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Today’s goal | 1

Describe Steenrod barcodes, a new family of computable invariants
augmenting the traditional persistence pipeline.

Example
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Viewpoint | 2

A goal of algebraic topology
To construct invariants of spaces up to some notion of equivalence.

Today
CW complexes and homotopy equivalence.

A basic tension
Computability vs strength of invariants.

Example
Cohomology vs homotopy.

A more subtle one
Effectiveness vs functoriality of their constructions.

Example
Cohomology via chain complex vs maps to Eilenberg-Maclane spaces.
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Effectively defined cohomology | 3

Poincaré’s idea
Break spaces into contractible combinatorial pieces:

Simplices, cubes, ...

Kan–Quillen’s idea
Replace spaces by functors with a geometric realization:

Simplicial sets, cubical sets, ...

Compute cohomology
Using a chain complex assembled from the standard chain complexes:

C(∆n), C(In), ...

Our goals (loosly stated)
Understand the diagonal map of these standard complexes better to
present effective/local computations of finer invariants in cohomology.



Effectively defined cohomology | 3

Poincaré’s idea
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Shortcomings of cohomology I | 4

As graded vector spaces

H•(RP2; F2) ∼= H•(S1 ∨ S2; F2).

Similarly, as graded abelian groups

H•(CP2; Z) ∼= H•(S2 ∨ S4; Z).

These can be distinguished by the product structure in H•.

Defined by dualizing an explicit chain approximation to the diagonal

C(∆n) → C(∆n) ⊗ C(∆n)

due to Alexander and Whitney.

Similarly, Cartan and Serre constructed

C(In) → C(In) ⊗ C(In).
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Shortcomings of cohomology II | 5

Let Σ denotes suspension, for example Σ(S1) is

As graded rings
H•(Σ(CP2)) ∼= H•(Σ(S2 ∨ S4)).

These can be distinguished by the action of the Steenrod algebra on H•.

From the spectral viewpoint this structure is present by definition.

Question: Can it be described explicitly at the chain level?
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Steenrod construction | 6

Unlike the diagonal of spaces, chain approxs to it are not invariant under

x ⊗ y
T7→ y ⊗ x.

For example in C(I) → C(I) ⊗ C(I) we have

To correct homotopically the breaking of this symmetry, Steenrod
introduced explicit maps

∆i : C(∆n) → C(∆n)⊗2 satisfying ∂∆i =
(
1 ± T

)
∆i−1,

the cup-i coproducts.
These define the Steenrod squares as

Sqk : H•(X; F2) → H•(X; F2)
[α] 7→

[
(α ⊗ α)∆i(−)

]
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Self-intersections | 7

Using Poincaré duality, squares measure self-intersections in certain cases.

For example

(a) Torus T (b) Klein Bottle K

(a) rank
(

Sq1 : H1(T; F2) → H2(T; F2)
)

= 0,

(b) rank
(

Sq1 : H1(K; F2) → H2(K; F2)
)

= 1.
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A new description of Steenrod’s construction | 8

Notation:
du[v0, . . . , vm] = [v0, . . . , v̂u, . . . , vm]

Pn
q =

{
U ⊆ {0, . . . , n} : |U | = q

}
∀ U = {u1 < · · · < uq} ∈ Pn

q

dU = du1 · · · duq

Uε =
{

ui ∈ U | ui + i ≡ ε mod 2
}

Definition (Med.)
For a basis element x ∈ Cm(∆n, F2)

∆i(x) =
∑

U∈Pn
m−i

dU0(x) ⊗ dU1(x)

Example:

∆0[0, 1, 2] =
(

d12 ⊗ id + d2 ⊗ d0 + id ⊗ d01

)
[0, 1, 2]⊗2

= [0] ⊗ [0, 1, 2] + [0, 1] ⊗ [1, 2] + [0, 1, 2] ⊗ [2].
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Fast computation of Steenrod squares | 9

Comparing with SAGE: (algorithm based on EZ-AW contraction)
Sq1 on ΣiRP 2 (ith suspension of the real projective plane)
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Steenrod squares for simplicial complexes | 10

Input: A = {a1, . . . , am} ⊆ Xn

B = ∅
forall ai and aj with i < j do

aij = ai ∪ aj

if aij ∈ Xn+k then
ai = ai \ aj ; aj = aj \ ai ; aij = ai ∪ aj

index : aij → {0, 1}
forall v ∈ aij do

p = position of v in aij ; p = position of v in aij

index(v) = p + p residue mod 2
end
if index(ai) △ index(aj) = {0, 1} then

B = B △{aij}
end

end
end
Output: B



Steenrod barcodes | 11

Given a filtered simplicial complex X

X0 → X1 → · · · → Xn.

