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Generating Sparse Representations by
Adaptive Multiscale Approximations

Angela Kunoth
University of Cologne, Germany

Central topic: Efficient extraction, representation and analysis of information:
sparse representations

Goal: Maximal gain of knowledge with (ideally) provable
minimal amount of degrees of freedom and work

Essential ingredients: adaptive multiscale/wavelet representations

Problem classes:
> Explicitly given information:
fit and/or analysis of (multivariate, nonlinear) data on nonuniform grids
> Implicitly given information:
e solution of (elliptic or parabolic) partial differential equations (PDEs)

o PDE-constrained control problems
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PARrT I:  Explicitly Given Data: Approximation of Surfaces

Problem:

Given P = {(x1,z1),...,(xn,2n)} not uniformly distributed points
X ={x,...,xn} CR" ne{1,2,3}

Z={z,...,zy} CR

Goal: Construct function  : R” — R representing P

Example for n = 2:

Solution method: Adaptive coarse—to—fine construction with thresholding
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An Adaptive Coarse—to—Fine Method with Thresholding

[Castaiio, Kunoth '03-'06]

Ansatz: f(x) = Z dxtpa(x) A appropriate set of indices A = (J, k, €)
XEA

Multiscale basis functions:
{1¥x }xen preorthogonal (boundary—adapted) B—spline wavelets

Fitting of {dx}xen using Approximation: min Z (zi — F(x))?

Approximation with regularization: min Z P — f(x, + V”f“i,oz

Approximation (with regularization) ~» normal equations
(ATA(+I/D))C/ — ATz = (M(+vD))d = b

N
M € R#NX#N My s = D () (x0)
i=1

N
be RN by ="z (x)

“ 8 ¥ B OB OE OB 2 B ¥ g

Typical structure of M

Amount of data V > #A degrees of freedom
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Choice of index set A in f = Z dxy in order to . ..
AEN

... get a reasonable reconstruction

1 1 1
]
.
.
.
-
.
.
.
]
O o, o,
0 1 0 1 0 1

.. avoid processing redundant information

1

-1

0 1 N

#P = 10.000 points #N, = 33

#N\, = 8614

Angela Kunoth — Generating Sparse Representations by Adaptive Multiscale Approximations



Data Driven Coarse—To—Fine Construction of A

1. Tree at (coarsest) level j =3 As

2. Discard children containing less than g data points in support

3. Compute approximation f; := Z dxa
PN %

4. Threshold small coefficients EE-

. and get tree for level j = 4

A O | Y repeat 2.—4.

5. Stop at highest level J only determined by data
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Numerical Performance of Multilevel Functions: Spline-Wavelets — Hierarchical Bases

i Vi v ' W, 2 — ; )

B a S o ' Solution of ATAd = ATz
i Vza Yoy Yoo Voo ! - "/\/—/“\

FAVAVANVAN "

; ‘ e NN——

/AVAVAVAVAVAVAVAN B A

Hierarchical basis B-spline wavelet basis

160.000 gridded data points from GTOPO30 Digital Elevation Model

— .
.. ‘
i --- Hierarchical Basis

3|

20 500 500

Error decay at highest level J = 7: log(error)/CG iterations: no nesting nested iterations

Further issues:
Regularization: Construction of surfaces with smoothness constraints
Robust regression: Handling of outliers [Castafio, Kunoth, IEEE Trans. Image Proc., 2006]
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Example from Photogrammetric Application with fixed «a, v

F

Original data vertical view of original data (section) sampling geometry
(section)

3D point set (330.000 points) of industrial site taken by Leica Cyrax 2500, Prof. Staiger, GH
Essen

reconstruction for J = 4 coefficients of wavelets of type (1, 1) reconstruction for J = 6

wavelet reconstruction with regularization: v = 0.01, a = 4

thresholding parameter ¢ = 1le — 3 #N\e = 2623 full grid: 16384 coefficients
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PART II: Implicitly Given Data: Optimal Control Problems Constrained by a Parabolic PDE

