Gravitational wave and lensing inference from the CMB polarization

Ethan Anderes[†] (UC Davis Statistics Department)

Joint with Marius Millea (UC Berkeley) and Ben Wandelt (Institut d'Astrophysique de Paris)

[†]Research supported by: IHES-IHP CARMIN Fellowship, NSF DMS-1252795 and DMS-1812199

Back story

Gravitational waves and the CMB

- September 14, 2015 LIGO detected a gravitational wave as it passed by earth
- Big result for physics \longrightarrow 2017 Nobel Prize
- Confirmed a prediction from Einstein's theory of relativity....
- ... also marked the beginning of gravitational wave astronomy,

i.e. the probing of the universe through propagating distortions of space-time rather than just electromagnetic waves

Gravitational Waves

- At around the same time (2014) the BICEP team from the South Pole Telescope announced a detection of gravitational waves in the Cosmic Microwave Background (CMB)...
- ...which are predicted by a theory called cosmic inflation and imprint a specific signature on the polarization of the CMB photons

However the BICEP results was a false detection

NATURE | NEWS

Gravitational waves discovery now officially dead

Combined data from South Pole experiment BICEP2 and Planck probe point to Galactic dust as confounding signal.

- The problem was insufficient statistical quantification of the emission from interstellar dust grains spinning in galactic magnetic fields
- So, the hunt is still on for the gravitational wave signatures in the CMB...

... is a major goal of the next generation Stage IV CMB experiments (planning underway, a projected \$400M effort)

Gravitational waves and lensing of the CMB ... the basics

Ethan Anderes University of California at Davis

Cosmic Microwave Background

- The cosmic microwave background is a light that, for the most part, last interacted with matter only a few hundred thousand years after the big bang.
- Measuring the intensity of the CMB light as a function of position gives this (Planck 2015):

Cosmic Microwave Background

To give you a sense of the special nature of these observations ...

- It is basically the boundary of our observable universe
- We have highly accurate physical models from linear theory since it was generated so near the big bang
- Probes large relativistic scales and small quantum scales simultaneously
- Already it has been used to:
 - map the projected dark matter density fluctuations in our sky
 - determine that the mean curvature of space is much larger than the radius of the observable universe

- To get a handle on the problem of primordial gravitational wave detection, lets talk about a simplified flat-sky model of the CMB and the data
- In this setting the CMB polarization is characterized by a 2-d vector field

$$x \mapsto (Q(x), U(x))$$

where x ranges over a compact region of \mathbb{R}^2

• (Q(x), U(x)) is a headless vector field, called spin 2

Simplified flat-sky data model for CMB polarization

$$\begin{aligned} &d_q(x) = Q(x + \nabla \phi(x)) + F_q(x) + N_q(x) \\ &d_u(x) = \underbrace{U(x + \nabla \phi(x))}_{\text{lensed polarization}} + \underbrace{F_u(x)}_{\text{foregrounds}} + \underbrace{N_u(x)}_{\text{noise}} \end{aligned}$$

- $N_q(x)$ and $N_u(x)$ denote instrumental noise
- $F_q(x)$ and $F_u(x)$ denote foreground emission from our own galaxy. E.g. emission from interstellar dust grains spinning in galactic magnetic fields
- $\phi(x)$ models the slight distortion of the CMB due to the gravitational influence of intervening matter (most of which is "dark matter") on the CMB light,
- This distortion is called "gravitational lensing"

Simulated U(x) on a ~ 0.3% patch of the sky. The middle plot shows the lensing effect $U(x + \nabla \phi(x)) - U(x)$. The last plot shows a simulation of the foreground thermal emission from galactic dust.

Note: the dust emission is multiplied by a factor of 40 to make it visible on the same color scale.

