
On the restricted three-body problem with
crossing singularities

Giovanni Federico Gronchi
Dipartimento di Matematica, Università di Pisa
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The restricted three-body problem

Three-body problem: Sun, Earth, asteroid.
Restricted problem: the asteroid does not influence the motion of the
two larger bodies.

Equations of motion of the asteroid:

ÿ = −G
[

m�
(y− y�(t))
|y− y�(t)|3

+ m⊕
(y− y⊕(t))
|y− y⊕(t)|3

]

y is the unknown position of the asteroid;

y�(t), y⊕(t) are known functions of time, solutions of the
two-body problem Sun-Earth.
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The restricted three–body problem

In heliocentric coordinates

ẍ = −k2
[

x
|x|3

+ µ

(
(x− x′)
|x− x′|3

− x′

|x′|3

)]
where

x = y− y�, x′ = y⊕ − y�;

k2 = Gm�, µ = m⊕
m�

is a small parameter;

−k2µ (x−x′)
|x−x′|3 is the direct perturbation of the planet on the

asteroid;

k2µ x′
|x′|3 is the indirect perturbation, due to the interaction

Sun-planet.

Hint! We can model the dynamics of an asteroid in the solar system
by summing up the contribution of each planet to the perturbation.
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Canonical formulation of the problem

Use Delaunay’s variables Y = (L,G,Z, `, g, z) for the motion of the
asteroid: 

L = k
√

a
G = L

√
1− e2

Z = G cos I

 ` = n(t − t0)
g = ω
z = Ω

These are canonical variables, representing the osculating orbit,
solution of the 2-body problem Sun-asteroid.

Denote by Y ′ = (L′,G′,Z′, `′, g′, z′) Delaunay’s variables for the planet.
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Canonical formulation of the problem

Hamilton’s equations are

Ẏ = J∇YH ,

where

H = H0 + εH1, ε = µk2, J =

[
O3 −I3
I3 O3

]
.

H0 = − k4

2L2 (unperturbed part),

H1 = −
(

1
|X − X ′|

− X · X
′

|X ′|3

)
(perturbing function).

Here X ,X ′ denote x, x′ as functions of Y, Y ′.
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The Keplerian distance function

Let (Ej, vj), j = 1, 2 be the orbital elements of two celestial bodies on
Keplerian orbits with a common focus:
Ej represents the trajectory of a body,
vj is a parameter along it. Set V = (v1, v2).

For a given two-orbit
configuration E = (E1,E2), we
introduce the Keplerian distance
function

T2 3 V 7→ d(E ,V) = |X1 −X2|

We are interested in the local
minimum points of d.

y

z

d
x
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Geometry of two confocal Keplerian orbits

Is there still something that we do not know about distance of
points on conic sections?

ἐθεώρουν σε σπεύδοντα μετασχεῖν

τῶν πεπραγμένων ἡμῖν κωνικῶν
(1)

(Apollonius of Perga, Conics, Book I)

(1) I observed you were quite eager to be kept informed of the work I was doing in conics.
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Critical points of d2

Gronchi SISC (2002), CMDA (2005)

Apart from the case of two concentric coplanar circles, or two
overlapping ellipses, d2 has finitely many critical points.

There exist configurations with 12 critical points, and 4 local
minima of d2.
This is thought to be the maximum possible, but a proof is not
known yet.(1)

A simple computation shows that, for non-overlapping
trajectories, the number of crossing points is at most two.

(1) Albouy, Cabral and Santos, ‘Some problems on the classical n-body problem’ CMDA 113/4, 369-375 (2012)
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The orbit distance

Let Vh = Vh(E) be a local minimum point of V 7→ d2(E ,V).
Consider the maps

E 7→ dh(E) = d(E ,Vh) ,

E 7→ dmin(E) = min
h

dh(E) .

