



# Isogeometric analysis for plasma physics applications

#### Eric Sonnendrücker

Max Planck Institute for Plasma Physics and Technical University of Munich

Rome, March, 20, 2019

Magnetic fusion: physics and models

Structure preserving discretisation

Fast solvers for Poisson and implicit MHD

Software framework based on geometric concepts

# Magnetic fusion







- Magnetic confinement (ITER)
- Inertial confinement, laser: LMJ, NIF



#### Max-Planck Institute for plasma physics



#### **Tokamaks and Stellarators**

Tokamak





#### Wendelstein 7-X, Greifswald



# Magnetic field lines in Tokamaks



## A hierarchy of models

The non-relativistic Vlasov-Maxwell system:

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_s + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_s = 0.$$

$$\frac{\partial \mathbf{E}}{\partial t} - \operatorname{curl} \mathbf{B} = -\mathbf{J} = \sum_{s} q_{s} \int f_{s} \mathbf{v} d\mathbf{v}, \qquad \frac{\partial \mathbf{B}}{\partial t} + \operatorname{curl} \mathbf{E} = 0,$$
  
div  $\mathbf{E} = \rho = \sum_{s} q_{s} \int f_{s} d\mathbf{v}, \qquad \text{div } \mathbf{B} = 0.$ 

- For low frequency electrostatic problems Maxwell can be replaced by Poisson: Vlasov-Poisson model
- For slowly varying large magnetic field Vlasov can be replaced by gyrokinetic model either electromagnetic or electrostatic.
- Taking the velocity moments, we get the Braginskii model analogous to Euler for non neutral fluids.
- Further assumptions lead to one fluid MHD model.

#### The magnetic geometry

- Magnetic field lines stay on concentric topological tori (called flux surfaces)
- Behaviour of plasma very different along and across the magnetic field. Transport and diffusion orders of magnitude larger on flux surfaces.
- Numerical accuracy benefits a lot from aligning mesh on flux surface
- The tokamak wall does not correspond to a flux surface. Embedded boundary needed if complete alignment to flux surface is desired.



#### Different meshing options

- Locally refined cartesian mesh. Neither aligned to flux surfaces nor to Tokamak wall
- Align on flux surfaces only in confined part (closed flux surfaces)
- Mesh based on multiple patches, with B-spline mapping (Tokamesh)
  - Generated numerically from plasma equilibrium.
  - B-spline mapping on each patch.
  - C<sup>1</sup> continuity enforced except at O-point and X-point.



# $C^1$ smooth polar splines

The B-splines mapping of our central patch  $\mathbf{F}(s,\theta) = (x(s,\theta), y(s,\theta))$  collapses to a single point  $(x_0, y_0)$  for s = 0 ( $C^k$  continuity lost at this point)



- Following Toshniwal, Speleers, Hiemstra, Hughes (2017), desired continuity can be restored by linear combinations of the first rows of control points around pole.
- We construct a triangle with vertices (T<sub>0</sub>, T<sub>1</sub>, T<sub>2</sub>) related to control points near pole. Its barycentric coordinates λ<sub>i</sub> define the three new C<sup>1</sup> basis functions

$$\tilde{\mathsf{V}}_{l}(s,\theta) = \lambda_{l}(x_{0},y_{0})\mathsf{N}_{0}^{s}(s) + \left(\sum_{j=0}^{n_{\theta}-1}\lambda_{l}(c_{1,j}^{x},c_{1,j}^{y})\mathsf{N}_{j}^{\theta}(\theta)\right) \mathsf{N}_{1}^{s}(s), \ l = 0, 1, 2.$$

Implemented by Zoni, Güçlü at O-point. X-point being developed.

#### Importance of structure preservation in simulations

- For ODEs preservation of symplectic structure essential for long time simulations. Exact preservation of approximate energy enables efficient integrators over very long times.
- In many cases keeping structure of continuous equations at discrete level more important than order of accuracy.
  - Avoid spurious eigenmodes in Maxwell's equations.
  - Avoid spurious perpendicular diffusion in parallel transport.
  - Stability issues when not preserving  $\nabla \cdot \mathbf{B} = 0$  or  $\nabla \cdot \mathbf{E} = \rho$  in Maxwell or MHD
- Big success of structure preserving methods
  - L-shaped domain for Maxwell's equations
  - Non simply connected domains, *i.e.* annulus, torus. Non trivial space of harmonic functions.

