On the restricted three-body problem with crossing singularities

Giovanni Federico Gronchi

Dipartimento di Matematica, Università di Pisa e-mail: gronchi@dm.unipi.it

Mathematical Models and Methods in Earth and Space Science Università di Roma 2 'Tor Vergata' March 19-22, 2019

A (1) > A (2) > A

Three-body problem: Sun, Earth, asteroid.

Restricted problem: the asteroid does not influence the motion of the two larger bodies.

Equations of motion of the asteroid:

$$\ddot{\mathbf{y}} = -G\left[m_{\odot}\frac{(\mathbf{y} - \mathbf{y}_{\odot}(t))}{|\mathbf{y} - \mathbf{y}_{\odot}(t)|^{3}} + m_{\oplus}\frac{(\mathbf{y} - \mathbf{y}_{\oplus}(t))}{|\mathbf{y} - \mathbf{y}_{\oplus}(t)|^{3}}\right]$$

- y is the unknown position of the asteroid;
- y_☉(t), y_⊕(t) are known functions of time, solutions of the two-body problem Sun-Earth.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

The restricted three–body problem

In heliocentric coordinates

$$\ddot{\boldsymbol{x}} = -k^2 \left[\frac{\boldsymbol{x}}{|\boldsymbol{x}|^3} + \mu \left(\frac{(\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} - \frac{\boldsymbol{x}'}{|\boldsymbol{x}'|^3} \right) \right]$$

where

$$m{x} = m{y} - m{y}_{\odot}, \ m{x}' = m{y}_{\oplus} - m{y}_{\odot};$$

 $k^2 = Gm_{\odot}, \ \mu = rac{m_{\oplus}}{m_{\odot}}$ is a small parameter;

 $-k^2\mu \frac{(\mathbf{x}-\mathbf{x}')}{|\mathbf{x}-\mathbf{x}'|^3}$ is the direct perturbation of the planet on the asteroid;

 $k^2 \mu \frac{x'}{|x'|^3}$ is the indirect perturbation, due to the interaction Sun-planet.

Hint! We can model the dynamics of an asteroid in the solar system by summing up the contribution of each planet to the perturbation.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Canonical formulation of the problem

Use Delaunay's variables $\mathcal{Y} = (L, G, Z, \ell, g, z)$ for the motion of the asteroid:

$$\begin{cases} L = k\sqrt{a} \\ G = L\sqrt{1 - e^2} \\ Z = G \cos I \end{cases} \qquad \qquad \begin{cases} \ell = n(t - t_0) \\ g = \omega \\ z = \Omega \end{cases}$$

These are canonical variables, representing the osculating orbit, solution of the 2-body problem Sun-asteroid.

Denote by $\mathcal{Y}' = (L', G', Z', \ell', g', z')$ Delaunay's variables for the planet.

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> ○ Q ()

Canonical formulation of the problem

Hamilton's equations are

4

$$\dot{\mathcal{Y}} = \mathbb{J} \, \nabla_{\mathcal{Y}} \mathcal{H} \,,$$

where

$$\mathcal{H} = \mathcal{H}_0 + \epsilon \mathcal{H}_1, \qquad \epsilon = \mu k^2, \qquad \mathbb{J} = \begin{bmatrix} O_3 & -I_3 \\ I_3 & O_3 \end{bmatrix}$$

$$\begin{split} \mathcal{H}_0 &= -\frac{k^4}{2L^2} & (\text{unperturbed part}), \\ \mathcal{H}_1 &= -\left(\frac{1}{|\mathcal{X} - \mathcal{X}'|} - \frac{\mathcal{X} \cdot \mathcal{X}'}{|\mathcal{X}'|^3}\right) & (\text{perturbing function}). \end{split}$$

Here $\mathcal{X}, \mathcal{X}'$ denote x, x' as functions of $\mathcal{Y}, \mathcal{Y}'$.

•

・ロ・ ・ 四・ ・ 回・ ・ 回・

The Keplerian distance function

Let (E_j, v_j) , j = 1, 2 be the orbital elements of two celestial bodies on Keplerian orbits with a common focus:

E_j represents the trajectory of a body, *v_j* is a parameter along it. Set $V = (v_1, v_2)$.

