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The orbit transfer problem with low thrust

Controlled Kepler equation

q̈ = −q
µ

|q|3
+

F
m

q ∈ IR3: position, F : thrust, m mass:

ṁ = −β|F |

Maximal thrust constraint

|F | = (u2
1 + u2

2 + u2
3)1/2 6 Fmax ' 0.1N

Orbit transfer

from an initial orbit to a given final orbit

Controllability properties studied in

B. Bonnard, J.-B. Caillau, E. Trélat, Geometric optimal control of elliptic Keplerian orbits, Discrete Contin.
Dyn. Syst. Ser. B 5, 4 (2005), 929–956.

B. Bonnard, L. Faubourg, E. Trélat, Mécanique céleste et contrôle de systèmes spatiaux, Math. & Appl. 51,
Springer Verlag (2006), XIV, 276 pages.
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B. Bonnard, J.-B. Caillau, E. Trélat, Geometric optimal control of elliptic Keplerian orbits, Discrete Contin.
Dyn. Syst. Ser. B 5, 4 (2005), 929–956.
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Modelling in terms of an optimal control problem

State: x(t) =

(
q(t)
q̇(t)

)
Control: u(t) = F (t)

Optimal control problem

ẋ(t) = f (x(t), u(t)), x(t) ∈ M, u(t) ∈ Ω

x(0) = x0, x(T ) = x1

min C(T , u), where C(T , u) =

∫ T

0
f 0(x(t), u(t)) dt
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ẋ(t) = f (x(t), u(t)), x(0) = x0 ∈ M, u(t) ∈ Ω

x(T ) = x1, min C(T , u) with C(T , u) =

∫ T

0
f 0(x(t), u(t)) dt

Definition

End-point mapping

Ex0,T : L∞([0,T ],Ω) −→ M
u 7−→ x(T ; x0, u)



Optimal control problem
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Optimal control problem

ẋ(t) = f (x(t), u(t)), x(0) = x0 ∈ M, u(t) ∈ Ω

x(T ) = x1, min C(T , u) with C(T , u) =

∫ T

0
f 0(x(t), u(t)) dt

Definition

End-point mapping

Ex0,T : L∞([0,T ],Ω) −→ M
u 7−→ x(T ; x0, u)

Definition

A control u (or the trajectory xu(·)) is singular if dEx0,T (u) is not surjective.



Lagrange multipliers (or KKT in general)

A control u (or the trajectory xu(·)) is singular if dEx0,T (u) is not surjective.

Optimization problem

min
Ex0,T

(u)=x1
C(T , u)

Lagrange multipliers (if Ω = IRm)

∃(ψ,ψ0) ∈ (T∗x(T )M × IR) \ {(0, 0)} | ψ.dEx0,T (u) = −ψ0dCT (u)

In terms of the Lagrangian LT (u, ψ, ψ0) = ψ.Ex0,T (u) + ψ0CT (u):

∂LT

∂u
(u, ψ, ψ0) = 0

- Normal multiplier: ψ0 6= 0 (→ ψ0 = −1).

- Abnormal multiplier: ψ0 = 0 (⇔ u singular, if Ω = IRm).



Pontryagin Maximum Principle

Optimal control problem

ẋ(t) = f (x(t), u(t)), x(0) = x0 ∈ M, u(t) ∈ Ω

x(T ) = x1, min C(T , u), where C(T , u) =

∫ T

0
f 0(x(t), u(t)) dt

Pontryagin Maximum Principle

Every minimizing trajectory x(·) is the projection of an extremal (x(·), p(·), p0, u(·))
solution of

ẋ =
∂H
∂p

, ṗ = −
∂H
∂x

, H(x , p, p0, u) = max
v∈Ω

H(x , p, p0, v)

where H(x , p, p0, u) = 〈p, f (x , u)〉+ p0f 0(x , u).

An extremal is said normal whenever p0 6= 0, and abnormal whenever p0 = 0.
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Pontryagin Maximum Principle

Every minimizing trajectory x(·) is the projection of an extremal (x(·), p(·), p0, u(·))
solution of

ẋ =
∂H
∂p

, ṗ = −
∂H
∂x

, H(x , p, p0, u) = max
v∈Ω

H(x , p, p0, v)

(p(T ), p0) = (ψ,ψ0) up to (multiplicative) scaling.

An extremal is said normal whenever p0 6= 0, and abnormal whenever p0 = 0.

