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Part I: Explicitly Given Data: Approximation of Surfaces

Problem:

Given P = {(x1, z1), . . . , (xN , zN )} not uniformly distributed points

X = {x1, . . . , xN} ⊂ Rn n ∈ {1, 2, 3}
Z = {z1, . . . , zN} ⊂ R

Goal: Construct function f : Rn → R representing P

Example for n = 2:

Solution method: Adaptive coarse–to–fine construction with thresholding
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An Adaptive Coarse–to–Fine Method with Thresholding
[Castaño, Kunoth ’03–’06]

Ansatz: f (x) =
∑
λ∈Λ

dλψλ(x) Λ appropriate set of indices λ = (j, k, e)

Multiscale basis functions:
{ψλ}λ∈Λ preorthogonal (boundary–adapted) B–spline wavelets

Fitting of {dλ}λ∈Λ using Approximation: min
N∑
i=1

(zi − f (xi ))2

Approximation with regularization: min
N∑
i=1

(zi − f (xi ))2 + ν‖f ‖2
Hα

Approximation (with regularization) ; normal equations

(ATA(+νD))d = AT z ⇐⇒: (M(+νD))d = b

M ∈ R(#Λ)×(#Λ) Mλ,λ′ =
N∑
i=1

ψλ(xi )ψλ′ (xi )

b ∈ R(#Λ) bλ =
N∑
i=1

ziψλ(xi )

Typical structure of M

Amount of data N � #Λ degrees of freedom
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Choice of index set Λ in f =
∑
λ∈Λ

dλψλ in order to . . .

. . . get a reasonable reconstruction

. . . avoid processing redundant information

#P = 10.000 points #Λa = 33 #Λb = 8614
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Data Driven Coarse–To–Fine Construction of Λ

1. Tree at (coarsest) level j = 3 Λ3

2. Discard children containing less than q data points in support Λ̃3

3. Compute approximation f3 :=
∑
λ∈Λ̃3

dλψλ

4. Threshold small coefficients
. . . and get tree for level j = 4

Λ4 . . . . . . repeat 2.–4.

5. Stop at highest level J only determined by data
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Numerical Performance of Multilevel Functions: Spline–Wavelets — Hierarchical Bases

Solution of ATAd = AT z

Hierarchical basis B–spline wavelet basis

160.000 gridded data points from GTOPO30 Digital Elevation Model

Error decay at highest level J = 7: log(error)/CG iterations: no nesting nested iterations

Further issues:
Regularization: Construction of surfaces with smoothness constraints
Robust regression: Handling of outliers [Castaño, Kunoth, IEEE Trans. Image Proc., 2006]
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Example from Photogrammetric Application with fixed α, ν
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wavelet reconstruction with regularization: ν = 0.01, α = 4
thresholding parameter ε = 1e − 3 #Λ6 = 2623 full grid: 16384 coefficients
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Part II: Implicitly Given Data: Optimal Control Problems Constrained by a Parabolic PDE

Given y∗(t, ·) f ω > 0 end time T > 0 initial condition y0

minimize J (y , u) = 1
2

∫ T

0

‖y(t, ·)− y∗(t, ·)‖2
Z dt + ω

2

∫ T

0

‖u(t, ·)‖2
U dt

subject to y ′(t) + A(t)y(t) = f (t) + u(t) a.e. t ∈ (0,T ) =: I (PDE)

y(0) = y0

y ′ := ∂
∂t y y = y(t, x) state u = u(t, x) control

Y = H1
0 (Ω) state space Z = Y = H1

0 (Ω) observation space U = Y ′ = H−1(Ω) control space

A(t) : Y → Y ′ 〈A(t)v(t, ·),w(t, ·)〉 :=

∫
Ω

[∇v(t, x) · ∇w(t, x) + v(t, x)w(t, x)] dx

A(t) 2nd order linear selfadjoint coercive & continuous operator on Y Ω ⊂ Rd

PDE-constrained control problem ; requires repeated solution of (PDE)

y ′(t) + A(t)y(t) = f (t) + u(t)

y(0) = y0

; requires fast solver as core ingredient

Conventional time discretizations (e.g., Crank-Nicolson method) ;

requires fast solver for elliptic PDE in each time step
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Numerical Solution of a Single Elliptic PDE

