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Bounemoura-Fayad-Niederman 2017: extension to the Gevrey
category. Also, for a residual and prevalent set of integrable
Hamiltonians, for any small perturbation in Gevrey class, there is a
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Gevrey regularity: Given > 1, L > 0 and K a product of closed
Euclidean balls and tori, we define uniformly Gevrey-(«, L) fens:
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(with 01 = 211, Cp)).
Nice properties: Banach algebra, Cauchy-Gevrey inequalities, the

flow of a Gevrey vector field is a Gevrey map, etc.

Gevrey functions with compact support: if « > 1, ze T x R and
v >0, GL(T x R) contains a function 0 < 7,,, < 1 such that
N2y =1on B(z,v/2), n,, =0 on B(z,v)¢,

1
1Mz0llq,0 < exp(ey o).
Fréchet space G*L(RM x K): cover the factor RM by an

increasing sequence of closed balls ERJ., choose L; = 2L, get a
complete metric space with translation-invariant distance d,, ;.
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This is about the existence of “diffusive” invariant tori.
Definition Given a transformation T (or a flow) on a metric space
(M,d) and v > 0, we say that:

@ A point z of M is v-diffusive if there exist an initial condition
2 € M and a positive integer (or real) t such that d(2,z) < v,
t< E(v)and d(T2,2) = E(2v).

@ A subset X of M is v-diffusive if all points in X are v-diffusive.

@ A subset X of M is diffusive if there exists a sequence v, — 0
such that X is v,-diffusive for each n.

-
eCv

E(v)=e (with C,y > 0 to be chosen later)
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he GHE(T™ x R" x T) such that d, ;(ho, h) < ¢, the Hamiltonian
vector field generated by H := s+ h(f, r,7) is complete and the
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exponential. Our "diffusiveness exponent” in
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THEOREM 2 Given aw > 1, L > 0, € > 0, there are

he GUE(T" x R” x T) and X. < [0,1] with Leb(X.) = 1 — ¢ such
that d, 1 (ho, h) < e, the Hamiltonian vector field generated by
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PROP = THEOREM 1': take v = v, = 107"¢, F = r, = 2, and
add up the corresponding u,'s and v,'s... (Disjoint supports!)
PROP = THEOREM 2': more elaborate...
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Herman's synchronized diffusion mechanism relies on a “coupling
lemma"” which was used in the construction of examples

@ with drifting orbits, biasymptotic to infinity, with diffusion
speed bounded from below (J.-P.Marco-D.S. 2003)

e with wandering polydiscs (J.-P.Marco-D.S. 2004), with
estimates for their size in L.Lazzarini-J.-P.Marco-D.S. 2018

@ with gth iterate containing a subsystem isomorphic to a
skew-product defined on %Z x {wr, w2 }? giving rise to a
random walk of step % for r; (J.-P.Marco-D.S. 2004)

@ with a subsystem isomorphic to a transitive system on
(T x R)" ! x {wi,...,w,}%, with convergence in law to a
Brownian motion of the n — 1 first action variables after
rescaling, ergodic if n =2 or 3 (D.S. 2006, unpublished)

@ with a non-resonant elliptic fixed point attracting an orbit
(B.Fayad-J.-P.Marco-D.S. 2018).
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Herman’s mechanism: Fine-tuned coupling of two twist maps:

At exactly one point z, of a well chosen periodic orbit of period ¢
of the first twist map F = &% x Fy : My = T x R O, the coupling
will push the orbits in the second annulus M, = T x R upward,
along a fixed vertical A, by an amount 1/q that sends an invariant
curve whose rotation number is a multiple of 1/q exactly to
another one having the same property.

The dynamics of the g*" iterate of the coupled map on the line
{z.} x A = My x M, will thus drift at a linear speed: after q°
iterates the point will have moved by 1 in the second action
coordinate rp, and after g2 it will have moved by q.

The diffusing orbits obtained this way are bi-asymptotic to infinity:
their rp-coordinates travel from —oo to 400 at average speed 1/qg°.
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Synchronization Assumption

f(ze) =1, df(z¢) =0, f(F°(z«)) =0, df(F°(z«))=0

forl<s<gqg-—1.

Then T := &f®8 o (F x Gy): My x My < satisfies
TYzy,20) = (z*,CDg o Gg(zz)) for all zp € M».

We have denoted by f ® g the function (z1,2) — f(z1)g(22).
The point is that

d)f@g(zl,zQ) = (d>g(z2)f(zl),¢f(zl)g(22)) for all (z1, z2).
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T := &f®8 o (F x Gy): My x My © satisfies
T (24, 22) = (24, P& 0 G (22)) for all zp € M.

Y= ®& o G : My O appears as a subsystem of T9: M; x My O
To prove PROP:
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T (24, 22) = (24, P& 0 G (22)) for all zp € M.

Y= ®& o G : My O appears as a subsystem of T9: M; x My O
To prove PROP:
Use g(r,02) = ésm (2m62) o 1) = rescaled standard map

(b2, r2) = (62 + qlwz + r2), 12 + L cos(r + q(w2 + 1))
not close to integrable! Drift will take place on {z.} x A with
A= {0} x R < My (0, —w2) = (0,—wz + ) forall ne Z

For the first factor, find a near-integrable system F = ®Y o fy with
a g-periodic “o-isolated” point, with ¢ not too small: fulfilling
Synchronization Assumption will make f exponentially large in o.

Then take q large enough to ensure that v := f @ g is small...
(Indeed: want to achieve ||u| + [|v|[< e ")
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||f]| exponentially large w.r.t. o

It so happens that o must be taken exponentially small w.r.t. v,
i.e. ||f]| is doubly exponentially large w.r.t. v.

This is why we take g doubly exponentially large in v and, in the
end, the diffusion time g3 is doubly exponentially large in v !

A technical work is required to find F = ®“ o Fy with the desired
isolation property...
— Fine-tuning of rotation number of a certain circle diffeo, T ©

— Another trick by Herman alllows us to embed it in a system of
the form F = &Y o Fy: My .



