\N\N\SP isioes, digital futures

'Homological algebra and persistence'

TDA group at KTH in Stockholm

Jens Agerberg
Wojciech Chacholski
Rene Corbet

Andrea Guidolin
Alvin Jin

Barbara Mahler

Isaac Ren

Henri Riihimaki
Martina Scolamiero
Francesca Tombari

Topology of Data in Rome, 2022









NPy

n( vec)

#




Yy

poset

n( vec)

*

Finite dimensional K vector spaces




Yy

n( vec)

Finite dimensional K vector spaces

f AN

*




N Yty

Fun ] -

Finite dimensional K vector spaces

TN

Persistence modules

*




\ Y

poset

'S

<

Finite dimensional K vector spaces

AR

Persistence modules

I: [nf:=[0<---<n]®, N* [0,00)", R"




Homological properties of persistence modules



Homological properties of persistence modules

H. Asashiba, E. Escolar, K. Nakashima, and M. Yoshiwaki.
On approximation of 2d persistence modules by interval-decomposables, 2019.

B. Blanchette, T. Briistle, and E. Hanson.
Homological approximations in persis- tence theory, 2021.

M. Botnan, S. Oppermann, and S. Oudot.

Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions,

2021.



Homological properties of persistence modules

H. Asashiba, E. Escolar, K. Nakashima, and M. Yoshiwaki.
On approximation of 2d persistence modules by interval-decomposables, 2019.

B. Blanchette, T. Briistle, and E. Hanson.
Homological approximations in persis- tence theory, 2021.

M. Botnan, S. Oppermann, and S. Oudot.

Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions,

2021.
o 8

. What’s new?




Homological properties of persistence modules

H. Asashiba, E. Escolar, K. Nakashima, and M. Yoshiwaki.
On approximation of 2d persistence modules by interval-decomposables, 2019.

B. Blanchette, T. Briistle, and E. Hanson.
Homological approximations in persis- tence theory, 2021.

M. Botnan, S. Oppermann, and S. Oudot.

Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions,
2021.

o "
o What’s new?

’CI'DA needs a wealth of invariants of persistence modules which ar;\

computable,
stable,
L Amenable for statistical analysis Y,




Homological properties of persistence modules

H. Asashiba, E. Escolar, K. Nakashima, and M. Yoshiwaki.
On approximation of 2d persistence modules by interval-decomposables, 2019.

B. Blanchette, T. Briistle, and E. Hanson.
Homological approximations in persis- tence theory, 2021.

M. Botnan, S. Oppermann, and S. Oudot.

Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions,
2021.

o 8
®* Homological algebra = What's new?

’CI'DA needs a wealth of invriants of persistence modules which ar;\

computable,
stable,
L Amenable for statistical analysis Y,




Homological algebra



Homological algebra

(Slogan: Is about approximating objects by direct sums of chosen objects)




Homological algebra

(Slogan: Is about approximating objects by direct sums of chosen objects)

Starting point: a collection of objects P



Homological algebra

(Slogan: Is about approximating objects by direct sums of chosen objects)

Starting point: a collection of objects P

Finite direct sums of elements in P are called P-free



Homological algebra

(Slogan: Is about approximating objects by direct sums of chosen objects)

Starting point: a collection of objects P

Finite direct sums of elements in P are called P-free

P is called independent if for every P-free C, there is a unique function 5C: P — N

such that: O~ @ ABC(A)
AeP



Homological algebra
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Starting point: a collection of objects P

Finite direct sums of elements in P are called P-free ( (I?etti diagram)

P is called independent if for every P-free C, there is a unique function 5C: P — N

such that: O~ @ ABC(A)
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Exactness, projectivhess, and acyclicity

A sequence My — M1 — M5 is called P exact if
hOIIl(‘A7 Mo) — hOIIl(A, Ml) — hOIIl(‘A7 Mg)

is exact for every A in P

B is called P projective if
hom(B, My) — hom(B, M;) — hom(B, M,)
is exact for every P exact sequence MO — My — M

Every P free is P projective.
If every Pprojective is Pfree, then P is called acyclic.
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T Covers

AP cover of M is a P exact sequence

Co— M — 0

where C'y is P free

A P cover Cy — M is minimal if every its endomorphism:

Co ? C()
M

IS an isomorphism.

Two minimal P covers of M are isomorphic

~ 0-th Betti diagram of M
A minimal P cover of M leads Wt:

BULM = BCy: P — N

describing multiplicities: 0
AeP

(M Is P free if and only if its minimal P cover is an isomorphism)
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APresolution of M is a P exact sequence

o= Cp = =>0; =>Cg—> M —0

where (C; is P free

A P resolution C' — M is minimal if every its endomorphism:

C\M/C

IS an isomorphism.

Two minimal ‘P resolution of M are isomorphic
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APresolution of M is a P exact sequence

o= Cp = =>0; =>Cg—> M —0

where (C is P free

A P resolution C' — M is minimal if every its endomorphism:

C s> O

~N S

A minima eads to a sequence of invariants:
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S = <

- S is independent,
- Exactness: is the standard exactness
- S is acyclic: all projective are free

- All representations admit a minimal resolutions

B°M = dimM /rad M
B*M = B%(ker(Cy — M))

K(v,—): I — vect | K(v,w) =

w, vect)
finite

r

K itv<w

~— forvand win I
0 if v L w

(BOM: T - N

BIM: I — N
M — <

B°M: 1 — N

B*M = B*(ker(Cy — M)) = B°(ker(C o Co))

requires constructing differentials and their kernels
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Assume it is an upper semilattice3

This assumption means:

ICoy M

- we can form joins of non empty subsets
- consequently we can form meets of all subsets that are bounded below

Koszul complexes of M : I — vect atvinl

= P MnS) - B Mns) - M)

SCU(v) SCU(v) =
S is bounded below S is bounded below
|S|=2 |S|=1

-~

BIM (v) = dim Hy(IC, M)

the set of parents of v
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Grading on P Assume: Instead of a collection P, we have a functor

poset P: JP — Fun([l,vect) called grading

( Pair of adjoin functors
M 7 Nat[(P(—),M)
R
Fun(/, vect) Fun(J, vect)
C
Pla) - K(a, )

Every a in J leads to a natural transformation:

te: K(a,—) = RLK (a,—) = RP(a) = Nat;(P(—),P(a))

t The functor is called thin if [lq is surjective for every ain J '

Ha is thin if for every a < b in J, every natural transformation P (b) — P(b) is of the form:
)\P(a < b) forsome A\ € K

In particular for every a < b inJ, dim Nat;(P(b), P(a)) < 1
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To M : I — vect
we associate numerical invariants

The collection P := {P(a) | a € J,P(a) # 0} is

’5%]\4; P - N  describing
- Indep.endent lgLM:P - N multiplicities in
- Acyclic , the minimal
- All functors admit a P minimal resolution € P resolution of M.
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Fun(7, vect) Fun(J, vect)
C
P(a) < ' K(a,—) |BLM(P(a)) = B°(RM)(a) = dim(RM /radRM)(a)

(a) # 0

for every a in J such that P

Effective way of checking is M is a direct sum of elementsinP
and describing its components.

Assume P: JP — Fun([l,vect) is thin]
J is an uppersemilattice

For “many” a in J:

BLM (P(a)) = dimH (K, (RM))
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