Elliptic PDE Ay = f s.th. ‖Av‖Y ′ ∼ ‖v‖Y ; find y ∈ Y : 〈v ,Ay〉 = 〈v , f 〉 for all v ∈ Y

Conventional finite element discretization on a uniform grid: Yh ⊂ Y dimYh <∞
; Ah yh = fh

Obstructions:

◦ Large linear systems of equations ; iterative solver

◦ High desired accuracy ; small h ; larger problem ; worse condition cond2(Ah) ∼ h−2

◦ Resolution of singularities in data and/or geometry ; small h

Ingredients for Efficient Numerical Solution:

(i) Multilevel preconditioner Ch

multigrid methods, BPX preconditioner, wavelet discretization ; cond2(ChAh) ∼ 1

Proofs: [Braess, Hackbusch ’80s], [Dahmen, Kunoth ’92], [Oswald ’92]

(ii) Nested iteration

(iii) Additionally: adaptive refinement (for nonsmooth solutions)

a–posteriori error estimation ; local grid refinement ; convergence/convergence rates?
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First goal: Realize discretization error accuracy ε with minimal amount of work O(N(ε))

A-priori Estimates for Finite Elements:

Quality measure: Approximation in norm ‖y − yh‖L2(Ω) ≤ ε

A–priori error estimates: Ω ⊂ Rd dim Yh = N ∼ h−d uniform grid

‖y − yh‖L2(Ω) <∼ hr ‖y‖Hr (Ω) yh ∈ Yh 0 ≤ r ≤ rmax

⇐⇒ ‖y − yN‖L2(Ω) <∼ N−r/d ‖y‖Hr (Ω)

N degrees of freedom ←→ accuracy O(N−r/d )

Approximation rate determined by

(i) approximation order rmax of Yh

(ii) space dimension d

(iii) amount of smoothness of y in L2

Target: Realize discretization error accuracy ε ∼ h2 ∼ 2−2J for grid with spacing h ∼ 2−J

Problem complexity: For h ∼ 2−J a total of N ∼ 2Jd unknowns

Optimal complexity for iterative solver: Minimal amount of work is O(N)

Theorem: For smooth solution y :
Optimal multilevel preconditioner & nested iteration yields method of optimal complexity O(NJ )
to reach discretization error accuracy on finest level J

Proofs: [Braess, Hackbusch ’80s], [Dahmen, Kunoth ’92], [Oswald ’92]

. . . back to PDE-constrained control problem . . .
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Optimal Control Problems Constrained by a Parabolic PDE

Given y∗(t, ·) f ω > 0 end time T > 0 initial condition y0
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2
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y ′ := ∂
∂t y y = y(t, x) state u = u(t, x) control

Y = H1
0 (Ω) state space Z = Y = H1

0 (Ω) observation space U = Y ′ = H−1(Ω) control space

A(t) : Y → Y ′ 〈A(t)v(t, ·),w(t, ·)〉 :=

∫
Ω

[∇v(t, x) · ∇w(t, x) + v(t, x)w(t, x)] dx

A(t) 2nd order linear selfadjoint coercive & continuous operator on Y Ω ⊂ Rd

PDE-constrained control problem ; requires repeated solution of (PDE)

y ′(t) + A(t)y(t) = f (t) + u(t)

y(0) = y0
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Necessary and Sufficient Conditions for Optimality

Optimal control problem constrained by parabolic PDE

; System of parabolic PDEs coupled globally in time (and space)

y ′(t) + A(t) y(t) = f (t) + u(t) a.e. t ∈ I

y(0) = y0

ω R̃−1u(t) + p(t) = 0 a.e. t ∈ I

−p′(t) + A(t)T p(t) = R̃ (y∗(t)− y(t)) a.e. t ∈ I

p(T ) = 0

Riesz operator R̃ defined by 〈v , R̃w〉Y×Y ′ := (v ,w)Y for all v ,w ∈ Y

Obstructions for numerical solution:

• convential time discretizations: time-marching methods
; need storage of y(ti ), u(ti ), p(ti ) for all discrete times 0 = t0, . . . ,T = tN

• in each time step: solve elliptic PDE ; large linear system of equations
; iterative solver ; need preconditioning in (conjugate) gradient method

• singularities in data/domain: adaptive (FE) mesh(es) for y(ti ), u(ti ), p(ti ) for all ti

one mesh for all variables, refinement/coarsening ? [Meidner, Vexler ’07], . . .

convergence ? complexity ??

