The Potts model and Lorentzian polynomials on cones

Petter Brändén KTH Royal Institute of Technology

Algebraic Combinatorics and Mathematical Physics University of Rome "Tor Vergata" Jan 13-14, 2022

▲□▶ ▲□▶ ▲ □▶ ★ □▶ □ のへで

Based on joint work with

June Huh (Princeton)

Jonathan Leake (TU Berlin)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

The Potts model

• Let G = (V, E) be a finite undirected graph.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

The Potts model

- Let G = (V, E) be a finite undirected graph.
- The partition function of the q-state Potts model is

$$Z_G(q, \mathbf{t}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in \mathbb{Z}_A} t_e,$$

where k(A) is the number of connected components of the subgraph (V, A).

The Potts model

- Let G = (V, E) be a finite undirected graph.
- The partition function of the q-state Potts model is

$$Z_G(q, \mathbf{t}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in E_A} t_e,$$

where k(A) is the number of connected components of the subgraph (V, A).

► $Z_G(q, \mathbf{t})$ defines a probability distribution on subsets of E: Let X be a random subset of E. Then

$$\mathbb{P}[X=A] = \frac{1}{Z_G(q,\mathbf{t})} \cdot q^{k(A)} \prod_{e \in E} t_e, \qquad t_e, q \ge 0.$$

 \blacktriangleright \mathbb{P} is called the Fortuin-Kasteleyn random cluster model.

- Positive dependence models attracting particles,
- Negative dependence models repelling particles.

- Positive dependence models attracting particles,
- Negative dependence models repelling particles.
- For $q \ge 1$, the Potts model is positively dependent.

▲□▶ ▲□▶ ▲ □▶ ★ □▶ □ のへで

- Positive dependence models attracting particles,
- Negative dependence models repelling particles.
- For $q \ge 1$, the Potts model is positively dependent.
- For $0 < q \le 1$, it is conjectured to be negatively dependent.

▶ Negative correlations: For distinct $i, j \in E$,

 $\mathbb{P}[i, j \in X] \le \mathbb{P}[i \in X] \cdot \mathbb{P}[j \in X].$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

- Positive dependence models attracting particles,
- Negative dependence models repelling particles.
- For $q \ge 1$, the Potts model is positively dependent.
- For $0 < q \le 1$, it is conjectured to be negatively dependent.

Negative correlations: For distinct $i, j \in E$,

 $\mathbb{P}[i,j\in X] \leq \mathbb{P}[i\in X] \cdot \mathbb{P}[j\in X].$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めのの

► Conjecture (Pemantle, Kahn, Grimmett,...). The Potts model is negatively correlated for 0 < q ≤ 1.</p>

- Positive dependence models attracting particles,
- Negative dependence models repelling particles.
- For $q \ge 1$, the Potts model is positively dependent.
- For $0 < q \leq 1$, it is conjectured to be negatively dependent.

Negative correlations: For distinct $i, j \in E$,

 $\mathbb{P}[i, j \in X] \le \mathbb{P}[i \in X] \cdot \mathbb{P}[j \in X].$

- ► Conjecture (Pemantle, Kahn, Grimmett,...). The Potts model is negatively correlated for 0 < q ≤ 1.</p>
- ► Known for the random spanning tree measure, which is a limit of Potts when q → 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めのの

- Positive dependence models attracting particles,
- Negative dependence models repelling particles.
- For $q \ge 1$, the Potts model is positively dependent.
- For $0 < q \leq 1$, it is conjectured to be negatively dependent.

▶ Negative correlations: For distinct $i, j \in E$,

 $\mathbb{P}[i, j \in X] \le \mathbb{P}[i \in X] \cdot \mathbb{P}[j \in X].$

- ► Conjecture (Pemantle, Kahn, Grimmett,...). The Potts model is negatively correlated for 0 < q ≤ 1.</p>
- ▶ Known for the random spanning tree measure, which is a limit of Potts when $q \rightarrow 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めのの

• Unknown for the random forest measure, which is another limit when $q \rightarrow 0$.

• Ultra log-concavity: Let
$$r_k = \mathbb{P}[|X| = k]$$
 and $n = |E|$.

$$\frac{r_k^2}{\binom{n}{k}^2} \ge \frac{r_{k-1}}{\binom{n}{k-1}} \cdot \frac{r_{k+1}}{\binom{n}{k+1}}, \quad 0 < k < n.$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ○ ミ ○ ○ ○ ○

• Ultra log-concavity: Let
$$r_k = \mathbb{P}[|X| = k]$$
 and $n = |E|$.

$$\frac{r_k^2}{\binom{n}{k}^2} \ge \frac{r_{k-1}}{\binom{n}{k-1}} \cdot \frac{r_{k+1}}{\binom{n}{k+1}}, \quad 0 < k < n.$$

► Theorem(B.-Huh, 2020). For 0 < q ≤ 1, the Potts model is ultra log-concave.</p>

• Ultra log-concavity: Let
$$r_k = \mathbb{P}[|X| = k]$$
 and $n = |E|$.

$$\frac{r_k^2}{\binom{n}{k}^2} \ge \frac{r_{k-1}}{\binom{n}{k-1}} \cdot \frac{r_{k+1}}{\binom{n}{k+1}}, \quad 0 < k < n.$$

- ► Theorem(B.-Huh, 2020). For 0 < q ≤ 1, the Potts model is ultra log-concave.</p>
- ▶ Theorem(B.–Huh, 2020). For $0 < q \le 1$,

$$\mathbb{P}[i, j \in X] \le 2 \cdot \mathbb{P}[i \in X] \cdot \mathbb{P}[j \in X].$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

