## KAM Tori Are No More Than Sticky

Rome, 5–8 February 2019

David Sauzin, CNRS

IMCCE UMR 8028 – Observatoire de Paris – PSL Research University

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�� 1/13

Theorem (B.Fayad-D.S. 2018)

<□ → < □ → < Ξ → < Ξ → < Ξ → Ξ · の Q · 2/13

Theorem (B.Fayad-D.S. 2018) For any  $N \ge 3$ , the integrable quasi-convex Hamiltonian

$$H_0(\theta, r) = \frac{1}{2}(r_1^2 + \dots + r_{N-1}^2) + r_N \qquad (\theta \in \mathbb{T}^N, \ r \in \mathbb{R}^N)$$

can be perturbed in the Gevrey smooth category so that most of the invariant tori of the perturbed system are no more than doubly exponentially stable.

$$H_0(\theta, r) = \frac{1}{2}(r_1^2 + \dots + r_{N-1}^2) + r_N \qquad (\theta \in \mathbb{T}^N, \ r \in \mathbb{R}^N)$$

can be perturbed in the Gevrey smooth category so that most of the invariant tori of the perturbed system are no more than doubly exponentially stable.

$$H_0(\theta, r) = \frac{1}{2}(r_1^2 + \dots + r_{N-1}^2) + r_N \qquad (\theta \in \mathbb{T}^N, \ r \in \mathbb{R}^N)$$

can be perturbed in the Gevrey smooth category so that most of the invariant tori of the perturbed system are no more than doubly exponentially stable.

Giorgilli-Morbidelli 1995: "Superexponential stability of KAM tori" for analytic Hamiltonians

э

$$H_0(\theta, r) = \frac{1}{2}(r_1^2 + \dots + r_{N-1}^2) + r_N \qquad (\theta \in \mathbb{T}^N, \ r \in \mathbb{R}^N)$$

can be perturbed in the Gevrey smooth category so that most of the invariant tori of the perturbed system are no more than doubly exponentially stable.

Giorgilli-Morbidelli 1995: "Superexponential stability of KAM tori" for analytic Hamiltonians: perturb a quasi-convex integrable Hamiltonian,

$$H_0(\theta, r) = \frac{1}{2}(r_1^2 + \dots + r_{N-1}^2) + r_N \qquad (\theta \in \mathbb{T}^N, \ r \in \mathbb{R}^N)$$

can be perturbed in the Gevrey smooth category so that most of the invariant tori of the perturbed system are no more than doubly exponentially stable.

Giorgilli-Morbidelli 1995: "Superexponential stability of KAM tori" for analytic Hamiltonians: perturb a quasi-convex integrable Hamiltonian, consider a KAM torus with  $\tau$ -Diophantine frequency,

$$H_0(\theta, r) = \frac{1}{2}(r_1^2 + \dots + r_{N-1}^2) + r_N \qquad (\theta \in \mathbb{T}^N, \ r \in \mathbb{R}^N)$$

can be perturbed in the Gevrey smooth category so that most of the invariant tori of the perturbed system are no more than doubly exponentially stable.

Giorgilli-Morbidelli 1995: "Superexponential stability of KAM tori" for analytic Hamiltonians: perturb a quasi-convex integrable Hamiltonian, consider a KAM torus with  $\tau$ -Diophantine frequency, then nearby solutions stay close to the torus for an interval of time which is doubly exponentially large

$$H_0(\theta, r) = \frac{1}{2}(r_1^2 + \dots + r_{N-1}^2) + r_N \qquad (\theta \in \mathbb{T}^N, \ r \in \mathbb{R}^N)$$

can be perturbed in the Gevrey smooth category so that most of the invariant tori of the perturbed system are no more than doubly exponentially stable.

Giorgilli-Morbidelli 1995: "Superexponential stability of KAM tori" for analytic Hamiltonians: perturb a quasi-convex integrable Hamiltonian, consider a KAM torus with  $\tau$ -Diophantine frequency, then  $\nu$ -close solutions stay close to the torus for an interval of time which is doubly exponentially large

$$H_0(\theta, r) = \frac{1}{2}(r_1^2 + \dots + r_{N-1}^2) + r_N \qquad (\theta \in \mathbb{T}^N, \ r \in \mathbb{R}^N)$$

can be perturbed in the Gevrey smooth category so that most of the invariant tori of the perturbed system are no more than doubly exponentially stable.

Giorgilli-Morbidelli 1995: "Superexponential stability of KAM tori" for analytic Hamiltonians: perturb a quasi-convex integrable Hamiltonian, consider a KAM torus with  $\tau$ -Diophantine frequency, then  $\nu$ -close solutions stay close to the torus for an interval of time which is doubly exponentially large:  $\exp(\exp(\nu^{-1/(\tau+1)}))$ .

$$H_0(\theta, r) = \frac{1}{2}(r_1^2 + \dots + r_{N-1}^2) + r_N \qquad (\theta \in \mathbb{T}^N, \ r \in \mathbb{R}^N)$$

can be perturbed in the Gevrey smooth category so that most of the invariant tori of the perturbed system are no more than doubly exponentially stable.

Giorgilli-Morbidelli 1995: "Superexponential stability of KAM tori" for analytic Hamiltonians: perturb a quasi-convex integrable Hamiltonian, consider a KAM torus with  $\tau$ -Diophantine frequency, then  $\nu$ -close solutions stay close to the torus for an interval of time which is doubly exponentially large:  $\exp(\exp(\nu^{-1/(\tau+1)}))$ . "STICKY"

$$H_0(\theta, r) = \frac{1}{2}(r_1^2 + \dots + r_{N-1}^2) + r_N \qquad (\theta \in \mathbb{T}^N, \ r \in \mathbb{R}^N)$$

can be perturbed in the Gevrey smooth category so that most of the invariant tori of the perturbed system are no more than doubly exponentially stable.

Giorgilli-Morbidelli 1995: "Superexponential stability of KAM tori" for analytic Hamiltonians: perturb a quasi-convex integrable Hamiltonian, consider a KAM torus with  $\tau$ -Diophantine frequency, then  $\nu$ -close solutions stay close to the torus for an interval of time which is doubly exponentially large:  $\exp(\exp(\nu^{-1/(\tau+1)}))$ . "STICKY"

Bounemoura-Fayad-Niederman 2017: extension to the Gevrey category.

$$H_0(\theta, r) = \frac{1}{2}(r_1^2 + \dots + r_{N-1}^2) + r_N \qquad (\theta \in \mathbb{T}^N, \ r \in \mathbb{R}^N)$$

can be perturbed in the Gevrey smooth category so that most of the invariant tori of the perturbed system are no more than doubly exponentially stable.

Giorgilli-Morbidelli 1995: "Superexponential stability of KAM tori" for analytic Hamiltonians: perturb a quasi-convex integrable Hamiltonian, consider a KAM torus with  $\tau$ -Diophantine frequency, then  $\nu$ -close solutions stay close to the torus for an interval of time which is doubly exponentially large:  $\exp(\exp(\nu^{-1/(\tau+1)}))$ . "STICKY"

Bounemoura-Fayad-Niederman 2017: extension to the Gevrey category. Also, for a residual and prevalent set of integrable Hamiltonians, for any small perturbation in Gevrey class, there is a set of almost full Lebesgue measure of KAM tori which are doubly exponentially stable.

Gevrey regularity: Given  $\alpha \ge 1$ , L > 0 and K a product of closed Euclidean balls and tori, we define uniformly Gevrey- $(\alpha, L)$  fcns:

Gevrey regularity: Given  $\alpha \ge 1$ , L > 0 and K a product of closed Euclidean balls and tori, we define uniformly Gevrey- $(\alpha, L)$  fcns:  $G^{\alpha,L}(\mathbb{R}^M \times K) := \{f \in C^{\infty}(\mathbb{R}^M \times K) \mid ||f||_{\alpha,L} < \infty\},$  $||f||_{\alpha,L} := \sum_{\ell \in \mathbb{N}^N} \frac{L^{|\ell|\alpha}}{\ell!^{\alpha}} ||\partial^{\ell}f||_{C^{0}(\mathbb{R}^M \times K)}$ (with  $\ell! = \ell + \ell + \ell$ .

(with  $\ell! = \ell_1! \dots \ell_N!$ ).



