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Horseshoes (HS) (1)

Definition
Let f : M → M be a diffeomorphism of a manifold.

I A horseshoe for f is a f -invariant subset H ⊂ M such that the
Dynamics f|H is C 0 conjugate to the one of a non-trivial
transitive subshift with finite type.

I A horseshoe for f is a σ2-horseshoe when the Dynamics f|H is
C 0 conjugate to the shift with two symbols.



Horseshoes (HS) (2)

I the shift σ is defined on Σp = {1, . . . , p}Z by
σ((uk)k∈Z) = (uk+1)k∈Z;

I let A = (ai ,j)1≤i ,j≤p be a matrix with only 0s and 1s; we can
define the subshift with finite type that is the restriction σA of
σ to

ΣA = {(uk)k∈Z ∈ Σp; ∀k ∈ Z; auk ,uk+1
= 1};

I we say that the subshift is transitive and non-trivial if all the
entries of one power An are non zero; then σA is transitive
and mixing.



Horseshoes (HS) (3)

Examples. The first HS was introduced by S. Smale 1965 close to
a transversal homoclinic intersection of a hyperbolic periodic point.
This HS is hyperbolic. This was extended to the case of
topologically transversal homoclinic intersection by Burns and
Weiss 1995. Le Calvez and Tal 2018 use purely topological HSs for
2-dimensional homeomorphisms.



Denjoy example

I Let α /∈ Q/Z. The rotation
Rα : T→ T, θ 7→ θ + α is minimal
homeomorphism of the circle;

I “replace” each point kα of the orbit (jα)j∈Z
by a small segment Ik . Your new
homeomorphism g : T→ T maps Ik onto
Ik+1. The interior Int(Ik)of Ik is then a
wandering domain ;

I and K = T\
⋃
k∈Z

Int(Ik) is a Cantor set such

that the dynamic restricted to K is minimal.
We can do the same thing for a at most countable number of
orbits.



Denjoy sub-systems (DS) (1)

Definition
Let f : M → M be a C k diffeomorphism of a manifold M. A C k

(resp. Lipschitz) Denjoy sub-system for f is a triplet (K , γ, h)
where

I γ : T→ M is a C k (resp. biLipschitz) embedding;

I h : T→ T is a Denjoy example with Ω(h) = K ⊂ T;

I f (γ(K )) = γ(K ) and γ ◦ h|K = f ◦ γ|K .

M



Denjoy sub-systems (2)

M

Remarks.

I In this definition, γ(T) is not necessarily invariant, but it is
useful to define a circular order on the Cantor set γ(K ).

I We proved with P. Le Calvez 2017 that there is no C 2 DS.

Examples. Denjoy examples; Aubry-Mather sets.



Weak Denjoy sub-systems (WDS) (1)

Definition
Let f : M → M be a homeomorphism of a manifold M. A weak
Denjoy sub-system for f is a triplet (K , j , h) where

I h : T→ T is a Denjoy example with Ω(h) = K ⊂ T;

I j : K → M is a homeomorphism onto its image;

I f (j(K )) = j(K ) and j ◦ h|K = f ◦ j .



Weak Denjoy sub-systems (2)

Remark. If (K , γ, h) is a DS, then (K , γ|K , h) is a WDS.

Theorem
Let (K , j , h) be a WDS of a surface homeomorphism. Then there
exists a continuous DS (K , γ, h) such that γ|K = j .

Idea of proof

I We use a result on planar Cantor sets: if two planar Cantor
sets are homeomorphic, we can extend their homeomorphism
into a homeomorphism of the plane.

I Observe that this result is not true in higher dimension.



Denjoy sub-systems versus Horseshoes

I These two kinds of Cantor Dynamics appear
close to the generic fixed points of area
preserving diffeomorphisms (Zehnder 73 and
Aubry-Mather-Le Daeron 1982-3);

I a Denjoy Dynamics have zero entropy and
no periodic points;

I horseshoes are the evidence of positive
topological entropy for C 1+α

diffeomorphisms (Katok 1980) and they
have a dense set of periodic points.

Questions. Do horseshoes contain Denjoy sub-systems?
Are Denjoy sub-systems contained in some horseshoes?



Rotation number (1)

Definition
Two WDS (K1, j1, h1) and (K2, j2, h2) for a same homeomorphism
f are equivalent if j1(K1) = j2(K2).

Theorem
Let (K1, γ1, h1) and (K2, γ2, h2) be two equivalent WDS. Then

I there exists a homeomorphism h : T→ T such that
h ◦ h1 = h2 ◦ h;

I if we denote by ρ(hi ) the rotation number of hi , we have
ρ(h1) = ±ρ(h2);

I if we denote by ≺Ki
the circular order (for triplets of points)

on ji (Ki ) that is deduced from the one of Ki ⊂ T via the map
ji , then ≺K1=≺K2 or ≺K1= − ≺K2 , hence the two orders have
the same intervals.



Rotation number (2)

Idea of proof

I We associate to any continuous dynamical system F : X → X
the equivalence relation RF

xRF y ⇔ lim
k→+∞

d(F kx ,F ky) = 0.

I when (K , j , h) is a WDS for a homeomorphism f , then
K/Rh ≈ j(K )/Rf ≈ T.



Rotation number (3)

Notation. We can define the rotation number
ρ(K , j , h) ∈ T/x ∼ −x , that satisfies that two equivalent Denjoy
sub-systems have the same rotation number.