The smoking gun of inflation

First consider a particular unitary linear transformation of (Q, U): $\begin{bmatrix} Q(x) \\ U(x) \end{bmatrix} \xrightarrow{FT} \begin{bmatrix} Q_k \\ U_k \end{bmatrix} \longrightarrow \begin{bmatrix} \cos(2\varphi_k) & -\sin(2\varphi_k) \\ \sin(2\varphi_k) & \cos(2\varphi_k) \end{bmatrix} \begin{bmatrix} Q_k \\ U_k \end{bmatrix} \xrightarrow{IFT} \begin{bmatrix} E(x) \\ B(x) \end{bmatrix}$

- Analogous to divergence and curl of a vector field, but accounting for spin 2
- φ_k denotes the phase angle of frequency vector $k \in \mathbb{R}^2$
- The simplest models of inflation and the standard cosmological model predict that E(x) and B(x) are *isotropic Gaussian random fields*

$$\begin{bmatrix} Q(x) \\ U(x) \end{bmatrix} \xrightarrow{FT} \begin{bmatrix} Q_k \\ U_k \end{bmatrix} \longrightarrow \begin{bmatrix} \cos(2\varphi_k) & -\sin(2\varphi_k) \\ \sin(2\varphi_k) & \cos(2\varphi_k) \end{bmatrix} \begin{bmatrix} Q_k \\ U_k \end{bmatrix} \xrightarrow{IFT} \begin{bmatrix} E(x) \\ B(x) \end{bmatrix}$$

 If cosmic inflation did not occur, and no primordial gravitational waves were produced, then B(x) is predicted to be zero.

$$\begin{bmatrix} Q(x) \\ U(x) \end{bmatrix} \xrightarrow{FT} \begin{bmatrix} Q_k \\ U_k \end{bmatrix} \longrightarrow \begin{bmatrix} \cos(2\varphi_k) & -\sin(2\varphi_k) \\ \sin(2\varphi_k) & \cos(2\varphi_k) \end{bmatrix} \begin{bmatrix} Q_k \\ U_k \end{bmatrix} \xrightarrow{IFT} \begin{bmatrix} E(x) \\ B(x) \end{bmatrix}$$

- If primordial gravitational waves were present, they distort space in such a way that induces non-zero B(x) fluctuations
- Quantified by a single parameter: tensor-to-scalar ratio r
- Showing r > 0, i.e. B(x) has non-zero fluctuations, is often termed *the smoking gun for inflation*

The smoking gun of inflation

• The difficulty, to see this in the data, is that both lensing and **foregrounds** generate non-zero *B* fluctuations.

$$\begin{bmatrix} F_{q}(x) \\ F_{u}(x) \end{bmatrix} \xrightarrow{FT} \begin{bmatrix} F_{q,k} \\ F_{u,k} \end{bmatrix} \longrightarrow \begin{bmatrix} \cos(2\varphi_{k}) & -\sin(2\varphi_{k}) \\ \sin(2\varphi_{k}) & \cos(2\varphi_{k}) \end{bmatrix} \begin{bmatrix} F_{q,k} \\ F_{u,k} \end{bmatrix} \xrightarrow{IFT} \begin{bmatrix} * \\ B > 0 \end{bmatrix}$$

The smoking gun of inflation

Simplified flat-sky data model for CMB polarization $d_q(x) = Q(x + \nabla \phi(x)) + F_q(x) + N_q(x)$ $d_u(x) = \underbrace{U(x + \nabla \phi(x))}_{\text{lensed polarization}} + \underbrace{F_u(x)}_{\text{foregrounds}} + \underbrace{N_u(x)}_{\text{noise}}$

• The difficulty, to see this in the data, is that both **lensing** and foreground generate non-zero *B* fluctuations.

$$\begin{bmatrix} \widetilde{Q}(x) \\ \widetilde{U}(x) \end{bmatrix} \xrightarrow{FT} \begin{bmatrix} \widetilde{Q}_k \\ \widetilde{U}_k \end{bmatrix} \longrightarrow \begin{bmatrix} \cos(2\varphi_k) & -\sin(2\varphi_k) \\ \sin(2\varphi_k) & \cos(2\varphi_k) \end{bmatrix} \begin{bmatrix} \widetilde{Q}_k \\ \widetilde{U}_k \end{bmatrix} \xrightarrow{IFT} \begin{bmatrix} * \\ B > 0 \end{bmatrix}$$
where $\widetilde{Q}(x) = Q(x + \nabla \phi(x))$ and $\widetilde{U}(x) = U(x + \nabla \phi(x))$
• Even when (Q, U) has zero B fluctuations.