#### Hamiltonian systems

Canonical Hamiltonian structure preserved by symplectic integrators

$$\frac{d\mathbf{q}}{dt} = \nabla_{p}H, \quad \frac{d\mathbf{p}}{dt} = -\nabla_{q}H \quad \text{with } \mathbf{z} = (\mathbf{q}, \mathbf{p}): \qquad \frac{d\mathbf{z}}{dt} = \mathbb{J}\nabla_{z}H$$
where
$$\mathbb{J} = \begin{pmatrix} \mathbf{0}_{N} & \mathbf{I}_{N} \\ -\mathbf{I}_{N} & \mathbf{0} \end{pmatrix}$$

▶ Non canonical Hamiltonian structure with Poisson matrix  $\mathbb{J}(z)$ 

$$\frac{d\mathbf{z}}{dt} = \mathbb{J}(\mathbf{z})\nabla_{\mathbf{z}}H, \quad \text{Poisson bracket:} \quad \{F, G\} = (\nabla_{\mathbf{z}}F)\mathbf{J}(\mathbf{z})\nabla_{\mathbf{z}}G$$

- J can be degenerate then functionals C such that J(z)∇<sub>z</sub>C = 0 are Casimirs which are conserved by the dynamics, e.g. div B = 0 for Maxwell or MHD.
- Conservation of Casimirs essential for long time simulations
- Also for infinite dimensional systems

#### Structure preservation for dynamical systems

- For ODEs preservation of symplectic structure well known: Symplectic integrators. Exact preservation of approximate energy enables efficient integrators over very long times.
- For long time simulations keeping structure of continuous equations at discrete level more important than order of accuracy.



Hairer, Lubich, Wanner, "Geometric numerical integration"

Hong Qin et al., PoP 16

#### Metriplectic structure

- Introduced by P.J. Morrison (1980s) for fluids and plasmas.
- Dynamical systems arising in physics often combine a symplectic and a dissipative part
- Introducing a hamiltonian H which is conserved and a free energy (or entropy) S which is dissipated,

$$\frac{\mathsf{d}\mathcal{F}}{\mathsf{d}t} = \{\mathcal{F}, \mathcal{H}\} + (\mathcal{F}, \mathcal{S}) \qquad \equiv \qquad \frac{\mathsf{d}U}{\mathsf{d}t} = \mathbb{J}(U)\frac{\delta\mathcal{H}}{\delta U} - \mathbb{K}(U)\frac{\delta\mathcal{S}}{\delta U}$$

with  $\mathbb{J}$  a Poisson operator and  $\mathbb{K}$  a symmetric semi-positive operator: exact energy preservation and H-theorem (production of entropy)

- Reproduce this structure automatically at discrete level for robust and stable discretisation
- ► Expression of these elements used for automatic code generation.
- e.g. for kinetic plasma model.

#### Geometric description of physics

- Geometric objects provide a more accurate description of physics and also a natural path for discretisation.
  - 1. Potentials are naturally evaluated at points
  - 2. The action of a force is measured through its circulation along a path
  - 3. Current is the flux through a surface of current density
  - 4. Charge is integral over volume of charge density
- Should be discretized accordingly



▶ Related to discretization of differential 0-,1-,2- and 3-forms.

### Integral form of Maxwell's equations

| Integral equations                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Differential equations                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\oint_{\partial \mathbf{S}} \mathbf{H} \cdot d\ell = \int_{\mathbf{S}} \left( \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{S}$ $\oint_{\partial \mathbf{S}} \mathbf{E} \cdot d\ell = \int_{\mathbf{S}} \left( -\frac{\partial \mathbf{B}}{\partial t} \right) \cdot d\mathbf{S}$ $\oint_{\partial \mathbf{V}} \mathbf{D} \cdot d\mathbf{S} = \int_{\mathbf{V}} \rho d\mathbf{V}$ $\oint_{\partial \mathbf{V}} \mathbf{B} \cdot d\mathbf{S} = 0$ | curl $\mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$<br>curl $\mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$<br>div $\mathbf{D} = \rho$<br>div $\mathbf{B} = 0$ |
| $J_{\partial \mathbf{V}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |

- D and E as well as H and B are related by constitutive equations dependent on material properties.
- Exact discrete version of integral form can be obtained provided degrees of freedom for H and E are edge integrals and degrees of freedom for D and B (and J) are face integrals.

