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Magnetic fusion: physics and models

Structure preserving discretisation

Fast solvers for Poisson and implicit MHD

Software framework based on geometric concepts




Magnetic fusion
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» Magnetic confinement (ITER)

» Inertial confinement, laser: LMJ, NIF
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Magnetic field lines in Tokamaks
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A hierarchy of models

> The non-relativistic Vlasov-Maxwell system:

)
8](5+ vag+E(E+va) Vufs = 0.
OE oB
&—curIB:—J:zS:qs/fsvdv, E+cur|E:0,
divE:p:ZqS/fsdv, divB = 0.
S

» For low frequency electrostatic problems Maxwell can be replaced by
Poisson: Vlasov-Poisson model

» For slowly varying large magnetic field Vlasov can be replaced by
gyrokinetic model either electromagnetic or electrostatic.

» Taking the velocity moments, we get the Braginskii model analogous
to Euler for non neutral fluids.

» Further assumptions lead to one fluid MHD model.




The magnetic geometry

» Magnetic field lines stay on concentric topological tori (called flux
surfaces)

» Behaviour of plasma very different along and across the magnetic
field. Transport and diffusion orders of magnitude larger on flux
surfaces.

» Numerical accuracy benefits a lot from aligning mesh on flux surface

» The tokamak wall does not correspond to a flux surface. Embedded
boundary needed if complete alignment to flux surface is desired.
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Different meshing options

» Locally refined cartesian mesh. Neither aligned to flux surfaces nor
to Tokamak wall

» Align on flux surfaces only in confined part (closed flux surfaces)

» Mesh based on multiple patches, with B-spline mapping (Tokamesh)

» Generated numerically from plasma equilibrium.
» B-spline mapping on each patch.
» C! continuity enforced except at O-point and X-point.
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C! smooth polar splines

The B-splines mapping of our central patch
F(s,0) = (x(s,0),y(s,0)) collapses to a sin-
gle point (xo,y0) for s = 0 (C* continuity
lost at this point)

In

» Following Toshniwal, Speleers, Hiemstra, Hughes (2017), desired
continuity can be restored by linear combinations of the first rows of
control points around pole.

» We construct a triangle with vertices (T, T1, T2) related to control

points near pole. Its barycentric coordinates \; define the three new
C! basis functions

ne—l

Ni(s,0) = Mi(x0, yo)Ng(s) + | D Mi(ejo e )N/ (6) | Ni(s), 1=0,1,2.
j=0

> Implemented by Zoni, Gii¢lii at O-point. X-point being developed.




Importance of structure preservation in simulations

» For ODEs preservation of symplectic structure essential for long
time simulations. Exact preservation of approximate energy enables
efficient integrators over very long times.

» In many cases keeping structure of continuous equations at discrete
level more important than order of accuracy.

» Avoid spurious eigenmodes in Maxwell's equations.

» Avoid spurious perpendicular diffusion in parallel transport.

» Stability issues when not preserving V.-B=0o0or V-E=pin
Maxwell or MHD

» Big success of structure preserving methods

» L-shaped domain for Maxwell's equations

» Non simply connected domains, i.e. annulus, torus. Non trivial space
of harmonic functions.
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Hamiltonian systems

» Canonical Hamiltonian structure preserved by symplectic integrators

dq dp . dz
= H —=— H hz= : - = -H
dt VP " dt Vq with z (qap) dt JV
_(On I
where J = <_IN O)
» Non canonical Hamiltonian structure with Poisson matrix J(z)
d
d—i =J(z)V H, Poisson bracket: {F,G}=(V.F)J(z)V.G

v

J can be degenerate then functionals C such that J(z)V,C =0 are
Casimirs which are conserved by the dynamics, e.g. divB = 0 for
Maxwell or MHD.

» Conservation of Casimirs essential for long time simulations

v

Also for infinite dimensional systems

11



Structure preservation for dynamical systems

» For ODEs preservation of symplectic structure well known:
Symplectic integrators. Exact preservation of approximate energy
enables efficient integrators over very long times.

» For long time simulations keeping structure of continuous equations
at discrete level more important than order of accuracy.

explicit Euler, h = 10

implicit Euler, = 10

[Varialional

symplectic Euler, h = 100

Stormer—Verlet, h = 200

[rwe]

Hairer, Lubich, Wanner, " Geometric numerical integration”

symplectic

Transport reduction
by integration errors

Hong Qin et al., PoP 16
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Metriplectic structure

Introduced by P.J. Morrison (1980s) for fluids and plasmas.