Gevrey regularity: Given  $\alpha \ge 1$ , L > 0 and K a product of closed Euclidean balls and tori, we define uniformly Gevrey- $(\alpha, L)$  fcns:  $G^{\alpha,L}(\mathbb{R}^M \times K) := \{f \in C^{\infty}(\mathbb{R}^M \times K) \mid ||f||_{\alpha,L} < \infty\},\$  $||f||_{\alpha,L} := \sum_{\ell \in \mathbb{N}^N} \frac{L^{|\ell|\alpha}}{\ell!^{\alpha}} ||\partial^{\ell}f||_{C^0(\mathbb{R}^M \times K)}$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

(with  $\ell! = \ell_1! \dots \ell_N!$ ). Nice properties: Banach algebra, Gevrey regularity: Given  $\alpha \ge 1$ , L > 0 and K a product of closed Euclidean balls and tori, we define uniformly Gevrey- $(\alpha, L)$  fcns:  $G^{\alpha,L}(\mathbb{R}^M \times K) := \{f \in C^{\infty}(\mathbb{R}^M \times K) \mid ||f||_{\alpha,L} < \infty\},$  $||f||_{\alpha,L} := \sum_{\ell \in \mathbb{N}^N} \frac{L^{|\ell|\alpha}}{\ell!^{\alpha}} ||\partial^{\ell}f||_{C^0(\mathbb{R}^M \times K)}$ 

(with  $\ell! = \ell_1! \dots \ell_N!$ ). Nice properties: Banach algebra, Cauchy-Gevrey inequalities, Gevrey regularity: Given  $\alpha \ge 1$ , L > 0 and K a product of closed Euclidean balls and tori, we define uniformly Gevrey- $(\alpha, L)$  fcns:  $G^{\alpha,L}(\mathbb{R}^M \times K) := \{f \in C^{\infty}(\mathbb{R}^M \times K) \mid ||f||_{\alpha,L} < \infty\},\$  $||f||_{\alpha,L} := \sum_{\ell \in \mathbb{N}^N} \frac{L^{|\ell|\alpha}}{\ell!^{\alpha}} ||\partial^{\ell}f||_{C^0(\mathbb{R}^M \times K)}$ 

(with  $\ell! = \ell_1! \dots \ell_N!$ ).

Nice properties: Banach algebra, Cauchy-Gevrey inequalities, the flow of a Gevrey vector field is a Gevrey map, etc.

Gevrey regularity: Given  $\alpha \ge 1$ , L > 0 and K a product of closed Euclidean balls and tori, we define uniformly Gevrey- $(\alpha, L)$  fcns:  $G^{\alpha,L}(\mathbb{R}^M \times K) := \{f \in C^{\infty}(\mathbb{R}^M \times K) \mid ||f||_{\alpha,L} < \infty\},$  $||f||_{\alpha,L} := \sum_{\ell \in \mathbb{N}^N} \frac{L^{|\ell|\alpha}}{\ell!^{\alpha}} ||\partial^{\ell}f||_{C^0(\mathbb{R}^M \times K)}$ 

(with  $\ell! = \ell_1! \dots \ell_N!$ ).

Nice properties: Banach algebra, Cauchy-Gevrey inequalities, the flow of a Gevrey vector field is a Gevrey map, etc.

Gevrey functions with compact support: if  $\alpha > 1$ 

Gevrey regularity: Given  $\alpha \ge 1$ , L > 0 and K a product of closed Euclidean balls and tori, we define uniformly Gevrey- $(\alpha, L)$  fcns:  $G^{\alpha,L}(\mathbb{R}^M \times K) := \{f \in C^{\infty}(\mathbb{R}^M \times K) \mid ||f||_{\alpha,L} < \infty\},\$  $||f||_{\alpha,L} := \sum_{\ell \in \mathbb{N}^N} \frac{L^{|\ell|\alpha}}{\ell!^{\alpha}} ||\partial^{\ell}f||_{C^0(\mathbb{R}^M \times K)}$ 

(with  $\ell! = \ell_1! \dots \ell_N!$ ).

Nice properties: Banach algebra, Cauchy-Gevrey inequalities, the flow of a Gevrey vector field is a Gevrey map, etc.

Gevrey functions with compact support: if  $\alpha > 1$ ,  $z \in \mathbb{T} \times \mathbb{R}$  and  $\nu > 0$ ,  $G^{\alpha,L}(\mathbb{T} \times \mathbb{R})$  contains a function  $0 \leq \eta_{z,\nu} \leq 1$  such that  $\eta_{z,\nu} \equiv 1$  on  $B(z,\nu/2)$ ,  $\eta_{z,\nu} \equiv 0$  on  $B(z,\nu)^c$ 

Gevrey regularity: Given  $\alpha \ge 1$ , L > 0 and K a product of closed Euclidean balls and tori, we define uniformly Gevrey- $(\alpha, L)$  fcns:  $G^{\alpha,L}(\mathbb{R}^M \times K) := \{f \in C^{\infty}(\mathbb{R}^M \times K) \mid ||f||_{\alpha,L} < \infty\},$  $||f||_{\alpha,L} := \sum_{\ell \in \mathbb{N}^N} \frac{L^{|\ell|\alpha}}{\ell!^{\alpha}} ||\partial^{\ell}f||_{C^0(\mathbb{R}^M \times K)}$ 

(with  $\ell! = \ell_1! \dots \ell_N!$ ).

Nice properties: Banach algebra, Cauchy-Gevrey inequalities, the flow of a Gevrey vector field is a Gevrey map, etc.

Gevrey functions with compact support: if  $\alpha > 1$ ,  $z \in \mathbb{T} \times \mathbb{R}$  and  $\nu > 0$ ,  $G^{\alpha,L}(\mathbb{T} \times \mathbb{R})$  contains a function  $0 \leq \eta_{z,\nu} \leq 1$  such that  $\eta_{z,\nu} \equiv 1$  on  $B(z,\nu/2)$ ,  $\eta_{z,\nu} \equiv 0$  on  $B(z,\nu)^c$ ,  $\|\eta_{z,\nu}\|_{\alpha,L} \leq \exp(c\nu^{-\frac{1}{\alpha-1}})$ .

Gevrey regularity: Given  $\alpha \ge 1$ , L > 0 and K a product of closed Euclidean balls and tori, we define uniformly Gevrey- $(\alpha, L)$  fcns:  $G^{\alpha,L}(\mathbb{R}^M \times K) := \{f \in C^{\infty}(\mathbb{R}^M \times K) \mid ||f||_{\alpha,L} < \infty\},\$  $||f||_{\alpha,L} := \sum_{\ell \in \mathbb{N}^N} \frac{L^{|\ell|\alpha}}{\ell!^{\alpha}} ||\partial^{\ell}f||_{C^0(\mathbb{R}^M \times K)}$ 

(with  $\ell! = \ell_1! \dots \ell_N!$ ).

Nice properties: Banach algebra, Cauchy-Gevrey inequalities, the flow of a Gevrey vector field is a Gevrey map, etc.

Gevrey functions with compact support: if  $\alpha > 1$ ,  $z \in \mathbb{T} \times \mathbb{R}$  and  $\nu > 0$ ,  $G^{\alpha,L}(\mathbb{T} \times \mathbb{R})$  contains a function  $0 \leq \eta_{z,\nu} \leq 1$  such that  $\eta_{z,\nu} \equiv 1$  on  $B(z,\nu/2)$ ,  $\eta_{z,\nu} \equiv 0$  on  $B(z,\nu)^c$ ,  $\|\eta_{z,\nu}\|_{\alpha,L} \leq \exp(c\nu^{-\frac{1}{\alpha-1}})$ .

Fréchet space  $\mathcal{G}^{\alpha,L}(\mathbb{R}^M \times K)$ : cover the factor  $\mathbb{R}^M$  by an increasing sequence of closed balls  $\overline{B}_{R_j}$ , choose  $L_j = 2^{-j}L$ , get a complete metric space with translation-invariant distance  $d_{\alpha,L}$ .

This is about the existence of "diffusive" invariant tori.

This is about the existence of "diffusive" invariant tori.

**Definition** Given a transformation T (or a flow) on a metric space (M, d) and  $\nu > 0$ , we say that:

This is about the existence of "diffusive" invariant tori.

**Definition** Given a transformation T (or a flow) on a metric space (M, d) and  $\nu > 0$ , we say that:

• A point z of M is  $\nu$ -diffusive if there exist an initial condition  $\hat{z} \in M$  and a positive integer (or real) t such that  $d(\hat{z}, z) \leq \nu$ ,  $t \leq E(\nu)$  and  $d(T^t \hat{z}, z)$ 

$$E(\nu) = e^{e^{C\nu^{-\gamma}}}$$
 (with  $C, \gamma > 0$  to be chosen later)

This is about the existence of "diffusive" invariant tori.

**Definition** Given a transformation T (or a flow) on a metric space (M, d) and  $\nu > 0$ , we say that:

• A point z of M is  $\nu$ -diffusive if there exist an initial condition  $\hat{z} \in M$  and a positive integer (or real) t such that  $d(\hat{z}, z) \leq \nu$ ,  $t \leq E(\nu)$  and  $d(T^t \hat{z}, z)$ 

$$E(\nu) = e^{e^{C\nu^{-\gamma}}}$$
 (with  $C, \gamma > 0$  to be chosen later)

This is about the existence of "diffusive" invariant tori.

**Definition** Given a transformation T (or a flow) on a metric space (M, d) and  $\nu > 0$ , we say that:

• A point z of M is  $\nu$ -diffusive if there exist an initial condition  $\hat{z} \in M$  and a positive integer (or real) t such that  $d(\hat{z}, z) \leq \nu$ ,  $t \leq E(\nu)$  and  $d(T^t \hat{z}, z) \geq E(2\nu)$ .

$$E(\nu) = e^{e^{C\nu^{-\gamma}}}$$
 (with  $C, \gamma > 0$  to be chosen later)

This is about the existence of "diffusive" invariant tori.

**Definition** Given a transformation T (or a flow) on a metric space (M, d) and  $\nu > 0$ , we say that:

- A point z of M is  $\nu$ -diffusive if there exist an initial condition  $\hat{z} \in M$  and a positive integer (or real) t such that  $d(\hat{z}, z) \leq \nu$ ,  $t \leq E(\nu)$  and  $d(T^t \hat{z}, z) \geq E(2\nu)$ .
- A subset X of M is  $\nu$ -diffusive if all points in X are  $\nu$ -diffusive.

$$E(\nu) = e^{e^{C\nu^{-\gamma}}}$$
 (with  $C, \gamma > 0$  to be chosen later)

This is about the existence of "diffusive" invariant tori.