Field operator description of the data (no foregrounds)

$$d = \mathbb{AL}(\phi) f + n$$

- Unlensed polarization field f ~ GRF(0, C^{ff}(r)) with covariance operator C^{ff}(r) which depends on the tensor-to-scalar ratio r
- Lensing potential φ ~ GRF (0, C^{φφ}) which operates on f in the QU basis via

$$\mathbb{L}(\phi)f(x) = f(x + \nabla\phi(x))$$

- Experimental noise $n \sim GRF(0, \mathbb{C}^{nn})$
- Operator $\mathbb{A}=\mathbb{K}\,\mathbb{M}\,\mathbb{B}$ for beam $\mathbb{B},$ pixel space mask \mathbb{M} and frequency cut \mathbb{K}

-0.10.0 0.1

-20 -10 Ó 10 20

иΚ

101

10-5

10-7

103

Figure: Unlensed polarization on 455 deg^2 patch of sky with r = 0.025. Note: r determines the amplitude of the unlensed B fluctuations. Dashed line on the right corresponds to $\sqrt{2} \mu$ Karcmin QU noise with a knee at $\ell = 100$

иΚ

noise power E bandpowers B bandpowers

101

102

Figure: Lensed polarization. Qualitatively given by a phase distortion of E and a high frequency additive foreground corruption of B due to E fluctuations leaking into B fluctuations.

Figure: Here is what the data looks like *without* beam, masking or foreground emission. B is buried under lensing and noise corruption. However, since the main contribution of the lensing to B is from E leakage it seems possible one can estimate and remove a some of the lensing "noise" in B, a process called *delensing*.

Sampling the Bayesian Posterior ... on r, ϕ and f given d

The goal is to compute the posterior $r \mapsto P(r \mid d)$

Formally

$$P(r|d) \propto P(d|r) P(r)$$

- Unfortunately, this form is basically intractable
- Requires computing $P(d|r) = P(\mathbb{AL}(\phi)f + n|r)$ each field *n*, ϕ and *f* as random
- In this case $\mathbb{L}(\phi)f$ is isotropic but *non-Gaussian*
- Techniques for characterizing and working with non-Gaussian fields is currently extremely limited.
- A technique to get around this is to *disintegrate* by adding additional parameters to the posterior, then integrating them out.

The goal is to compute the posterior $r \mapsto P(r \mid d)$

- $\bullet\,$ E.g. one can add ϕ as an unknown parameter.
- \bullet Trades non-Gaussianity in $\mathbb{L}(\phi)f$ for non-stationarity

$$P(r|d) \propto \int \underbrace{P(d|r,\phi) P(r) P(\phi)}_{P(r,\phi|d)/c} \mathrm{d}\phi$$

• $P(d|r, \phi)$ is much easier than P(d|r)

$$-2\log P(d|r,\phi) = \left\|d\right\|_{\mathbb{C}^{dd}(r,\phi)}^2 + \log \det \left|\mathbb{C}^{dd}(r,\phi)\right|$$

Determinant is the only tricky part

$$\mathbb{C}^{dd}(r,\phi) = \mathbb{A} \mathbb{L}(\phi) \mathbb{C}^{ff}(r) \mathbb{L}(\phi)^{T} \mathbb{A}^{T} + \mathbb{C}^{nn}$$

