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Back story
Gravitational waves and the CMB
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Gravitational Waves

September 14, 2015 LIGO detected a gravitational wave as it
passed by earth

Big result for physics ÝÑ 2017 Nobel Prize

Confirmed a prediction from Einstein’s theory of relativity....

... also marked the beginning of gravitational wave astronomy,

i.e. the probing of the universe through propagating
distortions of space-time rather than just electromagnetic
waves
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Gravitational Waves

At around the same time (2014) the BICEP team from the
South Pole Telescope announced a detection of gravitational
waves in the Cosmic Microwave Background (CMB)...

...which are predicted by a theory called cosmic inflation and
imprint a specific signature on the polarization of the CMB
photons
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Gravitational Waves

However the BICEP results was a false detection

The problem was insufficient statistical quantification of the
emission from interstellar dust grains spinning in galactic
magnetic fields

So, the hunt is still on for the gravitational wave signatures in
the CMB...
... is a major goal of the next generation Stage IV CMB
experiments (planning underway, a projected $400M effort)
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Gravitational waves and lensing of the CMB
... the basics
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Cosmic Microwave Background

The cosmic microwave background is a light that, for the
most part, last interacted with matter only a few hundred
thousand years after the big bang.

Measuring the intensity of the CMB light as a function of
position gives this (Planck 2015):
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Cosmic Microwave Background

To give you a sense of the special nature of these observations ...

It is basically the boundary of our observable universe

We have highly accurate physical models from linear theory
since it was generated so near the big bang

Probes large relativistic scales and small quantum scales
simultaneously

Already it has been used to:

- map the projected dark matter density fluctuations in our sky

- determine that the mean curvature of space is much larger
than the radius of the observable universe

Ethan Anderes University of California at Davis



To get a handle on the problem of primordial gravitational
wave detection, lets talk about a simplified flat-sky model of
the CMB and the data

In this setting the CMB polarization is characterized by a 2-d
vector field

x ÞÑ pQpxq,Upxqq

where x ranges over a compact region of R2

pQpxq,Upxqq is a headless vector field, called spin 2
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Simplified flat-sky data model for CMB polarization

dqpxq “ Qpx `∇φpxqq ` Fqpxq ` Nqpxq

dupxq “ Upx `∇φpxqq
looooooomooooooon

lensed polarization

` Fupxq
loomoon

foregrounds

` Nupxq
loomoon

noise

Nqpxq and Nupxq denote instrumental noise

Fqpxq and Fupxq denote foreground emission from our own
galaxy. E.g. emission from interstellar dust grains spinning in
galactic magnetic fields

φpxq models the slight distortion of the CMB due to the
gravitational influence of intervening matter (most of which is
“dark matter“) on the CMB light,

This distortion is called “gravitational lensing“
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Simulated Upxq on a „ 0.3% patch of the sky. The middle plot
shows the lensing effect Upx `∇φpxqq´Upxq. The last plot shows
a simulation of the foreground thermal emission from galactic dust.
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Note: the dust emission is multiplied by a factor of 40 to make it
visible on the same color scale.
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The smoking gun of inflation

First consider a particular unitary linear transformation of pQ,Uq:

„

Qpxq
Upxq



FT
ÝÑ

„

Qk

Uk



ÝÑ

„

cosp2ϕkq ´ sinp2ϕkq

sinp2ϕkq cosp2ϕkq

 „

Qk

Uk



IFT
ÝÑ

„

E pxq
Bpxq



Analogous to divergence and curl of a vector field, but
accounting for spin 2

ϕk denotes the phase angle of frequency vector k P R2

The simplest models of inflation and the standard
cosmological model predict that E pxq and Bpxq are isotropic
Gaussian random fields
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The smoking gun of inflation

„

Qpxq
Upxq



FT
ÝÑ

„

Qk

Uk



ÝÑ

„

cosp2ϕkq ´ sinp2ϕkq

sinp2ϕkq cosp2ϕkq

 „

Qk

Uk



IFT
ÝÑ

„

E pxq
Bpxq



If cosmic inflation did not occur, and no primordial
gravitational waves were produced, then Bpxq is predicted to
be zero.
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The smoking gun of inflation