**Definition** Given a transformation T (or a flow) on a metric space (M, d) and  $\nu > 0$ , we say that:

- A point z of M is  $\nu$ -diffusive if there exist an initial condition  $\hat{z} \in M$  and a positive integer (or real) t such that  $d(\hat{z}, z) \leq \nu$ ,  $t \leq E(\nu)$  and  $d(T^t \hat{z}, z) \geq E(2\nu)$ .
- A subset X of M is  $\nu$ -diffusive if all points in X are  $\nu$ -diffusive.
- A subset X of M is *diffusive* if there exists a sequence  $\nu_n \rightarrow 0$  such that X is  $\nu_n$ -diffusive for each n.

 $E(\nu) = e^{e^{C\nu^{-\gamma}}}$  (with  $C, \gamma > 0$  to be chosen later)

## Coordinates $(\theta_1, \ldots, \theta_n, r_1, \ldots, r_n)$ in $\mathbb{T}^n \times \mathbb{R}^n$

< □ > < @ > < ≧ > < ≧ > ≧ の Q C 5/13

Coordinates  $(\theta_1, \ldots, \theta_n, r_1, \ldots, r_n)$  in  $\mathbb{T}^n \times \mathbb{R}^n$  or  $(\theta_1, \ldots, \theta_n, \tau, r_1, \ldots, r_n, s)$  in  $\mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$ , where  $n := N - 1 \ge 2$ .

Coordinates  $(\theta_1, \ldots, \theta_n, r_1, \ldots, r_n)$  in  $\mathbb{T}^n \times \mathbb{R}^n$  or  $(\theta_1, \ldots, \theta_n, \tau, r_1, \ldots, r_n, s)$  in  $\mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$ , where  $n := N - 1 \ge 2$ . It is equivalent to consider a non-autonomous Hamiltonian  $h(\theta, r, t)$  on  $\mathbb{T}^n \times \mathbb{R}^n$  which depends 1-periodically on the time t or

Coordinates  $(\theta_1, \ldots, \theta_n, r_1, \ldots, r_n)$  in  $\mathbb{T}^n \times \mathbb{R}^n$  or  $[\dot{\tau} = \frac{\partial H}{\partial s} = 1]$  $(\theta_1, \ldots, \theta_n, \tau, r_1, \ldots, r_n, s)$  in  $\mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$ , where  $n := N - 1 \ge 2$ . It is equivalent to consider a non-autonomous Hamiltonian  $h(\theta, r, t)$  on  $\mathbb{T}^n \times \mathbb{R}^n$  which depends 1-periodically on the time t or autonomous Hamiltonian  $H(\theta, \tau, r, s) = s + h(\theta, r, \tau)$ . Coordinates  $(\theta_1, \ldots, \theta_n, r_1, \ldots, r_n)$  in  $\mathbb{T}^n \times \mathbb{R}^n$  or  $[\dot{\tau} = \frac{\partial H}{\partial s} = 1]$  $(\theta_1, \ldots, \theta_n, \tau, r_1, \ldots, r_n, s)$  in  $\mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$ , where  $n := N - 1 \ge 2$ . It is equivalent to consider a non-autonomous Hamiltonian  $h(\theta, r, t)$  on  $\mathbb{T}^n \times \mathbb{R}^n$  which depends 1-periodically on the time t or autonomous Hamiltonian  $H(\theta, \tau, r, s) = s + h(\theta, r, \tau)$ . For arbitrary  $\omega \in \mathbb{R}^n$ , non-autonomous 1-periodic perturbations of

 $h_0(r) \coloneqq (\omega, r) + \frac{1}{2}(r, r)$ 

are equivalent to

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ○ ○ ○ 5/13

Coordinates  $(\theta_1, \ldots, \theta_n, r_1, \ldots, r_n)$  in  $\mathbb{T}^n \times \mathbb{R}^n$  or  $[\dot{\tau} = \frac{\partial H}{\partial s} = 1]$  $(\theta_1, \ldots, \theta_n, \tau, r_1, \ldots, r_n, s)$  in  $\mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$ , where  $n := N - 1 \ge 2$ . It is equivalent to consider a non-autonomous Hamiltonian  $h(\theta, r, t)$  on  $\mathbb{T}^n \times \mathbb{R}^n$  which depends 1-periodically on the time t or autonomous Hamiltonian  $H(\theta, \tau, r, s) = s + h(\theta, r, \tau)$ . For arbitrary  $\omega \in \mathbb{R}^n$ , non-autonomous 1-periodic perturbations of

$$h_0(r) \coloneqq (\omega, r) + \frac{1}{2}(r, r)$$

are equivalent to certain autonomous perturbations of the integrable Hamiltonian  $H_0(r, s) := s + h_0(r)$
$h_0(r) \coloneqq (\omega, r) + \frac{1}{2}(r, r)$ 

are equivalent to certain autonomous perturbations of the integrable Hamiltonian  $H_0(r, s) := s + h_0(r)$ , for which  $\mathcal{T}_{(r,s)} := \mathbb{T}^{n+1} \times \{(r,s)\}$  is an invariant quasi-periodic torus with frequencies  $\dot{\theta} = \omega + r$ ,  $\dot{\tau} = 1$  (for arbitrary r and s).

 $h_0(r) \coloneqq (\omega, r) + \frac{1}{2}(r, r)$ 

are equivalent to certain autonomous perturbations of the integrable Hamiltonian  $H_0(r, s) := s + h_0(r)$ , for which  $\mathcal{T}_{(r,s)} := \mathbb{T}^{n+1} \times \{(r,s)\}$  is an invariant quasi-periodic torus with frequencies  $\dot{\theta} = \omega + r$ ,  $\dot{\tau} = 1$  (for arbitrary r and s). THEOREM 1

 $h_0(r) \coloneqq (\omega, r) + \frac{1}{2}(r, r)$ 

are equivalent to certain autonomous perturbations of the integrable Hamiltonian  $H_0(r, s) := s + h_0(r)$ , for which  $\mathcal{T}_{(r,s)} := \mathbb{T}^{n+1} \times \{(r,s)\}$  is an invariant quasi-periodic torus with frequencies  $\dot{\theta} = \omega + r$ ,  $\dot{\tau} = 1$  (for arbitrary r and s). THEOREM 1 Given  $\alpha > 1$ , L > 0,  $\varepsilon > 0$ , there is  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that

 $h_0(r) \coloneqq (\omega, r) + \frac{1}{2}(r, r)$ 

are equivalent to certain autonomous perturbations of the integrable Hamiltonian  $H_0(r, s) := s + h_0(r)$ , for which  $\mathcal{T}_{(r,s)} := \mathbb{T}^{n+1} \times \{(r,s)\}$  is an invariant quasi-periodic torus with frequencies  $\dot{\theta} = \omega + r$ ,  $\dot{\tau} = 1$  (for arbitrary r and s). THEOREM 1 Given  $\alpha > 1$ , L > 0,  $\varepsilon > 0$ , there is  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ ,

 $h_0(r) \coloneqq (\omega, r) + \frac{1}{2}(r, r)$ 

are equivalent to certain autonomous perturbations of the integrable Hamiltonian  $H_0(r, s) := s + h_0(r)$ , for which  $\mathcal{T}_{(r,s)} := \mathbb{T}^{n+1} \times \{(r,s)\}$  is an invariant quasi-periodic torus with frequencies  $\dot{\theta} = \omega + r$ ,  $\dot{\tau} = 1$  (for arbitrary r and s). THEOREM 1 Given  $\alpha > 1$ , L > 0,  $\varepsilon > 0$ , there is  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and

 $h_0(r) \coloneqq (\omega, r) + \frac{1}{2}(r, r)$ 

are equivalent to certain autonomous perturbations of the integrable Hamiltonian  $H_0(r, s) := s + h_0(r)$ , for which  $\mathcal{T}_{(r,s)} := \mathbb{T}^{n+1} \times \{(r,s)\}$  is an invariant quasi-periodic torus with frequencies  $\dot{\theta} = \omega + r$ ,  $\dot{\tau} = 1$  (for arbitrary r and s). THEOREM 1 Given  $\alpha > 1$ , L > 0,  $\varepsilon > 0$ , there is  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H. THEOREM 1 Given  $\alpha > 1$ , L > 0,  $\varepsilon > 0$ , there is  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H. THEOREM 1 Given  $\alpha > 1$ , L > 0,  $\varepsilon > 0$ , there is  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H.

Note:  $\omega$  Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable:

 $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H.

Note:  $\omega$  Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable: for any  $\nu$ -close initial condition, the orbit stays within distance  $2\nu$  from  $\mathcal{T}_{(0,s)}$  during time  $\exp\left(\exp\left(c\nu^{-\frac{1}{\alpha(\tau+1)}}\right)\right)$ .

 $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H.

Note:  $\omega \tau$ -Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable: for any  $\nu$ -close initial condition, the orbit stays within distance  $2\nu$  from  $\mathcal{T}_{(0,s)}$  during time  $\exp\left(\exp\left(c\nu^{-\frac{1}{\alpha(\tau+1)}}\right)\right)$ .