 See Hirata and Seljak (2003), Carron and Lewis (2017), Carron (2018)

The goal is to compute the posterior $r \mapsto P(r \mid d)$

• Additionally adding f as an unknown gives

$$P(r|d) \propto \iint \underbrace{P(d|r,\phi,f) P(\phi) P(f|r) P(r)}_{P(r,\phi,f|d)/c} \mathrm{d}\phi \,\mathrm{d}f$$

• Now just need $P(d|r,\phi,f)$ which is straight forward compared to $P(d|r,\phi)$ or P(d|r)

$$-2\log P(d|r,\phi,f) = \|d - \mathbb{AL}(\phi)f\|_{\mathbb{C}^{nn}}^2$$
$$-2\log P(f|r) = \|f\|_{\mathbb{C}^{ff}(r)}^2 + \log \det |\mathbb{C}^{ff}(r)|$$
$$-2\log P(\phi) = \|\phi\|_{\mathbb{C}^{\phi\phi}}^2$$

- No difficult determinants, covariance operators are easier
- Pushes all the difficulty into \iint via sampling $\dots, (r_i, \phi_i, f_i), \dots \sim P(r, \phi, f | d)$

Naive Gibbs sampler

Gibbs sampler

Initialize $f_0 = 0$, $\phi_0 = 0$, and r_0 to some upper bound For $i = 1 \dots n$ $f_i \sim P(f | \phi_{i-1}, r_{i-1}, d)$ solved via CG $\phi_i \sim P(\phi | r_{i-1}, f_i, d)$ HMC accept/reject $r_i \sim P(r | f_i, \phi_i, d)$ evaluated on a grid

- Easy to implement...
- ...but doesn't work!
- Theoretically it should, but the mixing time is incredibly slow

Naive Gibbs sampler

Gibbs sampler

Initialize $f_0 = 0$, $\phi_0 = 0$, and r_0 to some upper bound For $i = 1 \dots n$ $f_i \sim P(f | \phi_{i-1}, r_{i-1}, d)$ solved via CG $\phi_i \sim P(\phi | r_{i-1}, f_i, d)$ HMC accept/reject $r_i \sim P(r | f_i, \phi_i, d)$ evaluated on a grid

• The slow mixing is due to f and ϕ being highly correlated in the posterior

An overdensity in d(x) can explained by an overdensity in f(x) with no lensing, or the lensing of a nearby overdensity.

• One way to overcome this difficulty is to re-parameterize the model

Original parameters: (f, ϕ)	New parameters: (f°, ϕ)
Data written as	Data written as
$d = \mathbb{AL}(\phi) f + n$	$d = \mathbb{AL}(\phi)\mathbb{D}(r)^{-1}\mathbb{L}(\phi)^{-1}f^{\circ} + n$
	where
	$f^\circ := \mathbb{L}(\phi) \mathbb{D}(r) f$

 This re-parameterization is basically a mix of ancillary vrs sufficient parameterization (see classic work by Gelfand, Roberts, Yu, Meng, etc...).

Here is the picture

Brief Pause

... outline: what we have done; the rest of the talk

• Intro to lensing, primordial gravitational wave and CMB

Recap ...

• Using parameter expansion and posterior marginalization to avoid non-Gaussian likelihoods and nasty determinants

$$P(r \mid d) = \int P(r, \phi \mid d) \, \mathrm{d}\phi = \iint P(r, \phi, f \mid d) \, \mathrm{d}\phi \, \mathrm{d}f$$

• Then need to re-parameterize so coordinates are more axes-aligned to make Gibbs tractable

$$f^{\circ} = \mathbb{L}(\phi)\mathbb{D}(r)f$$

The remainder of the talk ...