#### Exact relations between degrees of freedom

- ▶ Denote by respectively V<sub>i</sub>, F<sub>i</sub>, E<sub>i</sub>, x<sub>i</sub>, the volumes (cells), faces, edges and points of the mesh.
- ▶ Degrees of freedom are (*e.g.* for **B** and **E**)

$$\mathcal{F}_i(\mathbf{B}) = \int_{\mathcal{F}_i} \mathbf{B} \cdot d\mathbf{S}, \ \ \mathcal{E}_i(\mathbf{E}) = \int_{\mathcal{E}_i} \mathbf{E} \cdot d\ell, \ \ \ldots$$

Then integral form of Maxwell yields exact relations involving each face and its 4 boundary edges

$$\mathcal{F}_{i}(\mathbf{J}) + \frac{\partial \mathcal{F}_{i}(\mathbf{D})}{\partial t} = \mathcal{E}_{i,1}(\mathbf{H}) + \mathcal{E}_{i,2}(\mathbf{H}) - \mathcal{E}_{i,3}(\mathbf{H}) - \mathcal{E}_{i,4}(\mathbf{H}) \qquad (1)$$
$$\frac{\partial \mathcal{F}_{i}(\mathbf{B})}{\partial t} = -\mathcal{E}_{i,1}(\mathbf{E}) - \mathcal{E}_{i,2}(\mathbf{E}) + \mathcal{E}_{i,3}(\mathbf{E}) + \mathcal{E}_{i,4}(\mathbf{E}) \qquad (2)$$

- Similar exact relations for divergence constraints.
- This depends only on mesh connectivity and remains true if mesh is smoothly deformed (without tearing).

#### Reconstruction of fields from degrees of freedom

- Discrete constitutive equations still needed to couple Ampere and Faraday.
- Need to evaluate fields at arbitrary particle positions.
- The fields associated to different degrees of freedom (point values, edge integrals, face integrals, volume integrals) need to be reconstructed in a compatible manner.
- Related to geometric discretisation of various PDEs:
  - Dual meshes: Mimetic Finite Differences, Compatible Operator Discretisation, Discrete Duality Finite Volumes. Intuitive metric association between primal and dual mesh.
  - Dual operators: Finite Element formulation, mathematically more elaborate: Primal operators (strong form) on primal complex, dual operators (weak form) on dual complex.
- Charge conserving PIC algorithms (Villasenor-Bunemann, Esirkepov,..) can also be understood in this framework.

## Finite Element Exterior Calculus (FEEC)

- Mathematical framework for Finite Element solvers is provided FEEC introduced by Arnold, Falk and Winther. Buffa et al. introduced complex for B-splines.
- Continuous and discrete complexes for splines are the following



► Commuting diagram is an essential piece  $\Pi_1 \mathbf{grad} \psi = \mathbf{grad} \Pi_0 \psi, \quad \Pi_2 \mathbf{curl} \mathbf{A} = \mathbf{curl} \Pi_1 \mathbf{A}, \quad \Pi_3 \mathrm{div} \mathbf{A} = \mathrm{div} \Pi_2 \mathbf{A}.$ 

#### The commuting projection operators

- Commuting diagram by interpolating right degrees of freedom:
  - Elements of V<sub>0</sub> are characterized by point values
  - Elements of V<sub>1</sub> are characterized by edge integrals
  - Elements of V<sub>2</sub> are characterized by surface integrals
  - Elements of V<sub>3</sub> are characterized by volume integrals
- ►  $\Pi_0 \psi = \psi_h \in V_0$  defined by  $\psi_h(\mathbf{x}) = \sum_i c_i^0 \Lambda_i^0(\mathbf{x})$ , with  $c_i^0$  solution of the interpolation problem  $\psi_h(\mathbf{x}_j) = \psi(\mathbf{x}_j) \ \forall j$
- $\Pi_1 \mathbf{A} = \mathbf{A}_h \in V_1$  defined by  $\mathbf{A}_h(\mathbf{x}) = \sum_i c_i^1 \mathbf{\Lambda}_i^1(\mathbf{x})$ , with  $c_i^1$  solution of

$$\int_{\mathcal{E}_j} \mathbf{A}_h(\mathbf{x}) \cdot \mathrm{d}\ell = \int_{\mathcal{E}_j} \mathbf{A}(\mathbf{x}) \cdot \mathrm{d}\ell \quad \forall j$$

