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Magnetic fusion: physics and models

Structure preserving discretisation

Fast solvers for Poisson and implicit MHD

Software framework based on geometric concepts
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Magnetic fusion

I Magnetic confinement (ITER)

I Inertial confinement, laser: LMJ, NIF
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Max-Planck Institute for plasma physicsOne Institute - two sides

31.01.2019 MPG Research Area VII Discussion 3

Two sites: 
Greifswald (staff ~450)

Stellarator Wendelstein 7-X

Garching (staff ~700) 

Tokamak ASDEX Upgrade 
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Tokamaks and Stellarators

Wendelstein 2-A,  
Deutsches Museum, München 

Wendelstein 7-X,  Greifswald 

Both confinement types at IPP: Tokamak and Stellarator 

Tokamak                                                    Stellarator 

ASDEX Upgrade, Garching 
Wendelstein 7-X,  Greifswald 
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Magnetic field lines in Tokamaks
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A hierarchy of models

I The non-relativistic Vlasov-Maxwell system:

∂fs
∂t

+ v · ∇xfs +
qs
ms

(E + v × B) · ∇vfs = 0.

∂E

∂t
− curl B = −J =

∑

s

qs

∫
fsvdv,

∂B

∂t
+ curl E = 0,

div E = ρ =
∑

s

qs

∫
fsdv, div B = 0.

I For low frequency electrostatic problems Maxwell can be replaced by
Poisson: Vlasov-Poisson model

I For slowly varying large magnetic field Vlasov can be replaced by
gyrokinetic model either electromagnetic or electrostatic.

I Taking the velocity moments, we get the Braginskii model analogous
to Euler for non neutral fluids.

I Further assumptions lead to one fluid MHD model.
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The magnetic geometry

I Magnetic field lines stay on concentric topological tori (called flux
surfaces)

I Behaviour of plasma very different along and across the magnetic
field. Transport and diffusion orders of magnitude larger on flux
surfaces.

I Numerical accuracy benefits a lot from aligning mesh on flux surface

I The tokamak wall does not correspond to a flux surface. Embedded
boundary needed if complete alignment to flux surface is desired.

Guido Huysmans Marseille, 28/10/2009

Isoparametric representation poloidal plane (R,Z)

polar flux surface aligned
flux surface aligned 

with X-point

• Allows accurate alignment of finite elements with equilibrium flux 
surface geometry:

– better representation of radial/angular anisotropy of MHD modes

• Grid construction on arbitrary irregular grids is an open problem

• JOREK grids:

Gyrokinetics: further approximations

I Remember: now working in new phase-space coordinates (x, v) ‘æ (X,VÎ, µ,�)

I � is the fast variable: its dynamics is decoupled from other phase-space variables

I No collisions, one particle species (ions), no magnetic fluctuations, quasi-neutrality,
adiabatic electron response:
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Different meshing options

I Locally refined cartesian mesh. Neither aligned to flux surfaces nor
to Tokamak wall

I Align on flux surfaces only in confined part (closed flux surfaces)
I Mesh based on multiple patches, with B-spline mapping (Tokamesh)

I Generated numerically from plasma equilibrium.
I B-spline mapping on each patch.
I C 1 continuity enforced except at O-point and X-point.

First wall

Last closed 
magne�c surface

Computa�onal mesh
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C 1 smooth polar splines

The B-splines mapping of our central patch
F(s, θ) = (x(s, θ), y(s, θ)) collapses to a sin-
gle point (x0, y0) for s = 0 (C k continuity
lost at this point)

Guiding-center model

I 2D transport equation coupled to Poisson’s equation:
I

ˆfl

ˆt
≠ Ey ˆfl

ˆx
+ Ex ˆfl

ˆy
= 0

≠�„ = fl , with E = ≠Ò„

I Conserved quantities (total mass and energy):

M(t) =
⁄

dx dy fl(t, x , y) , E(t) =
⁄

dx dy |E(t, x , y)|2

I Solve on complex 2D poloidal domains, including the center:

F‘æ

Edoardo Zoni, Yaman Güçlü, Eric Sonnendrücker NumKin 2018 7 / 30

I Following Toshniwal, Speleers, Hiemstra, Hughes (2017), desired
continuity can be restored by linear combinations of the first rows of
control points around pole.