• Ultra log-concavity: Let
$$r_k = \mathbb{P}[|X| = k]$$
 and $n = |E|$.

$$\frac{r_k^2}{\binom{n}{k}^2} \ge \frac{r_{k-1}}{\binom{n}{k-1}} \cdot \frac{r_{k+1}}{\binom{n}{k+1}}, \quad 0 < k < n.$$

- ► Theorem(B.-Huh, 2020). For 0 < q ≤ 1, the Potts model is ultra log-concave.</p>
- ▶ Theorem(B.–Huh, 2020). For $0 < q \le 1$,

$$\mathbb{P}[i, j \in X] \le 2 \cdot \mathbb{P}[i \in X] \cdot \mathbb{P}[j \in X].$$

The proofs use Lorentzian polynomials.

$$\partial_{j}\partial_{j}f \cdot f \leq 2\frac{d}{d} \cdot \partial_{i}f - \partial_{j}f$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

▶ Theorem (Fortuin-Kasteleyn, 1969). For positive integers q,

$$Z_G(q, \mathbf{t}) = \sum_{\sigma: V \to \{1, 2, \dots, q\}} \prod_{e=ij \in E} \left(1 + t_e \delta(\sigma(i), \sigma(j)) \right)$$

Theorem (Fortuin-Kasteleyn, 1969). For positive integers q,

$$Z_G(q, \mathbf{t}) = \sum_{\sigma: V \to \{1, 2, \dots, q\}} \prod_{e=ij \in E} \left(1 + t_e \delta(\sigma(i), \sigma(j)) \right)$$

In particular

$$Z_G(q, -1) = \chi_G(q), \quad 1 = (1, 1, \dots, 1),$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ 三 ○ ○ ○ ○

is the chromatic polynomial of G.

▶ Theorem (Fortuin-Kasteleyn, 1969). For positive integers q,

$$Z_G(q, \mathbf{t}) = \sum_{\sigma: V \to \{1, 2, \dots, q\}} \prod_{e=ij \in E} \left(1 + t_e \delta(\sigma(i), \sigma(j)) \right)$$

In particular

$$Z_G(q, -1) = \chi_G(q), \quad 1 = (1, 1, \dots, 1),$$

is the chromatic polynomial of G.

Conjecture (Read-Rota-Heron-Welsh, 1968–76). The coefficients {w_k}ⁿ_{k=0} of the chromatic polynomial form a log-concave sequence:

$$w_k^2 \ge w_{k-1} w_{k+1}, \quad 0 < k < n.$$

Theorem (Fortuin-Kasteleyn, 1969). For positive integers q,

$$Z_G(q, \mathbf{t}) = \sum_{\sigma: V \to \{1, 2, \dots, q\}} \prod_{e=ij \in E} \left(1 + t_e \delta(\sigma(i), \sigma(j)) \right)$$

In particular

$$Z_G(q, -1) = \chi_G(q), \quad 1 = (1, 1, \dots, 1),$$

is the chromatic polynomial of G.

Conjecture (Read-Rota-Heron-Welsh, 1968–76). The coefficients {w_k}ⁿ_{k=0} of the chromatic polynomial form a log-concave sequence:

$$w_k^2 \ge w_{k-1} w_{k+1}, \quad 0 < k < n.$$

Proved by June Huh in 2012 using Hodge theory.

Let E be a finite set. A function $r: 2^E \to \mathbb{N}$ is the rank function of a matroid if

Let E be a finite set. A function $r: 2^E \to \mathbb{N}$ is the rank function of a matroid if

1. $r(S) \leq |S|$ for all $S \subseteq E$,

Let E be a finite set. A function $r: 2^E \to \mathbb{N}$ is the rank function of a matroid if

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

- 1. $r(S) \leq |S|$ for all $S \subseteq E$,
- 2. $r(S) \leq r(T)$ if $S \subseteq T \subseteq E$, and

Let *E* be a finite set. A function $r: 2^E \to \mathbb{N}$ is the rank function of a matroid if

- 1. $r(S) \leq |S|$ for all $S \subseteq E$,
- 2. $r(S) \leq r(T)$ if $S \subseteq T \subseteq E$, and
- 3. $r(S) + r(T) \ge r(S \cup T) + r(S \cap T)$, (submodularity) for all $S, T \subseteq E$.

Let E be a finite set. A function $r: 2^E \to \mathbb{N}$ is the rank function of a matroid if

- 1. $r(S) \leq |S|$ for all $S \subseteq E$,
- 2. $r(S) \leq r(T)$ if $S \subseteq T \subseteq E$, and
- 3. $r(S) + r(T) \ge r(S \cup T) + r(S \cap T)$, (submodularity) for all $S, T \subseteq E$.

• Example. If $\mathbf{v}_1, \ldots, \mathbf{v}_m \in K^n$, then

$$r(S) = \dim \operatorname{span}\{\mathbf{v}_i : i \in S\},\$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

defines a linear matroid.

Let E be a finite set. A function $r: 2^E \to \mathbb{N}$ is the rank function of a matroid if

- 1. $r(S) \leq |S|$ for all $S \subseteq E$,
- 2. $r(S) \leq r(T)$ if $S \subseteq T \subseteq E$, and
- 3. $r(S) + r(T) \ge r(S \cup T) + r(S \cap T)$, (submodularity) for all $S, T \subseteq E$.

