

digital futures

Homological algebra and persistence

TDA group at KTH in Stockholm

Jens Agerberg

Wojciech Chachólski

Rene Corbet

Andrea Guidolin

Alvin Jin

Barbara Mahler

Isaac Ren

Henri Riihimäki

Martina Scolamiero

Francesca Tombari

Persistence modules

Persistence modules

$$I: [n]^k := [0 < \dots < n]^k, \mathbb{N}^k, [0, \infty)^k, \mathbb{R}^k$$

H. Asashiba, E. Escolar, K. Nakashima, and M. Yoshiwaki.

On approximation of 2d persistence modules by interval-decomposables, 2019.

B. Blanchette, T. Brüstle, and E. Hanson.

Homological approximations in persist tence theory, 2021.

M. Botnan, S. Oppermann, and S. Oudot.

Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions, 2021.

- •
- •

H. Asashiba, E. Escolar, K. Nakashima, and M. Yoshiwaki.

On approximation of 2d persistence modules by interval-decomposables, 2019.

B. Blanchette, T. Brüstle, and E. Hanson.

Homological approximations in persist tence theory, 2021.

M. Botnan, S. Oppermann, and S. Oudot.

Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions, 2021.

•

What's new?

H. Asashiba, E. Escolar, K. Nakashima, and M. Yoshiwaki.

On approximation of 2d persistence modules by interval-decomposables, 2019.

B. Blanchette, T. Brüstle, and E. Hanson.

Homological approximations in persist tence theory, 2021.

M. Botnan, S. Oppermann, and S. Oudot.

Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions, 2021.

•

•

What's new?

TDA needs a wealth of invariants of persistence modules which are **computable**,

stable,

Amenable for statistical analysis

H. Asashiba, E. Escolar, K. Nakashima, and M. Yoshiwaki.

On approximation of 2d persistence modules by interval-decomposables, 2019.

B. Blanchette, T. Brüstle, and E. Hanson.

Homological approximations in persist tence theory, 2021.

M. Botnan, S. Oppermann, and S. Oudot.

Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions, 2021.

Homological algebra

What's new?

TDA needs a wealth of invariants of persistence modules which are **computable**,

stable,

Amenable for statistical analysis

Slogan: is about approximating objects by direct sums of chosen objects

Slogan: is about approximating objects by direct sums of chosen objects

Starting point: a collection of objects *P*

Slogan: is about approximating objects by direct sums of chosen objects

Starting point: a collection of objects *P*

Finite direct sums of elements in *P* are called *P*-free

Slogan: is about approximating objects by direct sums of chosen objects

Starting point: a collection of objects *P*

Finite direct sums of elements in P are called P-free

P is called **independent** if for every P-free C, there is a unique function $\beta C \colon \mathcal{P} \to \mathbb{N}$ such that: $C \simeq \bigoplus A^{\beta C(A)}$

Slogan: is about approximating objects by direct sums of chosen objects

Starting point: a collection of objects *P*

Finite direct sums of elements in P are called P-free

Betti diagram

P is called **independent** if for every P-free C, there is a unique function $\beta C \colon \mathcal{P} \to \mathbb{N}$ such that: $C \simeq \bigoplus A^{\beta C(A)}$

Choose a collection ${\mathcal P}$

Choose a collection ${\mathcal P}$

Exactness, projectivness, and acyclicity

A sequence $M_0 o M_1 o M_2$ is called ${\mathcal P}$ exact if $\hom(A,M_0) o \hom(A,M_1) o \hom(A,M_2)$

is exact for every A in ${\mathcal P}$

A sequence $M_0 o M_1 o M_2$ is called $\mathcal P$ exact if $\hom(A,M_0)\to \hom(A,M_1)\to \hom(A,M_2)$ is exact for every A in $\mathcal P$

B is called $\mathcal P$ projective if $\hom(B,M_0)\to \hom(B,M_1)\to \hom(B,M_2)$ is exact for every $\mathcal P$ exact sequence $M_0\to M_1\to M_2$

A sequence $M_0 o M_1 o M_2$ is called $\mathcal P$ exact if $\hom(A,M_0)\to \hom(A,M_1)\to \hom(A,M_2)$ is exact for every A in $\mathcal P$

B is called $\mathcal P$ projective if $\hom(B,M_0)\to \hom(B,M_1)\to \hom(B,M_2)$ is exact for every $\mathcal P$ exact sequence $M_0\to M_1\to M_2$

Every $\mathcal P$ free is $\mathcal P$ projective.

A sequence $M_0 o M_1 o M_2$ is called ${\mathcal P}$ exact if

$$hom(A, M_0) \to hom(A, M_1) \to hom(A, M_2)$$

is exact for every A in ${\mathcal P}$

B is called ${\mathcal P}$ projective if

$$hom(B, M_0) \to hom(B, M_1) \to hom(B, M_2)$$

is exact for every ${\mathcal P}$ exact sequence $M_0 o M_1 o M_2$

Every ${\mathcal P}$ free is ${\mathcal P}$ projective.

If every \mathcal{P} projective is \mathcal{P} free, then \mathcal{P} is called **acyclic**.

Choose an independent and acyclic collection $\,\mathcal{P}\,$

Choose an independent and acyclic collection $\,\mathcal{P}\,$

A $\mathcal P$ cover of M is a $\mathcal P$ exact sequence

$$C_0 \to M \to 0$$

where C_0 is ${\mathcal P}$ free

A \mathcal{P} cover of M is a \mathcal{P} exact sequence

$$C_0 \to M \to 0$$

where C_0 is \mathcal{P} free

A \mathcal{P} cover $C_0 \to M$ is minimal if every its endomorphism:

is an isomorphism.

