Signal Compression and Reconstruction on Chain Complexes Discrete Morse Theoretic Methods

S. Ebli¹ C. Hacker¹ K. Maggs¹ Supervisor: Kathryn Hess

¹Laboratory for Topology and Neuroscience Ecole Polytechnique Fédérale de Lausanne

Topology of Data, Tor Vergata, July 2022

Topology of Data, 2022

1/50

Authors

Figure: The EPFL-DMT Crew: K.M, Celia Hacker and Stefania Ebli

2 / 50

A D N A B N A B N A B N

Table of Contents

- 2 Algebraic Discrete Morse Theory
- 3 Combinatorial Hodge Theory
- 4 Morsification and Reconstruction Theorems
- 5 Compression Algorithm
- Summary

< □ > < □ > < □ > < □ > < □ > < □ >

Venn Diagram

Cellular Signal Processing

Signals on CW Complex \Leftrightarrow Cellular (co)chains.

Example: Cellular (co)chains

X CW complex,

$$C_n(X) = \{f : n\text{-cells} \to \mathbb{R}\}$$

Chain Complex (\mathbf{C}, ∂)

$$\ldots \longrightarrow C_2(X) \xrightarrow{\partial_2} C_1(X) \xrightarrow{\partial_1} C_0(X)$$

5 / 50

Cellular Signal Processing

Signals on Cellular Complex/Sheaf \Leftrightarrow Cellular (co)chains.

Example: Cellular Sheaves, Simplicial Neural Networks (Ebli. et al 2020, Bodnar et al 2021)

Figure: Cellular Sheaf X

Cellular Sheaf Cochains \Leftrightarrow Vector Representations of Cells

$$C^n(X;\mathbb{R}) = \bigoplus_{i \in \mathcal{R}} \mathbb{R}^{i_i}$$

 $\dim \sigma = n$

Kelly Maggs (EPFL)

6 / 50

Motivation

Goal

Develop **pooling layers** for simplicial/cellular neural networks, cochain data in general.

Key Point

- Set of pixels \sim (co)chain complex (C, $\partial)$
- Pixel values \sim specific (co)chain.

Motivation

What kind of maps should we use?

Deformation Retracts

A deformation retract of chain complexes (\mathbf{C}, ∂) and (\mathbf{D}, ∂')

$$\mathsf{D} \xleftarrow{\Psi}{\longleftrightarrow} \mathsf{C} \supseteq h$$

such that $\Phi \Psi = \mathsf{Id}_{\mathbf{D}}$ and $\partial h + h \partial = \mathsf{Id}_{\mathbf{C}} - \Psi \Phi$

Properties

- Preserves (co)homology.
- Degree-wise linear projection maps $(\Phi_n \Psi_n)^2 = \Phi_n \Psi_n$.
- Reduces dimensionality.

Reconstruction Error

Question

How to evaluate which deformation retracts are good?

Approach

Use concept of reconstruction error minimization

$$rgmin_{\Phi,\Psi} \|s - \Phi \Psi(s)\|$$

Data in Large Space $\xrightarrow{\psi}$ Data in Latent Space $\xrightarrow{\phi}$ Data in Large Space

Examples

- (PCA) Ψ, Φ Orthogonal Projections
- (Autoencoders) Ψ, Φ Multi-layer Perceptrons
- (Topological Autoencoders) Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt, Topological autoencoders, 2021

9 / 50

Reconstruction Error

Approach

Use concept of reconstruction error for (co)chain complexes.

Reconstruction Error of Deformed Signal

$$\|s - \Phi \Psi(s)\| = \|\partial h(s) + h\partial(s)\|$$

Key Point

Understanding Reconstruction Error \sim Understanding h

Kelly Maggs (EPFL)

Reconstruction Error

Key Questions

- How to generate deformation retracts that minimize reconstruction error?
- What parts of the signal
 - Successfully reconstructed?
 - Poorly reconstructed?

