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The orbit transfer problem with low

Controlled Kepler equation

o [F

§=-aqts+—
gl m

g € R8: position, F: thrust, m mass:

= —plF]

Maximal thrust constraint

|F| = (U8 + 3 + u3)"/? < Fnax ~ 0.1N

Orbit transfer

from an initial orbit to a given final orbit

Controllability properties studied in

@ B. Bonnard, J.-B. Caillau, E. Trélat, Geometric optimal control of elliptic Keplerian orbits, Discrete Contin.
Dyn. Syst. Ser. B 5, 4 (2005), 929-956.

Q B. Bonnard, L. Faubourg, E. Trélat, Mécanique céleste et contréle de systemes spatiaux, Math. & Appl. 51,
Springer Verlag (2006), X1V, 276 pages. JONNE
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The orbit transfer problem with low thrust

Orbite finale
Controned Kepler equation ’ fﬂ Orbite initiale
O ==0C—7 4 — . .
gl m )
Orbite finale
3 3 Orbite nitiale
g € R°: position, F: thrust, m mass: ol Py 1 ®
= —BIF]

Maximal thrust constraint

Orbit transfer

|F| = (U8 + 3 + u3)"/? < Fnax ~ 0.1N from an initial orbit to a given final orbit

Controllability properties studied in

@ B. Bonnard, J.-B. Caillau, E. Trélat, Geometric optimal control of elliptic Keplerian orbits, Discrete Contin.
Dyn. Syst. Ser. B 5, 4 (2005), 929-956.

& B. Bonnard, L. Faubourg, E. Trélat, Mécanique céleste et contréle de systemes spatiaux, Math. & Appl. 51,
Springer Verlag (2006), XIV, 276 pages.
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Modelling in terms of an optimal control problem

_ (a()
x(t) = (g(t))
u(t) = F(t)

Optimal control problem

x(t) = f(x(t), u(t)), x(t) e M, u(t) e Q

§
min C(T, u), where C(T,u):/ O (x(t), u(t)) dt
0
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Optimal control problem

x(t) = f(x(t),u(t)), x(0)=xo €M, u(t)e

X(T)=xq, minC(T,u)  with C(T,u) = /T (x(t), u(t)) ot
0

"\ SORBONNE

S UNIVERSITE
@ FsMmp




Optimal control problem

x(t) = f(x(t),u(t)), x(0)=x0c M, u(t)eQ

x(T) =xq, mnC(T,u)  with C(T,u) = /Tfo(x(t),u(t)) dt
0

o

End-point mapping

Ex.r:L2(0,7T1,Q9) — M
u —  x(T;xp,u)
e
w0t
-
Zo |
L
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Optimal control problem

(1) = f(x(1), u(t)), x(0) =x0c M, u(t)€Q

X(T) =xy, minC(T,u) with C(T,u) = /T O(x(1), u(t)) dt
0

o

End-point mapping

Ex

0

7:L=(0,7T,Q) — M
u —  x(T;xo,u)

N,

> Optimization problem

min  C(T,u)

Eyxy, T(U1)=x1
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Optimal control problem

(1) = f(x(1), u(t)), x(0) =x0c M, u(t)€Q

X(T) =xy, minC(T,u) with C(T,u) = /T O(x(1), u(t)) dt
0

Definition

| \

End-point mapping

Ex

0

7:L=(0,7T,Q) — M
u —  x(T;xo,u)

N,

Definition

A control u (or the trajectory xy(-)) is singular if dE; 1(u) is not surjective.
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Lagrange multipliers (or KKT in general)

A control u (or the trajectory xu(-)) is singular if dEx, r(u) is not surjective.