Dynamical systems arising in physics often combine a symplectic
and a dissipative part

Introducing a hamiltonian A which is conserved and a free energy
(or entropy) S which is dissipated,

dF dU _ 309 98

E:{-RH}‘*‘(]::S) Pr (U)W_ (U)w

with J a Poisson operator and K a symmetric semi-positive operator:

exact energy preservation and H-theorem (production of entropy)

Reproduce this structure automatically at discrete level for robust
and stable discretisation

Expression of these elements used for automatic code generation.

e.g. for kinetic plasma model.
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Geometric description of physics

» Geometric objects provide a more accurate description of physics
and also a natural path for discretisation.

1. Potentials are naturally evaluated at points

2. The action of a force is measured through its circulation along a path
3. Current is the flux through a surface of current density

4. Charge is integral over volume of charge density

» Should be discretized accordingly

Cell complex —

= AA%
/// o i
e ‘
T

T =

il
0-cells 1-cells 2-cells 3-cells

> Related to discretization of differential 0-,1-,2- and 3-forms.
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Integral form of Maxwell's equations

Integral equations

Differential equations

%H~df:/<J—|—aD> -dS

0s s agt

fE-d€=/< ) -dS
s s\ Ot

D-dS:/pdV
oV \"

7{ B-dS=0
v

curIH:J+%—?

_ _ 0B
curlE = —5;
divD =p
divB =0

» D and E as well as H and B are related by constitutive equations

dependent on material properties.

» Exact discrete version of integral form can be obtained provided
degrees of freedom for H and E are edge integrals and degrees of
freedom for D and B (and J) are face integrals.
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Exact relations between degrees of freedom

>

Denote by respectively V;, Fi, &, x;, the volumes (cells), faces,
edges and points of the mesh.

Degrees of freedom are (e.g. for B and E)

]-",-(B):/F'B-ds, 5,(5):/85.(%,

Then integral form of Maxwell yields exact relations involving each
face and its 4 boundary edges

Fi(J) + 6]—:95D) =&i1(H) + &2(H) = Eiz(H) = &a(H) (1)
8};}3 ) £1(E) — E2(E) + E5(E) + E4(E) ()

» Similar exact relations for divergence constraints.

This depends only on mesh connectivity and remains true if mesh is
smoothly deformed (without tearing).
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Reconstruction of fields from degrees of freedom

Discrete constitutive equations still needed to couple Ampere and
Faraday.

Need to evaluate fields at arbitrary particle positions.

The fields associated to different degrees of freedom (point values,
edge integrals, face integrals, volume integrals) need to be
reconstructed in a compatible manner.

Related to geometric discretisation of various PDEs:

» Dual meshes: Mimetic Finite Differences, Compatible Operator
Discretisation, Discrete Duality Finite Volumes. Intuitive metric
association between primal and dual mesh.

» Dual operators: Finite Element formulation, mathematically more
elaborate: Primal operators (strong form) on primal complex, dual
operators (weak form) on dual complex.

Charge conserving PIC algorithms (Villasenor-Bunemann,
Esirkepov,..) can also be understood in this framework.
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Finite Element Exterior Calculus (FEEC)

» Mathematical framework for Finite Element solvers is provided
FEEC introduced by Arnold, Falk and Winther. Buffa et al.
introduced complex for B-splines.

» Continuous and discrete complexes for splines are the following

grad curl div
HY(Q) —  H(cur,Q) —  H(div,Q) — 12(Q)
Lo 41 L1 LT3
grad curl div
Vg — Vi — Vs — V3
Sp—L.p:p Sp:p—1,p—1
SppP Sp.p—1.p — Sp—Lp.p—1 —y Sp—Llp-1p-1
Spp;p—1 Sp—Lp-1p

» Commuting diagram is an essential piece
Migrady = gradllpy, [MocurlA = curll11 A, Tl3divA = divll,A.