For a given two-orbit configuration $\mathcal{E} = (E_1, E_2)$, we introduce the Keplerian distance function

$$\mathbb{T}^2
i V \mapsto d(\mathcal{E}, V) = |\mathcal{X}_1 - \mathcal{X}_2|$$

We are interested in the local minimum points of d.

Geometry of two confocal Keplerian orbits

Is there still something that we do not know about distance of points on conic sections?

έθεώρουν σε σπεύδοντα μετασχεΐν τῶν πεπραγμένων ἡμῖν κωνικῶν ⁽¹⁾ (Apollonius of Perga, *Conics*, Book I)

(1) I observed you were quite eager to be kept informed of the work I was doing in conics.

・ 同 ト ・ ヨ ト ・ ヨ ト

Critical points of d^2

Gronchi SISC (2002), CMDA (2005)

- Apart from the case of two concentric coplanar circles, or two overlapping ellipses, d² has finitely many critical points.
- There exist configurations with 12 critical points, and 4 local minima of *d*².
 This is thought to be the maximum possible, but a proof is not known yet.⁽¹⁾
- A simple computation shows that, for non-overlapping trajectories, the number of crossing points is at most two.

(1) Albouy, Cabral and Santos, 'Some problems on the classical n-body problem' CMDA 113/4, 369-375 (2012)

(日)

Let $V_h = V_h(\mathcal{E})$ be a local minimum point of $V \mapsto d^2(\mathcal{E}, V)$. Consider the maps

$$\mathcal{E} \mapsto d_h(\mathcal{E}) = d(\mathcal{E}, V_h),$$

 $\mathcal{E} \mapsto d_{min}(\mathcal{E}) = \min_h d_h(\mathcal{E}).$

The map $\mathcal{E} \mapsto d_{min}(\mathcal{E})$ gives the orbit distance.

Singularities of d_h and d_{min}

- (i) d_h and d_{min} are not differentiable where they vanish;
- (ii) two local minima can exchange their role as absolute minimum thus d_{min} loses its regularity without vanishing;
- (iii) when a bifurcation occurs the definition of the maps d_h may become ambiguous after the bifurcation point.

A I > A I > A

Smoothing through change of sign

Toy problem:

$$f(x,y) = \sqrt{x^2 + y^2} \qquad \tilde{f}(x,y) = \begin{cases} -f(x,y) & \text{for } x > 0\\ f(x,y) & \text{for } x < 0 \end{cases}$$

Can we smooth the maps $d_h(\mathcal{E})$, $d_{min}(\mathcal{E})$ through a change of sign?

< 同 > < ∃ >

Local smoothing of d_h at a crossing singularity

Smoothing d_h , the procedure for d_{min} is the same.

Consider the points on the two orbits

$$\mathcal{X}_1^{(h)} = \mathcal{X}_1(E_1, v_1^{(h)}); \qquad \mathcal{X}_2^{(h)} = \mathcal{X}_2(E_2, v_2^{(h)}).$$

corresponding to the local minimum point $V_h = (v_1^{(h)}, v_2^{(h)})$ of d^2 ;

A (1) < A (1) < A (1) </p>

Local smoothing of d_h at a crossing singularity

introduce the tangent vectors to the trajectories *E*₁, *E*₂ at these points:

$$\tau_1 = \frac{\partial \mathcal{X}_1}{\partial v_1}(E_1, v_1^{(h)}), \qquad \tau_2 = \frac{\partial \mathcal{X}_2}{\partial v_2}(E_2, v_2^{(h)}),$$

and their cross product $\tau_3 = \tau_1 \times \tau_2$;

Local smoothing of d_h at a crossing singularity

define also

$$\Delta = \mathcal{X}_1 - \mathcal{X}_2, \qquad \Delta_h = \mathcal{X}_1^{(h)} - \mathcal{X}_2^{(h)}$$

The vector Δ_h joins the points attaining a local minimum of d^2 and $|\Delta_h| = d_h$.

Note that $\Delta_h \times \tau_3 = 0$

(4月) (4日) (4日)

Smoothing the crossing singularity

 $\mathcal{E} \mapsto \tilde{d}_h(\mathcal{E})$ is an analytic map in a neighborhood of most crossing configurations.