I We construct a triangle with vertices (T0,T1,T2) related to control
points near pole. Its barycentric coordinates λi define the three new
C 1 basis functions

Ñl(s, θ) = λl(x0, y0)Ns
0(s) +




nθ−1∑

j=0

λl(c
x
1,j , c

y
1,j)N

θ
j (θ)


 Ns

1(s), l = 0, 1, 2.

I Implemented by Zoni, Güçlü at O-point. X-point being developed.
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Importance of structure preservation in simulations

I For ODEs preservation of symplectic structure essential for long
time simulations. Exact preservation of approximate energy enables
efficient integrators over very long times.

I In many cases keeping structure of continuous equations at discrete
level more important than order of accuracy.

I Avoid spurious eigenmodes in Maxwell’s equations.
I Avoid spurious perpendicular diffusion in parallel transport.
I Stability issues when not preserving ∇ · B = 0 or ∇ · E = ρ in

Maxwell or MHD

I Big success of structure preserving methods
I L-shaped domain for Maxwell’s equations
I Non simply connected domains, i.e. annulus, torus. Non trivial space

of harmonic functions.
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Hamiltonian systems

I Canonical Hamiltonian structure preserved by symplectic integrators

dq

dt
= ∇pH,

dp

dt
= −∇qH with z = (q,p) :

dz

dt
= J∇zH

where J =

(
0N IN
−IN 0

)

I Non canonical Hamiltonian structure with Poisson matrix J(z)

dz

dt
= J(z)∇zH, Poisson bracket: {F ,G} = (∇zF )J(z)∇zG

I J can be degenerate then functionals C such that J(z)∇zC = 0 are
Casimirs which are conserved by the dynamics, e.g. div B = 0 for
Maxwell or MHD.

I Conservation of Casimirs essential for long time simulations

I Also for infinite dimensional systems
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Structure preservation for dynamical systems

I For ODEs preservation of symplectic structure well known:
Symplectic integrators. Exact preservation of approximate energy
enables efficient integrators over very long times.

I For long time simulations keeping structure of continuous equations
at discrete level more important than order of accuracy.

14 I. Examples and Numerical Experiments

Table 2.2. Data for the outer solar system

planet mass initial position initial velocity

−3.5023653 0.00565429
Jupiter m1 = 0.000954786104043 −3.8169847 −0.00412490

−1.5507963 −0.00190589

9.0755314 0.00168318
Saturn m2 = 0.000285583733151 −3.0458353 0.00483525

−1.6483708 0.00192462

8.3101420 0.00354178
Uranus m3 = 0.0000437273164546 −16.2901086 0.00137102

−7.2521278 0.00055029

11.4707666 0.00288930
Neptune m4 = 0.0000517759138449 −25.7294829 0.00114527

−10.8169456 0.00039677

−15.5387357 0.00276725
Pluto m5 = 1/ (1.3 · 108) −25.2225594 −0.00170702

−3.1902382 −0.00136504

J S
U

N

P

explicit Euler, h = 10

J S
U

N

P

implicit Euler, h = 10

J S
U

N

P

symplectic Euler, h = 100

J S
U

N

P

Störmer–Verlet, h = 200

Fig. 2.4. Solutions of the outer solar system

To this system we apply the explicit and implicit Euler methods with step size
h = 10, the symplectic Euler and the Störmer–Verlet method with much larger
step sizes h = 100 and h = 200, repectively, all over a time period of 200 000
days. The numerical solution (see Fig. 2.4) behaves similarly to that for the Kepler
problem. With the explicit Euler method the planets have increasing energy, they
spiral outwards, Jupiter approaches Saturn which leaves the plane of the two-body
motion. With the implicit Euler method the planets (first Jupiter and then Saturn)

For a bracket of the form (51) to be a good Poisson bracket
it must have the following properties for all functions f,
g, h:

• antisymmetry

ff ; gg ¼ "fg; fg () Jab ¼ "Jba: (52)

• Jacobi identity

ff ; fg; hggþ cyc $ 0() JadJbc
;d þ cyc $ 0; (53)

where cyc means cyclic permutation over fgh in the first
expression and over abc in the second.