• Example. If $\mathbf{v}_1, \ldots, \mathbf{v}_m \in K^n$, then

$$r(S) = \dim \operatorname{span}\{\mathbf{v}_i : i \in S\},\$$

defines a linear matroid.

▶ Example. If G = (V, E) is a graph, then

r(S) = |V| - k(S)

defines a graphic matroid.

▶ $F \subseteq E$ is a flat if $r(F \cup \{e\}) > r(F)$ for all $e \in E \setminus F$.

- ▶ $F \subseteq E$ is a flat if $r(F \cup \{e\}) > r(F)$ for all $e \in E \setminus F$.
- L(M) = {F ⊆ E : F is a flat} denotes the lattice of flats of the matroid M.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- $\blacktriangleright F \subseteq E \text{ is a } \frac{\mathsf{flat}}{\mathsf{flat}} \text{ if } r(F \cup \{e\}) > r(F) \text{ for all } e \in E \setminus F.$
- Example. Let M be the matroid defined by $\mathbf{v}_1, \ldots, \mathbf{v}_m \in K^n$, and let \mathcal{U} be the collection of all subspaces of K^n spanned by subsets of $\mathbf{v}_1, \ldots, \mathbf{v}_m$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

- $\blacktriangleright F \subseteq E \text{ is a } \frac{\mathsf{flat}}{\mathsf{flat}} \text{ if } r(F \cup \{e\}) > r(F) \text{ for all } e \in E \setminus F.$
- Example. Let M be the matroid defined by $\mathbf{v}_1, \ldots, \mathbf{v}_m \in K^n$, and let \mathcal{U} be the collection of all subspaces of K^n spanned by subsets of $\mathbf{v}_1, \ldots, \mathbf{v}_m$. Then

$$\mathcal{U} \ni W \longleftrightarrow \{i \in \{1, \ldots, m\} : \mathbf{v}_i \in W\} \in \mathcal{L}(\mathbf{M}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めのの

- $\blacktriangleright F \subseteq E \text{ is a } \frac{\mathsf{flat}}{\mathsf{flat}} \text{ if } r(F \cup \{e\}) > r(F) \text{ for all } e \in E \setminus F.$
- Example. Let M be the matroid defined by $\mathbf{v}_1, \ldots, \mathbf{v}_m \in K^n$, and let \mathcal{U} be the collection of all subspaces of K^n spanned by subsets of $\mathbf{v}_1, \ldots, \mathbf{v}_m$. Then

$$\mathcal{U} \ni W \longleftrightarrow \{i \in \{1, \dots, m\} : \mathbf{v}_i \in W\} \in \mathcal{L}(\mathbf{M}).$$

▶ The Möbius function, $\mu : \mathcal{L}(M) \times \mathcal{L}(M) \rightarrow \mathbb{Z}$, is defined by

•
$$\mu(F,G) = 0$$
 unless $F \leq G$,
• $\mu(F,F) = 1$, and
• If $F < G$, then
 $\sum \mu(F,H) = 1$

$$\sum_{F \le H \le G} \mu(F, H) = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めのの

The characteristic polynomial is

$$\chi_{\mathcal{M}}(t) = \sum_{F \in \mathcal{L}(\mathcal{M})} \mu(\emptyset, F) t^{r(E) - r(F)} = \sum_{k=0}^{r(E)} (-1)^{r(E) - k} w_k t^k.$$

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 > < ⊙ < ⊙

The characteristic polynomial is

$$\chi_{\mathcal{M}}(t) = \sum_{F \in \mathcal{L}(\mathcal{M})} \mu(\emptyset, F) t^{r(E) - r(F)} = \sum_{k=0}^{r(E)} (-1)^{r(E) - k} w_k t^k.$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ 三 ○ ○ ○ ○

The characteristic polynomial of a graphic matroid is the chromatic polynomial of G.

The characteristic polynomial is

$$\chi_{\mathcal{M}}(t) = \sum_{F \in \mathcal{L}(\mathcal{M})} \mu(\emptyset, F) t^{r(E) - r(F)} = \sum_{k=0}^{r(E)} (-1)^{r(E) - k} w_k t^k.$$

- The characteristic polynomial of a graphic matroid is the chromatic polynomial of G.
- Conjecture (Heron-Rota-Welsh, 1970's). The coefficients of $\chi_{\rm M}(t)$ form a log-concave sequence:

$$w_k^2 \ge w_{k-1}w_{k+1}, \quad 0 < k < r(E).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

The characteristic polynomial is

$$\chi_{\mathcal{M}}(t) = \sum_{F \in \mathcal{L}(\mathcal{M})} \mu(\emptyset, F) t^{r(E) - r(F)} = \sum_{k=0}^{r(E)} (-1)^{r(E) - k} w_k t^k.$$

- The characteristic polynomial of a graphic matroid is the chromatic polynomial of G.
- Conjecture (Heron-Rota-Welsh, 1970's). The coefficients of $\chi_{M}(t)$ form a log-concave sequence:

$$w_k^2 \ge w_{k-1} w_{k+1}, \quad 0 < k < r(E).$$

 Proved by Adiprasito, Huh and Katz (2018) by developing a Hodge theory for matroids.

The characteristic polynomial is

$$\chi_{\mathcal{M}}(t) = \sum_{F \in \mathcal{L}(\mathcal{M})} \mu(\emptyset, F) t^{r(E) - r(F)} = \sum_{k=0}^{r(E)} (-1)^{r(E) - k} w_k t^k.$$

- The characteristic polynomial of a graphic matroid is the chromatic polynomial of G.
- Conjecture (Heron-Rota-Welsh, 1970's). The coefficients of $\chi_{M}(t)$ form a log-concave sequence:

$$w_k^2 \ge w_{k-1} w_{k+1}, \quad 0 < k < r(E).$$

- Proved by Adiprasito, Huh and Katz (2018) by developing a Hodge theory for matroids.
- We will sketch a short and self-contained "polynomial" proof using Lorentzian polynomials on cones.