A $\mathcal P$ cover of M is a $\mathcal P$ exact sequence

$$C_0 \to M \to 0$$

where C_0 is \mathcal{P} free

A \mathcal{P} cover $C_0 o M$ is minimal if every its endomorphism:

is an isomorphism.

Two minimal ${\mathcal P}$ covers of M are isomorphic

A \mathcal{P} cover of M is a \mathcal{P} exact sequence

$$C_0 \to M \to 0$$

where C_0 is $\mathcal P$ free

A \mathcal{P} cover $C_0 \to M$ is minimal if every its endomorphism:

is an isomorphism.

Two minimal \mathcal{P} covers of M are isomorphic

A minimal \mathcal{P} cover of M leads to an invariant:

$$\beta_{\mathcal{P}}^0 M := \beta C_0 \colon \mathcal{P} \to \mathbb{N}$$

describing multiplicities:

$$C_0 \simeq \bigoplus_{A \in \mathcal{P}} A^{\beta_{\mathcal{P}}^0 M(A)}$$

A \mathcal{P} cover of M is a \mathcal{P} exact sequence

$$C_0 \to M \to 0$$

where C_0 is \mathcal{P} free

A \mathcal{P} cover $C_0 \to M$ is minimal if every its endomorphism:

is an isomorphism.

Two minimal $\mathcal P$ covers of M are isomorphic

A minimal \mathcal{P} cover of M leads to an invariant:

$$\beta_{\mathcal{P}}^0 M := \beta C_0 \colon \mathcal{P} \to \mathbb{N}$$

describing multiplicities:

$$C_0 \simeq \bigoplus_{A \in \mathcal{P}} A^{\beta_{\mathcal{P}}^0 M(A)}$$

A $\mathcal P$ cover of M is a $\mathcal P$ exact sequence

$$C_0 \to M \to 0$$

where C_0 is \mathcal{P} free

A \mathcal{P} cover $C_0 \to M$ is minimal if every its endomorphism:

is an isomorphism.

Two minimal $\mathcal P$ covers of M are isomorphic

0-th Betti diagram of M

A minimal \mathcal{P} cover of M leads to an invariant:

$$\beta_{\mathcal{P}}^0 M := \beta C_0 \colon \mathcal{P} \to \mathbb{N}$$

describing multiplicities:

$$C_0 \simeq \bigoplus_{A \in \mathcal{P}} A^{\beta_{\mathcal{P}}^0 M(A)}$$

Covers

A $\mathcal P$ cover of M is a $\mathcal P$ exact sequence

$$C_0 \to M \to 0$$

where C_0 is \mathcal{P} free

A \mathcal{P} cover $C_0 \to M$ is minimal if every its endomorphism:

is an isomorphism.

Two minimal $\mathcal P$ covers of M are isomorphic

0-th Betti diagram of M

A minimal \mathcal{P} cover of M leads to an invariant:

$$\beta_{\mathcal{P}}^0 M := \beta C_0 \colon \mathcal{P} \to \mathbb{N}$$

describing multiplicities:

$$C_0 \simeq \bigoplus_{A \in \mathcal{P}} A^{\beta_{\mathcal{P}}^0 M(A)}$$

M is P free if and only if its minimal P cover is an isomorphism.

Resolutions

Choose an independent and acyclic collection $\,\mathcal{P}\,$

Resolutions

Choose an independent and acyclic collection $\,\mathcal{P}\,$

Resolutions

A \mathcal{P} resolution of M is a \mathcal{P} exact sequence

$$\cdots \to C_n \to \cdots \to C_1 \to C_0 \to M \to 0$$

where C_d is ${\mathcal P}$ free

Choose an independent and acyclic collection $\,\mathcal{P}\,$

Resolutions

A \mathcal{P} resolution of M is a \mathcal{P} exact sequence

$$\cdots \to C_n \to \cdots \to C_1 \to C_0 \to M \to 0$$

where C_d is \mathcal{P} free

A ${\mathcal P}$ resolution $C \to M$ is minimal if every its endomorphism:

is an isomorphism.

Choose an independent and acyclic collection $\,\mathcal{P}\,$

Resolutions

A \mathcal{P} resolution of M is a \mathcal{P} exact sequence

$$\cdots \to C_n \to \cdots \to C_1 \to C_0 \to M \to 0$$

where C_d is \mathcal{P} free

A $\mathcal P$ resolution $C \to M$ is minimal if every its endomorphism:

is an isomorphism.

Two minimal ${\mathcal P}$ resolution of M are isomorphic

Resolutions

A \mathcal{P} resolution of M is a \mathcal{P} exact sequence

$$\cdots \to C_n \to \cdots \to C_1 \to C_0 \to M \to 0$$

where C_d is \mathcal{P} free

A $\mathcal P$ resolution $C \to M$ is minimal if every its endomorphism:

is an isomorphism.