•  $\Pi_2 \mathbf{B} = \mathbf{B}_h \in V_2$  defined by  $\mathbf{B}_h(\mathbf{x}) = \sum_i c_i^2 \mathbf{\Lambda}_i^2(\mathbf{x})$ , with  $c_i^2$  solution of

$$\int_{\mathcal{F}_j} \mathbf{B}_h(\mathbf{x}) \cdot \mathrm{d}\mathbf{S} = \int_{\mathcal{F}_j} \mathbf{B}(\mathbf{x}) \cdot \mathrm{d}\mathbf{S} \quad \forall j$$

•  $\Pi_3 \varphi = \varphi_h \in V_3$  defined by  $\varphi_h(\mathbf{x}) = \sum_i c_i^3 \mathbf{\Lambda}_i^3(\mathbf{x})$ , with  $c_i^3$  solution of  $\int_{\mathcal{V}_j} \varphi_h(\mathbf{x}) d\mathbf{x} = \int_{\mathcal{V}_j} \varphi(\mathbf{x}) d\mathbf{x} \ \forall j$ 

#### Particle mesh coupling

Charge and current computed on mesh using smoothed particles.
 For some given smoothing function S, typically a B-spline (at least quadratic to reduce aliasing and variance)

$$f_N(t,\mathbf{x},\mathbf{v}) = \sum_k w_k S(\mathbf{x}-\mathbf{x}_k(t)) \delta(\mathbf{v}-\mathbf{v}_k(t)).$$

 From this expression, we can compute the charge and current densities

$$\rho_N = \sum_k w_k q_k S(\mathbf{x} - \mathbf{x}_k(t)),$$
$$\mathbf{J}_N = \sum_k w_k q_k \mathbf{v}_k S(\mathbf{x} - \mathbf{x}_k(t)).$$

Discrete values defined by projecting associated charge and current

$$\mathbf{J}_h = \Pi_2(\mathbf{J}_N), \quad \rho_h = \Pi_3(\rho_N).$$

#### Semi-discrete continuity equation

A direct calculation shows that

$$\frac{\partial \rho_N}{\partial t} = -\sum_k w_k q_k \mathbf{v}_k \cdot \nabla S(\mathbf{x} - \mathbf{x}_k(t)) = -\operatorname{div} \mathbf{J}_N.$$

Applying Π<sub>3</sub> we get

$$\Pi_3 \frac{\partial \rho_N}{\partial t} = \frac{\partial \rho_h}{\partial t} = -\Pi_3 \operatorname{div} \mathbf{J}_N = -\operatorname{div} \Pi_2 \mathbf{J}_N = -\operatorname{div} \mathbf{J}_h,$$

using the commutation property. Hence

$$\frac{\partial \rho_h}{\partial t} + \operatorname{div} \mathbf{J}_h = \mathbf{0}.$$

Then also

$$\frac{\partial \operatorname{div} \mathbf{E}_h}{\partial t} = -\frac{1}{\varepsilon_0} \operatorname{div} \mathbf{J}_h = \frac{1}{\varepsilon_0} \frac{\partial \rho_h}{\partial t},$$

 Gauss is a consequence of Ampere and initial value as in continuous case.