Table of Contents

Motivation: Cellular Signal Processing, Pooling and Autoencoders.

- 2 Algebraic Discrete Morse Theory
- 3 Combinatorial Hodge Theory
- 4 Morsification and Reconstruction Theorems
- 5 Compression Algorithm
- Summary

< □ > < □ > < □ > < □ > < □ > < □ >

Topology of Data, 2022

12 / 50

Discrete Morse Theory: CW Complexes

Discrete Morse Theory

 $DMT \Rightarrow$ generating deformation retracts.

Figure: (Whitehead) A simple homotopy collapse induced by a pairing.

Discrete Morse Theory: CW Complexes

Figure: A discrete Morse matching on a CW complex.

Forman (1998)

Uses simple homotopy to define notions of discrete vector fields and **discrete Morse theory**.

Kelly Maggs (EPFL)

Algebraic Discrete Morse Theory

Recall

Our data: Real-valued (co)chains

Skoldberg (2005)

Invents algebraic discrete Morse theory for based (co)chain complexes.

Consequences

Do everything at algebraic/cochain level.

- Easier to generate matchings.
- Linear algebra.
- Liberate definition of a cell.

Algebraic Discrete Morse Theory

Based Chain Complex

A based chain complex (C, I) is a chain complex (C, ∂) with direct sum decompositions

$$\Sigma_n = \bigoplus_{\alpha \in I_n} C_{\alpha}$$

indexed by a finite set $I = \sqcup_n I_n$.

Topological world: n-cells \Leftrightarrow Algebraic World: Elements of I_n

Examples

- Simplicial/Cellular Cochains; standard basis.
- Cellular sheaf; stalks.

"Hasse Diagrams" of Based Chain Complexes

Graph of a Complex

For a based chain complex (\mathbf{C}, I) the graph of complex $\mathcal{G}(\mathbf{C}, I)$ consists of

- Vertices $\alpha \in I$
- Directed edges $\alpha \rightarrow \beta$ whenever

$$\partial_{\alpha,\beta}: C_{\alpha} \hookrightarrow \mathbf{C} \xrightarrow{\partial} \mathbf{C} \twoheadrightarrow C_{\beta}$$

is non-zero.

Algebraic Morse Matchings

Algebraic Morse Matching

A subset $M \subseteq \mathcal{E}(\mathbf{C}, I)$ such that

- **(**Partition) Each $\alpha \in I$ adjacent at most one edge.
- **2** (Invertibility) $\partial_{\alpha,\beta}$ is an isomorphism for each $(\alpha,\beta) \in M$.
- **(**Acyclicity) There are no cyclic, directed paths in $\mathcal{G}(\mathbf{C}, I)^M$.

Critical Cells: $M^0 \Leftrightarrow$ Cells adjacent to no edge in M

18 / 50

Main Theorem: Algebraic DMT

Figure: Morse deformation retract of a complex.

Theorem (Sköldberg, 2005, [1])

Let (C, I) be a based chain complex, and M a Morse matching. Then there is a deformation retract

$$\mathbf{C}^M \xleftarrow{\Psi^M}{\Phi^M} \mathbf{C} \oslash h$$

Main Theorem: Algebraic DMT

Theorem (Sköldberg, 2005, [1])

Let (C, I) be a based chain complex, and M a Morse matching. Then there is a deformation retract

$$\mathbf{C}^M \xleftarrow{\Psi^M}{\Phi^M} \mathbf{C} \rightleftharpoons h$$

Key Points

- The maps Φ^M, Ψ^M and *h* have explicit formulae.
- Straight-forward to generate matchings over \mathbb{R} .

Table of Contents

- Motivation: Cellular Signal Processing, Pooling and Autoencoders.
- 2 Algebraic Discrete Morse Theory
- 3 Combinatorial Hodge Theory
 - 4 Morsification and Reconstruction Theorems
 - 5 Compression Algorithm
 - Summary

< □ > < □ > < □ > < □ > < □ > < □ >

Venn Diagram

Inner products

Let ${\bf C}$ be a (co)chain complex of real inner product spaces, degree-wise finite dimensional.