 $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0,h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H.

Note:  $\omega \tau$ -Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable: for any  $\nu$ -close initial condition, the orbit stays within distance  $2\nu$  from  $\mathcal{T}_{(0,s)}$  during time  $\exp\left(\exp\left(c\nu^{-\frac{1}{\alpha(\tau+1)}}\right)\right)$ . Theorem 1 shows that we cannot expect in general a stability better than doubly exponential.

 $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0,h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H.

Note:  $\omega \tau$ -Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable: for any  $\nu$ -close initial condition, the orbit stays within distance  $2\nu$ from  $\mathcal{T}_{(0,s)}$  during time  $\exp\left(exp\left(c\nu^{-\frac{1}{\alpha(\tau+1)}}\right)\right)$ . Theorem 1 shows that we cannot expect in general a stability better than doubly exponential. Our "diffusiveness exponent" in  $E(\nu) = \exp(exp(C\nu^{-\gamma}))$  is  $\gamma = \frac{1}{\alpha-1}$ 

 $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0,h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H.

Note:  $\omega \tau$ -Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable: for any  $\nu$ -close initial condition, the orbit stays within distance  $2\nu$ from  $\mathcal{T}_{(0,s)}$  during time  $\exp\left(\exp\left(c\nu^{-\frac{1}{\alpha(\tau+1)}}\right)\right)$ . Theorem 1 shows that we cannot expect in general a stability better than doubly exponential. Our "diffusiveness exponent" in  $E(\nu) = \exp(\exp(C\nu^{-\gamma}))$  is  $\gamma = \frac{1}{\alpha-1}$ , exponents do not match

 $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0,h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H.

Note:  $\omega \tau$ -Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable: for any  $\nu$ -close initial condition, the orbit stays within distance  $2\nu$ from  $\mathcal{T}_{(0,s)}$  during time exp $\left(\exp\left(c\nu^{-\frac{1}{\alpha(\tau+1)}}\right)\right)$ . Theorem 1 shows that we cannot expect in general a stability better than doubly exponential. Our "diffusiveness exponent" in  $E(\nu) = \exp(\exp(C\nu^{-\gamma}))$  is  $\gamma = \frac{1}{\alpha-1}$ , exponents do not match yet. **THEOREM 1** Given  $\alpha > 1$ . L > 0.  $\varepsilon > 0$ . there is  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0,h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H. Note:  $\omega \tau$ -Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable: for any  $\nu$ -close initial condition, the orbit stays within distance  $2\nu$ from  $\mathcal{T}_{(0,s)}$  during time exp $\left(\exp\left(c\nu^{-\frac{1}{\alpha(\tau+1)}}\right)\right)$ . Theorem 1 shows that we cannot expect in general a stability better than doubly exponential. Our "diffusiveness exponent" in  $E(\nu) = \exp(\exp(C\nu^{-\gamma}))$  is  $\gamma = \frac{1}{\alpha-1}$ , exponents do not match yet.

THEOREM 2

THEOREM 1 Given  $\alpha > 1$ , L > 0,  $\varepsilon > 0$ , there is  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H.

Note:  $\omega \tau$ -Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable: for any  $\nu$ -close initial condition, the orbit stays within distance  $2\nu$ from  $\mathcal{T}_{(0,s)}$  during time exp $\left(\exp\left(c\nu^{-\frac{1}{\alpha(\tau+1)}}\right)\right)$ . Theorem 1 shows that we cannot expect in general a stability better than doubly exponential. Our "diffusiveness exponent" in  $E(\nu) = \exp(\exp(C\nu^{-\gamma}))$  is  $\gamma = \frac{1}{\alpha-1}$ , exponents do not match yet. THEOREM 2 Given  $\alpha > 1$ , L > 0,  $\varepsilon > 0$ , there are  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$ 

 $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0,h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H.

Note:  $\omega \tau$ -Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable: for any  $\nu$ -close initial condition, the orbit stays within distance  $2\nu$ from  $\mathcal{T}_{(0,s)}$  during time exp $\left(\exp\left(c\nu^{-\frac{1}{\alpha(\tau+1)}}\right)\right)$ . Theorem 1 shows that we cannot expect in general a stability better than doubly exponential. Our "diffusiveness exponent" in  $E(\nu) = \exp(\exp(C\nu^{-\gamma}))$  is  $\gamma = \frac{1}{\alpha-1}$ , exponents do not match yet. THEOREM 2 Given  $\alpha > 1$ , L > 0,  $\varepsilon > 0$ , there are  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  and  $X_{\varepsilon} \subset [0,1]$  with  $\operatorname{Leb}(X_{\varepsilon}) \ge 1 - \varepsilon$ 

 $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H.

Note:  $\omega \tau$ -Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable: for any  $\nu$ -close initial condition, the orbit stays within distance  $2\nu$ from  $\mathcal{T}_{(0,s)}$  during time exp $\left(\exp\left(c\nu^{-\frac{1}{\alpha(\tau+1)}}\right)\right)$ . Theorem 1 shows that we cannot expect in general a stability better than doubly exponential. Our "diffusiveness exponent" in  $E(\nu) = \exp(\exp(C\nu^{-\gamma}))$  is  $\gamma = \frac{1}{\alpha-1}$ , exponents do not match yet. THEOREM 2 Given  $\alpha > 1$ , L > 0,  $\varepsilon > 0$ , there are  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  and  $X_{\varepsilon} \subset [0,1]$  with  $\operatorname{Leb}(X_{\varepsilon}) \ge 1 - \varepsilon$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ ,

 $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H.

Note:  $\omega \tau$ -Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable: for any  $\nu$ -close initial condition, the orbit stays within distance  $2\nu$ from  $\mathcal{T}_{(0,s)}$  during time exp $\left(\exp\left(c\nu^{-\frac{1}{\alpha(\tau+1)}}\right)\right)$ . Theorem 1 shows that we cannot expect in general a stability better than doubly exponential. Our "diffusiveness exponent" in  $E(\nu) = \exp(\exp(C\nu^{-\gamma}))$  is  $\gamma = \frac{1}{\alpha-1}$ , exponents do not match yet. THEOREM 2 Given  $\alpha > 1$ , L > 0,  $\varepsilon > 0$ , there are  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  and  $X_{\varepsilon} \subset [0,1]$  with  $\text{Leb}(X_{\varepsilon}) \ge 1 - \varepsilon$  such that  $d_{\alpha,L}(h_0,h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and

 $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and the tori  $\mathcal{T}_{(0,s)} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  are invariant and diffusive for H.

Note:  $\omega \tau$ -Diophantine  $\Rightarrow \mathcal{T}_{(0,s)}$  is doubly exponentially stable: for any  $\nu$ -close initial condition, the orbit stays within distance  $2\nu$ from  $\mathcal{T}_{(0,s)}$  during time exp $\left(\exp\left(c\nu^{-\frac{1}{\alpha(\tau+1)}}\right)\right)$ . Theorem 1 shows that we cannot expect in general a stability better than doubly exponential. Our "diffusiveness exponent" in  $E(\nu) = \exp(\exp(C\nu^{-\gamma}))$  is  $\gamma = \frac{1}{\alpha-1}$ , exponents do not match yet.

THEOREM 2 Given  $\alpha > 1$ , L > 0,  $\varepsilon > 0$ , there are  $h \in \mathcal{G}^{\alpha,L}(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{T})$  and  $X_{\varepsilon} \subset [0,1]$  with  $\text{Leb}(X_{\varepsilon}) \ge 1 - \varepsilon$  such that  $d_{\alpha,L}(h_0, h) < \varepsilon$ , the Hamiltonian vector field generated by  $H := s + h(\theta, r, \tau)$  is complete and, for each  $r \in (X_{\varepsilon} + \mathbb{Z}) \times \mathbb{R}^{n-1}$ and  $s \in \mathbb{R}$ , the torus  $\mathcal{T}_{(r,s)} = \mathbb{T}^{n+1} \times \{(r,s)\} \subset \mathbb{T}^{n+1} \times \mathbb{R}^{n+1}$  is invariant and diffusive for H. Method: Obtain first a discrete version of the results

Discrete version in the case n = 2:



Discrete version in the case n = 2:

Phase space  $M_1 \times M_2 \simeq \mathbb{T}^2 \times \mathbb{R}^2$  with  $M_1 := \mathbb{T} \times \mathbb{R}$ ,  $M_2 := \mathbb{T} \times \mathbb{R}$ .

Unperturbed integrable system:  $T_0 := F_0 \times G_0$ :  $M_1 \times M_2$ 

with  $F_0: M_1 \mathfrak{S}$  and  $G_0: M_2 \mathfrak{S}$  defined by  $F_0(\theta_1, r_1) \coloneqq (\theta_1 + \omega_1 + r_1, r_1), \quad G_0(\theta_2, r_2) \coloneqq (\theta_2 + \omega_2 + r_2, r_2).$ 

Discrete version in the case n = 2:

Phase space  $M_1 \times M_2 \simeq \mathbb{T}^2 \times \mathbb{R}^2$  with  $M_1 := \mathbb{T} \times \mathbb{R}$ ,  $M_2 := \mathbb{T} \times \mathbb{R}$ .