#### Finite Element discretisation

- One equation Faraday or Ampere discretized strongly, with no approximation. The other weakly with integration by parts:
  - Strong Ampere Weak Faraday. Smooth J<sub>N</sub> needed

$$-\frac{\partial \mathbf{D}_{h}}{\partial t} + c^{2} \operatorname{curl} \mathbf{H}_{h} = \frac{1}{\varepsilon_{0}} \sum_{p} q_{p} \Pi_{2} [\mathbf{v}_{p} S(\mathbf{x} - \mathbf{x}_{k}(t))] = \frac{1}{\varepsilon_{0}} \mathbf{J}_{h},$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \mathbf{H}_{h} \cdot \mathbf{C}_{h} \mathrm{d}\mathbf{x} + \int_{\Omega} \mathbf{D}_{h} \cdot \operatorname{curl} \mathbf{C}_{h} \mathrm{d}\mathbf{x} = 0 \quad \forall \mathbf{C}_{h} \in V_{1}.$$

Weak Ampere - Strong Faraday

$$-\int_{\Omega} \frac{\partial \mathbf{E}_{h}}{\partial t} \cdot \mathbf{F}_{h} d\mathbf{x} + c^{2} \int_{\Omega} \mathbf{B}_{h} \cdot \operatorname{curl} \mathbf{F}_{h} d\mathbf{x} = \frac{1}{\varepsilon_{0}} \int \mathbf{J}_{h} \cdot \mathbf{F}_{h} d\mathbf{x}, \quad \forall \mathbf{F}_{h} \in V_{1},$$
$$\frac{\partial \mathbf{B}_{h}}{\partial t} + \operatorname{curl} \mathbf{E}_{h} = 0$$

No smoothing needed because of integral on  $J_h$ , but smoothing or filtering can be added.

## **GEMPIC** framework

- Discretization of fields: Compatible finite elements (discrete de Rham complex), e.g. splines, Fourier, Lagrange:
  - Strong Faraday **E** edge elements (1-form), **B** face elements (2-form)
  - Strong Ampere B edge elements (1-form), E face elements (2-form)
- Discretization of f with (smoothed) particles  $f(t, x, v) = \sum w_p S(x - x_p(t)) \delta(v - v_p(t)),$ S can be  $\delta$  for strong Faraday.
- Plug discretizations for f, E and B into Lagrangian to get formulation of equations based on a semi-discrete Hamiltonian and Poisson bracket.
- Total momentum conservation lost except for Fourier basis due to differing FE spaces.
- ► Time discretizations: Hamiltonian splitting or Discrete Gradient

Paper on strong Faraday without smoothing: M. Kraus, K. Kormann, P.J. Morrison, ES - JPP 17

#### Strong Faraday discretisation

- For Particle In Cell discretisation, the most adapted is the Action proposed by Low (1958) with a Lagrangian formulation for the particles.
- The field Lagrangian, splitting between particle and field Lagrangian, using standard non canonical coordinates, reads:

$$\begin{split} L_f[X, V, \mathbf{A}, \phi] &= \sum_{\mathbf{s}} \int f_s(\mathbf{z}_0, t_0) L_s(\mathbf{X}(\mathbf{z}_0, t_0; t), \dot{\mathbf{X}}(\mathbf{z}_0, t_0; t)) d\mathbf{z}_0 \\ &+ \frac{\epsilon_0}{2} \int |\nabla \phi + \frac{\partial \mathbf{A}}{\partial t}|^2 d\mathbf{x} - \frac{1}{2\mu_0} \int |\nabla \times \mathbf{A}|^2 d\mathbf{x}. \end{split}$$

▶ Distribution function f expressed at initial time. Particle phase space Lagrangian for species s, L<sub>s</sub>, is of the form p · q − H:

$$L_s(\mathbf{x},\mathbf{v},\dot{\mathbf{x}},t) = (m\mathbf{v} + q\mathbf{A}) \cdot \dot{\mathbf{x}} - (\frac{1}{2}mv^2 + q\phi).$$

#### Semi-discrete Vlasov-Maxwell equations

- Discretization obtained by plugging expressions for f<sub>h</sub>, φ<sub>h</sub>, A<sub>h</sub> into Lagrangian: E<sub>h</sub> = ∂<sub>t</sub>A<sub>h</sub> − ∇φ<sub>h</sub>, B<sub>h</sub> = curl A<sub>h</sub>.
- Dynamical variables: particles positions and velocities, spline coefficients of E<sub>h</sub> and B<sub>h</sub>: u = (X, V, e, b)<sup>⊤</sup>.
- Discrete Hamiltonian:

$$\hat{\mathcal{H}} = \frac{1}{2} \mathbf{V}^{\top} \mathbb{M}_{\rho} \mathbf{V} + \frac{1}{2} \mathbf{e}^{\top} M_{1} \mathbf{e} + \frac{1}{2} \mathbf{b}^{\top} M_{2} \mathbf{b}.$$