• More details for the re-parameterization

 $f^{\circ} = \mathbb{L}(\phi)\mathbb{D}(r)f$

 \dots need to define $\mathbb{D}(r)$ and explain why it is key that it is applied before $\mathbb{L}(\phi)$

- Why we had to invent LENSEFLOW, a custom dynamical systems algorithm for pixel-to-pixel lensing, to work with this re-parameterized posterior
- Finally some simulation examples

Why $\mathbb{L}(\phi)\mathbb{D}(\mathbf{r})$

...and why in that order

Naive parameterization

$$\phi \mapsto P(\phi \,|\, f, r, d)$$

- \bullet Want the conditioning variables as weakly informative for ϕ as possible
- Note that conditioning on f and d we are basically given a noisy version of $\mathbb{L}(\phi)f$ and f.
- Recovering ϕ is then a template matching problem:

warp f till it looks like d

• Small range of ϕ values that matches template f to d

Lensed parameterization $\widetilde{f} = \mathbb{L}(\phi)f$

$$\phi \mapsto P(\phi \,|\, \widetilde{f}, r, d)$$

- Warp estimation without a template
- More uncertainty for ϕ
- However, for CMB polarization the smallness of B(x) means that "zero B" implicitly acts as a quasi-template:

unwarp lensed $\widetilde{Q}, \widetilde{U}$ till B is nearly zero

Mixed parameterization $f^{\circ} = \mathbb{L}(\phi)\mathbb{D}(r)f$

$$\phi \mapsto P(\phi \,|\, f^\circ, r, d)$$

•
$$\mathbb{D}(r) = \left[\widetilde{\mathbb{C}}^{ff}(r)\right]^{1/2} \left[\mathbb{C}^{ff}(r)\right]^{-1/2}$$

- $\widetilde{\mathbb{C}}^{\textit{ff}}(r)$ denotes the lensed spectrum
- $\mathbb{D}(r)$ rescales the nearly zero B(x) quasi-template to have pre-lensed power that looks lensed
- Basically $\mathbb{D}(r)$ scrambles the quasi-template so its not as informative

LENSEFLOW

A custom algorithm for pixel-to-pixel lensing

Mixed parameterization log posterior

$$\log P(f^{\circ}, \phi, r, |d) + \text{constant}$$

$$= -\frac{1}{2} \| d - \mathbb{A} \mathbb{L}(\phi) \mathbb{D}(r)^{-1} \mathbb{L}(\phi)^{-1} f^{\circ} \|_{\mathbb{C}^{nn}}^{2}$$

$$-\frac{1}{2} \| \mathbb{D}(r)^{-1} \mathbb{L}(\phi)^{-1} f^{\circ} \|_{\mathbb{C}^{ff}(r)}^{2} - \frac{1}{2} \log |\mathbb{D}(r)^{2} \mathbb{C}^{ff}(r)|$$

$$+ \log(P(r))$$

- Using transformation of variables formula for densities
- There should be an extra $\log \det(\mathbb{L}(\phi))$ term...
- ...these logdet terms can be very difficult to work with so if log det(L(φ)) ≠ 0 it would present problems

Where is the missing $\log \det(\mathbb{L}(\phi))$

- Millea, EA, Wandelt (2017) developed a ODE characterization of pixel-to-pixel lensing, called LenseFlow where log det(L(\$\phi\$)) = 0 is provably true
- Operators such as L(φ)[†], L(φ)^{-†} and [∂/∂φL(φ)⁻¹g][†] are derived analytically via the ODE dynamics
- ... and also gives fast and exact delensing $\tilde{f} \mapsto \mathbb{L}(\phi)^{-1}\tilde{f}$ by running the ODE in reverse (still using forward lensing potential ϕ)
- The ODE for the posterior gradients turn out to be a special case of back-propagation

Defining LENSEFLOW

- Simply introduce an artificial time variable to the CMB field that connects f at "time" 1 with f at "time" 0.
- In particular for $t \in [0,1]$ let

$$f_t(x) = f(x + t\nabla\phi(x))$$

so that $f_0(x) = f(x)$ and $f_1(x) = \tilde{f}(x)$.