Singular trajectories coincide with projections of abnormal extremals s.t. ∂H
∂u = 0.
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, ṗ = −
∂H
∂x

, H(x , p, p0, u) = max
v∈Ω

H(x , p, p0, v)

↖ ↙
u(t) = u(x(t), p(t))

(
locally, e.g. under the strict Legendre assumption:

∂2H
∂u2

(x, p, u) negative definite
)



Shooting method:

Extremals z = (x , p) are solutions of

ẋ =
∂H
∂p

(x , p), x(0) = x0, (x(T ) = x1)

ṗ = −
∂H
∂x

(x , p), p(0) = p0

where the optimal control maximizes the Hamiltonian.

Exponential mapping

expx0
(t , p0) = x(t , x0, p0)

(extremal flow)

−→ Shooting method: determine p0 s.t. expx0
(t , p0) = x1



Shooting method:

Extremals z = (x , p) are solutions of

ẋ =
∂H
∂p

(x , p), x(0) = x0, (x(T ) = x1)

ṗ = −
∂H
∂x

(x , p), p(0) = p0

where the optimal control maximizes the Hamiltonian.

Exponential mapping

expx0
(t , p0) = x(t , x0, p0)

(extremal flow)

−→ Shooting method: determine p0 s.t. expx0
(t , p0) = x1

Remark

- PMP = first-order necessary condition for optimality.

- Necessary / sufficient (local) second-order conditions:
conjugate points.

→ test if expx0
(t , ·) is an immersion at p0.

(fold singularity)



There exist other numerical approaches to solve optimal control problems:

direct methods: discretize the whole problem
⇒ finite-dimensional nonlinear optimization problem with constraints

Hamilton-Jacobi methods.

The shooting method is called an indirect method.

In aerospace applications, shooting methods are privileged in general because of their
numerical accuracy.

BUT: difficult to make converge... (Newton method)

To improve performance and facilitate applicability, PMP may be combined with:

(1) continuation or homotopy methods

(2) geometric control

(3) dynamical systems theory

E. Trélat, Optimal control and applications to aerospace: some results and challenges, JOTA 2012.



Minimal time orbit transfer

Maximum Principle⇒ the extremals (x , p) are solutions of

ẋ =
∂H
∂p

, x(0) = x0, x(T ) = x1, ṗ = −
∂H
∂x

, p(0) = p0,

with an optimal control saturating the constraint: ‖u(t)‖ = Fmax .

−→ Shooting method: determine p0 s.t. x(T ; x0, p0) = x1

combined with a homotopy on Fmax 7→ p0(Fmax )

Heuristic on tf :

tf (Fmax ) · Fmax ' cste.

(the optimal trajectories are ”straight lines”,

Bonnard-Caillau 2009)

(Caillau, Gergaud, Haberkorn, Martinon, Noailles, ...)



Minimal time orbit transfer

Fmax = 6 Newton P0 = 11625 km, |e0| = 0.75, i0 = 7o , Pf = 42165 km
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Minimal time: 141.6 hours (' 6 days). First conjugate time: 522.07 hours.



Continuation method

Main tool used: continuation (homotopy) method
→ continuity of the optimal solution with respect to a
parameter λ

Theoretical framework (sensitivity analysis):

F (p0(λ), λ) = expx0,λ
(T , p0(λ))−x1 = 0

Local feasibility is ensured:

in the absence of conjugate points

Global feasibility is ensured:

in the absence of abnormal minimizers

↓ ↓

Numerical test of Jacobi fields
(Bonnard Caillau Trélat, COCV 2007)

True for generic systems having more
than 3 controls (Chitour Jean Trélat, JDG 2006)



Continuation method

Work with ArianeGroup (Max Cerf):

Minimal consumption transfer for Ariane launchers

→ automatic and instantaneous software (used since 2012).

Examples of continuations (on the dynamics, on the cost):

Parameters, like Fmax (maximal thrust), Isp , gravity, ...

Curvature of the Earth.

A third, a fourth body.

State constraints (hybrid systems), obstacles,
activation constraints.

State and control time-delays
(continuity of extremals: Bonalli Hérissé Trélat SICON 2019)

L1, L2 cost, ...
(piecewise-linear continuation

by prediction-correction)



Debris cleaning

A challenge (urgent!!)

Collecting space debris:

22000 debris of more than 10 cm
(cataloged)

500000 debris between 1 and 10 cm
(not cataloged)

millions of smaller debris

In low orbit

→ difficult mathematical problems combining optimal control,
continuous / discrete / combinatorial optimization

Max Cerf (JOTA 2013, JOTA 2015, RAIRO 2017)

Ongoing studies: ArianeGroup, CNES, ESA, NASA
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Debris cleaning

A challenge (urgent!!)

Collecting space debris:

22000 debris of more than 10 cm
(cataloged)

500000 debris between 1 and 10 cm
(not cataloged)

millions of smaller debris

The space garbage collectors

→ difficult mathematical problems combining optimal control,
continuous / discrete / combinatorial optimization

Max Cerf (JOTA 2013, JOTA 2015, RAIRO 2017)

Ongoing studies: ArianeGroup, CNES, ESA, NASA



Geometric control

Describe the (local or global) structure of optimal trajectories: optimal synthesis.