Given y.(t,-) f w>0 end time T >0 initial condition yo
T 2 T 2
minimize  T(v,0) = 3 [ Iy(e) = et der [ ueol de
0 0
subject to ' (t) + A(t)y(t) = F(t)+ u(t) ae. te(0,T)=:1 (PDE)
y(0) =y
y =2y y = y(t, x) state u = u(t, x) control
Y = Hj(RQ) state space  Z = Y = Hy(f2) observation space U = Y’ = H™}() control space
Alt): Y =Y’ (A(t)v(t, ), w(t,-)) = / [Vv(t,x) - Vw(t,x) + v(t, x)w(t, x)] dx
Q
A(t) 2nd order linear selfadjoint coercive & continuous operator on Y Q CR?
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PART II: Implicitly Given Data: Optimal Control Problems Constrained by a Parabolic PDE

Given y.(t,-) f w>0 end time T >0 initial condition yo
T 2 T 2
minimize  T(v,0) = 3 [ Iy(e) = et der [ ueol de
0 0
subject to ' (t) + A(t)y(t) = F(t)+ u(t) ae. te(0,T)=:1 (PDE)
y(0) =y
y =2y y = y(t, x) state u = u(t, x) control
Y = Hj(RQ) state space  Z = Y = Hy(f2) observation space U = Y’ = H™}() control space
Alt): Y =Y’ (A(t)v(t, ), w(t,-)) = / [Vv(t,x) - Vw(t,x) + v(t, x)w(t, x)] dx
Q
A(t) 2nd order linear selfadjoint coercive & continuous operator on Y Q CR?

PDE-constrained control problem ~» requires repeated solution of (PDE)

y'(£) + A(t)y(t) () + u(t)
y(0) = ¥

~» requires fast solver as core ingredient

Conventional time discretizations (e.g., Crank-Nicolson method) ~»
requires fast solver for elliptic PDE in each time step
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Numerical Solution of a Single Elliptic PDE
Elliptic PDE Ay = f s.th. ||Av|lys ~ |lv]ly ~ findy € Y: (v,Ay) = (v,f)forallveyY

Conventional finite element discretization on a uniform grid: Y, C Y dim Y, < oo
8
Obstructions:

o Large linear systems of equations ~» iterative solver
o High desired accuracy ~» small h ~» larger problem ~» worse condition condz(A;) ~ h=?

o Resolution of singularities in data and/or geometry ~»  small h
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Numerical Solution of a Single Elliptic PDE
Elliptic PDE Ay = f s.th. ||Av|lys ~ |lv]ly ~ findy € Y: (v,Ay) = (v,f)forallveyY

Conventional finite element discretization on a uniform grid: Y, C Y dim Y, < oo

< ]

Obstructions:
o Large linear systems of equations ~» iterative solver
o High desired accuracy ~» small h ~» larger problem ~» worse condition condz(A;) ~ h=?

o Resolution of singularities in data and/or geometry ~»  small h

Ingredients for Efficient Numerical Solution:

(i) Multilevel preconditioner Cp
multigrid methods, BPX preconditioner, wavelet discretization ~- condz(CpAp) ~ 1
Proofs: [Braess, Hackbusch '80s], [Dahmen, Kunoth '92], [Oswald '92]
(ii) Nested iteration
(iii) Additionally: adaptive refinement (for nonsmooth solutions)

a—posteriori error estimation ~» local grid refinement ~» convergence/convergence rates?
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First goal: Realize discretization error accuracy & with minimal amount of work O(/N(g))

A-priori Estimates for Finite Elements:

Quality measure:  Approximation in norm Iy = yallp@) < €
A-priori error estimates: Q C RY dimY, =N~ h~? uniform grid
ly = yull @) < h 1yl Hr (o) yh € Y 0 < r < fmax
= ly =wlne S N7ylure

N degrees of freedom <+ accuracy O(N /%)

Approximation rate determined by
(i) approximation order ryax of Yj
(ii) space dimension d

(iii) amount of smoothness of y in L,

Target:  Realize discretization error accuracy = ~ h? ~ 272 for grid with spacing h ~ 2~
Problem complexity: For h ~ 277 a total of N ~ 2’ unknowns