„

Qpxq
Upxq



FT
ÝÑ

„

Qk

Uk



ÝÑ

„

cosp2ϕkq ´ sinp2ϕkq

sinp2ϕkq cosp2ϕkq

 „

Qk

Uk



IFT
ÝÑ

„

E pxq
Bpxq



If primordial gravitational waves were present, they distort
space in such a way that induces non-zero Bpxq fluctuations

Quantified by a single parameter: tensor-to-scalar ratio r

Showing r ą 0, i.e. Bpxq has non-zero fluctuations, is often
termed the smoking gun for inflation
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The smoking gun of inflation

Simplified flat-sky data model for CMB polarization

dqpxq “ Qpx `∇φpxqq ` Fqpxq ` Nqpxq

dupxq “ Upx `∇φpxqq
looooooomooooooon

lensed polarization

` Fupxq
loomoon

foregrounds

` Nupxq
loomoon

noise

The difficulty, to see this in the data, is that both lensing and
foregrounds generate non-zero B fluctuations.

„

Fqpxq
Fupxq



FT
ÝÑ

„

Fq,k
Fu,k



ÝÑ

„

cosp2ϕkq ´ sinp2ϕkq

sinp2ϕkq cosp2ϕkq

 „

Fq,k
Fu,k



IFT
ÝÑ

„

*
B ą 0


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The smoking gun of inflation

Simplified flat-sky data model for CMB polarization

dqpxq “ Qpx `∇φpxqq ` Fqpxq ` Nqpxq

dupxq “ Upx `∇φpxqq
looooooomooooooon

lensed polarization

` Fupxq
loomoon

foregrounds

` Nupxq
loomoon

noise

The difficulty, to see this in the data, is that both lensing and
foreground generate non-zero B fluctuations.

«

rQpxq
rUpxq

ff

FT
ÝÑ

«

rQk

rUk

ff

ÝÑ

„

cosp2ϕkq ´ sinp2ϕkq

sinp2ϕkq cosp2ϕkq



«

rQk

rUk

ff

IFT
ÝÑ

„

*
B ą 0



where rQpxq “ Qpx `∇φpxqq and rUpxq “ Upx `∇φpxqq
Even when pQ,Uq has zero B fluctuations.
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Field operator description of the data (no foregrounds)

d “ ALpφq f ` n

Unlensed polarization field f „ GRF
`

0,Cff prq
˘

with
covariance operator Cff prq which depends on the
tensor-to-scalar ratio r

Lensing potential φ „ GRF
`

0,Cφφ
˘

which operates on f in
the QU basis via

Lpφqf pxq “ f px `∇φpxqq

Experimental noise n „ GRF
`

0,Cnn
˘

Operator A “ KMB for beam B, pixel space mask M and
frequency cut K
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f

E unlensed B unlensed
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Figure: Unlensed polarization on 455 deg2 patch of sky with r “ 0.025.
Note: r determines the amplitude of the unlensed B fluctuations. Dashed
line on the right corresponds to

?
2 µKarcmin QU noise with a knee at

` “ 100
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Lpφq f

E lensed B lensed
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Figure: Lensed polarization. Qualitatively given by a phase distortion of
E and a high frequency additive foreground corruption of B due to E
fluctuations leaking into B fluctuations.
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Lpφq f ` n

E data B data
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Figure: Here is what the data looks like without beam, masking or
foreground emission. B is buried under lensing and noise corruption.
However, since the main contribution of the lensing to B is from E
leakage it seems possible one can estimate and remove a some of the
lensing “noise”in B, a process called delensing.
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Sampling the Bayesian Posterior
... on r , φ and f given d
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The goal is to compute the posterior r ÞÑ Ppr | dq

Formally
Ppr |dq 9 Ppd |rqPprq

Unfortunately, this form is basically intractable

Requires computing Ppd |rq “ P
`

ALpφqf ` n
ˇ

ˇ r
˘

each field n,
φ and f as random

In this case Lpφqf is isotropic but non-Gaussian

Techniques for characterizing and working with non-Gaussian
fields is currently extremely limited.

