Combinatorics of the amplituhedron

Lauren K. Williams, Harvard

Based on: joint works with Steven Karp, Tomasz Lukowski, Matteo Parisi, Melissa Sherman-Bennett, ...

Overview of the talk

- What is the positive Grassmannian?
- What is the amplituhedron?
- We can study it from the point of view of
 - oriented matroids
 - cluster algebras
 - tilings/ triangulations
- Along the way we'll see connections to Eulerian numbers, the positive tropical Grassmannian, and subdivisions of the hypersimplex

The Grassmannian and the matroid stratification

The **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{V \mid V \subset \mathbb{C}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix C.

$$\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

The matroid associated to $C \in Gr_{k,n}$ is $\mathcal{M}(C) := \{I \in {[n] \choose k} \mid p_I(C) \neq 0.\}$ Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $Gr_{k,n}$.

Given $\mathcal{M} \subset {[n] \choose k}$, let $S_{\mathcal{M}} = \{C \in Gr_{k,n} \mid p_I(C) \neq 0 \text{ iff } I \in \mathcal{M}\}.$ If $S_{\mathcal{M}}$ is nonempty, $S_{\mathcal{M}}$ called *matroid stratum*.

Matroid stratification: $Gr_{k,n} = \sqcup_{\mathcal{M}} S_{\mathcal{M}}$.

The Grassmannian and the matroid stratification

Let $\{e_1, \ldots, e_n\}$ be basis of \mathbb{R}^n ; for $I \subset [n]$, let $e_I := \sum_{i \in I} e_i$. The moment map $\mu : Gr_{k,n} \to \mathbb{R}^n$ is defined by

$$\mu(C) = \frac{\sum_{I \in \binom{[n]}{k}} |p_I(C)|^2 e_I}{\sum_{I \in \binom{[n]}{k}} |p_I(C)|^2} \subset \mathbb{R}^n.$$

Recall: matroid assoc to $C \in Gr_{k,n}$ is $\mathcal{M}(C) := \{I \in {[n] \choose k} \mid p_I(C) \neq 0.\}$ Can associate two objects to \mathcal{M} :

- matroid stratum $S_{\mathcal{M}} := \{ C \in Gr_{k,n} \mid p_I(C) \neq 0 \text{ iff } I \in \mathcal{M} \}.$
- matroid polytope $\Gamma_{\mathcal{M}} = \text{Conv}\{e_I \mid I \in \mathcal{M}\}.$

GGMS used the Convexity Theorem to show that the moment map image of a matroid stratum is the corresponding matroid polytope:

$$\overline{\mu(S_{\mathcal{M}})} = \Gamma_{\mathcal{M}}.$$

The Grassmannian and the matroid stratification

Example: if $\mathcal{M} = {[n] \choose k}$, then $\overline{\mu(S_{\mathcal{M}})} = \text{Conv}\{e_I : I = {[n] \choose k}\} \subset \mathbb{R}^n$.

This polytope is the *hypersimplex*.

Matroid polytopes have beautiful properties. Gelfand-Goresky-MacPherson-Serganova '87 characterized them as 01 polytopes such that every edge is parallel to $e_i - e_j$ for some i, j.

However, the topology of matroid strata is terrible – Mnev's *universality* theorem (1987): "The topology of the matroid stratum S_M can be as complicated as that of any algebraic variety."

What is the positive Grassmannian?

Background: Lusztig's total positivity for G/P 1994, Rietsch 1997, Postnikov's 2006 preprint on the *totally non-negative* (TNN) or "positive" Grassmannian.

Let $Gr_{k,n}^{\geq 0}$ be subset of $Gr_{k,n}(\mathbb{R})$ where Plucker coords $p_l \geq 0$ for all l.

Inspired by matroid stratification, one can partition $Gr_{k,n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let
$$\mathcal{M} \subseteq {\binom{[n]}{k}}$$
. Let $S_{\mathcal{M}}^{tnn} := \{ C \in Gr_{k,n}^{\geq 0} \mid p_I(C) > 0 \text{ iff } I \in \mathcal{M} \}.$

In contrast to terrible topology of matroid strata ...