Consequences

• Metric on (co)chains $f, g \in \mathbf{C}_n$:

$$\|f-g\|:=\langle f-g,f-g\rangle^{1/2}$$

Adjoint maps:

$$\partial_n: C_n \to C_{n-1} \Rightarrow \partial_n^{\dagger}: C_{n-1} \to C_n$$

ヨト イヨト

23 / 50

Topology of Data, 2022

Combinatorial Laplacian

Geometry

Inner Products \Rightarrow Laplacian

$$C_{n+1} \xrightarrow[rac{\partial_{n+1}}{\langle \partial_{n+1}^{\dagger}} C_n \xrightarrow[rac{\partial_n}{\langle \partial_n^{\dagger} \rangle} C_{n-1}$$

Combinatorial Laplacian

The combinatorial Laplacian is the operator

$$\Delta_n = \partial_n^{\dagger} \partial_n + \partial_{n+1} \partial_{n+1}^{\dagger} : C_n \to C_n$$

Remark

NOT FUNCTORIAL!

Kelly Maggs (EPFL)

Topology of Data, 2022

24 / 50

Combinatorial Laplacian

Amazing Facts (Eckmann, 1940s)

• (Harmonics)

 $H_n(\mathbf{C}) \cong \operatorname{Ker}\Delta_n$

• (Hodge Decomposition)

$$C_n \cong \operatorname{Im} \partial_{n+1} \oplus \operatorname{Ker} \Delta_n \oplus \operatorname{Im} \partial_n^{\dagger}$$

• (Fourier Basis)

Eigenvectors of $\Delta \sim$ Fourier basis for cochains

Remark

- Eigenvalue = 'Frequency' of eigenvector.
- Eigenvectors graded by Hodge decomposition.

< □ > < □ > < □ > < □ > < □ > < □ >

Hodge Matching

Connection

Hodge Theory $\bigcap DMT = Partial Matching$

Eigen-pairing

SVD of $\partial_n \Rightarrow$ Partial pairing of eigenvectors.

Hodge Matching

Connection

Hodge Theory \bigcap DMT = Partial Matching

Remark

$$H(\mathbf{C})\cong (\mathsf{Ker}\Delta,0)\xleftarrow{\Psi^M}{\Phi^M}(\mathbf{C},\partial)$$

Kelly Maggs (EPFL)

Hodge Matching Example

Example Pairing

There exists eigenvectors $\Delta_0 v = \lambda v$ and $\Delta_1 w = \lambda w$ where

$$\partial_0^{\dagger} v = \sqrt{\lambda} w$$

Table of Contents

- Motivation: Cellular Signal Processing, Pooling and Autoencoders.
- 2 Algebraic Discrete Morse Theory
- 3 Combinatorial Hodge Theory
- 4 Morsification and Reconstruction Theorems
- 5 Compression Algorithm
- Summary

< □ > < □ > < □ > < □ > < □ > < □ >

Morsification and Reconstruction

Question

Which deformation retracts arise from Morse matchings?

Morsification and Reconstruction

We say that two deformation retracts

$$\mathbf{D} \xleftarrow{\Psi} \mathbf{C} \diamondsuit h \quad \text{and} \quad \mathbf{D}' \xleftarrow{\Psi'} \mathbf{C}' \hookleftarrow h'$$

are *equivalent* if there exist isomorphisms of chain complexes, $f : \mathbf{D} \to \mathbf{D}'$ and $g : \mathbf{C} \to \mathbf{C}'$ such that the diagrams

commute.

Remark: when C = C', reconstruction error is the same.