Lorentzian polynomials on cones

$$\blacktriangleright$$
 For $\mathbf{w} \in \mathbb{R}^n$, let

$$D_{\mathbf{w}} = w_1 \frac{\partial}{\partial t_1} + \dots + w_n \frac{\partial}{\partial t_n}$$

be the directional derivative.

$$\blacktriangleright$$
 For $\mathbf{w} \in \mathbb{R}^n$, let

$$D_{\mathbf{w}} = w_1 \frac{\partial}{\partial t_1} + \dots + w_n \frac{\partial}{\partial t_n}$$

be the directional derivative.

• Let $f \in \mathbb{R}[t_1, \ldots, t_n]$ be a homogeneous degree d polynomial.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\blacktriangleright$$
 For $\mathbf{w} \in \mathbb{R}^n$, let

$$D_{\mathbf{w}} = w_1 \frac{\partial}{\partial t_1} + \dots + w_n \frac{\partial}{\partial t_n}$$

be the directional derivative.

Let f ∈ ℝ[t₁,...,t_n] be a homogeneous degree d polynomial.
Let C be an open convex cone in ℝⁿ.

$$\blacktriangleright$$
 For $\mathbf{w} \in \mathbb{R}^n$, let

$$D_{\mathbf{w}} = w_1 \frac{\partial}{\partial t_1} + \dots + w_n \frac{\partial}{\partial t_n}$$

be the directional derivative.

Let f ∈ ℝ[t₁,...,t_n] be a homogeneous degree d polynomial.
Let C be an open convex cone in ℝⁿ.
f is called C-Lorentzian if for all v₁,..., v_d ∈ C,
(P) D_{v₁}...D_{v_d}f > 0, and
(AF) For all x ∈ ℝⁿ,

 $(D_{\mathbf{x}}D_{\mathbf{v}_2}\cdots D_{\mathbf{v}_d}f)^2 \ge (D_{\mathbf{x}}D_{\mathbf{x}}\cdots D_{\mathbf{v}_d}f) \cdot (D_{\mathbf{v}_2}D_{\mathbf{v}_2}\cdots D_{\mathbf{v}_d}f).$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

$$\blacktriangleright$$
 For $\mathbf{w} \in \mathbb{R}^n$, let

$$D_{\mathbf{w}} = w_1 \frac{\partial}{\partial t_1} + \dots + w_n \frac{\partial}{\partial t_n}$$

be the directional derivative.

• Let $f \in \mathbb{R}[t_1, \ldots, t_n]$ be a homogeneous degree d polynomial.

- Let \mathcal{C} be an open convex cone in \mathbb{R}^n .
- ▶ f is called C-Lorentzian if for all $\mathbf{v}_1, \ldots, \mathbf{v}_d \in \mathbb{C}$,
 - (P) $D_{\mathbf{v}_1} \cdots D_{\mathbf{v}_d} f > 0$, and
 - (L) The quadratic polynomial $D_{\mathbf{v}_1} \cdots D_{\mathbf{v}_{d-2}} f$ has exactly one positive eigenvalue.

Loventzian signature
$$(t_1, -, -, -, -)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ▶ ◆□

$$\blacktriangleright$$
 For $\mathbf{w} \in \mathbb{R}^n$, let

$$D_{\mathbf{w}} = w_1 \frac{\partial}{\partial t_1} + \dots + w_n \frac{\partial}{\partial t_n}$$

be the directional derivative.

• Let $f \in \mathbb{R}[t_1, \ldots, t_n]$ be a homogeneous degree d polynomial.

- Let \mathcal{C} be an open convex cone in \mathbb{R}^n .
- ▶ f is called C-Lorentzian if for all $\mathbf{v}_1, \ldots, \mathbf{v}_d \in \mathcal{C}$,
 - (P) $D_{\mathbf{v}_1} \cdots D_{\mathbf{v}_d} f > 0$, and
 - (L) The quadratic polynomial $D_{\mathbf{v}_1} \cdots D_{\mathbf{v}_{d-2}} f$ has exactly one positive eigenvalue.
- \triangleright $\mathbb{R}^n_{>0}$ -Lorentzian polynomials are called Lorentzian.

▶ If f and g are C-Lorentzian, then so is fg.

- ▶ If f and g are C-Lorentzian, then so is fg.
- ▶ If f is C-Lorentzian and $\mathbf{v} \in \overline{\mathbb{C}}$, then $D_{\mathbf{v}}f$ is C-Lorentzian.

▶ If f and g are \mathcal{C} -Lorentzian, then so is fg.

- ▶ If f is \mathcal{C} -Lorentzian and $\mathbf{v} \in \overline{\mathcal{C}}$, then $D_{\mathbf{v}}f$ is \mathcal{C} -Lorentzian.
- ▶ Suppose $\mathbf{u}, \mathbf{v} \in \overline{\mathbb{C}}$, and f is \mathbb{C} -Lorentzian. Write

$$f(s\mathbf{u} + t\mathbf{v}) = \sum_{k=0}^{d} a_k \binom{d}{k} s^k t^{d-k}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then $\{a_k\}_{k=0}^d$ is log-concave.

