

Blind galaxy survey images **Deconvolution with Shape Constraint**

Jean-Luc Starck

http://jstarck.cosmostat.org

Collaborators:

Fadi Nammour

Morgan Schmitz

Fred Nole

- Part I: Introduction to the Blind Deconvolution Problem

- Part II: Point Spread Fonction (PSF) Field Recovery
- Part III: Shape Measurements & Deconvolution

Weak Lensing

Euclid ESA Space Mission

Euclid Mission

- Medium-class mission in ESA's Cosmic Vision program
- 6 year survey, launch in Q4 2022

→probe the properties and nature of *dark energy*, *dark matter*, *gravity* and distinguish their effects decisively

2022

- **15,000 deg2** survey area
- over 1.5 billion galaxies
- redshifts out to z = 2

Gains in space:

Stable data: homogeneous data set over the whole sky
→Systematics are small, understood and controlled
→Homogeneity : Selection function perfectly controlled

Detection + Classification stars/galaxies

Galaxies

Motivation for spatial observations

Space Variant PSF

- PSF Modeling
 - Undersampling
 - Space dependency
 - Wavelength dependency
 - Time dependency

Galaxies are convolved by an **asymetric** PSF + Images are **undersampled**

Shape measurements must be deconvolved

Methods: Moments (KSB), Shapelets, Forward-Fitting, Bayesian estimation, etc

$$\tilde{y}_{k,ij} = \sum_{l} \sum_{m} h(l - N(i - i_k), m - N(j - j_k)) x_{lm}$$

where h is Lanczos interpolation kernel

$$h(x) = \begin{cases} 1 & \text{if } x = 0\\ sinc(x)sinc(\frac{x}{4}) & \text{if } 0 < |x| < 4\\ 0 & \text{else} \end{cases}$$

Regularization

$$J(X) = \sum_{k=1}^{p} \sum_{i=1}^{L} \sum_{j=1}^{L} \frac{(y_{k,ij} - f_k \tilde{y}_{k,ij})^2}{\sigma_k^2} + \frac{\left\|X - X^{(0)}\right\|_{l_2}^2}{\sigma}$$

- 1. Forward Modelling approach (FM) leaded by Lance Miller
 - Model the exit pupil using pre-defined Zemax modes.
 - Fit to all stars.
 - PRO: No other existing method can achieve the very strong requirement on the PSF.
 - CON: But hard to validate since i) the simulations are done with the same model, and ii) the model may change (vibrations at launch).
- 2. Need a data driven approach
 - Validate the FM solution on real data.
 - All surveys ((KIDS, CFHTLenS, DES) have used the data driven approach.
 - HST: TinyTim HST modelling software (Krist 1995) for the Hubble Space Telescope not as good as a data driven approach (Jee et al, PASP, 2007; Hoffmann and Anderson, Instrument Science Report ACS 2017-8, 2017).
 - What does not exist can be invented.
 - Combination of both approaches could lead to the optimal solution.

-Introduction to the Blind Deconvolution Problem

- Euclid PSF Field Measurement

- Monochromatic PSF: Matrix Factorization + Laplacian Graph + Sparsity
 - F. M. Mboula, J.-L. Starck, S. Ronayette, K. Okumura, and J. Amiaux, Super-resolution method using sparse regularization for point-spread function recovery. A&A, 575, id.A86, 2015.
 - F. Ngole, J.-L Starck, et al, "Constraint matrix factorization for space variant PSFs field restoration", Inverse Problems, 2016.
 - M.A. Schmitz, J.-L. Starck and F.M. Ngolè, "Euclid Point Spread Function field recovery through interpolation on a Graph Laplacian", submitted, 2018.
- Polychromatic PSF and Optimal Transport
 - F.M. Ngolè Mboula, and J.-L. Starck, "PSFs field learning based on Optimal Transport distances", SIAM Journal on Imaging Sciences, 10, 3, pp. 979-1004, 2017. DOI: 10.1137/16M1093677.
 - M. A. Schmitz et a; "Wasserstein Dictionary Learning:Optimal Transport-based unsupervised representation learning", SIAM Journal on Imaging Sciences, 11, 2018.