A (10) A (10)

The averaging principle is used to study the qualitative behavior of solutions of ODEs in perturbation theory, see Arnold, Kozlov, Neishtadt (1997).

$$\begin{array}{l} \text{unperturbed} & \left\{ \begin{array}{l} \dot{\phi} = \omega(I) \\ \dot{I} = 0 \end{array} \right. \phi \in \mathbb{T}^n, I \in \mathbb{R}^m \\ \\ \text{perturbed} & \left\{ \begin{array}{l} \dot{\phi} = \omega(I) + \epsilon f(\phi, I, \epsilon) \\ \dot{I} = \epsilon g(\phi, I, \epsilon) \end{array} \right. \\ \\ \text{averaged} & \dot{J} = \epsilon G(J) \,, \quad G(J) = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} g(\phi, J, 0) \, d\phi_1 \dots d\phi_n \end{array} \right.$$

▲御▶ ▲ 唐▶ ▲ 唐▶

Averaging over 2 angular variables

Using the averaged equations corresponds to substituting the time average with the space average.

Case of 2 angles: a problem occurs if there are <u>resonant relations</u> of low order between the motions $\phi_1(t)$, $\phi_2(t)$, i.e. if $h_1\dot{\phi}_1 + h_2\dot{\phi}_2 = 0$, with h_1 , h_2 small integers.

Averaged equations

Gronchi and Milani, CMDA (1998)

Averaged Hamilton's equations:

$$\dot{\overline{Y}} = \epsilon \, \mathbb{J} \, \overline{\nabla_Y \mathcal{H}_1} \,, \tag{1}$$

with Y = (G, Z, g, z). If no orbit crossing occurs, (1) are equal to

$$\dot{\overline{Y}} = \epsilon \, \mathbb{J} \, \nabla_Y \overline{\mathcal{H}_1} \tag{2}$$

with

$$\overline{\mathcal{H}}_1 = \frac{1}{(2\pi)^2} \int_{\mathbb{T}^2} \mathcal{H}_1 \, d\ell \, d\ell' = -\frac{1}{(2\pi)^2} \int_{\mathbb{T}^2} \frac{1}{|\mathcal{X} - \mathcal{X}'|} \, d\ell \, d\ell'$$

The average of the indirect term of \mathcal{H}_1 is zero.

• Im • • m • • m

If there is an orbit crossing, then averaging on the fast angles ℓ, ℓ' produces a singularity in the averaged equations:

we take into account every possible position on the orbits, thus also the collision configurations.

$$\overline{\mathcal{H}}_1 = -rac{1}{(2\pi)^2} \int_{\mathbb{T}^2} rac{1}{|\mathcal{X} - \mathcal{X}'|} \, d\ell \, d\ell'$$

and

$$\left|\mathcal{X}(E_1, v_1^{(h)}) - \mathcal{X}'(E_2, v_2^{(h)})\right| = 0$$
.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Near-Earth asteroids and crossing orbits

(433) Eros: the first near-Earth asteroid (NEA, with $q = a(1 - e) \le 1.3$ au), discovered in 1898; it crosses the trajectory of Mars.

from NEAR mission (NASA)

Today (March 19, 2019) we know about 19800 NEAs: several of them cross the orbit of the Earth during their evolution.

Let \mathcal{E}_c be a non–degenerate crossing configuration for d_h , with only 1 crossing point.

Given a neighborhood W of \mathcal{E}_c , we set

$$egin{aligned} \mathcal{W}^+ &= \mathcal{W} \cap \{ ilde{d}_h > 0\}\,, \ \mathcal{W}^- &= \mathcal{W} \cap \{ ilde{d}_h < 0\}\,. \end{aligned}$$

< 🗇 > < 🖻 > <

The averaged vector field $\overline{\nabla_Y \mathcal{H}_1}$ is not defined on $\Sigma = \{d_H = 0\}$.