- ▶ If f and g are C-Lorentzian, then so is fg.
- ▶ If f is C-Lorentzian and $\mathbf{v} \in \overline{\mathbb{C}}$, then $D_{\mathbf{v}}f$ is C-Lorentzian.
- ▶ Suppose $\mathbf{u}, \mathbf{v} \in \overline{\mathbb{C}}$, and f is \mathbb{C} -Lorentzian. Write

$$f(s\mathbf{u} + t\mathbf{v}) = \sum_{k=0}^{d} a_k \binom{d}{k} s^k t^{d-k}$$

Then $\{a_k\}_{k=0}^d$ is log-concave.

The determinant det(x) is Lorentzian on the cone of positive definite matrices.

- ▶ If f and g are C-Lorentzian, then so is fg.
- ▶ If f is C-Lorentzian and $\mathbf{v} \in \overline{\mathbb{C}}$, then $D_{\mathbf{v}}f$ is C-Lorentzian.
- ▶ Suppose $\mathbf{u}, \mathbf{v} \in \overline{\mathbb{C}}$, and f is \mathbb{C} -Lorentzian. Write

$$f(s\mathbf{u} + t\mathbf{v}) = \sum_{k=0}^{d} a_k \binom{d}{k} s^k t^{d-k}$$

Then $\{a_k\}_{k=0}^d$ is log-concave.

- The determinant det(x) is Lorentzian on the cone of positive definite matrices.
- Volume polynomials of convex bodies and projective varieties are Lorentzian.

- ▶ If f and g are C-Lorentzian, then so is fg.
- ▶ If f is C-Lorentzian and $\mathbf{v} \in \overline{\mathbb{C}}$, then $D_{\mathbf{v}}f$ is C-Lorentzian.
- ▶ Suppose $\mathbf{u}, \mathbf{v} \in \overline{\mathbb{C}}$, and f is \mathbb{C} -Lorentzian. Write

$$f(s\mathbf{u} + t\mathbf{v}) = \sum_{k=0}^{d} a_k \binom{d}{k} s^k t^{d-k}$$

Then $\{a_k\}_{k=0}^d$ is log-concave.

- The determinant det(x) is Lorentzian on the cone of positive definite matrices.
- Volume polynomials of convex bodies and projective varieties are Lorentzian.
- Various polynomials associated to matroids are Lorentzian.

In the Hodge theory for matroids, cones of submodular functions play a crucial role.

- In the Hodge theory for matroids, cones of submodular functions play a crucial role.
- Let $K < L \in \mathcal{L}(M)$.

► Let
$$\mathcal{E}_K^L = \{(y_S)_{K \subset S \subset L} : y_S \in \mathbb{R}\}$$
. Eyclideen space

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- In the Hodge theory for matroids, cones of submodular functions play a crucial role.
- Let $K < L \in \mathcal{L}(M)$.

• Let
$$\mathcal{E}_K^L = \{(y_S)_{K \subset S \subset L} : y_S \in \mathbb{R}\}.$$

• The cone S_K^L of strictly submodular functions consists of all $\mathbf{y} \in \mathcal{E}_K^L$ for which

$$y_S + y_T > y_{S \cap T} + y_{S \cup T}, \qquad y_K = y_L = 0,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

for all incomparable S and T.

- In the Hodge theory for matroids, cones of submodular functions play a crucial role.
- Let $K < L \in \mathcal{L}(M)$.

• Let
$$\mathcal{E}_K^L = \{(y_S)_{K \subset S \subset L} : y_S \in \mathbb{R}\}.$$

• The cone S_K^L of strictly submodular functions consists of all $\mathbf{y} \in \mathcal{E}_K^L$ for which

$$y_S + y_T > y_{S \cap T} + y_{S \cup T}, \qquad y_K = y_L = 0,$$

for all incomparable S and T.

For example,

$$\mathbf{y} = \left(|S \setminus K| \cdot |L \setminus S| \right)_{K \subset S \subset L} \in \mathcal{S}_K^L.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

► Let $K \leq M < N \leq L$. There is a canonical projection $\pi_M^N : \mathcal{E}_K^L \to \mathcal{E}_M^N$.

Let
$$K \leq M < N \leq L$$
. There is a canonical projection $\pi_M^N : \mathcal{E}_K^L \to \mathcal{E}_M^N$. Namely

$$\pi_M^N(\mathbf{t}) = \left(t_S - \frac{|N \setminus S|}{|N \setminus M|} t_M - \frac{|S \setminus M|}{|N \setminus M|} t_N \right)_{M \subset S \subset N}$$

<□> <□> <□> <□> <=> <=> <=> <=> <<

• Let
$$K \leq M < N \leq L$$
. There is a canonical projection
 $\pi_M^N : \mathcal{E}_K^L \to \mathcal{E}_M^N$. Namely

$$\pi_M^N(\mathbf{t}) = \left(t_S - \frac{|N \setminus S|}{|N \setminus M|} t_M - \frac{|S \setminus M|}{|N \setminus M|} t_N \right)_{M \subset S \subset N}$$

<□> <□> <□> <□> <=> <=> <=> <=> <<

$$\blacktriangleright \ \pi^N_M: \mathbb{S}^L_K \to \mathbb{S}^N_M$$

Let
$$K \leq M < N \leq L$$
. There is a canonical projection $\pi_M^N : \mathcal{E}_K^L \to \mathcal{E}_M^N$. Namely

$$\pi_M^N(\mathbf{t}) = \left(t_S - \frac{|N \setminus S|}{|N \setminus M|} t_M - \frac{|S \setminus M|}{|N \setminus M|} t_N\right)_{M \subset S \subset N}$$

$$\blacktriangleright \ \pi^N_M: \mathbb{S}^L_K \to \mathbb{S}^N_M$$

Definition/Theorem (B., Leake). Let M be a matroid. There is unique family of polynomials $\operatorname{pol}_{K}^{L}$, $K < L \in \mathcal{L}(M)$, such that $\triangleright \operatorname{pol}_{K}^{L}$ is a polynomial in t_{F} , K < F < L,