This noncanonical generalization of Hamiltonian mechanics
is reasonable because of an old theorem due to Darboux,
which states that if det J 6¼ 0 then there exists a coordinate
change that (at least locally) brings J into the canonical form
Jc of (26). Recalling that J transforms as a rank 2 contravar-
iant tensor, this canonizing transformation !z $ z would satisfy

Jl! @!za

@zl

@!zb

@z!
¼ Jab

c : (54)

However, the more interesting case is the one studied by
Sophus Lie where det J ¼ 0. This case is degenerate and
gives rise to Casimir invariants (Lie’s distinguished func-
tions), which are constants of motion for any possible
Hamiltonian that satisfies

f ;Cf g ¼ 0 8 f () Jab @C

@zb
¼ 0 8 a: (55)

Because of the degeneracy, there is no coordinate transfor-
mation to canonical form; however, a theorem known to Lie
(see e.g., Refs. 69 and 70) which we call the Lie-Darboux
theorem states that there is a transformation to the following
degenerate canonical form:

Jdc ¼
0N IN 0

"IN 0N 0

0 0 0M"2N

0

B@

1

CA: (56)

Instigated in a major way by the noncanonical Poisson
brackets for plasma models, manifolds with the addition of
degenerate Poisson bracket structure, known as Poisson
manifolds, have now been widely studied (see e.g., Ref. 71).
The local structure of a Poisson manifold is depicted in
Fig. 5, where it is seen that the phase space is foliated by the
level sets of the Casimir invariants. For an M-dimensional
system, there exist M " 2N Casimir invariants, and an orbit
that initially lies on such a surface defined by the level sets
of the initial Casimir invariants remains there. These surfa-
ces, called symplectic leaves, have dimension 2N and the
phase space is generically foliated by them.

Lie-Poisson brackets are a special form of noncanonical
Poisson brackets that typically appear in matter models in
terms of an Eulerian variable description. For finite-
dimensional Lie-Poisson Hamiltonian systems, the Poisson
matrix J is linear in the dynamical variable and has the form
Jab ¼ cab

c zc, where the numbers cab
c are the structure con-

stants of some Lie algebra.
Noncanonical Hamiltonian field theories have Poisson

brackets of the form

FIG. 4. Variational symplectic integra-
tor vs. RK4 for producing an accurate
banana orbit. (Courtesy of Qin, see
Ref. 60.) (left) Banana orbit using stan-
dard RK4 with exact orbit and (right)
that obtained using a variational sym-
plectic method. Orbits were obtained
for ITER parameters with the integra-
tion time being 104 banana periods.
Since the ITER burn time is more
than 106 banana periods, numerical
fidelity over very long times is
required. Modified with permission
from Qin et al., Phys. Plasmas 16,
042510 (2009). Copyright 2009 AIP
Publishing LLC.

FIG. 5. Depiction of a Poisson manifold foliated by symplectic leaves of
constant Casimir invariants.

055502-9 P. J. Morrison Phys. Plasmas 24, 055502 (2017)

Hairer, Lubich, Wanner, ”Geometric numerical integration” Hong Qin et al., PoP 16
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Metriplectic structure

I Introduced by P.J. Morrison (1980s) for fluids and plasmas.

I Dynamical systems arising in physics often combine a symplectic
and a dissipative part

I Introducing a hamiltonian H which is conserved and a free energy
(or entropy) S which is dissipated,

dF
dt

= {F ,H}+ (F ,S) ≡ dU

dt
= J(U)

δH
δU
− K(U)

δS
δU

with J a Poisson operator and K a symmetric semi-positive operator:
exact energy preservation and H-theorem (production of entropy)

I Reproduce this structure automatically at discrete level for robust
and stable discretisation

I Expression of these elements used for automatic code generation.

I e.g. for kinetic plasma model.
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Geometric description of physics

I Geometric objects provide a more accurate description of physics
and also a natural path for discretisation.