Kelly Maggs (EPFL)

31 / 50

Morsification and Reconstruction

Theorem (Morsification, (Ebli, Hacker, M. [2])) Any deformation retract

$$\mathsf{D} \xleftarrow{\Psi}{\Phi} \mathsf{C}$$

of finite-type chain complexes of real inner product spaces

- there is a canonical basis of C and a Morse matching such that
- the associated deformation retract is 'equivalent'.

So What?

- ullet Understanding deformation retracts \sim Understanding Morse retracts.
- Provides an explicit, nice homotopy h.
- Helps understand reconstruction error.

(n,n-1)-free

Question Which deformation retracts have zero reconstruction error on specific Hodge components

$$\mathbf{C}_n = \mathsf{Im}\partial_{n+1} \oplus \mathsf{Ker}\Delta_n \oplus \mathsf{Im}\partial_n^{\dagger}$$

∃ ► < ∃ ►</p>

э

33 / 50

(n,n-1)-free

Question Which deformation retracts have zero reconstruction error on specific Hodge components

$${\sf C}_n={\sf Im}\partial_{n+1}\oplus{\sf Ker}\Delta_n\oplus{\sf Im}\partial_n^\dagger$$

(n, n-1)-free

Kelly Maggs (EPFL)

A Morse matching is (n, n - 1)-free if no (n - 1)-cell is paired with a *n*-cell.

Signal preservation on the Hodge decomposition

Let (\mathbf{C}, I) be a based chain complex with matching M.

Theorem (Ebli, Hacker, M., 2022, [2])

(Cocycle Reconstruction) Any signal $s \in C_n$ and its reconstruction $\Phi \Psi s$ encode the same cocycle information:

$$\operatorname{Proj}_{\operatorname{{\it Ker}}\Delta_n\oplus\operatorname{{\it Im}}\partial_n^\dagger}(\Phi\Psi s-s)=0 \ \text{for all }s\in {\sf C}_n.$$

 \Leftrightarrow

$$M$$
 is $(n, n-1)$ -free

Remarks

• Works in any base 1.

• Ker
$$\Delta_n \oplus \mathsf{Im} \partial_n^\dagger = \mathsf{Ker} \partial_{n+1}^\dagger$$

Signal preservation on the Hodge decomposition

Let (\mathbf{C}, I) be a based real chain complex, inner products with matching M. Theorem (Ebli, Hacker, M., 2022, [2])

(Cycle Reconstruction) Any signal $s \in C_{n-1}$ and its reconstruction $\Phi^{\dagger} \Psi^{\dagger} s$ encode the same cycle information:

$$\operatorname{Proj}_{\operatorname{Ker}\Delta_n \oplus \operatorname{Im}\partial_n}(\Psi^{\dagger}\Phi^{\dagger}s - s) = 0$$
 for all $s \in \mathbf{C}_{n-1}$.

 \Leftrightarrow

$$M$$
 is $(n, n-1)$ -free

Remarks

• Works in any base 1.

• Ker
$$\Delta_{n-1} \oplus \operatorname{Im} \partial_n = \operatorname{Ker} \partial_{n-1}$$

Sparsification Theorem

Intuition: the signals' reconstruction concentrates only on critical cells

Theorem (Ebli, Hacker, M., 2022, [2]) Let M be an (n, n - 1)-free Morse matching of a based chain complex (**C**, *I*). Then

$$\Phi_n^M \Psi_n^M(s) \in igoplus_{lpha \in \mathcal{M}^0 \cap I_n} C_lpha$$
 for all $s \in \mathbf{C}_n$

3 🖌 🖌 3 🕨

Topology of Data, 2022

Example

 \mathbf{C} (1,0)-free matching M

D Projection of s and $\Phi^M \Psi^M s$ on the Hodge decomposition

э

Table of Contents

- Motivation: Cellular Signal Processing, Pooling and Autoencoders.
- 2 Algebraic Discrete Morse Theory
- 3 Combinatorial Hodge Theory
- 4 Morsification and Reconstruction Theorems

5 Compression Algorithm

< □ > < □ > < □ > < □ > < □ > < □ >

Compression Algorithm

Goal

Find DMT matching that minimizes reconstruction error.