Optimization problem

min  C(T,u)
EXO,T(U):X1

Lagrange multipliers (if @ = R™)

(e, 4°) € (TgryM x R)\{(0,0)} | ¢.0Ex,r(u) = —°dCr(u)

\

In terms of the Lagrangian L7 (u, ¢, %) = ¥.Ey, 1(u) + %°Cr(u):
oLt 0
—(u, ¢, ¢°) =0
oy (L ¥)

- Normal multiplier:  ¢° #£0 (— % = —1).
- Abnormal multiplier: 1/;0 =0 (< usingular,if Q = R"). Q R
SITE
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Pontryagin Maximum Principle

Optimal control problem

x(t) = f(x(t), u(t)), x(0)=xge M, u(t)eQ

X(T) = x1, minC(T,u), where C(T,u) = /Tfo(x(t),u(t))dt
0

| \

Pontryagin Maximum Principle

Every minimizing trajectory x(-) is the projection of an extremal (x(-), p(-), P°, u(-))
solution of

H . H
kzg—p7 p:—g—x7 H(X7p7p°7U):gﬂggH(&mp(’w)

where H(X7p7 p07 U) = <p7 f(X7 U)> +p0f0(X7 U)'

A\

An extremal is said normal whenever p® # 0, and abnormal whenever p° = 0.
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Pontryagin Maximum Principle

H(x,p, p%, u) = (p, f(x, u)) + p°f°(x, u)

Pontryagin Maximum Principle

Every minimizing trajectory x(-) is the projection of an extremal (x(-), p(-), P°, u(-))

solution of
OH . oOH
‘et _ _ H 0 — H 0
o’ P~ " ox’ STyt ) = Wby 2P0 ]
(p(T), P°) = (,%°) up to (multiplicative) scaling. J

An extremal is said normal whenever p® + 0, and abnormal whenever p° = 0.

Singular trajectories coincide with projections of abnormal extremals s.t. % =0.
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Pontryagin Maximum Principle

H(x,p, p%, u) = (p, f(x, u)) + p°f°(x, u)

Pontryagin Maximum Principle

Every minimizing trajectory x(-) is the projection of an extremal (x(-), p(-), P°, u(-))

solution of
OH . OH
— = —— H(x, p, p°, u) = max H(x, ,O,v
o0 P L (x,p,p", u) = maxH(x, p,p, v)

4

u(t) = u(x(t), p(t))

(Iocally, e.g. under the strict Legendre assumption:

2
H
%(x, p, U) negative definite)
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Pontryagin Maximum Principle

H(x,p, p%, u) = (p, f(x, u)) + p°f°(x, u)

Pontryagin Maximum Principle

Every minimizing trajectory x(-) is the projection of an extremal (x(-), p(-), P°, u(-))

solution of
OH . OH
— = —— H(x, p, p°, u) = max H(x, ,O,v
o0 P L (x,p,p", u) = maxH(x, p,p, v)

K /
NY
u(t) = u(x(1), p(t))

(Iocally, e.g. under the strict Legendre assumption:

2
H
%(x, p, U) negative definite)
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Shooting method:

Extremals z = (x, p) are solutions of

Exponential mapping

x=p), xO=xn,  (K(T)=x)
Jo} eprO(t,po) = x(t, X0, Po)

. OH
= —— O =
p 2 % P) P(0) = po (extremal flow)

where the optimal control maximizes the Hamiltonian.
v

— Shooting method: determine pg s.t. | exp, (f,P0) = X1




Shooting method:

Extremals z = (x, p) are solutions of

. OH Exponential mapping
Xzai(xyp» ) (X(T):X1)

P CXPXO(I’PO) :X(t7X07p0)
=~ (x,p)
P="2x %P (extremal flow)

where the optimal control maximizes the Hamiltonian.
.

— Shooting method: determine pg s.t. | exp, (f,P0) = X1

- PMP = first-order necessary condition for optimality.

- Necessary / sufficient (local) second-order conditions:
conjugate points.

— test if exp, (2, -) is an immersion at po.

O sy ,TE,
(fold singularity) @ FsMP




There exist other numerical approaches to solve optimal control problems:

@ direct methods: discretize the whole problem
=> finite-dimensional nonlinear optimization problem with constraints

@ Hamilton-Jacobi methods.
The shooting method is called an indirect method.

In aerospace applications, shooting methods are privileged in general because of their
numerical accuracy.