Two minimal $\mathcal P$ resolution of M are isomorphic

A minimal \mathcal{P} resolution of M leads to a sequence of invariants:

$$M \mapsto \begin{cases} \beta_{\mathcal{P}}^{0} M \colon \mathcal{P} \to \mathbb{N} \\ \beta_{\mathcal{P}}^{1} M \colon \mathcal{P} \to \mathbb{N} \\ \beta_{\mathcal{P}}^{2} M \colon \mathcal{P} \to \mathbb{N} \\ \vdots \end{cases}$$

describing multiplicities: $C_d \simeq \bigoplus_{A \in \mathcal{P}} A^{\beta^d_{\mathcal{P}} M(A)}$

Resolutions

A \mathcal{P} resolution of M is a \mathcal{P} exact sequence

$$\cdots \to C_n \to \cdots \to C_1 \to C_0 \to M \to 0$$

where C_d is \mathcal{P} free

A $\mathcal P$ resolution $C \to M$ is minimal if every its endomorphism:

How to calculate the obtained invariants?

A minimal \mathcal{P} resolution of M leads to a sequence of invariants:

$$M \mapsto \begin{cases} \beta_{\mathcal{P}}^{0} M \colon \mathcal{P} \to \mathbb{N} \\ \beta_{\mathcal{P}}^{1} M \colon \mathcal{P} \to \mathbb{N} \\ \beta_{\mathcal{P}}^{2} M \colon \mathcal{P} \to \mathbb{N} \\ \vdots \end{cases}$$

describing multiplicities: $C_d \simeq \bigoplus_{A \in \mathcal{P}} A^{\beta_{\mathcal{P}}^d M(A)}$

finite ---

$$\mathcal{S} := \left\{ \begin{array}{cc} K(v,-) \colon I \to \mathrm{vect} \mid K(v,w) = \begin{cases} K & \text{if } v \leq w \\ 0 & \text{if } v \not\leq w \end{cases} \text{ for } v \text{ and } w \text{ in } I \end{array} \right\}$$

finite ---

$$\mathcal{S} := \left\{ \begin{array}{cc} K(v,-) \colon I \to \mathrm{vect} \mid K(v,w) = \begin{cases} K & \text{if } v \leq w \\ 0 & \text{if } v \not\leq w \end{cases} \text{ for } v \text{ and } w \text{ in } I \end{array} \right\} = I$$

finite -

$$\mathcal{S} := \left\{ \begin{array}{cc} K(v, -) \colon I \to \mathrm{vect} \mid K(v, w) = \begin{cases} K & \text{if } v \leq w \\ 0 & \text{if } v \not\leq w \end{cases} \text{ for } v \text{ and } w \text{ in } I \end{array} \right\} = I$$

- S is independent,
- Exactness: is the standard exactness
- S is acyclic: all projective are free
- All representations admit a minimal resolutions

finite -

$$\mathcal{S} := \left\{ \begin{array}{cc} K(v, -) \colon I \to \mathrm{vect} \mid K(v, w) = \begin{cases} K & \text{if } v \leq w \\ 0 & \text{if } v \not\leq w \end{cases} \text{ for } v \text{ and } w \text{ in } I \end{array} \right\} = I$$

-
$$S$$
 is independent,
- Exactness: is the standard exactness
- S is acyclic: all projective are free $M\mapsto$
- All representations admit a minimal resolutions
$$\beta^{0}M\colon I\to\mathbb{N}$$

finite -

$$\mathcal{S} := \left\{ \begin{array}{cc} K(v, -) \colon I \to \mathrm{vect} \mid K(v, w) = \begin{cases} K & \text{if } v \leq w \\ 0 & \text{if } v \not\leq w \end{cases} \text{ for } v \text{ and } w \text{ in } I \end{cases} \right\} = I$$

- S is independent,
- Exactness: is the standard exactness
- S is acyclic: all projective are free
$$M \mapsto \begin{cases} \beta^0 M \colon I \to \mathbb{N} \\ \beta^1 M \colon I \to \mathbb{N} \end{cases}$$
- All representations admit a minimal resolutions
$$\vdots$$

$$\beta^{0}M = \dim M/\operatorname{rad}M$$

$$\beta^{1}M = \beta^{0}(\ker(C_{0} \to M))$$

$$\beta^{2}M = \beta^{1}(\ker(C_{0} \to M)) = \beta^{0}(\ker(C_{1} \to C_{0}))$$

finite •

$$\mathcal{S} := \left\{ \begin{array}{cc} K(v, -) \colon I \to \mathrm{vect} \mid K(v, w) = \begin{cases} K & \text{if } v \leq w \\ 0 & \text{if } v \not\leq w \end{cases} \text{ for } v \text{ and } w \text{ in } I \end{cases} \right\} = I$$

- S is independent,

-
$$S$$
 is independent,
- Exactness: is the standard exactness
- S is acyclic: all projective are free
- All representations admit a minimal resolutions
$$\beta^0 M \colon I \to \mathbb{N}$$

$$\beta^1 M \colon I \to \mathbb{N}$$

$$\beta^2 M \colon I \to \mathbb{N}$$

$$\vdots$$

$$\beta^{0}M = \dim M/\operatorname{rad}M$$

$$\beta^{1}M = \beta^{0}(\ker(C_{0} \to M))$$

$$\beta^{2}M = \beta^{1}(\ker(C_{0} \to M)) = \beta^{0}(\ker(C_{1} \to C_{0}))$$

requires constructing differentials and their kernels

 $\operatorname{Fun}(I,\operatorname{vect})$

 $\operatorname{Fun}(I,\operatorname{vect})$

Assume it is an upper semilattice

Assume it is an upper semilattice

This assumption means:

Assume it is an upper semilattice

This assumption means:

- we can form joins of non empty subsets
- consequently we can form meets of all subsets that are bounded below

Assume it is an upper semilattice

This assumption means:

- we can form joins of non empty subsets
- consequently we can form meets of all subsets that are bounded below

Koszul complexes of $M\colon I\to \mathrm{vect}\,$ at v in I

 $\operatorname{Fun}(I,\operatorname{vect})$

Assume it is an upper semilattice

This assumption means:

- we can form joins of non empty subsets
- consequently we can form meets of all subsets that are bounded below

Koszul complexes of $M\colon I\to \mathrm{vect}\,$ at v in I

$$\mathcal{K}_{v}M := \cdots \to \bigoplus_{\substack{S \subset \mathcal{U}(v) \\ S \text{ is bounded below} \\ |S| = 2}} M(\land S) \quad \to \quad \bigoplus_{\substack{S \subset \mathcal{U}(v) \\ S \text{ is bounded below} \\ |S| = 1}} M(\land S) \quad \to \quad M(v)$$

 $\operatorname{Fun}(I,\operatorname{vect})$

Assume it is an upper semilattice

This assumption means:

- we can form joins of non empty subsets
- consequently we can form meets of all subsets that are bounded below

Koszul complexes of $M\colon I \to \mathrm{vect}\,$ at v in I

$$\mathcal{K}_{v}M := \cdots \to \bigoplus_{\substack{S \subset \mathcal{U}(v) \\ S \text{ is bounded below} \\ |S| = 2}} M(\land S) \quad \to \quad \bigoplus_{\substack{S \subset \mathcal{U}(v) \\ S \text{ is bounded below} \\ |S| = 1}} M(\land S) \quad \to \quad M(v)$$

the set of parents of v

 $\operatorname{Fun}(I,\operatorname{vect})$

Assume it is an upper semilattice

This assumption means:

- we can form joins of non empty subsets
- consequently we can form meets of all subsets that are bounded below

Koszul complexes of $M\colon I\to \mathrm{vect}\,$ at v in I

$$\mathcal{K}_{v}M := \cdots \to \bigoplus_{\substack{S \subset \mathcal{U}(v) \\ S \text{ is bounded below} \\ |S| = 2}} M(\land S) \quad \to \bigoplus_{\substack{S \subset \mathcal{U}(v) \\ S \text{ is bounded below} \\ |S| = 1}} M(\land S) \quad \to \quad M(v)$$

the set of parents of v

$$\beta^d M(v) = \dim H_d(\mathcal{K}_v M)$$

Assume: Instead of a collection P, we have a functor

 $\mathcal{P} \colon J^{op} o \operatorname{Fun}(I, \operatorname{vect})$ called grading

poset

Assume: Instead of a collection P, we have a functor

 $\mathcal{P}\colon J^{op} o \operatorname{Fun}(I,\operatorname{vect})$ called grading

Assume: Instead of a collection P, we have a functor

 $\mathcal{P}: J^{op} \to \operatorname{Fun}(I, \operatorname{vect})$ called grading

poset

Pair of adjoin functors

$$M \longmapsto \operatorname{Nat}_{I}(\mathcal{P}(-), M)$$

$$\operatorname{Fun}(I,\operatorname{vect}) \xrightarrow[\mathcal{L}]{\mathcal{R}} \operatorname{Fun}(J,\operatorname{vect})$$

$$\mathcal{P}(a) \longleftarrow K(a, -)$$

poset

Assume: Instead of a collection P, we have a functor $\mathcal{P}\colon J^{op}\to \operatorname{Fun}(I,\operatorname{vect})$ called grading

Pair of adjoin functors

$$M \longmapsto \operatorname{Nat}_{I}(\mathcal{P}(-), M)$$

$$\operatorname{Fun}(I,\operatorname{vect}) \xrightarrow[\mathcal{L}]{\mathcal{R}} \operatorname{Fun}(J,\operatorname{vect})$$

$$\mathcal{P}(a) \longleftarrow K(a,-)$$

Every *a* in *J* leads to a natural transformation:

$$\mu_a \colon K(a,-) \to \mathcal{RL}K(a,-) = \mathcal{RP}(a) = \operatorname{Nat}_I(\mathcal{P}(-),\mathcal{P}(a))$$

poset

Assume: Instead of a collection P, we have a functor $\mathcal{P}\colon J^{op}\to \operatorname{Fun}(I,\operatorname{vect})$ called grading

Pair of adjoin functors

$$M \longmapsto \operatorname{Nat}_{I}(\mathcal{P}(-), M)$$

$$\operatorname{Fun}(I,\operatorname{vect}) \xrightarrow[\mathcal{L}]{\mathcal{R}} \operatorname{Fun}(J,\operatorname{vect})$$

$$\mathcal{P}(a) \longleftarrow K(a, -)$$

Every *a* in *J* leads to a natural transformation:

$$\mu_a \colon K(a,-) \to \mathcal{RL}K(a,-) = \mathcal{RP}(a) = \operatorname{Nat}_I(\mathcal{P}(-),\mathcal{P}(a))$$

The functor is called **thin** if μ_a is surjective for every a in J

Assume: Instead of a collection P, we have a functor

 $\mathcal{P} \colon J^{op} \to \operatorname{Fun}(I, \operatorname{vect})$ called grading

poset

Pair of adjoin functors

$$M \longmapsto \operatorname{Nat}_{I}(\mathcal{P}(-), M)$$

$$\operatorname{Fun}(I,\operatorname{vect}) \xrightarrow[\mathcal{L}]{\mathcal{R}} \operatorname{Fun}(J,\operatorname{vect})$$

$$\mathcal{P}(a) \longleftarrow K(a,-)$$

Every a in J leads to a natural transformation:

$$\mu_a \colon K(a,-) \to \mathcal{RL}K(a,-) = \mathcal{RP}(a) = \operatorname{Nat}_I(\mathcal{P}(-),\mathcal{P}(a))$$