Gronchi and Tardioli, DCDS-B (2013)

The averaged vector field $\overline{\nabla_Y \mathcal{H}_1}$ can be extended to two Lipschitz–continuous vector fields $(\overline{\nabla_Y \mathcal{H}_1})_h^{\pm}$ on a neighborhood \mathcal{W} of \mathcal{E}_c . The components of the extended fields, restricted to \mathcal{W}^+ , \mathcal{W}^- respectively, correspond to $\frac{\overline{\partial \mathcal{H}_1}}{\partial_{y_k}}$.

A I > A I > A

Moreover the following relations hold:

$$\begin{aligned} \operatorname{Diff}_{h}\left(\frac{\overline{\partial \mathcal{H}_{1}}}{\partial y_{k}}\right) & \stackrel{def}{=} & \left(\frac{\overline{\partial \mathcal{H}_{1}}}{\partial y_{k}}\right)_{h}^{-} - \left(\frac{\overline{\partial \mathcal{H}_{1}}}{\partial y_{k}}\right)_{h}^{+} = \\ & = & -\frac{1}{\pi} \left[\frac{\partial}{\partial y_{k}} \left(\frac{1}{\sqrt{\det(\mathcal{A}_{h})}}\right) \tilde{d}_{h} + \frac{1}{\sqrt{\det(\mathcal{A}_{h})}} \frac{\partial \tilde{d}_{h}}{\partial y_{k}}\right], \end{aligned}$$

where y_k is a component of Delaunay's elements Y.

(4月) (1日) (日)

Generalized solutions

Figure: Runge-Kutta-Gauss method and continuation of the solutions of equations (1) beyond the singularity.

The averaged solutions are piecewise-smooth

Averaged evolution of (1620) Geographos

Giovanni F. Gronchi Mathematical Models and Methods in Earth and Space Scien

Proper elements for NEAs: (1620) Geographos

Giovanni F. Gronchi Mathematical Models and Methods in Earth and Space Science

Proper elements for NEAs: (2102) Tantalus

Giovanni F. Gronchi Mathematical Models and Methods in Earth and Space Science

Define the secular evolution of the minimal distances

$$\overline{d}_h(t) = \widetilde{d}_h(\overline{\mathcal{E}}(t)), \qquad \overline{d}_{min}(t) = \widetilde{d}_{min}(\overline{\mathcal{E}}(t))$$

in an open interval containing a crossing time t_c .

Assume t_c is a crossing time and $\mathcal{E}_c = \overline{\mathcal{E}}(t_c)$ is a non-degenerate crossing configuration with only one crossing point, i.e. $d_h(\mathcal{E}_c) = 0$. Then there exists an interval $(t_a, t_b), t_a < t_c < t_b$ such that $\overline{d}_h \in C^1((t_a, t_b); \mathbb{R})$.

・ロ・ ・ 四・ ・ 回・ ・ 日・

idea of the proof:

$$\begin{split} \lim_{t \to t_c^-} \dot{\overline{d}}_h(t) &- \lim_{t \to t_c^+} \dot{\overline{d}}_h(t) = \operatorname{Diff}_h(\overline{\nabla_Y \mathcal{H}_1}) \cdot \epsilon \, \mathbb{J}_2 \nabla_Y \tilde{d}_h \Big|_{\mathcal{E} = \mathcal{E}_c} \\ &= -\frac{\epsilon}{\pi \sqrt{\det \mathcal{A}_h}} \left\{ \tilde{d}_h, \tilde{d}_h \right\}_Y \Big|_{\mathcal{E} = \mathcal{E}_c} = 0 \,, \end{split}$$

The secular evolution of \tilde{d}_{min} is more regular than that of the orbital elements in a neighborhood of a planet crossing time.

• Im • • m • • m

Evolution of the orbit distance for 1979 XB

Transition through a planet crossing for 1979 XB

linearized secular evolution

Giovanni F. Gronchi Mathematical Models and Methods in Earth and Space Scien

Transition through a planet crossing for 1979 XB

nonlinear secular evolution

Giovanni F. Gronchi Mathematical Models and Methods in Earth and Space Scient

Mean motion resonances

Marò and Gronchi, SIADS (2018) Resonance condition:

$$hn + h'n' = 0, \qquad h, h' \in \mathbb{Z}.$$

Extended Hamiltonian:

$$\tilde{\mathcal{H}} = \mathcal{H}_0 + n'L' + \epsilon \mathcal{H}_1$$

Resonant normal form to order N:

$$\mathscr{H}_{N}(V,L,L';X) = \sum_{\mathsf{k}\in\mathcal{R},|\mathsf{k}|\leq N} \hat{\mathcal{H}}_{\mathsf{k}}(L,L';X)e^{i\mathsf{k}\cdot V}.$$