BUT: difficult to make converge... (Newton method)

To improve performance and facilitate applicability, PMP may be combined with:
(1) continuation or homotopy methods
(2) geometric control
(3) dynamical systems theory

@ E. Trélat, Optimal control and applications to aerospace: some results and challenges, JOTA 2012.

"\ SORBONNE

S UHIVERSITE
@ Fsmp




Minimal time orbit transfer

JiL

Maximum Principle = the extremals (x, p) are solutions of

. OH
% =

oH _OH
=%’

7X(T):X17 p: a» )

with an optimal control saturating the constraint: ||u(t)|| = Fmax-

— Shooting method: determine py s.t. X(T; Xo, Po) = Xi

combined with a homotopy on Fmax — po(Fmax)

e Fraz ty Exécution  Fiaz ty Exécution
Heuristic on {: 60  14.800 1 14 606.13 33
24 34.716 5 1 85331 44
12 70.249 3 0.7 12145 64
t¢(Fmax) - Fmax =~ cste. 9 93272 7 05 16994 234
6 14122 6 0.3  2870.2 223
3 285.77 22 0.2 4265.7 226
(the optimal trajectories are "straight lines”, 9 495.61 22

Bonnard-Caillau 2009)

(Caillau, Gergaud, Haberkorn, Martinon, Noailles, ...) Q SORBONNE
u RSITE
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Minimal time orbit transfer

Fmax = 6 Newton Po = 11625 km, |eg| = 0.75, iy = 7°, Py = 42165 km

T
I

arceh dot(s )

-40
-60 -40 -20 0 20 40 = 5 =
a; q,
Minimal time: 141.6 hours (=~ 6 days). First conjugate time: 522.07 hours.
Q SORBONNE
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Continuation method

A oA f'dhnormal
Main tool used: continuation (homotopy) method
| — continuity of the optimal solution with respect to a
pd parameter A
- } Theoretical framework (sensitivity analysis):
.
.copjugule
point

F(o(0),2) = expyg (T, po(A)—x = 0 |

Local feasibility is ensured: Global feasibility is ensured:
in the absence of conjugate points in the absence of abnormal minimizers

Numerical test of Jacobi fields J True for generic systems having more J

(Bonnard Caillau Trélat, COCV 2007) than 3 controls (Chitour Jean Trélat, JDG 2006)

RBONNE
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Continuation method

Work with ArianeGroup (Max Cerf):
Minimal consumption transfer for Ariane launchers

— automatic and instantaneous software (used since 2012).

Examples of continuations (on the dynamics, on the cost):

Parameters, like Fnax (maximal thrust), /sp, gravity, ...
Curvature of the Earth.
A third, a fourth body.

State constraints (hybrid systems), obstacles,
activation constraints.

@ State and control time-delays

P ) A LB & ST _ E
(continuity of extremals: Bonalli Hérissé Trélat SICON 2019) T ————r— 3 H,N.,‘,‘f.ff‘f.",fﬁ

L oene '
_'Jll @ [, [2cost, ... by prediction-correction) ) FSMP




Debris cleaning

A challenge (urgent!!)

Collecting space debris:

@ 22000 debris of more than 10 cm
(cataloged)

@ 500000 debris between 1 and 10 cm
(not cataloged)

@ millions of smaller debris

In low orbit

— difficult mathematical problems combining optimal control,
continuous / discrete / combinatorial optimization

Max Cerf (JOTA 2013, JOTA 2015, RAIRO 2017)

SORBONNE

SQ UNIVERSITE

Ongoing studies: ArianeGroup, CNES, ESA, NASA o
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Debris cleaning

A challenge (urgent!!)

Collecting space debris:

@ 22000 debris of more than 10 cm
(cataloged)

@ 500000 debris between 1 and 10 cm
(not cataloged)

@ millions of smaller debris

Around the geostationary orbit

— difficult mathematical problems combining optimal control,
continuous / discrete / combinatorial optimization

Max Cerf (JOTA 2013, JOTA 2015, RAIRO 2017)

Ongoing studies: ArianeGroup, CNES, ESA, NASA



Debris cleaning

A challenge (urgent!!)