The functor is called **thin** if μ_a is surjective for every a in J

 μ_a is thin if for every $a \leq b$ in J, every natural transformation $\mathcal{P}(b) \to \mathcal{P}(b)$ is of the form: $\lambda \mathcal{P}(a \leq b)$ for some $\lambda \in K$

poset

Assume: Instead of a collection P, we have a functor

$$\mathcal{P}: J^{op} \to \operatorname{Fun}(I, \operatorname{vect})$$
 called grading

Pair of adjoin functors

$$M \longmapsto \operatorname{Nat}_{I}(\mathcal{P}(-), M)$$

$$\operatorname{Fun}(I,\operatorname{vect}) \xrightarrow[\mathcal{L}]{\mathcal{R}} \operatorname{Fun}(J,\operatorname{vect})$$

$$\mathcal{P}(a) \longleftarrow K(a, -)$$

Every a in J leads to a natural transformation:

$$\mu_a \colon K(a,-) \to \mathcal{RL}K(a,-) = \mathcal{RP}(a) = \operatorname{Nat}_I(\mathcal{P}(-),\mathcal{P}(a))$$

The functor is called **thin** if μ_a is surjective for every a in J

 μ_a is thin if for every $a \leq b$ in J, every natural transformation $\mathcal{P}(b) \to \mathcal{P}(b)$ is of the form: $\lambda \mathcal{P}(a \leq b)$ for some $\lambda \in K$

In particular for every $a \leq b$ in J, $\dim \operatorname{Nat}_I(\mathcal{P}(b), \mathcal{P}(a)) \leq 1$

Assume $\mathcal{P}\colon J^{op} o \operatorname{Fun}(I,\operatorname{vect})$ is thin.

Assume $\mathcal{P}\colon J^{op} o \operatorname{Fun}(I,\operatorname{vect})$ is thin.

The collection $\mathcal{P}:=\{\mathcal{P}(a)\mid a\in J, \mathcal{P}(a)\neq 0\}$ is

- Independent
- Acyclic
- All functors admit a P minimal resolution

Assume $\mathcal{P}\colon J^{op} o \operatorname{Fun}(I,\operatorname{vect})$ is thin.

The collection $\mathcal{P}:=\{\mathcal{P}(a)\mid a\in J, \mathcal{P}(a)\neq 0\}$ is

- Independent
- Acyclic
- All functors admit a P minimal resolution

To $M\colon I \to \mathrm{vect}$ we associate numerical invariants

 $\begin{cases} \beta^0_{\mathcal{P}}M\colon \mathcal{P}\to \mathbb{N} & \text{describing} \\ \beta^1_{\mathcal{P}}M\colon \mathcal{P}\to \mathbb{N} & \text{multiplicities in} \\ & \text{the minimal} \\ \vdots & P \text{ resolution of } M. \end{cases}$

Assume $\mathcal{P} \colon J^{op} \to \operatorname{Fun}(I, \operatorname{vect})$ is thin.

The collection $\mathcal{P}:=\{\mathcal{P}(a)\mid a\in J, \mathcal{P}(a)\neq 0\}$ is

- Independent
- Acyclic
- All functors admit a P minimal resolution

$$M \longmapsto \operatorname{Nat}_{I}(\mathcal{P}(-), M)$$

$$\operatorname{Fun}(I, \operatorname{vect}) \stackrel{\mathcal{R}}{\longleftarrow} \operatorname{Fun}(J, \operatorname{vect})$$

$$\mathcal{P}(a) \longleftarrow K(a, -)$$

To $M\colon I \to \mathrm{vect}$ we associate numerical invariants

 $\begin{cases} \beta^0_{\mathcal{P}} M \colon \mathcal{P} \to \mathbb{N} & \text{describing} \\ \beta^1_{\mathcal{P}} M \colon \mathcal{P} \to \mathbb{N} & \text{multiplicities in} \\ \vdots & \text{the minimal} \\ \mathcal{P} \text{ resolution of } M. \end{cases}$

Assume $\mathcal{P} \colon J^{op} \to \operatorname{Fun}(I, \operatorname{vect})$ is thin.

The collection $\mathcal{P}:=\{\mathcal{P}(a)\mid a\in J, \mathcal{P}(a)\neq 0\}$ is

- Independent
- Acyclic
- All functors admit a P minimal resolution

To $M\colon I \to \mathrm{vect}$ we associate numerical invariants

$$\begin{cases} \beta^0_{\mathcal{P}} M \colon \mathcal{P} \to \mathbb{N} & \text{describing} \\ \beta^1_{\mathcal{P}} M \colon \mathcal{P} \to \mathbb{N} & \text{multiplicities in} \\ \vdots & \text{the minimal} \\ P \text{ resolution of } M. \end{cases}$$

$$M \longmapsto \operatorname{Nat}_{I}(\mathcal{P}(-), M)$$

$$\operatorname{Fun}(I,\operatorname{vect}) \xrightarrow[\mathcal{L}]{\mathcal{R}} \operatorname{Fun}(J,\operatorname{vect})$$

$$\mathcal{P}(a) \longleftarrow K(a,-)$$

If $C_0 o \mathcal{R}M$ is a standard minimal cover

Assume $\mathcal{P} \colon J^{op} \to \operatorname{Fun}(I, \operatorname{vect})$ is thin.