(Postnikov) If $S_{\mathcal{M}}^{tnn}$ is non-empty it is a (positroid) *cell*, i.e. homeomorphic to an open ball. So we have *positroid cell decomposition*

$$Gr_{k,n}^{\geq 0} = \sqcup S_{\mathcal{M}}^{tnn}.$$

Cells of the positive Grassmannian

- Recall: matroid assoc to $C \in Gr_{k,n}$ is $\mathcal{M} = \mathcal{M}(C) := \{I \in {[n] \choose k} \mid p_I(C) \neq 0.\}$
- And the matroid polytope is $\Gamma_{\mathcal{M}} = \text{Conv}\{e_I \mid I \in \mathcal{M}.\}$
- If C ∈ Gr^{≥0}_{k,n}, call M(C) a positroid and Γ_M a positroid polytope; combinatorial structure of Γ_M studied in Ardila-Rincon-W.

Theorem (Postnikov)

The positroid cells of $Gr_{k,n}^{\geq 0}$ are in bijection with:

- decorated permutations π on [n] with k antiexcedances
- equivalence classes of planar bicolored (plabic) graphs

How to read off a positroid cell from a plabic graph

 Positroid cells ↔ *plabic graphs*, planar bicolored graphs embedded in disk with boundary vertices labeled 1, 2, ..., n and internal vertices colored black or white.

- WLOG we assume graph G is bipartite and that every boundary vertex is incident to a white vertex.
- Let $\mathcal{M}(G) := \{\partial(P) \mid P \text{ is an almost perfect matching of } G\}.$

E.g. for graph above, get $\mathcal{M}(G) = \{12, 13, 14, 23, 24\}.$

• Theorem (Postnikov): $\mathcal{M}(G)$ is the set of nonzero Plücker coordinates of a positroid cell, and all cells obtained this way.

- Introduced by Arkani-Hamed and Trnka in 2013.
- The amplituhedron is the image of the TNN Grassmannian under a simple map.

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$:

Fix n, k, m with $k + m \le n$. Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

- $\mathcal{A}_{n,k,m}(Z)$ depends on Z but many combin. properties appear not to.
- $\mathcal{A}_{n,k,m}$ has full dimension km inside $Gr_{k,k+m}$.
- When m = 4, its "volume" is supposed to compute scattering amplitudes in N = 4 super Yang Mills theory; the BCFW recurrence for scattering amplitudes can be reformulated as giving a "triangulation" of the m = 4 amplituhedron.

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Special cases:

• If
$$m = n - k$$
, $A_{n,k,m} = Gr_{k,n}^{\geq 0}$.

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Special cases:

If k = 1, A_{n,k,m} ⊂ Gr_{1,1+m} is equivalent to a cyclic polytope with n vertices in P^m:
E.g. if m = 2, let Z₁,..., Z_n denote rows of Z ∈ Mat^{>0}_{n,3}.

Positivity implies they represent vertices of convex polytope in \mathbb{P}^2 . Image of $Gr_{1.3}^{\geq 0}$ under \tilde{Z} gives entire polytope.

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Special cases:

 If m = 1, A_{n,k,m} ⊂ Gr_{k,k+1} is homeomorphic to the bounded complex of the cyclic hyperplane arrangement (Karp–W.)

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Need some good coordinates to use for $A_{n,k,m}$; ideally, want to describe amplituhedron directly inside $Gr_{k,k+m}$. Let Z_1, \ldots, Z_n be rows of Z. Let $Y \in Gr_{k,k+m}$ (viewed as matrix). Given $I = \{i_1 < \cdots < i_m\} \subset [n]$, let

$$\langle YZ_I \rangle = \langle YZ_{i_1} \dots Z_{i_m} \rangle := \det \begin{bmatrix} - & Y & - \\ - & Z_{i_1} & - \\ & \vdots & \\ - & Z_{i_m} & - \end{bmatrix}$$

Call it *twistor coordinate* $\langle YZ_I \rangle$ (Arkani-Hamed–Thomas–Trnka) Rk: $Y \in Gr_{k,k+m}$ determined by twistor coords; $\langle YZ_I \rangle = p_I(Y^{\perp}Z^t)$.