Topology on the set of WDS for f . The two weak Denjoy
sub-systems (K1, j1, h1) and (K2, j2, h2) are close to each other if

I the two compact subsets j1(K1) and j2(K2) are close to each
other for the Hausdorff distance on compact subsets of M;

I the two graphs of the circular orders ≺K1 and ≺K2 or − ≺K2

are close to each other for the Hausdorff distance on compact
subsets of M3.

Proposition

ρ is continuous.



Rotation number (4)

Idea of proof

I If two WDS are close from each other, we can encode their
Dynamics by two sequences of {0, 1}-symbols that correspond
to some itineraries that are close from each other;

I these sequences are the Sturmian sequences that are
associated to the corresponding rotation numbers;

I the Sturmian sequences determine the terms of the continued
fraction of the two rotations numbers.



Horseshoes always contain a family of weak Denjoy
sub-systems (1)

Theorem
Let f : M → M be a C k diffeomorphism and let H be a HS for f .
Then there is a N ≥ 1 and a continuous map
D : r ∈ (T\Q)/x ∼ −x 7→ (Kr , jr , hr ) such that

I D(r) = (Kr , jr , hr ) is a continuous WDS with rotation number
r for f N ;

I jr (Kr ) ⊂ H.

Moreover, if H is a σ2-HS, we have N = 1.



Horseshoes always contain a family of weak Denjoy
sub-systems (2)

I To prove the theorem, we use Denjoy examples with one gap.

I It is possible to embed a family of WDS with a finite number
p of gaps in a σsup{2,p}-HS.

I But we cannot embed a WDS with a infinite countable
number of gaps in a horseshoe, because the Dynamics on a
HS is expansive.



Horseshoes always contain a family of weak Denjoy
sub-systems (3)

Corollary

Let f : M(2) → M(2) be a C k diffeomorphism of a surface and let
H be a HS for f . Then there is a N ≥ 1 and a continuous map
D : r ∈ (T\Q)/x ∼ −x 7→ (Kr , γr , hr ) such that

I D(r) = (Kr , γr , hr ) is a continuous DS with rotation number r
for f N ;

I γr (Kr ) ⊂ H.

Moreover, if H is a σ2-HS, we have N = 1.



Horseshoes always contain a family of weak Denjoy
sub-systems (4)

Idea of proof

I We also use symbolic dynamics to obtain some Sturmian
sequences;

I two rotation numbers that are close to each other give
Sturmian sequences whose shift-orbits are close to each other
(as sets);

I hence the corresponding compact subsets in the horseshoe are
close to each other;

I also the not too small intervals that they determine are close
to each other and then the order relations also.



The case of the conservative twist diffeomorphisms (1)
Let F : R2 → R2 be a lift of an exact symplectic twist
diffeomorphism f : A→ A.
An Aubry-Mather set is a totally ordered compact set that contains
only minimizing orbits. Then every Aubry-Mather set A has a
rotation number ρ(A) ∈ R and

I every Aubry-Mather set is a partial Lipschitz graph;

I if (An) is a sequence of Aubry-Mather sets such that the
sequence of rotation numbers (ρ(An)) converges to some
r ∈ R, then

⋃
n∈NAn is relatively compact and any limit point

of (An) is an Aubry-Mather set with rotation number r .



The case of the conservative twist diffeomorphisms (2)

I For every r ∈ R\Q, there exists a unique maximal
Aubry-Mather set Ar with rotation number r that contains
every Aubry-Mather set with the same rotation number;

I Aubry-Mather sets Ar that have an irrational rotation number
and that are not full graphs always contain a Lipschitz Denjoy
sub-system;

I for every r = p
q ∈ Q, there exists two Aubry-Mather set A±r

with rotation number r that are maximal (for ⊂) among the
Aubry-Mather sets with the same rotation number and that
are such that: ∀x ∈ Ã+

r , π1 ◦ F q(x) ≥ π1(x) + p (resp.
∀x ∈ Ã−r , π1 ◦ F q(x) ≤ π1(x) + p).



The case of the conservative twist diffeomorphisms (3)

Theorem
Let f : A→ A be an exact symplectic twist diffeomorphism.
Assume that A+

r (resp. A−r ) is uniformly hyperbolic for some
rational number r ∈ Q. Let Vr be a neighbourhood of A+

r (resp.
A−r ). Then there exists a horseshoe H+

r (resp. H−r ) for some f N

and ε > 0 such that

I A+
r ⊂ H+

r ⊂ Vr (resp. A−r ⊂ H−r ⊂ Vr );

I every Aubry-Mather set with rotation number in (r , r + ε)
(resp. (r − ε, r)) is contained in H+

r (resp. H−r );

I every point in H+
r (resp. H−r ) has no conjugate points, i.e.

has its orbit that is locally minimizing.



The case of the conservative twist diffeomorphisms (4)

Corollary

There exists a dense Gδ subset G of the set of C k symplectic twist
diffeomorphisms (for k ≥ 1) such that for every f ∈ G, there exist
an open and dense subset U(f ) of R and a sequence (rn)n∈N in
U(f ) ∩Q such that every minimizing Aubry-Mather set with
rotation number in U(f ) is hyperbolic and contained in a
horseshoe associated to a minimizing hyperbolic Aubry-Mather set
whose rotation number is rn.



The case of the conservative twist diffeomorphisms (5)

Idea of proof

We carefully choose a Markov partition close to some heteroclinic
cycle.

xk

Bs(xk)

Bu(xk)

Rk

xk+1

Bu(xk+1)

Rk+1

We also use a result of Le Calvez that implies that for a generic
conservative twist diffeomorphisms, all the Aubry-Mather sets with
a rational rotation number are hyperbolic.