Solution Ansatz here: full weak space-time form of parabolic PDE constraint
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Variational Space-Time Form for a Single Parabolic Evolution PDE

[Ladyshenskaya et al. 1967], [Wloka ’82], [Dautray, Lions ’92], [Schwab, Stevenson ’09], [Chegini, Stevenson ’11], [Stapel ’11]

(PDE)
y ′(t) + A(t) y(t) = f (t) a.e. t ∈ I

y(0) = y0

solution space: Lebesgue-Bochner space Y := (L2(I )⊗ Y ) ∩ (H1(I )⊗ Y ′) ↪→ C0(I )⊗ L2(Ω)

with norm ‖w‖2
Y := ‖w‖2

L2(I )⊗Y + ‖w ′‖2
H1(I )⊗Y ′

test space: Q := (L2(I )⊗ Y )× L2(Ω) with norm ‖v‖2
Q := ‖v1‖2

L2(I )⊗Y + ‖v2‖2
L2(Ω)

bilinear form b(·, ·) : Y ×Q → R

b(w , (v1, v2)) :=

∫
I

[
〈w ′(t, ·), v1(t, ·)〉 + 〈A(t)w(t, ·), v1(t, ·)〉

]
dt + 〈w(0, ·), v2〉 =: 〈Bw , v〉

right hand side

〈f , v〉 :=

∫
I

〈f (t, ·), v1(t, ·)〉 dt + 〈y0, v2〉

(PDE) ; given f ∈ Q′, find y ∈ Y: By = f

Existence and uniqueness of solution:

Theorem ‖Bw‖Q′ ∼ ‖w‖Y for all w ∈ Q mapping property (MP)

Formulations with 1/2 time derivatives: [Fontes ”99], [Larsson, Schwab ’15]
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Reformulation of PDE-Constrained Optimal Control Problem

minimize J (y , u) = 1
2‖y − y∗‖2

L2(I )⊗Y + ω
2 ‖u‖

2
L2(I )⊗Y ′

subject to B y = f + Eu (PDE) B : Y → Q′ satisfies (MP)
E := (Id, 0) : L2(I )⊗ Y ′ → Q′

Necessary and Sufficient Conditions — Karush-Kuhn-Tucker (KKT) system

L(y , u, p) := J (y , u) + 〈p,By − f − Eu〉
Riesz operator 〈v ,Rw〉(L2(I )⊗Y )×(L2(I )⊗Y ′) := (v ,w)L2(I )⊗Y

δL = 0 ;

B∗p = R(y∗ − y)

ωR−1u = E∗p

B y = f + Eu

⇐⇒

R 0 B∗

0 ωR−1 −E∗

B −E 0


y

u
p

 =

Ry∗
0
f

 (SPP)

; saddle point operator

〈Gq, q̃〉 :=

〈R 0 B∗

0 ωR−1 −E∗

B −E 0

 q, q̃

〉
A := diag(R, ωR−1) pos. def.,B := (B,−E) full rank

symmetric, continuous, boundedly invertible on X := Y × U ×Q
=⇒ unique solution

y
u
p

 =: q of system of PDEs (SPP)

Formulations with 1/2 time derivatives: [Langer, Wolfmayr ’13], [Kunoth, Mollet ’15, unpublished]

Next: discretization in space and time variables by wavelets
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Building Blocks: (Biorthogonal Spline–) Wavelets