Let
$$K \leq M < N \leq L$$
. There is a canonical projection $\pi_M^N : \mathcal{E}_K^L \to \mathcal{E}_M^N$. Namely

$$\pi_M^N(\mathbf{t}) = \left(t_S - \frac{|N \setminus S|}{|N \setminus M|} t_M - \frac{|S \setminus M|}{|N \setminus M|} t_N\right)_{M \subset S \subset N}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

$$\blacktriangleright \ \pi^N_M: \mathbb{S}^L_K \to \mathbb{S}^N_M$$

Definition/Theorem (B., Leake). Let M be a matroid. There is unique family of polynomials pol_{K}^{L} , $K < L \in \mathcal{L}(M)$, such that

▶
$$\operatorname{pol}_{K}^{L}$$
 is a polynomial in t_{F} , $K < F < L$,

▶
$$\operatorname{pol}_{K}^{L}$$
 is a polynomial in ι_{F} , $K < F < L$,
▶ $\operatorname{pol}_{K}^{L} = 1$, if $r(L) = r(K) + 1$ (i.e., L covers K),

Let
$$K \leq M < N \leq L$$
. There is a canonical projection $\pi_M^N : \mathcal{E}_K^L \to \mathcal{E}_M^N$. Namely

$$\pi_M^N(\mathbf{t}) = \left(t_S - \frac{|N \setminus S|}{|N \setminus M|} t_M - \frac{|S \setminus M|}{|N \setminus M|} t_N\right)_{M \subset S \subset N}$$

$$\blacktriangleright \ \pi^N_M: \mathbb{S}^L_K \to \mathbb{S}^N_M$$

Definition/Theorem (B., Leake). Let M be a matroid. There is unique family of polynomials pol_K^L , $K < L \in \mathcal{L}(M)$, such that

▶
$$\operatorname{pol}_{K}^{L}$$
 is a polynomial in t_{F} , $K < F < L$,

- ▶ $pol_K^L = 1$, if r(L) = r(K) + 1 (i.e., L covers K),
- ▶ If K < F < L, then

$$\frac{\partial}{\partial t_F} \operatorname{pol}_K^L(\mathbf{t}) = \operatorname{pol}_K^F(\pi_K^F(\mathbf{t})) \cdot \operatorname{pol}_F^L(\pi_F^L(\mathbf{t})).$$

• The degree of pol_K^L is d(K, L) = r(L) - r(K) - 1.

By Euler's formula for homogeneous functions,

$$d(K,L) \cdot \operatorname{pol}_{K}^{L}(\mathbf{t}) = \sum_{K < F < L} t_{F} \cdot \frac{\partial}{\partial t_{F}} \operatorname{pol}_{K}^{L}(\mathbf{t}).$$
$$d \cdot \left\{ -\left(\times_{1}, \dots, \times_{n} \right) \right\} = \sum_{i=1}^{n} \times_{i} \frac{\partial f}{\partial \times_{i}}$$

- The degree of pol_K^L is d(K, L) = r(L) r(K) 1.
- By Euler's formula for homogeneous functions,

$$d(K,L) \cdot \operatorname{pol}_{K}^{L}(\mathbf{t}) = \sum_{K < F < L} t_{F} \cdot \operatorname{pol}_{K}^{F}(\pi_{K}^{F}(\mathbf{t})) \cdot \operatorname{pol}_{F}^{L}(\pi_{F}^{L}(\mathbf{t})).$$

• The degree of pol_K^L is d(K, L) = r(L) - r(K) - 1.

By Euler's formula for homogeneous functions,

$$d(K,L) \cdot \operatorname{pol}_{K}^{L}(\mathbf{t}) = \sum_{K < F < L} t_{F} \cdot \operatorname{pol}_{K}^{F}(\pi_{K}^{F}(\mathbf{t})) \cdot \operatorname{pol}_{F}^{L}(\pi_{F}^{L}(\mathbf{t})).$$

• If d(K, L) = 1, then

$$\operatorname{pol}_{K}^{L}(\mathbf{t}) = \sum_{K < F < L} t_{F}.$$

590

▲□▶ ▲圖▶ ▲글▶ ▲글▶ _ 글

• If
$$d(K, L) = 2$$
, then

$$2 \cdot \operatorname{pol}_{K}^{L}(\mathbf{t}) = \sum_{K \prec F \prec G \prec L} \left(2 \cdot t_{F}t_{G} - t_{F}^{2} \cdot \frac{|L \setminus G|}{|L \setminus F|} - t_{G}^{2} \cdot \frac{|F \setminus K|}{|G \setminus K|} \right)$$
$$= \left(\sum_{K \prec F} t_{F} \right)^{2} - \sum_{G \prec L} \left(t_{G} - \sum_{K \prec F \prec G} t_{F} \right)^{2}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ▲□▶

• If
$$d(K, L) = 2$$
, then

$$2 \cdot \operatorname{pol}_{K}^{L}(\mathbf{t}) = \sum_{K \prec F \prec G \prec L} \left(2 \cdot t_{F} t_{G} - t_{F}^{2} \cdot \frac{|L \setminus G|}{|L \setminus F|} - t_{G}^{2} \cdot \frac{|F \setminus K|}{|G \setminus K|} \right)$$
$$= \left(\sum_{K \prec F} t_{F} \right)^{2} - \sum_{G \prec L} \left(t_{G} - \sum_{K \prec F \prec G} t_{F} \right)^{2}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From this follows that if d(K, L) = 2, then pol_K^L is \mathcal{S}_K^L -Lorentzian.

