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Theorem (B.Fayad-D.S. 2018)

[more precise statement later]
For any N ě 3, the integrable quasi-convex Hamiltonian

H0pθ, rq “
1
2pr

2
1 ` ¨ ¨ ¨ ` r2N´1q ` rN pθ P TN , r P RNq

can be perturbed in the Gevrey smooth category so that most of
the invariant tori of the perturbed system are no more than doubly
exponentially stable.

Giorgilli-Morbidelli 1995: “Superexponential stability of KAM tori”
for analytic Hamiltonians: perturb a quasi-convex integrable
Hamiltonian, consider a KAM torus with τ -Diophantine frequency,
then ν-close solutions stay close to the torus for an interval of time
which is doubly exponentially large: exp

`

exp
`

ν´1{pτ`1q
˘˘

.
“STICKY”
Bounemoura-Fayad-Niederman 2017: extension to the Gevrey
category. Also, for a residual and prevalent set of integrable
Hamiltonians, for any small perturbation in Gevrey class, there is a
set of almost full Lebesgue measure of KAM tori which are doubly
exponentially stable.
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Gevrey regularity: Given α ě 1, L ą 0 and K a product of closed
Euclidean balls and tori, we define uniformly Gevrey-pα, Lq fcns:

Gα,LpRM ˆ K q :“ tf P C8pRM ˆ K q | ‖f ‖α,L ă 8u,
‖f ‖α,L :“

ř

`PNN
L|`|α

`!α ‖B`f ‖C0pRMˆKq

(with `! “ `1! . . . `N !).
Nice properties: Banach algebra, Cauchy-Gevrey inequalities, the
flow of a Gevrey vector field is a Gevrey map, etc.

Gevrey functions with compact support: if α ą 1, z P Tˆ R and
ν ą 0, Gα,LpTˆ Rq contains a function 0 ď ηz,ν ď 1 such that
ηz,ν ” 1 on Bpz , ν{2q, ηz,ν ” 0 on Bpz , νqc ,

‖ηz,ν‖α,L ď exppcν´
1

α´1 q.

Fréchet space Gα,LpRM ˆ K q: cover the factor RM by an
increasing sequence of closed balls BRj

, choose Lj “ 2´jL, get a
complete metric space with translation-invariant distance dα,L.
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Fréchet space Gα,LpRM ˆ K q: cover the factor RM by an
increasing sequence of closed balls BRj

, choose Lj “ 2´jL, get a
complete metric space with translation-invariant distance dα,L.



3/13

Gevrey regularity: Given α ě 1, L ą 0 and K a product of closed
Euclidean balls and tori, we define uniformly Gevrey-pα, Lq fcns:

Gα,LpRM ˆ K q :“ tf P C8pRM ˆ K q | ‖f ‖α,L ă 8u,
‖f ‖α,L :“

ř

`PNN
L|`|α

`!α ‖B`f ‖C0pRMˆKq

(with `! “ `1! . . . `N !).
Nice properties: Banach algebra, Cauchy-Gevrey inequalities, the
flow of a Gevrey vector field is a Gevrey map, etc.

Gevrey functions with compact support: if α ą 1, z P Tˆ R and
ν ą 0, Gα,LpTˆ Rq contains a function 0 ď ηz,ν ď 1 such that
ηz,ν ” 1 on Bpz , ν{2q, ηz,ν ” 0 on Bpz , νqc

,

‖ηz,ν‖α,L ď exppcν´
1

α´1 q.
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Theorem ... D Gevrey perturbations of H0 so that invariant tori are
no more than doubly exponentially stable...

This is about the existence of “diffusive” invariant tori.

Definition Given a transformation T (or a flow) on a metric space
pM, dq and ν ą 0, we say that:

A point z of M is ν-diffusive if there exist an initial condition
ẑ P M and a positive integer (or real) t such that dpẑ , zq ď ν,
t ď E pνq and dpT t ẑ , zq ě E p2νq.

A subset X of M is ν-diffusive if all points in X are ν-diffusive.

A subset X of M is diffusive if there exists a sequence νn Ñ 0
such that X is νn-diffusive for each n.

E pνq “ ee
Cν´γ

(with C , γ ą 0 to be chosen later)
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t ď E pνq and dpT t ẑ , zq ě E p2νq.
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t ď E pνq and dpT t ẑ , zq ě E p2νq.
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Coordinates pθ1, . . . , θn, r1, . . . , rnq in Tn ˆ Rn

or

[ 9τ “ BH
Bs “ 1]

pθ1, . . . , θn, τ , r1, . . . , rn, sq in Tn`1 ˆ Rn`1, where n :“ N ´ 1 ě 2.
It is equivalent to consider a non-autonomous Hamiltonian
hpθ, r , tq on Tn ˆRn which depends 1-periodically on the time t or
autonomous Hamiltonian Hpθ, τ, r , sq “ s ` hpθ, r , τq.
For arbitrary ω P Rn, non-autonomous 1-periodic perturbations of

h0prq :“ pω, rq ` 1
2pr , rq

are equivalent to certain autonomous perturbations of the
integrable Hamiltonian H0pr , sq :“ s ` h0prq, for which
Tpr ,sq :“ Tn`1 ˆ tpr , squ is an invariant quasi-periodic torus with

frequencies 9θ “ ω ` r , 9τ “ 1 (for arbitrary r and s).