Here $V = (\ell, \ell')$, *X* are the other (secular) variables,

$$\mathcal{R} = \{ \mathsf{k} = (k, k') \in \mathbb{Z}^2 : \exists n \in \mathbb{Z} \text{ with } \mathsf{k} = n\mathsf{h} \},\$$

h = (h, h'), and

$$\hat{\mathcal{H}}_{\mathsf{k}}(L,L';X) = \frac{1}{(2\pi)^2} \int_{\mathbb{T}^2} \tilde{\mathcal{H}}(\mathcal{V},L,L';X) e^{-i\mathbf{k}\cdot\mathcal{V}} d\mathcal{V}.$$

 $\mathcal{V}=(\ell,\ell')$ when the latter are integration variables.

A E A E AQA

Resonant normal form

Note that

$$\mathscr{H}_{N}(V,L,L';X) = \frac{1}{(2\pi)^{2}} \int_{\mathbb{T}^{2}} D_{N}(\mathsf{h}\cdot\mathcal{V}-\mathsf{h}\cdot V)\tilde{\mathcal{H}}(\mathcal{V},L,L';X)d\mathcal{V},$$

where

$$D_N(x) = \sum_{|n| \le N} e^{inx} = \frac{\sin((N+1/2)x)}{\sin(x/2)}$$

is the Dirichlet kernel.

We introduce a canonical transformation Ψ through the relations

$$\left(\begin{array}{c} \sigma \\ \sigma' \end{array}\right) = A \left(\begin{array}{c} \ell \\ \ell' \end{array}\right), \quad \left(\begin{array}{c} S \\ S' \end{array}\right) = A^{-T} \left(\begin{array}{c} L \\ L' \end{array}\right),$$

with

$$A = \left[\begin{array}{cc} h & h' \\ 0 & 1/h \end{array} \right], \qquad A^{-T} = \left[\begin{array}{cc} 1/h & 0 \\ -h' & h \end{array} \right].$$

 $\sigma = h\ell + h'\ell'$ is the resonant angle.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Resonant normal form

Set X = (G, Z, g, z) and let us define

$$\mathscr{K}_N(\sigma, S, T; X) = \mathscr{H}_N \circ \Psi^{-1}(\sigma, \tau, S, T; X).$$

Fix N_{max} and take the resonant normal form in the new variables

$$\mathscr{K}_{N_{\max}} = \mathcal{K}_0 + \epsilon (\overline{\mathcal{K}}_1 + \mathcal{K}_{res}^{N_{\max}}),$$
(3)

with

$$\begin{split} \mathcal{K}_{0}(S;S') &= \mathcal{H}_{0}\Big(hS,h'S+\frac{S'}{h}\Big) = -\frac{k^{4}}{2(hS)^{2}} + n'\Big(h'S+\frac{S'}{h}\Big),\\ \overline{\mathcal{K}_{1}}(S,X;S') &= \overline{\mathcal{H}_{1}}(hS,h'S+\frac{S'}{h},X) = -\frac{1}{(2\pi)^{2}}\int_{\mathbb{T}^{2}}\frac{1}{d(\ell,\ell')}d\ell d\ell',\\ \mathcal{K}_{res}^{N_{\max}}(S,\sigma,X;S') &= -\frac{1}{(2\pi)^{2}}\int_{\mathbb{T}^{2}}\Big(D_{N_{\max}}(\mathsf{h}\cdot\mathcal{V}-\sigma)-1\Big)\mathcal{H}_{1}\Big(\mathcal{V},hS,h'S+\frac{S'}{h},X\Big)d\mathcal{V} \end{split}$$

Since $\mathscr{K}_{N_{\text{max}}}$ does not depend on σ' , the value of *S'* is constant.