The collection $\mathcal{P}:=\{\mathcal{P}(a)\mid a\in J, \mathcal{P}(a)\neq 0\}$ is

- Independent
- Acyclic
- All functors admit a P minimal resolution

To $M\colon I \to \mathrm{vect}$ we associate numerical invariants

$$\begin{cases} \beta^0_{\mathcal{P}} M \colon \mathcal{P} \to \mathbb{N} & \text{describing} \\ \beta^1_{\mathcal{P}} M \colon \mathcal{P} \to \mathbb{N} & \text{multiplicities in} \\ \vdots & \text{the minimal} \\ \vdots & P \text{ resolution of } M. \end{cases}$$

$$M \longmapsto \operatorname{Nat}_{I}(\mathcal{P}(-), M)$$

$$\operatorname{Fun}(I,\operatorname{vect}) \xrightarrow[\mathcal{L}]{\mathcal{R}} \operatorname{Fun}(J,\operatorname{vect})$$

$$\mathcal{P}(a) \longleftarrow K(a,-)$$

If $C_0 o \mathcal{R}M$ is a standard minimal cover, then its left adjoint $\mathcal{L}C_0 o M$ is a minimal P cover.

The collection $\mathcal{P} := \{ \mathcal{P}(a) \mid a \in J, \mathcal{P}(a) \neq 0 \}$ is

- Independent
- Acyclic
- All functors admit a P minimal resolution

To $M: I \to \text{vect}$ we associate numerical invariants

$$\begin{cases} \beta^0_{\mathcal{P}} M \colon \mathcal{P} \to \mathbb{N} & \text{describing} \\ \beta^1_{\mathcal{P}} M \colon \mathcal{P} \to \mathbb{N} & \text{multiplicities in} \\ \vdots & \text{the minimal} \\ P \text{ resolution of } M. \end{cases}$$

$$M \longmapsto \operatorname{Nat}_{I}(\mathcal{P}(-), M)$$

$$\operatorname{Fun}(I,\operatorname{vect}) \xrightarrow[\mathcal{L}]{\mathcal{R}} \operatorname{Fun}(J,\operatorname{vect})$$

If $C_0 \to \mathcal{R}M$ is a standard minimal cover, then its left adjoint $\mathcal{L}C_0 o M$ is a minimal P cover.

$$\mathcal{P}(a) \longleftarrow K(a,-)$$

 $\mathcal{P}^{(a)} \longleftarrow K^{(a,-)} \quad \left\{ \beta^0_{\mathcal{P}} M(\mathcal{P}(a)) = \beta^0(\mathcal{R}M)(a) = \dim(\mathcal{R}M/\mathrm{rad}\mathcal{R}M)(a) \right\}$ for every a in J such that $\mathcal{P}(a) \neq 0$

The collection $\mathcal{P} := \{ \mathcal{P}(a) \mid a \in J, \mathcal{P}(a) \neq 0 \}$ is

- Independent
- Acyclic
- All functors admit a P minimal resolution

To $M: I \to \text{vect}$ we associate numerical invariants

$$\begin{cases} \beta^0_{\mathcal{P}} M \colon \mathcal{P} \to \mathbb{N} & \text{describing} \\ \beta^1_{\mathcal{P}} M \colon \mathcal{P} \to \mathbb{N} & \text{multiplicities in} \\ \vdots & \text{the minimal} \\ \mathcal{P} \text{ resolution of } M. \end{cases}$$

$$M \longmapsto \operatorname{Nat}_{I}(\mathcal{P}(-), M)$$

$$\operatorname{Fun}(I,\operatorname{vect}) \xrightarrow[\mathcal{L}]{\mathcal{R}} \operatorname{Fun}(J,\operatorname{vect})$$

If $C_0 \to \mathcal{R}M$ is a standard minimal cover, then its left adjoint $\mathcal{L}C_0 o M$ is a minimal P cover.

$$\mathcal{P}(a) \longleftarrow K(a,-)$$

$$\mathcal{P}^{(a)} \longleftarrow K^{(a,-)} \quad \left\{ \beta^0_{\mathcal{P}} M(\mathcal{P}(a)) = \beta^0(\mathcal{R}M)(a) = \dim(\mathcal{R}M/\mathrm{rad}\mathcal{R}M)(a) \right\}$$
 for every a in J such that $\mathcal{P}(a) \neq 0$

Effective way of checking is M is a direct sum of elements in P and describing its components.

The collection $\mathcal{P} := \{ \mathcal{P}(a) \mid a \in J, \mathcal{P}(a) \neq 0 \}$ is

- Independent
- Acyclic
- All functors admit a P minimal resolution

To $M: I \to \text{vect}$ we associate numerical invariants

$$\begin{cases} \beta^0_{\mathcal{P}}M\colon \mathcal{P}\to \mathbb{N} & \text{describing} \\ \beta^1_{\mathcal{P}}M\colon \mathcal{P}\to \mathbb{N} & \text{multiplicities in} \\ \vdots & \text{the minimal} \\ \mathcal{P} \text{ resolution of } M. \end{cases}$$

$$M \longmapsto \operatorname{Nat}_{I}(\mathcal{P}(-), M)$$

$$\operatorname{Fun}(I,\operatorname{vect}) \xrightarrow[\mathcal{L}]{\mathcal{R}} \operatorname{Fun}(J,\operatorname{vect})$$

If $C_0 \to \mathcal{R}M$ is a standard minimal cover, then its left adjoint $\mathcal{L}C_0 o M$ is a minimal P cover.

$$\mathcal{P}(a) \longleftarrow K(a,-)$$

$$\mathcal{P}^{(a)} \longleftarrow K^{(a,-)} \quad \left\{ \beta^0_{\mathcal{P}} M(\mathcal{P}(a)) = \beta^0(\mathcal{R}M)(a) = \dim(\mathcal{R}M/\mathrm{rad}\mathcal{R}M)(a) \right\}$$
 for every a in J such that $\mathcal{P}(a) \neq 0$

Effective way of checking is M is a direct sum of elements in P and describing its components.