The map E 7→ dmin(E) gives the orbit distance.
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Singularities of dh and dmin
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(i) dh and dmin are not differentiable where they vanish;
(ii) two local minima can exchange their role as absolute

minimum thus dmin loses its regularity without vanishing;
(iii) when a bifurcation occurs the definition of the maps dh may

become ambiguous after the bifurcation point.
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Smoothing through change of sign

y−axis

x−axis

y−axis

x−axis

Toy problem:

f (x, y) =
√

x2 + y2 f̃ (x, y) =

{
−f (x, y) for x > 0

f (x, y) for x < 0

Can we smooth the maps dh(E), dmin(E)
through a change of sign?
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Local smoothing of dh at a crossing singularity

Smoothing dh, the procedure for dmin is the same.
Consider the points on the two orbits

X (h)
1 = X1(E1, v

(h)
1 ) ; X (h)

2 = X2(E2, v
(h)
2 ) .

corresponding to the local minimum point
Vh = (v(h)1 , v(h)2 ) of d2;
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Local smoothing of dh at a crossing singularity

introduce the tangent vectors to the trajectories E1,E2 at
these points:

τ1 =
∂X1

∂v1
(E1, v

(h)
1 ) , τ2 =

∂X2

∂v2
(E2, v

(h)
2 ) ,

and their cross product τ3 = τ1 × τ2;
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Local smoothing of dh at a crossing singularity

define also

∆ = X1 −X2 , ∆h = X (h)
1 −X (h)

2 .

The vector ∆h joins the points attaining a local minimum of
d2 and |∆h| = dh.

Note that ∆h × τ3 = 0
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Smoothing the crossing singularity

Gronchi and Tommei, DCDS-B (2007)

smoothing rule:

d̃h = sign(τ3 ·∆h)dh

E 7→ d̃h(E) is an analytic map in a neighborhood of most crossing
configurations.
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The averaging method

The averaging principle is used to study the qualitative behavior
of solutions of ODEs in perturbation theory, see Arnold, Kozlov,
Neishtadt (1997).

unperturbed
{
φ̇ = ω(I)
İ = 0

φ ∈ Tn, I ∈ Rm

perturbed
{
φ̇ = ω(I) + εf (φ, I, ε)
İ = εg(φ, I, ε)

averaged J̇ = εG(J) , G(J) =
1

(2π)n

∫
Tn

g(φ, J, 0) dφ1 . . . dφn
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Averaging over 2 angular variables

Using the averaged equations corresponds to substituting the time
average with the space average.

Case of 2 angles: a problem occurs if there are resonant relations of
low order between the motions φ1(t), φ2(t), i.e. if h1φ̇1 + h2φ̇2 = 0, with
h1, h2 small integers.

φ1

φ
2
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Averaged equations

Gronchi and Milani, CMDA (1998)

Averaged Hamilton’s equations:

Ẏ = ε J∇YH1 , (1)

with Y = (G,Z, g, z).
If no orbit crossing occurs, (1) are equal to

Ẏ = ε J∇YH1 (2)

with

H1 =
1

(2π)2

∫
T2
H1 d` d`′ = − 1

(2π)2

∫
T2

1
|X − X ′|

d` d`′

The average of the indirect term of H1 is zero.
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Crossing singularities

If there is an orbit crossing, then averaging on the fast angles `, `′

produces a singularity in the averaged equations:
we take into account every possible position on the orbits, thus also
the collision configurations.

H1 = − 1
(2π)2

∫
T2

1
|X − X ′|

d` d`′

and ∣∣X (E1, v
(h)
1 )−X ′(E2, v

(h)
2 )
∣∣ = 0 .
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Near-Earth asteroids and crossing orbits

(433) Eros: the first near-Earth asteroid
(NEA, with q = a(1− e) ≤ 1.3 au),
discovered in 1898; it crosses the
trajectory of Mars.

from NEAR mission (NASA)

Today (March 19, 2019) we know about 19800 NEAs: several
of them cross the orbit of the Earth during their evolution.
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Derivative jumps

Let Ec be a non–degenerate crossing configuration for dh, with
only 1 crossing point.
Given a neighborhoodW of Ec, we set

W+ =W ∩ {d̃h > 0} ,

W− =W ∩ {d̃h < 0} .