Cohomology induces a persistent module, its barcode is a summary of how
Betti numbers are consecutively shared.

H•(Xn; F2) · · · H•(Xn−1; F2) H•(X0; F2)
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Filtrations of the cone on the suspension of S2 ∨ S4 and CP2.
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It has three steps:

1 Usual reduction applied to the anti-transposed boundary M yielding

R = MV

where R is reduced and V is invertible.

2 Read off cohomology representatives and apply the new Sqk algorithm
to create a matrix Qk with the resulting representatives.

3 Using that R is made of generating coboundaries, apply a reduction
algorithm to Qk with respect to R recording the rank of Qk

≤j .



Algorithm | 14

It has three steps:

1 Usual reduction applied to the anti-transposed boundary M yielding

R = MV

where R is reduced and V is invertible.

2 Read off cohomology representatives and apply the new Sqk algorithm
to create a matrix Qk with the resulting representatives.

3 Using that R is made of generating coboundaries, apply a reduction
algorithm to Qk with respect to R recording the rank of Qk

≤j .



Algorithm | 14

It has three steps:

1 Usual reduction applied to the anti-transposed boundary M yielding

R = MV

where R is reduced and V is invertible.

2 Read off cohomology representatives and apply the new Sqk algorithm
to create a matrix Qk with the resulting representatives.

3 Using that R is made of generating coboundaries, apply a reduction
algorithm to Qk with respect to R recording the rank of Qk

≤j .



Algorithm | 14

It has three steps:

1 Usual reduction applied to the anti-transposed boundary M yielding

R = MV

where R is reduced and V is invertible.

2 Read off cohomology representatives and apply the new Sqk algorithm
to create a matrix Qk with the resulting representatives.

3 Using that R is made of generating coboundaries, apply a reduction
algorithm to Qk with respect to R recording the rank of Qk

≤j .



Algorithm | 14

It has three steps:

1 Usual reduction applied to the anti-transposed boundary M yielding

R = MV

where R is reduced and V is invertible.

2 Read off cohomology representatives and apply the new Sqk algorithm
to create a matrix Qk with the resulting representatives.

3 Using that R is made of generating coboundaries, apply a reduction
algorithm to Qk with respect to R recording the rank of Qk

≤j .



Third step | 15

Input: R, Qk

Alive = {0, . . . , m}, Barcode = ∅
for j = 0, . . . , m do

R≤j | Qk
≤j = Reduce

(
R≤j | Qk

≤j

)
for i = 0, . . . , j do

if i ∈ Alive and Qk
i = 0 then

remove i from Alive
if i < j then

add [m − j, m − i] to Barcode
end

end
end

end
for i ∈ Alive do

add [−1, m − i] to Barcode
end
Output: Barcode
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With U. Lupo and G. Tauzin

from giotto-tda’s team we developed a Python package for this.
It can easily installed via

python -m pip install -U steenroder

and we accept contributions at

https://github.com/Steenroder/steenroder
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Future: Operations at odd primes | 18

Steenrod squares come from the symmetry of the binary diagonal.

Steenrod, and more generally May, also defined operations

Pk : H•(X; Fp) → H•(X; Fp)

from the symmetry of diagonal X → X × · · · × X.

Note: indirect group homology definition. No generalizations of cup-i.

Construction (Med.)
Explicit cup-(p, i) coproducts defining these operations.

Example
Using the computer algebra system ComCH we have ∆3,2[0, 1, 2] =

- [0,1][0,1,2][0,1] + [0,1,2][0,2][0,1] + [0,2][0,2][0,1,2]
- [0,1,2][0,1,2][1] - [0,2][0,1,2][1,2] + [0,1,2][1,2][1,2]
- [0,1][1,2][0,1,2] - [0,1,2][2][0,1,2] - [0][0,1,2][0,1,2]
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Slogan
Homotopy theory requires additional structures to be used “concretely.”

Today’s focus
Steenrod operations.

New stable invariants
Steenrod barcodes.

New tool
steenroder.

Application
Conformation space of C8H16.

Challenges
What other data sets exhibit non-trivial Steenrod barcodes?
What are they telling us about the data set, domain specifically?
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