1. Potentials are naturally evaluated at points
2. The action of a force is measured through its circulation along a path
3. Current is the flux through a surface of current density
4. Charge is integral over volume of charge density

I Should be discretized accordingly
The Geometric Basis of Numerical Methods 25

Manifold

Cell complex

0-cells 1-cells 2-cells 3-cells

Fig. 6 Subdivision of the domain (manifold) in points (0-cells), line segments (1-cells), faces (2-
cells) and volumes (3-cells)

!.3/;i will refer to oriented volumes, all of the same type of orientation (either
inner-oriented or outer-oriented). Together these building blocks will constitute a
so-called cell complex, but in computational science we usually refer to such a
collection as a grid or a mesh, see Fig. 6. The main difference is that a grid or mesh
is usually not oriented whereas a cell complex is.

A collection of oriented k-dimensional cells will be called a k-chain, c.k/, and is
usually written as a formal sum

c.k/ D
#kX

iD1
mi!.k/;i ;

where #k denotes the number of k-cells in the complex and mi is 0, when the cell
!.k/;i is not part of the chain, is equal to 1 when the cell !.k/;i is in the chain and
mi D !1 when !.k/;i is in the chain but the orientation is opposite to its default
orientation.

In the examples given above (mass, flux and velocity) we assigned values to
geometric objects. Now we are going to assign values to the k-cells. Let ! .k/;j be
the operator which assigns the value 1 to the k-cell !.k/;j and 0 to all the other
k-cells. This will be denoted by

h! .k/;j ; !.k/;i i D ı
j
i D

8
<

:

1 if i D j

0 if i ¤ j

:

If we want to assign a different value to a k-cell, say the value cj , then we apply
cj!

.k/;j to the k-cells. We can collect all these assignments into a formal sum and
write

I Related to discretization of differential 0-,1-,2- and 3-forms.
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Integral form of Maxwell’s equations

Integral equations Differential equations

∮

∂S
H · d` =

∫

S

(
J +

∂D

∂t

)
· dS curl H = J + ∂D

∂t∮

∂S
E · d` =

∫

S

(
−∂B

∂t

)
· dS curl E = −∂B

∂t∮

∂V
D · dS =

∫

V
ρdV div D = ρ

∮

∂V
B · dS = 0 div B = 0

I D and E as well as H and B are related by constitutive equations
dependent on material properties.

I Exact discrete version of integral form can be obtained provided
degrees of freedom for H and E are edge integrals and degrees of
freedom for D and B (and J) are face integrals.
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Exact relations between degrees of freedom

I Denote by respectively Vi , Fi , Ei , xi , the volumes (cells), faces,
edges and points of the mesh.

I Degrees of freedom are (e.g. for B and E)

Fi (B) =

∫

Fi

B · dS, Ei (E) =

∫

Ei
E · d`, . . .

I Then integral form of Maxwell yields exact relations involving each
face and its 4 boundary edges

Fi (J) +
∂Fi (D)

∂t
= Ei ,1(H) + Ei ,2(H)− Ei ,3(H)− Ei ,4(H) (1)

∂Fi (B)

∂t
= −Ei ,1(E)− Ei ,2(E) + Ei ,3(E) + Ei ,4(E) (2)

I Similar exact relations for divergence constraints.

I This depends only on mesh connectivity and remains true if mesh is
smoothly deformed (without tearing).
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Reconstruction of fields from degrees of freedom

I Discrete constitutive equations still needed to couple Ampere and
Faraday.

I Need to evaluate fields at arbitrary particle positions.

I The fields associated to different degrees of freedom (point values,
edge integrals, face integrals, volume integrals) need to be
reconstructed in a compatible manner.

I Related to geometric discretisation of various PDEs:
I Dual meshes: Mimetic Finite Differences, Compatible Operator

Discretisation, Discrete Duality Finite Volumes. Intuitive metric
association between primal and dual mesh.

I Dual operators: Finite Element formulation, mathematically more
elaborate: Primal operators (strong form) on primal complex, dual
operators (weak form) on dual complex.

I Charge conserving PIC algorithms (Villasenor-Bunemann,
Esirkepov,..) can also be understood in this framework.
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Finite Element Exterior Calculus (FEEC)

I Mathematical framework for Finite Element solvers is provided
FEEC introduced by Arnold, Falk and Winther. Buffa et al.
introduced complex for B-splines.