Example: for single-input control-affine systems

ẋ(t) = f0(x(t)) + u(t)f1(x(t)) |u(t)| 6 1

describe the structure of optimal controls: number of switchings,
order of switchings, singular arcs, boundary arcs.

Agrachev Bonnard Boscain Brockett Bullo Caillau Chyba Gauthier Hermes Jurdjevic Krener Kupka Lewis

Lobry Miele Piccoli Poggiolini Sachkov Sarychev Schättler Sussmann Sigalotti Stefani Trélat Zelikin...



Geometric control

Describe the (local or global) structure of optimal trajectories: optimal synthesis.

Example: for single-input control-affine systems

ẋ(t) = f0(x(t)) + u(t)f1(x(t)) |u(t)| 6 1

describe the structure of optimal controls: number of switchings,
order of switchings, singular arcs, boundary arcs.

Objective: “reduction” of the shooting problem

Example of application: atmospheric re-entry
(Bonnard Trélat 2005)



Geometric control

Describe the (local or global) structure of optimal trajectories: optimal synthesis.

Example: for single-input control-affine systems

ẋ(t) = f0(x(t)) + u(t)f1(x(t)) |u(t)| 6 1

describe the structure of optimal controls: number of switchings,
order of switchings, singular arcs, boundary arcs.

Possible problem with optimal chattering (Zelikin Borisov 1994):

(a) Chattering trajectory

singular part

chattering parts

(b) Chattering control

u

tt1 t2

x(t1)
x(t2)

occuring for:

missile guidance or interception
(Bonalli Hérissé Trélat 2018)

rocket attitude and trajectory
guidance (coupling attitude and
orbit dynamics) (Zhu Trélat Cerf 2016)

⇒ sub-optimal strategies, “averaging” the chattering part
or penalizing by a BV term in the cost (Caponigro Ghezzi Piccoli Trélat, TAC 2017)



Dynamical systems theory

Circular restricted three-body problem: dynamics of a body with negligible mass in the
gravitational field of two massive bodies (primaries) having circular orbits.

Newton equations of motion (rotating frame)

ẍ − 2ẏ =
∂Φ

∂x

ÿ + 2ẋ =
∂Φ

∂y

z̈ =
∂Φ

∂z

with

Φ(x , y , z) =
x2 + y2

2
+

1− µ
r1

+
µ

r2
+
µ(1− µ)

2

and
r1 =

√
(x + µ)2 + y2 + z2

r2 =
√

(x − 1 + µ)2 + y2 + z2

Bernelli-Zazzera, Bonnard, Celletti, Chenciner,

Farquhar, Gómez, Jorba, Koon, Laskar, Llibre, Lo,

Marsden, Masdemont, Mingotti, Ross, Szebehely,

Simó, Topputo, Trélat, ...



Lagrange points
Jacobi integral J = 2Φ− (ẋ2 + ẏ2 + ż2) → 5-dimensional energy manifold

Five equilibrium points:

3 collinear equilibrium points: L1, L2, L3 (unstable); (Euler)

2 equilateral equilibrium points: L4, L5 (stable). (Lagrange)

(see Szebehely 1967)

Extension of a Lyapunov theorem (Moser)⇒ same behavior than the linearized
system around Lagrange points.



Lagrange points
Jacobi integral J = 2Φ− (ẋ2 + ẏ2 + ż2) → 5-dimensional energy manifold

Five equilibrium points:

3 collinear equilibrium points: L1, L2, L3 (unstable); (Euler)

2 equilateral equilibrium points: L4, L5 (stable). (Lagrange)

(see Szebehely 1967)

Hill region

Extension of a Lyapunov theorem (Moser)⇒ same behavior than the linearized
system around Lagrange points.



Lagrange points in the Earth-Sun system

From Moser’s theorem:

L1, L2, L3: unstable.

L4, L5: stable.



Lagrange points in the Earth-Moon system

L1, L2, L3: unstable.

L4, L5: stable.



Examples of objects near Lagrange points

Points L4 and L5 (stable) in the
Sun-Jupiter system:
Trojan asteroids



Examples of objects near Lagrange points

Sun-Earth system:

Point L1: SOHO

Point L2: JWST Point L3: planet X...



Periodic orbits

From a Lyapunov-Poincaré theorem, there exist:

a 2-parameter family of periodic orbits around L1, L2, L3

a 3-parameter family of periodic orbits around L4, L5

Among them:

planar orbits called Lyapunov orbits;

3D orbits diffeomorphic to circles called halo orbits;

other 3D orbits with more complicated shape called
Lissajous orbits.

