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Motivation

Data Filtered complex Barcode

http://www.zotero.org/groups/TDA-Applications
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Boundary matrices

a

b

c

n-simplex: collection of n + 1 points

Simplicial complex: collection of simplices

Boundary of a n-simplex: all (n − 1)-simplices without one of its points

(n)-boundary matrix: boundary of all the (n)-simplices
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Filtrations

· · ·
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Filtration: nested sequence of simplicial complexes

(Total) boundary matrix: boundary matrix of the final complex
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Chain complexes and homology

Chain complex: sequence of (boundary) maps of vector spaces such that the

composition of two consecutive maps is 0

Homology: the quotient of the kernel of a map by the image of the previous one
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Decomposition into interval spheres

Theorem (Chachólski, G., Landi, HHA 2020)

Every filtration decomposes uniquely into direct sum of interval spheres.

Remark (Chachólski, G., Jin, Landi, CGTA, 2022)

The generators of the interval spheres give the birth and death times of the

barcode. Any barcode algorithm is actually computing the interval sphere

decomposition.
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Pairing

abc acd abd bcd

bc

ad

ab

cd
ac

bd

Two elements are paired if and only if the

sum of the differences of the ranks is 1

=⇒ Any reduction that preserves these

ranks is legit

Topological persistence and simplification, Edelsbrunner, Letscher, Zomorodian,

FOCS, 2000
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Standard barcode algorithm

Pivot low (j): index of lowest nonzero element of column j

Input: Boundary matrix D
Output: Reduced matrix R

1 R = D
2 for j = 1, . . . ,# of simplices do

3 while low (j) = low (i) 6= 0 for i < j do

4 add column i to column j

Topological persistence and simplification, Edelsbrunner, Letscher, Zomorodian,

FOCS, 2000
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Example



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1

1

1

1

1

1

1

1

1 1 1 1 1

1 1

1 1

1 1

1 1



What if we try to keep the matrix

sparse during the reduction?
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Standard barcode algorithm with clear

Input: Boundary matrix D
Output: Reduced matrix R

1 R = D
2 for j = 1, . . . ,# of simplices do

3 while low (j) = low (i) 6= 0 for i < j do

4 add column i to column j

5 if the column j is nonzero then

6 Set column i to 0 for i = low (j)

Each interval sphere has two generators:

If we find the “upper”, we can remove the “lower”

CLEAR

If we find the “lower”, we can remove the “upper”

COMPRESS

Persistent homology computation with a twist, Chen, Kerber, EuroCG, 2011
12 / 26
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Cohomology

The coboundary of a (n − 1)-simplex s is the collection of all n-simplices that have

s in their boundary.

The anti-transpose of a boundary matrix is (almost) the coboundary matrix of the

filtration and its pairing is in bijection with the pairing of the boundary matrix1.

On some inputs, the standard barcode algorithm with clear is much more efficient

on the coboundary than on the boundary matrix. Nothing comparable happens for

the compress optimisation.

1Dualities in persistent (co)homology, de Silva, Morozov, Vejdemo-Johansson,

Inverse Problems, 2011
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Row barcode algorithm

with compress

Pivot left (i): index of leftmost nonzero element of row i

Input: Boundary matrix D
Output: Reduced matrix R

1 R = D
2 for i = # of simplices, . . . , 1 do

3 while left (i) = left (j) 6= 0 for j > i do

4 add row j to row i

Tripartitions and bases of an ordered complex, Edelsbrunner, Ölsböck, Discrete &

Computational Geometry, 2020

/ Notes on pivot pairings, G., EuroCG, 2021
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Input: Boundary matrix D
Output: Reduced matrix R

1 R = D
2 for i = # of simplices, . . . , 1 do

3 while left (i) = left (j) 6= 0 for j > i do

4 add row j to row i
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Computational Geometry, 2020 / Notes on pivot pairings, G., EuroCG, 2021
14 / 26