Semi-discrete equations of motion expressed with discrete unknowns

$$\begin{split} \dot{\mathbf{X}} &= \mathbf{V} & \dot{\mathbf{x}} = \mathbf{v}, \\ \dot{\mathbf{V}} &= \mathbb{M}_p^{-1} \mathbb{M}_q \left( \mathbb{A}^1(\mathbf{X}) \mathbf{e} + \mathbb{B}(\mathbf{X}, \mathbf{b}) \mathbf{V} \right) & \dot{\mathbf{v}} = \frac{q_s}{m_s} \left( \mathbf{E} + \mathbf{v} \times \mathbf{B} \right), \\ \dot{\mathbf{e}} &= M_1^{-1} \left( \mathbb{C}^\top M_2 \mathbf{b}(t) - \mathbb{A}^1(\mathbf{X})^\top \mathbb{M}_q \mathbf{V} \right) & \frac{\partial \mathbf{E}}{\partial t} = \operatorname{curl} \mathbf{B} - \mathbf{J}, \\ \dot{\mathbf{b}} &= -\mathbb{C} \mathbf{e}(t) & \frac{\partial \mathbf{B}}{\partial t} = -\operatorname{curl} \mathbf{E}. \end{split}$$

# Semi-discrete Hamiltonian structure preserved for Vlasov-Maxwell

Semi-discrete equations of motion have following structure:

$$\dot{\mathbf{u}} = \mathcal{J}(\mathbf{u}) \, \nabla_{\mathbf{u}} \hat{\mathcal{H}}(\mathbf{u}).$$

Poisson matrix:

$$\mathcal{J}(\mathbf{u}) = \begin{pmatrix} 0 & \mathbb{M}_{p}^{-1} & 0 & 0\\ -\mathbb{M}_{p}^{-1} & \mathbb{M}_{p}^{-1}\mathbb{M}_{q}\mathbb{B}(\mathbf{X}, \mathbf{b}) \mathbb{M}_{p}^{-1} & \mathbb{M}_{p}^{-1}\mathbb{M}_{q}\mathbb{A}^{1}(\mathbf{X})M_{1}^{-1} & 0\\ 0 & -M_{1}^{-1}\mathbb{A}^{1}(\mathbf{X})^{\top}\mathbb{M}_{q}\mathbb{M}_{p}^{-1} & 0 & M_{1}^{-1}\mathbb{C}^{\top}\\ 0 & 0 & -\mathbb{C}M_{1}^{-1} & 0 \end{pmatrix}$$

Defines semi-discrete Poisson bracket:

$$\{F,G\} = \nabla F^{\top} \mathcal{J}(\mathbf{u}) \nabla G \Rightarrow \frac{\mathsf{d}(F(\mathbf{u}))}{\mathsf{d}t} = \nabla F^{\top} \dot{\mathbf{u}} = \{F(\mathbf{u}), \mathcal{H}(\mathbf{u})\}.$$

- Some properties:
  - Semi-discrete Poisson bracket satisfies Jacobi identity.
  - $\mathbb{CG} = 0$ ,  $\mathbb{DC} = 0$ .
  - Discrete Gauss' law:  $\mathbb{G}^{\top} M_1 \mathbf{e} = -\mathbb{A}^0(\mathbf{X})^{\top} \mathbb{M}_q \mathbb{1}_{N_p}$ .

#### Time-discretization of Poisson structure

- ▶ Poisson form  $\frac{du}{dt} = \mathcal{J}(\mathbf{u})\nabla_{\mathbf{u}}\mathcal{H}$  generalizes symplectic structure
- ► Thm(Ge, Marsden) Only exact flow preserves both symplectic structure and energy. ⇒ need to choose.
- 2 options:
  - 1. Hamiltonian splitting preserves Poisson structure including Casimirs (div  $\mathbf{B} = 0$ , weak Gauss), but only modified energy.
  - 2. Energy conserving discretisations can be derived based on Discrete Gradient or Average Vector Field methods.

Weibel instability: Conservation properties.