(日本)(日本)(日本)

Resonant normal form

Equations for the motion of the asteroid:

$$\dot{\mathcal{Y}} = \mathbb{J} \nabla_{\mathcal{Y}} \mathscr{K}_{N_{\max}},$$

where $\mathcal{Y} = (S, G, Z, \sigma, g, z)$, or, in components,

$$\begin{split} \dot{S} &= -\frac{\partial \mathscr{K}_{N_{\max}}}{\partial \sigma} = -\epsilon \frac{\partial \mathscr{K}_{res}^{N_{\max}}}{\partial \sigma}, \\ \dot{G} &= -\frac{\partial \mathscr{K}_{N_{\max}}}{\partial g} = -\epsilon \Big(\frac{\partial \mathscr{K}_{res}^{N_{\max}}}{\partial g} + \frac{\partial \overline{\mathcal{K}_1}}{\partial g} \Big), \\ \dot{Z} &= -\frac{\partial \mathscr{K}_{N_{\max}}}{\partial z} = -\epsilon \Big(\frac{\partial \mathscr{K}_{res}^{N_{\max}}}{\partial z} + \frac{\partial \overline{\mathcal{K}_1}}{\partial z} \Big), \\ \dot{\sigma} &= \frac{\partial \mathscr{K}_{N_{\max}}}{\partial S} = \frac{hk^4}{(hS)^3} + n'h' + \epsilon \Big(\frac{\partial \mathscr{K}_{res}^{N_{\max}}}{\partial S} + \frac{\partial \overline{\mathcal{K}_1}}{\partial S} \Big), \\ \dot{g} &= \frac{\partial \mathscr{K}_{N_{\max}}}{\partial G} = \epsilon \Big(\frac{\partial \mathscr{K}_{res}^{N_{\max}}}{\partial G} + \frac{\partial \overline{\mathcal{K}_1}}{\partial G} \Big), \\ \dot{z} &= \frac{\partial \mathscr{K}_{N_{\max}}}{\partial Z} = \epsilon \Big(\frac{\partial \mathscr{K}_{res}^{N_{\max}}}{\partial Z} + \frac{\partial \overline{\mathcal{K}_1}}{\partial Z} \Big). \end{split}$$

Giovanni F. Gronchi Mathematical Models and Methods in Earth and Space Scien

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

If \mathcal{E}_c corresponds to a crossing configuration with Jupiter, then the following relation holds in a neighborhood \mathcal{W}

$$\begin{aligned} \operatorname{Diff}_{h}\left(\frac{\partial \mathscr{K}_{N_{\max}}}{\partial y_{i}}\right) &= \epsilon \left[\left(\frac{\partial \overline{\mathcal{K}}_{1}}{\partial y_{i}}\right)_{h}^{-} - \left(\frac{\partial \overline{\mathcal{K}}_{1}}{\partial y_{i}}\right)_{h}^{+} + \left(\frac{\partial \mathcal{K}_{res}^{N_{\max}}}{\partial y_{i}}\right)_{h}^{-} - \left(\frac{\partial \mathcal{K}_{res}^{N_{\max}}}{\partial y_{i}}\right)_{h}^{+} \right] \\ &= -\frac{\epsilon}{\pi} D_{N_{\max}}(\sigma - \mathsf{h} \cdot V_{h}) \left[\frac{\partial}{\partial y_{i}} \left(\frac{1}{\sqrt{\det(\mathcal{A}_{h})}}\right) \tilde{d}_{h} + \frac{1}{\sqrt{\det(\mathcal{A}_{h})}} \frac{\partial \tilde{d}_{h}}{\partial y_{i}} \right]. \end{aligned}$$

Let $\sigma_c = \mathbf{h} \cdot V_h$. We observe that

$$\lim_{N_{\max}\to\infty}D_{N_{\max}}(\sigma-\sigma_c)=\delta_{\sigma_c},$$

that is, for $N_{\text{max}} \rightarrow \infty$, the Dirichlet kernel converges in the sense of distributions to the Dirac delta centered in σ_c .

Joint work (in progress) with M. Fenucci

Open questions:

- Can we prove that the averaged solutions are a good approximation of the solutions of the full equations?
- What happens in case of close approaches with some planet?
- In case of mean motion resonances, can we prove that the solutions of Hamilton's equations for the resonant normal form are a good approximation of the solutions of the full equations?