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Let Z_1, \ldots, Z_n be rows of Z. Let $Y \in Gr_{k,k+m}$ (viewed as matrix). For $I = \{i_1 < \cdots < i_m\} \subset [n]$, let

$$\langle YZ_I \rangle = \langle YZ_{i_1} \dots Z_{i_m} \rangle := \det \begin{bmatrix} - & Y & - \\ - & Z_{i_1} & - \\ & \vdots & \\ - & Z_{i_m} & - \end{bmatrix}$$

Inspired by matroid stratification, we define the *amplituhedron sign* stratification – decompose $\mathcal{A}_{n,k,m}(Z)$ into pieces based on the signs of twistor coordinates. (Parisi–Sherman-Bennett–W.; Karp-W.) Call the top-dimensional pieces *chambers*.

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Let Z_1, \ldots, Z_n be rows of Z. Let $Y \in Gr_{k,k+m}$ (viewed as matrix). For $I = \{i_1 < \cdots < i_m\} \subset [n]$, let

$$\langle YZ_I \rangle = \langle YZ_{i_1} \dots Z_{i_m} \rangle$$

Given $\sigma \in \{+, -\}^{\binom{n}{m}}$, define *amplituhedron chamber*

$$\mathcal{A}_{n,k,m}^{\sigma}(Z) := \{Y \in \mathcal{A}_{n,k,m}(Z) \mid \{\operatorname{sign}\langle YZ_I \rangle\}_{I \in \binom{[n]}{m}} = \sigma\}.$$

Which chambers are *realizable*? (not always empty)

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Let Z_1, \ldots, Z_n be rows of Z. Let $Y \in Gr_{k,k+m}$. For $I = \{i_1 < \cdots < i_m\} \subset [n]$, let $\langle YZ_I \rangle = \langle YZ_{i_1} \ldots Z_{i_m} \rangle$. Given $\sigma \in \{+, -\}^{\binom{n}{m}}$, define amplituhedron chamber

$$\mathcal{A}_{n,k,m}^{\sigma}(Z) := \{Y \in \mathcal{A}_{n,k,m}(Z) \mid \{\operatorname{sign}\langle YZ_I \rangle\}_{I \in \binom{[n]}{m}} = \sigma\}.$$

Say σ is *realizable* if there exists Z such that $\mathcal{A}^{\sigma}_{n,k,m}(Z) \neq \emptyset$.

Theorem (Parisi–Sherman-Bennett–W.)

For m = 2, the (realizable) amplituhedron chambers of $A_{n,k,2}$ are counted by the Eulerian numbers $\{w \in S_{n-1} \mid des(w) = k\}$.

Note: Volume of hypersimplex $\Delta_{k+1,n}$ is the same Eulerian number. This is a shadow of strange duality between $\mathcal{A}_{n,k,2}(Z)$ and $\Delta_{k+1,n}$!

Fix n, k, m with $k + m \le n$. Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Since dim $\mathcal{A}_{n,k,m}(Z) = km$, is natural to ask: When does \tilde{Z} map a km-dimension cell of $Gr_{k,n}^{\geq 0}$ injectively to $\mathcal{A}_{n,k,m}(Z)$? Say $\tilde{Z}(S_{\pi})$ is a *positroid tile* if \tilde{Z} is injective on km-dimensional cell S_{π} .

Cluster adjacency conjecture (Lukowski-Parisi-Spradlin-Volovich)

Let $\tilde{Z}(S_{\pi})$ be positroid tile of $\mathcal{A}_{n,k,2}(Z)$. Then each facet^{*a*} of $\tilde{Z}(S_{\pi})$ lies on a hypersurface $\langle YZ_iZ_j \rangle = 0$, and the Plücker coords $\{p_{ij}\}$ corresponding to facets form a collection of compatible cluster variables for $\operatorname{Gr}_{2,n}$.

^aa facet is a maximal-by-inclusion codimension 1 stratum of the form $\tilde{Z}(S_{\pi'})$ lying in the boundary of $\tilde{Z}(S_{\pi})$, such that $S_{\pi'} \subset S_{\pi}$

Fix n, k, m with $k + m \le n$. Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Say $\tilde{Z}(S_{\pi})$ is a *positroid tile* if \tilde{Z} is injective on *km*-dimensional cell S_{π} .