The averaged vector field ∇YH1 is not defined on Σ = {dH = 0}.
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Derivative jumps

Gronchi and Tardioli, DCDS-B (2013)

The averaged vector field ∇YH1 can
be extended to two
Lipschitz–continuous vector fields
(∇YH1)±h on a neighborhoodW of Ec.
The components of the extended
fields, restricted toW+,W−
respectively, correspond to ∂H1

∂yk
.
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Derivative jumps

Moreover the following relations hold:

Diffh

(
∂H1

∂yk

)
def
=

(∂H1

∂yk

)−
h
−
(∂H1

∂yk

)+
h

=

= − 1
π

[
∂

∂yk

(
1√

det(Ah)

)
d̃h +

1√
det(Ah)

∂d̃h

∂yk

]
,

where yk is a component of Delaunay’s elements Y.
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Generalized solutions

Figure: Runge-Kutta-Gauss method and continuation of the solutions
of equations (1) beyond the singularity.

The averaged solutions are piecewise–smooth
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Averaged evolution of (1620) Geographos
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Proper elements for NEAs: (1620) Geographos
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Proper elements for NEAs: (2102) Tantalus
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Secular evolution of the orbit distance

Define the secular evolution of the minimal distances

dh(t) = d̃h(E(t)) , dmin(t) = d̃min(E(t))

in an open interval containing a crossing time tc.

Assume tc is a crossing time and Ec = E(tc) is a non-degenerate
crossing configuration with only one crossing point, i.e. dh(Ec) = 0.
Then there exists an interval (ta, tb), ta < tc < tb such that
dh ∈ C1((ta, tb);R).

Giovanni F. Gronchi Mathematical Models and Methods in Earth and Space Sciences



Secular evolution of the orbit distance

idea of the proof:

lim
t→t−c

ḋh(t)− lim
t→t+c

ḋh(t) = Diffh
(
∇YH1

)
· ε J2∇Y d̃h

∣∣∣
E=Ec

= − ε

π
√

detAh
{d̃h, d̃h}Y

∣∣∣
E=Ec

= 0 ,

The secular evolution of d̃min is more regular than that of the
orbital elements in a neighborhood of a planet crossing time.
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Evolution of the orbit distance for 1979 XB
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Transition through a planet crossing for 1979 XB

linearized secular evolution
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Transition through a planet crossing for 1979 XB

nonlinear secular evolution
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Mean motion resonances
Marò and Gronchi, SIADS (2018)
Resonance condition:

hn + h′n′ = 0, h, h′ ∈ Z.

Extended Hamiltonian:

H̃ = H0 + n′L′ + εH1

Resonant normal form to order N:

HN(V,L,L′; X) =
∑

k∈R,|k|≤N

Ĥk(L,L′; X)eik·V .

Here V = (`, `′), X are the other (secular) variables,

R = {k = (k, k′) ∈ Z2 : ∃n ∈ Z with k = nh},

h = (h, h′), and

Ĥk(L,L′; X) =
1

(2π)2

∫
T2
H̃(V,L,L′; X)e−ik·VdV.

V = (`, `′) when the latter are integration variables.
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Resonant normal form

Note that

HN(V,L,L′; X) =
1

(2π)2

∫
T2

DN(h · V − h · V)H̃(V,L,L′; X)dV,

where
DN(x) =

∑
|n|≤N

einx =
sin((N + 1/2)x)

sin(x/2)

is the Dirichlet kernel.
We introduce a canonical transformation Ψ through the relations(

σ
σ′

)
= A

(
`
`′

)
,

(
S
S′

)
= A−T

(
L
L′

)
,

with

A =

[
h h′

0 1/h

]
, A−T =

[
1/h 0
−h′ h

]
.

σ = h`+ h′`′ is the resonant angle.
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Resonant normal form

Set X = (G,Z, g, z) and let us define

KN(σ, S,T; X) = HN ◦Ψ−1(σ, τ, S,T; X).