Optimal complexity for iterative solver:  Minimal amount of work is O(N)

Theorem: For smooth solution y:
Optimal multilevel preconditioner & nested iteration yields method of optimal complexity O(N,)
to reach discretization error accuracy on finest level J

Proofs: [Braess, Hackbusch '80s], [Dahmen, Kunoth '92], [Oswald '92]
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First goal: Realize discretization error accuracy & with minimal amount of work O(/N(g))

A-priori Estimates for Finite Elements:

Quality measure:  Approximation in norm Iy = yallp@) < €
A-priori error estimates: Q C RY dimY, =N~ h~? uniform grid
ly = yull @) < h 1yl Hr (o) yh € Y 0 < r < fmax
= ly =wlne S N7ylure

N degrees of freedom <+ accuracy O(N /%)

Approximation rate determined by
(i) approximation order ryax of Yj
(ii) space dimension d

(iii) amount of smoothness of y in L,

Target:  Realize discretization error accuracy = ~ h? ~ 272 for grid with spacing h ~ 2~
Problem complexity: For h ~ 277 a total of N ~ 2’ unknowns

Optimal complexity for iterative solver:  Minimal amount of work is O(N)

Theorem: For smooth solution y:
Optimal multilevel preconditioner & nested iteration yields method of optimal complexity O(N,)
to reach discretization error accuracy on finest level J

Proofs: [Braess, Hackbusch '80s], [Dahmen, Kunoth '92], [Oswald '92]
...back to PDE-constrained control problem ...
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Optimal Control Problems Constrained by a Parabolic PDE

Given y,(t,-) f w >0 end time T >0 initial condition yo

T T
minimize  T(r0) = 3 [ vt =) der % [ llue IR o
0 0

subject to  y'(t) + A(t)y(t) = f(t)+ u(t) ae te(0,T)=:1 (PDE)

y(0) =y

y' = %y y = y(t, x) state u = u(t, x) control

Y = H}(Q) state space  Z = Y = H}(f2) observation space U = Y’ = H™}() control space

At) Y = ¥ (At w(t, ) = [ [TV(E%) - (e, ) + (e, x)we, )]
Q

A(t) 2nd order linear selfadjoint coercive & continuous operator on Y Q CR?
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Optimal Control Problems Constrained by a Parabolic PDE

Given y,(t,-) f w >0 end time T >0 initial condition yo

T T
minimize  T(r0) = 3 [ vt =) der % [ llue IR o
0 0

subject to  y'(t) + A(t)y(t) = f(t)+ u(t) ae te(0,T)=:1 (PDE)

y(0) =y

y' = %y y = y(t, x) state u = u(t, x) control

Y = H}(Q) state space  Z = Y = H}(f2) observation space U = Y’ = H™}() control space

At) Y = ¥ (At w(t, ) = [ [TV(E%) - (e, ) + (e, x)we, )]
Q

A(t) 2nd order linear selfadjoint coercive & continuous operator on Y Q CR?

PDE-constrained control problem  ~» requires repeated solution of (PDE)

YO +A@Ry() = f(t)+u(t)

y(0) = ¥
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Necessary and Sufficient Conditions for Optimality

Optimal control problem constrained by parabolic PDE

~ System of parabolic PDEs coupled globally in time (and space)

y'(t) + A(t) y(t)
y(0)

wR™u(t) + p(t)

—p'(t) + A(t)"p(t)
p(T)

Riesz operator R defined by

f(t) + u(t) ae tel
Yo
0 ae tel

R(y«(t) — y(t)) ae tel
0

(v, R’w},,xy/ = (v,w)y forallv,w e Y
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Necessary and Sufficient Conditions for Optimality

Optimal control problem constrained by parabolic PDE

~ System of parabolic PDEs coupled globally in time (and space)
Y () +AR) y(t) = f(t)+ u(t) ae tel
y(0) = »
wR™u(t)+p(t) = 0 ae tel
PO +ADTRE = R(u(t) () ae tel
p(T) = 0