Unperturbed integrable system:  $T_0 := F_0 \times G_0$ :  $M_1 \times M_2$ 

with  $F_0: M_1 \odot$  and  $G_0: M_2 \odot$  defined by  $F_0(\theta_1, r_1) := (\theta_1 + \omega_1 + r_1, r_1), \quad G_0(\theta_2, r_2) := (\theta_2 + \omega_2 + r_2, r_2).$  $\mathcal{T}_0 := \mathbb{T}^2 \times \{(0, 0)\}$  invariant torus with frequency  $\omega = (\omega_1, \omega_2).$ 

Discrete version in the case n = 2:

Phase space  $M_1 \times M_2 \simeq \mathbb{T}^2 \times \mathbb{R}^2$  with  $M_1 := \mathbb{T} \times \mathbb{R}$ ,  $M_2 := \mathbb{T} \times \mathbb{R}$ .

Unperturbed integrable system:  $T_0 := F_0 \times G_0$ :  $M_1 \times M_2$ 

with  $F_0: M_1 \, \bigcirc$  and  $G_0: M_2 \, \bigcirc$  defined by  $F_0(\theta_1, r_1) := (\theta_1 + \omega_1 + r_1, r_1), \quad G_0(\theta_2, r_2) := (\theta_2 + \omega_2 + r_2, r_2).$   $\mathcal{T}_0 := \mathbb{T}^2 \times \{(0, 0)\}$  invariant torus with frequency  $\omega = (\omega_1, \omega_2).$ Notation:  $H \longrightarrow \Phi^H$  = time-1 map of the Hamiltonian flow e.g.  $\mathcal{T}_0 = \Phi^{\omega_1 r_1 + \omega_2 r_2 + \frac{1}{2}(r_1^2 + r_2^2)}.$ 

Discrete version in the case n = 2:

Phase space  $M_1 \times M_2 \simeq \mathbb{T}^2 \times \mathbb{R}^2$  with  $M_1 := \mathbb{T} \times \mathbb{R}$ ,  $M_2 := \mathbb{T} \times \mathbb{R}$ .

Unperturbed integrable system:  $T_0 := F_0 \times G_0$ :  $M_1 \times M_2$ 

with  $F_0: M_1 \odot$  and  $G_0: M_2 \odot$  defined by  $F_0(\theta_1, r_1) := (\theta_1 + \omega_1 + r_1, r_1), \quad G_0(\theta_2, r_2) := (\theta_2 + \omega_2 + r_2, r_2).$   $\mathcal{T}_0 := \mathbb{T}^2 \times \{(0, 0)\}$  invariant torus with frequency  $\omega = (\omega_1, \omega_2).$ Notation:  $H \longrightarrow \Phi^H$  = time-1 map of the Hamiltonian flow e.g.  $\mathcal{T}_0 = \Phi^{\omega_1 r_1 + \omega_2 r_2 + \frac{1}{2}(r_1^2 + r_2^2)}.$  THEOREM 1 follows easily from THEOREM 1'  $\exists u \in G^{\alpha, L}(M_1), v \in G^{\alpha, L}(M_1 \times M_2)$  such that

Discrete version in the case n = 2:

Phase space  $M_1 \times M_2 \simeq \mathbb{T}^2 \times \mathbb{R}^2$  with  $M_1 := \mathbb{T} \times \mathbb{R}$ ,  $M_2 := \mathbb{T} \times \mathbb{R}$ .

Unperturbed integrable system:  $T_0 := F_0 \times G_0$ :  $M_1 \times M_2$ 

with  $F_0: M_1 \, \bigcirc$  and  $G_0: M_2 \, \bigcirc$  defined by  $F_0(\theta_1, r_1) := (\theta_1 + \omega_1 + r_1, r_1), \quad G_0(\theta_2, r_2) := (\theta_2 + \omega_2 + r_2, r_2).$   $\mathcal{T}_0 := \mathbb{T}^2 \times \{(0, 0)\}$  invariant torus with frequency  $\omega = (\omega_1, \omega_2).$ Notation:  $H \longrightarrow \Phi^H$  = time-1 map of the Hamiltonian flow e.g.  $T_0 = \Phi^{\omega_1 r_1 + \omega_2 r_2 + \frac{1}{2}(r_1^2 + r_2^2)}.$  THEOREM 1 follows easily from THEOREM 1'  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1) u and v are flat for  $r_1 = 0$ ,  $||u||_{\alpha,L} + ||v||_{\alpha,L} < \varepsilon$ ,

Discrete version in the case n = 2:

Phase space  $M_1 \times M_2 \simeq \mathbb{T}^2 \times \mathbb{R}^2$  with  $M_1 := \mathbb{T} \times \mathbb{R}$ ,  $M_2 := \mathbb{T} \times \mathbb{R}$ .

Unperturbed integrable system:  $T_0 := F_0 \times G_0$ :  $M_1 \times M_2$ 

with  $F_0: M_1 \mathfrak{S}$  and  $G_0: M_2 \mathfrak{S}$  defined by  $F_0(\theta_1, r_1) := (\theta_1 + \omega_1 + r_1, r_1), \quad G_0(\theta_2, r_2) := (\theta_2 + \omega_2 + r_2, r_2).$   $\mathcal{T}_0 := \mathbb{T}^2 \times \{(0, 0)\}$  invariant torus with frequency  $\omega = (\omega_1, \omega_2).$ Notation:  $H \longrightarrow \Phi^H$  = time-1 map of the Hamiltonian flow e.g.  $T_0 = \Phi^{\omega_1 r_1 + \omega_2 r_2 + \frac{1}{2}(r_1^2 + r_2^2)}.$  THEOREM 1 follows easily from THEOREM 1'  $\exists u \in G^{\alpha, L}(M_1), v \in G^{\alpha, L}(M_1 \times M_2)$  such that (1) u and v are flat for  $r_1 = 0, ||u||_{\alpha, L} + ||v||_{\alpha, L} < \varepsilon,$ (2)  $\mathcal{T}_0$  is invariant and diffusive for  $\mathcal{T} := \Phi^v \circ ((\Phi^u \circ F_0) \times G_0).$  THEOREM 1'  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1) u and v are flat for  $r_1 = 0$ ,  $||u||_{\alpha,L} + ||v||_{\alpha,L} < \varepsilon$ , (2)  $\mathcal{T}_0$  is invariant and diffusive for  $T := \Phi^v \circ ((\Phi^u \circ F_0) \times G_0)$ . THEOREM 1'  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1) u and v are flat for  $r_1 = 0$ ,  $||u||_{\alpha,L} + ||v||_{\alpha,L} < \varepsilon$ , (2)  $\mathcal{T}_0$  is invariant and diffusive for  $T := \Phi^{v} \circ ((\Phi^{u} \circ F_0) \times G_0)$ .

There is also a THEOREM 2' which implies THEOREM 2...

THEOREM 1'  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1) u and v are flat for  $r_1 = 0$ ,  $||u||_{\alpha,L} + ||v||_{\alpha,L} < \varepsilon$ , (2)  $\mathcal{T}_0$  is invariant and diffusive for  $T := \Phi^v \circ ((\Phi^u \circ F_0) \times G_0)$ . There is also a THEOREM 2' which implies THEOREM 2...

Key proposition: localized diffusive orbits:

THEOREM 1'  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1) u and v are flat for  $r_1 = 0$ ,  $||u||_{\alpha,L} + ||v||_{\alpha,L} < \varepsilon$ , (2)  $\mathcal{T}_0$  is invariant and diffusive for  $T := \Phi^v \circ ((\Phi^u \circ F_0) \times G_0)$ . There is also a THEOREM 2' which implies THEOREM 2...

Key proposition: localized diffusive orbits:

**PROPOSITION** Let  $\gamma = \frac{1}{\alpha-1}$ . For any  $\nu > 0$  small enough and  $\vec{r} \in \mathbb{R}$ , there exist  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that

THEOREM 1'  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1) u and v are flat for  $r_1 = 0$ ,  $||u||_{\alpha,L} + ||v||_{\alpha,L} < \varepsilon$ , (2)  $\mathcal{T}_0$  is invariant and diffusive for  $T := \Phi^v \circ ((\Phi^u \circ F_0) \times G_0)$ . There is also a THEOREM 2' which implies THEOREM 2...

Key proposition: localized diffusive orbits:

PROPOSITION Let  $\gamma = \frac{1}{\alpha-1}$ . For any  $\nu > 0$  small enough and  $\overline{r} \in \mathbb{R}$ , there exist  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1)  $u \equiv 0, v \equiv 0$  for  $r_1 \notin (\overline{r} - \nu, \overline{r} + \nu), ||u||_{\alpha,L} + ||v||_{\alpha,L} \leq e^{-c\nu^{-\gamma}}$ , THEOREM 1'  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1) u and v are flat for  $r_1 = 0$ ,  $||u||_{\alpha,L} + ||v||_{\alpha,L} < \varepsilon$ , (2)  $\mathcal{T}_0$  is invariant and diffusive for  $T := \Phi^{v} \circ ((\Phi^{u} \circ F_0) \times G_0)$ . There is also a THEOREM 2' which implies THEOREM 2...