H Hilbert space on domain Ω ⊂ Rd with ‖ · ‖H H′ dual space for H with 〈·, ·〉

Ψ := {ψλ : λ ∈ I} ⊂ H Wavelets I (infinite) index set

(NE) Ψ Riesz basis for H

v ∈ H: v = vT Ψ :=
∑
λ∈I
〈v , ψ̃λ〉ψλ such that ‖v‖H ∼ ‖v‖`2(I)

(L) Locality diam (suppψλ) ∼ 2−|λ| |λ| resolution

ψλ centered around 2−|λ|k

(CP) Vanishing moments 〈v , ψλ〉 <∼ 2−|λ|(
d
2

+m̃) ‖v (m̃)‖L∞(supp ψλ) for some m̃

0 1

ψ
2,2

ψ
2,1

[Dahmen, Kunoth, Urban ’99] [Dahmen, Schneider ’99], [Kunoth, Sahner ’06] [Harbrecht, Schneider ’00]
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Paradigm of Adaptive Wavelet Method for One Stationary PDE
[Cohen, Dahmen, DeVore ’01/’02]

(i) Well–posed variational problem: given f ∈ Q′, B : Y → Q′, find y ∈ Y such that By = f

(MP) ‖Bw‖Q′ ∼ ‖w‖Y for all w ∈ Y mapping property

(ii) ΨY ,ΨQ wavelet bases for Y,Q :

(NE) ‖wT ΨY‖Y ∼ ‖w‖`2
for all w = (wλ)λ∈I ∈ `2

Bw := (〈ψYλ ,Bw〉)λ∈I f := (〈ψYλ , f 〉)λ∈I

;

Theorem By = f ⇐⇒ By = f well-posed in `2 (B : `2 → `2)

(MP) + (NE) ⇐⇒ ‖Bw‖`2
∼ ‖w‖`2

for all w ∈ `2

(iii) Practical solution schemes for By = f:

(A) Perturbed Richardson iteration (for symmetric B):

(A.1) yn+1 = yn + (f−Byn) n = 0, 1, 2, . . . ‖yn+1−y‖`2
≤ ρ ‖yn−y‖`2

ρ < 1

(A.2) Approximate realization: adaptive evaluation of Byn in Solve [ε,B, f]→ yε

(A.3) Coarsening (thresholding) of the iterands (for complexity)

(B) Adaptive wavelet Galerkin method and bulk chasing strategy
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Extension to a Single Parabolic Evolution PDE
[Schwab, Stevenson ’09]

(i) Variational space-time form of (PDE)
y ′(t) + A(t) y(t) = f (t) a.e. t ∈ I

y(0) = y0

solution space: Lebesgue-Bochner space Y := (L2(I )⊗ Y ) ∩ (H1(I )⊗ Y ′)

with norm ‖w‖2
Y := ‖w‖2

L2(I )⊗Y + ‖w ′‖2
H1(I )⊗Y ′

test space Q := L2(I ; Y )× L2(Ω) with norm ‖v‖2
Q := ‖v1‖2

L2(I )⊗Y + ‖v2‖2
L2(Ω)

bilinear form b(·, ·) : Y ×Q → R
b(y , (v1, v2)) :=∫

I

[
〈y ′(t, ·), v1(t, ·)〉 + 〈A(t)y(t, ·), v1(t, ·)〉

]
dt + 〈y(0, ·), v2〉 =: 〈By , v〉

right hand side

〈f , v〉 :=

∫
I

〈f (t, ·), v1(t, ·)〉 dt + 〈y0, v2〉

(PDE) ; given f ∈ Q′, find y ∈ Y: By = f

Theorem (MP) ‖Bw‖Q′ ∼ ‖w‖Y for all w ∈ Y mapping property

(ii) ΨY ,ΨQ wavelet bases for Y,Q ; By := (〈ψQλ ,By〉)λ∈I f := (〈ψQλ , f 〉)λ∈I
Theorem By = f ⇐⇒ By = f B : `2 → `2 and By = f well-posed in `2

(MP) + (NE) =⇒ ‖Bv‖`2
∼ ‖v‖`2

, v ∈ `2 B unsymmetric
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Application to PDE-Constrained Optimal Control Problem