Fantastic barcode algorithms and where to find them

Row barcode algorithm with compress

Pivot left (i): index of leftmost nonzero element of row i

Input: Boundary matrix D
Output: Reduced matrix R

1 R = D
2 for i = # of simplices, . . . , 1 do

3 while left (i) = left (j) 6= 0 for j > i do

4 add row j to row i

5 if the row i is nonzero then

6 Set row j to 0 for j = left (i)

If the filtration is full, then # of column operations with clear on the coboundary

matrix is equal to # of row operations with the compress on the boundary matrix.
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Implementations

JavaPlex

Dionysus

Gudhi

Phat

Ripser

Giotto-PH

A roadmap for the computation of persistent homology, Otter, Porter, Tillmann,

Grindrod, Harrington, EPJ Data Science, 2017
15 / 26
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Memory and data type

The choice of how to store the boundary matrix has big impact on the

performances, as boundary matrices are initially sparse1.

=⇒ use data types whose size is proportional to the number of nonzero entries in

a column

The cost of adding column i to column j is #i ;

The cost of a matrix reduction is the added cost of all column additions;

The fill-up of is the number of entries in the reduced matrix.

1 PHAT-persistent homology algorithms toolbox, Bauer, Kerber, Reininghaus,

Wagner, Journal of symbolic computation, 2017
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Wagner, Journal of symbolic computation, 2017
16 / 26



Fantastic barcode algorithms and where to find them

Memory and data type

The choice of how to store the boundary matrix has big impact on the

performances, as boundary matrices are initially sparse1.

=⇒ use data types whose size is proportional to the number of nonzero entries in

a column

The cost of adding column i to column j is #i ;

The cost of a matrix reduction is the added cost of all column additions;

The fill-up of is the number of entries in the reduced matrix.

1 PHAT-persistent homology algorithms toolbox, Bauer, Kerber, Reininghaus,

Wagner, Journal of symbolic computation, 2017
16 / 26



Fantastic barcode algorithms and where to find them

Example
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What if we try to keep the matrix

sparse during the reduction?
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Swap barcode algorithm

Input: Boundary matrix D
Output: Reduced matrix R

1 R = D
2 for j = 1, . . . ,# of simplices do

3 while low (j) = low (i) 6= 0 for i < j do

4 if #j < #i then

5 swap j and i

6 add column i to j

7 if column j is nonzero then

8 Set i to 0 for i = low (j)

Keeping it sparse: Computing Persistent Homology revised, Bauer, Bin Masood, G.,

Houry, Kerber, Rathod, to appear
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Retrospective barcode algorithm

Input: Boundary matrix D
Output: Reduced boundary matrix R

1 R = D
2 for j = 1, . . . ,# of simplices do

3 Remove the negative entries from j

4 while column j is nonzero and R low(i)
j 6= 0 for i < j do

5 add column i to column j

6 for every column i < j with R low(j)
i 6= 0 do

7 add column j to column i

Keeping it sparse: Computing Persistent Homology revised, Bauer, Bin Masood, G.,

Houry, Kerber, Rathod, to appear
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What if we try to keep the matrix

sparse during the reduction?
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Experiments

Alpha shape Lower star Vietoris–Rips

Algorithm Fill-up Col.ops Bitflips Fill-up Col.ops Bitflips Fill-up Col.ops Bitflips

clear 6.35M 2.17M 62.30M 34.70M 4.90M 29.43M 14,975 5.35M 19.02M

clear∗ 6.90M 1.41M 84.09M 33.18M 4.91M 30.06M 0.51M 222 38,342

swap 1.56M 1.10M 7.37M 33.61M 4.83M 26.79M 14,887 5.19M 17.29M

swap∗ 2.04M 1.54M 20.72M 31.59M 4.86M 27.15M 0.51M 224 33,830

retro 1.14M 2.34M 19.93M 8.13M 21.51M 34.70M 5,049 0.48M 0.49M

retro∗ 7.94M 3.51M 40.87M 7.35M 21.94M 31.73M 6.41M 9,944 14.32M

mix 1.04M 15.04M 140.34M 10.85M 120.02M 239.17M 5,172 0.52M 0.57M

mix∗ 1.41M 14.03M 71.37M 10.79M 76.24M 150.20M 0.49M 0.22M 21.84M

Table: “M” stands for millions. The ∗ means via row barcode algorithm.
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Experiments