Fix Nmax and take the resonant normal form in the new variables

KNmax = K0 + ε(K1 +KNmax
res ), (3)

with

K0(S; S′) = H0

(
hS, h′S +

S′

h

)
= − k4

2(hS)2 + n′
(

h′S +
S′

h

)
,

K1(S,X; S′) = H1(hS, h′S +
S′

h
,X) = − 1

(2π)2

∫
T2

1
d(`, `′)

d`d`′,

KNmax
res (S, σ,X; S′) = − 1

(2π)2

∫
T2

(
DNmax(h · V − σ)− 1

)
H1

(
V, hS, h′S +

S′

h
,X
)

dV.

Since KNmax does not depend on σ′, the value of S′ is constant.
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Resonant normal form
Equations for the motion of the asteroid:

Ẏ = J∇YKNmax ,

where Y = (S,G,Z, σ, g, z), or, in components,

Ṡ = −∂KNmax

∂σ
= −ε∂K

Nmax
res

∂σ
,

Ġ = −∂KNmax

∂g
= −ε

(∂KNmax
res

∂g
+
∂K1

∂g

)
,

Ż = −∂KNmax

∂z
= −ε

(∂KNmax
res

∂z
+
∂K1

∂z

)
,

σ̇ =
∂KNmax

∂S
=

hk4

(hS)3 + n′h′ + ε
(∂KNmax

res

∂S
+
∂K1

∂S

)
,

ġ =
∂KNmax

∂G
= ε
(∂KNmax

res

∂G
+
∂K1

∂G

)
,

ż =
∂KNmax

∂Z
= ε
(∂KNmax

res

∂Z
+
∂K1

∂Z

)
.
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Mean motion resonances

If Ec corresponds to a crossing configuration with Jupiter, then the
following relation holds in a neighborhoodW

Diffh

(
∂KNmax

∂yi

)
= ε

[(∂K1

∂yi

)−
h
−
(∂K1

∂yi

)+
h

+
(∂KNmax

res

∂yi

)−
h
−
(∂KNmax

res

∂yi

)+
h

]
= − ε

π
DNmax(σ − h · Vh)

[
∂

∂yi

(
1√

det(Ah)

)
d̃h +

1√
det(Ah)

∂d̃h

∂yi

]
.

Let σc = h · Vh. We observe that

lim
Nmax→∞

DNmax(σ − σc) = δσc ,

that is, for Nmax →∞, the Dirichlet kernel converges in the sense of
distributions to the Dirac delta centered in σc.
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Recent work (in progress)

Joint work (in progress) with M. Fenucci

Open questions:
Can we prove that the averaged solutions are a good
approximation of the solutions of the full equations?
What happens in case of close approaches with some
planet?
In case of mean motion resonances, can we prove that the
solutions of Hamilton’s equations for the resonant normal
form are a good approximation of the solutions of the full
equations?
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Comparison for (1620) Geographos: 64 clones
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Comparison in the resonant case: 64 clones,
Nmax = 15
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The arithmetic mean

Let V = (`, `′) and I be the other variables. Consider the arithmetic
mean

ÎN(t) =
1
N

N∑
j1,j2=1

Ij1,j2(t)

where

Ij1,j2(t) = I(t; I(0),Vj1,j2(0)), Vj1,j2(0) =
2π
N

(j1, j2), j1, j2 = 1, . . . ,N.

The solutions Ij1,j2(t) are computed through Kustaanheimo-Stiefel
regularization of binary collisions.
Consider also the standard deviation of the solutions:

stdI(t) =
( N∑

j1,j2=1

(Ij1,j2(t)− ÎN(t))2

N2 − 1

)1/2

Then compare ÎN(t) with the solutions of Hamilton’s equations for the
normal form, for different values of N.
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Crossing case: 64 clones
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Crossing case: 625 clones
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Crossing case: 3600 clones
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non-crossing case: 625 clones
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non-crossing case: 8100 clones
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Conclusions and future work

We can compute the secular evolution of planet crossing
asteroids, by averaging over the fast angles: the solutions
are piecewise–smooth;
the orbit distance along the averaged evolution is more
regular than the orbital elements;
We can compute the long term evolution of planet crossing
asteroids also in case of mean motion resonances;
the arithmetic mean of the solutions seems to be close to
the solution of Hamilton’s equations for the normal form of
the Hamiltonian, both in the non-resonant and in the
resonant case.
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Thanks for your attention!
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