(Richardson 1980, Gomez Masdemont Simo 1998)



Eight-Lissajous orbits

Analytical approximation by Lindstedt-Poincaré method:

Collinear Lagrange points are of type saddle×center×center, with eigenvalues
(±λ,±iωp,±iωv ). Bounded solutions of the linearized system are written as

x(t) = Ax cos(ωp t + φ)

y(t) = κAx sin(ωp t + φ)

z(t) = Az sin(ωv t + ψ)

Nonlinearities change the eigenfrequencies of the solutions:

halo orbits are obtained by imposing ωp = ωv (Richardson, 1980)

quasi-periodic orbits are obtained whenever ωp/ωv ∈ IR \ Q
Lissajous orbits are obtained whenever ωp/ωv ∈ Q \ {1}

To get eight-shaped orbits, we impose ωp = 2ωv .

Third-order approximation obtained: used as initial guess in a shooting method,
combined with a continuation method (homotopy parameter: z-excursion, or energy)
⇒ compute families of periodic orbits.
(see also Gómez)



Examples of the use of halo orbits:

Orbit of SOHO around L1 Orbit of the probe Genesis (2001–2004)

(requires control by stabilization)



Invariant manifolds
Invariant manifolds (stable and unstable) of periodic orbits:
4-dimensional tubes (S3 × IR) inside the 5-dimensional energy manifold
(they play the role of separatrices)

→ invariant “tubes”, kinds of “gravity currents”⇒ low-cost trajectories

video
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Invariant manifolds
Invariant manifolds (stable and unstable) of periodic orbits:
4-dimensional tubes (S3 × IR) inside the 5-dimensional energy manifold
(they play the role of separatrices)

→ invariant “tubes”, kinds of “gravity currents”⇒ low-cost trajectories

Cartography⇒ design of low-cost interplanetary missions



Meanwhile...

Back to the Moon

⇒ lunar station: intermediate point for interplanetary
missions

Challenge: design low-cost trajectories to the Moon
and flying over all the surface of the Moon.

Mathematics used:
dynamical systems theory, differential geometry,
ergodic theory, control, scientific computing, optimization



Eight Lissajous orbits (PhDs of G. Archambeau 2008 and of Maxime Chupin 2016)

Periodic orbits around L1 et L2 (Earth-Moon system) having the shape of an eight:

⇒ they generate eight-shaped invariant manifolds:



Invariant manifolds of Eight Lissajous orbits
(PhDs of G. Archambeau 2008 and of Maxime Chupin 2016)

We observe numerically two nice properties:

1) Stability in long time of invariant manifolds

Invariant manifolds of an Eight Lissajous orbit:

→ global structure conserved

6=

Invariant manifolds of a halo orbit:

→ chaotic structure in long time

(numerical validation by computation of local Lyapunov exponents) Details



Invariant manifolds of Eight Lissajous orbits
(PhDs of G. Archambeau 2008 and of Maxime Chupin 2016)

We observe numerically two nice properties:

2) Flying over almost all the surface of the Moon

Invariant manifolds of an eight-shaped orbit around the Moon:

oscillations around the Moon

global stability in long time

minimal distance to the Moon:
1500 km.

(Archambeau Augros Trélat 2011,

Chupin Haberkorn Trélat 2017)



Invariant manifolds of Eight Lissajous orbits
(PhDs of G. Archambeau 2008 and of Maxime Chupin 2016)

Moon surface overflown by invariant manifolds:

Possibility of “cargo missions”

Missions using the properties of Eight Lissajous orbits.

Fly over almost all the surface of the Moon with low cost.

Compromise between lowt cost and long time.



Perspectives

Using gravity currents:
Planning low-cost ”cargo” missions to the Moon
Interplanetary missions: compromise between low cost and long transfer
time; gravitational effects (swing-by)

collecting space debris (urgent! too late?)

Optimal design:
optimal design of space vehicles
optimal placement problems (vehicle design, sensors)

Inverse problems: reconstructing a thermic, acoustic, electromagnetic
environment (coupling ODE’s / PDE’s)

Robustness problems

...



Φ(·, t): transition matrix along a reference trajectory x(·)
∆ > 0.

Local Lyapunov exponent

λ(t ,∆) =
1
∆

ln
(

maximal eigenvalue of
√

Φ(t + ∆, t)ΦT (t + ∆, t)
)

Simulations with ∆ = 1 day. Return



LLE of an eight-shaped Lissajous orbit:

LLE of an invariant manifold of an
eight-shaped Lissajous orbit:

LLE of an halo orbit:

LLE of an invariant manifold of an
halo orbit:

Return
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