• Taking a time derivative and a spatial derivative gives

$$\frac{df_t(x)}{dt} = \nabla^i f(x + t\nabla\phi(x)) \left[\nabla\phi(x)\right]^i$$
$$\nabla^i f_t(x) = \nabla^j f(x + t\nabla\phi(x)) [M_t(x)]^{ji}$$

where $M_t(x) := \left[\delta^{ij} + t \nabla^i \nabla^j \phi(x) \right]$

• Re-arranging gives a ODE for the field f_t

Defining LENSEFLOW

LENSEFLOW

$$\dot{f}_t = (\nabla^j \phi) (M_t^{-1})^{jj} \nabla^j f_t$$

with initial conditions $f_0(x) \equiv f(x)$.

- Flowing the ODE forward gives $f \equiv f_0 \xrightarrow{t=0 \to 1} f_1 = \mathbb{L}(\phi)f$.
- Flowing the ODE backward gives $\tilde{f} \equiv f_1 \stackrel{t=1 \to 0}{\longrightarrow} f_0 = \mathbb{L}(\phi)^{-1} \tilde{f}$
- Note: only φ is needed for backward flow ... i.e. one doesn't need to compute the inverse displacement for L(φ)⁻¹.
- Note: ∇ⁱ is the only non-diagonal (in pixel space) operation needed.

LenseFlow uses an alternative expansion of the lensing effect

Comparing TayLense vrs LenseFlow expansions

$$\begin{split} f(\mathbf{x} + \nabla \phi(\mathbf{x})) &\approx \left[\sum_{n=0}^{N} \frac{1}{n!} [\nabla \phi(\mathbf{x})]^n \nabla^n \right] f(\mathbf{x}) \\ &\approx \left[\prod_{n=0}^{N} \left(1 + \frac{1}{N} p_{n/N} \cdot \nabla\right)\right] f(\mathbf{x}) \end{split}$$

- Both give exact results on finite pixels as N→∞ when ∇ is the true gradient (this is where sub-grid scale fluctuations come in)
- TayLense: N corresponds to Taylor order
- LenseFlow: 1/N corresponds to an ODE time step size
- For discrete pixels det(LenseFlow) \to 1 as $1/N \to 0$ for any numerical ∇ such that $\nabla^\dagger = -\nabla$

LenseFlow uses an alternative expansion of the lensing effect

Comparing TayLense vrs LenseFlow expansions

$$f(\mathbf{x} + \nabla \phi(\mathbf{x})) \approx \left[\sum_{n=0}^{N} \frac{1}{n!} [\nabla \phi(\mathbf{x})]^n \nabla^n \right] f(\mathbf{x})$$
$$\approx \left[\prod_{n=0}^{N} \left(1 + \frac{1}{N} \rho_{n/N} \cdot \nabla\right)\right] f(\mathbf{x})$$

Ethan Anderes University of California at Davis

$\log \det(\mathbb{L}(\phi)) = 0$ with LENSEFLOW

 The LENSEFLOW ODE decomposes L(φ) into infinitesimally small (local) linear operations

$$f_1 = \underbrace{\left[I + \varepsilon \ p_{t_n} \cdot \nabla\right] \cdots \left[I + \varepsilon \ p_{t_0} \cdot \nabla\right]}_{\stackrel{\epsilon \to 0}{\longrightarrow} \mathbb{L}(\phi)} f_0$$

where
$$[p_t(x)]^j = \nabla^i \phi(x) [M_t^{-1}(x)]^{ij}$$
, $t_{i+1} = t_i + \varepsilon$ and $\epsilon = \frac{1}{n}$
• Since

$$\log \det \left[I + \varepsilon \ p_t \cdot \nabla \right] = \varepsilon \underbrace{\operatorname{Tr} \left[\ p_t \cdot \nabla \right]}_{=*0} + \mathcal{O}(\epsilon^2),$$

we have $\log \det(\mathbb{L}(\phi)) = 0$.