Collecting space debris:
@ 22000 debris of more than 10 cm
(cataloged)

@ 500000 debris between 1 and 10 cm
(not cataloged)

@ millions of smaller debris

The spéce garbage collectors

— difficult mathematical problems combining optimal control,
continuous / discrete / combinatorial optimization

Max Cerf (JOTA 2013, JOTA 2015, RAIRO 2017)
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Geometric control

Describe the (local or global) structure of optimal trajectories: optimal synthesis. J

X

Example: for single-input control-affine systems

x(t) = h(x(1)) + uf(x(1))  [u(®)] <1

describe the structure of optimal controls: number of switchings,
order of switchings, singular arcs, boundary arcs.

e U=l
....... switching curves
S~
/ ~ N
. ’ ~
- 0 N
Vertical I
€ singular line Yo \ v
T+
= 7
4 .
S 27
o - time
~ - H
- maximal
o T+ RN
s s
D s
/ Zse1
| Horizontal

singular line

= S s
.I l AgracheviBionnard Boscain Brockett Bullo Caillau Chyba Gauthier Hermes Jurdjevic Krener Kupka Lewis & FSMP
-ll Lobry Miele Piccoli Poggiolini Sachkov Sarychev Schéttler Sussmann Sigalotti Stefani Trélat Zelikin... B




Geometric control

Describe the (local or global) structure of optimal trajectories: optimal synthesis. )

X

Example: for single-input control-affine systems

x(t) = h(x(1)) + uf(x(1))  [u(®)] <1

describe the structure of optimal controls: number of switchings,
order of switchings, singular arcs, boundary arcs.

normal
acceleration thermal
i e
dynamic —* fu R ‘\ e flux s N .
e — / A Objective: “reduction” of the shooting problem
/L/ \
Ju= +1 “
/ u=+1| L .
4 | Example of application: atmospheric re-entry
/ (Bonnard Trélat 2005)
) SORBONNE
u=-1 S UNIVERSITE




Geometric control

Describe the (local or global) structure of optimal trajectories: optimal synthesis. J

Example: for single-input control-affine systems

x(t) = fh(x(1)) + uf(x(1)  |u(®)] <1

describe the structure of optimal controls: number of switchings,
order of switchings, singular arcs, boundary arcs.

Possible problem with optimal chattering (zelikin Borisov 1994):

u

occuring for:

smggarpart £ A @ missile guidance or interception
(Bonalli Hérissé Trélat 2018)
4 & ¢ @ rocket attitude and trajectory

chatbering parts guldance (cpupllng attlj[ude and
orbit dynamics) (zhu Trélat Cerf 2016)
(a) Chattering trajectory (b) Chattering control SORBONNE
S CHIVERSITE
= sub-optimal strategies, “averaging” the chattering part @ FSMP

'I-”-l' or penalizing by a BV term in the cost (Caponigro Ghezzi Piccoli Trélat, TAC 2017)



Dynamical systems theory

Circular restricted three-body problem: dynamics of a body with negligible mass in the
gravitational field of two massive bodies (primaries) having circular orbits.

Newton equations of motion (rotating frame)

. . 0%
_ oy =
X 4 ox
.. . 0%
2X = —
Y+ ay
. 00
zZ=—
0z
with
X4y 1—p p p(l—p)
d(x,y,2) = —t — 4+ —
( ¥ ) 2 l r +f2+ 2
and

=y (x+p?+y>+2°

=X 1+ p)2 +y2 4 2

y % @f‘ugal force
5 Earth’s attraction
P e 4

Sun’s attrégtion

,—/.'/ X
Lk
my

Bernelli-Zazzera, Bonnard, Celletti, Chenciner,
Farquhar, Gémez, Jorba, Koon, Laskar, Llibre, Lo,
Marsden, Masdemont, Mingotti, Ross, Szebehely,
Simo, Topputo, Trélat, ...
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Lagrange points

Jacobi integral J = 2 — (x® + y? + 2?) — 5-dimensional energy manifold

Five equilibrium points:
@ 3 collinear equilibrium points: Ly, Lo, L3 (unstable); (Euler)
@ 2 equilateral equilibrium points: L4, L5 (stable). (Lagrange)
(see Szebehely 1967)

Extension of a Lyapunov theorem (Moser)
1/]l}  system around Lagrange points.