Riesz operator R defined by (v, Rw)y v/ := (v, w)y for all v,w € Y

Obstructions for numerical solution:

e convential time discretizations: time-marching methods
~>  need storage of y(t;), u(t;), p(t;) for all discrete times 0 =ty,..., T =ty

e in each time step: solve elliptic PDE ~» large linear system of equations
~» iterative solver ~» need preconditioning in (conjugate) gradient method

e singularities in data/domain: adaptive (FE) mesh(es) for y(t;), u(t;), p(t;) for all t;
one mesh for all variables, refinement/coarsening ? [Meidner, Vexler 07], ...

convergence ? complexity 77
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Necessary and Sufficient Conditions for Optimality

Optimal control problem constrained by parabolic PDE

~ System of parabolic PDEs coupled globally in time (and space)
Y () +AR) y(t) = f(t)+ u(t) ae tel
y(0) = »
wR™u(t)+p(t) = 0 ae tel
PO +ADTRE = R(u(t) () ae tel
p(T) = 0

Riesz operator R defined by (v, Rw)y v/ := (v, w)y for all v,w € Y

Obstructions for numerical solution:

e convential time discretizations: time-marching methods
~>  need storage of y(t;), u(t;), p(t;) for all discrete times 0 =ty,..., T =ty

e in each time step: solve elliptic PDE ~» large linear system of equations
~» iterative solver ~» need preconditioning in (conjugate) gradient method

e singularities in data/domain: adaptive (FE) mesh(es) for y(t;), u(t;), p(t;) for all t;
one mesh for all variables, refinement/coarsening ? [Meidner, Vexler 07], ...

convergence ? complexity 77

Solution Ansatz here: full weak space-time form of parabolic PDE constraint
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Variational Space-Time Form for a Single Parabolic Evolution PDE

[Ladyshenskaya et al. 1967], [Wloka '82], [Dautray, Lions '92], [Schwab, Stevenson '09], [Chegini, Stevenson '11], [Stapel '11]
’
y'() + A(t) y(1)

y(0) = »

(PDE) f(t) ae tel

solution space: Lebesgue-Bochner space I := (L2(1) @ Y) N (H}() @ Y') — C°(1) ® La(Q)
with norm ”WH§1 = \|w||z2(,)®y + HW’H?-ﬂ(/)@V'
test space: Q= (L(I)®Y) x Lx(Q) with norm HVHZQ = ‘|V1||%2(1)®y + |‘V2||f2(n)

bilinear form b(+,-) : Y x Q@ - R
b(w, (v1, v2)) := // [(w'(t, ), va(t, ) + (ARW(t, ), (e, )] dt + (w(0, ), va) =: (Bw, v)

right hand side
(f,v) := /(f(t, ), va(t, ) dt + (o, v2)
1

(PDE) ~»given f € Q', findy € V: By

Existence and uniqueness of solution:

Theorem [[Bwl|lgr ~ [lw|ly  forallwe Q mapping property (MP)

Formulations with 1/2 time derivatives: [Fontes "99], [Larsson, Schwab '15]
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Reformulation of PDE-Constrained Optimal Control Problem

minimize  T(0) = 3y = lBmer + S0 0ey
subject to By = f+Eu (PDE) B:Y — Q' satisfies (MP)
E:=(1d,0): L(H®Y — Q

Necessary and Sufficient Conditions — Karush-Kuhn-Tucker (KKT) system

L(y,u,p) :=J(y,u) + (p, By — f — Eu)
Riesz operator (v, RW>(L2(I)®Y)><(L2(I)®Y’) = (v, W)Lz(/)®y

B*p = Ry« —v)
L=0 ~ wR™u = E*p
By = f+Eu R 0 B % Ry.
= 0 wR™! —E* ul=1 o0 (SPP)
B -E 0 P f
~> saddle point operator
R 0 B*
(Gq,§) = < 0 wR™! —FE* q,z;> A := diag(R,wR™?) pos. def., B := (B, —E) full rank
B —E 0
y symmetric, continuous, boundedly invertible on X := Y XU X Q
=> unique solution [ v | =: g of system of PDEs (SPP)