The commuting projection operators

» Commuting diagram by interpolating right degrees of freedom:
» Elements of Vj are characterized by point values
» Elements of V; are characterized by edge integrals
» Elements of V5, are characterized by surface integrals
» Elements of V3 are characterized by volume integrals

> Motp = by, € Vo defined by ¥s(x) = 3 cPA9(x), with ¢? solution of
the interpolation problem 14(x;) = ¥(x;) Vj
> M1A = A, € V4 defined by Ap(x) = 3. ctA}(x), with ¢} solution of
/ An(x) - d¢ :/ A(x)-d0 V)
& &
> MMyB = By, € Vs defined by By(x) = 3°; c?A?(x), with ¢? solution of
/ Bi(x) - dS :/ B(x) - dS
7 7
> M3 = ¢y € V3 defined by pp(x) = 3=, 2N} (x), with ¢ solution of

fvj en(x)dx = fvj ©(x)dx V)
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Particle mesh coupling

» Charge and current computed on mesh using smoothed particles.
For some given smoothing function S, typically a B-spline (at least
quadratic to reduce aliasing and variance)

n(t,x,v) ZWkS x — Xk (t))d(v — v (t)).

» From this expression, we can compute the charge and current
densities

pn = wiqieS(x — xk(t)),
k

Jy = Z qukaS(X — Xk(t)).
k

» Discrete values defined by projecting associated charge and current

Jn=Ta(n), pr="3(pn).

20



Semi-discrete continuity equation

» A direct calculation shows that

8 .
P 3 TS x4(0) = i

> Applying 3 we get

335;\/ = 36Pth = —[3divdy = —divllJy = —div]y,
using the commutation property. Hence
% +div], =0.
» Then also
odivE, —ldivJ _ l%
ot €0 ot’

» Gauss is a consequence of Ampere and initial value as in continuous
case.
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Finite Element discretisation

» One equation Faraday or Ampere discretized strongly, with no
approximation. The other weakly with integration by parts:

» Strong Ampere - Weak Faraday. Smooth Jy needed

oD 1 1
— 8—: +c?curlHy = 6—0 zp: apl2[vpS(x — x4 (t))] = th,

d

dt Hh Chdx—i—/ Dy -curlCpdx =0 VCp, € V4.
» Weak Ampere - Strong Faraday

83: Fydx + c2 /Bh curl Frdx = — /Jh Fndx, VF,€ Vi,

0By,
W +CUr| Eh = O

No smoothing needed because of integral on Jj, but smoothing or
filtering can be added.

22



GEMPIC framework

» Discretization of fields: Compatible finite elements (discrete de
Rham complex), e.g. splines, Fourier, Lagrange:
» Strong Faraday E edge elements (1-form), B face elements (2-form)
» Strong Ampere B edge elements (1-form), E face elements (2-form)

» Discretization of f with (smoothed) particles

f(t,x,v) =Y wpS(x — xp(t))o(v — vp(t)),
S can be § for strong Faraday.

» Plug discretizations for f, E and B into Lagrangian to get
formulation of equations based on a semi-discrete Hamiltonian and
Poisson bracket.

» Total momentum conservation lost except for Fourier basis due to
differing FE spaces.

» Time discretizations: Hamiltonian splitting or Discrete Gradient

Paper on strong Faraday without smoothing:
M. Kraus, K. Kormann, P.J. Morrison, ES - JPP 17
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Strong Faraday discretisation

» For Particle In Cell discretisation, the most adapted is the Action
proposed by Low (1958) with a Lagrangian formulation for the
particles.

» The field Lagrangian, splitting between particle and field
Lagrangian, using standard non canonical coordinates, reads:

Le[X, V, A, 9] = Z/fs(zm to) Ls(X(2o, to; t), X (2o, to; t))dzo

€ oA, _1/ 2
+2/|V¢+8tdx o |V x A]“dx.

» Distribution function f expressed at initial time. Particle phase
space Lagrangian for species s, Lg, is of the form p-q — H:

1
LS(X,V,).(, t) = (mv + qA) X — (5mv2 + qd))
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Semi-discrete Vlasov-Maxwell equations

» Discretization obtained by plugging expressions for fy,, ¢, Ap into
Lagrangian: E, = 0:A, — Vo, B = curl Ay,

» Dynamical variables: particles positions and velocities, spline
coefficients of Ej, and By: u = (X,V,e,b)".

» Discrete Hamiltonian:

H=3IVMV+1ie Me+Llb Mb.