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.
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THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω

τ -

Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

. Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match

yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω

τ -

Diophantine ñ Tp0,sq is doubly exponentially stable:

for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

. Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match

yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω

τ -

Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

.

Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match

yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω τ -Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

.

Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match

yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω τ -Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

. Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential.

Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match

yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω τ -Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

. Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1

, exponents do not match

yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω τ -Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

. Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match

yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω τ -Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

. Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω τ -Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

. Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match yet.

THEOREM 2

Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω τ -Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

. Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq

and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω τ -Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

. Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε

such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω τ -Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

. Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε,

the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω τ -Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

. Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and

, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



6/13

THEOREM 1 Given α ą 1, L ą 0, ε ą 0, there is
h P Gα,LpTn ˆ Rn ˆ Tq such that dα,Lph0, hq ă ε, the Hamiltonian
vector field generated by H :“ s ` hpθ, r , τq is complete and the
tori Tp0,sq Ă Tn`1 ˆ Rn`1 are invariant and diffusive for H.

Note: ω τ -Diophantine ñ Tp0,sq is doubly exponentially stable: for
any ν-close initial condition, the orbit stays within distance 2ν

from Tp0,sq during time exp
`

exp
`

cν
´ 1
αpτ`1q

˘˘

. Theorem 1 shows
that we cannot expect in general a stability better than doubly
exponential. Our “diffusiveness exponent” in
E pνq “ exppexppCν´γqq is γ “ 1

α´1 , exponents do not match yet.

THEOREM 2 Given α ą 1, L ą 0, ε ą 0, there are
h P Gα,LpTn ˆ Rn ˆ Tq and Xε Ă r0, 1s with LebpXεq ě 1´ ε such
that dα,Lph0, hq ă ε, the Hamiltonian vector field generated by
H :“ s ` hpθ, r , τq is complete and, for each r P pXε ` Zq ˆ Rn´1

and s P R, the torus Tpr ,sq “ Tn`1 ˆ tpr , squ Ă Tn`1 ˆ Rn`1 is
invariant and diffusive for H.



7/13

Method: Obtain first a discrete version of the results

by “Herman’s
synchronized diffusion” mechanism...

Discrete version in the case n “ 2:

Phase space M1 ˆM2 » T2 ˆR2 with M1 :“ TˆR, M2 :“ TˆR.

Unperturbed integrable system: T0 :“ F0 ˆ G0 : M1 ˆM2 ý

with F0 : M1 ý and G0 : M2 ý defined by

F0pθ1, r1q :“ pθ1 ` ω1 ` r1, r1q, G0pθ2, r2q :“ pθ2 ` ω2 ` r2, r2q.

T0 :“ T2 ˆ tp0, 0qu invariant torus with frequency ω “ pω1, ω2q.

Notation: H „„„B ΦH = time-1 map of the Hamiltonian flow

e.g. T0 “ Φω1r1`ω2r2`
1
2
pr21`r

2
2 q. THEOREM 1 follows easily from

THEOREM 1’ Du P Gα,LpM1q, v P G
α,LpM1 ˆM2q such that

(1) u and v are flat for r1 “ 0, ‖u‖α,L ` ‖v‖α,L ă ε,

(2) T0 is invariant and diffusive for T :“ Φv ˝
`

pΦu ˝ F0q ˆ G0

˘

.
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THEOREM 1’ Du P Gα,LpM1q, v P G
α,LpM1 ˆM2q such that

(1) u and v are flat for r1 “ 0, ‖u‖α,L ` ‖v‖α,L ă ε,

(2) T0 is invariant and diffusive for T :“ Φv ˝
`

pΦu ˝ F0q ˆ G0

˘

.

There is also a THEOREM 2’ which implies THEOREM 2...

Key proposition: localized diffusive orbits:

PROPOSITION Let γ “ 1
α´1 . For any ν ą 0 small enough and

r̄ P R, there exist Du P Gα,LpM1q, v P G
α,LpM1 ˆM2q such that

(1) u ” 0, v ” 0 for r1 R pr̄ ´ ν, r̄ ` νq, ‖u‖α,L ` ‖v‖α,Lď e´cν
´γ

,

(2) the set Tˆ pr̄ ´ ν, r̄ ` νq ˆM2 is invariant and ν-diffusive for
T :“ Φv ˝

`

pΦu ˝ F0q ˆ G0

˘

.