Key proposition: localized diffusive orbits:

PROPOSITION Let  $\gamma = \frac{1}{\alpha - 1}$ . For any  $\nu > 0$  small enough and  $\overline{r} \in \mathbb{R}$ , there exist  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1)  $u \equiv 0, v \equiv 0$  for  $r_1 \notin (\overline{r} - \nu, \overline{r} + \nu), ||u||_{\alpha,L} + ||v||_{\alpha,L} \leq e^{-c\nu^{-\gamma}}$ , (2) the set  $\mathbb{T} \times (\overline{r} - \nu, \overline{r} + \nu) \times M_2$  is invariant and  $\nu$ -diffusive for  $T := \Phi^{\nu} \circ ((\Phi^u \circ F_0) \times G_0)$ . THEOREM 1'  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1) u and v are flat for  $r_1 = 0$ ,  $||u||_{\alpha,L} + ||v||_{\alpha,L} < \varepsilon$ , (2)  $\mathcal{T}_0$  is invariant and diffusive for  $T := \Phi^{v} \circ ((\Phi^{u} \circ F_0) \times G_0)$ . There is also a THEOREM 2' which implies THEOREM 2...

Key proposition: localized diffusive orbits:

PROPOSITION Let  $\gamma = \frac{1}{\alpha - 1}$ . For any  $\nu > 0$  small enough and  $\overline{r} \in \mathbb{R}$ , there exist  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1)  $u \equiv 0, v \equiv 0$  for  $r_1 \notin (\overline{r} - \nu, \overline{r} + \nu), ||u||_{\alpha,L} + ||v||_{\alpha,L} \leq e^{-c\nu^{-\gamma}}$ , (2) the set  $\mathbb{T} \times (\overline{r} - \nu, \overline{r} + \nu) \times M_2$  is invariant and  $\nu$ -diffusive for  $T := \Phi^{\nu} \circ ((\Phi^u \circ F_0) \times G_0)$ .

PROP  $\Rightarrow$  THEOREM 1': take  $\nu = \nu_n = 10^{-n}\varepsilon$ ,  $\bar{r} = \bar{r}_n = 2\nu_n$  and add up the corresponding  $u_n$ 's and  $v_n$ 's... (Disjoint supports!)
THEOREM 1'  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1) u and v are flat for  $r_1 = 0$ ,  $||u||_{\alpha,L} + ||v||_{\alpha,L} < \varepsilon$ , (2)  $\mathcal{T}_0$  is invariant and diffusive for  $T := \Phi^v \circ ((\Phi^u \circ F_0) \times G_0)$ . There is also a THEOREM 2' which implies THEOREM 2...

Key proposition: localized diffusive orbits:

PROPOSITION Let  $\gamma = \frac{1}{\alpha - 1}$ . For any  $\nu > 0$  small enough and  $\overline{r} \in \mathbb{R}$ , there exist  $\exists u \in G^{\alpha,L}(M_1), v \in G^{\alpha,L}(M_1 \times M_2)$  such that (1)  $u \equiv 0, v \equiv 0$  for  $r_1 \notin (\overline{r} - \nu, \overline{r} + \nu)$ ,  $||u||_{\alpha,L} + ||v||_{\alpha,L} \leq e^{-c\nu^{-\gamma}}$ , (2) the set  $\mathbb{T} \times (\overline{r} - \nu, \overline{r} + \nu) \times M_2$  is invariant and  $\nu$ -diffusive for  $T := \Phi^{\nu} \circ ((\Phi^u \circ F_0) \times G_0)$ .

PROP  $\Rightarrow$  THEOREM 1': take  $\nu = \nu_n = 10^{-n}\varepsilon$ ,  $\bar{r} = \bar{r}_n = 2\nu_n$  and add up the corresponding  $u_n$ 's and  $v_n$ 's... (Disjoint supports!) PROP  $\Rightarrow$  THEOREM 2': more elaborate...

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 9/13

• with drifting orbits, biasymptotic to infinity, with diffusion speed bounded from below (J.-P.Marco-D.S. 2003)

• with drifting orbits, biasymptotic to infinity, with diffusion speed bounded from below (J.-P.Marco-D.S. 2003)

< □ > < □ > < □ > < □ > < □ > = □ = □

• with wandering polydiscs (J.-P.Marco-D.S. 2004)

- with drifting orbits, biasymptotic to infinity, with diffusion speed bounded from below (J.-P.Marco-D.S. 2003)
- with wandering polydiscs (J.-P.Marco-D.S. 2004), with estimates for their size in L.Lazzarini-J.-P.Marco-D.S. 2018

- with drifting orbits, biasymptotic to infinity, with diffusion speed bounded from below (J.-P.Marco-D.S. 2003)
- with wandering polydiscs (J.-P.Marco-D.S. 2004), with estimates for their size in L.Lazzarini-J.-P.Marco-D.S. 2018
- with *q*th iterate containing a subsystem isomorphic to a skew-product defined on <sup>1</sup>/<sub>q</sub> ℤ × {ω<sub>1</sub>, ω<sub>2</sub>}<sup>ℤ</sup> giving rise to a random walk of step <sup>1</sup>/<sub>q</sub> for *r*<sub>1</sub> (J.-P.Marco-D.S. 2004)

<ロ> (四) (四) (三) (三) (三) (三)

- with drifting orbits, biasymptotic to infinity, with diffusion speed bounded from below (J.-P.Marco-D.S. 2003)
- with wandering polydiscs (J.-P.Marco-D.S. 2004), with estimates for their size in L.Lazzarini-J.-P.Marco-D.S. 2018
- with *q*th iterate containing a subsystem isomorphic to a skew-product defined on <sup>1</sup>/<sub>q</sub> ℤ × {ω<sub>1</sub>, ω<sub>2</sub>}<sup>ℤ</sup> giving rise to a random walk of step <sup>1</sup>/<sub>q</sub> for *r*<sub>1</sub> (J.-P.Marco-D.S. 2004)
- with a subsystem isomorphic to a transitive system on  $(\mathbb{T} \times \mathbb{R})^{n-1} \times \{\omega_1, \dots, \omega_r\}^{\mathbb{Z}}$ ,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

- with drifting orbits, biasymptotic to infinity, with diffusion speed bounded from below (J.-P.Marco-D.S. 2003)
- with wandering polydiscs (J.-P.Marco-D.S. 2004), with estimates for their size in L.Lazzarini-J.-P.Marco-D.S. 2018
- with *q*th iterate containing a subsystem isomorphic to a skew-product defined on <sup>1</sup>/<sub>q</sub> ℤ × {ω<sub>1</sub>, ω<sub>2</sub>}<sup>ℤ</sup> giving rise to a random walk of step <sup>1</sup>/<sub>q</sub> for r<sub>1</sub> (J.-P.Marco-D.S. 2004)
- with a subsystem isomorphic to a transitive system on  $(\mathbb{T} \times \mathbb{R})^{n-1} \times \{\omega_1, \ldots, \omega_r\}^{\mathbb{Z}}$ , with convergence in law to a Brownian motion of the n-1 first action variables after rescaling,

- with drifting orbits, biasymptotic to infinity, with diffusion speed bounded from below (J.-P.Marco-D.S. 2003)
- with wandering polydiscs (J.-P.Marco-D.S. 2004), with estimates for their size in L.Lazzarini-J.-P.Marco-D.S. 2018
- with *q*th iterate containing a subsystem isomorphic to a skew-product defined on <sup>1</sup>/<sub>q</sub> ℤ × {ω<sub>1</sub>, ω<sub>2</sub>}<sup>ℤ</sup> giving rise to a random walk of step <sup>1</sup>/<sub>q</sub> for r<sub>1</sub> (J.-P.Marco-D.S. 2004)
- with a subsystem isomorphic to a transitive system on
   (T × ℝ)<sup>n-1</sup> × {ω<sub>1</sub>,..., ω<sub>r</sub>}<sup>ℤ</sup>, with convergence in law to a
   Brownian motion of the n − 1 first action variables after
   rescaling, ergodic if n = 2 or 3 (D.S. 2006, unpublished)

- with drifting orbits, biasymptotic to infinity, with diffusion speed bounded from below (J.-P.Marco-D.S. 2003)
- with wandering polydiscs (J.-P.Marco-D.S. 2004), with estimates for their size in L.Lazzarini-J.-P.Marco-D.S. 2018
- with *q*th iterate containing a subsystem isomorphic to a skew-product defined on <sup>1</sup>/<sub>q</sub> ℤ × {ω<sub>1</sub>, ω<sub>2</sub>}<sup>ℤ</sup> giving rise to a random walk of step <sup>1</sup>/<sub>q</sub> for r<sub>1</sub> (J.-P.Marco-D.S. 2004)
- with a subsystem isomorphic to a transitive system on
   (T × ℝ)<sup>n-1</sup> × {ω<sub>1</sub>,..., ω<sub>r</sub>}<sup>ℤ</sup>, with convergence in law to a
   Brownian motion of the n − 1 first action variables after
   rescaling, ergodic if n = 2 or 3 (D.S. 2006, unpublished)
- with a non-resonant elliptic fixed point attracting an orbit (B.Fayad-J.-P.Marco-D.S. 2018).

Herman's mechanism:



◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ● ● ● ● 10/13

Herman's mechanism: Fine-tuned coupling of two twist maps: At exactly one point  $z_*$  of a well chosen periodic orbit of period q of the first twist map  $F = \Phi^u \times F_0 : M_1 = \mathbb{T} \times \mathbb{R}$ 

At exactly one point  $z_*$  of a well chosen periodic orbit of period q of the first twist map  $F = \Phi^u \times F_0$ :  $M_1 = \mathbb{T} \times \mathbb{R}$   $\mathfrak{S}$ , the coupling will push the orbits in the second annulus  $M_2 = \mathbb{T} \times \mathbb{R}$  upward, along a fixed vertical  $\Delta$ 

イロト イヨト イヨト -

э.