Control problem in wavelet coordinates

minimize J(y, u) = 1
2 ‖R

1/2(y − y∗)‖2 + ω
2 ‖R

−1/2u‖2

subject to By = f + u B : `2 → `2 automorphism ‖ · ‖ := ‖ · ‖`2

Necessary and Sufficient Conditions — Karush-Kuhn-Tucker (KKT) system

L(y, u, p) := J(y, u) + 〈p, By − (f + u)〉

δL = 0 ;

By = f + u

ωR−1u = p

B∗p = R(y∗ − y)

⇐⇒ Qu = g

⇐⇒

R 0 B∗

0 ωR−1 −E
B −E 0


y

u

p

 =

Ry∗

0

f

 (SPP) Q : `2 → `2 automorphism

where
Q := B−∗RB−1 + ωR−1

g := B−∗(Ry∗ − RB−1f)
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Complexity Analysis

Based on benchmark:
decay rate s for (wavelet-)best N term approximation As := {v ∈ `2 : ‖v − vN‖ <∼ N−s}

Work/accuracy balance of best N term approximation:

Target accuracy ε (∼ N−s ) ←→ Work ε−1/s (∼ N)

Convergence and Complexity

For solution routine (A): (Idealized) iteration (for symmetric B)

vn+1 = vn + (f − Bvn) update via Res [η,B, f, v]→ rη ; Solve [ε,B, f]→ vε

Benchmark Theorem [Cohen, Dahmen, DeVore ’01/’02]

Vanishing moments (CP) for wavelets =⇒ B is s∗–compressible

=⇒ for variational problem satisfying (MP) scheme Solve can be designed with properties:

(I) For every target accuracy ε > 0 Solve produces after finitely many steps
approximate solution vε such that ‖v − vε‖ ≤ ε

(II) Exact solution v ∈ As =⇒ supp vε, # flops ∼ ε−1/s ∼ N
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Core Ingredient of Solve : Compressible Operators

(CP) ; B is s∗–compressible:
for every s ∈ (0, s∗) there exists Bj

with ≤ αj2
j nonzero entries per row and column s.th. for j ∈ N0

‖B−Bj‖ ≤ αj2
−sj

∑
j∈N0

αj <∞ (B ‘close to’ sparse matrix)

Application of (Non)Linear Operators in Wavelet Bases
Theory: [Dahmen, Schneider, Xu ’00], [Cohen, Dahmen, DeVore ’03] . . .

d = 2, isotropic tensor-product wavelets: [Vorloeper ’10] general d : [Stapel ’11], [Mollet, Pabel ’12], [Pabel ’15]

Input: finitely supported vector v = (vµ)µ∈Λ Λ ⊂ I finite

Output: approximation of Bv with infinite-dimensional operator B : `2(I)→ `2(I)

B : Y → Q′ ; expand Bv ∈ Q′ in dual wavelet basis for Q′ and v in primal wavelet basis for Y
;

Bv = (Bv)T Ψ̃ =
∑
λ∈I
〈Bv , ψλ〉 ψ̃λ =

∑
λ∈I
〈B(
∑
µ∈Λ

vµψµ, ψλ〉) ψ̃λ =
∑
λ∈I

∑
µ∈Λ

vµ〈Bψµ, ψλ〉 ψ̃λ

; compute 〈Bψµ, ψλ〉 for given µ ∈ Λ (finite) and all λ ∈ I

Compressibility of B: |〈Bψµ, ψλ〉| ≤ C‖v‖ sup
µ: Sλ∩Sµ 6=∅

2−γ(|λ|−|µ|) |vµ| γ > d
2 + 1

follows from wavelet property (CP)
Essential data structure (for nonlinear operators): tree-type index sets
input v ; prediction of tree index set based on supp v and properties of B

; computation of (Bv)λ after transformation to piecewise polynomials
; application of B in optimal linear complexity
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Application of (Non)Linear Operators in Wavelet Bases: Numerical Example

[Mollet, Pabel ’12], [Pabel ’15]