Alpha shape Lower star Vietoris–Rips Shuffled

Algorithm 40K 80K 160K Tooth Lobster Skull 104 297 445 50 75 100

clear ∗6.5 ∗18.6 ∗49.8 2.0 25.8 23.9 ∗0.0 ∗0.1 ∗0.1 ∗0.1 ∗1.3 ∗11.2

swap ∗9.8 ∗28.2 ∗74.2 2.4 38.6 25.4 ∗0.0 ∗0.1 ∗0.2 0.1 0.6 2.9

retro 4.3 11.8 30.9 ∗4.9 ∗29.0 ∗61.6 0.1 1.4 7.2 0.0 0.1 0.3

Table: Best running times (in seconds) on various data sets. The ∗ means via row
barcode algorithm.
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Experiments

List Vector Set Heap P-Heap P-Set P-Full P-Bit-Tree

clear 58.3 1.9 7.9 7.1 6.5 7.5 2.2 0.9

clear∗ 144.6 2.8 11.9 9.5 8.9 9.8 3.2 0.9

swap 45.9 1.2 1.1 68.8 63.7 1.1 0.5 27.7

swap∗ +5m 3.0 4.0 275.6 213.6 4.1 1.6 122.8

retro 2.8 0.6 2.9 6.5 6.3 9.4 4.6 3.3

retro∗ 72.7 2.6 20.3 128.0 167.5 182.3 103.8 54.6

mix 40.1 4.0 17.7 44.5 38.0 14.5 6.5 22.1

mix∗ +5m 14.0 15.5 +5m +5m 12.5 6.5 268.2

Table: Alpha filtration on 10000 points on a torus. All timings are in seconds but for
the timeout (minutes). The ∗ means via row barcode algorithm.
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Step columns and critical pivots

A clique filtration is a filtration where the n-simplices are added as soon as their

boundary (n − 1)-simplices are added.

A step column is a column that is not modified

during the reduction.

A critical pivot is a pivot that is in the reduced

matrix but was not in the initial one.

Lemma (G., Houry, Kerber, ISSAC, 2022)

In a clique filtration, there is an critical pivot if and only if at the corresponding

simplex is a “lower” generator of a new interval sphere.
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Average complexity

Lemma (G., Houry, Kerber, ISSAC, 2022)

The cost of a matrix reduction is bounded by # of columns × the fill-up of the

reduced matrix.

The fill-up is bounded by Θ(# of rows) +

#of rows∑
i=1

P(new “lower” generator).

For every random clique filtration model for which we can bound the probability of

obtaining a new interval sphere, we have a bound on the average complexity of the

barcode algorithm.
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Average complexity

Theorem (G., Houry, Kerber, ISSAC, 2022)

Let R be the reduced 1-boundary matrix of a Vietoris–Rips filtration. Then

E[fill-up of R ] = O(n2 log2 n) and E[cost of matrix reduction] = O(n5 log2 n).

Let R be the reduced 1-boundary matrix of an Erdős–Rényi filtration. Then

E[fill-up of R ] = O(n3 log n) and E[cost of matrix reduction] = O(n6 log n).

The worst-case complexities are, respectively, O(n4) and O(n7), and they are

realized for the Erdős–Rényi filtration.
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Take home

The pairs links the matrices (combinatorial) to the barcode

(homological/geometrical)

Any reduction that maintains the pairs is valid

Things can go (sort of) bad but they usually don’t

Thank you for your attention!
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