* ... by the Hermitian anti-symmetry of abla, i.e.

$$\operatorname{Tr}\left[\operatorname{diag}(p^{i})\nabla^{i}\right] = \operatorname{Tr}\left[\left(\operatorname{diag}(p^{i})\nabla^{i}\right)^{\dagger}\right] = \operatorname{Tr}\left[\left(\nabla^{i}\right)^{\dagger}\operatorname{diag}(p^{i})\right] = -\operatorname{Tr}\left[\operatorname{diag}(p^{i})\nabla^{i}\right].$$

Transpose lensing with LENSEFLOW

- Transpose (or adjoint) lensing $\mathbb{L}(\phi)^{\dagger}$ can be characterized with a ODE flow.
- Start by writing

$$\mathbb{L}(\phi)f = [I + \varepsilon \ p_{t_n} \cdot \nabla] \cdots [I + \varepsilon \ p_{t_0} \cdot \nabla] f$$

Taking a formal adjoint

$$\mathbb{L}(\phi)^{\dagger} f = [I + \varepsilon \ p_{t_0} \cdot \nabla]^{\dagger} \cdots [I + \varepsilon \ p_{t_n} \cdot \nabla]^{\dagger} f$$
$$= [I - \varepsilon \nabla^i (p_{t_0}^i \bullet)] \cdots [I - \varepsilon \nabla^i (p_{t_n}^i \bullet)] f$$

 $\bullet~{\rm Therefore}~\mathbb{L}(\phi)^{\dagger}f=f_{0}$ where f_{t} satisfies the ODE

$$\dot{f}_t = \nabla^i (p_t^i f_t)$$

with initial conditions $f_1 = f$.

Lensing and inverse lensing accuracy

• 7 Runge-Kutta (4th order) time steps produces accurate lensing (and inverse lensing).

Figure: Simulation on a 1024×1024 flat sky periodic grid with pixel side length 1.5 arcmin. Timing \sim 900 ms for a single lensing operation of a IQU field.

Fast posterior gradients

• Posterior gradients in re-parameterized coordinates given by

$$\nabla_{f^{\circ},\phi} \log P = \begin{bmatrix} \mathbb{L}(\phi) & \frac{\partial}{\partial \phi} \mathbb{L}(\phi) \mathbb{D}(r)f \\ 0 & \mathbb{I} \end{bmatrix}^{-T} \begin{bmatrix} \mathbb{D}(r)^{-T} & 0 \\ 0 & \mathbb{I} \end{bmatrix} \underbrace{\nabla_{f,\phi} \log P}_{\text{orig parameters}}$$

• Everything can solved via the adjoint ODE of

$$\begin{bmatrix} \dot{\delta f_t} \\ \dot{\delta \phi_t} \end{bmatrix} = \begin{bmatrix} p_t^i \nabla^i & v_t^j \nabla^i - t W_t^{ij} \nabla^i \nabla^j \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta f_t \\ \delta \phi_t \end{bmatrix}$$

• p_t , v_t , and W_t can be pre-computed from an initial LenseFlow

• Note: these gradients account for the numerical implementation of ∇ used in LenseFlow

Intuition why

$$\mathbb{L}_{LenF}(\phi)f \approx \mathbb{L}_{TayL}(\phi)f$$

but...

 $\log \det \mathbb{L}_{\mathit{LenF}}(\phi) \not\approx \log \det \mathbb{L}_{\mathit{TayL}}(\phi)$

 Any pixel-to-pixel lensing will need to do some type of weighted averaging to account for sub-gridscale variability ...

• ... but there is flexibility in how one chooses these weights.