▶ PIC (B-Splines): Maximum error in the total energy, Gauss' law, and total momentum until time 500 for simulation with various integrators (Strang splitting  $\Delta t = 0.05$ ).

| Propagator  | total energy | Gauss law |
|-------------|--------------|-----------|
| Hamiltonian | 6.9E-7       | 2.1E-13   |
| Boris       | 1.3E-9       | 4.8E-4    |
| AVF         | 2.1E-16      | 1.1E-6    |
| DiscGrad    | 5.9E-11      | 2.2E-15   |





#### Compressible MHD model

The compressible ideal MHD model reads

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) &= 0, \\ \rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) + \nabla \rho - (\operatorname{curl} \mathbf{B}) \times \mathbf{B} &= 0, \\ \frac{\partial \mathbf{B}}{\partial t} - \operatorname{curl}(\mathbf{u} \times \mathbf{B}) &= 0, \\ \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) + (\gamma - 1)\rho \operatorname{div} \mathbf{u} &= 0 \end{aligned}$$

- Used in particular to study instabilities in edge of Tokamak
- ► Very small viscous and resistive terms need to be added.
- Implicit or semi-implicit discretisations are needed.
- JOREK code based on C<sup>1</sup> Bezier splines. New prototype based on FEEC with B-Splines.

#### Fast solvers for implicit MHD

A. Ratnani, M. Mazza in collaboration with C. Manni, H. Speleers (Rome) and S. Serra Capizzano (Como)

- Models: Reduced MHD, 2D incompressible MHD, full MHD
- Newton Krylov solver. Time stepping algorithms: splitting, jacobian free.
- Optimal Multigrid for B-Splines for Elliptic problems
- Optimal preconditioning for the (B-Splines) mass matrices (GLT)
- Development of new GLT preconditioner for H(curl)- problems needed for MHD.
- GLT is a new theory that allows the study and designing of preconditioners for spline Finite Elements.
  - Spectral properties are described through a notion of the symbol
  - Associated B-Splines symbols have been derived and studied

# Generalized Locally Toeplitz (GLT) theory

#### Poisson equation

- The stiffness matrix is ill-conditioned in the low frequencies. Classical problem solved by MG preconditioning.
- The stiffness matrix is also ill-conditioned in the high frequencies: Problem solvable by GLT theory through a post-smoother.
- the post-smoother is based on a Kronecker product

#### Elliptic *H*(*curl*)-problems

- As for Poisson equation, the matrix presents two kinds of pathologies in low and high frequencies
- Non trivial kernel (infinite in the continuous level)
   an Auxiliary Spaces Method is being studied to derive an optimal solver with respect to the physical parameters.

#### Fast solvers and Preconditioning

- Tolerance is set to  $10^{-12}$
- maximum number of V-Cycles : 1000

| Moch                     |    |    | Mothod |     |    |    |         |
|--------------------------|----|----|--------|-----|----|----|---------|
| Mesh                     | 1  | 2  | 3      | 4   | 5  | 6  | Inethod |
| $8 \times 8 \times 8$    | 11 | 43 | 200    | —   | _  | _  | MG      |
|                          | 2  | 3  | 3      | 5   | 8  | 18 | MG+GLT  |
| $16\times16\times16$     | 16 | 26 | 193    | _   | _  | _  | MG      |
|                          | 4  | 6  | 6      | 7   | 10 | 15 | MG+GLT  |
| $32 \times 32 \times 32$ | 15 | 15 | 144    | 474 | _  | _  | MG      |
|                          | 7  | 8  | 9      | 12  | 18 | 25 | MG+GLT  |

Table: Number of required cycles until convergence for 3D Poisson solver on a cube.

# Software environment for Geometric Numerical Methods and more

- Develop a simple to use, robust and modular framework for going from a physics model first for rapid prototyping and if desired to an efficient HPC code for production.
- Automatically generate stable and consistent discrete model from continuous model
- Enforce main physics properties, e.g.
  - Conservation of energy
  - Increase of entropy
- Simple enough language based on geometric concepts from physics which are automatically transformed into a numerical model by the code for rapidly investigating new physics
- Framework for transforming quickly prototype code into HPC code that runs efficiently on modern supercomputers.

- Find a framework to guarantee stability and consistency with physics model.
- Domain specific language for translating geometric physics model into code. Open Source for quality control and reproducibility.
- Complexity and fast changes in modern computing architectures makes hand tuning very cumbersome and time consuming.