Theorem (Parisi-Sherman-Bennett-W.)

Let $\tilde{Z}(S_{\pi})$ be positroid tile of $\mathcal{A}_{n,k,2}(Z)$. Then each facet^{*a*} of $\tilde{Z}(S_{\pi})$ lies on a hypersurface $\langle YZ_iZ_j \rangle = 0$, and the Plücker coords $\{p_{ij}\}$ corresponding to facets form a collection of compatible cluster variables for $\operatorname{Gr}_{2,n}$.

Moreover, if p_{hl} is compatible with $\{p_{ij}\}$, then the twistor coordinate $\langle YZ_hZ_l\rangle$ has a fixed sign on $\tilde{Z}(S_{\pi})$.

^aa facet is a maximal-by-inclusion codimension 1 stratum of the form $\tilde{Z}(S_{\pi'})$ lying in the boundary of $\tilde{Z}(S_{\pi})$, such that $S_{\pi'} \subset S_{\pi}$

Recall: $\tilde{Z}(S_{\pi})$ is a *positroid tile* if \tilde{Z} is injective on *km*-dimensional cell S_{π} .

Theorem (Parisi-Sherman-Bennett-W.)

Let $\tilde{Z}(S_{\pi})$ be positroid tile of $\mathcal{A}_{n,k,2}(Z)$. Then each facet^a of $\tilde{Z}(S_{\pi})$ lies on a hypersurface $\langle YZ_iZ_j \rangle = 0$, and the Plücker coords $\{p_{ij}\}$ corresponding to facets form a collection of compatible cluster variables for $\operatorname{Gr}_{2,n}$. Moreover, if p_{hl} is compatible with $\{p_{ij}\}$, then the twistor coordinate

 $\langle YZ_hZ_l\rangle$ has a fixed sign on $\tilde{Z}(S_{\pi})$.

^aa facet is a maximal-by-inclusion codimension 1 stratum of the form $\tilde{Z}(S_{\pi'})$ lying in the boundary of $\tilde{Z}(S_{\pi})$, such that $S_{\pi'} \subset S_{\pi}$

- To prove theorem, we classified the positroid tiles for m = 2.
- Believe there's an analogue of thm for m > 2; but classification of tiles for m > 2 unknown.
- Theorem suggests there is a cluster algebra structure directly on positroid tiles. We can prove this for m = 2.

Recall: $\tilde{Z}(S_{\pi})$ is a *positroid tile* for $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ if \tilde{Z} is injective on *km*-dimensional cell S_{π} .

Conj (L-P-S-V); Theorem (P–SB–W)

The positroid tiles for $A_{n,k,2}(Z)$ are precisely the images of positroid cells whose plabic graphs are constructed as follows:

- Choose a bicolored subdivision of an *n*-gon consisting of grey polygons which can be triangulated into *k* triangles.
- Put white vertex in every grey triangle, connected to three vertices.

Get cluster structure with cluster vars $x_{ab} \propto$ twistor coords $\langle YZ_aZ_b \rangle$.

Fix n, k, m with $k + m \le n$. Let $Z \in Mat_{n,k+m}^{>0}$. Have $\widetilde{Z} : Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

The map \tilde{Z} is surjective onto $\mathcal{A}_{n,k,m}(Z)$ but in general not injective. Would like to find a *km*-dimensional cross-section of $Gr_{k,n}^{\geq 0}$ which \tilde{Z} maps injectively onto the amplituhedron.