A technique to get around this is to disintegrate by adding
additional parameters to the posterior, then integrating them
out.

Ethan Anderes University of California at Davis



The goal is to compute the posterior r ÞÑ Ppr | dq

E.g. one can add φ as an unknown parameter.

Trades non-Gaussianity in Lpφqf for non-stationarity

Ppr |dq 9

ż

Ppd |r , φqPprqPpφq
looooooooooomooooooooooon

Ppr ,φ | dq{c

dφ

Ppd |r , φq is much easier than Ppd |rq

´2 logPpd |r , φq “
›

›d
›

›

2

Cdd pr ,φq
` log det

ˇ

ˇCddpr , φq
ˇ

ˇ

Determinant is the only tricky part

Cddpr , φq “ A Lpφq Cff prq LpφqTAT ` Cnn

See Hirata and Seljak (2003), Carron and Lewis (2017),
Carron (2018)
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The goal is to compute the posterior r ÞÑ Ppr | dq

Additionally adding f as an unknown gives

Ppr |dq 9

ĳ

Ppd |r , φ, f qPpφqPpf |rqPprq
looooooooooooooooomooooooooooooooooon

Ppr ,φ,f | dq{c

dφ df

Now just need Ppd |r , φ, f q which is straight forward compared
to Ppd |r , φq or Ppd |rq

´2 logPpd |r , φ, f q “
›

› d ´ ALpφqf
›

›

2

Cnn

´2 logPpf |rq “
›

› f
›

›

2

Cff prq
` log det

ˇ

ˇCff prq
ˇ

ˇ

´2 logPpφq “
›

›φ
›

›

2

Cφφ

No difficult determinants, covariance operators are easier

Pushes all the difficulty into
ť

via sampling
. . . , pri , φi , fi q, . . . „ Ppr , φ, f |dq
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Naive Gibbs sampler

Gibbs sampler

Initialize f0 “ 0, φ0 “ 0, and r0 to some upper bound
For i “ 1 ... n

fi „ Ppf |φi ´ 1, ri ´ 1, dq solved via CG

φi „ Ppφ | ri ´ 1, fi , dq HMC accept/reject

ri „ Ppr | fi , φi , dq evaluated on a grid

Easy to implement...

...but doesn’t work!

Theoretically it should, but the mixing time is incredibly slow
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Naive Gibbs sampler

Gibbs sampler

Initialize f0 “ 0, φ0 “ 0, and r0 to some upper bound
For i “ 1 ... n

fi „ Ppf |φi ´ 1, ri ´ 1, dq solved via CG

φi „ Ppφ | ri ´ 1, fi , dq HMC accept/reject

ri „ Ppr | fi , φi , dq evaluated on a grid

The slow mixing is due to f and φ being highly correlated in
the posterior

An overdensity in dpxq can explained by an overdensity in
f pxq with no lensing, or the lensing of a nearby overdensity.
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Re-parameterization

One way to overcome this difficulty is to re-parameterize the
model

Original parameters: pf , φq

Data written as

d “ ALpφq f ` n

New parameters: pf ˝, φq

Data written as

d “ ALpφqDprq´1Lpφq´1 f ˝ ` n

where

f ˝ :“ LpφqDprq f

This re-parameterization is basically a mix of ancillary vrs
sufficient parameterization (see classic work by Gelfand,
Roberts, Yu, Meng, etc...).
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Here is the picture

Ppf , φ | r , dq looks like this:

2 1 1 2

2

1

1

2

Slow mixing

Ppf ˝, φ | r , dq looks like this:

2 1 1 2

2

1

1

2

Fast mixing
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Brief Pause
... outline: what we have done; the rest of the talk
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Recap ...

Intro to lensing, primordial gravitational wave and CMB

Using parameter expansion and posterior marginalization to
avoid non-Gaussian likelihoods and nasty determinants

Ppr | dq “

ż

Ppr , φ | dq dφ “

ĳ

Ppr , φ, f | dq dφ df

Then need to re-parameterize so coordinates are more
axes-aligned to make Gibbs tractable

f ˝ “ LpφqDprqf

Ethan Anderes University of California at Davis



The remainder of the talk ...