P JFormulations with 1/2 time derivatives: [Langer, Wolfmayr '13], [Kunoth, Mollet ‘15, unpublished]
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Reformulation of PDE-Constrained Optimal Control Problem

minimize  T(0) = 3y = lBmer + S0 0ey
subject to By = f+Eu (PDE) B:Y — Q' satisfies (MP)
E:=(1d,0): L(H®Y — Q

Necessary and Sufficient Conditions — Karush-Kuhn-Tucker (KKT) system
L(y,u,p) = T (ysu) + (p, By — f = Eu)

Riesz operator (v, Rw) (1, (nev)x(Ley) = (Vs WLney

B'p = R(y«—y)
L=0 ~ wR™u = E*p
By = f+Eu R 0 B* v Ry.
= 0 wR™! —E* ul=1 o0 (SPP)
B —E 0 P f
~> saddle point operator
R 0 B*
(Gq, §) ::< 0 wR™! —FE* q,c7>A:= diag(R, wR™!) pos. def., B := (B, —E) full rank
B —-E 0

y symmetric, continuous, boundedly invertible on X := Y XU X Q

=> unique solution [ v | =: g of system of PDEs (SPP)
P JFormulations with 1/2 time derivatives: [Langer, Wolfmayr '13], [Kunoth, Mollet '15, unpublished]
Next: discretization in space and time variables by wavelets
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Building Blocks: (Biorthogonal Spline—) Wavelets

H Hilbert space on domain Q C RY with || - ||u H’ dual space for H with (-, -)

Vi={Yr: A€} CH Wavelets I (infinite) index set
(NE) W Riesz basis for H

vEH v =vV .= Z(VM/;)\)TPA such that  [|v|ln ~ [Jv[[s,m
A€l

IAl

(L) Locality diam (supp ¢x) ~ 27 || resolution

Y centered around 2- Mg

d. s .
(CP) Vanishing moments (v, 9x) < 2~ M5 +m) ||v('”)||LOO(supp ¥y) for some 7

[Dahmen, Kunoth, Urban '99] [Dahmen, Schneider '99], [Kunoth, Sahner '06] [Harbrecht, Schneider '00]
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Paradigm of Adaptive Wavelet Method for One Stationary PDE

[Cohen, Dahmen, DeVore '01/'02]

(i) Well-posed variational problem: given f € Q' B:Y — Q' findy €Y such that

‘ (MP) 1Bw|lgr ~ [lw]ly  forallw e Y mapping property ‘

(i) WY, W< wavelet bases for ), O :

[ (NE) W7V ly ~ wl,  forallw = (wa)sei € £s |

Bw = (¥, Bw))xer  f:= (%Y, ))rer

Theorem By=f <= By=1f well-posedin £, (B:ty — £r)

(MP) + (NE) <= IBwlle, ~ [wlle, forallw et

(iii) Practical solution schemes for By = f:
(A) Perturbed Richardson iteration (for symmetric B):
(A1) y"t =y "+(F=By") n=0,1,2... |y ~ylle, < ply"~yll, p<1
(A.2) Approximate realization: adaptive evaluation of By” in SOLVE [¢, B, f] — y.
(A.3) Coarsening (thresholding) of the iterands (for complexity)
(B) Adaptive wavelet Galerkin method and bulk chasing strategy

Angela Kunoth — Generating Sparse Representations by Adaptive Multiscale Approximations
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Extension to a Single Parabolic Evolution PDE

[Schwab, Stevenson ‘09]
f(t) ae tel
Yo

: . . "(t) + A(t) y(t)
(i) Variational space-time form of (PDE) y ( );\//(O)

solution space: Lebesgue-Bochner space I := (L(I) ® Y) N (H}(I) ® Y')

. 2 2 2
with norm [lw|l3, == [lwll,(hey + ”W,H;.,l(/)@y/

test space Q= L(1;Y) X L(R2) with norm ||v||29 = HV1||2L2(/)®V + HVZ”ZLQ(Q)

bilinear form b(-,-) : ¥ x Q - R
b(y, (v1,v2)) ==

/I[O"(t Yol ) + (A (t, ), vt )] de+ (y(0, ), va) =: (By,v)

right hand side

(F,v) = /l<f(r, it ) de + (o, )