Let $X = \bigsqcup_{\pi} S_{\pi}$ be a cell complex, and let $\phi : X \to Y$ be a continuous surjective map onto Y, a *d*-dimensional cell complex (or subset). Define a ϕ -induced tiling of Y to be a collection $\{\overline{\phi(S_{\pi})} \mid \pi \in C\}$ of closures of images of *d*-dimensional cells, such that:

- ϕ is injective on each S_{π} for $\pi \in \mathcal{C}$ $(\overline{\phi(S_{\pi})}$ a tile)
- their union equals Y
- their interiors are pairwise disjoint

Fix n, k, m with $k + m \le n$. Let $Z \in Mat_{n,k+m}^{>0}$. Have $\widetilde{Z} : Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Let $X = \bigsqcup_{\pi} S_{\pi}$ be a cell complex, and let $\phi : X \to Y$ be a continuous surjective map onto Y, a *d*-dimensional cell complex (or subset). Define a ϕ -induced tiling of Y to be a collection $\{\overline{\phi(S_{\pi})} \mid \pi \in C\}$ of closures of images of *d*-dimensional cells, such that:

- ϕ is injective on each S_{π} for $\pi \in \mathcal{C}$.
- their union equals Y
- their interiors are pairwise disjoint

Remark: Can drop injectivity requirement – call resulting object a dissection. When $\phi: X \to Y$ is affine projection of convex polytopes, we recover Billera-Sturmfels' notion of (tight) ϕ -induced subdivision.

Fix n, k, m with $k + m \le n$. Let $Z \in Mat_{n,k+m}^{>0}$. Have $\widetilde{Z} : Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Have $Gr_{k,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map. Then a \tilde{Z} -induced tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\overline{\tilde{Z}(S_{\pi})} \mid \pi \in C\}$ of positroid tiles^a, such that: • their union equals $\mathcal{A}_{n,k,m}(Z)$

• their interiors are pairwise disjoint

^aclosures of images of *km*-dimensional cells on which map is injective

 \tilde{Z} -induced tilings of $\mathcal{A}_{n,k,4}(Z)$ first discussed in Arkani-Hamed–Trnka; conjectured that various collections of BCFW cells give a tiling; recent work of Evan Zohar–Lakrec–Tessler.

 \tilde{Z} -induced tilings have been studied in special cases. Their cardinalities are interesting!

special case	cardinality of tiling of $\mathcal{A}_{n,k,m}(Z)$	explanation
m = 0 or $k = 0$	1	${\mathcal A}$ is a point
k + m = n	1	$\mathcal{A}\cong Gr_{k,n}^{\geq 0}$
m = 1	$\binom{n-1}{k}$	Karp-W.
<i>m</i> = 2	$\binom{n-2}{k}$	AH-T-T, Bao-He, P-SB-W
<i>m</i> = 4	$\frac{1}{n-3}\binom{n-3}{k+1}\binom{n-3}{k}$	AH-T, Even-Zohar–Lakrec–Tessler
k = 1, m even	$\binom{n-1-\frac{m}{2}}{\frac{m}{2}}$	$\mathcal{A}\cong$ cyclic polytope $\mathit{C}(n,m)$

Have $Gr_{k,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map. A \tilde{Z} -induced tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\overline{\tilde{Z}(S_{\pi})} \mid \pi \in \mathcal{C}\}$ of positroid tiles such that

• their union equals $\mathcal{A}_{n,k,m}(Z)$

• their interiors are pairwise disjoint

Wild conjecture (Karp-Zhang-W)

Let
$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$$

be number of *plane partitions* contained in $a \times b \times c$ box. The cardinality of a \tilde{Z} -induced tiling of $\mathcal{A}_{n,k,m}$ for even m is $M(k, n - k - m, \frac{m}{2})$.

Remark: Consistent with results/conjectures for m = 2, m = 4, k = 1.

Remarkably, tilings of $A_{n,k,2}(Z)$ and of hypersimplex $\Delta_{k+1,n}$ are related!

Have
$$Gr_{k,n}^{\geq 0} = \sqcup_{\pi} S_{\pi}$$
, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,2}(Z) \subset \operatorname{Gr}_{k,k+2}$.

A \tilde{Z} -induced tiling of $\mathcal{A}_{n,k,2}(Z)$ is a collection $\{\tilde{Z}(S_{\pi}) \mid \pi \in \mathcal{C}\}$ of closures of images of 2k-dimensional cells, such that:

 \tilde{Z} injective on each S_{π} ; union equals $\mathcal{A}_{n,k,2}(Z)$; interiors pairwise disjoint.