Lagrange points

Jacobi integral J = 2 — (x® + y? + 2?) — 5-dimensional energy manifold

Five equilibrium points:
@ 3 collinear equilibrium points: Ly, Lo, L3 (unstable); (Euler)
@ 2 equilateral equilibrium points: L4, L5 (stable). (Lagrange)
(see Szebehely 1967)

P.

;@?

Case 1 : E<E, Case2: E\<E<E, Case 3 : Ey<E<E;

Ly

Hill region

P

n®  mp n®  mp

Case 4: Ey<E<E, Case 5: E>E,

"\ SORBONNE
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Extension of a Lyapunov theorem (Moser) = same behavior than the linearized
@ Fsmp

I/} system around Lagrange points.




Lagrange points in the Earth-Sun system

From Moser’s theorem:

@ Ly, Ly, Ly unstable. | [
@ Ly, Ls: stable. J




Lagrange points in the Earth-Moon system

o L1 y L2, L3: unstable.
@ Ly, Ls: stable. J




Examples of objects near Lagrange points

"Trojans’

Points L4 and L5 (stable) in the

Sun-Jupiter system:
Trojan asteroids

® Jupiter




Examples of objects near Lagrange points

Sun-Earth system: | g T Sole

Point L1: SOHO

The
WEIRDEST
7, visitor
| the Earth
has ever
|

Point L2: JWST Point L3: planet X...

JiL



Periodic orbits

From a Lyapunov-Poincaré theorem, there exist:
@ a 2-parameter family of periodic orbits around L, Lp, L3 N
@ a 3-parameter family of periodic orbits around L4, Ls * A

Among them: T ‘
@ planar orbits called Lyapunov orbits;
@ 3D orbits diffeomorphic to circles called halo orbits;

@ other 3D orbits with more complicated shape called : b
Lissajous orbits.

(Richardson 1980, Gomez Masdemont Simo 1998)
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Eight-Lissajous orbits

Analytical approximation by Lindstedt-Poincaré method:

Collinear Lagrange points are of type saddle x centerxcenter, with eigenvalues
(£, £iwp, £iwy). Bounded solutions of the linearized system are written as

x(t) = Axcos(wpt + ¢)
y(t) = kAx sin(wpt + ¢)
z(t) = Azsin(wyt + )

Nonlinearities change the eigenfrequencies of the solutions:
@ halo orbits are obtained by imposing wp = wy (Richardson, 1980)
@ quasi-periodic orbits are obtained whenever wp/wy € R\ Q
@ Lissajous orbits are obtained whenever wp/wy € Q \ {1}

To get eight-shaped orbits, we impose wp = 2wy.

Third-order approximation obtained: used as initial guess in a shooting method,

combined with a continuation method (homotopy parameter: z-excursion, or energy)

= compute families of periodic orbits. ™ SORBONNE

(see also Gémez) S e
®
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Examples of the use of halo orbits:

Orbit of OHO around L1

(requires control by stabilization)

Orbit of the probe Genesis (2001—-2004)




Invariant manifolds

Invariant manifolds (stable and unstable) of periodic orbits:
4-dimensional tubes (S® x R) inside the 5-dimensional energy manifold
(they play the role of separatrices)

— invariant “tubes”, kinds of “gravity currents” = low-cost trajectories

\ O\ N /) P

\ ~/ L
~\__héterocil orbit

"\ SORBONNE
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Invariant manifolds

Invariant manifolds (stable and unstable) of periodic orbits:
4-dimensional tubes (S® x R) inside the 5-dimensional energy manifold
(they play the role of separatrices)

— invariant “tubes”, kinds of “gravity currents” = low-cost trajectories

LUNARL, LUNARL,

EARTH = fg:%m"g HALO ORBIT
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Invariant manifolds