Iterative Approximate Approach

- Find an (n + 1, n)-pair that minimizes reconstruction error.
- Repeat.

Remark

• Construction is linear complexity in dim **C**_n if complex is 'sparse'.

Compression Algorithm Convergence

Iterative Approximate Approach

- Find all (n, n-1)-free pairs that minimizes reconstruction error.
- Repeat.

Thm (Ebli, Hacker, M)

Let (C, ∂) be a chain complex of real inner product spaces. For all $s \in C_n$, the algorithm converges to the chain complex (\mathbf{C}', ∂') where

•
$$\mathbf{C}'_n \cong H_n(\mathbf{C}) \oplus \operatorname{Im} \partial_n^{\dagger}$$

•
$$\mathbf{C}'_{n-1}\cong H_{n-1}(\mathbf{C})\oplus \mathrm{Im}\partial_n$$

•
$$\mathbf{C}'_k \cong H_k(\mathbf{C})$$
 for all other k .

Experimental Results

A Sequence of optimal pairings and reconstruction of the signal s $\mathbf{s} =$ height function $\Psi^{\underline{M}}s$ $\Phi^{\underline{M}}\Psi^{\underline{M}}s$ **C** Projection of s and $\Phi^{\underline{M}}\Psi^{\underline{M}}s$ on the Hodge basis **B** Reconstruction error projection of s $|\mathbf{s} - \mathbf{\Phi}^{\underline{\mathbf{M}}} \mathbf{\Psi}^{\underline{\mathbf{M}}} \mathbf{s}|$ 1.0 projection of $\Phi \mathcal{U} \Phi \mathcal{U}_{\mathcal{S}}$ 0.5 0.0 -0.5 -1.0 -1.5

 $Ker\Delta_1$

 $\text{Im}\partial^{\dagger}$

DMT

 $Im\partial_2 = Im\partial_2 = Im\partial_$

Topology of Data, 2022

42 / 50

Kelly Maggs (EPFL)

Experimental Results

A Signal sampled from a uniform distribution

C Signal sampled from a normal distribution

B Signal given by the height function

D Signal given by the distance from the center

Kelly Maggs (EPFL)

DMT

Paper: Morse Theoretic Signal Compression and Reconstruction on Chain Complexes, arXiv:2203.08571

Code: github.com/stefaniaebli/dmt-signal-processing

Table of Contents

- D Motivation: Cellular Signal Processing, Pooling and Autoencoders.
- 2 Algebraic Discrete Morse Theory
- 3 Combinatorial Hodge Theory
- 4 Morsification and Reconstruction Theorems
- 5 Compression Algorithm

A D N A B N A B N A B N

Take-home Message

Theoretical

- Chain complexes of finite dimensional inner product spaces admit a canonical Morse matching based on the Hodge decomposition.
- Any deformation retract of fin dim inner product complexes is canonically equivalent to a Morse retraction

Take-home Message

Practical

- (Sparsification) The reconstruction of (n, n-1)-free matchings is supported on the critical cells.
- (Reconstruction) The reconstruction error of an (n, n − 1)-free matching is supported on Im∂_{n+1} for all signals.

Take-home Message

Algorithmic

- Sequential collapse algorithm converges.
- Outperforms the random collapse baseline algorithm.

Thank you!

Questions?

∃ ► < ∃ ►</p>

э

References I

- E. Sköldberg, "Algebraic Morse theory and homological perturbation theory," Algebra Discrete Math., vol. 26, pp. 124–129, 2018.
- S. Ebli, C. Hacker, and K. Maggs, "Morse theoretic signal compression and reconstruction on chain complexes," *ArXiv*, vol. abs/2203.08571, 2022.