Main Theorem (B., Leake). pol_K^L is S_K^L -Lorentzian.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Main Theorem (B., Leake). pol_{K}^{L} is \mathcal{S}_{K}^{L} -Lorentzian. *Proof sketch* by induction over d = d(K, L). The case $d \leq 2$ is clear.

Main Theorem (B., Leake). pol_{K}^{L} is \mathcal{S}_{K}^{L} -Lorentzian. *Proof sketch* by induction over d = d(K, L). The case $d \leq 2$ is clear.

Use the identity

$$\frac{\partial}{\partial t_F} \operatorname{pol}_K^L(\mathbf{t}) = \operatorname{pol}_K^F(\pi_K^F(\mathbf{t})) \cdot \operatorname{pol}_F^L(\pi_F^L(\mathbf{t})).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

By induction, the right-hand-side is S_K^L -Lorentzian.

Main Theorem (B., Leake). pol_{K}^{L} is \mathcal{S}_{K}^{L} -Lorentzian. *Proof sketch* by induction over d = d(K, L). The case $d \leq 2$ is clear.

Use the identity

$$\frac{\partial}{\partial t_F} \operatorname{pol}_K^L(\mathbf{t}) = \operatorname{pol}_K^F(\pi_K^F(\mathbf{t})) \cdot \operatorname{pol}_F^L(\pi_F^L(\mathbf{t})).$$

By induction, the right-hand-side is S_K^L -Lorentzian.

 \ldots , and the theorem follows.

Heron-Rota-Welsh conjecture

► Consider the elements in the closure of S^E_{\varnothing} :

$$\alpha = \left(\frac{|S|}{|E|}\right)_{\varnothing \subset S \subset E} \text{ and } \beta = \left(\frac{|E \setminus S|}{|E|}\right)_{\varnothing \subset S \subset E}.$$

Heron-Rota-Welsh conjecture

• Consider the elements in the closure of S^E_{\emptyset} :

$$\alpha = \left(\frac{|S|}{|E|}\right)_{\varnothing \subset S \subset E} \text{ and } \beta = \left(\frac{|E \setminus S|}{|E|}\right)_{\varnothing \subset S \subset E}$$

Theorem. Suppose M is a matroid of rank d + 1. If we write

$$\operatorname{pol}_{\varnothing}^{E}(s\alpha + t\beta) = \frac{1}{d!} \sum_{k=0}^{d} \binom{d}{k} a_{k} s^{d-k} t^{k},$$

then a_k is the absolute value of the kth coefficient of the reduced characteristic polynomial of M

$$\overline{\chi}_{\mathrm{M}}(t) = \chi_{\mathrm{M}}(t)/(t-1).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Heron-Rota-Welsh conjecture

• Consider the elements in the closure of S^E_{\emptyset} :

$$\alpha = \left(\frac{|S|}{|E|}\right)_{\varnothing \subset S \subset E} \text{ and } \beta = \left(\frac{|E \setminus S|}{|E|}\right)_{\varnothing \subset S \subset E}$$

Theorem. Suppose M is a matroid of rank d + 1. If we write

$$\operatorname{pol}_{\varnothing}^{E}(s\alpha + t\beta) = \frac{1}{d!} \sum_{k=0}^{d} \binom{d}{k} a_{k} s^{d-k} t^{k},$$

then a_k is the absolute value of the kth coefficient of the reduced characteristic polynomial of M

$$\overline{\chi}_{\mathrm{M}}(t) = \chi_{\mathrm{M}}(t)/(t-1).$$

The Heron-Rota-Welsh conjecture follows.

Hodge-Riemann relations of degree one

The Chow ring of a matroid, A(M), was introduced by Feichtner and Yuzvinsky in 2004.

Hodge-Riemann relations of degree one

- The Chow ring of a matroid, A(M), was introduced by Feichtner and Yuzvinsky in 2004.
- Adiprasito, Huh and Katz (2018) proved the Hodge-Riemann relations for A(M),

which implies the Heron-Rota-Welsh conjecture.
Hodge-Riemann relations of degree one

- The Chow ring of a matroid, A(M), was introduced by Feichtner and Yuzvinsky in 2004.
- Adiprasito, Huh and Katz (2018) proved the Hodge-Riemann relations for A(M),
- which implies the Heron-Rota-Welsh conjecture.
- ► Theorem (B., Leake). pol^E_Ø(t) is the volume polynomial of the Chow-ring A(M) of M.

Hodge-Riemann relations of degree one

- The Chow ring of a matroid, A(M), was introduced by Feichtner and Yuzvinsky in 2004.
- Adiprasito, Huh and Katz (2018) proved the Hodge-Riemann relations for A(M),
- which implies the Heron-Rota-Welsh conjecture.
- ► Theorem (B., Leake). pol^E_Ø(t) is the volume polynomial of the Chow-ring A(M) of M.
- The main theorem translates as the Hodge-Riemann relations of degree one for A(M).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ りへぐ

Effective cones

• Let \mathcal{C} be an open convex cone in \mathbb{R}^n .