 Relevant other projects: FEniCS, Firedrake: Finite Element Method for PDEs

# Domain specific language (DSL)

- Develop specific language based on Python describing geometric structure of physics at the continuous level
- Automatically transformed into a numerical model by the code for rapidly investigating new physics
- DSL should also enable (partly) automatic generation of portable optimized code for modern computer architectures.
- Can be embedded into existing exascale framework, e.g. WARP-X based on AMReX for PIC simulations.
- Software environment developed by Ahmed Ratnani and collaborators (Y. Güçlu, S. Hadjout, J. Lakhlili, ...) based on Python and sympy: psydac, sympde, symdec, GeLaTo, pyccel.

#### Pyccel

- Pyccel, a Fortran static compiler for Python for scientific High-Performance Computing
- Pyccel competes well with the existing solutions
- allows to use mpi4py, blas/lapack, fft, etc
- converts a Python code into a symbolic expression/tree
- arithmetic/memory complexity

#### **Ongoing and Future work**

- Shared memory parallelism (OpenMP, OpenACC)
- Task Based Parallelism
- Additional decorators
  - Cache optimization
  - Explicit memory management

Pyccel



# Accelerating Python codes: Benchmarks

#### Rosen-Der

| Tool             | Python | Cython   | Numba   | Pythran     | Pyccel-gcc | Pyccel-intel |
|------------------|--------|----------|---------|-------------|------------|--------------|
| Timing $(\mu s)$ | 229.85 | 2.06     | 4.73    | 2.07        | 0.98       | 0.64         |
| Speedup          | -      | × 111.43 | × 48.57 | imes 110.98 | × 232.94   | × 353.94     |

#### Black-Scholes

| Tool             | Python | Cython | Numba   | Pythran        | Pyccel-gcc | Pyccel-intel          |
|------------------|--------|--------|---------|----------------|------------|-----------------------|
| Timing $(\mu s)$ | 180.44 | 309.67 | 3.0     | 1.1            | 1.04       | 6.56 10 <sup>-2</sup> |
| Speedup          | -      | × 0.58 | × 60.06 | $\times$ 163.8 | × 172.35   | × 2748.71             |

#### Laplace

| Tool             | Python | Cython | Numba            | Pythran          | Pyccel-gcc            | Pyccel-intel          |
|------------------|--------|--------|------------------|------------------|-----------------------|-----------------------|
| Timing $(\mu s)$ | 57.71  | 7.98   | $6.46 \ 10^{-2}$ | $6.28 \ 10^{-2}$ | 8.02 10 <sup>-2</sup> | 2.81 10 <sup>-2</sup> |
| Speedup          | -      | × 7.22 | × 892.02         | imes 918.56      | × 719.32              | × 2048.65             |

#### Growcut

| Tool       | Python | Cython           | Numba            | Pythran          | Pyccel-gcc            | Pyccel-intel          |
|------------|--------|------------------|------------------|------------------|-----------------------|-----------------------|
| Timing (s) | 54.39  | $1.02 \ 10^{-1}$ | $4.67 \ 10^{-1}$ | $8.57 \ 10^{-2}$ | 6.27 10 <sup>-2</sup> | 6.54 10 <sup>-2</sup> |
| Speedup    | -      | × 532.37         | $\times$ 116.45  | × 634.32         | × 866.49              | × 831.7               |

- Use Pyccel AST to represent the assembly procedure over one element and the parallel loop over the elements
- Starting from a Bilinear/ Linear form or an Integral expression
  - Generate the associated Python code
  - Convert Python to Fortran using Pyccel
  - Parallel Matrix-Vector multiplication using MPI\_Cart and subcommunicators + Lapack
  - Matrix-free approach

- Magnetic Fusion Simulations need advanced numerical and mathematical models.
- Structure preserving methods starting from Yee and Arakawa and now extended to Splines-FEEC have proven very successful and need to be developed further.
- Progress in aligned IGA grid generation. Still open issues, in particular C<sup>1</sup> continuity at X-point and tokamak wall.
- Fast multigrid solvers needed for elliptic and implicit problems. First steps with GLT very promising. Need to be extended to full problem and physics codes.