Invariant manifolds (stable and unstable) of periodic orbits:
4-dimensional tubes (S® x R) inside the 5-dimensional energy manifold
(they play the role of separatrices)

— invariant “tubes”, kinds of “gravity currents” = low-cost trajectories
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Invariant manifolds

Invariant manifolds (stable and unstable) of periodic orbits:
4-dimensional tubes (S® x R) inside the 5-dimensional energy manifold
(they play the role of separatrices)

— invariant “tubes”, kinds of “gravity currents” = low-cost trajectories

Sun, Mercury, Venus Sun-Earth L, , L,

High Earth Orbit
Earth-Moon L,, L,

g
Low Earth Orbit

Earih's Neighborhood
Accessible Planetary Surfaces

- Astercids,
QOuter Planets

and beyond

Mars

Q SORBONNE
S :

Cartography =- design of low-cost interplanetary missions




SMERGE -
LES AVENTURES DE

TINTIN

OBJECTIF LUNE_

Back to the Moon

= lunar station: intermediate point for interplanetary
missions

Challenge: design low-cost trajectories to the Moon
and flying over all the surface of the Moon.

Mathematics used:

dynamical systems theory, differential geometry,
ergodic theory, control, scientific computing, optimization

"\ SORBONNE
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Eight Lissajous orbits 2008 and of

Periodic orbits around L et L, (Earth-Moon system) having the shape of an eight:

L. SORBONNE
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Invariant manifolds of Eight Lissajous orbits

(PhDs of 2008 and of

We observe numerically two nice properties:

1) Stability in long time of invariant manifolds )
Invariant manifolds of an Eight Lissajous orbit: Invariant manifolds of a halo orbit:
08
06 / 06
g Unstabl Ol
o4 / maniflds
7 02
Z 02 / \
F ~ e = O
&8 A )
g 0 .:1 \é&/ -02
‘2;*0-2 \ e 04
04 Stable -06}
) manifolds
-06 % 15
-06 -04 -02 0 0.2 0.4 0.6 0.8 1
X (normalized unit)
— global structure conserved — chaotic structure in long timg ONIVERSITE

-l,ll!- (numerical validation by computation of local Lyapunov exponents) ~SMP




Invariant manifolds of Eight Lissajous orbits

(PhDs of 2008 and of

We observe numerically two nice properties:

2) Flying over almost all the surface of the Moon )

Invariant manifolds of an eight-shaped orbit around the Moon:

@ oscillations around the Moon

@ global stability in long time

@ minimal distance to the Moon:
1500 km.

(Archambeau Augros Trélat 2011,
Chupin Haberkorn Trélat 2017)

R
i —__ Gable
2,08 —~— “~ manitold
4

L0y "\ SORBONNE
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Invariant manifolds of Eight Lissajous orbits

(PhDs of 2008 and of

Moon surface overflown by invariant manifolds:

Possibility of “cargo missions”
@ Missions using the properties of Eight Lissajous orbits.
@ Fly over almost all the surface of the Moon with low cost.
@ Compromise between lowt cost and long time.

"\ SORBONNE
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@ Using gravity currents:

@ Planning low-cost "cargo” missions to the Moon
@ Interplanetary missions: compromise between low cost and long transfer
time; gravitational effects (swing-by)

@ collecting space debris (urgent! too late?)
@ Optimal design:
@ optimal design of space vehicles

@ optimal placement problems (vehicle design, sensors)

@ |Inverse problems: reconstructing a thermic, acoustic, electromagnetic
environment (coupling ODE’s / PDE’s)

@ Robustness problems

SORBONNE

S UNIVERSITE
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(-, t): transition matrix along a reference trajectory x(-)
A>0.

Local Lyapunov exponent

1
At,A) = K In (maximal eigenvalue of \/CD(I + A, HPT(t+ A, t))

Simulations with A = 1 day.

§ g
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LLE of an eight-shaped Lissajous orbit: LLE of an halo orbit:

~
— --'/". S |
LLE of an invariant manifold of an LLE of an invariant manifold of an
eight-shaped Lissajous orbit: halo orbit:
i g S
L ~

A SORBONNE
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