(PDE) ~s given f € @', findy € I: By =f
Theorem (MP) [1Bw|lgr ~ [w]ly forallw ey mapping property
(i) WY, WS wavelet bases for V,Q ~+ By := (¥, By))act  f:=((¥2, Mre

Theorem By=f <= By=f B: ¢, — ¢ and By =f well-posed in #>

(MP) + (NE) = (IBvlle, ~ |lvlle,, VvE&%£ B unsymmetric
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Application to PDE-Constrained Optimal Control Problem

Control problem in wavelet coordinates

minimize  J(y,u) = 3 [RY?(y —y.)|* + IR 2u|?

subject to By =f+u B : ¢, — ¢, automorphism 1= 1 lley

Necessary and Sufficient Conditions — Karush-Kuhn-Tucker (KKT) system

L(y,u,p) := J(y,u) +(p, By — (f +u))

By = f+u
SL=0~ | wR™W =p =
B"p = R(y. —v)
R 0 B* Ry.
— 0 whR™' —E = 0 (SPP) Q : {2 — £> automorphism
B —E 0 P f

‘= B *RB"!4+wR™!

where
= B *(Ry. — RB™'f)
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Complexity Analysis

Based on benchmark:
decay rate s for (wavelet-)best N term approximation A i={velr:|v-wy]| S N7}

Work/accuracy balance of best N term approximation:

Target accuracy ¢ (~ N7%) <+— Work ¢ /¢ (~ N)

Convergence and Complexity

For solution routine (A): (Idealized) iteration (for symmetric B)
vt =" 4 (f — Bv") update via REs[n,B,f,v] —r, ~»  SOLVE[e, B,f] — v.

Benchmark Theorem [Cohen, Dahmen, DeVore '01/'02]

Vanishing moments (CP) for wavelets =—> B is s*—compressible

= for variational problem satisfying (MP) scheme SOLVE can be designed with properties:

(1) For every target accuracy = > 0  SOLVE produces after finitely many steps
approximate solution v. such that lv—v.| <=

(1) Exact solution v € A° = suppv., # flops ~ £ */° ~N
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Core Ingredient of SOLVE: Compressible Operators

(CP) ~ B s s*—compressible:
for every s € (0, s™) there exists B;
with < 2/ nonzero entries per row and column s.th. for j € Ny

a8 8§

IB—B;|| < a;27¥ Z aj < oo (B ‘close to’ sparse matrix)
Jj€Ng

S8 F 8 EE

Application of (Non)Linear Operators in Wavelet Bases
Theory: [Dahmen, Schneider, Xu '00], [Cohen, Dahmen, DeVore '03] ...
d = 2, isotropic tensor-product wavelets: [Vorloeper '10]  general d: [Stapel '11], [Mollet, Pabel '12], [Pabel '15]

Input: finitely supported vector v = (v, ),en A C I finite
Output: approximation of Bv with infinite-dimensional operator B : ¢,(I) — £»(I)

B:Y — Q' ~s expand Bv € Q' in dual wavelet basis for Q" and v in primal wavelet basis for )/

By = (Bv) 0 =" (Br,ya) hx = D (B vt ¥n))ha = D D viu(Btpyu, ) ta

el XEl  peA X€El pen

~>  compute (B, 1) for given p € A (finite) and all A € T

Compressibility of B:  [(Bty, )| < Cpy sup 2~ I=1kD) A v>9+1
N follows from wavelet property (CP)
Essential data structure (for nonlinear operators): tree-type index sets
input v ~ prediction of tree index set based on suppv and properties of B
~» computation of (Bv), after transformation to piecewise polynomials
~>  application of B in optimal linear complexity

Angela Kunoth — Generating Sparse Representations by Adaptive Multiscale Approximations
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Application of (Non)Linear Operators in Wavelet Bases: Numerical Example
[Mollet, Pabel '12], [Pabel '15]

“Ay+y* = f in Q:=(0,1)2
PDE with nonlinear term y =0 on 9Q

12

0.8
0.6
0.4
0.2

(T
i i
| MM“

right hand side f solution y (with Richardson scheme and residual error bound 10~3)
2.45e-02

T T s

T
52310 —

0.001 |

L
I{ 1000 10000 100000 1e+06 16407
45 6 T 6.90e-11 number of cells.

distribution of 7177 active wavelet coefficients ~ Runtime (seconds) for evaluating y® for d < 4

U oY
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Convergence and Complexity Analysis for Control Problem
with Elliptic or Parabolic PDE Constraints

Essential ideas: RES for SOLVE]. ..