-Shape Measurements & Deconvolution

$$Y = HX + N$$

$$\min_{X} ||Y - HX||^2 + \mathcal{C}(X)$$

Physical Knowledge on X (ex: Gaussian Random Field, etc). ==> Gaussian smoothing, Wiener reconstruction, etc

==> Log normal distribution prior

X properties are understood through a representative data set. ==> Machine Learning

Knowledge on the histogram of X in pixel space or in another one. ==> Positivity constraint, sparsity constraint, etc.

Joint estimations of super-resolved PSFs at stars positions

Low rank constraint: Constraint the PSFs to be a linear combination of the *eigenvectors* PSFs:

$$\mathbf{PSF}^{(k)} = x_k = \sum_{i=1}^{\prime} a_{i,k} s_i$$

Eigen PSF

- Positivity constraint (Xk > 0)
- Smoothness constraint on each si $\sum \| \Phi s_i \|_1$
- Proximity constraint on the $a_{i,k}$ coefficients: the closer are the stars, the more the coefficients of linear combination are similar.

 $a_{i,k}$

 $u_i \in \mathcal{U}_{\text{stars}}$

 $s_i = \text{ith } vector \text{ (2D image)}$

= coefficient corresponding to contribution of the i-th vector to the k-th PSF.

 a_{i1}

PSF Laplacian Graph

Laplacian Graph P = D - J, where D is the degree matrix and J is the adjacent matrix of the graph

 $P^t P = V \Lambda V^t$

Degree matrix = diagonal matrix with information about the degree of each vertex—that is, the number of edges attached to each vertex.

Adjacent matrix A: element Aij is one when there is an edge from vertex i to vertex j, and zero when there is no edge.

Cea

Matrix Factorization

http://www.cosmostat.org/software/rca/ STAT

Matrix Factorization

http://www.cosmostat.org/software/rca/ STAT

Some The PSF Interpolation Challenge

Numerical Experiments

Data: 500 Euclid-like PSFs (Zemax), field observed with different SNRs

These PSFs account for mirrors polishing imperfections, manufacturing and alignments errors and thermal stability of the telescope.

With undersampling (upsampling factor of 2)

Numerical Experiments

Stars SNR

 M.A. Schmitz, J.-L. Starck and F.M. Ngolè, "Euclid Point Spread Function field recovery through interpolation on a Graph Laplacian", submitted, 2018.

Multiplicative bias

SF Wavelength Dependency

Optimal Transport

The Monge-Kantorovich problem

Fig: Graphical representation of mass transportation problem: find the optimal way of transporting a heap of sand α into the shape of a heap of sand β , knowing the cost of moving grains of sand to and from any position.

G. Monge, "Mémoire sur la théorie des déblais et des remblais", 1781

Optimal Transport & PSF

in presence of shifts and changing of shape

ATTRACTIVE TOOL, BUT COSTLY TO COMPUTE: $O(N^3)$ ==> fixed using a regularisation (Sinkhorn iterations)

 M. A. Schmitz et a; "Wasserstein Dictionary Learning:Optimal Transport-based unsupervised representation learning", SIAM Journal on Imaging Sciences, 11, 2018.

Back to the PSF estimation problem:

$$oldsymbol{Y} = oldsymbol{M} \sum_v^m eta_v oldsymbol{H}_v + ext{noise}$$

How to break the degeneracy?

Hypothesis: monochromatic PSFs of a intermediary wavelength are Wasserstein barycenters of the extremes.

0

Hypothesis: monochromatic PSFs of a intermediary wavelength are Wasserstein barycenters of the extremes.

Experiment results:

AM

- Part I: Weak Lensing and Euclid
- Part II: Point Spread Fonction (PSF) Field Recovery
- Part III: Shape Measurements & Deconvolution

S COSMOSTAT

Sandard deconvolution framework:

Sandard deconvolution framework:

Object Oriented Deconvolution

For each galaxy, we use the PSF related to its center pixel:

$$\underset{\mathbf{X}}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{Y} - \mathcal{H}(\mathbf{X})\|_{2}^{2} + \lambda \|\Phi^{t}\mathbf{X}\|_{p} \quad \text{s.t.} \quad \mathbf{X} \ge 0$$

$$\min_{\alpha} \|Y - H\Phi\alpha\|^2 + \lambda \|\alpha\|_p^p$$

- ➡ Wavelet Denoising introduces a bias.
- Fitting a galaxy model directly on significant wavelet coefficients introduces a bias.