PROP ñ THEOREM 1’: take ν “ νn “ 10´nε, r̄ “ r̄n “ 2νn and
add up the corresponding un’s and vn’s... (Disjoint supports!)

PROP ñ THEOREM 2’: more elaborate...
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Herman’s synchronized diffusion mechanism relies on a “coupling
lemma” which was used in the construction of examples

with drifting orbits, biasymptotic to infinity, with diffusion
speed bounded from below (J.-P.Marco-D.S. 2003)

with wandering polydiscs (J.-P.Marco-D.S. 2004), with
estimates for their size in L.Lazzarini-J.-P.Marco-D.S. 2018

with qth iterate containing a subsystem isomorphic to a
skew-product defined on 1

qZˆ tω1, ω2u
Z giving rise to a

random walk of step 1
q for r1 (J.-P.Marco-D.S. 2004)

with a subsystem isomorphic to a transitive system on
pTˆ Rqn´1 ˆ tω1, . . . , ωru

Z, with convergence in law to a
Brownian motion of the n ´ 1 first action variables after
rescaling, ergodic if n “ 2 or 3 (D.S. 2006, unpublished)

with a non-resonant elliptic fixed point attracting an orbit
(B.Fayad-J.-P.Marco-D.S. 2018).
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Herman’s mechanism:

Fine-tuned coupling of two twist maps:

At exactly one point z˚ of a well chosen periodic orbit of period q
of the first twist map F “ Φu ˆ F0 : M1 “ Tˆ R ý, the coupling
will push the orbits in the second annulus M2 “ Tˆ R upward,
along a fixed vertical ∆, by an amount 1{q that sends an invariant
curve whose rotation number is a multiple of 1{q exactly to
another one having the same property.

The dynamics of the qth iterate of the coupled map on the line
tz˚u ˆ∆ Ă M1 ˆM2 will thus drift at a linear speed: after q2

iterates the point will have moved by 1 in the second action
coordinate r2, and after q3 it will have moved by q.

The diffusing orbits obtained this way are bi-asymptotic to infinity:
their r2-coordinates travel from ´8 to `8 at average speed 1{q2.
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Coupling lemma

F : M1 ý and G0 : M2 ý diffeomorphisms

z˚ P M1 a q-periodic for F

f : M1 Ñ R and g : M2 Ñ R (Hamiltonian) functions.

Synchronization Assumption

f pz˚q “ 1, df pz˚q “ 0, f pF spz˚qq “ 0, df pF spz˚qq “ 0

for 1 ď s ď q ´ 1.

Then T :“ Φfbg ˝ pF ˆ G0q : M1 ˆM2 ý satisfies

T qpz˚, z2q “
`

z˚,Φ
g ˝ Gq

0 pz2q
˘

for all z2 P M2.

We have denoted by f b g the function pz1, z2q ÞÑ f pz1qgpz2q.

The point is that

Φfbg pz1, z2q “
`

Φgpz2q f pz1q,Φ
f pz1q g pz2q

˘

for all pz1, z2q.
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T :“ Φfbg ˝ pF ˆ G0q : M1 ˆM2 ý satisfies

T qpz˚, z2q “
`

z˚,Φ
g ˝ Gq

0 pz2q
˘

for all z2 P M2.

ψ :“ Φg ˝ Gq
0 : M2 ý appears as a subsystem of T q : M1ˆM2 ý

To prove PROP:

Use gpr2, θ2q “ ´
1
q
sinp2πθ2q

2π , so ψ = rescaled standard map

ψpθ2, r2q “ pθ2 ` qpω2 ` r2q, r2 `
1
q cospθ2 ` qpω2 ` r2qqq

not close to integrable! Drift will take place on tz˚u ˆ∆ with
∆ :“ t0u ˆ R Ă M2: ψnp0,´ω2q “ p0,´ω2 `

n
q q for all n P Z

For the first factor, find a near-integrable system F “ Φu ˝ F0 with
a q-periodic “σ-isolated” point, with σ not too small: fulfilling
Synchronization Assumption will make f exponentially large in σ.

Then take q large enough to ensure that v :“ f b g is small...
(Indeed: want to achieve ‖u‖` ‖v‖ď e´cν

´γ
)
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T “ Φv ˝
`

pΦu ˝ F0q ˆ G0

˘

, v :“ f b g “ ´ 1
q f pz1q

sinp2πθ2q
2π

‖f ‖ exponentially large w.r.t. σ

It so happens that σ must be taken exponentially small w.r.t. ν,
i.e. ‖f ‖ is doubly exponentially large w.r.t. ν.

This is why we take q doubly exponentially large in ν and, in the
end, the diffusion time q3 is doubly exponentially large in ν !!

A technical work is required to find F “ Φu ˝ F0 with the desired
isolation property...

– Fine-tuning of rotation number of a certain circle diffeo, T ý

– Another trick by Herman alllows us to embed it in a system of
the form F “ Φu ˝ F0 : M1 ý.
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