» Semi-discrete equations of motion expressed with discrete unknowns

X=V X=v,

V =M, My ( (X)e +B(X,b)V) v = %(E—i—vx B),
é= M (C"Mab(t) — Y(X)"MgV) %': = curlB — J,

b = —Ce(t) 9B _ —curl E.

ot
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Semi-discrete Hamiltonian structure preserved for
Vlasov-Maxwell

» Semi-discrete equations of motion have following structure:
u=J(u) VyH(u).

» Poisson matrix:

0 (Ve 0 0

() = -M,t My'MGB(X,b)M T MM, T(X)M; ! 0
0 Mt H(X) TMgM, 0 Mmict
0 0 —Ccmt 0

» Defines semi-discrete Poisson bracket:

{F,G} =VFTJ(u)VG = d(z(t“)) =VFTu={F(u),H(u)}.

» Some properties:

» Semi-discrete Poisson bracket satisfies Jacobi identity.
» CG=0,DC=0.
> Discrete Gauss' law: G' Mye = — 9(X)"Mglp,.
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Time-discretization of Poisson structure

> Poisson form 9% = 7(u)V,H generalizes symplectic structure

» Thm(Ge, Marsden) Only exact flow preserves both symplectic
structure and energy. = need to choose.

» 2 options:
1. Hamiltonian splitting preserves Poisson structure including Casimirs
(divB = 0, weak Gauss), but only modified energy.
2. Energy conserving discretisations can be derived based on Discrete
Gradient or Average Vector Field methods.
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Weibel instability: Conservation properties.

» PIC (B-Splines): Maximum error in the total energy, Gauss' law,
and total momentum until time 500 for simulation with various
integrators (Strang splitting At = 0.05).

Propagator | total energy | Gauss law

Hamiltonian 6.9E-7 2.1E-13

Boris 1.3E-9 4 8E-4
AVF 2.1E-16 1.1E-6
DiscGrad 5.9E-11 2.2E-15

» PIF (Strong Faraday)

absolute momentum error

relative

vl

50 100 150 200 250 300 350
time
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Compressible MHD model

» The compressible ideal MHD model reads

Op + div(pu) =0,

ot
Ju
p(m—i-u-Vu)—i—Vp—(curIB)xB:O,
aa?—curl(ux B) =0,
dp

9 + div(pu) + (y — 1)pdivu =0

v

Used in particular to study instabilities in edge of Tokamak

v

Very small viscous and resistive terms need to be added.

v

Implicit or semi-implicit discretisations are needed.

JOREK code based on C! Bezier splines. New prototype based on
FEEC with B-Splines.

v
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Fast solvers for implicit MHD

A. Ratnani, M. Mazza in collaboration with C. Manni, H. Speleers
(Rome) and S. Serra Capizzano (Como)

» Models: Reduced MHD, 2D incompressible MHD, full MHD

» Newton - Krylov solver. Time stepping algorithms: splitting,
jacobian free.

» Optimal Multigrid for B-Splines for Elliptic problems

» Optimal preconditioning for the (B-Splines) mass matrices (GLT)

» Development of new GLT preconditioner for H(curl)- problems
needed for MHD.

>

GLT is a new theory that allows the study and designing of
preconditioners for spline Finite Elements.

» Spectral properties are described through a notion of the symbol
» Associated B-Splines symbols have been derived and studied

30



Generalized Locally Toeplitz (GLT) theory

Poisson equation

» The stiffness matrix is ill-conditioned in the low frequencies.
Classical problem solved by MG preconditioning.

> The stiffness matrix is also ill-conditioned in the high frequencies:

Problem solvable by GLT theory through a post-smoother.
> the post-smoother is based on a Kronecker product
Elliptic H(curl)-problems

> As for Poisson equation, the matrix presents two kinds of
pathologies in low and high frequencies

» Non trivial kernel (infinite in the continuous level)
= an Auxiliary Spaces Method is being studied to derive an
optimal solver with respect to the physical parameters.
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Fast solvers and Preconditioning

» Tolerance is set to 10712

» maximum number of V-Cycles : 1000

Mesh T2 ‘3Deg‘rje 5T Method
§x8x8 él ;B goo 515 |18 MG'\—A#%LT
16 %16 %16 |3 86 7 0I5 | WGHeLT
womm B ] e

Table: Number of required cycles until convergence for 3D Poisson solver on a
cube.




Software environment for Geometric Numerical
Methods and more

» Develop a simple to use, robust and modular framework for going
from a physics model first for rapid prototyping and if desired to an
efficient HPC code for production.