More details for the re-parameterization

f ˝ “ LpφqDprqf

... need to define Dprq and explain why it is key that it is
applied before Lpφq

Why we had to invent LenseFlow, a custom dynamical
systems algorithm for pixel-to-pixel lensing, to work with this
re-parameterized posterior

Finally some simulation examples
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Why LpφqDprq
...and why in that order
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Naive parameterization

φ ÞÑ Ppφ | f , r , dq

Want the conditioning variables as weakly informative for φ as
possible

Note that conditioning on f and d we are basically given a
noisy version of Lpφqf and f .

Recovering φ is then a template matching problem:

warp f till it looks like d

Small range of φ values that matches template f to d
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Lensed parameterization rf “ Lpφqf

φ ÞÑ Ppφ | rf , r , dq

Warp estimation without a template

More uncertainty for φ

However, for CMB polarization the smallness of Bpxq means
that ”zero B” implicitly acts as a quasi-template:

unwarp lensed rQ, rU till B is nearly zero
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Mixed parameterization f ˝ “ LpφqDprqf

φ ÞÑ Ppφ | f ˝, r , dq

Dprq “
“

rCff prq
‰1{2“Cff prq

‰´1{2

rCff prq denotes the lensed spectrum

Dprq rescales the nearly zero Bpxq quasi-template to have
pre-lensed power that looks lensed

Basically Dprq scrambles the quasi-template so its not as
informative
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LenseFlow
A custom algorithm for pixel-to-pixel lensing
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Mixed parameterization log posterior

logP
`

f ˝, φ, r , | d
˘

` constant

“ ´
1

2

›

› d ´ ALpφqDprq´1Lpφq´1f ˝
›

›

2

Cnn

´
1

2

›

›Dprq´1Lpφq´1f ˝
›

›

2

Cff prq
´

1

2
log

ˇ

ˇDprq2Cff prq
ˇ

ˇ

` logpPprqq

Using transformation of variables formula for densities

There should be an extra log detpLpφqq term...

...these logdet terms can be very difficult to work with so if
log detpLpφqq ‰ 0 it would present problems
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Where is the missing log detpLpφqq

Millea, EA, Wandelt (2017) developed a ODE characterization
of pixel-to-pixel lensing, called LenseFlow where
log detpLpφqq “ 0 is provably true

Operators such as Lpφq :, Lpφq´: and
“

B
BφLpφq

´1g
‰:

are
derived analytically via the ODE dynamics

... and also gives fast and exact delensing f̃ ÞÑ Lpφq´1f̃ by
running the ODE in reverse (still using forward lensing
potential φ)

The ODE for the posterior gradients turn out to be a special
case of back-propagation
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Defining LenseFlow

Simply introduce an artificial time variable to the CMB field
that connects f̃ at ”time” 1 with f at ”time” 0.

In particular for t P r0, 1s let

ftpxq “ f px ` t∇φpxqq

so that f0pxq “ f pxq and f1pxq “ f̃ pxq.

Taking a time derivative and a spatial derivative gives

dftpxq

dt
“ ∇i f px ` t∇φpxqq r∇φpxqsi

∇i ftpxq “ ∇j f px ` t∇φpxqqrMtpxqs
ji

where Mtpxq :“
“

δij ` t∇i∇jφpxq
‰

Re-arranging gives a ODE for the field ft

Ethan Anderes University of California at Davis



Defining LenseFlow

LenseFlow

9ft “ p∇jφq pM´1
t qji ∇i ft

with initial conditions f0pxq ” f pxq.

Flowing the ODE forward gives f ” f0
t“0Ñ1
ÝÑ f1 “ Lpφqf .

Flowing the ODE backward gives f̃ ” f1
t“1Ñ0
ÝÑ f0 “ Lpφq´1f̃

Note: only φ is needed for backward flow ... i.e. one doesn’t
need to compute the inverse displacement for Lpφq´1.