At exactly one point  $z_*$  of a well chosen periodic orbit of period q of the first twist map  $F = \Phi^u \times F_0$ :  $M_1 = \mathbb{T} \times \mathbb{R}$   $\mathfrak{S}$ , the coupling will push the orbits in the second annulus  $M_2 = \mathbb{T} \times \mathbb{R}$  upward, along a fixed vertical  $\Delta$ , by an amount 1/q that sends an invariant curve whose rotation number is a multiple of 1/q exactly to another one having the same property.

At exactly one point  $z_*$  of a well chosen periodic orbit of period q of the first twist map  $F = \Phi^u \times F_0$ :  $M_1 = \mathbb{T} \times \mathbb{R}$   $\mathfrak{S}$ , the coupling will push the orbits in the second annulus  $M_2 = \mathbb{T} \times \mathbb{R}$  upward, along a fixed vertical  $\Delta$ , by an amount 1/q that sends an invariant curve whose rotation number is a multiple of 1/q exactly to another one having the same property.

The dynamics of the  $q^{\text{th}}$  iterate of the coupled map on the line  $\{z_*\} \times \Delta \subset M_1 \times M_2$  will thus drift at a linear speed

At exactly one point  $z_*$  of a well chosen periodic orbit of period q of the first twist map  $F = \Phi^u \times F_0$ :  $M_1 = \mathbb{T} \times \mathbb{R}$   $\mathfrak{S}$ , the coupling will push the orbits in the second annulus  $M_2 = \mathbb{T} \times \mathbb{R}$  upward, along a fixed vertical  $\Delta$ , by an amount 1/q that sends an invariant curve whose rotation number is a multiple of 1/q exactly to another one having the same property.

The dynamics of the  $q^{\text{th}}$  iterate of the coupled map on the line  $\{z_*\} \times \Delta \subset M_1 \times M_2$  will thus drift at a linear speed: after  $q^2$  iterates the point will have moved by 1 in the second action coordinate  $r_2$ 

At exactly one point  $z_*$  of a well chosen periodic orbit of period q of the first twist map  $F = \Phi^u \times F_0$ :  $M_1 = \mathbb{T} \times \mathbb{R}$   $\mathfrak{S}$ , the coupling will push the orbits in the second annulus  $M_2 = \mathbb{T} \times \mathbb{R}$  upward, along a fixed vertical  $\Delta$ , by an amount 1/q that sends an invariant curve whose rotation number is a multiple of 1/q exactly to another one having the same property.

The dynamics of the  $q^{\text{th}}$  iterate of the coupled map on the line  $\{z_*\} \times \Delta \subset M_1 \times M_2$  will thus drift at a linear speed: after  $q^2$  iterates the point will have moved by 1 in the second action coordinate  $r_2$ , and after  $q^3$  it will have moved by q.

At exactly one point  $z_*$  of a well chosen periodic orbit of period q of the first twist map  $F = \Phi^u \times F_0$ :  $M_1 = \mathbb{T} \times \mathbb{R}$   $\mathfrak{S}$ , the coupling will push the orbits in the second annulus  $M_2 = \mathbb{T} \times \mathbb{R}$  upward, along a fixed vertical  $\Delta$ , by an amount 1/q that sends an invariant curve whose rotation number is a multiple of 1/q exactly to another one having the same property.

The dynamics of the  $q^{\text{th}}$  iterate of the coupled map on the line  $\{z_*\} \times \Delta \subset M_1 \times M_2$  will thus drift at a linear speed: after  $q^2$  iterates the point will have moved by 1 in the second action coordinate  $r_2$ , and after  $q^3$  it will have moved by q.

The diffusing orbits obtained this way are bi-asymptotic to infinity: their  $r_2$ -coordinates travel from  $-\infty$  to  $+\infty$  at average speed  $1/q^2$ .

<□ > < @ > < ≧ > < ≧ > ≧ の < ? 11/13

- $F: M_1$  and  $G_0: M_2$  diffeomorphisms
- $z_* \in M_1$  a *q*-periodic for *F*
- $f: M_1 \to \mathbb{R}$  and  $g: M_2 \to \mathbb{R}$  (Hamiltonian) functions.

 $F: M_1 \mathfrak{S}$  and  $G_0: M_2 \mathfrak{S}$  diffeomorphisms

 $z_* \in M_1$  a *q*-periodic for *F* 

 $f: M_1 \to \mathbb{R} \text{ and } g: M_2 \to \mathbb{R} \text{ (Hamiltonian) functions.}$ 

Then 
$$T := \Phi^{f \otimes g} \circ (F \times G_0)$$
:  $M_1 \times M_2$  satisfies  
 $T^q(z_*, z_2) = (z_*, \Phi^g \circ G_0^q(z_2))$  for all  $z_2 \in M_2$ .

We have denoted by  $f \otimes g$  the function  $(z_1, z_2) \mapsto f(z_1)g(z_2)$ .

 $F: M_1 \mathfrak{S}$  and  $G_0: M_2 \mathfrak{S}$  diffeomorphisms

 $z_* \in M_1$  a *q*-periodic for *F* 

 $f: M_1 \to \mathbb{R}$  and  $g: M_2 \to \mathbb{R}$  (Hamiltonian) functions. Synchronization Assumption

 $f(z_*) = 1$ ,  $df(z_*) = 0$ ,  $f(F^s(z_*)) = 0$ ,  $df(F^s(z_*)) = 0$ 

for  $1 \leq s \leq q-1$ . Then  $T := \Phi^{f \otimes g} \circ (F \times G_0)$ :  $M_1 \times M_2 \bigcirc$  satisfies  $T^q(z_*, z_2) = (z_*, \Phi^g \circ G_0^q(z_2))$  for all  $z_2 \in M_2$ .

We have denoted by  $f \otimes g$  the function  $(z_1, z_2) \mapsto f(z_1)g(z_2)$ .

 $F: M_1 \mathfrak{S}$  and  $G_0: M_2 \mathfrak{S}$  diffeomorphisms

 $z_* \in M_1$  a *q*-periodic for *F* 

 $f: M_1 \to \mathbb{R}$  and  $g: M_2 \to \mathbb{R}$  (Hamiltonian) functions. Synchronization Assumption

 $f(z_*) = 1$ ,  $df(z_*) = 0$ ,  $f(F^s(z_*)) = 0$ ,  $df(F^s(z_*)) = 0$ 

for  $1 \leq s \leq q-1$ . Then  $T := \Phi^{f \otimes g} \circ (F \times G_0)$ :  $M_1 \times M_2 \mathfrak{S}$  satisfies  $T^q(z_*, z_2) = (z_*, \Phi^g \circ G_0^q(z_2))$  for all  $z_2 \in M_2$ .

We have denoted by  $f\otimes g$  the function  $(z_1,z_2)\mapsto f(z_1)g(z_2).$ The point is that

$$\Phi^{f \otimes g}(z_1, z_2) = \left(\Phi^{g(z_2)f}(z_1), \Phi^{f(z_1)g}(z_2)\right) \text{ for all } (z_1, z_2).$$

 $T^q(z_*,z_2) = \left(z_*,\Phi^g \circ G_0^q(z_2)\right) \text{ for all } z_2 \in M_2.$ 

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > ○ Q ( 12/13

 $T^q(z_*,z_2) = \left(z_*,\Phi^g \circ G_0^q(z_2)\right) \text{ for all } z_2 \in M_2.$ 

 $\psi := \Phi^{g} \circ G_{0}^{q}$ :  $M_{2} \simeq$  appears as a subsystem of  $T^{q}$ :  $M_{1} \times M_{2} \simeq$ 

 $T^{q}(z_{*}, z_{2}) = (z_{*}, \Phi^{g} \circ G_{0}^{q}(z_{2})) \text{ for all } z_{2} \in M_{2}.$  $\psi := \Phi^{g} \circ G_{0}^{q}: M_{2} \circlearrowright \text{ appears as a subsystem of } T^{q}: M_{1} \times M_{2} \circlearrowright$ To prove PROP:

Use  $g(r_2, \theta_2) = -\frac{1}{q} \frac{\sin(2\pi\theta_2)}{2\pi}$ , so  $\psi$  = rescaled standard map  $\psi(\theta_2, r_2) = (\theta_2 + q(\omega_2 + r_2), r_2 + \frac{1}{q} \cos(\theta_2 + q(\omega_2 + r_2)))$ 

 $T^{q}(z_{*}, z_{2}) = (z_{*}, \Phi^{g} \circ G_{0}^{q}(z_{2})) \text{ for all } z_{2} \in M_{2}.$  $\psi := \Phi^{g} \circ G_{0}^{q}: M_{2} \circlearrowright \text{ appears as a subsystem of } T^{q}: M_{1} \times M_{2} \circlearrowright$ To prove PROP:

<ロト < 回 > < 目 > < 目 > < 目 > の Q @ 12/13

Use  $g(r_2, \theta_2) = -\frac{1}{q} \frac{\sin(2\pi\theta_2)}{2\pi}$ , so  $\psi$  = rescaled standard map  $\psi(\theta_2, r_2) = (\theta_2 + q(\omega_2 + r_2), r_2 + \frac{1}{q} \cos(\theta_2 + q(\omega_2 + r_2)))$  not close to integrable! Drift will take place

