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The Potts model

» Let G = (V, F) be a finite undirected graph.
» The partition function of the g-state Potts model is

— Z qk(A) H te,
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where k(A) is the number of connected components of the
subgraph (V, A).

» Za(q,t) defines a probability distribution on subsets of E:
Let X be a random subset of E. Then

_ Al = ¢ >

» [P is called the Fortuin-Kasteleyn random cluster model.
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Positive and negative dependence

vvyvVvyyvVvyy

Positive dependence models attracting particles,

Negative dependence models repelling particles.

For ¢ > 1, the Potts model is positively dependent.

For 0 < q <1, it is conjectured to be negatively dependent.

Negative correlations: For distinct 7,7 € F,
Pli,j € X] <Pli € X]|-P[j € X].

Conjecture (Pemantle, Kahn, Grimmett,...). The Potts model
is negatively correlated for 0 < g < 1.

Known for the random spanning tree measure, which is a limit
of Potts when ¢ — 0.

Unknown for the random forest measure, which is another
limit when ¢ — 0.
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Negative dependence for the Potts model
» Ultra log-concavity: Let r, = P[|X| = k] and n = |E]|.
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» Theorem(B.—Huh, 2020). For 0 < ¢ < 1, the Potts model is
ultra log-concave. ~

» Theorem(B.—Huh, 2020). For 0 < ¢ <1,

Pli,j € X]<2-Pli e X|-P[j € X].

» The proofs use Lorentzian polynomials.
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Fortuin-Kasteleyn representation

» Theorem (Fortuin-Kasteleyn, 1969). For positive integers g,

Za(a,t) = ) I (1+ted(o(@), o)

o:V—{1,2,....q} e=ijelE

» In particular

ZG(Qa_l) :XG(Q)a 1:(1717'“71)7

is the chromatic polynomial of G.

» Conjecture (Read-Rota-Heron-Welsh, 1968-76). The
coefficients {wy }'_, of the chromatic polynomial form a
log-concave sequence:

w;% > Wip_1Wgt1, 0<k<n.

» Proved by June Huh in 2012 using Hodge theory.
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Matroids

» Let E be a finite set. A function 7 : 22 — N is the rank
function of a matroid if
1. r(S) <|S|forall SCF,
2. r(8)<r(T)if SCTCEFE, and
3. r(S)+r(T) >r(SUT)+r(SNT), (submodularity)
forall S,T C F.

» Example. If vi,...,v,, € K™, then
r(S) = dimspan{v; : i € S},

defines a linear matroid.
» Example. If G = (V, FE) is a graph, then

r(8) = V[ = k(S5)

defines a graphic matroid.
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Lattice of flats

» FCFEisaflatif r(FU{e}) >r(F) foralleec E\ F.

» L(M)={F C E: Fis a flat} denotes the lattice of flats of
the matroid M.

» Example. Let M be the matroid defined by v¢,...,v,, € K",

and let U be the collection of all subspaces of K™ spanned by
subsets of vq,...,v,,. Then

USW«—{ie{l,...,m}:v, e W} e LM).

» The Mobius function, p : L(M) x L(M) — Z, is defined by
» u(F,G) =0 unless F < G,
> u(F,F)=1, and
> If FF < G, then

> u(FH)=0.

F<H<G
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Heron-Rota-Welsh conjecture

» The characteristic polynomial is

r(E)
lt) = Y (@, F)rE ) = N )k h,
FEL(M) k=0

» The characteristic polynomial of a graphic matroid is the
chromatic polynomial of G.

» Conjecture (Heron-Rota-Welsh, 1970's). The coefficients of
xM(t) form a log-concave sequence:

’w,% > wp_1wrr1, 0<k<r(F).

» Proved by Adiprasito, Huh and Katz (2018) by developing a
Hodge theory for matroids.

» We will sketch a short and self-contained “polynomial” proof
using Lorentzian polynomials on cones.
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Lorentzian polynomials on cones

» For w € R", let

0 0
Dy = Wi —— 4 - - 4 W, ——
w18t1 + T ot,,

be the directional derivative.
» Let f € R[ty,...,t,] be a homogeneous degree d polynomial.

» Let € be an open convex cone in R".

» f is called C-Lorentzian if for all vq,...,v4 € C,

(P) Dy, ---Dy,f >0, and
(L) The quadratic polynomial Dy, --- Dy, , f has exactly one
positive eigenvalue.

» RY,-Lorentzian polynomials are called Lorentzian.



Lorentzian polynomials on cones

» If f and g are C-Lorentzian, then so is fg.



Lorentzian polynomials on cones

» If f and g are C-Lorentzian, then so is fg.
» If f is C-Lorentzian and v € €, then Dy f is C-Lorentzian.



Lorentzian polynomials on cones

» If f and g are C-Lorentzian, then so is fg.
» If f is C-Lorentzian and v € €, then Dy f is C-Lorentzian.
» Suppose u,v € G, and f is C-Lorentzian. Write

d
su—l—tv Za ( ) ghtd—k,

k=0

Then {ax}{_, is log-concave.



Lorentzian polynomials on cones

» If f and g are C-Lorentzian, then so is fg.
» If f is C-Lorentzian and v € €, then Dy f is C-Lorentzian.
» Suppose u,v € G, and f is C-Lorentzian. Write

d
su—l—tv Za ( ) ktd_k.
k=0

Then {ax}{_, is log-concave.