・ 同 ト ・ ヨ ト ・ ヨ ト

Comparison for (1620) Geographos: 64 clones

Comparison in the resonant case: 64 clones, $N_{\text{max}} = 15$

Giovanni F. Gronchi

Mathematical Models and Methods in Earth and Space Scien

The arithmetic mean

Let $V = (\ell, \ell')$ and I be the other variables. Consider the arithmetic mean

$$\hat{I}_N(t) = rac{1}{N} \sum_{j_1, j_2 = 1}^N I_{j_1, j_2}(t)$$

where

$$I_{j_1,j_2}(t) = I(t;I(0), V_{j_1,j_2}(0)), \quad V_{j_1,j_2}(0) = \frac{2\pi}{N}(j_1,j_2), \qquad j_1,j_2 = 1,\ldots,N.$$

The solutions $I_{j_1,j_2}(t)$ are computed through Kustaanheimo-Stiefel regularization of binary collisions.

Consider also the standard deviation of the solutions:

$$\operatorname{std}_{I}(t) = \left(\sum_{j_{1}, j_{2}=1}^{N} \frac{(I_{j_{1}, j_{2}}(t) - \hat{I}_{N}(t))^{2}}{N^{2} - 1}\right)^{1/2}$$

Then compare $\hat{I}_N(t)$ with the solutions of Hamilton's equations for the normal form, for different values of *N*.

Crossing case: 64 clones

0.79 48 0.78 47 0.77 46 0.76 Φ 0.75 45 0.74 44 0.73 43 L 0 0.72 2000 4000 4000 6000 2000 6000 t 10.5 76 10 74 9.5 9 G **3** 72 8.5 8 70 7.5 68 L 0 7 0 2000 4000 6000 2000 4000 6000 t

a=1.8, e=0.75, l=45, ω =75, Ω =10, t_{end}=5000, μ =0.0001,64 clones

Giovanni F. Gronchi Mathematical Models and Methods in Earth and Space Scien

Crossing case: 625 clones

a=1.8, e=0.75, I=45, ω =75, Ω =10, t_{end}=5000, μ =0.0001,625 clones

ъ

크

Crossing case: 3600 clones

a=1.8, e=0.75, I=45, ω =75, Ω =10, t_{end}=5000, μ =0.0001,3600 clones

non-crossing case: 625 clones

a=1.8, e=0.15, I=45, ω =60, Ω =10, t_{end}=3000, μ =0.0001,625 clones

< 一型

non-crossing case: 8100 clones

a=1.8, e=0.15, l=45, ω =60, Ω =10, t_{end}=3000, μ =0.0001,8100 clones

< 一型

Conclusions and future work

- We can compute the secular evolution of planet crossing asteroids, by averaging over the fast angles: the solutions are piecewise-smooth;
- the orbit distance along the averaged evolution is more regular than the orbital elements;
- We can compute the long term evolution of planet crossing asteroids also in case of mean motion resonances;
- the arithmetic mean of the solutions seems to be close to the solution of Hamilton's equations for the normal form of the Hamiltonian, both in the non-resonant and in the resonant case.

(日) (日) (日)

Thanks for your attention!

[1] Gronchi and Milani: 'Averaging on Earth-crossing orbits', Cel. Mech. Dyn. Ast., **71/2**, 109–136 (1998)

 [2] Gronchi: 'On the stationary points of the squared distance between two ellipses with a common focus', SIAM Journ. Sci. Comp. 24/1, 61–80 (2002)

[3] Gronchi and Tommei: 'On the uncertainty of the minimal distance between two confocal Keplerian orbits', DCDS-B **7**/**4**, 755–778 (2007)

[4] Gronchi and Tardioli: 'The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities', DCDS-B **8**/5, 1323–1344 (2013)

[5] Marò and Gronchi: 'Long Term Dynamics for the Restricted *N-Body Problem with Mean Motion Resonances and Crossing Singularities*', SIAM Journ. Appl. Dyn. Sys. **17**/**2**, 1786-1815 (2018)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・