I Continuous and discrete complexes for splines are the following

grad curl div
H1(Ω) −→ H(curl,Ω) −→ H(div,Ω) −→ L2(Ω)
↓ Π0 ↓ Π1 ↓ Π2 ↓ Π3

grad curl div
V0 −→ V1 −→ V2 −→ V3

= = = =

Sp,p,p −→



Sp−1,p,p

Sp,p−1,p

Sp,p,p−1


 −→



Sp,p−1,p−1

Sp−1,p,p−1

Sp−1,p−1,p


 −→ Sp−1,p−1,p−1

I Commuting diagram is an essential piece

Π1gradψ = gradΠ0ψ, Π2curlA = curlΠ1A, Π3divA = divΠ2A.
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The commuting projection operators

I Commuting diagram by interpolating right degrees of freedom:
I Elements of V0 are characterized by point values
I Elements of V1 are characterized by edge integrals
I Elements of V2 are characterized by surface integrals
I Elements of V3 are characterized by volume integrals

I Π0ψ = ψh ∈ V0 defined by ψh(x) =
∑

i c
0
i Λ0

i (x), with c0
i solution of

the interpolation problem ψh(xj) = ψ(xj) ∀j
I Π1A = Ah ∈ V1 defined by Ah(x) =

∑
i c

1
i Λ1

i (x), with c1
i solution of

∫

Ej
Ah(x) · d` =

∫

Ej
A(x) · d` ∀j

I Π2B = Bh ∈ V2 defined by Bh(x) =
∑

i c
2
i Λ2

i (x), with c2
i solution of

∫

Fj

Bh(x) · dS =

∫

Fj

B(x) · dS ∀j

I Π3ϕ = ϕh ∈ V3 defined by ϕh(x) =
∑

i c
3
i Λ3

i (x), with c3
i solution of∫

Vj ϕh(x)dx =
∫
Vj ϕ(x)dx ∀j
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Particle mesh coupling

I Charge and current computed on mesh using smoothed particles.
For some given smoothing function S , typically a B-spline (at least
quadratic to reduce aliasing and variance)

fN(t, x, v) =
∑

k

wkS(x− xk(t))δ(v − vk(t)).

I From this expression, we can compute the charge and current
densities

ρN =
∑

k

wkqkS(x− xk(t)),

JN =
∑

k

wkqkvkS(x− xk(t)).

I Discrete values defined by projecting associated charge and current

Jh = Π2(JN), ρh = Π3(ρN).
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Semi-discrete continuity equation

I A direct calculation shows that

∂ρN
∂t

= −
∑

k

wkqkvk · ∇S(x− xk(t)) = − div JN .

I Applying Π3 we get

Π3
∂ρN
∂t

=
∂ρh
∂t

= −Π3 div JN = − div Π2JN = − div Jh,

using the commutation property. Hence

∂ρh
∂t

+ div Jh = 0.

I Then also
∂ div Eh

∂t
= − 1

ε0
div Jh =

1

ε0

∂ρh
∂t

,

I Gauss is a consequence of Ampere and initial value as in continuous
case.
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Finite Element discretisation

I One equation Faraday or Ampere discretized strongly, with no
approximation. The other weakly with integration by parts:

I Strong Ampere - Weak Faraday. Smooth JN needed

− ∂Dh

∂t
+ c2 curl Hh =

1

ε0

∑

p

qpΠ2[vpS(x− xk(t))] =
1

ε0
Jh,

d

dt

∫

Ω

Hh · Chdx +

∫

Ω

Dh · curl Chdx = 0 ∀Ch ∈ V1.

I Weak Ampere - Strong Faraday

−
∫

Ω

∂Eh

∂t
· Fhdx + c2

∫

Ω

Bh · curl Fhdx =
1

ε0

∫
Jh · Fhdx, ∀Fh ∈ V1,

∂Bh

∂t
+ curl Eh = 0

No smoothing needed because of integral on Jh, but smoothing or
filtering can be added.
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GEMPIC framework

I Discretization of fields: Compatible finite elements (discrete de
Rham complex), e.g. splines, Fourier, Lagrange:

I Strong Faraday E edge elements (1-form), B face elements (2-form)
I Strong Ampere B edge elements (1-form), E face elements (2-form)

I Discretization of f with (smoothed) particles
f (t, x , v) =

∑
wpS(x − xp(t))δ(v − vp(t)),

S can be δ for strong Faraday.