Have
$$Gr_{k+1,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$$
, and $\mu : Gr_{k+1,n}^{\geq 0} \to \Delta_{k+1,n} \subset \mathbb{R}^n$.
A μ -induced tiling of $\Delta_{k+1,n}$ is a collection $\{\overline{\mu(S_{\pi})} \mid \pi \in \mathcal{C}\}$ of closures of images of $(n-1)$ -dimensional cells, such that:
 μ injective on each S_{π} ; union equals $\Delta_{k+1,n}$; interiors pairwise disjoint.

Note: each $\overline{\mu(S_{\pi})}$ is a positroid polytope.

Conj (Lukowski-Parisi-W); Thm (Parisi-Sherman-Bennett-W.)

 \tilde{Z} -induced tilings of $\mathcal{A}_{n,k,2}$ in bijection with μ -induced tilings of $\Delta_{k+1,n}$.

Cor: # of fine subdivisions of $\Delta_{2,n}$ into positroid polytopes is Catalan #. Lauren K. Williams (Harvard) Combinatorics of the amplituhedron 2022 27/32

III. Tilings of the amplituhedron (k = 1 and n = 4)

There are two tilings of $\mathcal{A}_{4,1,2}(Z)$ (a quadrilateral in \mathbb{P}^2):

There are two tilings of hypersimplex $\Delta_{2,4}$ (octahedron):

How can we biject the cells of these tilings? (look for relation between permutations (LPW) and/or plabic graphs) Lauren K. Williams (Harvard) Combinatorics of the amplituhedron 2022

28 / 32

III. Tilings of the amplituhedron (k = 1 and n = 4)

How can we relate the cells giving tilings of $\Delta_{k+1,n}$ and $\mathcal{A}_{n,k,2}(Z)$? This needs to map (n-1)-dim'l cells of $\operatorname{Gr}_{k+1,n}^{\geq 0}$ to 2k-dim'l cells of $\operatorname{Gr}_{k,n}^{\geq 0}$.

T-duality or "shift map" on plabic graphs (G-P-W; G; P-SB-W)

Let G be reduced black-trivalent plabic graph. Define T-dual graph \hat{G} by:

- In each face f of G, place a black vertex $\hat{b}(f)$.
- "On top of" each black vertex b of G, place a white vertex $\hat{w}(b)$;
- For each black vertex b of G incident to face f, add edge $(\hat{w}(b), \hat{b}(f))$;
- Put \hat{i} on the boundary of G between vertices i 1 and i and draw an edge from \hat{i} to $\hat{b}(f)$, where f is the adjacent boundary face.

How did we guess connection between $\Delta_{k+1,n}$ and $\mathcal{A}_{n,k,2}$?

• With Lukowski–Parisi we realized that the *f*-vector of the positive tropical Grassmannian Trop $Gr^+_{k+1,n}$ (Speyer-W.) seemed to be enumerating the "good" \tilde{Z} -induced subdivisions of $\mathcal{A}_{n,k,2}(Z)$.

- We realized that the *f*-vector of Trop *Gr*⁺_{k+1,n} was related to positroid subdivisions of the hypersimplex Δ_{k+1,n};
- and found that the "T-duality" or "shift map" from cells of $Gr_{k+1,n}^{\geq 0}$ to cells of $Gr_{k,n}^{\geq 0}$ seemed to give a bijection between μ -induced (positroid) subdivisions of $\Delta_{k+1,n}$ and \tilde{Z} -induced subdivisions of $\mathcal{A}_{n,k,2}(Z)$.

Summary and questions

The amplituhedron includes as special cases

- the positive Grassmannian
- cyclic polytopes
- bounded complex of cyclic hyperplane arrangement

and is closely connected to the hypersimplex.

It is useful to study amplituhedron from the point of view of

- oriented matroids,
- cluster algebras,
- and tilings.

Lots of open problems!

Thank you for listening!

- "The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron," with Lukowski and Parisi, arXiv:2002.06164
- "The m = 2 amplituhedron and the hypersimplex: signs, clusters, triangulations, Eulerian numbers, with Parisi and Sherman-Bennett, arXiv:2104.08254.