» The determinant det(x) is Lorentzian on the cone of positive
definite matrices.



Lorentzian polynomials on cones

\4

If f and g are C-Lorentzian, then so is fg.
If fis C-Lorentzian and v € €, then D, f is C-Lorentzian.
Suppose u,v € C, and f is C-Lorentzian. Write

d
f(su+tv) Za ( )sktd_k.
k=0

Then {ax}{_, is log-concave.

The determinant det(x) is Lorentzian on the cone of positive
definite matrices.

Volume polynomials of convex bodies and projective varieties
are Lorentzian.
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\4

If f and g are C-Lorentzian, then so is fg.
If fis C-Lorentzian and v € €, then D, f is C-Lorentzian.
Suppose u,v € C, and f is C-Lorentzian. Write

d
f(su+tv) Za ( )sktd_k.
k=0

Then {ax}{_, is log-concave.

The determinant det(x) is Lorentzian on the cone of positive
definite matrices.

Volume polynomials of convex bodies and projective varieties
are Lorentzian.

Various polynomials associated to matroids are Lorentzian.
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Submodularity

» |n the Hodge theory for matroids, cones of submodular
functions play a crucial role.

> Let K < L e L(M).

> Let &% = {(ys)kcscr @ ys € R}
» The cone 8%( of strictly submodular functions consists of all
y € Sf( for which

Yys +yr > ysnr + ysur, yk =y, =0,

for all incomparable S and T'.

» For example,

— K|-|L 72
y=(IS\KI-IL\S|) €8k
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» Let K < M < N < L. There is a canonical projection
Wﬂj\g : 8% — 85\\]4. Namely

N IN\S| S\ M|
WM(t>_<tS ]N\M\ \N\M|t )MCSCN

> Wﬂ:S%%S{,\\Q

Definition/Theorem (B., Leake). Let M be a matroid. There is
unique family of polynomials pol%, K < L € £(M), such that

> pol%( is a polynomial in tp, K < F' < L, =

» polk =1, if r(L) =r(K) +1 (i.e., L covers K),

» If K < F < L, then k
0

5 POl (£) = polfc (efe () - polf(mF ().
F
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» The degree of pol% is d(K,L) = (L) — r(K) — 1.

» By Euler’s formula for homogeneous functions,

d(K, L) -poli(6) = D te 5 polk(t).

Oﬂ,{;(%(/“.ﬂ(\,{] :ZM‘XA 9%

[ = >



Polynomials associated to lattices of flats

» The degree of pol% is d(K,L) = (L) — r(K) — 1.

» By Euler’s formula for homogeneous functions,

d(K,L) -poli(t) = Y tr-poli(mi(t)) - polp(mi(t)).
K<F<L



Polynomials associated to lattices of flats

» The degree of pol% is d(K,L) = (L) — r(K) — 1.

» By Euler’s formula for homogeneous functions,

d(K,L)-poli(t) = tr-polic(mi(t)) - poli(m(t)).
K<F<L

» If d(K,L) =1, then
polL Z tr. /é\
K<F<L
<F< \\//



Polynomials associated to lattices of flats

> If d(K,L) =2, then

2 - polg(t)

> (2-tth—t%-

K<F<G<L

(

>

K<F

)2

2.

G<L

1L\ G

L\F| ¢ [G\K|

2

K<F<G

2

2
tF>

[F1\ K

)



Polynomials associated to lattices of flats

> If d(K,L) =2, then

IL\G| o |F\K]
2 - polk(t) = (Q-tptg—t2-——t S S
KO= 2 PV GV R
2 2
K<F G<L K<F<G

» From this follows that if d(K, L) = 2, then pol% is
8L -Lorentzian.
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Main Theorem (B., Leake). pol% is 8%-Lorentzian.

Proof sketch by induction over d = d(K,L). The case d < 2 is
clear.

Use the identity

0

51 POl () = polfe (e (1)) - pol(eh (1)

By induction, the right-hand-side is 8%(—Lorentzian.

., and the theorem follows.
]
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Heron-Rota-Welsh conjecture

» Consider the elements in the closure of 8%

a:(@) and 6:<|E\S’) :
1Bl ) gcscE Bl ) scscr

» Theorem. Suppose M is a matroid of rank d + 1. If we write

FE d—k k
pol (sa + tB) = d'z<) ",

then aj is the absolute value of the kth coefficient of the
reduced characteristic polynomial of M

Xu(t) = xm(t)/(t —1).

» The Heron-Rota-Welsh conjecture follows.
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Hodge-Riemann relations of degree one

>

The Chow ring of a matroid, A(M), was introduced by
Feichtner and Yuzvinsky in 2004.

Adiprasito, Huh and Katz (2018) proved the Hodge-Riemann
relations for A(M),

which implies the Heron-Rota-Welsh conjecture.

Theorem (B., Leake). polZ(t) is the volume polynomial of
the Chow-ring A(M) of M.

The main theorem translates as the Hodge-Riemann relations
of degree one for A(M).
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Effective cones

» Let C be an open convex cone in R™.
» The lineality space of Cis Le = €N —C.
» We say that C is effective if

» Theorem (Folklore). 8% is effective, with lineality space the
set of modular functions.
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0

5.-J 1s C-Lorentzian for all .