,Q,...] reduced to REs for SOLVE[...,B, ..

1

applied to normal equations

KKT system <— condensed system Qu =g

and

Theorem

For any target accuracy € > 0  SoLVE [, Q, g] — u. converges in finitely many steps

lu—uvfl<e Ny=vell S e lp—p-l

uy,p €A =
(#suppu.) + (#suppys) + (#supppe) < e /* (lullls + IS + IpIS)

F#flops ~ e

[Dahmen, Kunoth, SICON '05], [Gunzburger, Kunoth, SICON '11]

< e u.,Ye, pe finitely supported

lucllas + llyellas + llpcllas S lullas + llyllas + lIpllas

1/s
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Numerical Example for Elliptic Control Problem (2D)

type e = (1,0)
1.69-03
7
6
- -—
5 ==
4 0. 00e+00

. 08e- 01
. 00e+00
N 4.34e-03
7 < | _F
6 = i
5
4 0. 00e+00

type e = (0,1)

-

o

. 69e- 03

i

. 00e+00

. 08e- 01

i

. 00e+00

34e-03

i

. 00e+00

target state y.

[Burstedde '05]
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Numerical Example for One Parabolic PDE

[Chegini, Stevenson '11], [Stapel '11]
Compute y = y(t, x) such that

ye(t, x) — yc(t, x) = g(t) ® (—ﬂz)Sin(ﬂ'X) in I xQ:=(0, 1)2
y(t,0) = y(t,1) = 0 fort >0
y(0,x) =0 for x € (0,1)
and g(t) i= { ) P E 31])

Problem formulation and implementation:
» Modified problem with zero initial conditions ~»
solution space Y = (L»(1) ® HI(Q)) n (H(lo(l) ® Hfl(Q)) and test space Q =L (I)®Y
» Inhomogeneous initial data: homogenization of initial conditions ~» modification of r.h.s.
> Implementation based on AWM Toolbox by [Vorloeper '10]

biorthogonal isotropic wavelets of order m = 2, m = 4
> lterative solution by GMRES

Plot of Solution, Refined Grid and Residual Error Reduction

gy

nnr‘u i
= w:g;.'u El'ﬁ

| “um

w7
E)

93 03 04 03 oe . o ! : ‘ z
2 o sesvees rneceen

8526 degrees of freedom Expected rate in H* (isotropic wavelets): 1/2  red: after coarsening
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Summary (Part II)

Control problem constrained by parabolic PDE
Full weak space-time formulation of evolution PDE
~~ saddle point system of PDEs coupled globally in time and space
For smooth solutions: multilevel /wavelet preconditioners + nested iteration
~» numerical solution scheme with optimal complexity

For non-smooth solutions:
proofs of convergence and optimal complexity based on adaptive wavelets

Extensions and Outlook

Control problems constrained by elliptic or parabolic PDEs
with stochastic coefficients (uncertainty quantification)

Multilevel Monte-Carlo methods or stochastic Galerkin schemes (generalized polynomial
chaos approximations) for PDE-constrained control problems (and finite-dimensional noise
assumption)

[Gunzburger, Lee, Lee '11], [Hou, Lee, Manouzi '11], [Chen, Quarteroni, Rozza '13], [Gunzburger, Webster, Zhang '14], ...

Infinitely many stochastic parameters [Kunoth, Schwab, SICON '13], [Kunoth, Schwab, SIAM JUQ '16]
Deterministic PDE-constrained control problems:

Adaptive methods based on finite elements ? Convergence and optimal complexity ?
[Becker, Mao '11], [Gong, Liu, Tan, Yan '18] ...

One or different meshes for all variables ?
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