I Plug discretizations for f , E and B into Lagrangian to get
formulation of equations based on a semi-discrete Hamiltonian and
Poisson bracket.

I Total momentum conservation lost except for Fourier basis due to
differing FE spaces.

I Time discretizations: Hamiltonian splitting or Discrete Gradient

Paper on strong Faraday without smoothing:

M. Kraus, K. Kormann, P.J. Morrison, ES - JPP 17
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Strong Faraday discretisation

I For Particle In Cell discretisation, the most adapted is the Action
proposed by Low (1958) with a Lagrangian formulation for the
particles.

I The field Lagrangian, splitting between particle and field
Lagrangian, using standard non canonical coordinates, reads:

Lf [X ,V ,A, φ] =
∑

s

∫
fs(z0, t0)Ls(X(z0, t0; t), Ẋ(z0, t0; t))dz0

+
ε0

2

∫
|∇φ+

∂A

∂t
|2dx− 1

2µ0

∫
|∇ × A|2dx.

I Distribution function f expressed at initial time. Particle phase
space Lagrangian for species s, Ls , is of the form p · q̇− H:

Ls(x, v, ẋ, t) = (mv + qA) · ẋ− (
1

2
mv2 + qφ).
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Semi-discrete Vlasov-Maxwell equations

I Discretization obtained by plugging expressions for fh, φh,Ah into
Lagrangian: Eh = ∂tAh −∇φh, Bh = curl Ah.

I Dynamical variables: particles positions and velocities, spline
coefficients of Eh and Bh: u = (X,V, e,b)>.

I Discrete Hamiltonian:

Ĥ = 1
2 V>MpV + 1

2 e>M1e + 1
2 b>M2b.

I Semi-discrete equations of motion expressed with discrete unknowns

Ẋ = V ẋ = v,

V̇ = M−1
p Mq

(
�1(X)e + B(X,b)V

)
v̇ =

qs
ms

(E + v × B) ,

ė = M−1
1

(
C>M2b(t)− �1(X)>MqV

) ∂E

∂t
= curl B− J,

ḃ = −Ce(t)
∂B

∂t
= − curl E.
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Semi-discrete Hamiltonian structure preserved for
Vlasov-Maxwell

I Semi-discrete equations of motion have following structure:

u̇ = J (u)∇uĤ(u).

I Poisson matrix:

J (u) =


0 M−1

p 0 0
−M−1

p M−1
p MqB(X, b)M−1

p M−1
p Mq�1(X)M−1

1 0
0 −M−1

1 �1(X)>MqM−1
p 0 M−1

1 C>

0 0 −CM−1
1 0

 .

I Defines semi-discrete Poisson bracket:

{F ,G} = ∇F>J (u)∇G ⇒ d(F (u))

dt
= ∇F>u̇ = {F (u),H(u)}.

I Some properties:
I Semi-discrete Poisson bracket satisfies Jacobi identity.
I CG = 0, DC = 0.
I Discrete Gauss’ law: G>M1e = −�0(X)>Mq1Np .
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Time-discretization of Poisson structure

I Poisson form du
dt = J (u)∇uH generalizes symplectic structure

I Thm(Ge, Marsden) Only exact flow preserves both symplectic
structure and energy. ⇒ need to choose.

I 2 options:

1. Hamiltonian splitting preserves Poisson structure including Casimirs
(div B = 0, weak Gauss), but only modified energy.

2. Energy conserving discretisations can be derived based on Discrete
Gradient or Average Vector Field methods.
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Weibel instability: Conservation properties.

I PIC (B-Splines): Maximum error in the total energy, Gauss’ law,
and total momentum until time 500 for simulation with various
integrators (Strang splitting ∆t = 0.05).