• These weights should be invertible and *perhaps* mostly local (for both forward and inverse lensing)

• For LENSEFLOW the forward lensing weights are local. This follows since

$$\mathbb{L}(\phi)f = [I + \varepsilon \ p_{t_n} \cdot \nabla] \cdots [I + \varepsilon \ p_{t_0} \cdot \nabla] f$$

and the operators $I + \varepsilon p_{t_i} \cdot \nabla$ are all localized.

• Inverse lensing weights are also local via the ODE time reversal

$$\mathbb{L}(\phi)^{-1}f = \left[I - \varepsilon \ p_{t_0} \cdot \nabla\right] \cdots \left[I - \varepsilon \ p_{t_n} \cdot \nabla\right] f$$

• For other alternatives, locality of both forward and inverse weights is not guaranteed.

Toy example: banded matrix with banded inverse

 The following two matrices have the same local linear behavior near the diagonal

The left has exponential decay whereas the right truncates to zero

Toy example: banded matrix with banded inverse

Here is the matrix inverse:

 The left is only non-zero on the diagonal and the near off-diagonal.... but the right has non-trivial weights spread across each row

First simulation example

CMB-S4 experimental conditions in the flat sky.

The (simulated) data

Figure: 384x384 Float32 flat sky pixels 3.0 arcmin pixels and beam (fsky 0.8936%, 368 deg²). Noise at $\sqrt{2} - \mu$ Karcmin with a knee at $\ell = 90$. $\ell_{min} = 30$ and $\ell_{max} = 2700$ which is 75% of nyquist limit.

Optimized $\mathbb{G}(A_{\phi\phi})$ and $\mathbb{D}(r)$

Figure: **Top**: *r* sample iterations. **Bottom**: $A_{\phi\phi}$ sample iterations. Chain started at fiducial r = 0.1 and $A_{\phi\phi} = 0.95$. Gibbs pass without $A_{\phi\phi}$ runs in 125 seconds. With $A_{\phi\phi}$ runs in 216 seconds

Marginal posterior density estimates

Figure: Left: r marginal samples. Right: $A_{\phi\phi}$ marginal samples

Joint posterior density estimates

Figure: Joint $(r, A_{\phi\phi})$ samples. Suggests we can fix a fiducial $A_{\phi\phi}$ without severely effecting the *r* samples.

Showing the improvement gained by $\mathbb{G}(A_{\scriptscriptstyle \phi\phi})$

 $G(A_{\phi\phi})$ set to the identity matrix I

Figure: Using the same seed but with $\mathbb{G}(A_{\phi\phi})=I,$ the identity, so that $\phi^\circ=\phi$

Second simulation example

Fixed fiducial $A_{\phi\phi}$. fsky = 1.59% (655 deg²). Three simulation truths r = 0.05, 0.01, 0.

r chain trace plots for three simulations with true r = 0.5, 0.1, 0

Marginal posterior density estimates

ϕ posterior samples

Unlensed *B* samples

Third simulation example

Coverage sanity check

- Multiple independent samples (d_i, ϕ_i, f_i, n_i) on small 256x256 pixel grids (fsky = 0.3972%, 164 deg²) for r = 0.05, 0.01, 0.
- Compute the product Π_iP(r | d_i). Check that it supports the simulation truth r.

Some questions

- Is there a way to make sense of the continuum version of log det $\mathbb{L}(\phi)?$
 - Is it possible that continuum log det $\mathbb{L}(\phi) \neq 0$ and pixel-to-pixel LENSEFLOW is just adjusting near Nyquist frequency modes to get log det = 0?
 - Are there splitting methods that can guarantee the discrete ODE solvers for LENSEFLOW satisfy log det $\mathbb{L}(\phi) = 0$ exactly and works for strong lenses?
- LENSEFLOW ODE formalism for the sphere and other geometries?
 - For spin 2 vector fields the lensing displacement should parallel transport the vectors
 - Replacing ∇ with discrete pixel space differences. Needs to work on HealPix and non-uniform grids
- Can one use Lie Group to make sense of these re-parameterizations for general Gibbs samplers ?