Assume $\mathcal{P} \colon J^{op} \to \operatorname{Fun}(I, \operatorname{vect})$ is thin. J is an uppersemilattice

The collection $\mathcal{P} := \{ \mathcal{P}(a) \mid a \in J, \mathcal{P}(a) \neq 0 \}$ is

- Independent
- Acyclic
- All functors admit a P minimal resolution

To $M: I \to \text{vect}$ we associate numerical invariants

$$\begin{cases} \beta^0_{\mathcal{P}}M\colon \mathcal{P}\to \mathbb{N} & \text{describing} \\ \beta^1_{\mathcal{P}}M\colon \mathcal{P}\to \mathbb{N} & \text{multiplicities in} \\ \vdots & \text{the minimal} \\ \mathcal{P} \text{ resolution of } \textit{M}. \end{cases}$$

$$M \longmapsto \operatorname{Nat}_I(\mathcal{P}(-), M)$$

$$\operatorname{Fun}(I,\operatorname{vect}) \xrightarrow[\mathcal{L}]{\mathcal{R}} \operatorname{Fun}(J,\operatorname{vect})$$

If $C_0 \to \mathcal{R}M$ is a standard minimal cover, then its left adjoint $\mathcal{L}C_0 o M$ is a minimal P cover.

$$\mathcal{P}(a) \longleftarrow K(a,-)$$

$$\mathcal{P}^{(a)} \longleftarrow K^{(a,-)} \quad \left\{ \beta^0_{\mathcal{P}} M(\mathcal{P}(a)) = \beta^0(\mathcal{R}M)(a) = \dim(\mathcal{R}M/\mathrm{rad}\mathcal{R}M)(a) \right\}$$
 for every a in J such that $\mathcal{P}(a) \neq 0$

Effective way of checking is M is a direct sum of elements in P and describing its components.

Assume $\mathcal{P} \colon J^{op} \to \operatorname{Fun}(I, \operatorname{vect})$ is thin. J is an uppersemilattice

For "many" a in *J*:

$$\beta_{\mathcal{P}}^d M(\mathcal{P}(a)) = \dim H_d(\mathcal{K}_a(\mathcal{R}M))$$

 $I = \mathbb{N}^2$

Lower hooks

$$I = \mathbb{N}^2$$

$$I = \mathbb{N}^2$$

natural grading

$$J:=\{v\leq w\mid v\in I, w\in I\cup\{\infty\}\}$$

$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$

$$\mathcal{P}(v \le w) = \operatorname{coker}(K(w, -) \subset K(v, -))$$

$$I = \mathbb{N}^2$$

natural grading

$$J := \{ v \le w \mid v \in I, w \in I \cup \{\infty\} \}$$
$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$
$$\mathcal{P}(v \le w) = \mathrm{coker}(K(w, -) \subset K(v, -))$$

P is thin.

$$I = \mathbb{N}^2$$

natural grading

$$J:=\{v\leq w\ |\ v\in I, w\in I\cup\{\infty\}\}$$

$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$

$$\mathcal{P}(v \le w) = \operatorname{coker}(K(w, -) \subset K(v, -))$$

P is thin.

For every $M \colon I \to \mathrm{vect}$ and v < w in I

$$\beta_{\mathcal{P}}^d M(\mathcal{P}(v < w)) = \dim H_d(\mathcal{K}_{v < w}(\mathcal{R}M))$$

$$I = \mathbb{N}^2$$

natural grading

$$J := \{ v \le w \mid v \in I, w \in I \cup \{\infty\} \}$$
$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$
$$\mathcal{P}(v \le w) = \mathrm{coker}(K(w, -) \subset K(v, -))$$

P is thin.

For every $M: I \to \text{vect and } v < w \text{ in I}$ $\beta_{\mathcal{P}}^d M(\mathcal{P}(v < w)) = \text{dim} H_d(\mathcal{K}_{v < w}(\mathcal{R}M))$

Fast and effective way of checking if M is a direct sum of hooks and describing its components

$$I = \mathbb{N}^2$$

natural grading

$$J := \{ v \le w \mid v \in I, w \in I \cup \{\infty\} \}$$
$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$
$$\mathcal{P}(v \le w) = \mathrm{coker}(K(w, -) \subset K(v, -))$$

P is thin.

For every $M: I \to \text{vect}$ and v < w in I $\beta_{\mathcal{P}}^d M(\mathcal{P}(v < w)) = \text{dim} H_d(\mathcal{K}_{v < w}(\mathcal{R}M))$

Fast and effective way of checking if M is a direct sum of hooks and describing its components

Rectangles

$$I = \mathbb{N}^2$$

natural grading

$$J := \{ v \le w \mid v \in I, w \in I \cup \{\infty\} \}$$
$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$
$$\mathcal{P}(v \le w) = \mathrm{coker}(K(w, -) \subset K(v, -))$$

P is thin.