 $T^{q}(z_{*}, z_{2}) = (z_{*}, \Phi^{g} \circ G_{0}^{q}(z_{2})) \text{ for all } z_{2} \in M_{2}.$  $\psi := \Phi^{g} \circ G_{0}^{q}: M_{2} \circlearrowright \text{ appears as a subsystem of } T^{q}: M_{1} \times M_{2} \circlearrowright$ To prove PROP:

Use  $g(r_2, \theta_2) = -\frac{1}{q} \frac{\sin(2\pi\theta_2)}{2\pi}$ , so  $\psi$  = rescaled standard map  $\psi(\theta_2, r_2) = (\theta_2 + q(\omega_2 + r_2), r_2 + \frac{1}{q} \cos(\theta_2 + q(\omega_2 + r_2)))$ not close to integrable! Drift will take place on  $\{z_*\} \times \Delta$  with  $\Delta := \{0\} \times \mathbb{R} \subset M_2$ :  $\psi^n(0, -\omega_2) = (0, -\omega_2 + \frac{n}{q})$  for all  $n \in \mathbb{Z}$ 

 $T^{q}(z_{*}, z_{2}) = (z_{*}, \Phi^{g} \circ G_{0}^{q}(z_{2})) \text{ for all } z_{2} \in M_{2}.$  $\psi := \Phi^{g} \circ G_{0}^{q}: M_{2} \circlearrowright \text{ appears as a subsystem of } T^{q}: M_{1} \times M_{2} \circlearrowright$ To prove PROP:

Use  $g(r_2, \theta_2) = -\frac{1}{q} \frac{\sin(2\pi\theta_2)}{2\pi}$ , so  $\psi$  = rescaled standard map  $\psi(\theta_2, r_2) = (\theta_2 + q(\omega_2 + r_2), r_2 + \frac{1}{q} \cos(\theta_2 + q(\omega_2 + r_2)))$ not close to integrable! Drift will take place on  $\{z_*\} \times \Delta$  with  $\Delta := \{0\} \times \mathbb{R} \subset M_2$ :  $\psi^n(0, -\omega_2) = (0, -\omega_2 + \frac{n}{q})$  for all  $n \in \mathbb{Z}$ For the first factor, find a near-integrable system  $F = \Phi^u \circ F_0$  with

a q-periodic " $\sigma$ -isolated" point, with  $\sigma$  not too small:

 $T^{q}(z_{*}, z_{2}) = (z_{*}, \Phi^{g} \circ G_{0}^{q}(z_{2})) \text{ for all } z_{2} \in M_{2}.$  $\psi := \Phi^{g} \circ G_{0}^{q}: M_{2} \circlearrowright \text{ appears as a subsystem of } T^{q}: M_{1} \times M_{2} \circlearrowright$ To prove PROP:

Use  $g(r_2, \theta_2) = -\frac{1}{q} \frac{\sin(2\pi\theta_2)}{2\pi}$ , so  $\psi$  = rescaled standard map  $\psi(\theta_2, r_2) = (\theta_2 + q(\omega_2 + r_2), r_2 + \frac{1}{q} \cos(\theta_2 + q(\omega_2 + r_2)))$ not close to integrable! Drift will take place on  $\{z_*\} \times \Delta$  with  $\Delta := \{0\} \times \mathbb{R} \subset M_2$ :  $\psi^n(0, -\omega_2) = (0, -\omega_2 + \frac{n}{q})$  for all  $n \in \mathbb{Z}$ For the first factor, find a near-integrable system  $F = \Phi^u \circ F_0$  with

a *q*-periodic " $\sigma$ -isolated" point, with  $\sigma$  not too small: fulfilling Synchronization Assumption will make *f* exponentially large in  $\sigma$ .

 $T^{q}(z_{*}, z_{2}) = (z_{*}, \Phi^{g} \circ G_{0}^{q}(z_{2})) \text{ for all } z_{2} \in M_{2}.$  $\psi := \Phi^{g} \circ G_{0}^{q}: M_{2} \circlearrowright \text{ appears as a subsystem of } T^{q}: M_{1} \times M_{2} \circlearrowright$ To prove PROP:

Use  $g(r_2, \theta_2) = -\frac{1}{a} \frac{\sin(2\pi\theta_2)}{2\pi}$ , so  $\psi$  = rescaled standard map  $\psi(\theta_2, r_2) = (\theta_2 + q(\omega_2 + r_2), r_2 + \frac{1}{q}\cos(\theta_2 + q(\omega_2 + r_2)))$ not close to integrable! Drift will take place on  $\{z_*\} \times \Delta$  with  $\Delta := \{0\} \times \mathbb{R} \subset M_2: \ \psi^n(0, -\omega_2) = (0, -\omega_2 + \frac{n}{a}) \text{ for all } n \in \mathbb{Z}$ For the first factor, find a near-integrable system  $F = \Phi^u \circ F_0$  with a *q*-periodic " $\sigma$ -isolated" point, with  $\sigma$  not too small: fulfilling Synchronization Assumption will make f exponentially large in  $\sigma$ . Then take q large enough to ensure that  $v := f \otimes g$  is small... (Indeed: want to achieve  $||u|| + ||v|| \leq e^{-c\nu^{-\gamma}}$ )

$$T = \Phi^{\nu} \circ \left( (\Phi^{\mu} \circ F_0) \times G_0 \right), \quad \nu \coloneqq f \otimes g = -\frac{1}{q} f(z_1) \frac{\sin(2\pi\theta_2)}{2\pi}$$

< □ > < □ > < □ > < ≧ > < ≧ > E の < ⊖ 13/13

$$T = \Phi^{\nu} \circ \left( (\Phi^{\mu} \circ F_0) \times G_0 \right), \quad \nu \coloneqq f \otimes g = -\frac{1}{q} f(z_1) \frac{\sin(2\pi\theta_2)}{2\pi}$$
$$\|f\| \text{ exponentially large w.r.t. } \sigma$$

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ▶ ↓ ■ ⑦ 𝔅 𝔅 13/13

$$T = \Phi^{v} \circ \left( (\Phi^{u} \circ F_{0}) \times G_{0} \right), \quad v \coloneqq f \otimes g = -\frac{1}{q} f(z_{1}) \frac{\sin(2\pi\theta_{2})}{2\pi}$$
$$\|f\| \text{ exponentially large w.r.t. } \sigma$$

It so happens that  $\sigma$  must be taken exponentially small w.r.t.  $\nu$ ,



$$T = \Phi^{v} \circ \left( (\Phi^{u} \circ F_{0}) \times G_{0} \right), \quad v \coloneqq f \otimes g = -\frac{1}{q} f(z_{1}) \frac{\sin(2\pi\theta_{2})}{2\pi}$$
$$\|f\| \text{ exponentially large w.r.t. } \sigma$$

It so happens that  $\sigma$  must be taken exponentially small w.r.t.  $\nu$ , i.e. ||f|| is doubly exponentially large w.r.t.  $\nu$ .
$$T = \Phi^{v} \circ \left( (\Phi^{u} \circ F_{0}) \times G_{0} \right), \quad v \coloneqq f \otimes g = -\frac{1}{q} f(z_{1}) \frac{\sin(2\pi\theta_{2})}{2\pi}$$
$$\|f\| \text{ exponentially large w.r.t. } \sigma$$

It so happens that  $\sigma$  must be taken exponentially small w.r.t.  $\nu$ , i.e. ||f|| is doubly exponentially large w.r.t.  $\nu$ .

This is why we take q doubly exponentially large in  $\nu$ 

$$T = \Phi^{v} \circ \left( (\Phi^{u} \circ F_{0}) \times G_{0} \right), \quad v \coloneqq f \otimes g = -\frac{1}{q} f(z_{1}) \frac{\sin(2\pi\theta_{2})}{2\pi}$$
$$\|f\| \text{ exponentially large w.r.t. } \sigma$$

It so happens that  $\sigma$  must be taken exponentially small w.r.t.  $\nu$ , i.e. ||f|| is doubly exponentially large w.r.t.  $\nu$ .

This is why we take q doubly exponentially large in  $\nu$  and, in the end, the diffusion time  $q^3$  is doubly exponentially large in  $\nu$  !!

 $T = \Phi^{v} \circ \left( (\Phi^{u} \circ F_{0}) \times G_{0} \right), \quad v \coloneqq f \otimes g = -\frac{1}{q} f(z_{1}) \frac{\sin(2\pi\theta_{2})}{2\pi}$  $\|f\| \text{ exponentially large w.r.t. } \sigma$ 

It so happens that  $\sigma$  must be taken exponentially small w.r.t.  $\nu$ , i.e. ||f|| is doubly exponentially large w.r.t.  $\nu$ .

This is why we take q doubly exponentially large in  $\nu$  and, in the end, the diffusion time  $q^3$  is doubly exponentially large in  $\nu$  !!

A technical work is required to find  $F = \Phi^u \circ F_0$  with the desired isolation property...

– Fine-tuning of rotation number of a certain circle diffeo,  $\mathbb{T} \circlearrowleft$ 

– Another trick by Herman allows us to embed it in a system of the form  $F = \Phi^u \circ F_0$ :  $M_1 \circlearrowright$ .