► The lineality space of \mathcal{C} is $L_{\mathcal{C}} = \overline{\mathcal{C}} \cap -\overline{\mathcal{C}}$.

Effective cones

• Let \mathcal{C} be an open convex cone in \mathbb{R}^n .

► The lineality space of \mathcal{C} is $L_{\mathcal{C}} = \overline{\mathcal{C}} \cap -\overline{\mathcal{C}}$.

▶ We say that C is effective if

$$\mathcal{C} = \mathcal{C} \cap \mathbb{R}^n_{>0} + L_{\mathcal{C}}.$$

Effective cones

• Let \mathcal{C} be an open convex cone in \mathbb{R}^n .

► The lineality space of \mathcal{C} is $L_{\mathcal{C}} = \overline{\mathcal{C}} \cap -\overline{\mathcal{C}}$.

▶ We say that C is effective if

$$\mathcal{C} = \mathcal{C} \cap \mathbb{R}^n_{>0} + L_{\mathcal{C}}.$$

▲□▶ ▲□▶ ▲ □▶ ★ □▶ □ のへで

► Theorem (Folklore). S^L_K is effective, with lineality space the set of modular functions.

A matrix A = (a_{ij})ⁿ_{i,j=1} whose off-diagonal elements are nonnegative is called irreducible if for each i ≠ j there is a path i = i₀ ≠ i₁ ≠ ··· ≠ i_ℓ = j such that a_{ikik+1} ≠ 0.

A matrix A = (a_{ij})ⁿ_{i,j=1} whose off-diagonal elements are nonnegative is called irreducible if for each i ≠ j there is a path i = i₀ ≠ i₁ ≠ ··· ≠ i_ℓ = j such that a_{ikik+1} ≠ 0.

Theorem (B., Leake). Suppose f has degree $d \ge 3$, and that \mathcal{C} is effective. If the following conditions hold, then f is \mathcal{C} -Lorentzian:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A matrix A = (a_{ij})ⁿ_{i,j=1} whose off-diagonal elements are nonnegative is called irreducible if for each i ≠ j there is a path i = i₀ ≠ i₁ ≠ ··· ≠ i_ℓ = j such that a_{ikik+1} ≠ 0.

Theorem (B., Leake). Suppose f has degree $d \ge 3$, and that \mathcal{C} is effective. If the following conditions hold, then f is \mathcal{C} -Lorentzian:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. $f(\mathbf{x} + \mathbf{w}) = f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{w} \in L_c$,

A matrix A = (a_{ij})ⁿ_{i,j=1} whose off-diagonal elements are nonnegative is called irreducible if for each i ≠ j there is a path i = i₀ ≠ i₁ ≠ ··· ≠ i_ℓ = j such that a_{ikik+1} ≠ 0.

Theorem (B., Leake). Suppose f has degree $d \ge 3$, and that \mathcal{C} is effective. If the following conditions hold, then f is \mathcal{C} -Lorentzian:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1.
$$f(\mathbf{x} + \mathbf{w}) = f(\mathbf{x})$$
 for all $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{w} \in L_{\mathcal{C}}$,

2. $D_{\mathbf{v}_1}\cdots D_{\mathbf{v}_d}f > 0$ for all $\mathbf{v}_1,\ldots,\mathbf{v}_d \in \mathfrak{C}$,

A matrix A = (a_{ij})ⁿ_{i,j=1} whose off-diagonal elements are nonnegative is called irreducible if for each i ≠ j there is a path i = i₀ ≠ i₁ ≠ ··· ≠ i_ℓ = j such that a_{ikik+1} ≠ 0.

Theorem (B., Leake). Suppose f has degree $d \ge 3$, and that \mathcal{C} is effective. If the following conditions hold, then f is \mathcal{C} -Lorentzian:

- 1. $f(\mathbf{x} + \mathbf{w}) = f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{w} \in L_c$,
- 2. $D_{\mathbf{v}_1} \cdots D_{\mathbf{v}_d} f > 0$ for all $\mathbf{v}_1, \dots, \mathbf{v}_d \in \mathfrak{C}$,
- 3. the Hessian of $D_{\mathbf{v}_1} \cdots D_{\mathbf{v}_{d-2}} f$ is irreducible and its off-diagonal entries are nonnegative for all $\mathbf{v}_1, \ldots, \mathbf{v}_{d-2} \in \mathcal{C}$,

A matrix A = (a_{ij})ⁿ_{i,j=1} whose off-diagonal elements are nonnegative is called irreducible if for each i ≠ j there is a path i = i₀ ≠ i₁ ≠ ··· ≠ i_ℓ = j such that a_{ikik+1} ≠ 0.

Theorem (B., Leake). Suppose f has degree $d \ge 3$, and that \mathcal{C} is effective. If the following conditions hold, then f is \mathcal{C} -Lorentzian:

- 1. $f(\mathbf{x} + \mathbf{w}) = f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{w} \in L_c$,
- 2. $D_{\mathbf{v}_1}\cdots D_{\mathbf{v}_d}f>0$ for all $\mathbf{v}_1,\ldots,\mathbf{v}_d\in\mathfrak{C}$,
- 3. the Hessian of $D_{\mathbf{v}_1} \cdots D_{\mathbf{v}_{d-2}} f$ is irreducible and its off-diagonal entries are nonnegative for all $\mathbf{v}_1, \ldots, \mathbf{v}_{d-2} \in \mathcal{C}$,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

4. $\frac{\partial}{\partial x_i} f$ is C-Lorentzian for all *i*.