Propagator total energy Gauss law

Hamiltonian 6.9E-7 2.1E-13

Boris 1.3E-9 4.8E-4

AVF 2.1E-16 1.1E-6

DiscGrad 5.9E-11 2.2E-15

I PIF (Strong Faraday)

PIF for Vlasov–Maxwell (1d2v)

I Hamiltonian Splitting

H = Hp|{z}
kinetic

+ HE|{z}
electric

+ HB|{z}
magnetic

I For trivial exact integration (Kraus 2016)

Hp = Hp,1 + Hp,2 + Hp,3

electromagnetic energy energy error momentum error
Jakob Ameres - jakob.ameres@tum.de 24/27
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Compressible MHD model

I The compressible ideal MHD model reads

∂ρ

∂t
+ div(ρu) = 0,

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p − (curl B)× B = 0,

∂B

∂t
− curl(u× B) = 0,

∂p

∂t
+ div(pu) + (γ − 1)p div u = 0

I Used in particular to study instabilities in edge of Tokamak

I Very small viscous and resistive terms need to be added.

I Implicit or semi-implicit discretisations are needed.

I JOREK code based on C 1 Bezier splines. New prototype based on
FEEC with B-Splines.
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Fast solvers for implicit MHD

A. Ratnani, M. Mazza in collaboration with C. Manni, H. Speleers
(Rome) and S. Serra Capizzano (Como)

I Models: Reduced MHD, 2D incompressible MHD, full MHD

I Newton - Krylov solver. Time stepping algorithms: splitting,
jacobian free.

I Optimal Multigrid for B-Splines for Elliptic problems

I Optimal preconditioning for the (B-Splines) mass matrices (GLT)

I Development of new GLT preconditioner for H(curl)- problems
needed for MHD.

I GLT is a new theory that allows the study and designing of
preconditioners for spline Finite Elements.

I Spectral properties are described through a notion of the symbol
I Associated B-Splines symbols have been derived and studied
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Generalized Locally Toeplitz (GLT) theory

Poisson equation

I The stiffness matrix is ill-conditioned in the low frequencies.
Classical problem solved by MG preconditioning.

I The stiffness matrix is also ill-conditioned in the high frequencies:
Problem solvable by GLT theory through a post-smoother.

I the post-smoother is based on a Kronecker product

Elliptic H(curl)-problems

I As for Poisson equation, the matrix presents two kinds of
pathologies in low and high frequencies

I Non trivial kernel (infinite in the continuous level)
=⇒ an Auxiliary Spaces Method is being studied to derive an
optimal solver with respect to the physical parameters.
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Fast solvers and Preconditioning

I Tolerance is set to 10−12

I maximum number of V-Cycles : 1000

Mesh
Degree

Method
1 2 3 4 5 6

8× 8× 8
11 43 200 − − − MG
2 3 3 5 8 18 MG+GLT

16× 16× 16
16 26 193 − − − MG
4 6 6 7 10 15 MG+GLT

32× 32× 32
15 15 144 474 − − MG
7 8 9 12 18 25 MG+GLT

Table: Number of required cycles until convergence for 3D Poisson solver on a
cube.
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Software environment for Geometric Numerical
Methods and more

I Develop a simple to use, robust and modular framework for going
from a physics model first for rapid prototyping and if desired to an
efficient HPC code for production.

I Automatically generate stable and consistent discrete model from
continuous model

I Enforce main physics properties, e.g.
I Conservation of energy
I Increase of entropy

I Simple enough language based on geometric concepts from physics
which are automatically transformed into a numerical model by the
code for rapidly investigating new physics

I Framework for transforming quickly prototype code into HPC code
that runs efficiently on modern supercomputers.
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Issues

I Find a framework to guarantee stability and consistency with physics
model.

I Domain specific language for translating geometric physics model
into code. Open Source for quality control and reproducibility.

I Complexity and fast changes in modern computing architectures
makes hand tuning very cumbersome and time consuming.

2 

Power Constraints Lead to New HPC Architectures 

Clock cycle remains fixed (end of Dennard scaling). More FP capacity comes from more 
cores (there is plenty of real estate on the chip). 
Relative size of the memory decreases. Memory architecture becomes more complex, in 
ways that can’t be hidden from the applications developer. 
Huge potential upside: lots more flops. 

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity, 
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

15 

Exascale7Node7Schema6c7Model7
The Programming Model is a Reflection of 
the Underlying Abstract Machine Model 

•  Equal cost SMP/PRAM model 
–  No notion of non-local access 
–  int [nx][ny][nz]; 

•  Cluster: Distributed memory model 
–  CSP: Communicating Sequential Processes 
–  No unified memory 
–  int [localNX][localNY][localNZ]; 

•  2-level (CTA in Martha Kim Taxonomy) 
–  Candidate Type Architecture (CTA) 
–  MPI+X model (for all practical purposes) 

•  Whats Next? 