» Automatically generate stable and consistent discrete model from
continuous model

» Enforce main physics properties, e.g.

» Conservation of energy
> Increase of entropy

» Simple enough language based on geometric concepts from physics
which are automatically transformed into a numerical model by the
code for rapidly investigating new physics

» Framework for transforming quickly prototype code into HPC code
that runs efficiently on modern supercomputers.

33



Issues

» Find a framework to guarantee stability and consistency with physics
model.

» Domain specific language for translating geometric physics model
into code. Open Source for quality control and reproducibility.

» Complexity and fast changes in modern computing architectures
makes hand tuning very cumbersome and time consuming.

(Low Capacity, High Bandwidth)

» Relevant other projects: FEniCS, Firedrake: Finite Element Method
for PDEs
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Domain specific language (DSL)

Develop specific language based on Python describing geometric
structure of physics at the continuous level

Automatically transformed into a numerical model by the code for
rapidly investigating new physics

DSL should also enable (partly) automatic generation of portable
optimized code for modern computer architectures.

Can be embedded into existing exascale framework, e.g. WARP-X
based on AMReX for PIC simulations.

Software environment developed by Ahmed Ratnani and

collaborators (Y. Giiglu, S. Hadjout, J. Lakhlili, ...) based on Python
and sympy: psydac, sympde, symdec, GelLaTo, pyccel.
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Pyccel

v

Pyccel, a Fortran static compiler for Python for scientific
High-Performance Computing

v

Pyccel competes well with the existing solutions

v

allows to use mpidpy, blas/lapack, fft, etc

v

converts a Python code into a symbolic expression /tree

v

arithmetic/memory complexity

Ongoing and Future work
» Shared memory parallelism (OpenMP, OpenACC)
» Task Based Parallelism

» Additional decorators

» Cache optimization
» Explicit memory management
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Pyccel

Duration of one time step [s]

104

103

>

102 @ 7Y

[
>>

10*

10°

|
1 2 4 8 16 32
Number of Nodes

132 processes per node

64

!
128

+ Pure Python

° Pure Fortran

4 Pyccel with Gfortran
4 Pyccel with Intel

Pyccel with
mmanual improvement
with gfortran
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Accelerating Python codes: Benchmarks

Rosen-Der
Tool Python Cython Numba Pythran Pyccel-gcc | Pyccel-intel
Timing (us) || 229.85 2.06 4.73 2.07 0.98 0.64
Speedup — x 111.43 | x 48.57 | x 110.98 | x 232.94 x 353.94
Black-Scholes
Tool Python | Cython Numba Pythran | Pyccel-gcc | Pyccel-intel
Timing (us) || 180.44 | 309.67 3.0 1.1 1.04 6.56 102
Speedup — x 0.58 | x 60.06 | x 163.8 x 172.35 x 2748.71
Laplace
Tool Python | Cython Numba Pythran Pyccel-gcc | Pyccel-intel
Timing (us) || 57.71 798 | 6.4610~2 | 6.2810°2 | 8.0210~2 | 2.81 102
Speedup - X 7.22 x 892.02 X 918.56 X 719.32 x 2048.65
Growcut
Tool Python Cython Numba Pythran Pyccel-gcc | Pyccel-intel
Timing (s) || 54.39 [ 1.0210°! [ 467101 | 8571072 | 6.27 102 | 6.54 102
Speedup — x 532.37 x 116.45 X 634.32 x 866.49 x 831.7




Automatic code generation

» Use Pyccel AST to represent the assembly procedure over one
element and the parallel loop over the elements

» Starting from a Bilinear/ Linear form or an Integral expression
» Generate the associated Python code
» Convert Python to Fortran using Pyccel
Parallel Matrix-Vector multiplication using MPI _Cart and
subcommunicators + Lapack
Matrix-free approach

v

v




Conclusions and future steps

» Magnetic Fusion Simulations need advanced numerical and
mathematical models.

» Structure preserving methods starting from Yee and Arakawa and
now extended to Splines-FEEC have proven very successful and need
to be developed further.

> Progress in aligned IGA grid generation. Still open issues, in
particular C! continuity at X-point and tokamak wall.

» Fast multigrid solvers needed for elliptic and implicit problems. First
steps with GLT very promising. Need to be extended to full problem
and physics codes.
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