Ker∆n ⊕ Im∂†

n

(Fourier Basis)

Eigenvectors of ∆ ∼ Fourier basis for cochains

Remark

Eigenvalue = ’Frequency’ of eigenvector.

Eigenvectors graded by Hodge decomposition.
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Combinatorial Hodge Theory

Hodge Matching

Connection

Hodge Theory
⋂

DMT = Partial Matching

Eigen-pairing

SVD of ∂n ⇒ Partial pairing of eigenvectors.
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Combinatorial Hodge Theory

Hodge Matching

Connection

Hodge Theory
⋂

DMT = Partial Matching

Remark

H(C) ∼= (Ker∆, 0) (C, ∂)
ΦM

ΨM

h
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Combinatorial Hodge Theory

Hodge Matching Example

Example Pairing

There exists eigenvectors ∆0v = λv and ∆1w = λw where

∂†
0v =

√
λw
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Morsification and Reconstruction Theorems

Table of Contents

1 Motivation: Cellular Signal Processing, Pooling and Autoencoders.

2 Algebraic Discrete Morse Theory

3 Combinatorial Hodge Theory

4 Morsification and Reconstruction Theorems

5 Compression Algorithm

6 Summary

Kelly Maggs (EPFL) DMT Topology of Data, 2022 29 / 50



LOGO HERE

Morsification and Reconstruction Theorems

Morsification and Reconstruction

Question

Which deformation retracts arise from Morse matchings?
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Morsification and Reconstruction Theorems

Morsification and Reconstruction

We say that two deformation retracts

D C
Φ

Ψ
h and D′ C′

Φ′

Ψ′

h′

are equivalent if there exist isomorphisms of chain complexes, f : D → D′

and g : C → C′ such that the diagrams

D C

D′ C′

f ∼= g∼=

Ψ

Ψ′

D C

D′ C′

f ∼=

Φ

g∼=

Φ′

commute.
Remark: when C = C′, reconstruction error is the same.
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Morsification and Reconstruction Theorems

Morsification and Reconstruction

Theorem (Morsification, (Ebli, Hacker, M. [2]))

Any deformation retract

D C
Φ

Ψ

of finite-type chain complexes of real inner product spaces

there is a canonical basis of C and a Morse matching such that

the associated deformation retract is ‘equivalent’.

So What?

Understanding deformation retracts ∼ Understanding Morse retracts.

Provides an explicit, nice homotopy h.

Helps understand reconstruction error.
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Morsification and Reconstruction Theorems

(n,n-1)-free

Question Which deformation retracts have zero reconstruction error on
specific Hodge components

Cn = Im∂n+1 ⊕ Ker∆n ⊕ Im∂†
n

Kelly Maggs (EPFL) DMT Topology of Data, 2022 33 / 50
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Morsification and Reconstruction Theorems

(n,n-1)-free

Question Which deformation retracts have zero reconstruction error on
specific Hodge components

Cn = Im∂n+1 ⊕ Ker∆n ⊕ Im∂†
n

(n, n − 1)-free

A Morse matching is (n,n− 1)-free if no (n − 1)-cell is paired with a
n-cell.
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Morsification and Reconstruction Theorems

Signal preservation on the Hodge decomposition

Let (C, I ) be a based chain complex with matching M.

Theorem (Ebli, Hacker, M., 2022, [2])

(Cocycle Reconstruction) Any signal s ∈ Cn and its reconstruction ΦΨs
encode the same cocycle information:

Proj
Ker∆n⊕Im∂†n

(ΦΨs − s) = 0 for all s ∈ Cn.

⇔

M is (n, n − 1)-free

Remarks

Works in any base I .

Ker∆n ⊕ Im∂†
n = Ker∂†

n+1
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Morsification and Reconstruction Theorems

Signal preservation on the Hodge decomposition

Let (C, I ) be a based real chain complex, inner products with matching M.

Theorem (Ebli, Hacker, M., 2022, [2])

(Cycle Reconstruction) Any signal s ∈ Cn−1 and its reconstruction
Φ†Ψ†s encode the same cycle information:

ProjKer∆n⊕Im∂n(Ψ
†Φ†s − s) = 0 for all s ∈ Cn−1.

⇔

M is (n, n − 1)-free

Remarks

Works in any base I .

Ker∆n−1 ⊕ Im∂n = Ker∂n−1
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Morsification and Reconstruction Theorems

Sparsification Theorem

Intuition: the signals’ reconstruction concentrates only on critical cells

Theorem (Ebli, Hacker, M., 2022, [2])

Let M be an (n, n − 1)-free Morse matching of a based chain complex
(C, I ). Then

·
ΦM
n ΨM

n (s) ∈
⊕

α∈M0∩In

Cα for all s ∈ Cn
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Morsification and Reconstruction Theorems

Example
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Compression Algorithm
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Compression Algorithm

Compression Algorithm

Goal

Find DMT matching that minimizes reconstruction error.

Iterative Approximate Approach

Find an (n + 1, n)-pair that minimizes reconstruction error.

Repeat.

Remark

Construction is linear complexity in dimCn if complex is ’sparse’.
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Compression Algorithm

Compression Algorithm Convergence

Iterative Approximate Approach

Find all (n, n − 1)-free pairs that minimizes reconstruction error.

Repeat.

Thm (Ebli, Hacker, M)

Let (C , ∂) be a chain complex of real inner product spaces. For all s ∈ Cn,
the algorithm converges to the chain complex (C′, ∂′) where

C′
n
∼= Hn(C)⊕ Im∂†

n

C′
n−1

∼= Hn−1(C)⊕ Im∂n

C′
k
∼= Hk(C) for all other k .
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Compression Algorithm

Experimental Results
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Compression Algorithm

Experimental Results
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Compression Algorithm

Paper: Morse Theoretic Signal Compression and Reconstruction on Chain
Complexes, arXiv:2203.08571

Code: github.com/stefaniaebli/dmt-signal-processing
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Summary

Take-home Message

Theoretical

Chain complexes of finite dimensional inner product spaces admit a
canonical Morse matching based on the Hodge decomposition.

Any deformation retract of fin dim inner product complexes is
canonically equivalent to a Morse retraction
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Summary

Take-home Message

Practical

(Sparsification) The reconstruction of (n, n − 1)-free matchings is
supported on the critical cells.

(Reconstruction) The reconstruction error of an (n, n − 1)-free
matching is supported on Im∂n+1 for all signals.
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Summary

Take-home Message

Algorithmic

Sequential collapse algorithm converges.

Outperforms the random collapse baseline algorithm.
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Summary

Thank you!

Questions?
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