SMP 

P P P P P 

P P P P P 

MPI Distributed Memory 

Martha(Kim,(Columbia(U.(Tech(Report(“Abstract(Machine(Models(and(Scaling(Theory”(
h<p://www.cs.columbia.edu/~martha/courses/4130/au13/pdfs/scalingItheory.pdf!
(

SMP(

P P P

SMP(

P P P

SMP(

P P P

SMP(

P P P

I Relevant other projects: FEniCS, Firedrake: Finite Element Method
for PDEs
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Domain specific language (DSL)

I Develop specific language based on Python describing geometric
structure of physics at the continuous level

I Automatically transformed into a numerical model by the code for
rapidly investigating new physics

I DSL should also enable (partly) automatic generation of portable
optimized code for modern computer architectures.

I Can be embedded into existing exascale framework, e.g. WARP-X
based on AMReX for PIC simulations.

I Software environment developed by Ahmed Ratnani and
collaborators (Y. Güçlu, S. Hadjout, J. Lakhlili, ...) based on Python
and sympy: psydac, sympde, symdec, GeLaTo, pyccel.
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Pyccel

I Pyccel, a Fortran static compiler for Python for scientific
High-Performance Computing

I Pyccel competes well with the existing solutions

I allows to use mpi4py, blas/lapack, fft, etc

I converts a Python code into a symbolic expression/tree

I arithmetic/memory complexity

Ongoing and Future work

I Shared memory parallelism (OpenMP, OpenACC)

I Task Based Parallelism
I Additional decorators

I Cache optimization
I Explicit memory management
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Pyccel

1 2 4 8 16 32 64 128

100

101

102

103

104

Number of Nodes

D
u
ra
ti
on

of
on

e
ti
m
e
st
ep

[s
]

Pure Python

Pure Fortran

Pyccel with Gfortran

Pyccel with Intel

Pyccel with
manual improvement

with gfortran

1

132 processes per node
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Accelerating Python codes: Benchmarks
Rosen-Der

Tool Python Cython Numba Pythran Pyccel-gcc Pyccel-intel
Timing (µs) 229.85 2.06 4.73 2.07 0.98 0.64
Speedup − × 111.43 × 48.57 × 110.98 × 232.94 × 353.94

Black-Scholes

Tool Python Cython Numba Pythran Pyccel-gcc Pyccel-intel

Timing (µs) 180.44 309.67 3.0 1.1 1.04 6.56 10−2

Speedup − × 0.58 × 60.06 × 163.8 × 172.35 × 2748.71

Laplace

Tool Python Cython Numba Pythran Pyccel-gcc Pyccel-intel

Timing (µs) 57.71 7.98 6.46 10−2 6.28 10−2 8.02 10−2 2.81 10−2

Speedup − × 7.22 × 892.02 × 918.56 × 719.32 × 2048.65

Growcut

Tool Python Cython Numba Pythran Pyccel-gcc Pyccel-intel

Timing (s) 54.39 1.02 10−1 4.67 10−1 8.57 10−2 6.27 10−2 6.54 10−2

Speedup − × 532.37 × 116.45 × 634.32 × 866.49 × 831.7
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Automatic code generation

I Use Pyccel AST to represent the assembly procedure over one
element and the parallel loop over the elements

I Starting from a Bilinear/ Linear form or an Integral expression
I Generate the associated Python code
I Convert Python to Fortran using Pyccel
I Parallel Matrix-Vector multiplication using MPI Cart and

subcommunicators + Lapack
I Matrix-free approach
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Conclusions and future steps

I Magnetic Fusion Simulations need advanced numerical and
mathematical models.

I Structure preserving methods starting from Yee and Arakawa and
now extended to Splines-FEEC have proven very successful and need
to be developed further.

I Progress in aligned IGA grid generation. Still open issues, in
particular C 1 continuity at X-point and tokamak wall.

I Fast multigrid solvers needed for elliptic and implicit problems. First
steps with GLT very promising. Need to be extended to full problem
and physics codes.
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