Need to find a way to preserve the ellipticity during the restoration process

Measuring Galaxies shapes

The complex ellipticity of a galaxy image uses quadrupole moments

X : Galaxy

$$e = \gamma + e_g \qquad \text{and} \qquad < e > \simeq \gamma$$

From Ellipticity to Moments

 $\gamma = \gamma_1 + i\gamma_2 = \frac{\mu_{2,0} - \mu_{0,2} + 2\mu_{1,1}}{\mu_{2,0} + \mu_{0,2}}$ is an unbiased estimator of "ellipticity" (Schneidez & Seitz 1994)

Does not work in presense of noise! Need to apply a window function.

- "HSM" (or adaptive moments, Hirata & Seljak 2003; Mandelbaum et al 2004): match the gaussian window to the object
- Handling the PSF: Kaiser, Squires & Broadhurst 1995 (KSB).

$$\gamma = \gamma_1 + i\gamma_2 = |\gamma|e^{i2\Phi}$$

$$\tilde{\gamma} = (1+m)\gamma + c$$

Multiplicative bias Additive bias

$$m = m_1 + im_2 = |m|e^{i2\Phi_m}$$
$$c = c_1 + ic_2 = |c|e^{i2\Phi_c}$$

Requirements for the ESA Euclid Space Telescope

$$\sigma_m < 2 \times 10^{-3}$$
$$\sigma_c < 5 \times 10^{-4}$$

- ➡ Fast Calculation.
- → Level of bias (multiplicative and additive bias).
- → Capacity to measure the bias (number of simulations, depth, resolution, etc).
- Robustness to calibration errors (PSF measurement errors, detectors effects background subtraction, etc).

$$\sigma(m) = \frac{m(X_0)}{\sqrt{N_{X,Cal}}} \left[\sum_{X} \left(\frac{\partial \ln m}{\partial \ln X} \right)^2 \right]^{1/2}$$

X = image properties

 $X \in \mathcal{M}_n(\mathbb{R})$

$$e_1(X) = \frac{\mu_{2,0}(X) - \mu_{0,2}(X)}{\mu_{2,0}(X) + \mu_{0,2}(X)} \quad , \quad e_2(X) = \frac{2\mu_{1,1}}{\mu_{2,0}(X) + \mu_{0,2}(X)}$$

$$\mu_{s,t}(X) = \sum_{i,j} X[i,j](i-i_c)^s (j-j_c)^t$$

$$e_1(X) = \frac{\langle X, U_5 \rangle \langle X, U_3 \rangle - \langle X, U_1 \rangle^2 + \langle X, U_2 \rangle^2}{\langle X, U_5 \rangle \langle X, U_3 \rangle - \langle X, U_1 \rangle^2 - \langle X, U_2 \rangle^2}$$
$$e_2(X) = \frac{2(\langle X, U_6 \rangle \langle X, U_3 \rangle - \langle X, U_1 \rangle \langle X, U_2 \rangle)}{\langle X, U_5 \rangle \langle X, U_3 \rangle - \langle X, U_1 \rangle^2 - \langle X, U_2 \rangle^2}$$

Matrices of indices combination

$$U_{1} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 2 & 2 & \dots & 2 \\ \vdots & \vdots & \ddots & \vdots \\ n & n & \dots & n \end{pmatrix} U_{2} = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & \dots & n \end{pmatrix} U_{3} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix}$$
$$U_{4} = \begin{pmatrix} 1^{2} + 1^{2} & 1^{2} + 2^{2} & \dots & 1^{2} + n^{2} \\ 2^{2} + 1^{2} & 2^{2} + 2^{2} & \dots & 2^{2} + n^{2} \\ \vdots & \vdots & \ddots & \vdots \\ n^{2} + 1^{2} & n^{2} + 2^{2} & \dots & n^{2} + n^{2} \end{pmatrix}$$
$$U_{5} = \begin{pmatrix} 1^{2} - 1^{2} & 1^{2} - 2^{2} & \dots & 1^{2} - n^{2} \\ 2^{2} - 1^{2} & 2^{2} - 2^{2} & \dots & 2^{2} - n^{2} \\ \vdots & \vdots & \ddots & \vdots \\ n^{2} - 1^{2} & n^{2} - 2^{2} & \dots & n^{2} - n^{2} \end{pmatrix} U_{6} = \begin{pmatrix} 1 & 2 & \dots & n \\ 2 & 4 & \dots & 2n \\ \vdots & \vdots & \ddots & \vdots \\ n & 2n & \dots & n^{2} \end{pmatrix}$$