Note: ∇i is the only non-diagonal (in pixel space) operation
needed.
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LenseFlow uses an alternative expansion of the lensing effect

Comparing TayLense vrs LenseFlow expansions

f px `∇φpxqq «

«

N
ÿ

n“0

1

n!
r∇φpxqsn∇n

ff

f pxq

«

«

N
ź

n“0

`

1` 1
N pn{N ¨∇

˘

ff

f pxq

Both give exact results on finite pixels as N Ñ8 when ∇ is
the true gradient (this is where sub-grid scale fluctuations
come in)

TayLense: N corresponds to Taylor order

LenseFlow: 1{N corresponds to an ODE time step size

For discrete pixels detpLenseFlowq Ñ 1 as 1{N Ñ 0 for any
numerical ∇ such that ∇: “ ´∇
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LenseFlow uses an alternative expansion of the lensing effect

Comparing TayLense vrs LenseFlow expansions

f px `∇φpxqq «

«

N
ÿ

n“0

1

n!
r∇φpxqsn∇n

ff

f pxq

«

«

N
ź

n“0

`

1` 1
N pn{N ¨∇

˘

ff

f pxq
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log detpLpφqq “ 0 with LenseFlow

The LenseFlow ODE decomposes Lpφq into infinitesimally
small (local) linear operations

f 1 “ rI ` ε ptn ¨∇ s ¨ ¨ ¨ rI ` ε pt0 ¨∇ s
looooooooooooooooooomooooooooooooooooooon

εÑ0
ÝÑLpφq

f 0

where rptpxqs
j “ ∇iφpxq rM´1

t pxqsij , ti`1 “ ti ` ε and ε “ 1
n

Since

log det rI ` ε pt ¨∇ s “ ε Tr r pt ¨∇ s
looooomooooon

“˚0

`Opε2q,

we have log detpLpφqq “ 0.

˚ ... by the Hermitian anti-symmetry of ∇, i.e.

Tr
”

diagppi q∇i
ı

“ Tr
”

pdiagppi q∇i q:
ı

“ Tr
”

p∇i q:diagppi q
ı

“ ´Tr
”

diagppi q∇i
ı

.
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Transpose lensing with LenseFlow

Transpose (or adjoint) lensing Lpφq: can be characterized
with a ODE flow.

Start by writing

Lpφqf “ rI ` ε ptn ¨∇ s ¨ ¨ ¨ rI ` ε pt0 ¨∇ s f

Taking a formal adjoint

Lpφq:f “ rI ` ε pt0 ¨∇ s
:
¨ ¨ ¨ rI ` ε ptn ¨∇ s

: f

“
“

I ´ ε∇i ppit0 ‚q
‰

¨ ¨ ¨
“

I ´ ε∇i ppitn ‚q
‰

f

Therefore Lpφq:f “ f0 where ft satisfies the ODE

9ft “ ∇i ppit ftq

with initial conditions f1 “ f .

Ethan Anderes University of California at Davis



Lensing and inverse lensing accuracy

7 Runge-Kutta (4th order) time steps produces accurate
lensing (and inverse lensing).
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105 Inverse LenseFlow error: f L 1
LenF LLenFf 

Figure: Simulation on a 1024x1024 flat sky periodic grid with pixel side
length 1.5 arcmin. Timing „ 900 ms for a single lensing operation of a
IQU field.
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Fast posterior gradients

Posterior gradients in re-parameterized coordinates given by

∇f ˝,φ logP “

„

Lpφq B
BφLpφqDprqf

0 I

´T „

Dprq´T 0
0 I



∇f ,φ logP
loooomoooon

orig parameters

Everything can solved via the adjoint ODE of

«

9δft
9δφt

ff

“

«

pit ∇i v it ∇i ´ tW ij
t ∇i∇j

0 0

ff«

δft
δφt

ff

pt , vt , and Wt can be pre-computed from an initial LenseFlow

Note: these gradients account for the numerical
implementation of ∇ used in LenseFlow
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Intuition why

LLenF pφqf « LTayLpφqf

but...

log detLLenF pφq ff log detLTayLpφq
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Any pixel-to-pixel lensing will need to do some type of
weighted averaging to account for sub-gridscale variability ...