For every $M: I \to \text{vect and } v < w \text{ in I}$ $\beta_{\mathcal{P}}^d M(\mathcal{P}(v < w)) = \text{dim} H_d(\mathcal{K}_{v < w}(\mathcal{R}M))$

Fast and effective way of checking if M is a direct sum of hooks and describing its components

Rectangles

$$I = \mathbb{N}^2$$

natural grading

$$J := \{ v \le w \mid v \in I, w \in I \cup \{\infty\} \}$$
$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$
$$\mathcal{P}(v \le w) = \mathrm{coker}(K(w, -) \subset K(v, -))$$

P is thin.

For every $M: I \to \text{vect}$ and v < w in I $\beta_{\mathcal{P}}^d M(\mathcal{P}(v < w)) = \text{dim} H_d(\mathcal{K}_{v < w}(\mathcal{R}M))$

Fast and effective way of checking if M is a direct sum of hooks and describing its components

Rectangles

natural grading

$$J := \{v \le w \mid v \in I, w \in I \cup \{\infty\}\}$$

$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$

$$\mathcal{P}(v \le w) = \mathrm{rectangle\ between}\ v \ \mathrm{and}\ w$$

$$I = \mathbb{N}^2$$

natural grading

$$J := \{ v \le w \mid v \in I, w \in I \cup \{\infty\} \}$$
$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$
$$\mathcal{P}(v \le w) = \mathrm{coker}(K(w, -) \subset K(v, -))$$

P is thin.

For every $M: I \to \text{vect and } v < w \text{ in I}$ $\beta_{\mathcal{P}}^d M(\mathcal{P}(v < w)) = \text{dim} H_d(\mathcal{K}_{v < w}(\mathcal{R}M))$

Fast and effective way of checking if M is a direct sum of hooks and describing its components

Rectangles

natural grading

$$J := \{ v \le w \mid v \in I, w \in I \cup \{\infty\} \}$$

$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$

$$\mathcal{P}(v \le w) = \mathrm{rectangle\ between}\ v \ \mathrm{and}\ w$$

P is thin.

$$I = \mathbb{N}^2$$

natural grading

$$J := \{ v \le w \mid v \in I, w \in I \cup \{\infty\} \}$$
$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$
$$\mathcal{P}(v \le w) = \mathrm{coker}(K(w, -) \subset K(v, -))$$

P is thin.

For every $M: I \to \text{vect and } v < w \text{ in I}$ $\beta_{\mathcal{P}}^d M(\mathcal{P}(v < w)) = \text{dim} H_d(\mathcal{K}_{v < w}(\mathcal{R}M))$

Fast and effective way of checking if M is a direct sum of hooks and describing its components

Rectangles

natural grading

$$J := \{v \le w \mid v \in I, w \in I \cup \{\infty\}\}$$

$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$

$$\mathcal{P}(v \le w) = \mathrm{rectangle\ between}\ v \ \mathrm{and}\ w$$

P is thin.

For every $M: I \to \text{vect}$ and v < w for which the rectangle has a non zero area $\beta_{\mathcal{P}}^d M(\mathcal{P}(v < w)) = \text{dim} H_d(\mathcal{K}_{v < w}(\mathcal{R}M))$

$$I = \mathbb{N}^2$$

natural grading

$$J := \{ v \le w \mid v \in I, w \in I \cup \{\infty\} \}$$
$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$
$$\mathcal{P}(v \le w) = \mathrm{coker}(K(w, -) \subset K(v, -))$$

P is thin.

For every $M: I \to \text{vect and } v < w \text{ in I}$ $\beta_{\mathcal{P}}^d M(\mathcal{P}(v < w)) = \text{dim} H_d(\mathcal{K}_{v < w}(\mathcal{R}M))$

Fast and effective way of checking if M is a direct sum of hooks and describing its components

Rectangles

natural grading

$$J := \{ v \le w \mid v \in I, w \in I \cup \{\infty\} \}$$

$$\mathcal{P} \colon J^{\mathrm{op}} \to \mathrm{Fun}(I, \mathrm{vect})$$

$$\mathcal{P}(v \le w) = \mathrm{rectangle\ between}\ v \ \mathrm{and}\ w$$

P is thin.

For every $M: I \to \text{vect}$ and v < w for which the rectangle has a non zero area $\beta_{\mathcal{P}}^d M(\mathcal{P}(v < w)) = \text{dim} H_d(\mathcal{K}_{v < w}(\mathcal{R}M))$

Fast and effective way of checking if M is a direct sum of non zero area rectangles and describing its components

TDA has brought a systematic study of homological properties of $\operatorname{Fun}(I,\operatorname{vect})$ relative to independent and acyclic collections $\mathcal{P}\subset\operatorname{Fun}(I,\operatorname{vect})$

TDA has brought a systematic study of homological properties of $\operatorname{Fun}(I,\operatorname{vect})$ relative to independent and acyclic collections $\mathcal{P}\subset\operatorname{Fun}(I,\operatorname{vect})$

Grading such collections by uppersemilatices enables fast and effective calculations of the relative Betti diagrams using Koszul complexes.

TDA has brought a systematic study of homological properties of $\operatorname{Fun}(I,\operatorname{vect})$ relative to independent and acyclic collections $\mathcal{P}\subset\operatorname{Fun}(I,\operatorname{vect})$

Grading such collections by uppersemilatices enables fast and effective calculations of the relative Betti diagrams using Koszul complexes.

Thank you