PDE with nonlinear term

−∆y + y3 = f in Ω := (0, 1)2

y = 0 on ∂Ω

right hand side f solution y (with Richardson scheme and residual error bound 10−3)

distribution of 7177 active wavelet coefficients Runtime (seconds) for evaluating y3 for d ≤ 4
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Convergence and Complexity Analysis for Control Problem

with Elliptic or Parabolic PDE Constraints

Essential ideas: Res for Solve [. . . ,Q, . . .] reduced to Res for Solve [. . . ,B, . . .]

applied to normal equations

and KKT system ←→ condensed system Qu = g

Theorem [Dahmen, Kunoth, SICON ’05], [Gunzburger, Kunoth, SICON ’11]

For any target accuracy ε > 0 Solve [ε,Q, g]→ uε converges in finitely many steps

‖u− uε‖ ≤ ε ‖y − yε‖ <∼ ε ‖p− pε‖ <∼ ε uε, yε, pε finitely supported

u, y, p ∈ As =⇒

(# supp uε) + (# supp yε) + (# supp pε) <∼ ε−1/s
(
‖u‖1/s
As + ‖y‖1/s

As + ‖p‖1/s
As

)
‖uε‖As + ‖yε‖As + ‖pε‖As <∼ ‖u‖As + ‖y‖As + ‖p‖As

#flops ∼ ε−1/s
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Numerical Example for Elliptic Control Problem (2D)

target state y∗

type e = (1, 0) type e = (0, 1)

4

5

6

7

1.69e-03

0.00e+00 4

5

6

7

1.69e-03

0.00e+00

4

5

6

7

2.08e-01

0.00e+00 4

5

6

7

2.08e-01

0.00e+00

4

5

6

7

4.34e-03

0.00e+00 4

5

6

7

4.34e-03

0.00e+00

[Burstedde ’05]
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Numerical Example for One Parabolic PDE
[Chegini, Stevenson ’11], [Stapel ’11]

Compute y = y(t, x) such that

yt(t, x)− yxx (t, x) = g(t)⊗ (−π2) sin(πx) in I × Ω := (0, 1)2

y(t, 0) = y(t, 1) = 0 for t ≥ 0
y(0, x) = 0 for x ∈ (0, 1)

and g(t) :=

{
1 t ∈ [0, 1

3 )
2 t ∈ [ 1

3 , 1]

Problem formulation and implementation:

I Modified problem with zero initial conditions ;

solution space Y = (L2(I )⊗ H1(Ω)) ∩ (H1
(0(I )⊗ H−1(Ω)) and test space Q = L2(I )⊗ Y

I Inhomogeneous initial data: homogenization of initial conditions ; modification of r.h.s.
I Implementation based on AWM Toolbox by [Vorloeper ’10]

biorthogonal isotropic wavelets of order m = 2, m̃ = 4
I Iterative solution by GMRES

Plot of Solution, Refined Grid and Residual Error Reduction

8526 degrees of freedom Expected rate in H1 (isotropic wavelets): 1/2 red: after coarsening
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Summary (Part II)

I Control problem constrained by parabolic PDE

I Full weak space-time formulation of evolution PDE

; saddle point system of PDEs coupled globally in time and space

I For smooth solutions: multilevel/wavelet preconditioners + nested iteration

; numerical solution scheme with optimal complexity

I For non-smooth solutions:
proofs of convergence and optimal complexity based on adaptive wavelets

Extensions and Outlook

I Control problems constrained by elliptic or parabolic PDEs
with stochastic coefficients (uncertainty quantification)

I Multilevel Monte-Carlo methods or stochastic Galerkin schemes (generalized polynomial
chaos approximations) for PDE-constrained control problems (and finite-dimensional noise
assumption)

[Gunzburger, Lee, Lee ’11], [Hou, Lee, Manouzi ’11], [Chen, Quarteroni, Rozza ’13], [Gunzburger, Webster, Zhang ’14], . . .

I Infinitely many stochastic parameters [Kunoth, Schwab, SICON ’13], [Kunoth, Schwab, SIAM JUQ ’16]

I Deterministic PDE-constrained control problems:
Adaptive methods based on finite elements ? Convergence and optimal complexity ?

[Becker, Mao ’11], [Gong, Liu, Tan, Yan ’18] . . .

One or different meshes for all variables ?
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