... but there is flexibility in how one chooses these weights.
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These weights should be invertible and perhaps mostly local
(for both forward and inverse lensing)
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For LenseFlow the forward lensing weights are local. This
follows since

Lpφqf “ rI ` ε ptn ¨∇ s ¨ ¨ ¨ rI ` ε pt0 ¨∇ s f

and the operators I ` ε pti ¨∇ are all localized.

Inverse lensing weights are also local via the ODE time reversal

Lpφq´1f “ rI ´ ε pt0 ¨∇ s ¨ ¨ ¨ rI ´ ε ptn ¨∇ s f

For other alternatives, locality of both forward and inverse
weights is not guaranteed.
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Toy example: banded matrix with banded inverse

The following two matrices have the same local linear
behavior near the diagonal

0 100 200

0

50

100

150

200

250

1 : = 5 * [exp( |ti tj|)]ij

4

2

0

2

4

0 100 200

0

50

100

150

200

250

2 = 5 * [(1 |ti tj|) + ]ij

4

2

0

2

4

The left has exponential decay whereas the right truncates to
zero
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Toy example: banded matrix with banded inverse

Here is the matrix inverse:

0 100 200

0

50

100

150

200

250

1
1

8
6
4
2

0
2
4
6
8

0 100 200

0

50

100

150

200

250

1
2

8
6
4
2

0
2
4
6
8

The left is only non-zero on the diagonal and the near
off-diagonal.... but the right has non-trivial weights spread
across each row
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First simulation example
CMB-S4 experimental conditions in the flat sky.
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The (simulated) data
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Figure: 384x384 Float32 flat sky pixels 3.0 arcmin pixels and beam (fsky
0.8936%, 368 deg2). Noise at

?
2´ µKarcmin with a knee at ` “ 90.

`min “ 30 and `max “ 2700 which is 75% of nyquist limit.
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The chain
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Figure: Top: r sample iterations. Bottom: Aφφ sample iterations. Chain
started at fiducial r “ 0.1 and Aφφ “ 0.95. Gibbs pass without Aφφ runs
in 125 seconds. With Aφφ runs in 216 seconds
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Marginal posterior density estimates
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Figure: Left: r marginal samples. Right: Aφφ marginal samples
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Joint posterior density estimates
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Figure: Joint pr ,Aφφq samples. Suggests we can fix a fiducial Aφφ

without severely effecting the r samples.

Ethan Anderes University of California at Davis



Showing the improvement gained by GpAφφq
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Figure: Using the same seed but with GpAφφq “ I , the identity, so that
φ˝ “ φ
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Second simulation example
Fixed fiducial Aφφ. fsky = 1.59% (655 deg2).
Three simulation truths r “ 0.05, 0.01, 0.
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The chains
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Marginal posterior density estimates
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φ posterior samples
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Unlensed B samples
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Third simulation example
Coverage sanity check
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Multiple independent samples pdi , φi , fi , ni q on small 256x256
pixel grids (fsky = 0.3972%, 164 deg2) for r “ 0.05, 0.01, 0.

Compute the product ΠiPpr | di q. Check that it supports the
simulation truth r .
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Some questions
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Is there a way to make sense of the continuum version of
log detLpφq?

- Is it possible that continuum log detLpφq ‰ 0 and
pixel-to-pixel LenseFlow is just adjusting near Nyquist
frequency modes to get log det “ 0?

- Are there splitting methods that can guarantee the discrete
ODE solvers for LenseFlow satisfy log detLpφq “ 0 exactly
and works for strong lenses?

LenseFlow ODE formalism for the sphere and other
geometries?

- For spin 2 vector fields the lensing displacement should
parallel transport the vectors

- Replacing ∇ with discrete pixel space differences. Needs to
work on HealPix and non-uniform grids

Can one use Lie Group to make sense of these
re-parameterizations for general Gibbs samplers ?
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