$$e_1(X) = \frac{\langle X, U_5 \rangle \langle X, U_3 \rangle - \langle X, U_1 \rangle^2 + \langle X, U_2 \rangle^2}{\langle X, U_5 \rangle \langle X, U_3 \rangle - \langle X, U_1 \rangle^2 - \langle X, U_2 \rangle^2} \quad , \quad e_2(X) = \frac{2(\langle X, U_6 \rangle \langle X, U_3 \rangle - \langle X, U_1 \rangle \langle X, U_2 \rangle)}{\langle X, U_5 \rangle \langle X, U_3 \rangle - \langle X, U_1 \rangle^2 - \langle X, U_2 \rangle^2}$$

Idea : Conserving the inner products is equivalent to conserving the ellipticity parameters.

Advantage : These inner products are linear functions of the image we want to restore so it is mathematically easier to work with.

<u>Question :</u> How to formulate a constraint using these inner products? What would be the additional contribution of this constraint regarding the data fidelity term?

The Shape Contraint :

$$M(X) = \sum_{i=1}^{6} \mu_i \left\langle X * H - Y, U_i \right\rangle^2$$

The constraint looks just like a data fidelity term expressed in the moments space.

Idea :

• Remove noise as much as possible inside the constraint in a inverse pb.

Formulation with a Gaussian window :

$$M(X) = \sum_{i=1}^{6} \mu_i \left\langle W \odot (X * H - Y), U_i \right\rangle^2$$

Rather than trying to fit a Gaussian window to the data, why not trying all windows in all directions and all scales ?

This can be done easily using a Curvelet like Decomposition.

Contrast Enhancement

Formulation with shearlets :

$$M(X) = \frac{1}{6} \sum_{i=1}^{6} \frac{1}{N} \sum_{j=1}^{N} \mu_{ij} \langle \Psi_j(X * H - Y), U_i \rangle^2$$

- Number of bands
- Ψ_j : Curvelet/Shearlet transform (Kutyniok & Labate, 2012)

<u>Aleternative form :</u>

$$M(X) = \frac{1}{6} \sum_{i=1}^{6} \frac{1}{N} \sum_{j=1}^{N} \mu_{ij} \left\langle X * H - Y, \Psi_j^*(U_i) \right\rangle^2$$

• Ψ_{j}^{*} : adjoint of the shearlet transform operator

Advantage : $\Psi_j^*(U_i)$ is a constant.

$$L(X) = \frac{1}{2\sigma^2} \|X * H - Y\|_{\mathrm{F}}^2 + \frac{\gamma}{2\sigma^2} M(X) + \|\lambda_{\kappa-\sigma_{\mathrm{MAD}}} \odot \Phi X\|_0$$

- $Y \in \mathcal{M}_n(\mathbb{R})$: galaxy observation
- $H \in \mathcal{M}_n(\mathbb{R})$: Point Spread Function
- σ : noise standard deviation in Y
- γ : trade-off parameter between the data fidelity term and the moments constraint
- $\lambda_{\kappa-\sigma_{\mathrm{MAD}}}$: weighting tensor
- Φ : starlet transform operator
- ${\scriptstyle \bullet}M({\scriptstyle .})$: moments constraint

Gaussian window v/s shearlets

Ellipticity error for different SNR levels

••• sparsity+moments

100 GALSIM galaxies + Optical GALSIM PSF

Ellipticity of reconstructions versus ellipticity of ground truth (SNR = 20)

Solution : GALSIM galaxies + MeerKat PSF

1024 GALSIM galaxies + Radio PSF (MeerKat, CASA)

Conclusions

✓ Weak Lensing and Shape Measurements

- Serious mathematical challenges to well control systematics.
- Need the best methods.

✓ Euclid PSF: RCA is new method which uses all available PSFs to derive the PSF field.

→ Use Optimal Transport, Graph Laplacian and Sparsity.

Moments Constraint:

- A new approach to preserve the ellipticity information during the restoration process.
- Shape constraints using shearlets outperform the standard Gaussian windowing.

✓ Perspectives:

- Radio: Is this shape constraint reconstruction method competitive with galaxy model fitting in Fourier space ?
- Optical: Compare the constraint denoising method to the Gaussian windowing.

